A Classroom Research Study:
Examining Relationships Between Feedback,
Performance,
and Self-Efficacy in a First-Year Mathematics Course

by

Christine Marie Krbavac
B.A., Simon Fraser University, 1992

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ARTS

In the Faculty of Education
Curriculum and Instruction, Education and Technology

© Christine Marie Krbavac 2006

SIMON FRASER UNIVERSITY
Fall 2006

All rights reserved. This work may not be reproduced in whole or in part,
by photocopy or other means, without permission of the author.
APPROVAL

NAME (Christine) Marie Krbavac

DEGREE Master of Arts

TITLE A Classroom Research Study: Examining Relationships Between Feedback, Performance, and Self-Efficacy in a First-Year Mathematics Course

EXAMINING COMMITTEE:

Chair Michelle Nilson

Cheryl Amundsen, Associate Professor
Senior Supervisor

Philip Winne, Professor
Member

Veselin Jungic, Lecturer, Department of Mathematics
Member

Dr. John Nesbit, Assistant Professor, Faculty of Education, SFU
Examiner

Date December 1, 2006
DECLARATION OF PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the “Institutional Repository” link of the SFU Library website <www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain shall not be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2006
STATEMENT OF ETHICS APPROVAL

The author, whose name appears on the title page of this work, has obtained, for the research described in this work, either:

(a) Human research ethics approval from the Simon Fraser University Office of Research Ethics,

or

(b) Advance approval of the animal care protocol from the University Animal Care Committee of Simon Fraser University;

or has conducted the research

(c) as a co-investigator, in a research project approved in advance,

or

(d) as a member of a course approved in advance for minimal risk human research, by the Office of Research Ethics.

A copy of the approval letter has been filed at the Theses Office of the University Library at the time of submission of this thesis or project.

The original application for approval and letter of approval are filed with the relevant offices. Inquiries may be directed to those authorities.

Bennett Library
Simon Fraser University
Burnaby, BC, Canada
ABSTRACT

Many instructors, on their own or with the help of faculty developers, have made changes to the instructional design of their courses and have wondered about the impact of the changes on student learning. After completing the Rethinking Teaching Workshop (RTW) offered at Simon Fraser University (SFU), one mathematics instructor decided to formally evaluate particular aspects of changes made to the instructional design of his course. This study describes the process used to formulate the research questions and evaluate the impact of the instructional changes. The research questions focus on the instructor’s objectives for making the changes, namely to provide additional feedback (using an on-line tool called LON-CAPA) to the 400 students in his course in an effort to improve student achievement and mathematics self-efficacy. The results indicate that there was an improvement in student achievement and mathematics self-efficacy between the beginning and the end of the course.

Keywords

Instructional design, mathematics education, self-efficacy, achievement, scholarship of teaching and learning
EXECUTIVE SUMMARY

The Department of Mathematics at Simon Fraser University (SFU) believes that student-instructor contact plays a key role in helping students to succeed in mathematics. Recently drop-in hours for the Applied Calculus labs were reduced, which decreased the number of contact hours between students and the course instructor/teaching assistants. Looking for ways to increase the amount of feedback provided to students, one Calculus instructor, Dr. Jungic, attended the Rethinking Teaching Workshop (RTW). Subsequent to learning more about the benefits of feedback and how to include feedback in his course design, Dr. Jungic decided to make changes to his instructional strategy by incorporating an on-line tool called LON-CAPA that would provide students with immediate multiple-try feedback.

After making the changes, Dr. Jungic approached me and another researcher for help with assessing the impact of the course design changes he made on student learning. Specifically, Dr. Jungic wanted to know if increasing the amount of feedback would increase student’s “self-confidence” and achievement in his Calculus course. Upon consulting the literature, I quickly learned that the term self-confidence is rarely used in the literature, and that Bandura’s (Bandura, 1997) term “self-efficacy” matched Dr. Jungic’s definition of self-confidence. After confirming this with Dr. Jungic, I returned to the literature and investigated the relationships between feedback and performance, performance and self-efficacy, and feedback and self-efficacy. Out of interest, I also
investigated the role of gender in each of these relationships. In addition, changes to the instructional strategy were documented through interviews with Dr. Jungic.

The results indicated that feedback may have helped to improve performance. Between 2002 and 2004 percentage of A’s and B’s increased and the percentage of F’s and N’s decreased. There was also an increase in grades between the first and second midterms for students in the bottom one-third of the class. In addition, students in the bottom one-third of the class had a larger decrease in grades on the final exam than students in the other two groups.

The second research area investigated the relationship between performance and mathematics self-efficacy. These results indicated that there was a statistically significant increase in mathematics self-efficacy (MSE) scores from the beginning of the semester to the end of the semester, MSE scores at the beginning of the semester are correlated with scores at the end of the semester, and students’ self-efficacy scores for topics covered throughout the semester were similar at the beginning of the semester and at the end of the semester. No correlation was found between MSE scores at the beginning of the semester and performance on the first midterm. At the end of the course, however, students’ mathematics performance was strongly correlated with their self-efficacy about specific topics covered in the class.

The relationship between feedback and mathematics self-efficacy was the third relationship examined. These results indicated that student’s mathematics self-efficacy improved significantly between the beginning and the end of the semester. As there is an indication that overall performance in this class was higher than in the previous class, it is possible that student’s mathematics self-efficacy improved as a result of feedback.
Finally, the analysis of the relationship between gender and performance indicates that there were no differences in mathematics self-efficacy for males and females. There were also no differences on the final exam scores of males and females.

After completing the analyses described above, I asked Dr. Jungic to review and comment on the findings. Upon reviewing the results, Dr. Jungic stated that he believes the results of this study justify the effort required to create and manage the on-line assignments, and that he felt that the whole process was a very positive experience, and would like to ask the same research questions in a new class. Subsequently, in the 2006 fall semester he used a similar approach that included multiple weekly on-line assignments using LON-CAPA and a weekly paper assignment for teaching a different class (August 2006).

Classroom research studies can provide faculty with valuable knowledge about the nature of student learning. At the heart of research about teaching and learning is developing an understanding about how learning occurs. This activity can be simple, involving asking students if they understand what is being taught. Or, it can be very involved, with instructors studying new literature, interacting with new colleagues, and exploring new methods of inquiry (Huber, 2004).

The data gathering for the study discussed in this paper took 4 months, a long time in the research world. However, in educational terms, it constitutes only 1 semester and 1 course. Studies like this one are necessary to help faculty understand the impact of the instructional strategies they use.
DEDICATION

To my dad, Ivan, who has always encouraged me to follow my dreams and get a good education.

To my mom, Elma, whose constant cheering would fill a stadium.

To my husband, William, whose patience and understanding mean more than I can ever put into words.

None of this would be possible without your love and support
ACKNOWLEDGMENTS

I would like to thank my supervisory committee for the support they provided me throughout my thesis. I would like to specifically express my appreciation to Dr. Cheryl Amundsen, my senior supervisor, for her mentorship, encouragement, and patience throughout my degree.

I would like to thank Amrit Mundy and Mary Wilson, friends and members of Dr. Amundsen’s research group, for always being willing to listen, support, and encourage.

I would also like to thank Liny Chan from Analytical Studies and Ray Batchelor from Chemistry for providing me with data used in this study.
TABLE OF CONTENTS

Approval ... ii
Abstract ... iii
Executive Summary .. iv
Dedication ... vii
Acknowledgments ... viii
Table of Contents ... ix
List of Figures .. xi
List of Tables .. xii
Introduction .. 1
 Background .. 2
 The Rethinking Teaching Workshop (RTW) 2
 Dr. Jungic’s Redesigned Calculus Course 3
 Overview of the Relevant Literature 5
 Feedback and Performance 8
 Self-Efficacy and Performance 15
 Feedback and Self-Efficacy 21
 Gender and Feedback/Performance/Mathematics Self-Efficacy ... 23
 The Question of Technology Use 23
 The Research Questions 24
Design of the Classroom Research Study 26
 Dr. Jungic’s Students .. 27
 Instruments ... 28
 Mathematics Self-Efficacy 28
 Student Grades ... 32
 Computer User Self-Efficacy 32
 Procedure ... 33
 Limitations ... 35
Results .. 37
 Treatment of Missing Data 37
 Paper Submission Group 37
 On-line Submission Group 39
 Research Question #1 .. 40
 Research Question #2 ... 51
LIST OF FIGURES

Figure 1: Relationships ... 7
Figure 2: Midterm 1 grade distribution .. 42
Figure 3: Midterm 2 grade distribution .. 43
Figure 4: On-Line assignment grade distribution 44
Figure 5: Written assignment grade distribution 45
Figure 6: Final exam grade distribution ... 46
LIST OF TABLES

Table 1: Sample Assignment Self-Efficacy Question Format .. 29
Table 2: Paper Submission Group Completion Rates ... 38
Table 3: Questionnaires Completed by On-Line Participants .. 39
Table 4: Student Performance ... 41
Table 5: Exam score correlations ... 47
Table 6: Performance by 3rds on exams .. 48
Table 7: Paired-sample t-test examining exam score differences 50
Table 8: Beginning of semester MSE correlations ... 54
Table 9: End of semester MSE correlations .. 55
Table 10: First midterm scores and MSE .. 56
Table 11: On-line Assignment Self-Efficacy Mean Scores .. 58
Table 12: Gender and Mathematics Self-Efficacy Questionnaire Scores 60
Table 13: T-Test with Gender and Mathematics Self-Efficacy Questionnaire
Scores ... 60
Table 14: Gender and Performance ... 61
Table 15: Gender and Performance T-test .. 61
INTRODUCTION

Can you imagine teaching calculus to more than 400 first year students? Realize that most of these students are in the course not because of a love of calculus or of math, but because it is a pre-requisite for entry into a highly competitive Business degree program. What methods would you use to give individualized feedback to each student? Throughout the history of the Department of Mathematics at Simon Fraser University (SFU), several different approaches aimed at reducing the failure rate and increasing student retention in this course have been tried. At the center of these initiatives is the belief that student-instructor contact plays a key role in helping students to succeed in mathematics. Over the years, this Department has used different approaches such as small group tutorials and open drop-in labs to maximize the amount of feedback provided to students through student-instructor contact. About 10 years ago, after funding cutbacks, the Department switched from tutorials to a drop-in Calculus Workshop, Algebra Workshop, and Applied Calculus Workshop to support different courses, as they believed that these labs would provide a better student-instructor/teaching assistant ratio than the old tutorial structure. The workshop is open several hours each weekday, and is a place where students can get help from fellow students, teaching assistants, and the instructor. The workshop is also the place where students hand-in and pick-up written assignments. Recently the workshop hours have been reduced, which further decreases the number of contact hours between students and the course instructor/teaching assistants.
One Calculus instructor, Dr. Jungic, attended the Rethinking Teaching Workshop (RTW) at SFU with the primary objective of revising his course design so that students could continue to receive the support and feedback that he believes is necessary to help them learn mathematics. After learning more about the benefits of feedback and how to incorporate feedback into his course design, Dr. Jungic began wondering about how to assess the impact of the course design changes he made on student learning. This paper describes the research undertaken to evaluate the changes Dr. Jungic made to his course design.

Background

The Rethinking Teaching Workshop (RTW)

The Rethinking Teaching Workshop (RTW) is a 30-hour workshop usually offered over a five-day period. It has been offered to professors for over ten years at McGill University and more recently has become an annual offering at Simon Fraser University and Concordia University (see Saroyan & Amundsen, 2004 for a detailed description of all aspects of the Workshop). Theory and practice are combined as participant professors design (or redesign) one of their courses. At the end of the workshop, a course outline, assessment plan, and an action plan for the implementation of the new course design is developed by all participants. These elements support the primary focus of the RTW, which encourages participants to link teaching actions directly to student learning by incorporating a “reasoned and intentional approach to teaching...informed by reflective practice and peer critique” (Amundsen, Weston, & McAlpine, 2005).
The RTW strongly values the importance of merging generic teaching knowledge with subject-matter knowledge. By drawing upon each person’s subject-matter understanding, the RTW designers believe that it helps participants to view “student learning as an ongoing process of developing an understanding in the discipline rather than as mastering a sequence of topics within a particular course” (Amundsen et al., 2005). Upon completion of the workshop many participants participate in follow-up groups and classroom-based research where they can explore teaching and learning topics of interest to them. This analysis of teaching, in both formal and informal ways, is an intellectual exercise akin to what many professors do as scholars (Kreber, 2001; Shulman, 2000).

Dr. Jungic’s Redesigned Calculus Course

At the time of the research study, Dr. Jungic had been a Lecturer in the Department of Mathematics at Simon Fraser University for three years. He had taught lower division courses including Calculus for the Social Sciences I, Calculus I, Calculus II, Calculus III, Elementary Linear Algebra, and Discrete Mathematics II. It was his second time teaching Calculus for the Social Sciences I (Math 157), the class used in this study (September 2004).

As mentioned above, Dr. Jungic decided to make changes to this Calculus class because he had become increasingly concerned about student learning after fiscal pressures had decreased the amount of feedback students were given. To address his concern, Dr. Jungic redesigned his course. Changes to the grading scheme and additional assignments were part of incorporating a web-based tool called LearningOnline Network with Computer Assisted Personalized Approach (LON-CAPA) to provide students with
feedback on assignments (September 2004). This tool immediately informs students whether they have correctly answered a question, and gives them up to eight chances (without penalty) to correctly answer the question. In addition, LON-CAPA also has a discussion forum where students can ask each other questions about the current assignment. According to Dr. Jungic, hundreds of messages were posted by students, and they were read thousands of times. The questions posted allowed him to gain a better understanding of problem areas, as well as provide additional guidance by responding to questions posted in the discussion forum (May 2005).

Before Dr. Jungic redesigned his course, students completed a final exam (50%), two midterm exams (20% each), and weekly assignments (10%). Students were able to receive help from teaching assistants by going to the Applied Calculus workshop and from Dr. Jungic via email and during office hours. The typical format for grading the weekly assignments involved randomly selecting and then marking only one or two questions per assignment, with part marks given just for handing assignments in. Students could access course notes on-line through a course management system called WebCT (September 2004).

With the new course design, there were some changes to the assessment scheme. The final exam remained the same (50%), as did the second midterm (20%). The value of the first midterm was reduced to 15% and the weekly paper assignments were reduced to 7%. This allowed for the addition of on-line assignments submitted using LON-CAPA three times a week (8%). As before, students were able to receive help from the Applied Calculus Workshop and from Dr. Jungic via email and his office hours, and course notes
continued to be available in WebCT. Details about the redesign of Dr. Jungic’s course were provided during an interview (September 2004).

Dr. Jungic chose to continue requiring written assignments as well as assignments submitted on-line because he believes that you have to “do” math in order to learn it; “mathematics must be done on paper to be understood and to be done properly” (September 2004). The on-line assignments were incorporated because Dr. Jungic (September 2004) believes that immediate and frequent individualized feedback can be beneficial to learning, increase student confidence, and increase performance in mathematics.

Dr. Jungic was interested in investigating the changes he had made to his course. Specifically, he wanted to know if there would be a relationship between the changes he had made to increase feedback, and student self-confidence and performance in mathematics. He met with one of the RTW instructors, my supervisor Dr. Cheryl Amundsen, and me to outline his ideas. Our questions queried exactly what he meant by “self-confidence” and in what ways he expected to see changes in achievement. After our discussion, it was apparent that he wanted students to believe in themselves and their mathematics abilities, and that he believed improving these beliefs would lead to better grades. After our meeting, I went off to explore the literature to see if I could support Dr. Jungic in more clearly defining the research questions.

Overview of the Relevant Literature

I began my literature review by searching on-line library databases for the term “self-confidence.” After some searching, I found that the term “self-confidence” is rarely used in the literature but more specific terms such as self-concept, self-esteem, and self-
efficacy are used. Bandura (1997) refers to self-concept as an overall view of oneself that is thought to be formed or adopted through direct experience and/or evaluations from others, and self-esteem as a person’s self-worth. Self-efficacy, as defined by Bandura (1997), is the belief “in one’s capabilities to organize and execute the courses of action required to produce given attainments.” (Bandura, 1997). It was this definition of self-efficacy that seemed to most closely describe Dr. Jungic’s description of “self-confidence.”

At a subsequent meeting, I described Bandura’s concept of self-efficacy to Dr. Jungic and he agreed that this matched what he meant. Furthermore, I told Dr. Jungic that Bandura related performance to self-efficacy, and Bandura argued that in order to change self-efficacy, people must have the ability (or knowledge) to make accurate assessments of their performance. Dr. Jungic agreed that this seemed to describe the feedback, performance, and self-efficacy link that he believed to be the case.

With this information, I began to research the relationships depicted in Figure 1, returning to the on-line library databases and searching the following databases: ERIC, IEEE/IEEE Electronic Library (IEEE Xplore), Science Indexes, and PsycInfo. In each database, and for each of the relationships, I began my search using the relationship terms plus mathematics and higher education. For example, when searching for articles related to feedback and performance, my keywords (or search criteria) were feedback, performance, mathematics, and higher education. For most of the relationships, my search criteria were too specific and yielded few results. As a result, in all cases, my search criteria were broadened by including only mathematics or higher education in the search criteria. Accordingly, there were two searches done for each relationship. The first
search included the relationship keywords and mathematics, and the second included relationship keywords and higher education.

The solid lines in Figure 1 indicate areas where I found several studies that met my search criteria; dotted lines indicate areas where only a few studies that met my search criteria were found. An additional variable has been added to Figure 1, gender. This relationship was a secondary variable that I investigated out of interest, and was not of direct interest to Dr. Jungic. As gender was not a primary area of research in my study, I did not do any additional searches related to gender in mathematics, and refer to studies related to my three major relationships that also discuss gender. The literature relevant to each of these relationships is addressed in the following sections.

![Diagram: Relationships]

Figure 1: Relationships
Feedback and Performance

The use of the on-line LON-CAPA tool in Dr. Jungic’s revised course design provides students with immediate right/wrong feedback and allows students eight chances to correctly answer the question before a grade is submitted. Dr. Jungic’s prediction that this type of feedback will increase performance is supported in the literature described below.

In 1984, Bloom reported on seminal studies investigating the relationship between the amount of feedback provided during instruction and student achievement. The students in these studies were taking classes in either cartography or probability, and were in grades 4, 5, or 8. The classes had approximately 30 students in them. The results of these studies indicate that students who receive feedback during instruction perform better than students who did not receive any feedback. Specifically, Bloom reported that the average student who received formative assessment followed by corrective procedures (referred to as mastery learning instruction) during instruction performed 1 standard deviation higher (84%) than students who did not receive any feedback (referred to as conventional instruction). In addition, Bloom also found that the average student who received personalized feedback along with formative assessment followed by corrective procedures (referred to as tutoring) on average performed 2 standard deviations (98% higher) than students who received no feedback. These results also indicate that for the 20% of students at the top of the class in conventional instruction, tutoring did not help them to perform better. According to Bloom, these results were expected because the grades of students at the top of the class do not have as much room for improvement as other students.
Since 1984, there have been many other studies examining the relationships between feedback and performance, and the definition of types of feedback has been modified. In a review of other studies, Clariana (1993) defines several types of feedback: knowledge response which states whether the answer is “right” or “wrong”; knowledge of correct response which states the correct answer; elaborative feedback which is similar to knowledge of correct response but gives more information and possibly hints; and, finally, multiple try feedback which is knowledge response with additional tries for answering the same question. The type of feedback made possible through the use of LON-CAPA in this study is, according to this classification, multiple-try feedback because students are given eight tries to correctly answer each assignment question.

Of particular interest to this review are studies that have a similar form of feedback to LON-CAPA. Specifically, I focused on those that compared performance in settings where there was no feedback or delayed feedback versus immediate multiple-try feedback. I believe these studies to be appropriate comparisons because before Dr. Jungic’s Calculus class was changed to incorporate an on-line tool to give feedback, students would have to obtain correct answers for assignment questions on their own (similar to no feedback), or wait for assignments to be marked (similar to delayed feedback). In addition, multiple-try feedback with additional tries (but no extra help) for answering the same question was provided to students using LON-CAPA in this study.

Clariana (1993) summarized studies comparing multiple-try feedback with no feedback as well as studies comparing multiple-try feedback with delayed feedback. There were 12 studies that compared multiple-try feedback with no feedback. These studies had sample sizes ranging from 28 to 460, had participants at different levels
(including elementary, high school, and post secondary students, and people in the work force), and were on a wide range of subjects including electronics, flight safety, education, and biology. All 12 studies reported that students who received multiple-try feedback where they were told the answer was right or wrong performed better than students who received no feedback during instruction.

The results of studies reported by Clariana (1993) comparing immediate multiple-try feedback with feedback that is given after a delay, on the other hand, were mixed. Out of 4 studies, 2 reported that student performance was higher with multiple-try feedback than with delayed feedback, and two reported that student performance was higher with delayed feedback than with multiple-try feedback. Possible explanations for these differences are not discussed. Unfortunately, in the review Clariana does not discuss (possibly because the information was not reported in the studies) the impact of these different types of feedback on students with different achievement levels at the start of the instruction or whether students were being assessed on tasks requiring memorization or more complex learning processes. Perhaps this information would have provided some clues about reasons for different results in these studies.

In addition to the foundational work of Bloom (1984) and Clariana’s summaries (1993) discussed above, I found three higher education studies (two in courses with mathematics-related content and one in psychology) that discuss performance improvements that occurred after an on-line tool that provided students with multiple-try feedback was used as part of the instructional method. In the first mathematics-related study described by Siew (2003), an on-line tool called AIM was used to provide students with immediate multiple-try feedback. This tool is similar to LON-CAPA because it also
provides students with right/wrong feedback and multiple tries to answer the same question.

In Siew's (2003) study, 150 students taking a first year linear algebra course used AIM to complete practice questions (not included in the final grade calculation) and quizzes. When completing quizzes, students could re-submit answers to questions after one or more attempts. In this study, a 15% penalty for the question was incurred each time a solution was re-submitted. Siew and the course instructor believe that this approach is similar to part-marks that may be given when answers are written out and submitted on paper because it is “an automatic way of assigning part-marks to a student who initially did not quite grasp a concept required” (Siew, 2003 p. 46) Student grades were higher at the end of this semester than they were in the two previous offerings of this course. In particular, the number of students with less than 50% in the course decreased from 15 and 17 in 1999 and 2000 to 0 in 2001, and the number of students with 80% or more increased to 21 in 2001 from 10 in 1999 and 0 in 2000.

The second study with mathematics-related content involved students studying Calculus in an introductory Physics course. This study is described in three separate papers, Kashy, Thoennessen, Tsai, Davis, and Wolfe (1998), Kashy, Thoennessen, Tsai, Davis, and Albertelli (2000), and D. Kashy, Albertelli, E. Kashy, and Thoennessen (2001). This study incorporated the same on-line tool (LON-CAPA) as Dr. Jungic used to provide students with immediate multiple-try feedback. As Dr. Jungic had, the instructors/researchers further modified the instructional design when they added LON-CAPA. Previously, there were four lectures and one optional-attendance tutorial each week (led by the instructor or a teaching assistant) with partially-marked assignments that
were usually returned to students the following week. The revised instructional approach continued to have three lectures, added access to the on-line tool, eliminated the tutorials, and added a Physics Learning Center (staffed by faculty, graduate students, and honors undergraduate students) where students could go to receive help (E. Kashy et al., 2000). When using the on-line tool, students were allowed to attempt to correctly answer an assignment question 20 times without penalty. In addition, as in Dr. Jungic’s course, students could participate in an on-line discussion forum that is part of this tool to get help from other students (D. A. Kashy et al., 2001).

Kashy, Thoennessen, et al. (D. A. Kashy et al., 2001; E. Kashy et al., 2000) report that after making changes to the instructional design, the percentage of students receiving grades between 2.5 – 4.0 remained the same the first year LON-CAPA was introduced (59% in 1992-1994 and 58% in 1995) and then increased to 74% in 1996 and 78% in 1997. This trend of improved performance continued in 1999 and 2000, where the percentage of students receiving a grade between 3.5 and 4.0 increased from 20% in 1992-1994 to 32% in 1999 and 36% in 2000 (D. A. Kashy et al., 2001). There was also a reported decrease in the drop rate from 6.7% in 1995 to 3.2% in 1997 (E. Kashy et al., 2000). In addition, the grade distribution changed from the traditional bell-curve and was more evenly distributed (D. A. Kashy et al., 2001; E. Kashy et al., 1998; E. Kashy et al., 2000) after the implementation of LON-CAPA.

Kashy et al (D. A. Kashy et al., 2001) further analyzed the performance data by looking at how well students performed on solving numerical problems and how well they understood the underlying conceptual material. In particular, they were “interested in determining whether [their] students were learning at a level above a purely
algorithmic 'plug-and-chug' (i.e., finding a formula to plug in variables and grinding out the answer) approach" (D. A. Kashy et al., 2001). Their results found that students who performed well solving numerical problems also performed well on problems requiring an understanding of the conceptual material ($r = .72$, $p < .001$ in 2000). However, as this analysis was only done after LON-CAPA was added to the instructional strategy, it is not possible to determine whether this relationship existed before, and whether performance in one of the areas increased more than the other. On the other hand, it is implied that scores in both areas improved because the exam was similar to previous years and overall performance improved.

In the third study related to feedback and performance, Buchanan (2000) reported on two studies that used an on-line tool (PsyCAL) to provide multiple-try plus elaboration feedback to students in a Psychology class. According to Buchanan’s description of PsyCAL, it is similar to LON-CAPA as it provided students with immediate, multiple-try feedback and allowed students unlimited attempts to answer a question. One additional feature of PsyCAL is instead of simply providing right/wrong feedback, references to the corresponding course material were provided when incorrect answers were submitted (referred to as elaborated feedback). PsyCAL was used to provide students with the same type of feedback in both studies.

The results of the Buchanan (2000) study were similar to the two studies mentioned above. In the first study the use of PsyCAL was optional, and participants were 148 students taking a first year psychology course. These students used PsyCAL to complete three assignments, two revision exercises, and a final exam at the end of the semester. The assignment questions mainly assessed factual knowledge covered in the
module. The results of this study found that the more students used PsyCAL, the better they performed on the final exam ($r(148)=.24, p<0.003$). In addition, the average final exam score for students who used PsyCAL was almost 10% higher than students who did not use PsyCAL. Nevertheless, Buchanan states that PsyCAL does not necessarily lead to higher marks, as it is possible that a student’s dedication, conscientiousness, and motivation to succeed might result in more effective use of the exercises and effort in other areas.

The goal of the second study reported by Buchanan (2000) was to establish whether the use of PsyCAL increased performance when it’s use was not required in the course. In this study, participation was again optional. Participants were 214 students taking a 2nd year Psychology course. This study built upon the first study by comparing exam scores for questions that required the application of knowledge with exam scores for questions that required students to follow textbook procedures. In this study 5 exercises related to course content were made available to students.

In the analysis, Buchanan (2000) compared exam scores of students who used PsyCAL ($n=16$) with those who did not ($n=198$). The results indicate that students who used PsyCAL performed better than students who did not use it on tests requiring the application of knowledge ($p<.04$). On the other hand, no significant differences were found between PsyCAL use and following textbook procedures.

Despite the different ways of providing feedback described in the studies discussed above, they all found that performance increased when feedback was given. Performance improvements occurred regardless of the type of multiple-try feedback provided (with or without hints). Two of the studies further investigated the research on
feedback and performance by evaluating types of learning with performance. While my study does not make distinctions with respect to the type of learning, it may be interesting to conduct further analysis in this area at a later date.

Self-Efficacy and Performance

Most of the research I found relevant to the link between self-efficacy and performance is framed by Bandura’s (1977; 1997) definition of self-efficacy which states that there is a strong correlation between a person’s self-efficacy beliefs about performing a task and how well they perform that task. This foundational literature supported Dr. Jungic’s prediction about the link between performance and what he called “self-confidence”. However, I needed to better understand how this link was investigated in the literature.

Self-efficacy assessments, according to Bandura (1997; 2001), should ask how well a specific task can be performed. Therefore, Pajares (2001) recommends asking “How well can you do fractions?” instead of “How well can you do mathematics?” Pajares and Graham (1999) following Bandura’s reasoning asked task-specific questions in a study that compared mathematics self-efficacy and performance of middle school students in grade 6 at the beginning and end of the school year. Using an eight-point Likert scale, students were asked to state their confidence that they would be able to correctly answer a question if they were asked to answer the question tomorrow. The questions were specific, and similar to “A train is traveling an average speed of 75 miles per hour. Use the four-step plan to find out how far it will travel in four hours” (p. 127). Students were told that these questions would be similar to questions on the high-stakes
end-of-unit tests given at the end of the fall and spring semesters. The end-of-unit tests were prepared by the mathematics grade-level chair and the teaching team.

They found positive correlations between mathematics self-efficacy and performance in end of unit exams given at the end of the fall semester and at the end of the spring semester (r = .57 and r = .59, p < .0001). In addition, a multiple regression analysis between performance on the end of unit exam in the fall predicted performance on the end of unit exam in the spring (β = .162), and self-efficacy scores in both the fall and the spring predicted performance on end of unit exams at both administrations (β = .267 and β = .272). These results indicate that a student's past performance is related to their future performance and that a student's self-efficacy is related to their performance. For example, if a student did well on the test at the beginning of the year, they would have high mathematics self-efficacy at the beginning of the year and be likely to do well on a test at the end of the year. Similarly, students with low performance on a test at the beginning of the year would have low mathematics self-efficacy and be likely to do poorly on a test at the end of the year.

A further analysis by Pajares and Graham (1999) revealed that there was a decrease in mathematics self-efficacy scores between the fall and the spring. A dependent-sample t-test revealed that the decrease in self-efficacy scores was statistically significant (p < .001). While the exams given to these grade 6 students taught by the same teacher at the end of the fall and the spring were different, the authors do not indicate whether topics taught in the spring semester required mastery of topics taught in the fall semester. Pajares and Graham believe that the self-efficacy decrease was likely the result of differences in exam difficulty but no further explanation is provided.
While Pajares’ (2001) guidelines state the importance of asking task specific self-efficacy questions, other researchers have obtained similar results by asking about a more general concept. This difference is illustrated in a study by Carmichael and Taylor (2005) that also employed Bandura’s (1997) definition of self-efficacy. The participants in this study were 129 university students enrolled in a tertiary preparatory course that would allow them, upon successful completion, to take further preparatory level mathematics courses or enter undergraduate study.

The participants were asked to answer self-efficacy questions at the course level, concept level, and question level, complete a maths readiness test, and one assignment. Positive correlations between performance on the maths readiness test and self-efficacy were found at the course level ($r = .25$), topic level ($r = .39$), and question level ($r = .45$) (all $p < .01$). Conversely, on the first assignment, only one significant correlation was found, between performance and question level self-efficacy ($r = .20$, $p < .05$). These results may indicate that when people are faced with a new subject, they often do not have a clear idea of their ability to perform a task until they try it. Therefore, by asking specific questions, it will help people to identify the task and give a self-efficacy rating that is related to their performance.

Similar results were found in a study by Pietsch, Walker, and Chapman (2003). Bandura’s (1997) definition of self-efficacy was also employed in this study. In their study, participants were asked task specific questions and more general (concept) questions. The specific questions asked students to rate their self-efficacy for correctly answering specific questions about percentages. Questions about concepts were more general, and asked students to indicate their confidence for a statement such as “I am able
to achieve at least 90% on a percentages test” (p. 591). The analysis of the responses provided by 416 students between the ages of 13 and 15 indicated that there was a positive correlation (p < .05) between a student’s performance and both their mathematics self-efficacy for concepts and their mathematics self-efficacy for specific tasks.

In another study by Hackett and Betz (1989) similar results were also found. While employing Bandura’s (1977) definition of self-efficacy, they asked Psychology students about their mathematics self-efficacy for specific tasks such as balancing a cheque book and broader concepts such as problem solving questions from arithmetic, algebra, and geometry. The questions were taken from the standardized mathematics self-efficacy scale (MSES) developed by Betz and Hackett (1983). Positive correlations between both general and specific mathematics self-efficacy and performance were found (average r=.44, p<.001).

The results of the studies discussed above left me with questions concerning the importance of asking task level questions for self-efficacy assessment. Results of these studies may indicate that by asking specific questions it will help people to identify the task and give a self-efficacy rating that is related to their performance of that task.

Lodewyk and Winne (2005) believe that the timing of self-efficacy questions is another component to consider in order to obtain accurate self-efficacy responses. These authors assert that there are two different types of self-efficacy that are important to the design of self-efficacy questions, self-efficacy for learning and self-efficacy for performance. Thus, they should be distinct measures, as “learning and performing are not necessarily equivalent. Students can perform well (succeed) without necessarily
comprehending material or a procedure, and they can learn material without being able to perform in ways that reveal mastery...self-efficacy for performance relates more to one’s expectancy for success or achieving a desired outcome on a task whereas self-efficacy for learning involves ‘judgments about one’s ability to accomplish a [particular] task as well as one’s confidence in one’s skills to perform that task’ (Pintrich et al., 1991, p. 13 in Lodewyk and Winne)” (p. 4). Therefore, accurate self-efficacy ratings are more likely to be obtained by asking students to rate their self-efficacy after they have attempted to answer a specific, task-related question. This is an interesting idea as all of the studies reported above only asked for self-efficacy information before the task was completed.

An analysis of changes to self-efficacy for learning versus self-efficacy for performance was done by Lodewyk and Winne (2005). The participants in their study were 94 volunteer students from a 10th grade science class. The students were divided into two groups and asked to complete either an ill-structured task that did not contain specific direction for completing the assignment or a well-structured task that contained specific direction for completing the assignment. Self-efficacy was assessed at six different times during the task, including the beginning and end of the task. The results indicate that in the ill-structured task, the mean self-efficacy for learning score increased on a 7-point scale from 3.26 at the beginning of the task to 3.77 at the end of the task. Self-efficacy for performance with the ill-structured task group, on the other hand, remained approximately the same throughout the task (3.83 at the beginning and 3.81 at the end). The well-structured task group had greater increases in their self-efficacy for learning (from 3.46 at the beginning to 4.05 at the end) and their self-efficacy for performance (4.05 at the beginning and 4.13 at the end).
This study, unlike the others reported above, did not compare self-efficacy for learning or self-efficacy for performance with actual performance. Instead, it used structured multiple regression to determine if students’ levels of self-efficacy for learning and self-efficacy for performance would predict task performance (after controlling for general academic achievement). They found that the combination of past performance, self-efficacy for learning, and self-efficacy for performance did predict final performance on the ill-structured task, but not on the well-structured task \((p<.05) \) (Lodewyk & Winne, 2005).

The results of this study indicate that self-efficacy for learning is a stronger predictor of performance than self-efficacy for performance in both ill-structured and well-structured tasks. In addition, the results indicate that self-efficacy for performance predicts performance on the final task. The use of both ill-structured and well-structured tasks in this study is another way of looking at the debate discussed in studies above regarding specific versus general self-efficacy questions. It also helps to shed some light as to the type of task where students may benefit from additional feedback.

In putting together what I learned from the literature, and in consultation with Dr. Jungic, I decided to assess the mathematics self-efficacy of students at both the conceptual and question specific levels at different points throughout the semester. Even though the research recommends asking problem-specific questions, I chose this approach because the results of studies assessing self-efficacy at the conceptual and question specific levels are mixed. In addition, we decided to obtain information about self-efficacy for learning and self-efficacy for performing by asking students to rate their self-efficacy before and after answering assignment questions. It was hoped that the
amount of information obtained using this process would allow me to make comparisons between conceptual and question specific self-efficacy scores as well as self-efficacy for learning and self-efficacy for performing scores.

Feedback and Self-Efficacy

Examining the relationship between self-efficacy and feedback was the major area of interest for Dr. Jungic. This relationship has long been mentioned as an area for future research in studies that have shown a relationship between performance and feedback, but I found little research relevant to this relationship. Bandura (1977; 1997) states that self-efficacy beliefs are influenced by: performance accomplishments (successes raise expectations while failures lower them unless they are followed by repeated successes); vicarious experience (seeing others perform the same activity); verbal persuasion (being told that they can do it); and, emotional arousal (performance increases when there is less anxiety and more relaxation). Bandura (1997) further argues that people must have the ability (or knowledge) to make accurate assessments of their performance. One way to provide this information to students is through formative feedback.

The addition of LON-CAPA has the potential to address each of the above four influences because it provides feedback and there is a discussion board which enables students to give and receive support from each other. In particular, following Bandura’s (1997) reasoning, performance accomplishments should rise because students will expect, with eight tries, they will be able to arrive at the correct answer. The discussion board, that is part of LON-CAPA may support the vicarious experience and verbal persuasion components as it allows students to communicate with each other, find out that their classmates are able to answer similar questions, and possibly be told that they
too can answer the question. Finally, knowing that they have eight tries and can get help from classmates, the instructor, and the Applied Calculus lab may help to relax students and lower their emotional arousal.

In my study, the specific cause of increases or decreases in self-efficacy was not investigated. Instead, self-efficacy scores were compared with performance between students who did or did not use LON-CAPA. A study similar to mine, although slightly more elaborate because it also compares performance with different types of feedback, was conducted by Schunk and Swartz (1993). In this study, self-efficacy comparisons were made between 5th grade students who experienced different instructional strategies for teaching writing: 1) process goal (a description of a strategy for improving their writing skills); 2) process goal and feedback; 3) product goal (a reminder about the specific task to be completed); and, 4) general goal (a reminder to “do your best”). The results of this study indicated that students who received some direction (a process or a product goal) had larger increases in self-efficacy for the task than those who were only given a general goal, and that students who received specific feedback and direction (process goal plus feedback) had the largest increase in self-efficacy for the task.

The importance of providing personalized feedback that provides students with some direction is highlighted as a key element to increasing self-efficacy in the Schunk and Swartz (1993) study. Perhaps one reason why I found there has been relatively little research published examining the relationship between feedback and self-efficacy using technology to give feedback is because technology is currently unable to analyze complex thought processes and provide the level of individualized feedback required to increase self-efficacy. It is expected that the results of my study will help to answer
whether general feedback such as “you have correctly/incorrectly answered the question” is sufficient to increase self-efficacy.

Gender and Feedback/Performance/Mathematics Self-Efficacy

Investigating the role of gender was a secondary goal of this study, and was not of direct interest to Dr. Jungic. Given this, I have only summarized the results of gender analyses in studies previously mentioned. The two studies that mention gender, Pajares and Graham (1999), and Carmichael and Taylor (2005) both expected to find lower self-efficacy ratings for girls, and especially gifted girls (Pajares & Graham, 1999). In the study by Carmichael and Taylor, they state that females reported lower self-efficacy levels than males (but they do not state how much lower). Pajares and Graham, on the other hand, found no significant differences between genders on performance.

The Question of Technology Use

In the present study, unlike many others, I have intentionally not focused on the presence or absence of technology but on the instructional element the technology permitted, namely immediate multiple-try feedback. My reading of the literature led me to understand that this is an important distinction.

Many studies have compared teaching and learning with technology versus teaching and learning without technology and have failed to find a strong causal relationship between media or media attributes and learning (Clark, 1994). In this respect, I responded to a critique made by Clark based on several meta-analyses that he conducted (Clark, 1994; Kozma, 1994). In his meta-analysis of thousands of media research studies, Clark (1994) asserted that the lack of findings between studies that compare instruction
using technology and instruction that does not incorporate technology is due to the studies not addressing differences in the aspect of instruction that has been proven to affect learning, namely the instructional strategy. Instead of comparing the effect of changes to the instructional strategy that occurred by incorporating technology these studies compared the use of technology with not using technology in instruction. Clark, in support of this argument, refers to a study by Suppes described in Clark (1983), where there were no performance differences between students who received drill and practice instruction in mathematics and those whose teacher gave extra (more than the study allotted) drill and practice instruction. However, both of these groups of students performed better than students who did not receive any extra help from their teacher. According to Clark’s argument, there were no performance differences between the groups that received the additional feedback because it was changes to the instructional strategy that provided students with the additional practice that enabled them to increase their performance.

The Research Questions

After reviewing the literature, I again met with Dr. Jungic and another workshop instructor to talk about what I had learned from my review of the literature, and to jointly develop the research questions. I began by describing research in all of the areas related to Dr. Jungic’s instructional inquiry: instructional strategy; feedback; performance; self-efficacy; and, the relationships between each of these areas. We all agreed that in order to satisfy Dr. Jungic’s desire to better understand the relationship between the changes he had made to increase feedback, student’s mathematics self-efficacy, and student
performance, the relationships between all of these areas would need to be examined. The following research questions were developed to address each area:

- **Feedback and mathematics performance**: Did the increase in feedback provided to students in Dr. Jungic’s class effect class performance?

- **Mathematics performance and mathematics self-efficacy**: What was the relationship between performance and mathematics self-efficacy for students in Dr. Jungic’s course? Did the relationship between performance and mathematics self-efficacy change during the semester?

- **Feedback and mathematics self-efficacy**: Did increasing the feedback given to students in Dr. Jungic’s course effect students mathematics self-efficacy?

- **Gender, self-efficacy, and performance**: What were the relationships between gender and self-efficacy and gender and performance for students in Dr. Jungic’s course?
DESIGN OF THE CLASSROOM RESEARCH STUDY

In order to investigate the relationships between feedback and performance, performance and self-efficacy, and feedback and self-efficacy, the following design was agreed upon. First of all, grades from the previous semester was provided by Dr. Jungic so that performance differences between the two offerings of the same course could be compared before and after changes to the course design were made. Next, it was decided that there would be two groups of student participants. Both groups completed 19 assignments and were asked to provide self-efficacy information in addition to answering the questions on 10 assignments. One group, referred to as the “on-line group” would complete these assignments using an on-line tool called LON-CAPA that would provide them with immediate multiple-try feedback. The other group, referred to as the “paper group” would receive the same assignments through email and submit them to the course instructor on paper. The paper group did not have access to LON-CAPA. Their assignments were returned 1 week later and the only feedback provided was whether they had answered the question correctly or incorrectly. Both groups were able to contact the course instructor and get help from TAs in the Applied Calculus Workshop. The other course components were the same for all students (quizzes, final exam, and written assignments).

We also decided that I would conduct three interviews with Dr. Jungic, one at the beginning of the semester, one at the end of the semester, and one after I had finished the
data analysis. The first two interviews were semi-structured and about a half-hour in length, while the third interview was conducted by email. In the first two interviews Dr. Jungic was asked questions about the course components and the use of LON-CAPA to provide students with feedback. At the beginning of the semester there were questions regarding the planned changes to the instructional strategy and their expected results. End of semester interview questions inquired about the actual implementation of the changes, the perceived success of the changes, and other changes that were made during the course of the semester. In the third interview Dr. Jungic was asked to discuss how he felt about the research process, the results of the study, and whether he will be making any changes to his instructional method.

At the beginning of the first interview, Dr. Jungic was asked to sign a consent form (Appendix A). After each interview was transcribed Dr. Jungic was asked to review the transcriptions and make any revisions. On each interview, a few grammatical revisions were requested and then incorporated into the interview transcript. I describe Dr. Jungic’s thinking about his course design, sometimes illustrated by actual quotes from these interviews in several places in this thesis to illustrate and provide detail to my discussion. The following research procedures, analyses and findings, however, focus on data collected from the students in Dr. Jungic’s course to address the specific research questions.

Dr. Jungic’s Students

All students (484) enrolled in Dr. Jungic’s course, Introductory Calculus for the Social Sciences (Math 157), were asked to participate in this study on the first day of classes in the Fall 2004 semester at Simon Fraser University. At the end of the semester
there were 384 students enrolled in the class. The majority of students (387) enrolled were taking this course in their first semester of university and intended to major in either Business Administration (237) or Arts (186). The average CGPA for students who were not in their first semester at SFU was 2.48 (Analytical Studies, 2006).

One hundred and ninety out of 384 students who completed the course volunteered to participate in the study. Results from the Computer User Self-Efficacy (CUSE) questionnaire completed by 98 students found that almost all students were 18 years old (M=19.26, SD=3.87, Min=17, Max=52), 97% owned a computer, 41.8% were male, and 59.2% were female. Most students, 94.8%, indicated using a 4-point Likert scale, that they had experience using computers. Specifically, 41.8% stated that they had “some experience”, 41.8% stated that they had “quite a lot of experience”, and 11.2% stated that they had “extensive experience” using computers.

Instruments

The design of my research study utilized three categories of data collection. The first category focused on mathematics self-efficacy information, the second on student grades, and the third on computer-user self-efficacy.

Mathematics Self-Efficacy

1. **Mathematics Self-Efficacy (MSE) Questionnaire (Appendix B).** This questionnaire used an 11-point Likert scale to obtain information about each student’s mathematics self-efficacy for each topic in the course. The list of topics was obtained from the course outline. This questionnaire format was also used in studies conducted by Lodewyk and Winne (2005), Carmichael and Taylor (2005), Pietsch, Walker, and
Chapman (2003), and Hackett and Betz (1989). Students were asked to complete this questionnaire at both the beginning of the semester and the end of the semester using a web-based tool called WebCT. Overall MSE scores were calculated by adding the scores for all topics together. Mean MSE scores were calculated by dividing the overall MSE score by the total number of topics.

2. **Assignment Self-Efficacy Questions.** Students answered self-efficacy questions on 10 assignments. The responses were submitted through LON-CAPA by students in the on-line group and on paper by students in the paper group. All students in both the on-line group and the paper group used an 11-point Likert scale to provide self-efficacy information before and after answering each question on each assignment. The format was identical for students in the on-line group and the paper group. An example of this format is shown in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Sample Assignment Self-Efficacy Question Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>How sure are you that you can correctly answer the following question? Please rate your degree of confidence by entering a number from 0 to 10, where 0 = can not do it at all, 5 = moderately certain can do, and 10 = certain can do. Select a number.</td>
</tr>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>

Complete the following statements by circling the appropriate italicized items.

1. The line \(x=a \quad y=b \) is a *vertical asymptote* horizontal asymptote for the graph of the function \(f \) if and only if at least one of the following is true:

\[
\lim_{x \to a^\pm} f(x) = \pm \infty
\]

or
\[
\lim_{x \to a^-} f(x) = \pm \infty
\]

2. Let \(f \) be a non-linear function. The line \(x = a \quad y = b \) is a vertical asymptote horizontal asymptote for the graph of the function \(f \) if and only if at least one of the following is true:

\[
\lim_{x \to \infty} f(x) = b
\]

or

\[
\lim_{x \to -\infty} f(x) = b
\]

3. Suppose that \(f(x) = \frac{P(x)}{Q(x)} \)

where \(P \) and \(Q \) are polynomial functions. The line \(x = a \quad y = b \) is a vertical asymptote horizontal asymptote for the graph \(f \) if and only if \(Q(a) \) equal \(0 \) \(P(a) \) equal \(0 \) and \(Q(a) \) not equal to \(0 \) \(P(a) \) not equal to \(0 \).

"Please judge the likelihood your answer is correct by entering a number from 0 to 10, where 0 = absolutely sure it is wrong, 5 = not sure whether it is right or wrong, and 10 = absolutely sure it is correct. Select a number.

0 1 2 3 4 5 6 7 8 9 10

The format of asking for self-efficacy information before and after answering a question follows recommendations by Lodewyk and Winne (2005). This is different from the majority of other studies that I reviewed. I chose to follow this format because, as stated by Lodewyk and Winne and described in an earlier section, it allows for a distinction between self-efficacy for learning and self-efficacy for performance to be made. Asking students to state their self-efficacy before completing the question provides information about how well students think they will perform. Self-efficacy information provided after the question has been attempted, on the other hand, helps to ensure that the responses are based upon a good understanding of the knowledge required to answer the
question, and not simply the ability to imagine all of the steps required for answering the question (Cassidy & Eachus, 2002; Lodewyk & Winne, 2005).

The use of task-specific questions follows the same format of questions used in research conducted by Lodewyk and Winne (2005), Carmichael and Taylor (2005), Pietsch, Walker, and Chapman (2003), Pajares and Graham (1999), and Hackett and Betz (1989) discussed in an earlier section.

3. Practice Mathematics Self-Efficacy Questionnaire (Appendix C). This test was developed by me to allow students to practice the format of questions they would encounter on the beginning and end of semester MSE questionnaires before taking those tests. This was done to familiarize students with the question format and with completing on-line questionnaires. This questionnaire was administered on-line through WebCT and was not used for data analysis.

The self-efficacy instruments used in this study (i.e. MSE questionnaires and Assignment self-efficacy questions) adhere to Bandura’s self-efficacy questionnaire guidelines (2001) that are appropriate for the goals of this study. Specifically:

- Each question on the scales were tailored to address specific topics in the course.
- The self-efficacy statements asked students if they thought that they could do the task.
- The questions used vocabulary that was appropriate for the course.
- An 11-point response scale was used to allow participants to differentiate steps and provide data that is more sensitive and reliable.
- Response bias was minimized because questionnaires were answered privately, participants were informed that their responses would remain confidential and
identifying information would be removed, and participants were told about the value of their participation in this research with respect to knowledge development in this field.

Student Grades

The second category of data collection involved obtaining student grades on all assignments and exams in this course. The final grades for students who had taken this course in 2002, when it had previously been taught by Dr. Jungic, were also obtained for purposes of comparison.

Computer User Self-Efficacy

Finally, the third category of data collection involved asking students to complete a Computer User Self-Efficacy questionnaire (CUSE) to determine if computer self-efficacy may have been a reason for why a student wanted to be in the on-line or paper submission group. It was administered through WebCT. The CUSE was developed by Cassidy and Eachus (2002) (see Appendix D for the letter of permission to use the CUSE). I chose to use this questionnaire because Cassidy and Eachus had tested it on a similar population (university students). The issue of reliability was addressed because there were several questions about the same topic; the questions asked about many different types of topics; and, internal reliability and internal validity appeared to be high as Cronbach's alpha was 0.94. There were also strong correlations provided between computer self-efficacy and both computer experience ($r=0.55, p<0.001$) and familiarity with software packages ($r=0.53, p<0.001$).
Procedure

I attended the first day of classes to talk about the study and ask all students to participate. All students were given a handout describing the study (Appendix E) and a consent form to be completed and returned should they choose to participate (Appendix F). The consent forms were retained by the researcher. On the consent form, students were asked to indicate whether they would like to be in the group that completed the “on-line assignments” worth 8% of their grade using LON-CAPA (referred to as the on-line group) or on paper (referred to as the paper group). Students were told that the assignments would be exactly the same and that students in the paper group would receive a 1.5% bonus mark, up to a maximum of 8% of the “on-line assignment” grade. In addition, due to funding restrictions, students were also told that the paper group had to be restricted to 15 volunteers who would be randomly selected from those who volunteered. After I make the group selection, each student was sent an email telling them whether they would be submitting assignments on-line or on paper. The purpose of having two groups, as was previously explained, was to allow self-efficacy and performance comparisons to be made between students who received immediate right/wrong multiple-try feedback on every question and students who received delayed right/wrong feedback on every question.

In the second week of classes, I returned to ask students if they had any further questions and collect any additional consent forms. Students who submitted consent forms at this time were told that they could only participate in the on-line group as the maximum number of participants in the paper group had already been selected.
At the beginning of the semester all students who consented to participate were asked to complete the Mathematics Self-Efficacy questionnaire (MSE) and the Computer User Self-Efficacy questionnaire (CUSE). The practice self-efficacy test was also made available at the beginning of the semester for any students who chose to use it. At the end of the semester students were asked to complete the MSE for the second time. All questionnaires were completed on-line using WebCT.

The procedure that students followed for submitting the assignments depended upon whether they were in the on-line or paper submission group. Assignment submission for students in the paper submission group used the following procedure:

1. Approximately one week before there was an assignment due, the researcher downloaded the assignment from LON-CAPA and e-mailed it to participants in the paper group.

2. Assignments were submitted to Dr. Jungic during class, and were later picked up and marked by me using an answer key obtained from LON-CAPA. The only feedback students received was whether they had correctly answered the question, and the correct answer (if they had answered incorrectly). I returned assignments to all students using drop boxes in the Math Lab no later than one week after they had been submitted.

3. Self-efficacy information provided on assignments was recorded in a separate file before the assignments were returned.

4. All assignment marks were recorded and given to Dr. Jungic at the end of the semester.
Students in the on-line assignment submission group used a different procedure for completing assignments:

1. Approximately one week before there was an assignment due, students were able to access and complete the assignment using LON-CAPA. Students were immediately given feedback by LON-CAPA as to whether their response was right or wrong. Students had up to eight tries to obtain the correct answer.

2. Self-efficacy information provided by students for each question was recorded in LON-CAPA.

3. Students had access to the on-line discussion board available in LON-CAPA and could ask other students for help on assignment questions.

Limitations

The research design described in the previous sections of this chapter has a few limitations that I was aware of at the beginning of the study. However, while the following limitations existed, I thought that they were characteristic of many of the quasi-experimental designs reported in the literature.

The first limitation was amount of information that I was able to obtain about the students. Reports from Analytical Studies told me that in 2002 and 2004 most students in this course were new to SFU and intending to major in Business Administration (Analytical Studies, 2006). The SFU calendar told me that there were no changes in SFU or Business Administration entrance requirements between 2002 and 2004. However, other past performance data that would have helped me to make a better comparison with respect to performance between the two classes, such as high school Mathematics 12 and Calculus 12 grades, was not obtained.
A second possible limitation of this study was the high student drop-out rate that is normally experienced in the fall semester offering of this course. While there are many reasons for dropping a course, some reasons such as course difficulty and course work load may have been relevant when discussing improvements in performance between the 2002 and 2004 offerings of this course. Nonetheless, I did not consider trying to obtain reasons for a student dropping this course.

Finally, the third limitation that I was aware of was the possibility of changes in the difficulty level of the assignments and exams from the 2002 course offering to the 2004 course offering. I did investigate my concern by expressing it to Dr. Jungie, who told me that the exams and assignments would be similar to the ones used in 2002. Nevertheless, no actual analysis was performed.
RESULTS

Treatment of Missing Data

Before analyzing the data, I first had to make decisions about how to address group attrition in the study groups and participant non-response. Participant non-response occurred in two areas of this study: 1) there was a low completion rate in the paper-submission group; and, 2) some participants in both groups completed some but not all of the questionnaires. The issue of missing data is commonly found in longitudinal studies involving human subjects, as participants frequently drop out of the study or only participate in parts of the study (Maxim, 1999; Plewis, 1985). When this occurs, decisions must be made about whether to include or exclude non-responses (Groves, 2004). The following sections describe how I addressed the problem of these issues for the paper submission group and the on-line submission group.

Paper Submission Group

One of the research questions was to compare performance and mathematics self-efficacy of students who completed assignments on-line with those who completed assignments on paper. Again the difference between these two groups was that the paper submission group would only receive feedback after the assignment was marked (approximately 1 week later), and the on-line group would receive immediate multiple-try feedback with eight chances to correctly answer a question by using LON-CAPA. Unfortunately, many of the students in the paper submission group either did not
complete the course (one student withdrew) or remain in the paper submission group (5 out of 15 students asked to switch groups). In addition, there were some students who did not complete all questionnaires (refer to Table 2 for a summary of paper group participation in all surveys).

Table 2: Paper Submission Group Completion Rates

<table>
<thead>
<tr>
<th>Questionnaire</th>
<th>Paper Submission Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer User Self-Efficacy (CUSE)</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics Self-Efficacy (beginning of semester) (begin MSE)</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics Self-Efficacy (end of semester) (end MSE)</td>
<td>3</td>
</tr>
<tr>
<td>Assignments with reported self-efficacy scores</td>
<td>9</td>
</tr>
<tr>
<td>CUSE and MSE (begin)</td>
<td>5</td>
</tr>
<tr>
<td>MSE (begin) and MSE (end)</td>
<td>3</td>
</tr>
</tbody>
</table>

According to Groves (Groves, 2004) and Plewis (Plewis, 1985), I could have “predicted” the responses of participants who dropped out or did not respond, but I would need to be sure that they were representative of the entire sample. I chose not to try to predict responses because it was not possible to determine if the students remaining in the paper submission group were a random sample of all students in the paper submission group, or if the lack of access to the additional feedback from LON-CAPA influenced their decision to withdraw from the course, group, or not to complete all questionnaires. As a result of these dropouts it was not possible to make comparisons between the paper and on-line submission groups. This group was excluded from my further analysis.
On-line Submission Group

In the on-line submission group there were some students who completed some but not all questionnaires (see Table 3 for a summary). My options for addressing the non-responses for the on-line submission group were to: predict the responses for students who did not respond; only use data from students who responded to all questionnaires; or, to consider the analysis of each research question separately, using the relevant data available.

Table 3: Questionnaires Completed by On-Line Participants

<table>
<thead>
<tr>
<th>Questionnaire</th>
<th>Number of students completing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer User Self-Efficacy (CUSE)</td>
<td>99</td>
</tr>
<tr>
<td>Mathematics Self-Efficacy (beginning of semester) (begin MSE)</td>
<td>98</td>
</tr>
<tr>
<td>Mathematics Self-Efficacy (end of semester) (end MSE)</td>
<td>68</td>
</tr>
<tr>
<td>Assignments (self-efficacy scores for each question)</td>
<td>127</td>
</tr>
<tr>
<td>CUSE and MSE (beginning of semester)</td>
<td>91</td>
</tr>
<tr>
<td>MSE (begin) and MSE (end)</td>
<td>56</td>
</tr>
</tbody>
</table>

In this research study, 91 out of 175 students who volunteered to participate and were in the on-line submission group completed the MSE and CUSE questionnaires at the beginning of the semester, but only 68 completed the MSE questionnaire at the end of the semester. As I did not know why students did not complete a particular questionnaire, I could not be sure that the remaining data were representative of all students in the on-line submission group. Therefore, it was not appropriate to predict their responses to the MSE questionnaire at the end of the semester.
The second option, to only use data from students who completed all questionnaires, would mean that I would have had to assume that there were no differences between students who completed all questionnaires and students who did not complete all questionnaires (Groves, 2004; Plewis, 1985). This assumption was also not appropriate because I do not know why some students only completed questionnaires at the beginning of the semester and not at the end of the semester. Consequently, I chose the third option, to consider the analysis of each research question separately, using the relevant data available.

In the remainder of this chapter, I present the findings for each of the research questions:

Research Question #1

Did increasing the feedback provided to students in Dr. Jungic's class effect student performance?

This research study attempted to answer this question by using two different methods. The first and most direct method involved making performance comparisons between students in the on-line group and the paper group. Unfortunately, due to attrition in the paper group, it was not possible to complete this analysis.

The second method involved examining changes in performance by comparing final marks from different semesters and by looking at how students performed throughout the semester. Comparisons of final marks between semesters have been done in studies that discuss the benefits of the feedback provided by the use of an on-line tool (D. A. Kashy et al., 2001; E. Kashy et al., 1998; E. Kashy et al., 2000; Siew, 2003)). In my study, a comparison of grades from all 472 students in this class (not just the 171
students who participated in my research study and completed the course) with a previous course offering by Dr. Jungic (in 2002), did reveal changes in the grades awarded. It is important to note that Dr. Jungic believes that all exams were of a similar level of difficulty in both offerings of the course, and the final marks in both offerings of the course were awarded using the same letter grading scale and were not adjusted.

At the top of the class there were 12.1% A’s and 36.0% B’s in 2004 versus 11.2% A’s and 29.8% B’s in 2002. At the bottom of the class there were 6.8% F’s and 8.9% N’s in 2004 versus 12.6% F’s and 4.9% N’s in 2002 (see Table 4 to view the complete grade distribution). There was also an increase in overall the class grade point average from 2.03 in 2002 to 2.13 in 2004. A chi-square indicates that the difference between the observed and expected grades is statistically significant (p<.05) when all letter grades are included. However, if the grades of F and N are combined, then a chi-square indicates that the difference between the observed and expected grades is not statistically significant. While these are indirect methods of assessing changes in performance, the results may be an indicator that the type of feedback provided through LON-CAPA is related to the improvement in student grades.

Table 4: Student Performance

<table>
<thead>
<tr>
<th>Year</th>
<th>%A</th>
<th>%B</th>
<th>%C</th>
<th>%D</th>
<th>%F</th>
<th>%N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>11.2</td>
<td>29.8</td>
<td>31.8</td>
<td>9.6</td>
<td>12.6</td>
<td>4.9</td>
</tr>
<tr>
<td>2004</td>
<td>12.1</td>
<td>36.0</td>
<td>29.0</td>
<td>8.2</td>
<td>6.8</td>
<td>8.0</td>
</tr>
</tbody>
</table>

I further analyzed student performance in the 2004 offering of Dr. Jungic’s class by examining the exam marks of students throughout the semester. According to Dr.
Jungic, the topics tested on the second midterm were different from the first midterm, but required an understanding of topics on the first midterm. The final exam included topics from the entire course. Looking at each course component for students who completed the course and participated in my study, I found that:

- On the first midterm (marked out of 40), the mean score was 70%, median score was 71.25%, the mode was 78%, and the standard deviation was 19%. The grades were normally distributed with a negative skew (see Figure 2).

![Figure 2: Midterm 1 grade distribution](image-url)
On the second midterm (marked out of 40), the mean score was 74.5%, median score was 77.5%, the mode was 83%, and the standard deviation was 17%. The grades were normally distributed with a negative skew (see Figure 3).

Figure 3: Midterm 2 grade distribution
On-line assignments were completed by all 171 students. The scores had a mean of 93.6%, median of 99%, mode of 100%, and standard deviation of 13%. These grades were not normally distributed (see Figure 4).

![On-Line assignment grade distribution](image)

Figure 4: On-Line assignment grade distribution
142 students completed the written assignments. The mean score was 71.9%, median 72.8%, mode 73.6%, and standard deviation was 3.6%. These grades were not normally distributed (see Figure 5).

Figure 5: Written assignment grade distribution
171 students completed the final exam. The median score was 66.9%, median score was 70%, mode was 64%, and the standard deviation was 17.65%. These grades were normally distributed (see Figure 6).

![Final Exam Grade Distribution](image)

Figure 6: Final exam grade distribution

These grade summaries reveal that between the first and second midterms the grades increased, and in the second midterm they are not as evenly distributed as in the first midterm. This indicates that there was an improvement in midterm scores between the first and second midterms (see Figure 2 and Figure 3), and a decrease in the number of lower grades on the second midterm. On the final exam, however, the grades were normally distributed.
I continued analyzing changes in performances by looking for correlations between performance on different exams. I examined this area because previous research indicates that past performance is related to future performance (Carmichael & Taylor, 2005; Pajares & Graham, 1999). Pearson’s correlation testing for two-tailed significance, indicated that there were statistically significant correlations (p < .01) between grades on the first midterm and the second midterm (r = .522), the first midterm and the final exam (r = .628), and the second midterm and the final exam (r = .601) (see Table 5). This means that students who had high scores on the first midterm tended to have high scores on the second midterm and the final exam, and students with low scores on the first midterm tended to have low scores on the second midterm and the final exam. These values indicate that the correlation between each of the exam scores is moderately strong, and unlikely to have occurred simply by chance.

Table 5: Exam score correlations

N=171

<table>
<thead>
<tr>
<th></th>
<th>Midterm 1</th>
<th>Midterm 2</th>
<th>Final Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm 1</td>
<td>Pearson Correlation</td>
<td>-</td>
<td>.52(**)</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>Pearson Correlation</td>
<td>.52(**)</td>
<td>-</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Pearson Correlation</td>
<td>.63(**)</td>
<td>.60(**)</td>
</tr>
</tbody>
</table>

** Correlation is significant at the 0.01 level (two-tailed).

According to previous research, feedback is most helpful to students at the bottom of the class (Bloom, 1984; E. Kashy et al., 1998; E. Kashy et al., 2000). To examine this relationship, I divided students who completed the course into three performance groups based upon their first midterm score. A frequency distribution was used to determine that
out of 171 students who completed the class, 54 scored more than 80% (top one-third of the class), 60 scored between 64.17% and 80% (middle one-third of the class), and 57 scored less than 64.17% (bottom one-third of the class). A second frequency distribution of the grades of students in each group revealed that the average grades of students in the top one-third of the class dropped slightly from 90 to 85.23% between the first and the second midterms, the middle one-third of the class experienced a slight increase from 72.5 to 75.54%, and the bottom one-third of the class had a larger increase from 48.49 to 63.38% (see Table 6).

Table 6: Performance by 3rds on exams

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Mode</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 1/3 of the class on the 1st midterm (N=54)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midterm 1 (percent)</td>
<td>90.00</td>
<td>90.00</td>
<td>85</td>
<td>5.48</td>
</tr>
<tr>
<td>Midterm 2 (percent)</td>
<td>85.23</td>
<td>85.00</td>
<td>84(a)</td>
<td>8.92</td>
</tr>
<tr>
<td>Final Exam (percent)</td>
<td>78.92</td>
<td>81.75</td>
<td>64(a)</td>
<td>12.88</td>
</tr>
<tr>
<td>Middle 1/3 of the class on the 1st midterm (N=60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midterm 1 (percent)</td>
<td>72.50</td>
<td>72.60</td>
<td>78</td>
<td>5.131</td>
</tr>
<tr>
<td>Midterm 2 (percent)</td>
<td>75.44</td>
<td>79.38</td>
<td>83</td>
<td>16.46</td>
</tr>
<tr>
<td>Final Exam (percent)</td>
<td>69.80</td>
<td>73.00</td>
<td>64(a)</td>
<td>13.58</td>
</tr>
<tr>
<td>Bottom 1/3 of the class on the 1st midterm (N=57)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midterm 1 (percent)</td>
<td>48.49</td>
<td>52.50</td>
<td>53(a)</td>
<td>13.219</td>
</tr>
<tr>
<td>Midterm 2 (percent)</td>
<td>63.38</td>
<td>67.50</td>
<td>78</td>
<td>16.64</td>
</tr>
<tr>
<td>Final Exam (percent)</td>
<td>52.54</td>
<td>52.50</td>
<td>49(a)</td>
<td>15.35</td>
</tr>
</tbody>
</table>

a Multiple modes exist. The smallest value is shown

Changes to the exam scores with first midterm exam scores at the top, middle, and bottom one-third of the class were further analyzed using dependent samples t-tests. For students in the top one-third of the class after the first midterm, the decreases in exam scores between the first and second midterms, the second midterm and the final exam,
and the first midterm and the final exam are all statistically significant (p<.01). The exam scores received by students in the middle one-third of the class, on the other hand, were more similar and only the decrease in the score between the second midterm and the final exam is statistically significant (p<.05). Finally, the increase of the exam scores between the first midterm and the second midterm for students with first midterm exam scores in the bottom one-third of the class on the first midterm is statistically significant (p<.01). In addition, the decrease in exam scores between the second midterm and the final exam for students at the bottom one-third of the class after the first midterm is also statistically significant (p<.01) (see Table 7). These results may be an indicator that feedback was beneficial to the performance of students at the bottom one-third of the class, at least during the first one-third of the semester. Or, they could reflect the phenomenon of regression to the mean.
Table 7: Paired-sample t-test examining exam score differences

<table>
<thead>
<tr>
<th></th>
<th>Paired Differences</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Std. Error Mean</td>
<td>95% Confidence Interval of the Difference</td>
</tr>
<tr>
<td>Top 1/3 of the class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair 1 Midterm 1 - Midterm 2</td>
<td>4.77</td>
<td>9.48</td>
<td>1.29</td>
<td>2.18</td>
</tr>
<tr>
<td>Pair 2 Final Exam - Midterm 2</td>
<td>-6.32</td>
<td>11.81</td>
<td>1.61</td>
<td>-9.54</td>
</tr>
<tr>
<td>Pair 3 Final Exam - Midterm 1</td>
<td>-11.08</td>
<td>12.29</td>
<td>1.67</td>
<td>-14.43</td>
</tr>
<tr>
<td>Middle 1/3 of the class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair 1 Midterm 1 - Midterm 2</td>
<td>-2.94</td>
<td>16.31</td>
<td>2.11</td>
<td>-7.15</td>
</tr>
<tr>
<td>Pair 2 Final Exam - Midterm 2</td>
<td>-5.64</td>
<td>17.49</td>
<td>2.26</td>
<td>-10.16</td>
</tr>
<tr>
<td>Pair 3 Final Exam - Midterm 1</td>
<td>-2.70</td>
<td>13.28</td>
<td>1.71</td>
<td>-6.13</td>
</tr>
<tr>
<td>Bottom 1/3 of the class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair 1 Midterm 1 - Midterm 2</td>
<td>-14.89</td>
<td>19.66</td>
<td>2.60</td>
<td>-20.19</td>
</tr>
<tr>
<td>Pair 2 Final Exam - Midterm 2</td>
<td>-10.84</td>
<td>16.01</td>
<td>2.12</td>
<td>-15.09</td>
</tr>
<tr>
<td>Pair 3 Final Exam - Midterm 1</td>
<td>4.05</td>
<td>17.92</td>
<td>2.37</td>
<td>-.71</td>
</tr>
</tbody>
</table>

Summing up, the results of these analyses indicate that there was an increase in the class grades between 2002 and 2004, and the midterm scores of students in the bottom one-third of the class increased between the first and second midterms. Specifically, in 2004 there was a higher percentage of A's and B's, a lower percentage of students who failed the class, and a higher percentage of students who dropped-out than in the same class during 2002 with the same instructor (see Table 4). In addition, mean exam scores for students with first midterm exam scores in the bottom one-third of the class improved on both the second midterm and the final exam (compared to first midterm exam scores). The grades of students with first midterm scores in both the middle-third or top-third of the class on the first midterm, on the other hand, decreased between the first midterm and the final exam. In addition, the grades of students in the
top third of the class also decreased between the first midterm and the second midterm, while the grades of students in the middle third of the class increased between the first and second midterm (see Table 6). While one possible cause for this variance is due to the regression to the mean phenomenon, it is also possible that feedback may have helped students in the bottom one-third of the class to perform better on the second midterm and the final exam, but the benefits appear to be more noticeable on the second midterm than the final exam.

Research Question #2

What is the relationship between performance and mathematics self-efficacy for students in Dr. Jungic's course? Did the relationship between performance and mathematics self-efficacy change during the semester?

In the second research question, I analyzed student performance on different course components. Results from the analysis of Research Question #1 told me that: 1) performance on the first midterm was correlated with performance on the second midterm and the final exam; 2) the largest increase between the first and the second midterm exam scores was for students in the bottom one-third of the class; and 3) the grades for all students dropped between the second midterm and the final exam, and the largest drop was for students in the bottom one-third of the class. These results will also be used to answer this research question.

Information about the second variable in this question, mathematics self-efficacy, was obtained from two different instruments. The first instrument, the Mathematics Self-Efficacy Questionnaire (MSE), was used to obtain self-efficacy information about each course topic. Students were asked to complete the MSE at the beginning and at the end of
the semester. The second instrument, assignment self-efficacy questions, was used to obtain self-efficacy information about solving a specific question. It asked students to judge the likelihood that they could correctly answer a specific assignment question before answering the assignment question, and the likelihood that they had correctly answered a specific assignment question after they had answered the assignment question.

Mathematics Self-Efficacy Questionnaire (MSE)

The beginning and end of semester MSE data was analyzed using responses from 52 students who completed both of these. The Cronbach’s alpha score for the MSE is .95. Mean scores were calculated by adding the response values (ranging from 0 to 11) for each question and then dividing by the total number of questions on the questionnaire. This was done for each student, and on both questionnaires.

The mean self-efficacy scores were higher on the MSE given at the end of the semester (7.43) than at the beginning of the semester (5.16). Pearson’s correlation indicated that the relationship between a student’s self-efficacy score at the beginning of the semester and their self-efficacy score at the end of the semester was significant and positively correlated ($r=.41$, $p<.05$). This means that if a student had a high self-efficacy score at the beginning of the semester, they tended to have a high self-efficacy score at the end of the semester, and students with low self-efficacy scores at the beginning of the semester tended to have low self-efficacy scores at the end of the semester. Further testing using a paired samples t-test indicated that the difference between the mean self-efficacy scores at the beginning and end of the semester was also statistically significant ($t(56)=8.03$, $p<.05$). Therefore, the increase in the scores between the beginning and end
of the semester is large enough that this difference is unlikely to have occurred by chance.

After determining that there was an improvement in the mean MSE scores between the beginning and the end of the semester, I began to look more closely at the responses given on each questionnaire at different points in the semester. This involved grouping each student’s response to the questionnaire items into three categories: 1) concepts covered between the beginning of the semester and the first midterm; 2) concepts covered between the first and the second midterm; and, 3) concepts covered between the second midterm and the final exam. These groups were applied to responses on both the beginning and end of semester questionnaires. The responses to each questionnaire were analyzed separately.

Using Pearson’s correlation and testing for two-tailed significance, I found that at the beginning of the semester, self-efficacy scores at all points in the semester on the MSE were significantly correlated (p<.01) and strongly related (r ranges from .69 to .89). These results are shown in Table 8. They indicate that at the beginning of the semester students had similar self-efficacy levels for all topics in the course. For example, if a student had a high self-efficacy for concepts covered at the beginning of the course, their self-efficacy remained high for topics covered in the middle of the course and at the end of the course.
Table 8: Beginning of semester MSE correlations

(\(N=56\))

<table>
<thead>
<tr>
<th></th>
<th>Beginning of Semester MSE - start to first midterm</th>
<th>Beginning of Semester MSE - first midterm to second midterm</th>
<th>Beginning of Semester MSE - second midterm to final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of Semester MSE - start to first midterm</td>
<td>Pearson Correlation</td>
<td>-</td>
<td>.73((\ast\ast))</td>
</tr>
<tr>
<td>Beginning of Semester MSE - first midterm to second midterm</td>
<td>Pearson Correlation</td>
<td>.73((\ast\ast))</td>
<td>-</td>
</tr>
<tr>
<td>Beginning of Semester MSE - second midterm to final</td>
<td>Pearson Correlation</td>
<td>.69((\ast\ast))</td>
<td>.89((\ast\ast))</td>
</tr>
</tbody>
</table>

\(\ast\ast\) Correlation is significant at the 0.01 level (2-tailed).

An examination of self-efficacy scores provided from the questionnaire at the end of the semester revealed similar information. As with the beginning of the semester, MSE scores at the end of the semester for all course topics were significantly correlated \((p<.01)\). The strength of their relationships is even stronger, and ranged from \(r=.84\) to \(r=.92\). These results are shown in Table 9. These results indicate that self-efficacy ratings at both the beginning and the end of the semester were similar for all topics covered throughout the semester, implying that students who had lower self-efficacy ratings at the beginning of the semester tended to have lower self-efficacy ratings at the end of the semester, and students who had higher self-efficacy ratings at the beginning of the semester tended to have higher self-efficacy ratings at the end of the semester.
Table 9: End of semester MSE correlations

<table>
<thead>
<tr>
<th>End of Semester MSE - start to first midterm</th>
<th>End of Semester MSE - first midterm to second midterm</th>
<th>End of semester MSE - second midterm to Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics Self-Efficacy Questionnaire (MSE) and Performance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finally, after examining performance scores and then self-efficacy scores separately, I began looking at performance and self-efficacy together using only MSE data. In my first analysis, I used exam scores from the first midterm and mean self-efficacy scores for topics covered between the start of the semester and the first midterm that were provided on the questionnaire given at the beginning of the semester. This would allow me to compare differences in the strength of the relationship between self-efficacy and performance at different points in the semester.

Using Pearson’s correlation with two-tailed significance testing, I learned that the relationship between MSE and performance was not significantly correlated (p>.05) at the beginning of the semester. In other words, there was no relationship between mean self-efficacy scores at the beginning of the semester and performance on the first midterm.

While there were no correlations between self-efficacy for course topics covered up to the first midterm and the first midterm marks for the entire class, it occurred to me that even though it was a first year class and all students had completed the same pre-
requisite (Math 12), students who had taken Calculus in high school may be more familiar with the course topics, obtain higher grades, and have higher self-efficacy for those topics. Using Pearson’s correlation with two-tailed significance, I learned that there was no statistically significant correlation (p>.05) between self-efficacy for course topics covered up to the first midterm and the first midterm marks for students in the top, middle, or bottom one-third of the class (see Table 10).

Table 10: First midterm scores and MSE

<table>
<thead>
<tr>
<th></th>
<th>Beginning of the semester MSE (start to 1st midterm)</th>
<th>- Performance on the 1st midterm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 1/3 of the class</td>
<td>Pearson Correlation</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.19</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>14</td>
</tr>
<tr>
<td>Middle 1/3 of the class</td>
<td>Pearson Correlation</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>18</td>
</tr>
<tr>
<td>Bottom 1/3 of the class</td>
<td>Pearson Correlation</td>
<td>-.13</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.58</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>20</td>
</tr>
</tbody>
</table>

The relationship between final exam marks and mean self-efficacy scores for all course topics covered between the second midterm and the end of the semester was examined next. Pearson’s correlation with two-tailed significance testing, indicated that this relationship was significantly correlated (p<.01). The relationship was also moderately strong (r=.46). These results may suggest that at the beginning of the semester the self-efficacy scores for all course topics may be optimistic and reflect a student’s self-efficacy for performance (the expectation of achieving a desired outcome on a task). However, by the end of the semester, students are aware of their abilities, and
their self-efficacy for topic scores reflect their self-efficacy for learning, judgments about ability to accomplish a task and confidence in the skills to perform that task (Lodewyk and Winne, 2005).

On-line Assignment Marks and Self-Efficacy Scores

In the final phase of analysis for this question, the second method of mathematics self-efficacy collection, the assignment self-efficacy questions, was compared with performance. I started this analysis by looking at assignment grades. As you will recall when I began describing my analysis process for this question, I stated that 175 students completed the online assignments and these grades were not normally distributed. Specifically, most students received high grades on these assignments.

One hundred and sixteen students provided self-efficacy data on a question by question basis. An analysis of self-efficacy data on specific assignment questions revealed that the scores varied little throughout the semester (see Table 11). The assignment question self-efficacy scores were grouped into assignments completed between the start of the semester and the first midterm, assignments completed between the first midterm and the second midterm, and assignments completed between the second midterm and the final exam. For each group of assignments, the mean assignment question self-efficacy scores were calculated by adding the scores for each assignment and then dividing by the total number of assignments during that time.
Table 11: On-line Assignment Self-Efficacy Mean Scores

<table>
<thead>
<tr>
<th></th>
<th>Start of Semester to Midterm 1 Average MSE Score on On-line Assignments</th>
<th>Midterm 1 to Midterm 2 Average MSE Score on On-line Assignments</th>
<th>Midterm 2 to Final Exam Average MSE Score on On-line Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Valid Missing</td>
<td>116 11</td>
<td>106 21</td>
<td>123 4</td>
</tr>
<tr>
<td>Mean</td>
<td>7.91 7.77</td>
<td>8.00 10.00</td>
<td>7.96 8.50</td>
</tr>
<tr>
<td>Median</td>
<td>8.00 8.00</td>
<td>10.00 10.00</td>
<td>2.13 10.00</td>
</tr>
<tr>
<td>Mode</td>
<td>10.00 10.00</td>
<td>1.57 3.33</td>
<td>1.50 1.50</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>1.57 1.66</td>
<td>3.25 3.33</td>
<td>2.13 1.50</td>
</tr>
<tr>
<td>Minimum</td>
<td>3.25 10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>10.00 10.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The next step would normally be to compare assignment scores with self-efficacy scores. However, this analysis was not done because there was no change in scores for either measure. Also, as a result of the lack of variance, Cronbach’s alpha was not calculated.

The analyses for this question indicate that while there was no correlation between MSE scores and performance at the beginning of the semester, there was a correlation between MSE scores and performance at the end of the semester.

Research Question #3

Did the feedback given to students in Dr. Jungic’s course affect students’ mathematics self-efficacy?

This research study attempted to answer this question directly by making self-efficacy comparisons between students in the on-line group and the paper group. Unfortunately, the paper group was not viable, as discussed previously.

A second indirect method of answering this question is to examine the relationships between feedback and performance, and performance and self-efficacy. As
explained previously in the analysis for Research Question #2, performance does appear to have improved. Specifically: 1) the class GPA increased from a previous offering by the same instructor; 2) the percentages of A’s and B’s increased and the percentages of F’s and N’s decreased; and, 3) students in the bottom one-third of the class after the first midterm scored much higher on the second midterm.

In the analysis for Research Question #2, I found significant increases in the mean MSE scores between the beginning and the end of the semester. I also found that self-efficacy and exam performance were correlated at the end of the semester but not at the beginning of the semester. This may indicate that as students became familiar with the course content, both their performance and their self-efficacy increased.

Research Question #4

What was the relationship between gender and self-efficacy and gender and performance for students in Dr. Jungic’s course?

The first part of this question was analyzed using the responses from 56 participants who completed the MSE questionnaires at the beginning and the end of the semester. A t-test was used to compare the mean total MSE scores of males and females at the beginning and the end of the semester. The results shown in Table 12 and Table 13 below indicate that there were no significant differences found between the mean MSE scores for males and females at the beginning or at the end of the semester. At the beginning of the semester, males had a mean MSE score of 5.48, SD=1.95, SE=.46, and females had a mean MSE score of 5.00, SD=2.24, SE=.36. At the end of the semester, males had a mean MSE score of 7.27, SD=1.83, SE=.43, and females had a mean MSE score of 7.40, SD=1.71, SE=.28. These differences are not statistically significant.
(p>.05). The results of the t-test at the beginning of the semester are $t(56)=.78$, and at the end of the semester are $t(56)=.64$.

Table 12: Gender and Mathematics Self-Efficacy Questionnaire Scores

<table>
<thead>
<tr>
<th></th>
<th>Sex</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of Semester: Male</td>
<td>18</td>
<td>5.48</td>
<td>1.95</td>
<td></td>
<td>.46</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>38</td>
<td>5.00</td>
<td>2.24</td>
<td>.36</td>
</tr>
<tr>
<td>Average MSE</td>
<td>Male</td>
<td>18</td>
<td>7.27</td>
<td>1.83</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>38</td>
<td>7.50</td>
<td>1.71</td>
<td>.28</td>
</tr>
</tbody>
</table>

Table 13: T-Test with Gender and Mathematics Self-Efficacy Questionnaire Scores

<table>
<thead>
<tr>
<th></th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>Beginning of Semester: Equal variances assumed</td>
<td>80</td>
<td>.38</td>
<td>.78</td>
</tr>
<tr>
<td>Average MSE</td>
<td>Equal variances not assumed</td>
<td>.82</td>
<td>38.08</td>
</tr>
<tr>
<td>End of Semester: Equal variances assumed</td>
<td>.30</td>
<td>.58</td>
<td>-.48</td>
</tr>
<tr>
<td>Average MSE</td>
<td>Equal variances not assumed</td>
<td>-.46</td>
<td>31.54</td>
</tr>
</tbody>
</table>

The second part of this research question involved comparing gender and performance. As students were only asked for gender information on the MSE questionnaires, the data used for the analysis in this question was from participants who
completed the MSE at the beginning of the semester and completed the course (91 participants). The final exam marks for males and females were compared using a t-test. The results shown in Table 14 and Table 15 below indicate that there were no significant differences found between the mean total scores for males and females. Males had a mean total score of 71.06, SD = 12.12, SE = 1.92, and females had a mean total score of 74.45, SD = 12.49, SE=1.75. These differences are not statistically significant (p > .05). The results of the t-test are t(91) = -1.30.

Table 14: Gender and Performance

<table>
<thead>
<tr>
<th>Sex</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Mark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>40</td>
<td>71.06</td>
<td>12.12</td>
<td>1.92</td>
</tr>
<tr>
<td>Female</td>
<td>51</td>
<td>74.45</td>
<td>12.49</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Table 15: Gender and Performance T-test

<table>
<thead>
<tr>
<th>Total Mark</th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>.28</td>
<td>.60</td>
<td>-1.30</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.31</td>
<td>85.00</td>
<td>.19</td>
<td>-3.39</td>
</tr>
</tbody>
</table>
DISCUSSION

The research questions for this study were developed after a mathematics instructor, Dr. Jungic, attended the Re-thinking Teaching Workshop (RTW) offered at SFU. After attending the workshop, Dr. Jungic decided to make changes to his instructional strategy by incorporating an on-line tool called LON-CAPA that would provide students with immediate multiple-try feedback. These changes were made because Dr. Jungic hoped that increasing the amount of feedback would increase student’s “self-confidence” and achievement in his Calculus course. After deciding to make the changes Dr. Jungic approached me and another researcher, my supervisor Dr. Cheryl Amundsen, because he wanted to evaluate the impact of the changes on students’ “self-confidence” and achievement in his course.

I sought confirmation of Dr. Jungic’s beliefs by going to the literature to learn about “self-confidence” and its relationship to feedback and performance. I soon learned that the term “self-confidence” is rarely used in the literature, and that Bandura’s (Bandura, 1997) term “self-efficacy” matched Dr. Jungic’s definition of self-confidence. After confirming this with Dr. Jungic, I returned to the literature and investigated the relationships between feedback and performance, performance and self-efficacy, and feedback and self-efficacy. Out of interest, I also investigated the role of gender in each of these relationships. In addition changes to the instructional strategy were also documented through interviews with Dr. Jungic.
In the remainder of this chapter, I present a discussion of each of the research questions. Following that, I discuss Dr. Jungic’s thoughts about the findings and about the process of engaging in classroom research. Finally I discuss implications and future directions.

Research Question #1

Did increasing the feedback provided to students in Dr. Jungic’s class effect student performance?

Student performance in Math 157 during the Fall 2002 and 2004 semesters were compared in this study. Fall 2002 was chosen as the comparison year because it was the only other time that this course had been taught by Dr. Jungic. I chose to only look at the grades from the fall 2002 semester, in an effort to remove any bias that could be introduced by having multiple instructors. This also means that for both 2002 and 2004, I assumed that the students were “typical” in that class. I believe this to be the case because there were no changes to the admission requirements for either SFU or the high school admission requirements to the Faculty of Business Administration during this time (Simon Fraser University, 2002; Simon Fraser University, 2004) and most students were taking this course in their first semester of university (78% in 2002 and 80% in 2004) (Simon Fraser University, 2005a; Simon Fraser University, 2005b). However, there will always be fluctuations in performance from year to year due to different abilities of entering students, and these could have caused the performance differences between 2002 and 2004.

The analysis of the relationship between feedback and performance of students in Dr. Jungic’s class may indicate that feedback helped to improve performance. In my
study, I saw an increase in the percentage of A's and B's and a decrease in the percentage of F's and N's. These results are consistent with findings from previous research that used an on-line tool that provided immediate multiple-try feedback to students in mathematics courses (Buchanan, 2000; D. A. Kashy et al., 2001; E. Kashy et al., 1998; E. Kashy et al., 2000; Siew, 2003). Of course, other possibilities such as differences in teaching and the possibility that the technology motivated students to spend more time on their course work may have also influenced the improvement in performance.

Further analysis of the increase in grades of students taking Math 157 in Fall 2004 was done in two steps. The first step revealed that overall, students tended to have higher grades on the second midterm than on the first midterm. In addition, there was a positive moderately strong (r ranging from .532 to .631), significant correlation (p<.01) between grades on the first midterm, second midterm, and final exam. These results are consistent with previous research which has found that past performance is related to future performance (Carmichael & Taylor, 2005; Pajares & Graham, 1999). Therefore, it appears that students performed relatively consistently throughout the semester and received similar grades on the first midterm, second midterm, and final exam.

The second step of analyzing the grades of Math 157 students in Fall 2004 involved looking at the exam scores of students at the top, middle, and bottom one-third throughout the semester. This division was made based upon previous research (Bloom, 1984; E. Kashy et al., 1998; E. Kashy et al., 2000). This analysis revealed that: students in the top one-third of the class performed slightly better on average on the first midterm than on the second midterm; students in the middle one-third of the class performed slightly worse on average on the first midterm than on the second midterm; and, students
in the bottom one-third of the class performed quite a bit better on average on the first midterm than on the second midterm. Taking the class as a whole, the mean and median grades decreased between the second midterm and the final exam for all students.

Two components of this analysis stand out. The first component is the slight decrease in grades between the first and second midterms for students in the top one-third of the class, and the increase in grades between the first and second midterms for students in the bottom one-third of the class. According to previous research, this may have occurred due to a phenomenon referred to as regression to the mean which states “whenever a pretest-posttest procedure is used to assess learning in an experiment, the individuals scoring high or low on the pretest will tend to have scores somewhat closer to the mean on the posttest” (Gall, Gall, & Borg, 1999). The second component of interest is that students with first midterm exam scores in the bottom one-third of the class had a larger decrease in grades on the final exam than students in the other two groups. Some reasons this may have occurred is because students at the bottom of the class required more time to finish the exam, or the high assignment marks (most students received 100% on all assignments) created unrealistic performance expectations on the second midterm which led to disappointment and lower effort at the end of the class.

Research Question #2

What is the relationship between performance and mathematics self-efficacy for students in Dr. Jungic’s course? Did the relationship between performance and mathematics self-efficacy change during the semester?

The relationship between students’ mathematics performance and their mathematics self-efficacy was analyzed using two methods of collecting self-efficacy
information, mathematics self-efficacy questionnaires completed at the beginning and the end of the semester (MSE), and asking for mathematics self-efficacy information on assignments. Cronbach's alpha for the MSE questionnaire was .95. The analysis of the MSE indicates that the increase in MSE scores between the beginning and the end of the semester is statistically significant, MSE scores at the beginning of the semester are correlated with scores at the end of the semester, and students' self-efficacy scores for topics covered throughout the semester were similar at the beginning of the semester and at the end of the semester (p<.05).

There was no correlation found between mathematics self-efficacy scores at the beginning of the semester (in particular for topics covered between the start of the semester and the first midterm) and performance on the first midterm. At the end of the class, however, students' mathematics performance is strongly correlated with their self-efficacy about specific topics covered in the class. This indicates that in the beginning of the semester, students may not know the expectations for the class or have unrealistic expectations for themselves in their first semester of university. But, by the end of the semester they have a good idea of the grading standards as well as their knowledge of the course requirements.

The assignment self-efficacy information, unfortunately, did not permit any analysis because most students received 100 percent on all assignments.

Research Question #3

Did the feedback given to students in Dr. Jungic's course affect students' mathematics self-efficacy?
An examination of the relationship between feedback and mathematics self-efficacy indicates that student's mathematics self-efficacy improved significantly between the beginning and the end of the semester. There is also an indication, as stated in the discussion for Research Question #2, that overall performance in this class was higher than in the previous class. As there were no students who did not receive feedback, it is impossible to determine if the improvement in mathematics self-efficacy was due to the additional feedback. However, it is possible that student's mathematics self-efficacy improved as a result of feedback, as these results were found in research by Schunk and Schwartz (1993). This idea is also supported by research that has found relationships between feedback and performance (Bloom, 1984; Buchanan, 2000; Clariana, 1993; D. A. Kashy et al., 2001; E. Kashy et al., 1998; E. Kashy et al., 2000; Siew, 2003).

Research Question #4
What was the relationship between gender and self-efficacy and gender and performance for students in Dr. Jungic's course?

An analysis of the MSE scores at both the beginning and the end of the semester indicates that there were no differences in mathematics self-efficacy for males and females. There were also no differences on the final exam scores of males and females. These results may contradict research by Carmichael and Taylor (2005) who reported lower self-efficacy scores for females but did not state the score differences. Pajares (1999) also found that there were no significant differences between gender and performance.
Dr. Jungic’s Reflections

After completing the results and analysis sections of my thesis I asked Dr. Jungic to review and comment on my findings, answer a few questions about the overall process of this study, and discuss the impact of the findings on his future instructional methods.

Thoughts about the Results

In my interview with Dr. Jungic at the beginning of the semester, he commented on the amount of time that was required to set-up the questions in LON-CAPA (September 2004). After reviewing the results, Dr. Jungic believes that “the findings justify the effort that was put in creating and managing on-line assignments for Math 157 (August 2006).” He believes that it is good that the findings are in line with previous research, and he would also like to think that the increase in the percentage of A’s, B’s, and N’s is related to the immediate feedback provided by LON-CAPA (August 2006). Of course, he realizes while the results of this study do indicate that there were increases in student achievement after making changes to the instructional strategy, it is possible that the increases may have occurred as a result of other factors such as student’s prior achievement or better instruction in this year.

Thoughts about the Process of this Study

When asked to reflect upon the design process of this study, Dr. Jungic stated that he is happy with the research questions, and believes that “the first three questions represent our exact interest when we decided to analyze the impact of the new tool in Math 157” (August 2006). He believes that the most exciting (and useful) new fact learned is the concept of regression to the mean (on a pre-test/post-test, high and low
scores will shift towards the mean) (Gall et al., 1999). Overall, Dr. Jungic felt that the whole process was a very positive experience, and would like to ask the same research questions in a new class (August 2006).

Instructional Design Changes

The students taking the class at the time of this study were asked to complete 4 assignments per week, 3 on-line and 1 on paper. Due to the high workload, Dr. Jungic worried about whether students would do the on-line assignments. The fact that the majority of the class completed the on-line assignments is, in his opinion, a big plus to these changes. According to Dr. Jungic, the instructional changes that he made (adding assignments and using similar assignment questions in LON-CAPA) have been used by other instructors who have taught this course since the time the data was gathered for this study (August 2006).

Dr. Jungic is now planning to use a similar approach that includes multiple weekly on-line assignments using LON-CAPA and a weekly paper assignment for teaching a different class this semester. He has also added a new discussion tool that is designed to help with posting math expressions. This tool, developed with a few students, is called Peer to Peer Mathematics. Dr. Jungic hopes that this tool will be an improvement on the discussion tool in LON-CAPA and will help students to share their questions, knowledge, and frustrations, while helping him to bring the class together faster and at a higher level (August 2006).
Limitations

When I began this study, I was aware that I had limited knowledge about the students taking this class, that there was a high-drop out rate, and that there may be changes in the exam difficulty from course offering to course offering. The limitation of the first concern, the amount of information that I knew about students in this course, means that the performance improvements that I saw between 2002 and 2004 could have been simply due to the different backgrounds of students in the course. Learning more about the students in the course would help to eliminate other possible causes of performance improvements.

The second known limitation at the beginning of the study, a high student drop-out rate that is normally experienced in the fall semester offering of this course, did occur in this course. While I was not directly interested in the reasons students dropped the course, knowing why students dropped-out would have helped me to learn more about students who decide not to take the course. In particular, the performance and mathematics self-efficacy scores of these students may be different from those who remained in the course if the course was dropped because it was too difficult or had a large workload. In addition, if I had this information for both 2002 and 2004, I would have been able to make comparisons between students in these courses.

Finally, the third limitation that I considered at the beginning of the study was the possibility of changes in the difficulty level of the assignments and exams. While it is not possible to be certain that the assignments and exams were at exactly the same level of difficulty, Dr. Jungic believes that they were similar in 2002 and 2004.
After conducting the study I became aware of two other limitations, the amount of time devoted to coursework may have changed, and the drop-out rate of the paper submission group. The amount of time students spent on course work is an important consideration because more effort is usually related to better performance. In my study, it is not possible to determine if students spent more time doing their homework after changes to the instructional strategy were made. In addition, knowing the amount of time spent doing homework by students in both the on-line and the paper submission groups would help to determine if the use of LON-CAPA was related to students spending more time doing their homework.

The final limitation was the small number of participants that remained in the paper-submission participation group at the end of the semester. Due to resource limitations, only 15 students who volunteered to be in the paper-submission group were placed in that group. Unfortunately, only 3 students remained in this group at the end of the semester. The drop-outs meant that I was not able compare the performance or self-efficacy between students in the paper submission group with students in the on-line submission group. These comparisons would have provided more information about whether the instructional strategy or the use of LON-CAPA was related to increases in performance and self-efficacy.
FUTURE RESEARCH

In this study, it appears that adding an on-line tool that provided immediate feedback to the instructional strategy may have influenced the increases in student performance and mathematics self-efficacy. Nevertheless, as all students received the same instruction and used the on-line tool, it is not possible to differentiate improvements related to changes to the instructional strategy from the feedback provided by the tool. This is an area that was also not addressed in previous studies that have used similar tools (Buchanan, 2000; D. A. Kashy et al., 2001; E. Kashy et al., 1998; E. Kashy et al., 2000; Siew, 2003). Distinguishing the tool from the instructional strategy would help to address the question of whether the grade and self-efficacy increases were due to changes to the instructional strategy or the feedback provided by the tool. Some insight into this issue could be revealed by repeating this study with the same class and by gathering self-efficacy data in future courses.

A second area of research would involve providing students with different types of feedback, possibly using different methods. While Dr. Jungic appears to believe that LON-CAPA was a major contributor to these benefits, it is not possible to determine if the same results could have been achieved if it had been possible to provide the additional feedback using teaching assistants. Research in this area would provide insight into the type of support that is most effective for these students.

A third area of research is to consider the impact of feedback and discussion groups on achievement and mathematics self-efficacy separately. As both were part of
LON-CAPA, it is not possible to determine if the feedback, discussion, or a combination of these was the best contributor to the increase in achievement and self-efficacy. The findings from this study would add to research by Pascarella (2002) and Kortemeyer (2006). Specifically, an examination of the relationship between self-efficacy, the number of tries, and the amount of time between tries, would add to Pascarella’s (2002) research that indicated that multiple-try feedback may encourage students to simply guess the answer rather than helping them to engage in deep learning. Kortemeyer’s (2006) analysis of discussion postings that found a positive correlation between the number of conceptual-level statements made by a student and their achievement in the class could also be enhanced by adding self-efficacy information as it may provide some understanding of a student’s self-efficacy level when the post was made.
CONCLUSIONS

Classroom research studies, such as this one, can provide valuable insights for faculty about the nature of student learning. At the heart of research about teaching and learning is the examination of learning. This activity can simply involve asking students if they understand what is being taught. It can also be very involved, with instructors studying new literature, interacting with new colleagues, and exploring new methods of inquiry (Huber, 2004).

According to Huber (2004), research about teaching and learning, referred to as the scholarship of teaching and learning, can take many forms.

For many, it may begin and end with inquiry into and documentation of teaching and learning in a single course, or iterations of that course, shared and discussed with campus or disciplinary colleagues. For faculty who have achieved prominence in the scholarship of teaching and learning, like those considered here [in this book], it also includes well-documented classroom innovation, curriculum development, new resources for students and colleagues, grantsmanship, publication in peer-reviewed journals, presentations at conferences and other universities, Web activities, workshops for fellow faculty, participation on national panels and curriculum projects, and elaborations, collaborations, new initiatives, and the like (Huber, 2004, 8).

Dr. Dan Bernstein, now a psychologist and scholar in teaching and learning, began his career with a simple interest in his students' learning (Huber, 2004). Similar to Dr. Jungic, he believed that providing students with a lot of feedback would help their performance. In Dr. Bernstein's first year 350 student Psychology class, students would take tests, hand them to TA's for immediate grading, meet with the TA as soon as the test
was marked, and then have the opportunity to retake the same test. This approach resulted in Dr. Bernstein being called in front of the College of Arts and Sciences grade inflation committee. Fortunately, after explaining his instructional method and showing examples of exams, he impressed the committee members with evidence of student learning and was even asked to join the committee!

Unfortunately, it eventually became clear to Dr. Bernstein (as reported in Huber, 2004) that his teaching efforts were not being recognized, and were in fact hurting his case for tenure and promotion. At one point, a colleague told him,

You've got to stop doing that research you are doing. It's too slow. You know, each person is in the study for two months. You run a couple of people a year. Do something quick. Do it. Get it out. Get tenure, and then you can go back and do the things you think are important (Huber, 2004, 34).

Soon after Dr. Bernstein quit teaching first year courses Eventually, after receiving tenure and promotion, Dr. Bernstein did return to researching teaching and learning He is now the Director of the Center for Teaching Excellence at the University of Kansas (Huber, 2004).

The obstacles faced by Dr. Bernstein are being faced by many instructors in higher education. The data gathered for this study took 4 months. While this is a long time in the research world, in educational terms, it constitutes only 1 semester and 1 course. Without studies like this one, how will faculty understand the impact of the instructional strategies they use? It is my hope that the notion of the scholarship of teaching and learning will take root within the SFU culture and that the type of research I have undertaken with Dr. Jungic will be considered credible in decisions about merit,
tenure and promotion, thus encouraging more classroom research studies such as this one to be undertaken.

One way to make formal classroom-based research more feasible for faculty is to create partnerships with graduate students seeking authentic situations in which to conduct thesis research. In this study, the partnership between myself and Dr. Jungic proved to be interesting and beneficial for both of us. Shorter more informal studies, on the other hand, have been individually undertaken by some instructors who have completed workshops like the Rethinking Teaching Workshop (RTW) described in Background section of the Introduction chapter. These studies have asked fewer, but very specific questions in an effort to further the instructor’s knowledge about the effect of a specific instructional change on student learning. Both formal and informal studies can make important contributions to the scholarship of teaching and learning and I believe that it is important that research like this continue.
Dear Dr. Jungic:

As you know, beginning in Fall 2004 there will be a new instructional initiative in Math 157 at Simon Fraser University. One of the big changes made at this time constituted using an on-line tool called LON-CAPA to provide feedback to students. As this is a relatively new approach to mathematics instruction in North America, there is some debate about the benefits to students for incorporating tools similar to this into instruction. In my Masters thesis in Education, I would like to examine whether there are benefits for students if LON-CAPA is used.

If you choose to participate in this study, you will be asked to participate in two interviews and discuss what changes you planned to make to this class and why you planned to make the changes, the differences between the changes that you planned to make and the changes that you actually made, your expectations for making the changes, and your perception of the impact of these changes. Any information that is obtained during this study will be kept confidential to the full extent permitted by the law. Materials will be maintained in a secure location.

If you have any questions now or at any point during the semester please feel to contact me or my supervisor, Dr. Cheryl Amundsen (Cheryl_amundsen@sfu.ca).

Sincerely,

Marie Krbavac
Graduate Student
Faculty of Education, SFU
e-mail: Krbavac@sfu.ca
Appendix B: Mathematics Self-Efficacy Questionnaire

In the column Confidence rate how sure you are that you can complete problems for each of the topics listed below.

Please rate your degree of confidence by recording in each of the blank spaces a number from 0 to 10 using the scale given below.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>can not do at all</td>
<td>Moderately certain can do</td>
<td>Certain can do</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Confidence (0-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions of a Real Variable</td>
<td></td>
</tr>
<tr>
<td>Graphs of Functions</td>
<td></td>
</tr>
<tr>
<td>Straight Lines and Exponential Logarithmic Functions</td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>Limits</td>
<td></td>
</tr>
<tr>
<td>Interest Compounded Continuously</td>
<td></td>
</tr>
<tr>
<td>Continuity</td>
<td></td>
</tr>
<tr>
<td>Continuity Applied to Inequalities</td>
<td></td>
</tr>
<tr>
<td>The Derivative</td>
<td></td>
</tr>
<tr>
<td>Rules for Differentiation</td>
<td></td>
</tr>
<tr>
<td>The Derivative as a Rate of Change</td>
<td></td>
</tr>
<tr>
<td>Differentiability and Continuity</td>
<td></td>
</tr>
<tr>
<td>Product and Quotient Rules</td>
<td></td>
</tr>
<tr>
<td>Chain Rule and Power Rule</td>
<td></td>
</tr>
<tr>
<td>Derivatives of Logarithmic Functions</td>
<td></td>
</tr>
<tr>
<td>Derivatives of Exponential Functions</td>
<td></td>
</tr>
<tr>
<td>Implicit Differentiation</td>
<td></td>
</tr>
<tr>
<td>Logarithmic Differentiation</td>
<td></td>
</tr>
<tr>
<td>Higher-Order Derivatives</td>
<td></td>
</tr>
<tr>
<td>Relative Extrema</td>
<td></td>
</tr>
<tr>
<td>Absolute Extrema on a Closed Interval</td>
<td></td>
</tr>
<tr>
<td>Concavity</td>
<td></td>
</tr>
<tr>
<td>Second Derivative Test</td>
<td></td>
</tr>
<tr>
<td>Applied Maxima and Minima</td>
<td></td>
</tr>
<tr>
<td>Differentials</td>
<td></td>
</tr>
<tr>
<td>Elasticity of Demand</td>
<td></td>
</tr>
<tr>
<td>Functions of Several Variables</td>
<td></td>
</tr>
<tr>
<td>Partial Derivatives</td>
<td></td>
</tr>
</tbody>
</table>

78
Applications of Partial Derivatives
Implicit Partial Differentiation
Higher-Order Partial Derivatives
Chain Rule
Maxima and Minima for Functions of Two Variables
Lagrange Multipliers
Lines of Regression
Appendix C: Mathematics Self-Efficacy Practice Questionnaire

Math 157 (Calculus for the Social Sciences I)
Mathematics Self-Efficacy Pre-test and Post-test

Student Number: __
Name: ___
Sex: M F

Practice Rating

To familiarize yourself with the rating form, please complete the practice item first.

If you were asked to walk different distances right now, how confident are you that you can walk each of the distances described below.

Please rate your degree of confidence by recording in each of the blank spaces a number from 0 to 10 using the scale given below.

Confidence Scale

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>can not do at all</td>
<td>Moderately certain can do</td>
<td>Certain can do</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distance	Confidence (0-10)
Walk 1 km | __________________
Walk 5 km | __________________
Walk 10 km | __________________
Walk 15 km | __________________
Walk 20 km | __________________
Walk 25 km | __________________
Walk 30 km | __________________
Walk 35 km | __________________
Walk 40 km | __________________
Appendix D: Computer User Self-Efficacy Approval

From: "Simon Cassidy" <S.Cassidy@salford.ac.uk>
To: Marie Krbavac <krbavac@sfu.ca>
Date: Tue, 6 Jul 2004 10:13:09 +0100
Subject: Re: Computer User Self-efficacy scale

Hi Marie,

We are quite happy for the CUSE to be used for research purposes.

Best wishes

Simon & Peter.

> I am working on my Masters Thesis in Educational Technology at Simon Fraser
> University and I will be assessing the effect of technology-based
> instructional changes on first year calculus students mathematics
> self-efficacy. As part of my research, because I am assessing a
> technology-based instructional strategy, I am also interested in
> seeing if
> students computer self-efficacy is related to their mathematics
> self-efficacy.
> > Is it possible for me to use the CUSE scale that you developed?
> >
> > Thank you for your time,
> >
> > Marie Krbavac
Appendix E: Student Information Letter

Dear Students of Math 157:

As you know, this semester is the first time that an on-line tool called LONCAPA will be used to provide feedback to students taking Math 157. While this is a relatively new approach to mathematics instruction in North America, research has shown that tools such as LON-CAPA can benefit teaching and learning. In my Masters thesis in Education, I plan to learn more about how to use LON-CAPA with instruction to benefit student’s self-confidence in mathematics.

If you choose to participate in this study, you will be asked to indicate if you would like to use LON-CAPA to submit assignments or if you would like to submit assignments on paper. Participation will also mean that I am given access to your grades in this course.

If you choose to participate, you will also be asked to do the following:
1. at the beginning of the semester
 • use the course WebCT site to complete a questionnaire that asks you to state your confidence in specific content areas of the course
 • use the course WebCT site to complete a questionnaire about your self-confidence using computers

2. during the semester (while completing one assignment each week)
 • state how confident you are (on a scale of 0 to 10) that you will be able to correctly answer each assignment question
 • state how confident you are (on a scale of 0 to 10) that you have correctly answered each assignment question

3. at the end of the semester
 • use the course WebCT site to complete a questionnaire that asks you to state your confidence in specific content areas of the course

If you have any questions now or at any point during the semester, please feel to contact me or my supervisor, Dr. Cheryl Amundsen (Cheryl_amundsen@sfu.ca). Please note that any information that is obtained during this study will be kept confidential to the full extent permitted by the law. Materials will be maintained in a secure location.

Sincerely,

Marie Krbavac
Graduate Student
Faculty of Education, SFU
e-mail: Krbavac@sfu.ca
Appendix F: Informed Consent By Participants in a Research Study

Title: An Examination of Changes to the Instructional Strategy in a First Year Mathematics Course and Student’s Mathematics Self-Efficacy and Performance

Investigator Name: Marie Krbavac
Investigator Department: Education

The University and those conducting this research study subscribe to the ethical conduct of research and to the protection at all times of the interests, comfort, and safety of participants. This research is being conducted under permission of the Simon Fraser Research Ethics Board. The chief concern of the Board is for the health, safety and psychological well-being of research participants.

Should you wish to obtain information about your rights as a participant in research, or about the responsibilities of researchers, or if you have any questions, concerns or complaints about the manner in which you were treated in this study, please contact the Director, Office of Research Ethics by email at hweinger@sfu.ca or phone at 604-268-6593.

Your signature on this form will signify that you have received a document which describes the procedures, possible risks, and benefits of this research study, that you have received an adequate opportunity to consider the information in the documents describing the study, and that you voluntarily agree to participate in the study.

Any information that is obtained during this study will be kept confidential to the full extent permitted by the law. Materials will be maintained in a secure location.

Having been asked to participate in the study named above, I certify that I have read the procedures specified in the Study Information Document describing this study. I understand the procedures to be used in this study and the personal risks to me in taking part in the study as described on the Study Information Document.

I understand that I may withdraw my participation at any time. I also understand that I may register any complaint with the Director of the Office of Research Ethics or the researcher named above or with the Chair, Director or Dean of the Department, School or Faculty as shown below.
Dr. Paul Shaker
Dean
Faculty of Education
8888 University Way
Simon Fraser University
Burnaby, British Columbia
Canada

I may obtain copies of the results of this study, upon its completion by contacting Ms. Marie Krbavac (krbavac@sfu.ca).

I have been informed that the research will be confidential.

I understand the risks and contributions of my participation in this study and agree to participate.

I would like to participate in the group that (please select one group): Submits assignments on paper or Submits assignments using LON-CAPA

Participant Last Name: ____________________________
Participant First Name: ____________________________
Participant Student Number: _______________________
Participant E-mail address: _________________________
Participant Signature: _____________________________
Date (use format MM/DD/YYYY): _____________________
REFERENCE LIST

Simon Fraser University. (2005a). *Profile of students in SFU courses fall 2002*.

Simon Fraser University. (2005b). *Profile of students in SFU courses fall 2004*.
