The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

This dissertation has been microfilmed exactly as received.
NUCLEOTIDE-FACILITATED RELEASE OF INORGANIC PHOSPHATE AND HYDROLYSED ADENOSINE TRIPHOSPHATE FROM BEEF HEART MITOCHONDRIAL ADENOSINE TRIPHOSPHATASE

by

Seelochan Beharry

B.Sc., University of Guyana, 1975
M.Sc., Acadia University, 1979

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Chemistry

© Seelochan Beharry

SIMON FRASER UNIVERSITY
June 1985

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.
Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmier cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

Name: Seelochan Beharry
Degree: Doctor of Philosophy
Title of Thesis: Nucleotide-Facilitated Release of Inorganic Phosphate and Hydrolysed Adenosine Triphosphate from Beef Heart Mitochondrial Adenosine Triphosphatase

Examining Committee:
Chairman: Professor F.W.B. Einstein

Dr. M.J. Gresser, Senior Supervisor

Dr. W.R. Richards

Dr. A.N. Slessor

Dr. A.J. Davison
Internal Examiner
Department of Kinesiology

Professor Paul D. Boyer
External Examiner
Molecular Biology Institute
U.C.L.A.

Date Approved: June 17, 1985
PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay

"Nucleotide-facilitated Release of Inorganic Phosphate and Hydrolysed Adenosine Triphosphate from Beef Heart Mitochondrial Adenosine Triphosphatase"

Author:

Seelochan Beharry

(name)

7/6 Aug 1985

(date)
ABSTRACT

The Sephadex centrifuge column technique introduced by Penefsky was modified and used to perform preincubation and pulse-chase type experiments with soluble beef heart mitochondrial adenosine triphosphatase, F₁. In the preincubation-type experiments, F₁ was labelled by incubation with [³²P]Pi before being applied to Sephadex G-50 columns which contained a 1.0 cm nucleotide equilibrated middle section. Under these experimental conditions, ATP and AMPPNP bound equally well to F₁ but ADP did not bind as well. The order of effectiveness of the nucleotides in promoting the release of approximately 70% (i.e. the steep phase of the biphasic release) of the bound Pi (0.2 mole Pi/mole F₁) from F₁ was ATP > AMPPNP >> ADP. High concentrations of nucleotides were able to effect the total release of Pi from F₁. It was concluded that binding of nucleotide, not hydrolysis, was necessary to effect Pi release.

In the pulse-chase type experiment, F₁ was labelled when it passed through a 1.0 cm nucleotide equilibrated gel at the top (pulse section) of the column. The labelled F₁ was exposed to unlabelled nucleotide present in the third section (chase section) of the column. When F₁ was given a [γ-³²P]ATP pulse (0.1 mole ATP/mole F₁), the release of Pi (with ADP present
at the same site) was effected equally well by chase ATP and AMPPNP. Here also the release of \(P_i \) was biphasic with about 70% of the bound label being released in the first phase. Using \([^{3}H]ATP\) label in the pulse, it was shown that ADP release was similar to that of \(P_i \) in the presence of chase ATP. With a \([^{3}H]AMPPNP\) pulse (0.1 mole AMPPNP/mole \(F_1 \)), chase AMPPNP was not effective (less than 30%) in promoting the release of bound AMPPNP.

A comparison of the results from the two modes of investigation reveal that: (i) AMPPNP was more effective in promoting \(P_i \) release when ADP is present (pulse-chase mode) than when ADP is absent (preincubation mode); and (ii) ATP was more effective in promoting \(P_i \) release when ADP is absent (preincubation mode) than when ADP is present (pulse-chase mode).

The results are rationalized in terms of the binding-change mechanism for the \(F_1 \) catalyzed hydrolysis of ATP involving the (i) nature of the nucleotide bound, (ii) number of occupied sites of \(F_1 \) before exposure to incoming nucleotides, and (iii) the ability of the nucleotides to produce conformational changes necessary to effect the release of \(P_i \) and/or ADP.
To Martha and Matthew
I would like to express my appreciation to Simon Fraser University for providing financial support and adequate facilities to enable my participation in this study. In particular, I would like to thank the Department of Chemistry for contributing towards a productive and enjoyable stay.

I would like to express my gratitude and thankfulness to Dr. Michael J. Gresser for affording me the opportunity to work with him in this project. Moreover, I appreciated the academic setting fostered, the personal and professional growth encouraged, the excellent direction and invaluable assistance given, and the readiness and enthusiasm with which help was given. Lastly, I would like also like to thank him for the various efforts made to make my stay comfortable, enjoyable, educative, and productive.

I would like to thank Dr. Keith N. Slessor and Dr. William R. Richards for being on my supervisory committee, and for their help, advice, and thoughts on the Comprehensive Examinations and thesis. I would also like to express my appreciation for the help given by Dr. Kenneth E. Newman with the second Comprehensive Examination.
I would like to thank Dr. Richard L. Cross (Department of Biochemistry, State University of New York) for his helpful discussions and suggestions on this project.

I would like to express my deep appreciation and thanks to the technicians, Denise M.C. Moennich, and Mildred E.L. Johnson, for their invaluable help in this project. I would also like to acknowledge the help given by Dr. Susan Moore, Amani Nour-Eldeen, Tania Kastelic, Marcia Craig, Elizabeth Bramhall, and Kevin Doherty, especially in the beef heart mitochondrial preparations. In addition, the camaraderie, cheerfulness, good humour and tolerance of the personnel mentioned in this paragraph were appreciated.

My thanks to Marion Jacques for typing this thesis.

Thanks to my friends - Latif Ayub and Philip Whiting, brothers, and mother for their unfailing efforts to encourage me. Special thanks to Patricia and Joe Ord for their kindness, friendship, and hospitality towards Martha and myself.

Lastly, I would like to thank Martha, my wife, for her understanding, help, encouragement, companionship, and love throughout this endeavour.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>(i) Beef Heart Mitochondrial Adenosine Triphosphatase</td>
<td>1</td>
</tr>
<tr>
<td>(ii) Modified Sephadex Centrifuge Column Technique</td>
<td>14</td>
</tr>
<tr>
<td>II EXPERIMENTAL PROCEDURES</td>
<td>18</td>
</tr>
<tr>
<td>(i) Materials</td>
<td>18</td>
</tr>
<tr>
<td>(ii) Methods</td>
<td>20</td>
</tr>
<tr>
<td>(a) Preparation of Soluble Beef Heart Mitochondrial Adenosine Triphosphatase, F₁-ATPase</td>
<td>20</td>
</tr>
<tr>
<td>(b) Assay for ATPase Activity</td>
<td>21</td>
</tr>
<tr>
<td>(c) Determination of Protein Concentration</td>
<td>21</td>
</tr>
<tr>
<td>(d) Molecular Weight</td>
<td>23</td>
</tr>
<tr>
<td>(e) Purity of the F₁ Preparation</td>
<td>23</td>
</tr>
</tbody>
</table>
(f) Purity of the Radionucleotides 23

(g) Monitoring ATP and/or ADP
Concentrations 24

(h) Measurement of Radioactivity 24

(i) Preparation of Sephadex Centrifuge ... 25

(j) Making a Longer Column Barrel 25

(k) Modified Sephadex Centrifuge Column
Technical:

(a) Preincubation Mode 26

(b) Pulse-Chase Mode 28

III RESULTS 30

(i) Release of P_i from F_1: Preincubation
Method .. 30

(ii) Release of P_i from F_1: Pulse-Chase
Method .. 37

(iii) Release of AMPPNP from F_1: Pulse-Chase
Method .. 44

(iv) Binding of Nucleotides to F_1 in the
Sephadex Centrifuge Column 46

(v) The Biphasic Release of P_i from F_1 59

IV DISCUSSION 73

(i) The Release of P_i from F_1:
Preincubation Method 73
(ii) Release of Pi from F₁: Pulse-Chase Method ... 84

(iii) Comparison of the Results of Preincubation and Pulse-Chase Studies 90

(iv) Release of AMPPNP from F₁: Pulse-Chase Method ... 93

V CONCLUSION ... 95

VI FUTURE WORK ... 96

VII APPENDIX I ... 102

Development of the Modified Sephadex Centrifuge Column Technique 102

(i) Introduction .. 102

(ii) Results and Discussion .. 102

(a) The effect of ATP-Containing Gel in the Middle of the Columns 102

(b) Determination of the Optimum Lengths of Gels for the Top and Bottom Sections of the Reassembled Columns .. 109

(c) Use of a Longer Reassembled Column and the Determination of the Parameters under which the Column Functions Best .. 112

(iii) Conclusion ... 119
VIII APPENDIX II ... 120
 Adaptation of the Modified Sephadex Centrifuge
 Column Technique for Use in Pulse-Chase
 Experiments ... 120
 (i) Results and Discussion 120
 (a) The Arrangement of the Gels for
 Pulse-Chase Experiments 120
 (b) Determination of the Amount of ATP
 to Use in the Top or Pulse Section
 of the Column 120
 (ii) Conclusion ... 128
IX REFERENCES .. 129
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table I</td>
<td>Reactions of Oxidative Phosphorylation for which F_1 is Required</td>
<td>2</td>
</tr>
<tr>
<td>Table II</td>
<td>The Coupled Enzyme Assay System</td>
<td>22</td>
</tr>
<tr>
<td>Table III</td>
<td>The Binding of ATP in the Column to F_1</td>
<td>48</td>
</tr>
<tr>
<td>Table IV</td>
<td>The Binding of ATP in the Column to F_1 and the Release of P_i from F_1</td>
<td>49</td>
</tr>
<tr>
<td>Table V</td>
<td>The Binding of Chase ATP in the Column to F_1</td>
<td>56</td>
</tr>
<tr>
<td>Table VI</td>
<td>The Binding of Chase AMPPNP in the Column to F_1</td>
<td>57</td>
</tr>
<tr>
<td>Table IIA</td>
<td>The Effect of Different Lengths of Buffer-Equilibrated Gels on the Removal of Label from the Reaction Mixtures</td>
<td>111</td>
</tr>
<tr>
<td>Table IIIA</td>
<td>The Effect of Total Length of the Column on the Removal of Label from the Reaction Mixtures</td>
<td>114</td>
</tr>
<tr>
<td>Table IIIB</td>
<td>The Effect of ATP on the Release of P_i from F_1 when Different Amounts of Protein were used in the Reaction Mixture</td>
<td>117</td>
</tr>
</tbody>
</table>
Table IVA The Effect of Chase ATP on the Release
of Label Bound when F₁ was Passed Through
Pulse Sections with Different
Concentrations of ATP 125
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>The effects of ATP, ADP, and AMPPNP on the release of bound P_i from F_1</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2</td>
<td>The effects of ADP, AMPPNP, and ATP on the release of P_i from F_1</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3</td>
<td>The effect of ATP on the release of P_i from F_1</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4</td>
<td>The effect of ATP on the release of P_i from F_1</td>
<td>35</td>
</tr>
<tr>
<td>Figure 5</td>
<td>The effect of ADP on the release of P_i from F_1</td>
<td>36</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Comparison of the effects of ATP, in preincubation and pulse-chase modes, on the release of label from F_1</td>
<td>39</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Comparison of the effects of AMPPNP, in preincubation and pulse-chase modes, on the release of label from F_1</td>
<td>40</td>
</tr>
<tr>
<td>Figure 8</td>
<td>The effects of ADP, ATP, and AMPPNP on the release of label bound as $[\gamma^{32P}]ATP$ from F_1</td>
<td>42</td>
</tr>
</tbody>
</table>
Figure 9 The effects of ATP on the release of label bound as $[\gamma\text{-}^{32}\text{P}]$ATP and $[2,8\text{-}^{3}\text{H}]$ATP from F_1 .. 43

Figure 10 The effect of AMPPNP on the release of label bound as $[^3\text{H}]$AMPPNP from F_1 45

Figure 11 The binding of ATP by F_1 from the 1.0 cm middle section of the column (preincubation mode) 47

Figure 12 The effect of P_i on the binding of ATP by F_1 .. 51

Figure 13 The release of label bound as $[\gamma\text{-}^{32}\text{P}]$ATP and the binding of label as $[^3\text{H}]$ATP 52

Figure 14 The release of label bound as $[\gamma\text{-}^{32}\text{P}]$ATP and the binding of label as $[^3\text{H}]$AMPPNP .. 53

Figure 15 The binding of ATP and AMPPNP from the chase gels in pulse-chase experiments ... 55

Figure 16 The effect of ATP on the release of bound P_i from F_1 using 1.0 cm and 2.0 cm ATP-containing middle sections in the columns 60
Figure 17 The effect of ATP on the release of bound
Pi from F1 using various lengths of ATP-
containing middle sections in the columns 61

Figure 18 The effect of ATP on the release of bound
Pi from F1 using a 5.0 cm ATP-containing
section in the column 62

Figure 19 The effect of preincubation of F1 with
NBD-chloride before its application to a
pulse-chase column 63

Figure 20 The effect of preincubation of F1 with
ATP before its application to a pulse-
chase column 64

Figure 21 The effect of preincubation of F1 with
ADP before its application to a column .. 65

Figure 22 The effect of preincubation of F1 with
EDTA before its application to the column 66

Figure 23 The effect of ATP on the release of Pi
from F1, when the F1•Pi complex was
given a pulse of ADP 67
Figure 24 A semilog plot showing the release of Pi from F1 with time 70
Figure 25 The effect of nucleotides on the release of Pi bound to F1 71
Figure 26 Pi release from F1 on the binding of ATP ... 74
Figure 27 Pi release from F1 on exposure to low AMPPNP concentrations 76
Figure 28 Pi release from F1 on exposure to high ATP concentrations 78
Figure 29 Pi release from F1 on exposure to high AMPPNP concentrations 81
Figure 30 Pi and ADP release from F1 on the binding of chase-ATP 85
Figure 31 Pi and ADP release from F1 on the binding of chase-AMPPNP 87
Figure 32 The binding of pulse-AMPPNP and chase-AMPPNP to F1 94
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Outline of the modified Sephadex centrifuge column technique</td>
<td>103</td>
</tr>
<tr>
<td>2A</td>
<td>The effect of ATP on the release of bound Pi from F1</td>
<td>105</td>
</tr>
<tr>
<td>3A</td>
<td>The effect of ATP on the release of bound Pi from F1</td>
<td>106</td>
</tr>
<tr>
<td>4A</td>
<td>The effect of ATP on the release of bound Pi from F1</td>
<td>107</td>
</tr>
<tr>
<td>5A</td>
<td>The effect of different lengths of buffer-equilibrated gels on the removal of label from the reaction mixtures</td>
<td>110</td>
</tr>
<tr>
<td>6A</td>
<td>The effect of different lengths of bottom gels on the removal of label from the reaction mixtures</td>
<td>113</td>
</tr>
<tr>
<td>7A</td>
<td>The arrangement of the gels in the modified Sephadex centrifuge column technique for pulse-chase experiments</td>
<td>121</td>
</tr>
</tbody>
</table>
Figure 8A The effect of chase ATP on the release of label bound when F1 was passed through a 10 µM ATP pulse section 122

Figure 9A The effect of chase ATP on the release of label bound when F1 was passed through a 10 µM ATP pulse section 124

Figure 10A The effect of chase ATP on the release of label bound when F1 was passed through pulse sections with different concentrations of ATP 126
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosine 5'-diphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine 5'-triphosphate</td>
</tr>
<tr>
<td>AMPPNP</td>
<td>5'-Adenylyl-β,γ-imidodiphosphate</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine 5'-triphosphate</td>
</tr>
<tr>
<td>ITP</td>
<td>Ionosine 5'-triphosphate</td>
</tr>
<tr>
<td>PK</td>
<td>Pyruvate Kinase</td>
</tr>
<tr>
<td>PEP</td>
<td>Phosphoenol pyruvate</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate Dehydrogenase</td>
</tr>
<tr>
<td>β-NADH</td>
<td>β-Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NBD-Cl</td>
<td>7-chloro-4-nitro-2-oxa-1,3-diazole</td>
</tr>
<tr>
<td>Pi</td>
<td>Inorganic phosphate</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>TNP-ADP</td>
<td>2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-diphosphate</td>
</tr>
<tr>
<td>TNP-ATP</td>
<td>2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate</td>
</tr>
</tbody>
</table>
Introduction

In this research project the dissociation of bound molecules (ATP, ADP, AMPPNP, and Pi) from beef heart mitochondrial adenosine triphosphatase was studied in the presence of other molecules (ATP, ADP, AMPPNP, and Pi). These studies were performed with the modified Sephadex centrifuge column technique described here.

(1) Beef Heart Mitochondrial Adenosine Triphosphatase

Mitochondrial adenosine triphosphatase (ATPase - E.C. 3.6.1.3) can be separated to give two fundamental units: one, a water-soluble unit, displays ATP hydrolytic activity; and the other, a water-insoluble "membrane sector", is without ATP hydrolytic activity, but is able to alter the catalytic properties of the soluble ATPase (for appropriate reviews see Refs. 1 - 18). The catalytically active soluble ATPase is generally referred to as F₁-ATPase, or simply as F₁; whereas the membrane sector of the complex is referred to as F₀, and the intact complex (or membrane-bound form of the enzyme) as ATPase (8) - other names include F₁F₀-ATPase, H⁺-ATPase, ATP synthase, and Complex V (19,20,21). These two fractions were first recognized by Racker and co-workers (22,23) as playing essential roles in the coupling of oxidation to phosphorylation (see also Refs. 19,24). Table I summarizes the reactions (or processes) in which F₁ is known to be involved (7). In the investigations
Reactions of Oxidative phosphorylation for which F₁ is required (7,8).

1. ATP synthesis

2. ATP Hydrolysis

\[\text{ATP} + \text{H}_2\text{O} \rightarrow \text{ADP} + \text{P}_i + \text{H}^+ \]

3. Exchange reactions:

 (a) \(^{32}\text{P} \rightarrow \text{ATP}, \quad \text{ATP} + ^{32}\text{P}_i \rightarrow \text{ATP}(\gamma^{32}\text{P}) + \text{P}_i \)

 (b) \(\text{H}_2^{18}\text{O} \rightarrow \text{P}_i, \quad ^{18}\text{P}_i + \text{H}_2^{18}\text{O} \rightarrow \text{P}_i(18\text{O}) + \text{H}_2\text{O} \)

 (c) \(\text{H}_2^{18}\text{O} \rightarrow \text{ATP}, \quad \text{ATP} + \text{H}_2^{18}\text{O} \rightarrow \text{ATP}(18\text{O}) + \text{H}_2\text{O} \)

4. ATP-dependent reactions of oxidative phosphorylation:

 (a) Reversal of the respiratory chains -

 \(\text{Succinate} + \text{NAD}^+ \rightarrow \text{Fumarate} + \text{NADH} + \text{H}^+ \)

 (b) Ion transport.

(Taken from Ref. 7.)
reported here, only the ATP hydrolytic activity of the enzyme was utilized, and soluble beef heart mitochondrial adenosine triphosphatase, F₁, was used.

Although this enzyme has been intensively studied (there has been an increase in ATPase publications from about 500 per year in the early seventies to over 1500 per year in the early eighties (13)) by many workers from different laboratories, there still remain several deficiencies in our knowledge of F₁ (1-19). What remains most elusive is an understanding of the reaction mechanism of F₁. No doubt some of the current uncertainties concerning the reaction mechanism result from the complexity of the pathways of ATP hydrolysis by F₁ (17,25).

Some of the properties of F₁ that must be considered when studying this cold-labile enzyme, include its specific activity, molecular weight, and structure. In addition, in these particular investigations with F₁ reported here, some knowledge of the tightly bound nucleotides and inorganic phosphate (eg. their number and possible role(s)), was helpful (4,7,10).

The specific activity of F₁ seems to depend on its history, which is influenced by the (i) source of mitochondria and method of preparation, (ii) method of preparation of F₁ from the mitochondria, (iii) method of storage of F₁, and (iv) assay conditions of F₁ (7). In the investigations described here, beef heart mitochondria were prepared by the modified method of Smith
(26); and the F_1 prepared according to the method outlined by Penefsky (27,28). The purified F_1 was stored at 4°C as a suspension in ammonium sulphate (2,29). The F_1-ATPase assay procedure was the regenerating system assay (2,30) coupled to the oxidation of NADH (31) (details are given in the Materials and Methods section).

Different molecular weights (ranging from 310,000 to 400,000), determined by different techniques, have been reported for F_1 from various sources. However, for beef heart mitochondrial F_1, the accepted molecular weight values seem to be 347,000 (determined by equilibrium sedimentation ultracentrifugation (32)) and 360,000 (determined by gel filtration (33)). The structure of this multi-subunit enzyme, F_1, is complex (1,3,5,7,11,18). There are five different recognized subunits ($\alpha, \beta, \gamma, \delta, \text{and } \epsilon$) of F_1, which have been determined and characterized by sodium dodecyl sulphate, SDS, gel electrophoresis, gel filtration, amino acid analysis, and equilibrium sedimentation studies (32,34, 35). All the approaches gave similar values for the molecular weight of each type of subunit (54,000, 50,000, 33,000, 17,500 and 5,700), except the SDS gel electrophoresis studies which gave values higher or lower than those obtained by the other methods. However, the exact stoichiometry of the subunit composition of F_1 is still unclear, despite investigations involving different methods, e.g., SDS gel
electrophoresis (27), calculations using corrected molecular weight (36), aurovertin binding measurement (37), and chemical cross-linking studies (38). The choices for the subunit composition of F₁ were $\alpha_3\beta_3\gamma\delta\epsilon$ and $\alpha_2\beta_2\gamma_2\delta_2\epsilon_2$ (or similar combinations); however, evidence has accumulated in favour of the $\alpha_3\beta_3\gamma\delta\epsilon$ subunit composition (1,3,4,7,8,10,17,21).

This enzyme on isolation contains "tightly bound" adenine nucleotides (ATP and/or ADP) - these are bound non-covalently to F₁, since they are lost on denaturation of F₁ (39). Nucleotides are considered to be "tightly bound" if they are retained by F₁ despite Dowex or charcoal treatment, ammonium sulphate precipitation, or gel filtration with EDTA in a low ionic strength buffer (40). In addition, tightly bound ATP molecules are inaccessible to ATP-utilizing enzymes such as hexokinase or luciferase (41). These nucleotides are released on the denaturation of F₁ by cold (0°C) or acid treatment (e.g. 4% HClO₄). A non-denaturing way of removing the "tightly bound" nucleotides from F₁ is to pass the enzyme through a column of Sephadex G-25, which has been pre-equilibrated with EDTA in the appropriate buffer of high ionic strength (42,43).

The exact number of "tightly bound" adenine nucleotides per mole of F₁ is unknown, the numbers reported vary, e.g., two (0 ATP and 2 ADP/mole F₁ (34)), three (1 ATP and 2 ADP/mole F₁ (40), and 2 ATP and 1 ADP/mole F₁ (33)), and five (3 ATP and 2
ADP/mole F_1 (32)) nucleotides (7,17,41,45,46). Garrett and Penefsky (47) have suggested that five nucleotide binding sites are found on F_1; three of these contain "tightly bound" nucleotides and the other two sites participate in rapidly reversible binding of added adenine nucleotides. Cross and Nalin (48) have found six nucleotide binding sites on F_1, three sites participate in non-exchangeable binding and three sites in exchangeable binding. This variation in amounts/numbers of "tightly bound" nucleotide as well as total bound nucleotide per mole of F_1 from different laboratories is probably dependent on the history of the enzyme (7).

The sites of the tight binding of adenine nucleotides on F_1 are also uncertain (41,45), though most likely the α and β subunits are involved. Studies with photoaffinity labels, e.g., 8-azido-ATP and 8-azido-ADP, have shown that these subunits are involved in nucleotide binding (49-52). The role of the subunits has been studied with antibodies, chemical modification, partial proteolysis, reconstitution, binding, and photoaffinity labelling experiments. The noncatalytic nucleotide binding sites are thought to be on the α subunits (48,53-55), and the catalytic sites on the β subunits (45,56-59). For example, Kozlov and Milgrom provided strong evidence when they showed that the covalent binding of the dialdehyde derivative of ADP (oxADP, formed as a result of treatment of ADP with periodate)
to the α subunit of F₁ occurred without loss in the hydrolytic activity of F₁ (54). In addition, Dunn and Futai, in their studies with isolated subunits of E. coli coupling factor ATPase, found by equilibrium dialysis studies that the isolated α subunit (not isolated β, γ, δ, or ε) bound [2,8-³H]ATP or [2,8-³H]ADP (approximately 0.9 mol nucleotide/mol α) (53). Their results suggested that each α subunit contains a single tight nucleotide binding site. It must be noted that Kagawa and co-workers found in their circular dichroism studies that both isolated α and β subunits of the thermophilic bacterium PS3 bound ADP and ATP (60). However, it was found by Harris et al. in their studies with beef heart mitochondrial ATPase that only 15-30% of the bound nucleotide had exchanged with labelled medium nucleotide ([³H]ATP or [³H]ADP), even after 24 hours in the presence of Mg²⁺ (39,41); thus the possibility of the active involvement of the tight nucleotide binding sites in the catalytic mechanism of F₁ is restricted (4,10,24,39,41). The nucleotides bound at the noncatalytic sites of the α subunits may be serving a structural (the nucleotide ATP is required for the reconstitution of F₁ from the three major subunits α, β, and γ (53)) or regulatory role (41,48,55). Ohta et al. thought that the binding of ADP to the β subunits of TF₁ (thermostable F₁ - soluble ATPase from thermophilic bacterium PS3) was regulated by the binding of ADP to the α subunits of TF₁, possibly through allosteric interactions (60).
The nucleotides bound at the β subunits are thought to exchange rapidly with the medium nucleotides, thereby reflecting the process of the substrate binding at the catalytic sites (48, 60). Cross and Nalin in their studies with 5'-adenylyl-β,γ-imidodiphosphate (AMPPNP, a non-hydrolysable analog of ATP in which the oxygen bridge between the β and γ-phosphorus atoms has been replaced by a NH group) were able to demonstrate that three exchangeable nucleotide binding sites (probably β-subunits) are present on beef heart mitochondrial F₁, and that these sites are different from three other noncatalytic sites (probably α-subunits) (48). Grumbmeyer and Penefsky used the ribose-modified nucleotides 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP) and TNP-ADP in their studies and showed the presence of two high affinity nucleotide binding sites on F₁ (61,62).

The role of the nucleotide binding sites in the mechanism of mitochondrial ATPase is an area of active research (see also Refs. 63-68). The multiplicity of binding sites raises some very interesting questions, e.g. - "How many of the nucleotide binding sites are involved in the catalytic activity of the enzyme?" (7). Perhaps the most direct method of determining whether or not the "tight" nucleotide binding sites on F₁ are involved in the ATP hydrolytic reaction is to determine the turnover rate of nucleotides bound to these sites (69,70). However, as pointed out by Boyer and co-workers, their alterna-
tive non-destructive approaches (filter binding, EDTA quenching in rapid mixing experiments, and hexokinase-accessibility procedure) have their own limitations (69,70). It is undetermined whether or not most of the bound nucleotides are catalytic intermediates. The role of the tightly bound nucleotides in the mechanism of the F₁-catalysed hydrolysis of ATP is also unclear, as pointed out by Tiege et. al. in their studies using fluorescence techniques and isotope binding analyses with ADP and ADP analogues (65). Penefsky (7) and others (54,59,63-68,71,72) believe that these sites, in some way, do participate in the functioning of the enzyme.

Inorganic phosphate, Pᵢ, is one of the products when F₁ hydrolyses ATP. F₁ also has at least one binding site for Pᵢ (73). Kasahara and Penefsky (74,75) have demonstrated, under certain conditions (Mn²⁺ and aurovertin [an antibiotic used as a fluorescent probe of conformational change]), the presence of two types of Pᵢ binding - a high affinity saturable binding, and a second low affinity nonsaturable binding. Their studies on the binding of Pᵢ by F₁ showed a pH dependence and competitive inhibition by the Pᵢ analog, thiophosphoric acid; these findings led them to suggest that the monoanion is the charged form of Pᵢ which is bound by F₁. The binding of Pᵢ by F₁ was shown to be influenced by the stimulators (e.g. divalent metal ions [Mg²⁺, Co²⁺, Ca²⁺] and oxyanions [chromate, bicarbonate], and inhibitors (e.g. inhibitor protein, efrapeptin) of
ATPase activity and of oxidative phosphorylation (73,75). They observed that the ATP analog AMPPNP inhibited Pi binding even in the presence of aurovertin, and suggested it was likely that the Pi was binding at a site occupied by the γ-phosphate group of ATP (74). Thus there is a strong possibility that the Pi binding site can play a major role in oxidative phosphorylation.

Lauquin et. al. in their studies used the new photoaffinity derivative of inorganic phosphate, α4-azido-2-nitrophenyl phosphate (ANPP), to determine the Pi binding site(s) on isolated F1 and inside-out particles from beef heart mitochondria (76). They found that Pi was most probably binding to the β-subunit of F1-ATPase, and the Pi carrier protein. This work (76) therefore lends support to the proposals made by Kasahara and Penefsky (73-75).

As seen from the several reviews, the mechanism of the ATPase-catalysed reaction is still not well understood (1-18, 77-83). The main energy-requiring steps in oxidative phosphorylation and photophosphorylation (10,24) are: (i) the release of ATP from ATPase (84-87), and (ii) the binding of ADP and Pi to ATPase (88-90); evidence for these conclusions were first obtained from isotope exchange studies. In addition, there seems to be cooperative interaction between the subunits of ATPase. For example, Adolfsen and Moudrianakis showed that the rate of dissociation of bound ADP from 13S coupling factor of Alcaligenes faecalis was increased on the addition of nucleotide
to the medium (92). They proposed that the binding of nucleotide to one site of the 13S coupling factor caused a conformational change which facilitated the dissociation of bound nucleotide at the other site. These workers, however, did not show whether or not catalytic sites were involved (10,92,93).

The alternating catalytic site model of Boyer and co-workers (24,93-96) was proposed on the basis of isotope exchange experiments. This model has now evolved into what is called the "binding change mechanism" (10,13,97-99) which incorporates the cooperative interactions between the subunits and the energy-dependent binding changes (binding of ADP and P_i, and release of ATP in net synthesis, and vice versa in net hydrolysis). In this model, during net oxidative phosphorylation, ATP is produced at one site on the ATP synthase where it is transitorily tightly bound, and is only released when ADP and P_i bind at a second site, and the membrane ATPase complex is energised. Similarly, under conditions of net hydrolysis, ATP binding at one site is accompanied by the release of the transitorily tightly bound ADP and P_i (hydrolysed ATP) at a second site. This binding change mechanism is attractive, especially since it can accommodate a wide range of experimental observations (24). Evidence in support of this mechanism has been forthcoming from different sources (10,61,62,69,70,97-104). For example, strong
evidence for cooperativity between the catalytic sites of F₁ was presented by Grubmeyer and Penefsky (61,62) in their investigation with the ribose-modified nucleotides 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate, TNP-ATP, and TNP-ADP. They found that F₁ (with two binding sites for TNP-adenine nucleotides) bound both TNP-ATP and TNP-ADP, with the TNP-[γ-³²P]ATP being hydrolysed by F₁. They observed that on the addition of excess non-radioactive TNP-ATP (sufficient to fill the second catalytic site) to the F₁-reaction mixture, that the rate of hydrolysis of TNP-[γ-³²P]ATP was accelerated 15-20 fold. Boyer and co-workers have incorporated the new data (97,99-101) in their model to produce a modified version which involves the participation of three alternating sites in the binding change mechanism of ATP synthase.

Cross et al. have produced a modified version of the binding change mechanism of Boyer and co-workers, which recognizes catalytic cooperativity and involves three interacting catalytic subunits of F₁ (10,98). (The possibility of the involvement of three interacting sites in the catalytic mechanism of F₁ was first recognised by Kayalar et al. (93)). One major advantage of this model is that it allows events (i.e. binding changes) to occur concurrently on the different, but interacting, catalytic subunits of ATPase.

This area of research is very rich with speculations and
proposals for the mechanisms of ATP synthesis and/or hydrolysis (see e.g. Refs. 4, 7, 10, 13, 18, 24, 41, 45, 59, 68, 78, 105-107).

From the reviews of the various proposed mechanism of ATPase, it was seen that studies of the behaviour of enzyme-bound species can lead to the determination of the catalytic intermediate(s), and thus contribute to the resolution of the catalytic mechanism of the enzyme. Currently, there are a variety of techniques (e.g. kinetic, equilibrium dialysis, equilibrium gel-filtration, filter-binding assays, spectroscopic, Sephadex centrifuge column, stopped flow, quenched flow, and isotope exchange) used in the investigation of the enzyme-ligand interactions (108). Some of these techniques have been used in the study of F₁, but each approach has its own advantages and disadvantages and/or limitations. For example, quenched flow is destructive, equilibrium dialysis is slow, and filter binding assays are not always efficient and reproducible. Hence it was considered desirable to develop a non-destructive, simple, rapid, and convenient technique for the measurement of the enzyme-bound species during catalysis. Such a method would not only be specific for studies with F₁, but would also be suitable (with the appropriate modifications) for studies with other enzymes, whose products dissociate slowly unless substrates or other ligands which facilitate dissociation are present.
The approach described herein is limited to enzymes which
(i) find the column matrix, Sephadex G-50, chemically inert;
(ii) have no significant interaction with the column matrix; and
(iii) must not be able to enter the gel, i.e. the molecular
weight (and shape) of the enzymes must be greater than the
exclusion limit of the matrix. The column matrix must be stable
under the reaction conditions (temperature, pH, centrifugal
force), in addition to being chemically inert to the buffer and
substrate and/or products (or analogs of these).

(ii) Modified Sephadex Centrifuge Column Technique

Basically, the methodology involves column centrifugation,
which was originally applied to the measurement of ligand bind-
ing by beef heart mitochondrial F1 (109). The Sephadex centri-
fuge column consists of a 1.0 mL tuberculin syringe fitted with
a porous polyethylene disc. The column packing is Sephadex G-50
equilibrated with the appropriate buffer, and the filled column
is then centrifuged (1050 x g for 2 minutes). The enzyme sample
is then applied to the column before the second centrifugation
(1050 x g for 2 minutes). The centrifugate is analysed for the
bound ligand, activity and protein concentration of the enzyme.

The Sephadex centrifuge column procedure in essentially its
original form has been used in several studies (48,73-75,96,104,
110). Cross and Nalin (48) introduced the use of an extension
tube at the top of the column, which allowed (i) a number of
samples to be investigated simultaneously, and (ii) other addi-
tions to be made to the samples just prior to centrifugation. Their second modification involved the addition of bovine serum albumin (BSA) to samples with very small amounts of F₁ (10 to 30 μg/mL). This facilitated the greater recovery of F₁ from the centrifuge columns when the concentration of F₁ was lower than 0.3 mg/mL. Cardon wrote an evaluation of the Sephadex centrifuge column technique in the Appendix of his Ph.D. thesis (111), in which he pointed out the basic assumptions that he made in the construction of his model to determine the necessary rate constants. So far no major evaluation, critique, or theoretical assessment of this technique has been published.

The Sephadex centrifuge column technique was modified to demonstrate the release of enzyme-bound species, e.g. Pᵢ and ADP, in the presence of nucleotides (ATP, ADP, and AMPPNP). It is known that F₁-ATPase contains at least one binding site for Pᵢ (73-75,109), however, it is undetermined whether or not the bound Pᵢ is a catalytic intermediate, or whether the Pᵢ is bound at a catalytic site. In the absence of nucleotide in the medium, the bound Pᵢ dissociates slowly from F₁; whereas, on the addition of ATP or ADP to the medium, the dissociation of Pᵢ from F₁ is accelerated to the point where the release is too rapid to observe using conventional techniques (96). The approach to this problem using the Sephadex centrifuge column technique, is outlined below:
(i) A column with three sections is prepared, the middle layer contains nucleotide, e.g. ATP. (ii) The sample of F₁ is preincubated with $[^{32}\text{P}]\text{P}_\text{i}$ so that radiolabelled \text{P}_\text{i} becomes bound to F₁ as indicated in the following equation:

$$F₁ \cdot \text{P}_\text{i} + [^{32}\text{P}]\text{P}_\text{i} \rightarrow F₁ \cdot ^{32}\text{P}_\text{i} + \text{P}_\text{i}$$

(iii) The $[^{32}\text{P}]\text{P}_\text{i}$ labelled F₁ is applied to the column, which in turn is placed in the centrifuge tube, and centrifuged at 1050 x g for 2 minutes; (iv) The column centrifugate is analysed as before.

In the first (uppermost) layer of the column, the loosely held species (ATP, ADP, and \text{P}_\text{i}) are removed. In the second layer (middle), the substrate, e.g. ATP becomes bound to the F₁ with or without radiolabelled \text{P}_\text{i}, and hydrolysis of ATP occurs. Lastly, in the third (bottom) layer of the column, the loosely-bound nucleotide and \text{P}_\text{i} released from F₁ are removed. Any tightly bound molecule (nucleotide and/or \text{P}_\text{i}) can be found in the centrifugate.

If labelled \text{P}_\text{i} is found in the F₁-centrifugate, it means that the \text{P}_\text{i} remains on the F₁ as a tightly bound molecule; and therefore most likely does not participate as a catalytic intermediate, nor occupies a catalytic site. On the other hand, if labelled \text{P}_\text{i} is not found in the F₁-centrifugate, it implies
that on the binding of nucleotide, the P_i is released from F_1, and thus most probably participates as a catalytic intermediate or occupies a catalytic site. If the dissociation of the bound P_i can be shown to occur within one enzyme turnover of ATP hydrolysis, then the dissociation of the bound P_i can be judged capable of being part of the catalytic mechanism of ATP hydrolysis.

In addition to the preincubation experiments outlined above, the Sephadex centrifuge column technique was used for performing pulse-chase experiments. The approach was very similar to that described above except that the first section contained the pulse molecules, and the third section the chase molecules.

Thus two approaches, preincubation and pulse-chase modes, were used to investigate the effect of the nucleotides ATP, ADP, and AMPPNP on the release of P_i, ADP, ATP, and AMPPNP from soluble beef heart mitochondrial adenosine triphosphatase.
Experimental Procedures

Materials

All reagents used in these investigations were reagent grade, ACS, or enzyme grade quality - whichever was applicable. The common laboratory reagents were obtained from the usual sources, except if otherwise mentioned. The following chemicals and enzymes were obtained from Sigma Chemical Co.: adenosine 5'-triphosphate (disodium salt, Grade IX); adenosine 5'-diphosphate (disodium salt, Grade IX); adenylyl imidodiphosphate (tetralithium salt); ammonium sulphate; 1,4-bis-2-(5-phenyloxazoyl)-benzene (POPOP); bovine serum albumin; 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-C1); DEAE-Sephadex G-50-120; 2,5-diphenyloxazole (PPO); β-nicotinamide adenine dinucleotide, reduced form (Grade III, from yeast); phosphoenol pyruvate; Sephadex G-50-80 (fine); sucrose; tris (hydroxymethyl) aminomethane; Triton X-114; hexokinase (Type C-300, from yeast); L-lactate dehydrogenase (Type XI, from rabbit muscle); and pyruvate kinase (Type III, from rabbit muscle). DEAE-Sephadex G-50-120 (fine) and Sephadex G-50-80 (fine) were also obtained from Pharmacia. The 1.0 mL tuberculin syringes were from Mandel Scientific Co. The polyethyleneimine thin layer chromatography plates were from E. Merck Co.

The radiochemicals: [2,8-3H] adenosine 5'-triphosphate (ammonium salt); and adenosine 5'-[γ-32P] triphosphate (triethyl
ammonium salt) were from Amersham Corp. [2,8-\(^3\)H] adenosine 5'-diphosphate (trisodium salt) was from New England Nuclear Co. [2,8-\(^3\)H] adenylyl 5'-imidodiphosphate was obtained from ICN, Chemical and Radioisotope Division. Phosphorus-32 (as orthophosphate in dilute HCl solution, pH 2.3) was purchased from both Amersham Corp. and New England Nuclear Co.
Methods

Preparation of Soluble Beef Heart Mitochondrial Adenosine Triphosphatase, F₁-ATPase

Fresh beef hearts were obtained from a local slaughterhouse in Surrey, British Columbia, Canada. The beef heart mitochondria were isolated by the method outlined by Smith (26). Both light and heavy fractions of beef heart mitochondria were used in the preparation of F₁-ATPase as described by Knöweles and Penefsky (27,28).

From the ammonium sulphate suspension of F₁, the enzyme was prepared for studies in a procedure similar to that described by Penefsky (73). An aliquot of the ammonium sulphate suspension of F₁ was placed in a capped 2-mL polyethylene microcentrifuge tube, which in turn was placed in a larger polyethylene centrifuge tube. The large centrifuge tube (in its adaptor tube) was centrifuged in a SS-34 rotor for 10 minutes at 12,000 rpm at 4°C. The supernatant was decanted, and the inner walls of the 2-mL polyethylene microcentrifuge tube carefully dried with filter paper. The protein precipitate was dissolved by adding a volume of 50 mM Tris-acetate, pH 7.5, buffer at 30°C. The F₁ solution was desalted by centrifugation of 100-125 µL aliquots through Sephadex G-50-80 equilibrated with 50 mM Tris-acetate, pH 7.5, buffer at 30°C, using the Sephadex centrifuge
column technique of Penefsky (73). The desalted F₁ centrifugate was then ready for use with the appropriate reaction mixture(s).

Assay for ATPase Activity

The rates of ATP hydrolysis by F₁-ATPase were monitored using the coupled assay (31). The reagents and their respective concentrations and volumes used are shown in Table II. The first six reagents were added in the quantities indicated to a 1-mL cuvette. The reaction mixture in the cuvette was allowed to stand in the cuvette holder of a spectrophotometer (Varian Technotron Model 635) at 340 nm for about 10 minutes at 30°C. The spectrophotometer reading was adjusted to read zero absorbance at 340 nm. The required amount of β-NADH was added to the cuvette, and a stable baseline at 340 nm established. A measured volume (X μL) of the F₁ solution was then added to the cuvette, and the decrease in absorbance monitored spectrophotometrically via a chart recorder. The rate of hydrolysis of ATP was calculated using an extinction coefficient of 6.22 x 10³ litre mole⁻¹.cm⁻¹ for NADH (0.1 μ mole of NADH in 1.0 mL of solution gives A₃₄₀ of 0.622). In these F₁ preparations, the ATPase activity was usually between 80-100 μmole.min⁻¹.mg⁻¹ protein.

Determination of Protein Concentration

All protein concentration determinations were according to the Lowry et al. procedure (112). The protein bovine serum
Table II
The Coupled Enzyme Assay System

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume, µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 0.1 M MgCl₂</td>
<td>50</td>
</tr>
<tr>
<td>2. 0.1 M ATP</td>
<td>37</td>
</tr>
<tr>
<td>3. 0.1 M PEP</td>
<td>37</td>
</tr>
<tr>
<td>4. (5 mg/mL) LDH</td>
<td>10</td>
</tr>
<tr>
<td>5. (5 mg/mL) PK</td>
<td>10</td>
</tr>
<tr>
<td>6. 50 mM CH₃COOK</td>
<td></td>
</tr>
<tr>
<td>50 mM Tris-Cl, pH 8.0</td>
<td>806 - x</td>
</tr>
<tr>
<td>7. 8.75 mM NADH</td>
<td>50</td>
</tr>
<tr>
<td>8. F₁-ATPase solution (mg/mL)</td>
<td></td>
</tr>
</tbody>
</table>

NADH, E₃₄₀ = 6.22 x 10³ litre mole⁻¹.cm⁻¹ or (M⁻¹.cm⁻¹)
i.e. 0.1 µmole.min⁻¹ of NADH in 1.0 mL of solution gives
ΔA₃₄₀ of 0.622/min.
albumin (BSA) was used as the standard in all assays. The protein concentration of the BSA standards was determined by measuring the absorbances at 280 nm; these absorbance values \((A_{280})\) together with an extinction coefficient \((E_{280})\) of 0.677 mL.mg\(^{-1}\).cm\(^{-1}\) were then used in the Beer-Lambert law calculations. [Concentration of Protein = Absorbance at 280 nm/ (Extinction Coefficient at 280 nm x path length)].

Molecular Weight

A molecular weight of 347,000 for F\(_1\) was used in all calculations (73).

Purity of the F\(_1\) Preparations

The purity of the isolated native F\(_1\) preparations was tested with the use of polyacrylamide gel disc electrophoresis techniques as described by Davis (113), modified as mentioned by Knowles and Penesky (27). One major enzyme band was seen which had a relative mobility of 0.3 with respect to the dye front. With 25 \(\mu\)g of protein applied per gel, a minor band with a relative mobility of 0.7 was seen. These observations were similar to those of Knowles and Penefsky (27). Repurification of the enzyme on a DEAE-Sephadex A-50 column (28) did not result in the disappearance of the trace band.

Purity of the Radionucleotides

The purity of the radionucleotides ([\(\gamma^3\)P]ATP, [2,8-\(^3\)H]-ATP, and [2,8-\(^3\)H]ADP) was tested on polyethyleneimine (PEI)
plates using the procedure of Randerath and Randerath (114). A sample of the labelled nucleotide was added to a mixture of the nucleotides (AMP, ADP, and ATP), which was spotted on the PEI plate beside separated spots of AMP, ADP, and ATP (1 μL of 2.5 mM each, pH 7.0). The plate was placed in a tank with 1.0 M LiCl and developed for 20-25 minutes. The dried plate was placed under UV light and the nucleotide spots encircled. The spots were cut out and placed in scintillation cocktail for counting. The percentage purity in each case was found to be about 90% (\textit{Purity} = [cpm of label recovered/cpm of label applied] \times 100).

Monitoring ATP and/or ADP Concentrations

The concentrations of ATP and ADP (10^{-6} M) were monitored using the Hexokinase Assay (31).

Measurement of Radioactivity

The radioactivity of the samples was determined by adding an aliquot of the sample to 10 mL of water (Cerenkov counting), or to 10 mL of Triton/Toluene scintillant. The scintillant was prepared by adding 15 g PPO and 1 g of POPOP to 1.875 L xylene; to that mixture was then added 1.25 L Triton X-114 and 1.875 L xylene to bring the final volume to 5 L. Each radioactive preparation (Cerenkov counting or liquid scintillation counting sample) was counted for 5 minutes using a LKB Wallac 17 liquid scintillation counter.
Preparation of Sephadex Centrifuge Columns

The 1-mL Sephadex centrifuge columns used for (i) desalting F_1, and (ii) preparation of the gels for the longer and/or reassembled columns, were prepared as outlined by Penefsky (28, 73). The columns used for desalting F_1 were packed with Sephadex G-50-80 equilibrated with 50 mM Tris-acetate, pH 7.5. The columns used in the investigations with F_1 were packed with Sephadex G-50-80 equilibrated with a buffer containing 90 mM Tris-acetate (pH 7.5), 1.6 mM MgSO$_4$, and 47 μM Pi. Nucleotide-equilibrated gels had the particular nucleotide added to the buffer to give the indicated concentration. All centrifugations using the Sephadex centrifuge column technique were performed with a table top clinical I.E.C. centrifuge (with a swinging bucket rotor, model 221) at 1050 x g (Setting No. 5) for 2 minutes.

Making a Longer Column Barrel

To make a longer column barrel, two 1-mL tuberculin syringes were cut (one at the 1.0 mL mark and the other at the 0.55 mL mark), and joined by means of a piece of tygon tubing. The length of the column barrel was 10 cm, with the length of the whole assembly (from head to outlet tip) being about 11 cm.
Modified Sephadex Centrifuge Column Technique

(a) Preincubation Mode

Basically the technique was the same as described in Appendix I (Fig. 1A), with the optimum conditions mentioned below being used.

Three 1-mL Sephadex centrifuge columns were prepared using the conventional Sephadex centrifuge column technique (28,73). Two of the columns were packed with Sephadex G-50-80 equilibrated with a buffer containing: 90 mM Tris-acetate, pH 7.5, 1.6 mM MgSO₄, and 47 μM P_i. The third column was packed with Sephadex G-50-80 equilibrated with a buffer consisting of: 90 mM Tris-acetate, pH 7.5, 1.6 mM MgSO₄, 47 μM P_i, and varying concentrations of nucleotide. In both cases, 5 g of Sephadex G-50-80 were added to 100 mL buffer (or reduced amounts in the same proportions) and allowed to stand overnight at 4°C.

Care was taken in pouring the gels (equilibrated to room temperature), since trapped air bubbles usually resulted in broken gels. In addition, the columns were not allowed to run dry until the column barrels were filled with gel.

The columns were centrifuged at 1050 x g (Setting No. 5, I.E.C., Rotor 221) for 2 minutes. The gels were removed from the column barrels by gently tilting the columns so that the gels slipped out. The first two gels were cut to give lengths of 2.5 and 4 cm, respectively. The third gel (i.e. with nucleo-
tide) was cut to give a 1-cm portion. The measured lengths of gels were reassembled in the lengthened column barrel (prepared as described above). The 4-cm gel was placed in the column barrel (on top of a porous polyethylene frit); the 1-cm nucleotide-containing gel was placed on top of the 4-cm gel; and lastly the 2.5-cm gel was placed on the nucleotide-containing gel. The bottom portion of a cut 1-mL pipette tip (with about 200 µL capacity) was inserted in the column. The tip of the pipette tip was not allowed to touch the top gel nor the inside of the column barrel. The entire assembly was inserted in a 15-mL conical centrifuge tube, which in turn was placed in the swinging bucket rotor (Model 221) of the table top clinical centrifuge (I.E.C.). At 150-µL aliquot of the reaction mixture which was preincubated for at least 30 minutes at 22-25°C was placed in the cut pipette tip. The reaction mixture consisted of: 90 mM Tris-acetate, pH 7.5, 1.6 mM MgSO₄, 47 µM Pi with [³²P]Pi, and F₁. The control experiment was performed without F₁ in the reaction mixture. Whenever F₁ was used, the concentration was approximately 2.8 µM, or 0.96 mg protein/mL. However, in each experiment the specific activity of the [³²P]Pi and the concentration of F₁ used are indicated. The loaded reassembled column was centrifuged at 1050 x g for 3 minutes. A sample (20 or 25 µL) of the centrifugate was used to determine the amount of [³²P]Pi which passed through the
column. Other samples of the centrifugate were used to determine the protein concentration and/or activity of the F₁ in the centrifugate. Each experiment was performed in triplicate for each nucleotide concentration.

The amount of Pᵢ in a fixed volume of centrifugate was calculated using the amount of radioactivity found in that volume of the centrifugate and the specific activity of the [³²P]Pᵢ label in the reaction mixture applied to the column. The amount of F₁ in an equivalent volume of centrifugate was calculated using the protein concentration of F₁ in the centrifugate found by the Lowry assays. The value of the amount of Pᵢ divided by the value of the amount of F₁ gives the ratio of mole Pᵢ/mole F₁. On the x-axis are shown the nucleotide concentrations used in the equilibration buffers of the middle gels. Each value plotted is the average obtained from the triplicate experiments, and the lowest and highest experimental results give values which fell within the enclosed circle, square, or triangle.

(b) **Pulse-Chase Mode**

The experimental conditions and procedure were basically the same as described for the preincubation mode of the modified Sephadex centrifuge column technique. The lengths of the four sections (from top to bottom) were 1, 3, 1 and 2.5 cm, respective-
ly. These were arranged as shown in Appendix II, Fig. 7A. In some cases, the third and fourth sections were combined to give one longer chase section (3.5 cm). The radiolabelled nucleotide (e.g. \([\gamma-^{32}P]ATP\)) was added to the nucleotide-containing buffer used to prepare the pulse gel (N.B. No \([^{32}P]P_i\) was added to the reaction mixture applied to the column). The pulse gel equilibration buffer contained: 90 mM Tris-acetate, pH 7.5, 1.6 mM MgSO₄, 47 µM Pi, and 1 µM nucleotide; whereas the chase gel equilibration buffers had the various concentrations of nucleotide indicated. The experiments were performed in triplicate for each different chase nucleotide concentration.
Results

Release of P_i from F_1: Preincubation Method

The effects of ATP, ADP, and AMPPNP on the release of P_i bound to F_1 were studied using the preincubation mode of the modified Sephadex centrifuge column technique described under Methods and Materials and in Appendix I. In these studies, the concentrations of each adenine nucleotide in the equilibration buffers of the middle sections of the columns were as indicated and, unless otherwise stated, the length of the nucleotide containing middle gel was always 1.0 cm. Figure 1 shows the effects of the three adenine nucleotides ATP, ADP, and AMPPNP on the release of P_i from F_1. It is evident from Figure 1 that the sensitivity of the P_i release reaction to the concentration of nucleotide in the middle section of the column is different for each of the three nucleotides, and that P_i release shows a biphasic response to ATP and AMPPNP in the middle section. In these biphasic responses, approximately 70% of the total P_i bound is released in a relatively highly sensitive phase (steep slope), and the remaining P_i is released in a less sensitive phase (shallow slope).

Figure 2 shows that at relatively low concentrations (i.e., less than 1.0 μM nucleotide), the effects of ADP and AMPPNP on the release of bound P_i from F_1 are essentially the same. This
The effects of ATP, ADP, and AMPPNP on the release of bound Pi from F₁. The modified Sephadex centrifuge column technique was used as described in Methods. For the ADP plot (□): the concentration of F₁ in the reaction mixture was 0.64 mg protein·mL⁻¹ or 1.85 μM, the specific activity of the [³²P]Pi was 1.9 x 10⁵ cpm/nmole, and the 100% Pi bound corresponded to a ratio of 0.22 mole Pi/mole of F₁. For the AMPPNP plot (△): the concentration of F₁ was 0.75 mg protein·mL⁻¹ or 2.2 μM, the specific activity of the [³²P]Pi was 1.5 x 10⁶ cpm/nmole, and the 100% Pi bound corresponded to a ratio of 0.26 mole Pi/mole F₁. For the ATP (○): the concentration of F₁ was 0.8 mg protein·mL⁻¹ or 2.32 μM, the specific activity of the [³²P]Pi was 1.9 x 10⁶ cpm/nmole, and the 100% Pi bound corresponded to a ratio of 0.28 mole Pi/mole F₁. (□ ADP, △ AMPPNP, and ○ ATP).
The effects of ADP, AMPPNP, and ATP on the release of Pi from F₁. The modified Sephadex centrifuge column technique was used as described in Methods. For the ADP plot (□): the concentration of F₁ was 1.1 mg protein·mL⁻¹ or 3.2 μM, the specific activity of the [³²P]Pi was 1.8 × 10⁶ cpm/nmole, and the 100% Pi bound corresponded to a ratio of 0.27 mole Pi/mole F₁.

For the AMPPNP plot (△): the concentration of F₁ was 0.76 mg protein·mL⁻¹ or 2.23 μM, the specific activity of the [³²P]Pi was 1.6 × 10⁵ cpm/nmole, and the 100% Pi bound corresponded to a ratio of 0.29 mole Pi/mole F₁. For the ATP plot (○): the concentration of F₁ was 0.8 mg protein·mL⁻¹ or 2.3 μM, the specific activity of the [³²P]Pi was 1.9 × 10⁶ cpm/nmole, and the 100% Pi bound corresponded to a ratio of 0.28 mole Pi/mole F₁. (□ ADP, △ AMPPNP, and ○ ATP)
pointed out the necessity of exploring a range of experimental conditions, before attempting to draw general conclusions about the relative effectiveness of the different adenine nucleotides in facilitating release of P_i from F_1. Figures 3–5 show the effects of high concentrations of ATP and ADP on P_i release from F_1. From these results, it is evident that high concentrations of ATP and ADP appear to have similar effects, and that in both cases they are able to effect the release of essentially all the bound P_i from F_1.
The effect of ATP on the release of P_i from F_1. The modified Sephadex centrifuge column technique was used as described in Methods. The concentration of F_1 in the reaction mixture was 0.96 mg protein/mL or 2.78 μM. The specific activity of the [^{32}P]P_i was 1.3 \times 10^6 cpm/nmole. The 100% P_i bound corresponded to a ratio of 0.2 mole P_i/mole F_1.
The effect of ATP on the release of Pi from F₁. The modified Sephadex centrifuge column technique was used as described in Methods. The concentration of F₁ in the reaction mixture was 0.96 mg protein·mL⁻¹ or 2.78 µM. The specific activity of the [³²P]Pi was 1.5 × 10⁵ cpm/nmole. The 100% Pi bound corresponded to a ratio of 0.18 mole Pi/mole F₁.
The effect of ADP on the release of Pi from F1. The modified Sephadex centrifuge column technique was used as described in Methods. The concentration of F1 in the reaction mixture was 0.64 mg protein.mL\(^{-1}\) or 1.85 \(\mu\)M. The specific activity of the \([^{32}\text{P}]\)Pi was \(1.9 \times 10^5\) cpm/nmole. The 100% Pi bound corresponded to a ratio of 0.22 mole Pi/mole F1.
Release of P_i from F_1: Pulse-Chase Method

The pulse-chase mode of the modified Sephadex centrifuge column technique, as described under Methods and in Appendix II', was used to study the effects of ADP, ATP, and AMPPNP on the release of bound label from F_1. The label in this approach, was given to F_1 in its passage through the 1 cm "pulse section" at the top of the column. This pulse section was prepared from a gel which had the desired labelled nucleotide in the equilibration buffer of the Sephadex. Below the pulse section, the column contained three sections (3, 1, and 2.5 cm) serving similar functions as those used in the columns for the studies employing the preincubation mode of the Sephadex centrifuge column technique. The third section from the top is referred to as the "chase section" of the column.

The studies of P_i release using the pulse-chase mode are valuable for comparison with those using the preincubation mode. In the preincubation studies: when P_i (from the reaction mixture) is bound to F_1, the P_i presumably occupies an empty site which contains no other ligands. In the pulse-chase studies [$\gamma^{-32}\text{P}$]ATP is present in the pulse gel, therefore any bound [^{32}P]P_i (found in the centrifugate) originated from the [$\gamma^{-32}\text{P}$]ATP which bound and hydrolysed, and it also shares its binding site with ADP (the other product of hydrolysis).
Published studies have shown that when ATP binds to F\textsubscript{1} under single site occupancy conditions (such as those used in the studies reported here), it hydrolyzes rapidly and ADP and P\textsubscript{i} are released slowly \(103\). Thus by comparing the results from the preincubation and pulse-chase methods, it is possible to assess the effect of ADP being bound at the same site with P\textsubscript{i}, on the sensitivity of the P\textsubscript{i} release reaction to nucleotides in the chase section. Figures 6 and 7 show the effects of ATP and AMPPNP (in the chase section), respectively, on the release of label bound as \(\gamma\text{-}^{32}\text{P}\)ATP from the pulse section. For ease of comparison, the results from the corresponding studies with the preincubation mode are included in the figures. The sensitivity of P\textsubscript{i} release to ATP is decreased in the pulse-chase experiment relative to the release observed in the preincubation experiment (Fig. 6), whereas the opposite effect is observed with AMPPNP in the pulse-chase and preincubation experiments (Fig. 7). The sensitivity of P\textsubscript{i} release to ATP and AMPPNP is essentially the same in the pulse-chase experiments (cf. Figs. 6 and 7); whereas the sensitivity of P\textsubscript{i} release to ATP is much greater than to AMPPNP in the preincubation experiments. The biphasic response of P\textsubscript{i} release on exposure to ATP and AMPPNP is observed with both experimental methods.
Comparison of the effects of ATP, in preincubation and pulse-chase modes, on the release of label from F1. For the preincubation experimental plot, the data were taken from Figure 2. The pulse-chase technique was as described in Methods, with four sections (1, 3, 1 and 2.5 cm) being used. Note that in both modes, a 1 cm nucleotide-containing middle section (preincubation mode) or chase section (pulse-chase mode) was used. The concentration of F1 in the reaction mixture 0.96 mg protein·mL⁻¹ or 2.78 µM. The pulse-gel equilibration buffer contained 1.0 µM ATP with [γ⁻³²P]ATP, the specific activity of which was 3.07 x 10⁵ cpm/nmole. The 100% ATP bound corresponded to a ratio of 0.1 mole ATP/mole F1 (○ ATP on the release of label bound as [³²P]Pi (Preincubation mode); and □ ATP on release of label bound [γ⁻³²P]ATP (Pulse-chase mode)).
ATP on release of P_i (Preincubation mode)

ATP on release of ATP (Pulse-chase mode)
Comparison of the effects of AMPPNP, in preincubation and pulse-chase modes, on the release of label from F_1. For the preincubation experimental plot, \bigcirc, the data were taken from Figure 2. The pulse-chase technique was as described in Methods, with four sections (1, 3, 1 and 2.5 cm) being used. Note that in both modes, a 1.0 cm nucleotide-containing middle section (preincubation mode) or chase section (pulse-chase mode) was used. The concentration of F_1 in the reaction mixture was 1.07 mg protein·mL$^{-1}$ or 3.09 μM. The pulse-gel equilibration buffer contained 1.0 μM ATP with $[\gamma-^{32}\text{P}]$ATP (2.68 × 105 cpm/nmol). The 100% ATP bound corresponded to a ratio of 0.1 mole ATP/mole F_1. \bigcirc AMPPNP on release of label bound as $[^{32}\text{P}]\text{Pi}$ (Preincubation mode), and \blacksquare AMPPNP on release of label bound as $[\gamma-^{32}\text{P}]$ATP (Pulse-chase mode).
In the pulse-chase experiments just described (Figs. 6 and 7), 1 cm chase sections were used in order to have the nucleotide-containing sections identical to those used (1 cm middle section) in the preincubation experiments. Thus the experimental conditions and procedures were made as close as possible in both methods. Figures 8 and 9 show the results of pulse-chase experiments in which entire lower 3.5 cm (1 cm chase gel plus 2.5 cm bottom gel) of the column contained chase nucleotide. A comparison of Figure 8 with Figures 6 and 7 shows the results with $[\gamma-^{32}\mathrm{P}]$ATP pulse and an ATP or AMPPNP chase were essentially identical in both cases, i.e. with the column containing either a 3.5 cm chase section (i.e. the entire bottom) or a 1 cm chase section followed by a 2.5 cm spacer section. Figure 8 shows the relative sensitivity of the release of label, bound as $[\gamma-^{32}\mathrm{P}]$ATP, to ADP, ATP, and AMPPNP in the 3.5 cm chase section. The nucleotides ATP and AMPPNP were equally effective in facilitating the release of label, whereas ADP was considerably less effective in promoting the release of label. Figure 9 shows that whether label was bound as $[^{3}\mathrm{H}]$-ATP or as $[\gamma-^{32}\mathrm{P}]$ATP from the pulse section, approximately the same sensitivity of label release to chase ATP was seen in both cases.
The effects of ADP, ATP, and AMPPNP on the release of label bound as [γ-32P]ATP from F₁. The pulse-chase technique was as described in Methods, with three sections (1, 3, and 3.5 cm) being used. Note that the entire bottom section (3.5 cm) contained chase nucleotide. For the ADP plot (□): the concentration of F₁ in the reaction mixture was 1.09 mg protein·mL⁻¹ or 3.16 μM; the specific activity of the [γ-32P]ATP in the 1.0 μM ATP-containing equilibration buffer of the pulse gel was 2.04 × 10⁵ cpm/nmole; and the 100% ATP bound corresponded to a ratio of 0.1 mole ATP/mole F₁. For the ATP plot (○): the concentration of F₁ was 1.16 mg protein·mL⁻¹ or 3.36 μM; the specific activity of the [γ-32P]ATP was 2.15 × 10⁵ cpm/nmole; and the 100% ATP bound corresponded to a ratio of 0.12 mole ATP/mole F₁. For the AMPPNP plot (△): the concentration of F₁ was 0.95 mg protein·mL⁻¹ or 2.75 μM; the specific activity of the [γ-32P] was 2.35 × 10⁵ cpm/nmole; and the 100% ATP bound corresponded to a ratio of 0.1 mole ATP/mole F₁. (□ ADP, ○ ATP, and △ AMPPNP)
The effects of ATP on the release of label bound as $[^\gamma-\text{32P}]\text{ATP}$ and $(2,8-\text{3H}]\text{ATP}$ from F_1. The pulse-chase technique was as described in Methods, with three sections (1, 3, and 3.5 cm) being used, and the entire bottom 3.5 cm section containing chase nucleotide. For the release of label bound as $[^\gamma-\text{32P}]\text{ATP}$ plot (O), the data were taken from Figure 8. For the release of label bound as $[^{3}\text{H}]\text{ATP}$ plot (□): the concentration of F_1 in the reaction mixture was 0.94 mg protein·mL$^{-1}$ or 2.72 μM; the specific activity of the $[^{3}\text{H}]\text{ATP}$ in the 1.0 μM ATP-containing equilibration buffer of the pulse gel was 2.28 x 105 cpm/nmole; and the 100% ATP bound corresponded to a ratio of 0.15 mole ATP/mole F_1. (O ATP on the release of label bound as $[^\gamma-\text{32P}]\text{ATP}$, and □ ATP on the release of label bound as $[^{3}\text{H}]\text{ATP}$.
Release of AMPPNP from F_1: Pulse-Chase Method

Figure 10 shows the results of a pulse-chase experiment in which labelled AMPPNP ($[^3H]$AMPPNP) was used in the pulse section and unlabelled AMPPNP in the 1.0 cm chase section. A comparison of Figure 10 with Figure 7 shows that chase AMPPNP is more effective in facilitating the dissociation of label bound as $[\gamma^{32P}]$ATP than the dissociation of label bound as $[^3H]$AMPPNP. These findings support (but do not prove) the hypothesis that label bound as $[\gamma^{32P}]$ATP dissociates from F_1 as $[^3P]P_i$ rather than as the unhydrolysed $[\gamma^{32P}]$ATP, on the binding of chase AMPPNP. It was shown that under single site occupancy conditions, an equilibrium is attained in which the ratio of bound ATP to bound hydrolysis products, ADP and P_i (i.e. the equilibrium constant, K) is 2. The calculated forward and reverse rate constants for this step of the F_1-catalysed reaction were 10 s^{-1} and 20 s^{-1}, respectively (103). In the absence of medium nucleotides, the dissociation of ADP and P_i from F_1 is slow with the rate constants of $4 \times 10^{-4} \text{ s}^{-1}$ and $3 \times 10^{-3} \text{ s}^{-1}$, respectively (103). If the behaviour of AMPPNP is similar to that of ATP, then the results displayed in Figure 10 indicate that in an AMPPNP chase, the dissociation of bound ATP is far less favourable than the dissociation of bound ADP and P_i.
The effect of AMPPNP on the release of label bound as $[^3\text{H}]$AMPPNP from F_1. The pulse-chase technique was as described in Methods, with four sections (1, 3, 1 and 2.5 cm) being used, i.e. the 1.0 cm chase gel was followed by 2.5 cm spacer gel. The concentration of F_1 in the reaction mixture was 0.83 mg protein·mL$^{-1}$ or 2.49 μM. The pulse-gel equilibration buffer contained 1.0 μM AMPPNP with $[^3\text{H}]$AMPPNP (1.63 × 105 cpm/nmole). The 100% AMPPNP bound corresponded to a ratio of 0.1 mole AMPPNP/mole F_1.
Binding of Nucleotides to F\textsubscript{1} in the Sephadex Centrifuge Column

Figure 11 shows the results of an experiment in which F\textsubscript{1} was passed through a column of the type used in the preincubation mode. In this case though, the F\textsubscript{1} was not preincubated with labelled P\textsubscript{i}, i.e. \([^{32}\text{P}]\text{P}\textsubscript{i}\), but the nucleotide-containing 1.0 cm middle section had labelled ATP ([\(\gamma^{32}\text{P}\)]ATP). Assuming that the volume of the centrifugate was the same as the volume applied to the column, Table III shows the results of calculations of the percentage of the total amount of the [\(\gamma^{32}\text{P}\)]ATP contained in the column which was bound. The method of calculation is described in the table legend. Table III shows that under the conditions of the experiment, where ATP was present in substoichiometric amount with respect to F\textsubscript{1}, approximately all of the ATP bound to F\textsubscript{1}. This observation is consistent with the very rapid binding of ATP to F\textsubscript{1} (second order rate constant of \(6 \times 10^{6} \text{ M}^{-1} \cdot \text{s}^{-1}\)) and the very slow release of ATP from F\textsubscript{1} (rate constant of \(7 \times 10^{-6} \text{ s}^{-1}\), when ATP is present at substoichiometric amounts (103). It is also consistent with the results shown in Figure 1 for the effect of ATP (in the middle section) on the release of \([^{32}\text{P}]\text{P}\textsubscript{i}\) bound to F\textsubscript{1} in a preincubation experiment. Similar calculations (see Table III) were made using data (for the ATP-induced P\textsubscript{i} release only) from Figure 1, and the results are shown in Table IV. These results reveal that in the steep phase of the ATP-induced P\textsubscript{i} plot, the molar
The binding of ATP by F\textsubscript{1} from the 1.0 cm middle section of the column (preincubation mode). The modified Sephadex centrifuge column technique was used as described in Methods. Note that no $[^{32}\text{P}]P\text{\textsubscript{i}}$ was added to the reaction mixture. The ATP-containing equilibration buffers of the middle gels had $[\gamma-^{32}\text{P}]\text{ATP} \ (3.52 \times 10^6 \text{ cpm/nmole})$. The concentration of F\textsubscript{1} in the reaction mixture was 1.82 mg protein\cdotmL$^{-1}$ or 5.26 μM.
Table III

The Binding of ATP in the Column to F\textsubscript{1}

<table>
<thead>
<tr>
<th>ATP Concentration in Column ((\mu\text{M}))</th>
<th>Total ATP in Column (pmole)</th>
<th>ATP Bound by F\textsubscript{1} (pmole)</th>
<th>% ATP Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>12.1</td>
<td>10.23</td>
<td>84.5</td>
</tr>
<tr>
<td>0.25</td>
<td>30.5</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>0.5</td>
<td>63.1</td>
<td>57.95</td>
<td>91.8</td>
</tr>
<tr>
<td>0.75</td>
<td>89.9</td>
<td>91.66</td>
<td>100</td>
</tr>
<tr>
<td>1.0</td>
<td>119.8</td>
<td>107.11</td>
<td>89.4</td>
</tr>
</tbody>
</table>

The experimental conditions, procedures, and data were the same as in Figure 11. The amount of ATP (before application of F\textsubscript{1}) in the 1.0 cm middle gel was determined as outlined below: (i) 25 \(\mu\text{L}\) aliquots of \(\chi\mu\text{M}\) ATP-containing buffers with \[^{32}\text{P}]\text{ATP}\) were counted, and the specific activity calculated; (ii) Samples of 1.0 cm lengths of the \(\chi\mu\text{M}\) ATP with \[^{32}\text{P}]\text{ATP}\) equilibrated gels were counted. Lastly, the amount of ATP in the gels were calculated by dividing the amount of label (cpm) given by each 1.0 cm gel by the specific activity of the \[^{32}\text{P}]\text{ATP}\) in the corresponding ATP-containing buffer. Note that the volume of the centrifugate was never as much as the 150 \(\mu\text{L}\) applied to the column, hence the amount of label in the 25 \(\mu\text{L}\) centrifugate counted was multiplied by 6 to give a total value.
Table IV

The Binding of ATP in the Column to F1
and the Release of Pi from F1

<table>
<thead>
<tr>
<th>ATP Concentration in Column</th>
<th>Total ATP in Column (pmole)</th>
<th>Total Pi bound by F1 (pmole)</th>
<th>Total Pi released by F1 (pmole)</th>
<th>mole Pi released</th>
<th>mole ATP available</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0.1</td>
<td>12.1</td>
<td>83</td>
<td>14</td>
<td>1.16</td>
<td>1.16</td>
</tr>
<tr>
<td>0.25</td>
<td>30.5</td>
<td>61</td>
<td>36</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>0.5</td>
<td>63.1</td>
<td>26</td>
<td>71</td>
<td>1.13</td>
<td>1.13</td>
</tr>
<tr>
<td>2.5</td>
<td>305</td>
<td>17</td>
<td>80</td>
<td>0.26</td>
<td>1.18</td>
</tr>
<tr>
<td>5.0</td>
<td>610</td>
<td>11</td>
<td>86</td>
<td>0.14</td>
<td>1.18</td>
</tr>
</tbody>
</table>

The experimental conditions, procedures, and data were the same as in Figure 1. The total ATP in the column was determined as described in the legend of Table III.
ratio of the P_i released to the total ATP present in the column is approximately one. Initially it was difficult to rationalize the results shown in Table IV, because it seemed reasonable to expect that ATP (in the middle section of the column) would bind to F_1 containing bound P_i and to F_1 without bound P_i, and therefore not every ATP bound would cause P_i release. In the experiment shown in Figure 1 and Table IV, only 0.28 of the total F_1 had P_i bound. The results are consistent with the hypothesis, that only part of the F_1 is in a state such that it can bind ATP rapidly during its brief passage through the column. This part corresponds to the F_1 which has P_i bound such that it can be released in the steep phase of the line drawn through the circles in Figure 1. The remainder of the F_1 is either inactive, or requires different conditions, such as exposure to higher ATP concentrations, in order to become fully activated. Figure 12 shows that F_1, whether or not it was preincubated with P_i, bound $[^3H]ATP$ to approximately the same extent in its passage through the column. Apparently with P_i bound to F_1 (i.e. forming $F_1\cdot P_i$ complex), the affinity of the F_1 (or $F_1\cdot P_i$ complex) for ATP does not increase under the conditions of the experiment. (Note that Cross et al. (104) found that the rate constant of the second ATP binding to F_1 is the same as the first, i.e. $6 \times 10^6 M^{-1}.s^{-1}$).
The effect of \(P_i \) on the binding of ATP by \(F_1 \). The modified Sephadex centrifuge column technique was used as described in Methods. Note that the concentration of \(P_i \) was 47 \(\mu \)M, whenever \(P_i \) was present in the equilibration buffers of the gels or in the reaction mixture. The ATP-containing equilibration buffers of the middle gels had \([^3\text{H}]\text{ATP} \) (5.8 \(\times \) 10^5 cpm/nmole). The concentration of \(F_1 \) in the reaction mixture was 1.64 mg protein/mL or 4.74 \(\mu \)M. (\(\bigcirc \) No \(P_i \) in the equilibration buffers and reaction mixture, and \(\square \) \(P_i \) in the equilibration buffers and reaction mixture).
The release of label bound as [$\gamma^{-32}P$]ATP and the binding of label as [3H]ATP. The pulse-chase technique was as described in Methods, with four sections (1, 3, 1 and 2.5 cm) being used. The pulse-gel equilibration buffer contained 1.0 μM ATP with [3H]ATP (3.06×10^5 cpm/nmole). The chase-gel equilibration buffers contained the indicated concentrations of μM ATP with [3H]ATP (9.94×10^5 cpm/nmole). The concentration of F_1 in the reaction mixture was 1.93 mg protein.mL$^{-1}$. Correction was made for label from the chase gel taken through the column by solvent drag. The 100% ATP bound (from pulse gel) corresponded to a ratio of 0.1 mole ATP/mole F_1, and this value was used as 100% to calculate the ratio of mole ATP/mole F_1 for the chase ATP. (〇 % label ([$\gamma^{-32}P$]ATP) retained from pulse, and □ % label ([3H]ATP) bound in chase).
The release of label bound as \([\gamma-^{32}P]ATP\) and the binding of label as \([^{3}H]AMPPNP\). The pulse-chase technique was as described in Methods, with four sections (1, 3, 1, and 2.5 cm) being used. The pulse-gel equilibration buffer contained 1.0 \(\mu M\) ATP with \([\gamma-^{32}P]ATP\) (2.6 \(\times\) 10\(^5\) cpm/nmole). The chase-gel equilibration buffers contained the indicated concentrations of \(\mu M\) AMPPNP with \([^{3}H]AMPPNP\) (5.97 \(\times\) 10\(^5\) cpm/nmole). The concentration of \(F_1\) in the reaction mixture was 1.78 mg protein.mL\(^{-1}\). Correction was made for label from the chase-gel taken through the column by solvent drag. The 100% ATP bound (from pulse gel) corresponded to a ratio of 0.1 mole ATP/mole \(F_1\), and this was used as 100% to calculate the ratio of mole AMPPNP/mole \(F_1\). (\(\bigcirc\) % label retained from pulse, and \(\bigboxdot\) % label ([\(^{3}H]AMPPNP) bound in chase).
Figures 13 and 14 show the results of pulse-chase experiments with $[^\gamma-32\text{P}]\text{ATP}$ in the pulse sections, and $[^3\text{H}]\text{ATP}$ and $[^3\text{H}]\text{AMPPNP}$, respectively, in the chase sections of the columns. In this way, the release of label--($[^\gamma-32\text{P}]\text{ATP}$) which was bound in the pulse was monitored simultaneously with the binding of label ($[^3\text{H}]\text{ATP}$ or $[^3\text{H}]\text{AMPPNP}$) in the chase. Figure 15 shows a comparison of the binding curves (ATP and AMPPNP bound in the chase) from Figures 13 and 14, respectively. In these experiments (as in all of the pulse-chase experiments described thus far), the pulse section consisted of a 1 cm gel prepared from a column made using Sephadex equilibrated in a buffer with 1.0 μM nucleotide (see Methods). Under these conditions, the molar ratio of $[^\gamma-32\text{P}]\text{ATP}$ bound to F_1 in the pulse was usually about 0.1. Thus it is reasonable to assume that some of the chase nucleotide bound to F_1 which had not bound label in the pulse section. Figure 13 shows that with increasing ATP concentration in the chase section, initial binding of the ^3H label in the chase section increases more than does release of $^{32}\text{P}_1$ label which had bound in the pulse section. This result can be rationalized if at low chase ATP concentrations, the $[^3\text{H}]\text{ATP}$ in the chase binds to both F_1 without label bound from pulse and to F_1 with label bound from pulse. The binding of ATP by F_1 in the chase levels off as the chase ATP concentration increases (Figs. 13, 15, and Table V), whereas the binding of AMPPNP by F_1 in the chase was essentially linear with the AMPPNP concentra-
The binding of ATP and AMPPNP from the chase gels in pulse-chase experiments. For the ATP binding plot (○), the information was taken from Figure 13, and for the AMPPNP binding plot (□), the information was taken from Figure 14. (○ ATP ([³H]ATP) binding, and □ AMPPNP ([³H]AMPPNP) binding).
ATP ([³H] ATP) binding

AMPPNP ([³H] AMPPNP) binding

ATP OR AMPPNP BOUND (% of original) x 100

[NUCLEOTIDE], µM
Table V

The Binding of Chase ATP in the Column to F1

<table>
<thead>
<tr>
<th>ATP Concentration in Column (µM)</th>
<th>Total ATP in Column (pmole)</th>
<th>ATP Bound by F1 (pmole)</th>
<th>% ATP Bound</th>
<th>mole [3H]ATP mole F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>12.5</td>
<td>12.5</td>
<td>100</td>
<td>0.01</td>
</tr>
<tr>
<td>0.25</td>
<td>31.2</td>
<td>30</td>
<td>96</td>
<td>0.03</td>
</tr>
<tr>
<td>0.5</td>
<td>62.5</td>
<td>50</td>
<td>80</td>
<td>0.05</td>
</tr>
<tr>
<td>1.0</td>
<td>125</td>
<td>90</td>
<td>72</td>
<td>0.10</td>
</tr>
<tr>
<td>1.5</td>
<td>187.5</td>
<td>93</td>
<td>50</td>
<td>0.10</td>
</tr>
<tr>
<td>2.0</td>
<td>250</td>
<td>114</td>
<td>46</td>
<td>0.12</td>
</tr>
<tr>
<td>100</td>
<td>12500</td>
<td>1038</td>
<td>8</td>
<td>1.25</td>
</tr>
</tbody>
</table>

The data for the calculations were from Figures 13 and 15. The amount of ATP in the 1 cm chase gel was determined as described for the 1 cm middle gel in the legend of Table III.
Table VI

The Binding of Chase AMPPNP in the Column to F₁

<table>
<thead>
<tr>
<th>AMPPNP Concentration in Column (µM)</th>
<th>Total AMPPNP in Column (pmole)</th>
<th>AMPPNP bound by F₁ (pmole)</th>
<th>% AMPPNP Bound</th>
<th>mole [³H]AMPPNP</th>
<th>mole F₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>12.5</td>
<td>12.5</td>
<td>100</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>31.2</td>
<td>28</td>
<td>90</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>62.5</td>
<td>51</td>
<td>82</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>125</td>
<td>115</td>
<td>92</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>187.5</td>
<td>162</td>
<td>86</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>250</td>
<td>201</td>
<td>80</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>625</td>
<td>456</td>
<td>73</td>
<td>0.59</td>
<td></td>
</tr>
</tbody>
</table>

The data for the calculations were from Figures 14 and 15. The amount of AMPPNP in the 1 cm chase gel was determined as described for the 1 cm middle gel in the legend of Table III.
tion throughout the range studied (Figs. 14, 15, and Table VI). This is probably because several molecules of AMPPNP can bind to each F₁ (48, 73, 102); while on the other hand, if [³H]ATP binds to a F₁ which already bound one [³H]ATP, the previously bound ATP would very likely have hydrolysed and the label would be released on the binding of the second [³H]ATP at another site on the F₁.

From Figure 15, it can be observed that the binding of AMPPNP to F₁ is as favourable as the binding of ATP in the columns. This observation eliminates the possible explanation that F₁ has a lower affinity for AMPPNP, thereby causing the reduced sensitivity of response of the AMPPNP-induced Pi release in the preincubation experiments shown in Figure 1.
The Biphasic Release of Pi from F1

In an effort to discover the cause of the biphasic release of Pi from F1, the experiments described below were performed. Figure 16 shows that increasing the length of the ATP-containing middle section from 1.0 to 2.0 cm in a preincubation experiment, did not appreciably alter the proportions of Pi released in the two phases. Figure 17 shows the amounts of Pi released from F1 when different lengths of 0.25 μM ATP-containing middle sections were used. Figure 18 shows that using a 5.0 cm ATP-containing gel (i.e. the entire lower section) in the preincubation mode also did not alter the biphasic nature of the Pi release reaction.

Figure 19 shows that inactivation of F1 by treatment with NBD-chloride (120, 121) reduced the amount of ATP bound in a pulse-chase experiment by > 95%. This result supports the hypothesis that the ATP binds at catalytic sites.

Figure 20 shows that preincubation of F1 with ATP did not alter the amount of ATP bound to F1; and neither was the amount of Pi released from F1 altered in the pulse-chase experiment using a 3.5 cm 0.25 μM ATP-containing chase section. Figures 21 and 22 show that preincubation of F1 with either ADP or EDTA did not affect the amount of label [32P]Pi bound in preincubation experiments, and that these treatments also did not affect the biphasic Pi release from F1. Figure 23 shows that in a pulse-chase type
The effect of ATP on the release of bound Pi from F₁ using 1.0 cm and 2.0 cm ATP-containing middle sections in the columns. The modified Sephadex centrifuge column technique was used as described in Methods, except that the 2.0 cm ATP-containing middle section columns had 3.0 cm² bottom sections. The concentration of F₁ in the reaction mixture was 0.94 mg protein mL⁻¹ or 2.72 μM. The specific activity of the [³²P]Pi in the reaction mixture was 1.85 × 10⁵ cpm/nmole. The 100% Pi bound corresponded to a ratio of 0.25 mole Pi/mole F₁. (○ 1.0 cm ATP-containing middle section, and □ 2.0 cm ATP-containing middle section).
The effect of ATP on the release of bound Pi from F1 using various lengths of ATP-containing middle sections in the columns. The modified Sephadex centrifuge column technique was used as described in Methods, except that the bottom section was decreased by the same length by which the 1.0 cm ATP-containing middle section was increased. In addition, the concentration of ATP used in the equilibration buffer of the middle gels was kept constant at 0.25 μM. The concentration of F1 used in the reaction mixture was 0.92 mg protein.mL⁻¹ or 2.66 μM. The specific activity of the [³²P]Pi used was 1.9 x 10⁵ cpm/nmole. The 100% Pi bound corresponded to a ratio of 0.21 mole Pi/mole F1.
LENGTH OF 0.25 μM ATP EQUILIBRATED MID-SECTION GEL (cm)

P I BOUND (% of original)

0 2 4 5

0 20 40 60 80 100
The effect of ATP on the release of bound Pi from F1 using a 5.0 cm ATP-containing section in the column. The modified Sephadex centrifuge column technique was used as described in Methods, except the 4.0 cm bottom section also contained ATP. The concentration of F1 in the reaction mixture was 1.29 mg protein/mL or 3.73 μM. The specific activity of the [32P]Pi was 1.2 × 10^5 cpm/nmole. The 100% Pi bound corresponded to a ratio of 0.17 mole Pi/mole F1.
The effect of preincubation of F₁ with NBD-chloride before its application to a pulse-chase column. The F₁ was treated as described by Kohlbrener and Boyer (121). The F₁ in the reaction mixture was inactivated by the addition of a freshly prepared ethanolic solution of NBD-chloride to give a final concentration of 100 μM. The reaction mixture was incubated for 2 hours in the dark at 25°C, before it was applied to the column. The pulse-chase technique was as described in Methods with three sections (1, 3, and 3.5 cm) being used, i.e. the 1 cm chase gel was combined with the 2.5 cm bottom gel to give 3.5 cm chase gel. The concentration of F₁ in the reaction mixtures was 0.94 mg protein/mL or 2.72 μM. The pulse-gel equilibration buffer contained 1.0 μM ATP with [γ-³²P]ATP (1.6 x 10⁵ cpm/nmole). The two F₁ reaction mixtures were treated the same except for the addition or exclusion of NBD-chloride. For the reaction mixture without NBD-chloride, the 100% ATP bound corresponded to a ratio of 0.1 mole ATP/mole F₁. (○ F₁ not treated with NBD-chloride, ■ F₁ treated with NBD-chloride).
The effect of preincubation of F\textsubscript{1} with ATP before its application to a pulse-chase column. The F\textsubscript{1} was added to the usual reaction mixture which now also contained 4.0 mM ATP, and the mixture was allowed to stand for at least 20 minutes before application to the column. The pulse-chase technique was as described in Methods, with three sections (1, 3, and 3.5 cm) being used, i.e., the entire bottom section (3.5 cm) contained chase nucleotide. The concentration of F\textsubscript{1} in the reaction mixture was 0.9 mg protein.mL-1 or 2.61 μM. The pulse-gel equilibration buffer contained 1.0 μM ATP with [γ32P]ATP (2.14 \times 10^5 cpm/nmole). The two F\textsubscript{1} reaction mixtures were treated the same except for the addition or exclusion of ATP. For the reaction mixture without ATP, the 100% ATP bound corresponded to a ratio of 0.1 mole ATP/mole F\textsubscript{1}. (○ F\textsubscript{1} not preincubated with ATP, □ F\textsubscript{1} preincubated with ATP).
The effect of preincubation of F₁ with ADP before its application to a column. The F₁ was added to a reaction mixture containing 90 mM Tris-acetate, pH 7.5, 1.6 mM MgSO₄, and 100 μM ADP. The mixture was allowed to stand for 5 minutes before its application to the usual Sephadex centrifuge column (28, 73). The centrifugate was added to the usual reaction mixture (90 mM Tris-acetate, pH 7.5, 1.6 mM MgSO₄, and 47 μM Pᵢ with [³²P]Pᵢ), and this allowed to stand for 8 minutes before application to the column. The modified Sephadex centrifuge column technique (preincubation mode) was used as described in Methods. The concentration of F₁ in the usual reaction mixture was 0.75 mg protein·mL⁻¹ or 2.17 μM. The specific activity of the [³²P]Pᵢ used in the usual reaction mixture was 1.18 × 10⁵ cpm/nmole. The F₁ reaction mixtures were treated the same except for the addition or exclusion of ADP. For the reaction mixture without ADP-treated F₁, the 100% Pᵢ bound corresponded to a ratio of 0.25 mole Pᵢ/mole F₁ (○ F₁ not preincubated with ADP, and □ F₁ preincubated with ADP).
The effect of preincubation of F_1 with EDTA before its application to the column. The F_1 (in 50 mM Tris-acetate, pH 7.5) was added to a solution of EDTA (also in 50 mM Tris-acetate, pH 7.5) to give a final concentration of 17 mM EDTA. The mixture of F_1 and EDTA was allowed to stand for 1 minute before its application to the usual Sephadex centrifuge column (28, 73). The centrifugate was added to the reaction mixture to give final concentrations of 90 mM Tris-acetate, pH 7.5, 1.6 mM MgSO$_4$, and 47 μM P$_i$ with $[^{32}\text{P}]P_i$, and this allowed to stand for 8 minutes before application to the column. The modified Sephadex centrifuge column technique (preincubation mode) was used as described in Methods. The concentration of F_1 in the reaction mixture was 0.68 mg protein/mL or 1.97 μM. The specific activity of the $[^{32}\text{P}]P_i$ in the reaction mixture was 1.22×10^5 cpm/nmole. The F_1 reaction mixtures were treated the same except for the addition or exclusion of EDTA. For the reaction mixture without EDTA-treated F_1, the 100% P$_i$ bound corresponded to a ratio of 0.24 mole P$_i$/mole F_1. (□ F_1 not preincubated with EDTA, and □ F_1 preincubated with EDTA).
\[P_i \text{ BOUND (% of original)} \]

- \(\bigcirc \ F_1 \) not treated with EDTA
- \(\square \ F_1 \) treated with EDTA

\[\text{[ATP], \(\mu \text{M} \)} \]
The effect of ATP on the release of Pi from F₁, when the F₁·Pi complex was given a pulse of ADP. The pulse-chase technique was used as described in Methods, with four sections (1, 3, 1 and 2.5 cm) being used. Note that in this case the reaction mixture contained labelled Pi as [³²P]Pi (1.24 × 10⁵ cpm/nmole). The concentration of F₁ in the reaction mixture was 1.0 mg protein/mL or 2.89 µM. The pulse-gel equilibration buffer contained 50 µM ADP with [³H]ADP (3.5 × 10⁴ cpm/nmole). For the F₁·Pi complex not given pulse of ADP (i.e., a 1.0 cm spacer gel used instead), 100% Pi bound corresponded to a ratio of 0.21 mole Pi/mole F₁; and for F₁·Pi complex given a pulse of ADP, 100% Pi bound corresponded to a ratio of 0.18 mole Pi/mole F₁ (○ F₁ not given pulse of ADP, and □ F₁ given pulse of ADP). [Note that the total amount of ADP available in the 1 cm of ADP-pulse-gel was 800 pmole, and the total ADP bound by F₁ in the centrifugate was 10.4 pmole.] The ratio of mole ADP/mole F₁ was 0.02. The methods of determination and calculation were as described in the legend of Table III.]
F₁ given brief pulse of ADP

F₁ not given brief pulse of ADP
experiment, with a 1.0 cm 5.0 μM ADP ([3H]ADP)-containing top section, that both the amount of Pi bound to F1 and the amount of Pi released were not influenced by the ADP-pulse treatment. In addition, the experiment showed that a ratio of 0.02 mole ADP/mole F1 was obtained under the experimental conditions (or about 0.01 of the available ADP from the 1.0 cm top section was bound). This last series of experiments (Figs. 20-23) was performed in order to test the possibility that Pi binding or ATP-facilitated Pi release might be affected by the presence of Mg2+ADP bound to F1. Bound ADP, which could be removed from F1 by treatment with EDTA or incubation with pyruvate kinase and PEP, has been proposed as the cause of lags in ATP hydrolysis catalysed by F1 (115-119).

The purity of the F1 preparations used in these experiments was similar to that of Knowles and Penefsky (27) as described under methods. The NBD-chloride inactivation experiment shown in Figure 19 indicates that even if some protein impurities were present, they did not bind significant amounts (<5%) of ATP, and therefore cannot account for the observed biphasic release of label.

At present, there is no satisfactory explanation available for the biphasic Pi release observed. It is interesting that at sufficiently high ATP or ADP concentrations, all of the bound Pi was released (Figs. 3 and 4). Possibly all of the Pi was bound at catalytic sites, but the F1 exists in different states and some...
of these cannot be activated by exposure to low ATP concentrations on the time scale of the Sephadex centrifuge column experiment. It was found by other workers that F₁, labelled by exposure to substoichiometric amounts of ATP, did not release all of its label upon subsequent exposure to high concentrations of medium ATP (103).

Other published studies are also consistent with the biphasic Pi release observed in the investigations reported here. In the original study of Pi binding to and its release from F₁, about 10% of the bound Pi did not dissociate even at 48 minutes after the addition of unlabelled Pi to the reaction mixture (73). A semilog plot of the published data (Fig. 3 of Ref. 73), using the 48 minute point as the infinity value, is shown in Figure 24. This figure shows that the Pi dissociation which occurred did not follow clear first order kinetics. This result is consistent with there being more than one kind of bound Pi. Similar results were obtained in another published study (96), and in the preliminary work which led to the development of the methods used in the studies reported here. The results from the present studies are shown in Figure 25. A semilog plot of the Pi release data from this experiment also does not show clean first order kinetics. The biphasic nature of the ADP-facilitated Pi release is evident from the experiment shown in Figure 25, in which ADP was added to unlabelled Pi which was then in turn
Figure 24

A semilog plot showing the release of P_i from F_1 with time. The data were taken from Figure 3 of Ref. 73, with the 48 minute point being used as the infinity value. $\Delta [P_i]_{\text{bound}}$ on y-axis represents $[\text{mole } P_i/\text{mole bound at } t \text{ min}] - [\text{mole } P_i/\text{mole bound at 48 min}]$.
LOGΔ[P_i] vs. TIME (min)
The effect of nucleotides on the release of Pi bound to F_1. (Repeat of Hutton and Boyer's experiment shown in Figure 2 of Ref. 96.) A reaction mixture containing 90 mM Tris-Acetate, pH 7.5, 1.6 mM MgSO$_4$, 47 μM Pi with $[^{32}\text{P}]\text{Pi}$ (1.4×10^3 cpm/pmole), and 3.7 μM F_1-ATPase was incubated for 20 minutes at 23°C. 80 μL aliquots of the reaction mixture were applied in the Sephadex centrifuge column technique as described by Penefsky (28, 73). The Sephadex G-50-80 gel was equilibrated in a buffer containing 90 mM Tris-acetate, pH 7.5, 1.6 mM MgSO$_4$, and 47 μM Pi. Other 80 μL aliquots were mixed with 20 μL of Pi, Pi and ATP, or Pi and ADP to give final concentrations of 12 mM Pi and 20 mM ATP or ADP, respectively. 80 μL aliquots of these mixtures were added to the Sephadex columns at the times indicated, and centrifugation performed immediately. The 100% Pi bound corresponded to a ratio of 0.16 mole Pi/mole F_1. (△ 12 mM Pi, □ 12 mM Pi + 20 μM ADP, and ○ 12 mM Pi + 20 μM ATP).
added to the F₁ reaction mixture to initiate [³²P]Pᵢ release from F₁. This experiment (Fig. 25) was performed using exactly the same conditions and procedure used in a similar study (96), and the results obtained in the two studies were essentially identical.

Although it has thus far proved impossible to either eliminate or adequately rationalize the biphasic Pᵢ release, it is consistent with published results (73, 96, 103). In the analysis of the results in the discussion section, attention will be focused on the sensitive or steep phase of nucleotide-facilitated Pᵢ release from F₁. A case will be made for the hypothesis that the Pᵢ released from F₁ in this phase is released from a catalytic site, and that this reaction is a step in the catalytic mechanism of F₁-catalysed ATP hydrolysis. The results will be rationalized in terms of the catalytic mechanism.
DISCUSSION

The Release of \(P_i \) from \(F_1 \): Preincubation Method

Figure 2 shows that at relatively low concentrations of the nucleotides, ATP was able to effect the release of \(P_i \) from \(F_1 \), whereas ADP and AMPPNP had no observable effect. The effect of ATP can be explained by the "binding change mechanism" (10,13, 97-99,122) illustrated as shown in Figure 26. \(F_1 \) binds \(P_i \) during the preincubation period to give the \(F_1 \cdot P_i \) complex (123). This tightly bound \(P_i \) is released very slowly (\(t_{1/2} \) 2 minutes) from the \(F_1 \cdot P_i \) complex (73,96). However, when the \(F_1 \cdot P_i \) complex passes through the ATP-containing section of the column, ATP becomes bound at one of the available ATP-binding sites. The binding of ATP at an alternate site is able to effect the conformational change necessary to promote the faster release of \(P_i \) from \(F_1 \). Grubmeyer and Penefsky (62) have demonstrated that at least two binding sites are involved in site-site cooperativity in the mechanism of action of \(F_1 \). The results obtained with ADP in the middle section of the column are explained by the failure of \(F_1 \) to bind ADP under these experimental conditions. This explanation is substantiated by the observation in Figure 23 in that the ratio of mole ADP/mole \(F_1 \) was 0.02, when a 1.0 cm pulse-section (with 5\(\mu \)M ADP) was used. Thus with lower ADP concentrations in the middle sections
Figure 26

P_i release from F_1 on binding of ATP (for simplicity only two binding sites are shown). The designations are as follows:

1. E represents F_1,
2. > or < represents a transitorily tight bound substrate or product molecule, and
3. a center dot represents a more loosely bound substrate or product molecule. (See Refs. 70, 93, 94.)
Conversion of tightly bound ADP and P_i to loosely bound ADP and P_i.

Release of P_i.

Reversible Hydrolysis.
the amount of ADP bound was not significant. Grubmeyer et al. had found that the rate of ADP binding to F₁, \(10^3 \text{ M}^{-1} \text{s}^{-1}\), is three orders of magnitude lower than that of ATP (104). Since low concentrations of AMPPNP bind as well as ATP to F₁ under these experimental conditions (Tables III and IV, Figure 15 and Ref. 124), it can be concluded that the bound AMPPNP (low concentrations) was, unlike ATP, unable to effect the conformational change which results in the release of Pᵢ (Fig. 27).

High concentrations of all three nucleotides were able to effect the total release of Pᵢ from F₁ (Figs. 3-5). At these high ATP concentrations (Figs. 3,4), since ATP is present in greater than stoichiometric amounts, the probability of each F₁·Pᵢ complex binding an ATP molecule is greatly enhanced, thus resulting in the greater release of Pᵢ from the F₁·Pᵢ complex (Fig. 26). It is also possible that the high nucleotide concentrations were able to make more F₁ active under these experimental conditions, thereby accounting for the greater release of Pᵢ from the F₁·Pᵢ complex. In addition, it is possible in the presence of excess ATP for each F₁·Pᵢ complex to bind a second ATP molecule, thus accelerating the release of Pᵢ from F₁ at least two-fold (104).
Pi release from F1 on exposure to low AMP-PNP concentrations (Figure 2). (See Figure 26 for explanation of symbols.)
Effective conformational change not achieved.

Conversion of (I) tightly bound P_i to loosely bound P_i not achieved, (II) loosely bound AMPPNP to tightly bound AMPPNP not achieved.
Grubmeyer and Penefsky found that a third binding site was occupied after prolonged (30 to 60 minute) incubation with high concentrations (5 to 100 \(\mu \text{M} \)) of TNP-adenine nucleotides (\(\text{Mg}^{2+} \) present in buffer). The presence of a third site for the nucleotides AMPPNP and ADP on \(F_1 \) was also observed under similar conditions of incubation (60,61). However, whether this third nucleotide binding site is a catalytic site or a low affinity exchangeable site which serves a regulatory role was not clearly distinguished (104). One possibility involving three sites and the binding of a second ATP molecule is shown in Figure 28. Evidence has been presented for three separate interacting subunits per molecule of \(F_1 \) (48,98,99). Figure 11 and Table III show that the amount of ATP bound by \(F_1 \) increases as the ATP concentration increases for low concentrations of ATP. Figure 15 and Table V show that the amount of ATP bound increases until a maximum value is reached, and that it is possible for \(F_1 \) to bind more than one ATP molecule at high nucleotide concentration (100 \(\mu \text{M} \)). Note that in the experiments described in Figures 3 and 4, 10 to 100 and 0.1 to 25 mM ATP concentrations, respectively, were used, thus the possibility of \(F_1 \) binding more than one ATP molecule is likely. However, as pointed out by Grubmeyer and Penefsky (61,62), it is not necessary to invoke a third site to explain promotion of the release of hydrolyzed nucleotides.
Figure 28

P_i release from F_1 on exposure to high ATP concentrations. (For explanation of symbols, see Figure 26.)
The effect observed with high concentrations of ADP (Figure 5) can be accounted for if a small amount of (∼1.4%) of ATP is present in these ADP preparations (103, 123). This very small percentage (∼1.4%) of ATP in the 0.1 to 10 mM ADP would yield a range of about 1.4 to 140 μM ATP concentrations, which would be sufficient to effect the release of Pi from F₁ (Figure 5). This explanation, in addition to the longer time of incubation of F₁·Pi with nucleotide, may account for the effect of ADP on the accelerated release of Pi from F₁ observed by Hutton and Boyer (96). In their studies about 0.28 μM ATP may have been present in their 20 μM ADP preparation in addition to their longer incubation time of about a minute. This longer time of incubation would allow ADP to bind to F₁. Grubmeyer et al. found that the rate of ADP binding to F₁ was 10³ M⁻¹·s⁻¹ (103). Penefsky (73) has also observed that high concentrations (30-120 μM) of ATP and ADP (Figure 9 of Ref. 73) inhibited the binding of Pi to about the same extent. Penefsky's ADP preparations in the range studied may have contained about 0.42 to 1.68 μM ATP, and in addition he used a long incubation period of 30 minutes. The results reported here (Figures 1-5) show that the release of Pi is more sensitive to ATP than to ADP, and that the Pi release observed with high ADP concentrations can be accounted for by the presence of trace amounts (∼1.4%) of ATP in the ADP preparations. High nucleotide concentrations
(Figures 3-5) enabled the release of the P_i ($\sim 30\%$) which remained bound at low ATP concentrations. One possible explanation is that high nucleotide concentrations resulted in higher ionic strength and this effect alone caused the release of bound P_i, which was insensitive to lower ATP concentrations. Kasahara and Penefsky found that salts inhibited P_i binding to F_1 which was attributed to their effects on the enzyme and on the ionic strength. It is also possible that at the low ATP concentrations used, approximately 60% of the F_1 is not active, but this fraction can become active upon longer exposure to ATP or upon brief exposure to high ATP concentrations.

In the experiment described in Figure 1, a higher concentration of AMPPNP was used than in that described in Figure 2. The nucleotides ATP and AMPPNP show basically the same pattern of P_i release from F_1 (Figure 1 and Ref. 123), however the sensitivity of P_i release to ATP is greater (Figure 1). Figure 15 and Table VI show that the amount of AMPPNP bound by F_1 increases as the nucleotide concentration in the column increases. At higher AMPPNP concentrations (i.e. > 1 μM), the release of P_i from F_1 is observed, thus the conformational change which results in the release of P_i has been achieved. This can be explained if it is assumed that more than one AMPPNP molecule binds to F_1 (Figure 29). It was shown that ATP and AMPPNP bind to F_1 equally well (c.f. Tables III and VI, and see
Figure 29

Pi release from F1 on exposure to high AMPPNP concentrations.
Conversion of tightly bound P_i to loosely bound P_i.
Ref. 124), and that AMPPNP did not cause a release greater than 30% of the bound AMPPNP from F_1 (Fig. 10), thus the net effect is that AMPPNP accumulates on F_1 in the presence of higher AMPPNP concentrations. There is no hydrolysis of AMPPNP so it remains bound to F_1 (125,126). Cross and Nalin (48) have demonstrated the presence of three readily exchangeable AMPPNP binding sites that are distinct from three very slowly exchangeable AMPPNP binding sites on F_1, so the $F_1\cdot P_i$ complex can bind a maximum of two AMPPNP molecules at the catalytic sites. The second AMPPNP molecule binding at the third site would be doing so with a lower affinity; Cross and Nalin found one high affinity site, $K_d = 18 \text{ nM}$, and two lower affinity sites, $K_d = 1.0 \text{ \mu M}$ (48). Penefsky's observation that AMPPNP was more effective than ATP in inhibiting P_i binding to F_1 (Figure 9 of Ref. 73) can be explained as outlined below. AMPPNP is not very effective in promoting the release of bound AMPPNP from F_1 (Figure 10), whereas ATP is very effective in promoting the release of bound ATP (i.e. hydrolysed ATP) from F_1 (Figure 13). Therefore, when F_1 is incubated with AMPPNP fewer binding sites are available for P_i binding (see Figure 15, and Tables V and VI). The order of effectiveness of the nucleotides in promoting the release of P_i from F_1 is $\text{ATP} > \text{AMPPNP} >> \text{ADP}$.
The finding that ATP quenches the aurovertin fluorescence, whereas AMPPNP (a strong, competitive inhibitor of ATPase activity) does not (31,127) led Ferguson et al. to suggest the possibility that aurovertin fluorescence quenching may represent something more than mere ATP binding. They suggested that subunit–subunit interactions may be occurring. This proposal may well explain why ATP is more effective than AMPPNP in promoting the release of Pi from F₁. (In the preincubation mode, the slopes of the Pi release curves are 140% μM⁻¹ (Figure 6), and 13% μM⁻¹ (Figure 7), with ATP and AMPPNP, respectively. Thus ATP is about 10 times more effective than AMPPNP in promoting Pi release from F₁.)
Release of P_i from F_1: Pulse-Chase Method

The pulse-chase method offered the opportunity to study the effect of the nucleotides on the release of P_i from F_1 when ADP was also present at the catalytic site. Chase-ATP was effective in achieving the conformational change which resulted in the expulsion of P_i and ADP from F_1 (Figures 6,8,9). Figure 30 shows a schematic representation of the process that may be occurring: the pulse-ATP (at equilibrium with ADP,P_i) is bound at one site, and the chase-ATP binds at another site (61,62,103,104); this latter event then effects the release of hydrolysed pulse-ATP (i.e. ADP,P_i) from F_1. Thus the presence of ADP at the same site with P_i did not prevent P_i release nor ATP binding at an alternate site.

The results obtained with chase-ADP are explained, as for the preincubation studies discussed above, by the failure of F_1 to bind ADP under these experimental conditions (Figure 23). The small P_i released observed (Figure 8) can be accounted for by the presence of trace amounts of ATP in these ADP preparations (e.g. 100 μM ADP solution may contain about 1.4% ATP, i.e. 1.4 μM ATP, which accounts for the results shown in Figure 8) (103,123).
Figure 30

P_i and ADP release from F_1 on the binding of chase-ATP.
Conformational Change

Conversion of tightly bound ADP and Pi to loosely bound ADP and Pi
Figures 7 and 8 show that AMPPNP was able to effect the release of Pi from F1 in the presence of ADP at the catalytic site. In addition, AMPPNP was about equally effective as ATP in promoting the release of Pi from F1 in the presence of ADP (Figure 8). Figure 31 illustrates the process that may be occurring on the binding of AMPPNP. The F1 now has two nucleotide-binding sites filled, one with ADP plus Pi at equilibrium with ATP (61,62), and the other with AMPPNP (an analog of ATP); therefore the conformational change is achieved as when chase-ATP is bound (c.f. Figures 30 and 31). Since the effects of ATP and AMPPNP on the release of hydrolyzed ATP were similar (Figures 6-8), hydrolysis of chase-ATP (or nucleotide) is not necessary for the release of hydrolyzed pulse-ATP. What is necessary is for a second ATP-binding site to be filled. Thus binding of ATP or AMPPNP (i.e. substrate or substrate analog) at another site is sufficient to effect the conformational change which results in the release of Pi from another site on F1 which also contains bound ADP. In the presence of ADP at the catalytic site, the order of effectiveness of the nucleotides in promoting the release of Pi from F1 is ATP = AMPPNP >> ADP.

In Figures 6 and 13, the slopes (46 and 456.μM⁻¹, respectively) of the ADP/Pi release curves of the ATP-chase experi-
Figure 31

Pi and ADP release from F1 on the binding of chase AMPPNP.
Conversion of tightly bound ADP and Pi to loosely bound ADP and Pi.
ments were approximately equal; and in addition they were also equal to the slopes (45%.μM⁻¹ in both cases) of the ADP/Pᵢ release curves of the AMPPNP-chase experiments shown in Figures 7 and 14. This demonstrates that equivalent concentrations of ATP and AMPPNP in the chase had the same effect (Figure 8).

Whereas, a comparison of the slopes (120 and 170%.μM⁻¹, respectively) of the chase-ATP binding curve (Figure 13) and the chase-AMPPNP binding curve (Figure 14), indicates that more AMPPNP than ATP is binding per mole of F₁ at an equivalent nucleotide concentration (see also Tables V and VI). However, the ratio of the slopes of chase-ATP to chase-AMPPNP binding (120/170 or 0.7) is not of such a magnitude to suggest that labelled F₁ is binding more than one AMPPNP molecule at these nucleotide concentrations. Since the ratio of the slopes of the chase-ATP binding curve to that of the ATP (i.e. ADP,Pᵢ)-release curve (Figure 13) is approximately 2.8 (i.e. 120%.μM⁻¹ ÷ 43%.μM⁻¹), and not 1, it must be that chase-ATP molecules are binding to F₁ without pulse-ATP molecules.

Grubmeyer and Penefsky (61,62) have found that hydrolyzable nucleotides such as ATP, GTP, and ITP are excellent promoters of hydrolysis or release of previously bound TNP-[γ-³²P]ATP, whereas non-hydrolyzable nucleotides such as TNP-ADP, ADP, and AMPPNP give lower rates and extents of hydrolysis. In the experiments
reported here, however, the non-hydrolyzable nucleotide, AMPPNP, which bound to F₁ was almost as effective as the hydrolyzable nucleotide, ATP, in promoting the release of previously bound \(\text{Pi} \) and ADP at equilibrium with ATP. Grubmeyer and Penefsky (62) were using higher concentrations of nucleotides (e.g. 100 \(\mu \text{M AMPPNP} \), 1 \(\text{mM ADP} \), and 140 \(\mu \text{M ATP-ADP} \) (see Figure 5 of Ref. 62)) in their experiments. (In the pulse-chase studies reported here, lower nucleotide concentrations (below 2 \(\mu \text{M} \)) were able to promote the release of \(\text{Pi} \) and ADP (Figures 6-8)). It is also possible that their observations are equivalent to the observations made in the less sensitive phase of release seen in both preincubation and pulse-chase modes of the studies reported herein.
Comparison of the Results of Preincubation and Pulse-Chase Studies

It appears that ATP was more effective in promoting \(P_i \) release from \(F_1 \) in preincubation experiments than in pulse-chase experiments (Figure 6), and a schematic diagram of each process is shown in Figures 26 and 30, respectively. The two processes are similar except for the presence of ADP at the \(P_i \) binding site in the pulse-chase experiments. Since the sensitivity of the \(P_i \) release to ATP is apparently greater in the preincubation than in the pulse-chase experiments, i.e. \(P_i \) release is greater in the absence than in the presence of ADP at the same catalytic site, it appears that ADP at the same catalytic site with \(P_i \) is influencing the \(P_i \) release reaction.

In Figure 6, the slopes of the \(P_i \) release curves are 140\% . \(\mu M^{-1} \) (Preincubation Mode) and 45\% . \(\mu M^{-1} \) (Pulse-chase Mode), respectively; and the ratio of the slopes (Preincubation/Pulse-chase) is approximately 3 (140\% . \(\mu M^{-1} \div 45\% . \(\mu M^{-1} \)). [N.B. In the preincubation mode, the mole of label bound/mole of \(F_1 \) is approximately 0.2 to 0.3; whereas in the pulse-chase mode, the mole of label bound/mole of \(F_1 \) is approximately 0.1, before exposure to nucleotide.] One likely explanation which may account for the less effective release of \(P_i \) in the pulse-chase experiments than in preincubation experiments is
competition between labelled and unlabelled F₁ for the chase-
ATP. That there is competition between labelled and unlabelled
F₁ for chase-ATP is substantiated by Figure 13 and Table V. The
slope of the chase-ATP binding curve is 120%·μM⁻¹, and that of
the Pᵢ release curve is 43%·μM⁻¹; thus the ratio of ATP
binding to Pᵢ release is approximately 3 (120%·μM⁻¹ ÷
43%·μM⁻¹), and therefore chase-ATP is very likely also binding
to unlabelled F₁.

Figure 7 shows that AMPPNP was more effective in facilitat-
ing the release of Pᵢ in the pulse-chase mode than in the
preincubation mode, this in spite of the greater competition by
unlabelled F₁ for chase-AMPPNP in the pulse-chase experiment.
In the preincubation experiments, relatively low amounts of
AMPPNP were not effective in promoting Pᵢ release from F₁
(Figure 2), whereas higher amounts of AMPPNP were effective
(Figure 1). These results are diagramed in Figures 27 and 29,
respectively, and the effect of AMPPNP in pulse-chase experi-
ments is diagramed in Figure 31. A comparison of Figures 29 and
31 reveals that the two processes are the same except that in
one case (preincubation mode) two AMPPNP molecules are required;
whereas in the other case (pulse-chase mode) one AMPPNP molecule
is required; and in addition, ADP is absent at the Pᵢ binding
site in Figure 29 and present at the Pᵢ binding site in Figure
31. Thus the difference shown by the two processes may be
attributed to the ADP at the Pᵢ binding site. In Figure 7,
the slopes of the Pi release curves of the preincubation and pulse-chase modes are 13 and 45% μM⁻¹, respectively; hence from the ratio of the slopes (Pulse-chase:Preincubation, i.e. 43:13), the release is about 3 times greater in the pulse-chase mode than in the preincubation mode. It is therefore easier for AMPPNP to effect the conformational change (which results in the release of Pi), if another nucleotide (i.e. ADP) is present at the Pi binding site.
Release of AMPPNP from F_1: Pulse-Chase Methods

Chase-AMPPNP was not very effective in expelling the bound pulse-AMPPNP (< 30%) from F_1 (Figure 10). AMPPNP is not hydrolyzed by F_1, hence all the AMPPNP bound in both pulse and chase accumulates on F_1. (As mentioned before, F_1 can contain a maximum of three AMPPNP molecules at the exchangeable nucleotide binding sites (48)). Table VI supports the hypothesis that chase-AMPPNP is bound and accumulated on F_1 as the chase-AMPPNP concentration increases. Figure 32 offers a scheme for the non-release of pulse-AMPPNP from F_1 on the binding of chase-AMPPNP: the pulse-AMPPNP is not hydrolyzed and it is not readily changed from being tightly bound to loosely-bound (under these experimental conditions). This relative inability of AMPPNP to promote the rapid dissociation of AMPPNP from F_1. AMPPNP complex was also found by Nalin and Cross (102). This finding lends support to the proposal of Ferguson et. al. (127) that the binding of AMPPNP is different from that of ATP in that ATP is more readily able to effect subunit-subunit interactions.
Figure 32

The binding of pulse-AMPPNP and chase-AMPPNP to F_1.
(pulse) AMPPNP

E

AMPPNP

slow

AMPPNP • E

AMPPNP

slow

E

AMPPNP

E

AMPPNP • E

E

AMPPNP

E

AMPPNP • E

Slow Conformational Change

(chase) AMPPNP
Conclusions

Several conclusions were made from this work. These included:

(i) The order of effectiveness of the nucleotides (ATP, ADP, and AMPPNP) in promoting the release of approximately 70% (i.e., the steep phase of the biphasic release) of the bound Pi (0.2 mole Pi/mole F₁) from F₁ was ATP > AMPPNP >> ADP.

(ii) Only binding of ATP or AMPPNP (substrate or substrate analog) at an alternative site (hydrolysis of incoming nucleotide was not necessary) was essential to produce the conformational change which resulted in the release of bound Pi from F₁. (iii) The ratio of mole of Pi released from F₁ to mole of ATP bound to F₁ was approximately one, thus one molecule of incoming ATP was able to effect the release of one molecule of bound Pi from F₁. This observation implied that the Pi was probably binding at a catalytic site. (iv) More than one molecule of AMPPNP had to bind to F₁ in order to effect the release of bound Pi from F₁. This observation implied that the binding of AMPPNP was somehow different from the binding of ATP to the F₁•Pi complex. (v) Both ATP and AMPPNP effected the release of bound Pi in the presence of ADP, with equal sensitivity in the steep phase of the biphasic release of Pi from F₁. (vi) Bound Pi and ADP were probably released with equal sensitivity from the F₁•ADP•Pi complex by incoming ATP. (vii)
The results were consistent with the binding-change mechanism for the F_1 catalysed hydrolysis of ATP. (viii) Lastly, the modified Sephadex centrifuge column technique developed here (both preincubation and pulse-chase modes) could be used in the investigation of other complex multisubunit enzymes (110,111) which have tightly bound molecules and in which subunit-subunit interactions are thought to be involved in the catalytic process.
FUTURE WORK

1. Since AMPPNP can effect the release of hydrolyzed ATP (ADP, Pi) from F1 (Figure 7), it is desirable to know whether the reverse is also true. This would indicate whether the bound nucleotide does or does not have to be hydrolyzed before being released from F1 in the presence of incoming ATP. In addition, it was shown that AMPPNP did not effect the release of bound AMPPNP from F1 as well as it did effect the release of hydrolyzed ATP (c.f. Figures 7 and 10). Thus it is also desirable to compare the effects of ATP and AMPPNP on the release of AMPPNP from F1. This may lend support to the proposal of Ferguson et al. (127) that the binding of AMPPNP is different from that of ATP in that ATP is more readily able to effect subunit-subunit interactions. These proposals can be investigated by using both pulse-chase and preincubation type experiments outlined in this study (see Materials and Methods). In the pulse-chase mode of the Sephadex centrifuge column technique, labelled AMPPNP ([3H]-AMPPNP) will be used in the pulse-section, and labelled ATP ([γ-32P]ATP) will be used in the chase section. In the preincubation mode, the F1 will be preincubated with [3H]AMPPNP before being applied to the column with [γ-32P]ATP in the middle section of the column. In these experiments, the F1.[3H]AMPPNP complex is exposed to incoming [γ-32P]ATP of various concentrations. The amount of each type of label bound is monitored,
thus the effect of ATP on bound AMPPNP can be determined. If as
the ATP concentration increases, less $[^3H]$AMPPNP label is found
on F_1 this would imply that ATP effects the release of previously
bound AMPPNP from F_1. On the other hand, if as the ATP
concentration increases, the amount of $[^3H]$AMPPNP label on F_1
remains unchanged, this would imply that ATP does not effect the
release of previously bound AMPPNP from F_1. If ATP can effect
the release of AMPPNP from F_1, whereas AMPPNP cannot do so
(Figure 10), this would indicate that the binding of ATP is dif-
ferent from that of AMPPNP. An interesting question that may be
raised in these investigations is whether the incoming ATP would
be hydrolyzed and released in preference to the release of the
previously bound non-hydrolyzable AMPPNP. This may be looked at
by doing the appropriate controls and/or tests, e.g., running
columns without AMPPNP in the pulse for each ATP concentration
used to see how much ATP is bound, and examining the bottom part
of the column for $[^32P]P_i$ and $[^\gamma-32P]ATP$ (see Methods and
Ref. 114). Alternatively, comparable quantities of labelled
AMPPNP can be placed in the chase (unlabelled AMPPNP in the
pulse) to determine how much AMPPNP is bound under these condi-
tions. Assuming that ATP and AMPPNP bind equally well to F_1,
it can be determined how much ATP should bind in the chase.
Thus if less ATP than expected is found on F_1, it can be assumed
that the ATP was bound but was hydrolysed and released preferen-
tially to bound AMPPNP.
2. The sensitivity of release of \(\text{Pi} \) and ADP (both from hydrolyzed ATP) from \(F_1 \) by incoming ATP were shown to be similar in these studies (Figure 9). However, the rate of release of bound ADP (the other product of ATP hydrolysis by \(F_1 \)) was not extensively studied as was done with bound \(\text{Pi} \). Thus it is proposed to investigate the release of bound ADP (i.e. in the absence of \(\text{Pi} \)) from \(F_1 \) on exposure to ATP and AMPPNP. In preincubation studies: the \(F_1 \) will be preincubated with labelled ADP ([\(^3\)H]ADP) before application to columns with ATP, or AMPPNP in the middle sections (cf. Figures 1-5).

(Precautions will be taken to ensure that the small amount of ATP is removed from the ADP solutions (31)). The results of these findings will be compared with those illustrated in Figures 1-5. If the results are similar, this would indicate that ADP and \(\text{Pi} \) do bind at the same site, since the conformational change effected by the incoming nucleotide should be similar in both cases.

These results would also tell of the relative effectiveness of the two nucleotides (ATP and AMPPNP) in promoting the release of ADP from \(F_1 \). It was proposed in Figure 31 that AMPPNP was just as effective as ATP in promoting the release of \(\text{Pi} \) from \(F_1 \) in the pulse-chase mode (Figures 6 and 7) because ADP (another nucleotide) was present on \(F_1 \). Therefore in these experiments, it is reasonable to expect that AMPPNP be just as effective as ATP in promoting the release of ADP from \(F_1 \). Thus
the proposed mechanism of \(P_i \) release in the presence of ADP by AMPPNP (Figure 31) can be further enhanced or be called into question.

Using pulse-chase experiments, the role of \(P_i \) on the release of ADP in the presence of incoming nucleotides will be investigated. The \(F_i \) will be preincubated with labelled ADP, i.e. \([^3\text{H}]\text{ADP}\) and applied to columns containing labelled \(P_i \) (i.e. \([^{32}\text{P}]P_i\)) of varied concentrations in the pulse sections, and either ATP or AMPPNP (fixed concentration) in the chase sections. If, as the \(P_i \) concentration in the pulse increases, the release of labelled ADP on exposure to chase nucleotide decreases, this would suggest that the \(P_i \) is binding at a catalytic site and thus preventing the binding of chase nucleotide. The amount of nucleotide bound in the chase in the absence and presence of the \(P_i \) pulse can be determined by doing the appropriate control experiments, i.e. \(F_i \) is not preincubated with labelled ADP, but labelled chase nucleotides (\([^3\text{H}]\text{ATP}\) or \([^3\text{H}]\text{AMPPNP}\)) are used. Thus the experiments outlined in this section should help to clarify the role of ADP at the catalytic sites and what influences its release from \(F_i \).

3. To show that catalytic sites are involved in the binding and release of nucleotides to and from \(F_i \), pulse-chase experiments will be performed as outlined below. The \(F_i \) will be
preincubated with labelled ADP ([³H]ADP) and then applied to columns which contain labelled ATP ([γ-³²P]ATP) (fixed concentration) in the pulse-section and unlabelled ATP (variable concentration) in the chase section. The amount of each type of label on the F₁ will be monitored. The pulse-ATP is expected to effect the release of labelled ADP; and the chase-ATP in turn is expected to promote the release of pulse-ATP (as well as labelled ADP). This experiment would demonstrate that what got on the enzyme can get off, i.e. the pulse-ATP, which effected the release of previously bound ADP, can in turn be released (as ADP and P₁) from its binding site by chase-ATP. Thus if chase-ATP can effect the release of pulse-ATP, therefore most likely binding of pulse-ATP and release of hydrolyzed pulse-ATP (ADP and P₁) is occurring at the same site, i.e. a catalytic site.

4. Similar studies as those performed here (both preincubation and pulse-chase modes) can be carried out with chloroplast, bacterial, other mitochondrial ATPases, and other ATPases. Since these enzymes are similar or similar mechanisms may be involved, the studies will be helpful in revealing similarities or differences. Other complex multisubunit enzymes in which subunit-subunit interactions are thought to be involved in the catalytic process may be similarly investigated. Examples
of such enzymes include Alkaline Phosphatase, Alcohol Dehydrogenase, Succinyl-CoA Synthetase, Glyceraldehyde-3-Phosphatase Dehydrogenase, and Malate Dehydrogenase (110,111).
APPENDIX I

Development of the Modified Sephadex Centrifuge Column Technique

Introduction

In an investigation of the effect of nucleotides (ATP and ADP) on the release of bound Pi from F1, the experiment of Hutton and Boyer was repeated. The results shown in Figure 25 were similar to theirs (Fig. 2 of Ref. 95). It was concluded that both ATP and ADP facilitated the dissociation of Pi from F1, and that the effects of ATP and ADP were not distinguishable below 15 seconds. Penefsky had previously found that Pi binds reversibly to F1 with a half-life of about 2 minutes (73), whereas the half-life for release of Pi in the presence of nucleotides is shorter (Ref. 96 and Fig. 25).

Thus in order to distinguish the effects of ATP and ADP on the release of Pi from F1, another approach was used. Some of the experiments performed in the modification of the conventional Sephadex centrifuge column technique are reported here.

Results and Discussion

The Effect of ATP-Containing Gels in the Middle of the Columns

Figure 1A outlines the preparation of a column with an ATP-containing section in the centre. The rationale was that the F1 in moving through the column during centrifugation would have
Outline of the modified Sephadex centrifuge column technique:

(a) Preparation of the gels. Two sets of Sephadex columns were prepared (28,73). In one set the equilibration buffer of the Sephadex contained: 90 mM Tris-acetate, pH 7.5, 1.6 mM MgSO₄, and 47 μM Pᵢ. The other set had ATP added to the equilibration buffer.

(b) Removal of gels. The gels were removed from the column barrel by decanting gently. The gel without ATP was cut into two halves (∼1.5 cm), and from the ATP-containing gel was cut a measured length.

(c) Assembly of column. One of the buffer-equilibrated gels was placed inside the column barrel. The ATP-containing gel was placed on top of the previously inserted gel. Lastly, the other buffer equilibrated gel was placed on top of the ATP-containing gel.

(d) Column assembly. The reassembled column was placed in a 15 mL conical centrifuge tube, and was then ready for use.
Column 1 is equilibrated with the appropriate buffer
Column 2 is equilibrated with nucleotide in buffer

Gels are removed from columns
Gel 1 is cut into halves
From gel 2, x cm is cut

The pieces of gels are arranged as shown above and then reassembled in a column

The reassembled column is placed in a centrifuge tube
only brief contact with the ATP of the ATP-containing gel. It was expected that this relatively brief exposure would be enough for the ATP to exert its effect (see Fig. 25).

Figure 2A shows that as the concentration of ATP in the 1.0 cm middle ATP-containing section of the column increased, so did the release of bound Pi from F1. This clearly demonstrated that the F1 had access to the ATP of the ATP-containing middle section. However, all of the bound Pi was not removed from F1 despite the high concentration (400 mM) of ATP used.

Figure 3A shows that on increasing the length of the ATP-containing middle section, the release of bound Pi from F1 also increased. From the results shown in Figures 2A and 3A, it was inferred that the removal of all bound Pi from F1 might be possible if (i) the amount of ATP in the middle section was higher, or (ii) the ATP-containing middle gel was longer, or (iii) the time of contact between F1 and the ATP was longer.

Experiments were performed with the reassembled columns containing various fixed lengths of middle gels, with each fixed length having been equilibrated with buffer containing different concentrations of ATP. Figure 4A shows the results of the first such experiment, in which a 1.5 cm ATP-containing middle section was used. It should be noted that a very high concentration (458 mM) of ATP was used; and that it was impracticable to use a higher concentration in the equilibration buffer since the maxi-
The effect of ATP on the release of bound Pi from F₁. The reassembled columns were prepared as described in Figure 1A. The concentration of ATP in the equilibration buffer used to prepare the 1.0 cm middle ATP-containing gels was varied (0, 100, and 400 mM). 80 µL aliquots of a reaction mixture containing: 3.7 µM F₁, 90 mM Tris-acetate, pH 7.5, 1.6 mM MgSO₄, and 47 µM Pi with [²³²P]Pi (1.3 × ¹⁰⁶ cpm/nmole), which had been allowed to stand for 30 minutes at 23°C, was added to the reassembled column. Centrifugation (1050 x g) was carried out immediately for 2 minutes. For each ATP concentration a control, i.e. no ATP in the middle gel, was also run simultaneously. The 100% Pi bound corresponded to a ratio of 0.35 mole Pi/mole F₁. Each point is the average of duplicate experiments.
The effect of ATP on the release of bound Pi from F_1. The reassembled columns were prepared as described in Figure 1A. The conditions and concentrations were the same as described in Figure 2A, except that a concentration of 100 mM ATP was in the equilibration buffer used to prepare the different lengths of the ATP-containing middle gels. The specific activity of the $[^{32}\text{P}]\text{Pi}$ added to the reaction mixture was 1.2×10^6 cpm/nmole. For each length a control, i.e. a column with no ATP in the middle gel, was also run simultaneously. The 100% Pi bound corresponded to a ratio of 0.17 mole Pi/mole F_1. Each point is the average of duplicate experiments.
Figure 4A

The effect of ATP on the release of bound Pi from F1. The reassembled columns were prepared as described in Figure 1A. The conditions and concentrations were the same as described in Figure 2A, except that the length of the middle section was kept constant at 1.5 cm, and the ATP concentration was varied (0, 100, 458 mM) in the equilibration buffer of the middle gels. The specific activity of the $[^{32}\text{P}]\text{Pi}$ in the reaction mixture was 1.23×10^6 cpm/nmole. 150 µL aliquots of the reaction mixture were added to the reassembled columns. The 100% Pi bound corresponded to 0.18 mole Pi/mole F1. Each point is the average of duplicate experiments.
mum solubility of ATP was being approached. A comparison of Figures 2A and 4A shows that as the length of the ATP-containing middle section increased, so did the amount of P_i released from F_1.

Experiments with 2.0 cm ATP-containing middle sections gave results (not shown) similar to those obtained previously (Fig. 4A). Here even with the increased length (2.0 cm) of the ATP-containing middle gel (300 mM ATP in the equilibration buffer), not all the bound P_i was released from F_1. Experiments were also performed with a longer ATP-containing mid-section gel (3.0 cm, 300 mM ATP in the equilibration buffer), and again not all the bound P_i was removed from F_1 equilibrated with F_1.

The reassembled columns were subjected to various centrifugal forces (from 420 \times g to 1050 \times g, i.e., Setting No. 2 to No. 5, 'I.E.C. Clinical Centrifuge, Rotor 221). The objective of this experiment was to allow longer exposure of the F_1 to ATP in the middle section. The experimental conditions and procedures were as described in Figures 1A and 2A, except that the 1.0 cm mid-section gel was equilibrated in buffer containing 100 mM ATP. For each speed of centrifugation investigated, the time of centrifugation was kept constant (2 minutes). It was found that centrifugations at 420 \times g, 630 \times g, and 840 \times g produced gels which were difficult to handle, i.e., these gels were difficult to remove and reassemble without being broken. Centrifugations
of reassembled columns at 630 x g and 840 x g gave negligible amounts of centrifugate. The centrifugations at 1050 x g produced gels which were easy to work with, and with the reassembled columns gave enough centrifugate. Thus all centrifugations (preparation of gels and investigations with F₁) were at 1050 x g, hence speed of centrifugation was eliminated as a variable to increase the contact time between F₁ and ATP of the mid-section gel.

Determination of the Optimum Lengths of Gels for the Top and Bottom Sections of the Reassembled Columns

The top section of the reassembled column is to ensure that only Pᵢ bound to F₁ reaches the nucleotide-containing mid-section gel. Figure 5A shows the results of an experiment with various lengths of buffer-equilibrated gels alone in the column (bottom gel and nucleotide-containing middle gel were not used). Evidently, as the lengths of the gels increased, the amount of label in the centrifugate decreased. Thus the length of the top section influenced the removal of free, loosely, and non-specifically bound label from the applied sample. It was concluded that a top gel of at least 2.5 cm was required. Table IA shows that the [³²P]Pᵢ-equilibrated F₁ samples gave centrifugates with higher amounts of label than the [³²P]Pᵢ-equilibrated buffer without F₁. The difference was due to the [³²P]Pᵢ bound tightly to F₁ which was not removed by the gel.
Figure 5A

The effect of different lengths of buffer-equilibrated gels on the removal of label from the reaction mixtures. The experimental conditions and procedures were the same as described in Figures 1A and 2A, except that no bottom gel nor ATP-containing gel was used. 80 µL aliquots of each reaction mixture (i.e. with and without F₁) was applied to each column. The specific activity of the [³²P]Pᵢ in each reaction mixture was 1.4 × 10⁶ cpm/nmole, and the concentration of F₁ was 1.85 µM. A 25 µL aliquot of each centrifugate was counted to determine the amount of label that passed through the column. The 100% cpm of [³²P]Pᵢ that passed through the column corresponded to the amount of label in 25 µL of reaction mixture. Each experiment was performed in duplicate. (〇 [³²P]Pᵢ equilibrated buffer, and □ [³²P]Pᵢ F₁-reaction mixture).
Table 1A

The effect of different lengths of buffer-equilibrated gels on the removal of label from the reaction mixtures.

<table>
<thead>
<tr>
<th>Length of Gel in Column (cm)</th>
<th>Sample Applied to Column</th>
<th>% cpm passed through column (25 µL counted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Pi</td>
<td>100</td>
</tr>
<tr>
<td>0.5</td>
<td>Pi</td>
<td>40.48</td>
</tr>
<tr>
<td></td>
<td>Pi + F1</td>
<td>47.68</td>
</tr>
<tr>
<td>1.0</td>
<td>Pi</td>
<td>13.92</td>
</tr>
<tr>
<td></td>
<td>Pi + F1</td>
<td>20.9</td>
</tr>
<tr>
<td>1.5</td>
<td>Pi</td>
<td>7.48</td>
</tr>
<tr>
<td></td>
<td>Pi + F1</td>
<td>8.42</td>
</tr>
<tr>
<td>2.0</td>
<td>Pi</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>Pi + F1</td>
<td>2.02</td>
</tr>
<tr>
<td>2.5</td>
<td>Pi</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>Pi + F1</td>
<td>0.83</td>
</tr>
<tr>
<td>3.0</td>
<td>Pi</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Pi + F1</td>
<td>0.65</td>
</tr>
<tr>
<td>3.5</td>
<td>Pi</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Pi + F1</td>
<td>0.51</td>
</tr>
<tr>
<td>4.0</td>
<td>Pi</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Pi + F1</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Experimental conditions and procedures were as described in Figure 5A.
The bottom gel of the column is involved in the uptake of previously bound molecules which are released by F1 during or after the binding of nucleotide from the middle section. Figure 6A and Table IIA show that as the total length of the gel in the column increased (i.e., as the length of the bottom section increased), the amount of Pi going through the column decreased. It was concluded that a minimum length of 2.0 cm was required for the bottom section, since with shorter bottom sections, the amount of label in the controls (i.e., samples without F1) was high. Even with the maximum 3.0 cm bottom section, all the bound Pi was not removed from F1; this suggested that a bottom section greater than 3.0 cm was needed to allow the complete removal of Pi from F1. However, the length of the 1.0 mL tuberculin syringe which was used as the column barrel could not accommodate more than 6.5 cm total length of reassembled gels.

Use of a Longer Reassembled Column and the Determination of the Parameters under which the Column Functions Best

A longer column barrel was made (as described under Methods) to accommodate the optimum lengths of the three sections, viz.: (i) a 2.5 cm top gel, (ii) a 1.0 cm middle gel, and (iii) a 4.0 cm bottom gel. The 4.0 cm bottom section was the maximum that could be used without any alteration in the lengths of the other
Figure 6A

The effect of different lengths of bottom gels on the removal of label from the reaction mixtures. The experimental conditions and concentrations used were as described in Figure 3A, except that the lengths of the top and middle gels were 2.5 cm and 1.0 cm, respectively. The concentration of F1 in the reaction mixture was 1.85 μM. For bottom sections 2.0 cm and shorter, the specific activity of the [32P]P_i in the reaction mixture was 1.42×10^6 cpm/nmole; and for bottom sections longer than 2.0 cm, the specific activity of the [32P]P_i in the reaction mixture was 1.35×10^6 cpm/nmole. Each point is the average of duplicate experiments. [○ % [32P]P_i in buffer which passed through, □ % [32P]P_i in F_i-reaction mixture which passed through, and △ ratio of mole P_i/mole F_i].
% CPM PASSED THROUGH OR (mole P$_i$/mole F$_i$) BOUND

LENGTH OF BOTTOM PART OF COLUMN (cm)

0.5 1.0 1.5 2.0 2.5 3.0

35 40 45 50 55 60 6.5 TOTAL LENGTH (cm)

% 32P passed through

mole (P$_i$/F$_i$) bound
Table IIA

The effect of the total length of the column on the removal of label from the reaction mixture.

<table>
<thead>
<tr>
<th>Total Length of Column (cm)</th>
<th>Length of Bottom Section (cm)</th>
<th>Sample Applied to Column</th>
<th>Label in 25 μL Centrifugate (cpm)</th>
<th>% of label* in 25 μL Centrifugate</th>
<th>mole Pi</th>
<th>mole F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>0</td>
<td>32Pi</td>
<td>5716</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32Pi+32F1</td>
<td>19994</td>
<td>1.20</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.5</td>
<td>32Pi</td>
<td>1115</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32Pi+32F1</td>
<td>8619</td>
<td>0.52</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1.0</td>
<td>32Pi</td>
<td>344</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32Pi+32F1</td>
<td>5184</td>
<td>0.03</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>1.5</td>
<td>32Pi</td>
<td>188</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32Pi+32F1</td>
<td>3546</td>
<td>0.02</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>2.0</td>
<td>32Pi</td>
<td>64</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32Pi+32F1</td>
<td>2209</td>
<td>0.13</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>2.5</td>
<td>32Pi</td>
<td>24</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32Pi+32F1</td>
<td>1530</td>
<td>0.10</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>3.0</td>
<td>32Pi</td>
<td>26</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32Pi+32F1</td>
<td>1661</td>
<td>0.10</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

* 100% label was the amount of label in 25 μL reaction mixture.

Experimental conditions and procedures were as described in Figure 6A.
two sections, because some space in the column barrel above the
top gel was required to allow for the insertion of a cut 1.0 mL
pipette tip. Through the tip the measured volume of the partic-
ular reaction mixture was added. It was found that adding the
sample of the reaction mixture directly to the gel (immediately
before centrifugation) caused the results to be somewhat less
reproducible. Thus using the cut tip on top of the column,
besides giving more reproducible results, allowed six columns to
be prepared for simultaneous centrifugation.

An experiment was performed with the optimum lengths (2.5,
1.0, and 4.0 cm) of the three sections in the longer column
barrel. The reaction mixtures and procedures were the same as
described in Figures 1A and 6A, except that the volume of the
reaction mixture applied to each via the cut pipette tip was 100
μL. The concentration of ATP in the buffer used in the prepara-
tion of the middle gel was 50 mM; and the concentration of F₁
and specific activity of the $[^32P]P_i$ in the reaction mixture
were 1.28 mg.mL$^{-1}$ (or 3.7 μM) and 1.0 \times 106 cpm/nmole, respect-
ively. Without ATP in the middle section of the column, the
experiment gave a ratio of 0.187 mole P_i/mole F_1. It showed
that it was possible to remove almost all of the bound P_i from
F_1. This was similar to the results seen earlier when 2.5 and
3.0 cm bottom sections were used (Fig. 6A). It was decided to
use the lengthened column barrel in future investigations of the bound species of F₁.

However, with the increased length of the reassembled gels in the column, the other variables were investigated to determine whether other changes were required. The parameters that were considered previously included: (i) the total length of the reassembled column, (ii) the different lengths of the three sections, and (iii) the centrifugal force and the time it was applied. Additional factors that had to be considered included: (i) the amount of F₁ applied to the column, (ii) the volume of the reaction mixture applied to the column, (iii) the amount of nucleotide and/or Pᵢ in the middle section, (iv) the specific activity of the radiolabelled compounds used, and (v) the ionic composition, pH, and temperature of the equilibration buffers and gels.

Table IIIA shows the effect of using varying amounts of F₁ in the modified Sephadex centrifuge column technique. The volume of the F₁ reaction mixture added to the column was kept constant, whilst the concentration (mg protein.mL⁻¹) was varied. With ATP in the columns, no great difference in the amount of [³²P]Pᵢ bound to F₁ was observed with the different concentrations of F₁ in the reaction mixtures (Table IIIA). Values of the concentrations of F₁ lower than 0.63 mg protein.mL⁻¹ did not give reproducible results (these are not shown in Table IIIA):
Table IIIA

The effect of ATP on the release of P_i from F_1 when different amounts of protein were used in the reaction mixture.

<table>
<thead>
<tr>
<th>F_1 (mg.mL$^{-1}$)</th>
<th>BSA (mg.mL$^{-1}$)</th>
<th>[ATP] in Column (mM)</th>
<th>Label in 20 μL Centrifugate (c.p.m.)</th>
<th>mole P_i mole F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>0.18</td>
</tr>
<tr>
<td>0.63</td>
<td>0</td>
<td>0</td>
<td>6600</td>
<td>0.002</td>
</tr>
<tr>
<td>0.63</td>
<td>0.63</td>
<td>50</td>
<td>300</td>
<td>0.008</td>
</tr>
<tr>
<td>0.95</td>
<td>0</td>
<td>0</td>
<td>9900</td>
<td>0.18</td>
</tr>
<tr>
<td>0.95</td>
<td>0.95</td>
<td>50</td>
<td>100</td>
<td>0.002</td>
</tr>
<tr>
<td>1.26</td>
<td>0</td>
<td>0</td>
<td>13000</td>
<td>0.18</td>
</tr>
<tr>
<td>1.26</td>
<td>0</td>
<td>50</td>
<td>80</td>
<td>0.001</td>
</tr>
<tr>
<td>1.26</td>
<td>1.26</td>
<td>50</td>
<td>200</td>
<td>0.003</td>
</tr>
</tbody>
</table>

The experimental conditions and procedures were as described in Figures 1A and 6A, except that in the reassembled column only optimum lengths (i.e., 2.5, 1.0, and 4.0 cm, respectively) were used. The concentration of ATP in the equilibration buffer of middle gel was 50 mM. The volume of reaction mixtures applied to the columns was 100 μL, and the volume of centrifugate counted was 20 μL. The specific activity of the [^{32}P]P_i in the reaction mixtures was 1.0×10^6 cpm/nmole. The experiment was performed in duplicate.
whereas with 1.26 and 0.95 mg protein\textcdot mL$^{-1}$ F$_1$ reaction mixtures, the results were somewhat more reproducible. It was decided that this lower concentration of F$_1$ (0.95 mg protein\textcdot mL$^{-1}$) would be used in subsequent studies. Table IIIA also shows the results when the total protein concentration (in each 100 μL volume applied to the column) was increased by the addition of the equivalent amount (mg protein\textcdot mL$^{-1}$) of bovine serum albumin (BSA). It was concluded that the BSA adsorbed variable and non-reproducible amounts of $[^{32}P]P_1$. Increased and reduced proportions (e.g. 10 and 0.1 fold, respectively) of BSA were added to the F$_1$ solutions with similar results (not shown). Thus the use of BSA in the F$_1$ reaction mixtures was avoided in subsequent studies.

An experiment similar to that described in Table IIIA was performed, except that no BSA was used and the concentration of F$_1$ in the reaction mixture used was 0.95 mg protein\textcdot mL$^{-1}$; and the specific activity of the $[^{32}P]P_1$ in the reaction mixtures was 4.3 x 105 cpm/nmole. In this case, however, different volumes (100, 125, 150, 175, and 200 μL) of the reaction mixtures (with and without F$_1$) were applied to the columns. It was found that 150 μL of reaction mixture was the minimum volume that gave adequate centrifugate for the analyses (bound label determination, assays for protein concentration and activity). In addition, 150 μL volume was easily accommodated by the cut 1.0 mL pipette tip (∼200 μL capacity) placed on top of the column.
The assays for the concentration of protein and activity of F₁ in the reaction mixture and in the centrifugate gave similar values.

Conclusion

The results showed that an ATP-containing middle section in the column was able to influence the release of bound Pᵢ from F₁. It was determined that the longer column with a 2.5 cm top, 1.0 cm middle, and a 4.0 cm bottom gel was the most appropriate. The most suitable volume of reaction mixture to be added to the column was 150 μL via a cut 1.0 mL pipette tip; and the protein concentration was about 1.0 mg mL⁻¹, without the addition of BSA. All centrifugations with the longer column were performed at 1050 x g for 3 minutes at room temperature (20-23°C).
APPENDIX II

Adaptation of the Modified Sephadex Centrifuge Column Technique for Use in Pulse-Chase Experiments

The Arrangement of the Gels for Pulse-Chase Experiments

Figure 7A shows the arrangement of the reassembled gels in the pulse-chase mode of the modified Sephadex centrifuge column technique. 1.0 cm lengths were chosen for both pulse and chase sections, since this length provided sufficient time for F1 to bind ATP from the 1.0 cm ATP-containing gel (see Appendix I and Results). 3.0 and 2.5 cm spacer or buffer-equilibrated gels were used after pulse and chase sections, respectively; and were selected since they were adequate to remove unbound label from F1 (see Appendix I).

Determination of the Amount of ATP to Use in the Top or Pulse Section of the Column

The appropriate concentration of ATP to use in the equilibration buffer of the pulse gel was decided by the balance between the amount of ATP bound by F1 from the pulse gel, and the amount of bound ATP that was removed from F1 on exposure to chase ATP. The concentrations of ATP used in the chase gels were kept similar to those used in middle gels of the preincubation experiments in order to facilitate comparison of the results of the two modes of experimentation. Figure 7A shows the
Figure 7A

The arrangement of the gels in the modified Sephadex centrifuge column technique for pulse-chase experiments. The figure lists what occurs in each layer of the reassembled column. (Not drawn to scale.)
1. Pulse given
2. Washing occurs
3. Chase given
4. Washing occurs (uptake of released molecules)

Contains radiolabelled molecules e.g. [32P]ATP

Contains unlabelled molecules e.g. ATP

Centrifugate with labelled and/or unlabelled molecules
The effect of chase ATP on the release of label bound when F₁ was passed through a 10 μM ATP pulse section. The experimental conditions and procedures were the same as those used in the modified Sephadex centrifuge column technique (Fig. 1), except that the gels were arranged as shown in Figure 7A. The lengths of the four sections, starting from the top of the column, were 1.0, 3.0, 1.0 and 2.5 cm, respectively. (Note that no [³²P]Pi label was added to the reaction mixture.) The concentration of F₁ in the reaction mixture was 0.86 mg protein mL⁻¹ or 2.49 μM. The specific activity of the [³²P]ATP in the 10 μM ATP-containing buffer used to prepare the pulse gel was 3.4 x 10⁴ cpm/nmole. The 100% Pi bound corresponded to a ratio of 0.15 mole Pi/mole F₁. The experiment was performed in triplicate.
results of an experiment when 10 μM ATP was used in the equilibration buffer of the pulse gel. The results demonstrate that F₁ in passing through pulse gel bound ATP molecules, and that the release of these molecules (or hydrolysis products) was influenced by the chase ATP. However, less than half of the label bound in the pulse was released in the chase.

Figure 9A shows the results of an experiment in which the length of the chase section was 3.5 cm (i.e. the bottom 2.5 cm gel also contained ATP). The results were similar to those obtained previously (see Fig. 8A), thus even the increased number of chase ATP molecules and/or increased time of exposure to chase ATP molecules proved inadequate to remove all the label bound in the pulse. This prompted some experiments with different concentrations of ATP in the equilibration buffer of the pulse gel. The results of these experiments are summarized in Table IVA and plotted in Figure 10A. It was seen that with a 10 μM ATP pulse gel, the 1.0 μM ATP chase gel removed only about 42% of the bound ATP molecules. Secondly, with a 1.0 μM ATP pulse gel, the 1.0 μM ATP chase gel removed about 55% of the bound ATP. Lastly, with 0.1 and 0.5 μM ATP pulse gels, the amount of ATP bound in the pulse was too low to be useful in these pulse-chase studies. Thus, the best balance between the amount of ATP bound and ATP released was achieved when 1.0 μM ATP equilibrated pulse gel was used.
The effect of chase ATP on the release of label bound when
F_1 was passed through a 10 μM ATP pulse section. The experimen-
tal conditions and procedures were the same as described in
Figure 8A, except that the 2.5 cm bottom section also contained
chase ATP (i.e. total ATP chase section was 3.5 cm). The
concentration of F_1 in the reaction mixture was 1.16 mg protein.
mL^{-1} or 3.36 μM. The specific activity of the $[^{32}\text{P}]$ATP in the
10 μM ATP-containing equilibration buffer of the pulse gel was
3.7×10^4 cpm/nmole. The 100% P_i bound corresponded to a
ratio of 0.17 mole P_i/mole F_1. The experiment was performed
in triplicate.
Table IVA

The effect of chase ATP on the release of label bound when F_1 was passed through pulse sections with different concentrations of ATP.

<table>
<thead>
<tr>
<th>Conc. of ATP in Buffer (μM)</th>
<th>Conc. of F_1 in Reaction (mg·mL⁻¹)</th>
<th>Specific Activity of $[^{32}P]ATP$ in Reaction Mixture (cpm/nmole)</th>
<th>Conc. of ATP in Buffer of Pulse Gel Mixture (μM)</th>
<th>mole Pi</th>
<th>mole F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 10</td>
<td>1.16</td>
<td>3.7×10^4</td>
<td>0</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>2. 1</td>
<td>0.85</td>
<td>4.87×10^5</td>
<td>0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>3. 0.1</td>
<td>0.85</td>
<td>4.28×10^6</td>
<td>0</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>4. 0.5</td>
<td>0.85</td>
<td>1.51×10^6</td>
<td>0</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

The experimental conditions and procedures were the same as outlined in Figure 9A. The data are plotted in Figure 10A. Each experiment was performed in triplicate.
The effect of chase ATP on the release of label bound when F₁ was passed through pulse sections with different concentrations of ATP. The experimental conditions and procedures were the same as described in Figure 9A. Other experimental details are given in Table IVA. (□ 10 μM ATP, ○ 1.0 μM ATP, and △ 0.5 μM ATP used in the buffer to prepare the pulse section.)
10 μM ATP pulse-section
1.0 μM ATP pulse-section
0.5 μM ATP pulse-section

[ATP], μM

0.25
0.5
0.75
1.0

(mole P / mole F') BOUND

0.1
0.2
Conclusion

The rearrangement of the gels (1.0 cm pulse - 3.0 cm spacer - 1.0 cm chase - 2.5 cm bottom) in the column, and use of the appropriate concentration of ATP (1.0 μM) in the equilibration buffer of the pulse gel, allowed the adaptation of the modified Sephadex centrifuge column technique for pulse-chase studies. Note that except for the substitution of a 1.0 cm pulse section for the top 1.0 cm of the top spacer section, the experimental procedures and conditions were the same as those used in the preincubation mode.
REFERENCES

