NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formulaires d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS RÉCEVE
NAME OF AUTHOR/NOM DE L'AUTEUR: David Wai-Lok Cheung

TITLE OF THESIS/TITRE DE LA THÈSE: Site-Optimal Termination Protocols for Network Partitioning in a Distributed Database

UNIVERSITY/UNIVERSITÉ: Simon Fraser University

DEGREE FOR WHICH THESIS WAS PRESENTED/GRADE POUR LEQUEL CETTE THÈSE FUT PRÉSENTÉE: Master of Science

YEAR THIS DEGREE CONFERRED/ANNÉE D'OBTENTION DE CE GRADÉ: 1985

NAME OF SUPERVISOR/NOM DU DIRECTEUR DE THÈSE: Tiko Kameda

Permission is hereby granted to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film. The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

DATE/DATÉ: 17 August 1984

SIGNÉ/SIGNÉ: E702, Sui Wo Court, Shatin, N.T., Hong Kong
SITE-OPTIMAL TERMINATION PROTOCOLS
FOR NETWORK PARTITIONING
IN A DISTRIBUTED DATABASE

by

David Wai-Lok Cheung
B.Sc., Chinese University of Hong Kong, 1971

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the Department
of
Computing Science

© David Wai-Lok Cheung 1984

SIMON FRASER UNIVERSITY
August 1984

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy
or other means, without permission of the author.
APPROVAL

Name: David Wai-Lok Cheung

Degree: Master of Science

Title of Thesis: Site-Optimal Termination Protocols for Network Partitioning in a Distributed Database

Examination Committee:

Chairperson: Lou Hafer

Senior Supervisor: Tiko Kameda

Arthur Lee Liestman

Wo-Shun Luk

External Examiner: Francis Chin

Department of Computing Science

University of Alberta

Date Approved: August 7, 1984
PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay

SITE-OPTIMAL TERMINATION PROTOCOLS FOR NETWORK

PARTITIONING IN A DISTRIBUTED DATABASE

Author:

(signature)

David Wai-Lok Cheung

(name)

17 August 1984

(date)
ABSTRACT

In a distributed database system, a transaction submitted at a site may require execution of its subtransactions at a number of sites. In order to guarantee that no partial result of a transaction is reflected in a database, rendering the database inconsistent, all sites involved must unanimously commit or abort the transaction. Thus a commit protocol is required.

A distributed database system must guarantee consistency even if there is failure. When failure occurs, it is desirable to have a termination protocol (TP) terminate all the affected transactions consistently. However, in the case of network partitioning, it has been shown that there exists no commit protocol that is nonblocking, i.e., some participating sites may have to wait for the repair of this type of failure before they can decide to commit or abort a transaction. Hence the goal here is to design a site optimal termination protocol, which has the minimum expected number of waiting sites. Such a protocol will maximize the availability of a database in the presence of network partitioning.

We consider the general case in which realizable component states of a partition may have different probabilities of occurrence. We study two classes of TP's, namely, size-based TP's and count-based TP's and show that there exists a quorum-based TP that is site optimal in these classes. Results in this thesis indicate that the set of quorum-based TP's plays an essential role in the design of site optimal TP's, both in the decentralized and the centralized cases.
ACKNOWLEDGEMENTS

My greatest thanks are reserved for my Senior Supervisor, Dr. Tiko Kameda. His enthusiasm, patience and willingness to help have been invaluable. Also, his insistence on precision and clarity in writing has been most helpful. It has been a very great pleasure to work with him.

Thanks are due to Dr. Francis Chin, Dr. Arthur-Lee Liestman and Dr. Wu-Shun Luk, not only for their reading and commenting on this thesis, but also for their constant concern and encouragement.

I am also indebted to the faculty and staff of the Computing Science Department of Simon Fraser University for their helpful assistance and for a stimulating environment.

Finally, I wish to dedicate this thesis to my dear wife Juana whose invaluable concern and understanding have made this endeavor both possible and worthwhile. Without her support, my dream of going back to a graduate study would not have materialized.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>Chapter One. INTRODUCTION</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.1. Transaction Atomicity in a Distributed Database System</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.2. Commit Protocols</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1.3. Blocking Property of Two-Phase Commit Protocols</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.4. Three-Phase Commit Protocols</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Chapter Two. TERMINATION PROTOCOLS FOR NETWORK PARTITIONING</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2.1. Components and Component States of a Partitioned Network</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2.2. Three-Phase Commit Protocol under Network Partitioning</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2.3. Termination Protocols</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2.4. Some Characteristics of DTP's</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>2.5. Site Optimal DTP's for a special case</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Chapter Three. SITE OPTIMAL SIZE-BASED DECENTRALIZED TERMINATION PROTOCOLS</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>3.1. Introduction</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>3.2. Size-Based DTP's</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>3.3. Site Optimal Size-Based DTP's</td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>
3.4. Count-Based DTP's ... 31

Chapter Four. SITE OPTIMAL SIZE-BASED CENTRALIZED TERMINATION PROTOCOLS ... 36

4.1. Introduction .. 36

4.2. Size-Based Centralized Termination Protocols ... 40

4.3. Site Optimal Size-Based Centralized Termination Protocols 47

4.4. Count-Based CTP's ... 55

4.5. Restricted Decentralized Termination Protocols .. 58

Conclusion ... 62

References ... 63

Figures ... 64
LIST OF TABLES

Table 2.1. The decisions of d_{P_1} for $n = 4$ sites. .. 17
Table 2.2. Values of $E(d_{P_1})$ and $E(d_{W_1})$ for $n = 9$ sites. 19
Table 3.1. An example of a size-based DTP for $n = 4$ sites. ... 26
Table 3.2. An example of a count-based DTP for $n = 4$ sites. ... 32
Table 4.1. Structure of the size-based CTP g in Theorem 4.3. ... 46
Table 4.2. Structure of a quorum-based CTP c_{P_1}. ... 48
Table 4.3. Structure of the quorum-based CTP c_{P_0}. .. 48
Table 4.4. The decisions of c_{P_1} when $n = 4$ sites. .. 48
Table 4.5. Structure of a quorum-based CTP c_{W_1}. ... 50
Table 4.6. An example of a count-based CTP for $n = 4$ sites. ... 55
Table 4.7. The decisions of c_{P_0} for $n = 4$ sites. ... 57
LIST OF FIGURES

Figure 1.1. FSA of the Centralized Two-Phase Commit Protocol. .. 64
Figure 1.2. FSA of the Decentralized Two-Phase Commit Protocol. .. 65
Figure 1.3. FSA of the Centralized Three-Phase Commit Protocol. .. 66
Figure 1.4. FSA of the Decentralized Three-Phase Commit Protocol. .. 67
CHAPTER 1
INTRODUCTION

1.1. Transaction Atomicity in a Distributed Database System

In a distributed environment, a transaction submitted at a site may require database entities stored at other sites, and thus cooperative execution at a number of sites. These sites are referred to as the participating sites of that transaction. A transaction is a logically atomic operation which transforms a consistent database state into another consistent state. In order to maintain the consistency of a database, the effect of a transaction should be either fully reflected in the database or not at all.

If a transaction is executed to completion and its effects are permanently incorporated into the database, we say that the transaction is committed. If one of the participating sites cannot complete the transaction, then all the other sites have no choice but to abort the transaction.

There are many reasons why a transaction cannot be completed: for instance, request for abortion by a subtransaction itself, deadlock and hardware failure.

In our discussion we will use the term subtransactions to refer to different parts of a transaction which are executed at the participating sites. In order to guarantee atomicity, all sites involved in a transaction must unanimously commit or abort the transaction. Hence commit protocols (see Section 1.2) are required in distributed database systems. In the following section, a well known protocol, called the two-phase commit protocol [LAMP-76, GRAY-78], which guarantees atomicity of transaction, will be introduced.
1.2. Commit Protocols

In a distributed database system, any protocol coordinating the subtransactions of a transaction can be modeled as a collection of finite state automata (FSA), one associated with each participating site [SKEE-81]. A finite state automaton in a certain state reads a set of messages from other sites, takes an appropriate action, sends out a set of messages to other sites (FSA) and then changes its state. Initially, the site which issues a transaction sends its subtransactions to the appropriate sites and each of these sites determines individually whether it would commit or abort the transaction. This step can be conceived as a voting step in which every site involved expresses its intention to commit or abort. After all votes are received, a global decision will be made and all the sites will follow this decision to either unanimously abort or unanimously commit the transaction.

Different protocols use different approaches to collecting votes and making global decision. However, they must all follow the same commit rule, i.e., a transaction must be aborted if one or more sites have decided to abort it; otherwise, it must be committed. Protocols which follow the commit rule are called commit protocols. In the following we introduce two commit protocols, namely, the centralized two-phase commit protocol and decentralized two-phase commit protocol [GRAY-78].

These protocols both have two phases and four states.

State q is the initial state before a site has made its voting decision.

State w is the waiting state in which a site waits for the message containing the global decision after it has sent out its voting message.

State c is the commit state in which a site has committed its subtransaction.

State a is the abort state in which the state in which a site has aborted its subtransaction.

The states c and a are final states in which a transaction is terminated, whereas state w is only a transient state.
Centralized two-phase commit protocol

One of the sites is designated as the coordinator.

PHASE ONE

After executing the subtransaction allocated to it, a participating site sends a voting message to the coordinator. If a site votes "no", this reflects its intention to abort the transaction. It aborts its subtransaction after sending out its voting message "no".

If a site votes "yes", the site is ready to commit the transaction if all other sites agree. However, it cannot commit the transaction at this point, it has to wait for the global decision from the coordinator.

PHASE TWO

If all sites have voted "yes", then the coordinator broadcasts a "commit" message. Otherwise, it broadcasts an "abort" message.

All the participating sites then act (i.e., either commit or abort) unanimously according to the message from the coordinator.

This protocol can be represented by a collection of finite state automata (FSA), one associated with each participating site. In what follows we use the term "site" to refer to the FSA at that site.

Initially, all sites are in state q. If a site votes "no", it goes into state a after it has sent its vote to the coordinator. If it votes "yes", it goes into the waiting state w. As for the coordinator, it is also in state w before making a global decision. In the second phase, all sites that are in state w change their states to either c or a unanimously according to the global decision received from the coordinator.
The FSA associated with the coordinator and any other site can be represented by two graphs (see Figure 1.1). Note that in these graphs, if a site is in state q, all other sites must be in a state which is adjacent to state q, i.e., either state q, state w or state a, and no site could be in state c. Similarly, if a site is in state c, no site could be in state q or state a.

With this protocol, different sites could be in different states at any given time, but no site could lead another site by more than one state transition during the execution of the protocol. Therefore these FSA are called *synchronous within one state* [SKEE-81a].

The three-phase commit protocol has a decentralized version. In the decentralized case, no coordinator is appointed, but each site will collect all the votes and use them to make the global decision.

Decentralized two-phase commit protocol

PHASE ONE

If a site decides to abort, it broadcasts a "no" message to all other participating sites and aborts the transaction.

If it decides to commit, then it broadcasts a "yes" message and waits for the votes from all other participating sites.

PHASE TWO

After it has received all the voting messages, each site makes a global decision according to the commit rule: i.e., commit if all sites vote to commit, abort otherwise. Since all sites receive the same set of voting messages, they will all take the same final action, either commit or abort.

The FSA associated with this protocol can also be represented by a graph (see Figure 1.2). Since there is no coordinator, all participating sites have the same FSA and these FSA are all synchronous within one state.
1.3. Blocking Property of Two-Phase Commit Protocols

Two-phase commit protocols guarantee atomicity of distributed transactions, but this is only true in case there is no failure. Consider the centralized two-phase commit protocol. Suppose three sites s_1, s_2, and s_3, where s_1 is the coordinator. In phase one, site s_2 sends a "yes" to s_1. After a while, it detects that it is separated from both sites s_1 and s_3. This could happen because of site failure or network partitioning. In this situation, site s_2 has no information about what has taken place in sites s_1 and s_3: the transaction could have been aborted or committed in these sites. The only thing that site s_2 could do is to wait until the failure is repaired and then communicate again with s_1 and s_3 in order to reach a global decision.

While site s_2 is blocked, waiting for recovery from the failure, no new transaction can access that part of the database which will be updated by the suspended transaction at s_2. To see this, suppose the concurrency control scheme used is the "locking scheme". Then a part of the database which will be updated by the suspended transaction has been locked by the transaction, and hence no new transaction can access it. If another concurrency control scheme, e.g. "time stamping", is used, the problem will still occur. It is this blocking property that degrades the performance of the two-phase commit protocol in the presence of failure.

A similar problem occurs for the decentralized two-phase commit protocol. Hence two-phase commit protocols are called blocking protocols [SKEE-81b]. If failure occurs, a distributed transaction, executing under a blocking protocol, could have some of its participating sites wait for a long time for recovery from the failure. This is very undesirable and hence the problem of designing nonblocking protocols arises. A nonblocking protocol terminates all participating sites to either abort or commit.
1.4. Three-Phase Commit Protocols

As seen above, blocking property degrades the performance of two-phase commit protocols. Is there any protocol that is free from blocking property? Is it possible to design protocols which are nonblocking for certain types of failure? The first nonblocking commit protocol for site failures was proposed by Skeen [SKEE-81b]. He proposed the \textit{three-phase commit protocol} and showed that it is a nonblocking commit protocol for site failures. This type of protocol is essentially a modification of the two-phase commit protocol. The following is a description of his protocol for the centralized model.

\textbf{Centralized three-phase commit protocol}

\textit{PHASE ONE}

This phase is the same as \textit{PHASE ONE} of the two-phase commit protocol.

\textit{PHASE TWO}

If at least one site votes "no", then the coordinator broadcasts an "abort" message and all sites abort the transaction.

If all sites vote "yes", the coordinator broadcasts a "prepare-to-commit" message to every participating site. After each site has received this message, it returns a "confirmation" message to the coordinator.

\textit{PHASE THREE}

After the coordinator has received "confirmation" messages from all other sites, it broadcasts a "commit" message. A site commits only after it has received this message.

The FSA associated with the coordinator and other participating sites of this protocol can be represented by the two graphs in Figure 1.3, where p is a new state which indicates the state of a site after it has sent out a "confirmation" message but before it has committed, (i.e., entered state...
c). Note that the three-phase commit protocol is also synchronous within one state. The significance of the new state \(p \) is that the existence of a site in state \(p \) indicates that the global decision is a "commit" decision. Since this protocol is synchronous within one state, if a site has committed, no other site could be in state \(q \) or \(a \). Note also that if a site has aborted, (i.e., entered state \(a \)), no site could be in state \(p \) or \(c \).

Once a site failure is detected, all the operational sites can exchange the information they have and use the following protocol to terminate a transaction.

If there exists a site in states \(p \) or \(c \), all operational sites commit. Otherwise, all sites abort.

Thus no operational site needs to wait, that is to say, the three-phase commit protocol is non-blocking for site failure. However, this protocol is not nonblocking for a particular type of failure called "network partitioning". In the next chapter, the relation between the three-phase commit protocol and network partitioning will be discussed in detail.

The three-phase commit protocol also has a decentralized version without coordinator.

Decentralized three-phase commit protocol

PHASE ONE

This phase is the same as PHASE ONE of the decentralized two-phase commit protocol.

PHASE TWO

If the set of votes received by a site contains a "no" message, then the site aborts the transaction.

If all the votes received are "yes", then the site broadcasts a "confirmation" message to every other site.

PHASE THREE
After a site has received "confirmation" messages from all other sites, then it commits the transaction.

The FSA of this protocol is represented by the graph in Figure 1.4. The decentralized three-phase commit protocol is also nonblocking for site failures. The same protocol that was used in the centralized case to terminate transactions in the presence of site failure can also be applied to this case. In the rest of this thesis, a "commit protocol" will denote the three phase commit protocol.
CHAPTER 2

TERMINATION PROTOCOLS FOR NETWORK PARTITIONING

2.1. Components and Component States of a Partitioned Network

In a distributed system, sites communicate via a communication network. A message issued at a site may go through some other sites before it reaches its destination. If some sites or communication links fail, it is possible that the sites are divided into subsets such that the sites in a subset can still communicate with each other, whereas sites in different subsets can no longer communicate. Failure of this type is known as network partitioning [SKEE-82a]. The sites within a subset can exchange information and try to decide on a concerted action (commit, abort, or wait) to be taken by all the sites within that subset.

In order to investigate actions to be taken by each site in the event of network partitioning, we define the terms, component and the state of a component (component state, for short), in the context of network partitioning [RAMA-84].

When network partitioning occurs, the participating sites of a transaction are divided into disjoint sets of sites called components. Communication between sites in different components is disrupted, whereas communication among the sites within a component is still possible. We thus assume that a pair of sites can communicate with each other or not at all. That is, no failure causes disruption of communication in one direction only. Throughout our discussions, we consider an n-site network and the set of all sites is denoted by \(I \). We use \(\Gamma \) to denote the set of all components and \(C \) to denote a typical component in \(\Gamma \).

Since our main interest is in the design of termination protocols (see section 2.3) for network partitioning, we will not concern ourselves with the detection of network partitioning. We

1 In [RAMA-84], component was called group and component state was called component. In order to be compatible with the general usage of the term "component", we have adopted new terminology.

assume that site failures as well as network partitioning can be somehow detected, either by operational sites or by the underlying network.

When a transaction is executed under the three-phase commit protocol, the state (q, w, a, etc.) of a site depends on the time when the partitioning occurs. The sites belonging to a component could be in different states, and thus we need a notation to represent the information about the states of the sites in a component.

Let Q be the set of all possible states of the FSA associated with the three-phase commit protocol, i.e., $Q = \{q, w, p, a, c\}$. To represent the fact that site i is in state s, we use an ordered pair (i, s) in $I \times Q$. Let S be a set of ordered pairs from $I \times Q$. S is a realizable state of component C, (realizable component state, for short) [CHL-83] iff

1. $C = \{ i \mid (i, s) \in S \}$,
2. there do not exist two different ordered pairs in S that have the same first element, and
3. the second elements of all the pairs in S are either the same or adjacent states in the FSA associated with the commit protocol.

The first point in the above definition signifies that set S represents the state of component C. The second point ensures that a site can be in exactly one state. The third point follows from one-synchrony of the three-phase commit protocol, i.e., any pair of sites of a component must be in the same or adjacent states. Any set S satisfying these three conditions represents a realizable state of a component in a partition under the three phase commit protocol. See Example 2.1 below for examples of realizable and unrealizable component states.

Throughout our discussion, when we refer to a component state, it is assumed to be realizable unless otherwise stated. For any component state S, we use the notation $\text{comp}(S) = \{ i \mid (i, s) \in S \}$ and $\text{state}(S) = \{ s \mid (i, s) \in S \}$. With this notation, S is a state of the component $\text{comp}(S)$. Two component states S_1 and S_2 are said to be concurrent if $\text{comp}(S_1)$ and $\text{comp}(S_2)$ are disjoint and $\text{state}(S_1) \cup \text{state}(S_2)$ contains one state or only adjacent states. Intui-
tively, this means that the two components \(\text{comp}(S_1) \) and \(\text{comp}(S_2) \) which are in state \(S_1 \) and \(S_2 \), respectively, can occur together in a partition.

Example 2.1.

Suppose there are only three participating sites, i.e., \(J = \{1, 2, 3\} \). Then \(C_1 = \{1, 2\} \) and \(C_2 = \{3\} \) are two disjoint components in a partition. \(S_1 = \{(1, p), (2, w)\} \) and \(S_2 = \{(3, w)\} \) are two concurrent states of \(C_1 \) and \(C_2 \), respectively.

Let \(S_3 = \{(3, c)\} \). Although \(S_3 \) is a realizable component state, it is not concurrent with \(S_1 \), because states \(c \) (the state of site 3 in \(S_3 \)) and \(w \) (the state of site 2 in \(S_1 \)) are not adjacent.

Let \(S_4 = \{(1, q), (2, p)\} \). Then \(S_4 \) is an unrealizable component state because state \(q \) and state \(p \) are not adjacent. □

2.2. Three-Phase Commit Protocol under Network Partitioning

When network partitioning occurs, can we consistently terminate all the sites without making some of them wait until communication is reestablished? It is reasonable to terminate all the sites in a component by the same action; namely "commit" or "abort", since they can still communicate with each other and can share the information collected within the component.

In the following, when we refer to the termination of a component in a certain state, we mean the termination of the subtransactions by a particular action at all sites in the component. Also, when we say that a component state \(S \) is terminated, we mean that the component \(\text{comp}(S) \) in state \(S \) is terminated to either "commit" or "abort". In the presence of network partitioning, we hope to terminate all concurrent component states consistently. That is, we wish to avoid the situation when one component state is terminated to "commit" and another concurrent component state is terminated to "abort".

Can the three-phase commit protocol terminate all components in all realizable states, i.e., can it terminate all realizable component states? Unfortunately, the answer is negative. It has
been observed that if a protocol can terminate a component C in all realizable states, then the components disjoint from C must wait when they are in certain states, i.e., sites in these components can neither abort nor commit [CHI-83].

The following example illustrates this observation.

Example 2.2.

Let $I = \{1, 2, 3\}$. Then $S_1 = \{(1, p), (2, p)\}$ and $S_2 = \{(1, w), (2, w)\}$ are states of component $C = \{1, 2\}$. Similarly $S_3 = \{(3, c)\}$ and $S_4 = \{(3, a)\}$ are states of the component $\{3\}$.

Here we assume that a transaction is executed under the decentralized commit protocol. Observe that if f is a protocol that terminates both S_1 and S_2, it must terminate them to "commit" and "abort", respectively. The reason is that S_1 is concurrent with S_3 and site 3 of S_3 has committed, therefore f must terminate S_1 to "commit" in order to preserve the consistency of the database. Similarly S_2 must be terminated to "abort", since it is concurrent with S_4.

Let us now consider two component states $S_5 = \{(3, p)\}$ and $S_6 = \{(3, w)\}$. They are both concurrent with S_1 and S_2. If f terminates one of them to "abort", then it will contradict the decision taken on S_1. On the other hand, if f terminates one of them to "commit", then it will contradict the decision taken on S_2. This simple example illustrates the fact that no protocol can consistently terminate all component states. It is now clear that the three-phase commit protocol is blocking for network partitioning. This is true in both the centralized and decentralized cases.

2.3. Termination Protocols

It was shown in the last section that no protocol can terminate all realizable component states. We thus wish to have a protocol that minimizes the expected number of waiting sites and hence maximizes the availability of a database when partitioning occurs. Before a detailed discussion of this problem, we first formally define a termination protocol.
A termination protocol (TP) can be viewed as a function mapping component states onto decisions to be followed by the sites within the corresponding components. It has to ensure that no two component states that could potentially occur concurrently in a partition are given conflicting decisions.

We use "com", "ab" and "wa" to represent the three decisions "commit", "abort" and "wait", respectively.

Observe that a component which contains a site in state q or state a can always be terminated to ab. If a component has a site in state a, then there is no choice but to abort the transaction because at least one site has already aborted the transaction. If a component has a site in state q, then no global decision has been made and no site could have committed the transaction. However, it is possible that sites of some other components in the same partition have aborted the transaction. Therefore, such a component must be terminated to ab.

A similar argument applies to the case where a component has a site in state c. Such a component should be terminated to com. It follows from the above observation that only those component states with sites in state p and/or w are crucial in defining a termination protocol; a termination protocol is completely defined by mapping these component states to "ab", "com" or wait.

Definition 2.1. [CHIN-83]. A termination protocol (TP, for short) f is a function from the set of all realizable component states to the set of decisions \{com, ab, wa\} with the following two conditions.

1. f satisfies the nonreversal condition. i.e., for any component state S, c \in state(S) implies that f(S) = com, and \{q, a\} \cap state(S) = \emptyset implies that f(S) = ab.

2. f satisfies the consistency condition, i.e., for any two concurrent component states S1 and S2, \{f(S1), f(S2)\} \neq \{com, ab\}.

This condition was called preservation property in [CHIN-83].
The nonreversal condition of a TP is required because of the observation made before Definition 2.1. The consistency condition simply ensures that, even though two component cannot exchange information, they must be terminated by "non-conflicting" actions.

For convenience we will use Θ to denote the set of all component states with the sites in state p and/or w, i.e., $\Theta = \{S : \text{state}(S) \subseteq \{p, w\} \}$. $\Theta_p \subseteq \Theta$ denotes the subset of Θ which contains all the component states that have at least one site in state p. Similarly, $\Theta_w \subseteq \Theta$ denotes the subset which contains all the component states that have at least one site in state w. Throughout the rest of our discussion, when we define a TP f, we will only specify the values of f for the component states in Θ, i.e., $\{f(S) : S \in \Theta\}$. The values of f for the component states not belonging to Θ are uniquely determined by the nonreversal condition, and therefore we do not specify them explicitly.

When a TP is used together with the centralized three-phase commit protocol, the TP is called a centralized termination protocol (CTP). Similarly, a TP in the decentralized case is called a decentralized termination protocol (DTP).

As stated above, we wish to design a TP which minimizes the expected number of waiting sites. Such a TP is called a site optimal termination protocol [CHIN-83].

Components which result from network partitioning have different probabilities of occurrence. For a component state S, $Pr(S)$ denotes the probability of its occurrence.

Let $E(f)$ denote the expected number of waiting sites under a TP f. Note that if $f(S) = wa$, all sites in $\text{comp}(S)$ wait. Therefore, we have

$$E(f) = \sum_{S \in W} |S| Pr(S),$$

where W is the set of component states that wait under f, i.e., $W = \{S : f(S) = wa\}$, and $|S|$ denotes the number of sites in $\text{comp}(S)$.

$E(f)$ gives a measure of performance of a TP f in the presence of network partitioning. If $E(f)$ is small then the availability of the database is high when partitioning occurs. For example,
in the case where locking is used, the locks at a site cannot be released when the site waits. We want to find a site optimal termination protocol, i.e., a TP with the minimum $E(f)$ value.

Definition 2.2 [CHIN-83]. A TP is said to be a site optimal termination protocol if it has the minimum expected number of waiting sites. □

Thus if TP is the set of all TPs, then $f \in TP$ is site optimal iff $E(f) = \min \{E(g) \mid g \in TP\}$.

In the rest of this thesis, we will be mainly concerned with site optimal termination protocols within certain subclasses of TP, i.e., $\min \{E(g) \mid g \in k\}$, where $k \subseteq TP$.

2.4. Some Characteristics of DTP's

The following properties distinguish DTP's from CTTP's.

Theorem 2.1 [CHIN-83]. A necessary and sufficient condition for a function f, from the set of realizable component states to the set of decisions $\{com, ab, wa\}$, to be a DTP is

1. f satisfies the nonreversal condition, and
2. For any two component states $S_1, S_2 \in \Theta$ such that $\text{com}(S_1) \cap \text{com}(S_2) = \emptyset$, $|f(S_1), f(S_2)| \neq \{\text{com, ab}\}$ holds. □

Comparing this theorem with Definition 2.1, it is seen that the consistency condition in Definition 2.1 is replaced by the second condition in Theorem 2.1.

This reflects the fact that in the distributed case any two disjoint components give rise to pairs of concurrent component states and therefore a DTP must terminate them consistently.

Recall that all the component states in Θ have sites in either state p or state w and these two states are adjacent in the FSA.

For a given component C, the state of C which has all its sites in state p is denoted by p^C.

Similarly w^C will denote the component state which has all its sites in state w. Similarly w^C will denote the component state which has all its sites in state w.

- 15 -
Lemma 2.1 [CHIN-83]. For a given component C and a DTP f

1. either $f(p^C) = \text{com}$ or $f(p^C) = \text{wa}$ and

2. either $f(w^C) = \text{ab}$ or $f(w^C) = \text{wa}$. □

p^C can occur concurrently with a component state that contains a site in state c, hence p^C cannot be terminated to ab. Similar reasoning applies to (2) above. The conditions on f in this lemma are essential characteristics of a DTP. In Chapter 4 we will see that the first condition does not hold for CTP's.

Lemma 2.2 [CHIN-83]. For any two disjoint components C_1 and C_2 and any DTP f, at least one of the two values, $f(p^{C_1})$ and $f(w^{C_2})$, must be wa. □

If neither value is wa, it follows from Lemma 2.1 that $f(p^{C_1}) = \text{com}$ and $f(w^{C_2}) = \text{ab}$. However, this violates the consistency condition on TP.

Lemma 2.3 [CHIN-83]. For any component C_1, let $S_i, S_j \in \Theta$ be two states of C_1. If $f(S_i) = \text{com}$ and $f(S_j) = \text{ab}$ then $f(S_k) = \text{wa}$ for every state S_k of C_2 that is disjoint from C_1. □

Note that state S_i in Θ is concurrent with both S_i and S_j. Since S_i and S_j are terminated to conflicting actions, S_i has no other choice but to wait.

In particular, if both p^{C_1} and w^{C_1} are terminated by f, they will be terminated to conflicting actions. Thus all states of C_2 in Θ must wait.

2.5. Site Optimal DTP's for a special case

In this section, we investigate site optimal DTP's in a special case. Although the case is far from general, it gives us some insight into general site optimal termination protocols.

In general, different component states have different probabilities of occurrence. In this section, we assume that the probabilities for different component states are all equal, and therefore the problem of finding a site optimal protocol is reduced to finding a TP which has the minimum
sum of waiting sites over all component states. In this case,

\[E(f) = \sum_{S \in W} |S| \]

where \(W \) is the set of waiting component states.

For this case, site optimal DTPs have been found [CHIN-83]. In order to present site optimal DTPs, we first introduce a particular class of DTPs, namely, quorum-based DTP's [CHIN-83].

As before let \(n \) be the number of participating sites. For a given integer \(k \) \((0 \leq k < n/2)\), define a DTP \(dp_i \) as follows, where \(S \in \Theta \).

1. If \(|S| \leq k \), let \(dp_i(S) = wa \).
2. If \(k < |S| < n-k \) and \(p \in \text{state}(S) \), let \(dp_i(S) = \text{com} \).
3. If \(k < |S| < n-k \) and \(\text{state}(S) = \{ w \} \), let \(dp_i(S) = wa \).
4. If \(|S| \geq n-k \) and \(p \in \text{state}(S) \), let \(dp_i(S) = \text{com} \).
5. If \(|S| \geq n-k \) and \(\text{state}(S) = \{ w \} \), let \(dp_i(S) = ab \).

A DTP defined as above is said to be quorum-based. \(dp_i \) acts on a component state according to its size as well as whether its sites are all in state \(w \) or not. The set of all \(dp_i \)'s is denoted by \(QDp \). In Table 2.1, an example of a quorum-based DTP is given. In that example, there are four sites involved (i.e., \(n = 4 \)) and \(k \) is equal to 1. The table shows the decision by the quorum-based DTP \(dp_i \) on every realizable component state in \(\Theta \). Note that the entries in the first, third and fifth columns represent component states. For example, an entry \((p - - -) \) represents the component state \{ (1, p) \}.

There is another set of quorum-based DTP's denoted by \(dw_k \) \((0 \leq k < n/2)\). \(dw_k \) is defined in the same way as \(dp_i \) except that \(p \) and \(w \) are interchanged and so are \(\text{com} \) and \(ab \). The set of all \(dw_k \)'s is denoted by \(QDw \). The union of \(QDp \) and \(QDw \) is denoted by \(QD \). Thus, \(QD \) is the set of all quorum-based DTP's.

For a quorum-based DTP \(dp_i \) and an integer \(r \) \((1 \leq r \leq k)\), if \(S \) is a component state of size \(r \), then \(dp_i(S) = wa \). Since we only consider the case where a component state has all its sites
either in state p or w, the number of component states S such that |S| = r is given by $2^r(r)$. Therefore the total number of waiting sites over all the component states of size r is given by $r2^r(r)$.

For an integer $r \ (k < r < n-k)$ and for every component C of size r, among all the states of C, w^e is the only waiting component state under dp_k. Therefore the total number of waiting sites over all the component states of size r is given by $r(r)$. For an integer $r \ (n-k < r < n)$, none of the component state of size r waits under dp_k.
Hence for any integer \(k (0 \leq k < n/2) \), if all component states have the same probability, we have

\[
E(f) = \sum_{r=1}^{k} r \cdot \binom{n}{r} + \sum_{r=k+1}^{n-1} r \cdot \binom{n-r}{n-r-k}
\]

We can similarly show that \(E(dw_1) = E(dp_1) \).

It was shown in [CHIN-83] that a site optimal DTP exists in \(QD \). They first showed that for every DTP \(f \), there exists a \(k \) such that the number of waiting sites under \(f \) is at least as large as under \(dp_1 \). They then showed that by comparing all the members in \(QD \), a site optimal DTP can be found in \(QD \). For \(n = 9 \), Table 2.2 lists the values \(E(dp_1) = E(dw_1) \) for all \(k \). By comparing all values in Table 2.2, we find that \(dp_2 \) has the minimum expected number of waiting sites. Hence \(dp_2 \) is site optimal for \(n = 9 \). Since \(E(dw_2) = E(dp_2) \), \(dw_2 \) is also site optimal if \(n = 9 \).

Theorem 2.2 [CHIN-83] Let \(n \) be the number of sites involved and let \(k \) be the largest integer such that

\[
k \cdot 2^k \leq n.
\]

Then both \(dp_1 \) and \(dw_1 \) are site optimal DTP's. ☐

In the following, we will try to abstract some of the characteristics of a quorum-based DTP. Recall that \(\Gamma \) denotes the set of components and let \(\Gamma_k \) denote the set of all the components that are of size \(k \). Recall also that \(\Theta \) is the set of all the component states with sites in state \(p \) and/or \(w \). Let \(\Theta(C) \) denote the set of component states \(S \) in \(\Theta \) such that \(\text{comp}(S) = C \) and let \(\Theta_p(C) \)

<table>
<thead>
<tr>
<th>(k)</th>
<th>(E(dp_1)/E(dw_1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2295</td>
</tr>
<tr>
<td>1</td>
<td>2232</td>
</tr>
<tr>
<td>2</td>
<td>2196</td>
</tr>
<tr>
<td>3</td>
<td>3456</td>
</tr>
<tr>
<td>4</td>
<td>10368</td>
</tr>
</tbody>
</table>

Table 2.2. Values of \(E(dp_1) \) and \(E(dw_1) \) for \(n = 9 \) sites.
denote the set of component states in $\Theta(C)$ which have at least one site in state p. Similarly we define $\Theta_p(C)$ by replacing p with w.

Let $ALL_p(f)$ denote the set of all components C such that all the component states in $\Theta(C)$ are terminated by f, i.e., for each $S \in \Theta(C)$, $f(S) = \text{com}$ or ab. Similarly $ALL_w(f)$ denotes the set of all components C such that all component states in $\Theta(C)$ are mapped to wa by f. Let $WONLY_w(f)$ denote the set of all components C with the property that all the component states in $\Theta_p(C)$ are terminated and w^C is the only waiting component state in $\Theta(C)$. $PONLY_w(f)$ is defined similarly by replacing $\Theta_p(C)$ for $\Theta_p(C)$ and p^C for w^C.

With the above notation, we can describe some important properties of a quorum-based DTP d_{p_i}.

1. For all $r \leq k$, $\Gamma_r \subseteq ALL_w(d_{p_i})$.
2. For all $r (k < r < n-k)$, $\Gamma_r \subseteq WONLY_w(d_{p_i})$.
3. For $r \geq n-k$, $\Gamma_r \subseteq ALL_p(d_{p_i})$.

The quorum-based DTP d_{w_i} has similar properties. When d_{p_i} is replaced by d_{w_i} and $WONLY_w(d_{p_i})$ by $PONLY_w(d_{w_i})$, the above three properties hold for d_{w_i}.

With this background, in the next two chapters, we will generalize the notion of the quorum-based DTP.
3.1. Introduction In Chapter 2, site optimal DTP's were discussed under the assumption that all component states were equally probable. In the general case, different components and component states will have different probabilities of occurrence. Therefore, the expected number of waiting sites involves these probabilities.

In this chapter, site optimal DTP's are investigated in this general context. We introduce a class of DTP's called size-based DTP's and discuss site optimality within this class. We will also see that quorum-based DTP's play an important role in the search for optimal size-based DTP's.

Recall that \(\Gamma_i \) denotes the set of all components of size \(k \) and \(\Theta(C) \subseteq \Theta \) denotes the set of all states of a component \(C \).

Definition 3.1. A DTP \(f \) is a size-based DTP if it satisfies the following condition: for any positive integer \(k < n \), if a component \(C \in \Gamma_i \) has a state \(S \) such that \(f(S) \neq wa \), then every other component \(C_i \in \Gamma_k \) has a state \(S_i \) such that \(f(S_i) \neq wa \).

Intuitively, if a size-based DTP \(f \) terminates a component of size \(k \) in a certain state \(S \), (i.e., map \(S \) to \(com \) or \(ab \)), then \(f \) terminates every component of the size \(k \) in at least one state.

Recall the notation \(ALL_{wa}(f) \) and \(ALL(f) \) introduced in Section 2.5. A component \(C \) belongs to \(ALL_{wa}(f) \) (or \(ALL(f) \), respectively) if the TP \(f \) maps all component states in \(\Theta(C) \) to \(wa \) (or not \(wa \), respectively). The following lemma gives a property of size-based DTP's.

Lemma 3.1. Let \(f \) be any size-based DTP. For each positive integer \(k < n \), either \(\Gamma_k \subseteq ALL_{wa}(f) \) or \(\Gamma_k \cap ALL_{wa}(f) = \emptyset \).

Proof. Let \(C \in \Gamma_k \cap ALL_{wa}(f) \) and let \(C_i \neq C \) be a component of size \(k \). If \(C_i \) were not a member of \(ALL_{wa}(f) \), then it follows from Definition 3.1 that neither would \(C \) be a member of \(ALL_{wa}(f) \).
All, = (f), hence \(C_1 \) must be a member of \(\text{ALL}_{\text{wd}}(f) \) and this proves that \(\Gamma_k \) is a subset of \(\text{ALL}_{\text{wd}}(f) \). \(\square \)

3.2. Size-Based DTP's

In this section, we introduce a partial order among the DTPs, and then we show that some DTPs are good candidates for site optimal size-based DTPs. In addition, we prove important characteristics of a size-based DTP.

For any two TP's, \(f_1 \) and \(f_2 \), if \(f_1(S) = \text{wa} \) implies \(f_2(S) = \text{wa} \) for any component state \(S \), then we denote this relation by \(f_1 \ll f_2 \). This relation is a partial order on the set of DTPs, since it is transitive and reflexive. Note that we can introduce a similar partial order on the set of CTPs. We will make use of such a partial order later. If \(f_1 \ll f_2 \), it follows from the definition of the expected value \(\text{ES}(f) \) that \(\text{ES}(f_1) \leq \text{ES}(f_2) \).

In the following, when we say that a DTP \(f_1 \) is modified to a DTP \(f_2 \), we mean that some values of \(f_1 \) are changed, giving rise to a new DTP \(f_2 \). We specify only those changes explicitly; the other values remain the same. Also a change is always from \(f_1(S) = \text{wa} \) to \(f_2(S) \neq \text{wa} \) for some component states \(S \). Therefore \(f_2 \ll f_1 \) easily follows.

Lemma 3.2. For a given size-based DTP \(f \) and an integer \(k \) \((n/2 < k < n)\), if a component \(C \) in \(\Gamma_k \) has two states \(S_1 \) and \(S_2 \) such that \(f(S_1) = \text{com} \) and \(f(S_2) = \text{ab} \), then there exists a size-based DTP \(g \) such that \(g \ll f \) and \(\Gamma_k \subseteq \text{ALL}_{\text{wd}}(g) \).

Proof. Let \(r \) be any integer such that \(1 \leq r \leq n - k \). Then clearly \(r < n/2 \). This variable represents the size of a component state concurrent with any state of \(C \). We first show that, for any such \(r \), all component of size \(r \) must wait under \(f \) regardless of their states, i.e., \(\Gamma_r \subseteq \text{ALL}_{\text{wd}}(f) \).

Recall that \(I \) denotes the set of all sites. Let \(C_2 \subseteq I \) be a nonempty component of size \(r \) disjoint from the component \(C \), i.e., \(C_2 \subseteq I - C \). Since \(f(S_1) = \text{com} \), \(f(S_2) = \text{ab} \) and both \(S_1 \) and \(S_2 \) are states of \(C \), it follows from Lemma 2.3 that \(C_2 \in \text{ALL}_{\text{wd}}(f) \). It then follows from Lemma 3.1
that $\Gamma_{r} \subseteq ALL_{r}(f)$. Since the above argument is valid for all integers r such that $1 \leq r \leq n - k$, it follows furthermore that f makes a component wait if it is disjoint from any component of size k. Hence, if any component of size k has a state S such that $f(S) = wa$, we can modify f to g in the following way:

Suppose the condition of the lemma holds and let a component of size k has a state S such that $f(S) = wa$.

1. If $p \in \text{state}(S)$, let $g(S) = \text{com}$.
2. If $\text{state}(S) = \{ w \}$, let $g(S) = ab$.

It follows from the definition of g that $g \ll f$, $\Gamma_{r} \subseteq ALL_{r}(g)$ and g is a size-based DTP. □

In the proof of the above lemma, mapping for a component state S having at least one site in state p was changed from $f(S) = wa$ to $g(S) = com$. Only if S had all its sites in state w, it was terminated to ab by g. This scheme of modifying a TP is called the commit-favouring scheme. A TP f could also be modified to g in such a way that $g(S) = ab$ if S contains at least one site in state w, and $g(S) = com$ otherwise. This scheme is called the abort-favouring scheme.

For any size-based DTP f and any integer $(n/2 < k < n)$, if Γ_{r} satisfies the condition of Lemma 3.2, then there exists a size-based DTP g such that for each component state S, $g(S) = wa$ implies $f(S) = wa$, and no component in Γ_{r} waits under g regardless of the state it is in. If there is no k such that Γ_{k} satisfies the condition of Lemma 3.2, does such a g still exist? The lemma below answers this question.

Before we state the lemma, recall that $PONLY_{wa}(f)$ is the set of all components C that are terminated by the TP f, except when C is in state p^{C}. Similarly $WONLY_{wa}(f)$ is the set of all components C that terminated by f, except when C is in state w^{C}. Throughout the rest of the thesis, if A is a collection of component states, we use $f(A)$ to denote the set $\{ f(S) | S \in A \}$.

Lemma 3.3. For a given size-based DTP f and a positive integer $k < n$, if there is no component $C \in \Gamma_{k}$ such that $f(\Theta(C))$ contains $\{ ab, com \}$ and if there is a component $C_{1} \in \Gamma_{r}$
chapter three

such that \(f(\Theta(C_1)) \neq \{wa\} \) then there exists a size-based DTP \(g \) such that \(g \ll f \) and \(\Gamma_k \subseteq PONLY_{wa}(g) \cup WONLY_{wa}(g) \).

Proof. If a component \(C_1 \) satisfying the condition of the lemma exists, it follows from Definition 3.1 that for all \(C \in \Gamma_k \), either \(com \in f(\Theta(C)) \) or \(ab \in f(\Theta(C)) \). Let \(S_j \) be the state of some \(C \in \Gamma_k \) such that \(f(S_j) = com \). Let \(S_i \) be any state of a component disjoint from \(C \). Thus \(S_i \) is concurrent with \(S_j \). Since \(f(S_j) = com \), \(f(S_i) \) must be either \(wa \) or \(com \). Therefore, in general, for every component state \(S \) that can occur concurrently with a component state in \(\Theta(C) \), \(f(S) = wa \) or \(f(S) = com \). Thus we can modify \(f \) to \(g \) on all component states in \(\Theta(C) \) that wait under \(f \) by the commit-favouring scheme. Note that since \(\{ab, com\} \) is not a subset of \(f(\Theta(C)) \), we must have \(f(wc) = wa \). Therefore \(C \in WONLY_{wa}(g) \).

If \(ab \in f(\Theta(C)) \) on the other hand, it follows from a similar argument that \(f \) can be modified to \(g \) on all component states in \(\Theta(C) \) that wait under \(f \) by the abort-favouring scheme to make \(C \) a member of \(PONLY_{wa}(g) \). Hence the DTP \(g \) thus obtained from \(f \) has the property that \(\Gamma_k \) is a subset of \(PONLY_{wa}(g) \cup WONLY_{wa}(g) \).

Note that the modification done on \(f \) does not affect the property of \(f \) being a size-based DTP, and therefore \(g \) is also a size-based DTP. Since only component states \(S \) with \(f(S) = wa \) have been involved in modification, we have \(g \ll f \).

The following theorem integrates the results of Lemmas 3.1, 3.2 and 3.3.

Theorem 3.1. For any given size-based DTP \(f \), there exists a size-based DTP \(g \) such that \(g \ll f \) and for any \(\Gamma_k (1 \leq k \leq n-1) \) one of the following three holds:

1. \(\Gamma_k \subseteq ALL_{wa}(g) \).
2. \(\Gamma_k \subseteq PONLY_{wa}(g) \cup WONLY_{wa}(g) \).
3. \(\Gamma_k \subseteq ALL_k(g) \).

Proof. For any integer \(k (1 \leq k \leq n-1) \), if \(\Gamma_k \) is not a subset of \(ALL_{wa}(f) \) then it satisfies either the condition of Lemma 3.2 or that of Lemma 3.3. In any case, as was shown in Lemma 3.2
and Lemma 3.3, respectively, f can be modified to a size-based DTP g such that $g \ll f$ and $\Gamma_k \subseteq PONLY_{w_0}(g) \cup WONLY_{w_0}(g)$ or $\Gamma_k \subseteq ALL_{w_0}(g)$. \square

Observe that if g is a size-based DTP as defined in Theorem 3.1 and if C is a component belonging to $ALL_{w_0}(g)$, then any component that is disjoint from C must belong to $ALL_{w_0}(g)$. Therefore, for any integer $b (n/2 < b < n)$, if Γ_k is a subset of $ALL_{w_0}(g)$ for each $k (b \leq k < n)$, then Γ_j is a subset of $ALL_{w_0}(g)$ for each $j (0 < j \leq n-b)$. Observe also that if a component C belongs to $PONLY_{w_0}(g)$, then any component that is disjoint from C is either a member of $PONLY_{w_0}(g)$ or a member of $ALL_{w_0}(g)$. Similarly, if C belongs to $WONLY_{w_0}(g)$, then any component that is disjoint from C is either a member of $WONLY_{w_0}(g)$ or a member of $ALL_{w_0}(g)$. Therefore, in the above theorem, if r is a positive integer less than $n-k$, then Γ_k satisfying condition (3) implies that Γ_r satisfies condition (1). Also if Γ_k satisfies condition (2) then Γ_r satisfies either condition (1) or (2).

From the above observations, we obtain the following result which highlights some important properties of a size-based DTP.

Theorem 3.2. For any size-based DTP f, there exists a size-based DTP h such that $h \ll f$ and there exist two nonnegative integers s and b such that

1. $s + b \geq n$ and $b > n/2$,
2. for all $k (1 \leq k \leq s)$, $\Gamma_k \subseteq ALL_{w_0}(h)$,
3. for each $k (s < k < b)$, either $\Gamma_k \subseteq ALL_{w_0}(h)$ or $\Gamma_k \subseteq PONLY_{w_0}(h) \cup WONLY_{w_0}(h)$, and
4. for all $k (b \leq k < n)$, $\Gamma_k \subseteq ALL_{r}(h)$.

Proof. It follows from Theorem 3.1 that there exists a size-based DTP g which has one of the properties mentioned there. We now modify g to h in such a way that h will have the properties (1) through (4).

Let $s = \max\{k | \text{for all integer } r (1 \leq r \leq k), \Gamma_r \subseteq ALL_{w_0}(g)\}$.

Let $b = \min\{k | \Gamma_k \subseteq ALL_{r}(g)\}$. If $b \leq n/2$, let C_1 and C_2 be two disjoint components of size b.

- 25 -
The existence of C_1 and C_2 is guaranteed by the inequality $b < n/2$. Then both C_1 and C_2 belong to $ALL_r(g)$, which contradicts Lemma 2.3. Hence $b > n/2$. If $r < n - b$, then Γ_r must be a subset of $ALL_{w_0}(g)$, since each component in Γ_r is disjoint from some component in Γ_{w_0}. Hence $s > n - b$, i.e., $s + b \geq n$.

It follows from the minimality of b that for any integer $k (s < k < b)$, Γ_k satisfies condition (3). Hence all the conditions mentioned above, except possibly condition (4), are satisfied by g.

For any $k > b$, if Γ_k is not a subset of $ALL_r(g)$, we can modify g to h on all component states of size k that wait under f by the commit-favouring scheme. This modification is feasible because if $1 \leq r \leq n - k (s \leq n - b)$, all the Γ_i's are subsets of $ALL_{w_0}(g)$. It follows from the way h is defined that h is also a size-based DTP and it satisfies condition (4). Since h is modified from g, it also satisfies all the other conditions. □

Definition 3.2. A size-based DTP h is a *standardized size-based DTP* if there exist two nonnegative integers s and b such that

1. $s + b \geq n$ and $b > n/2$,
2. for all $k (1 \leq k \leq s)$, $\Gamma_k \subseteq ALL_{w_0}(h)$,
3. for each $k (s < k < b)$, either $\Gamma_k \subseteq ALL_{w_0}(h)$ or $\Gamma_k \subseteq PONLY_{w_0}(h) \cup WONLY_{w_0}(h)$,
4. for all $k (b \leq k < n)$, $\Gamma_k \subseteq ALL_r(h)$. □

Definition 3.2 is based on Theorem 3.2. With this definition, Theorem 3.2 can be restated as follows: given any size-based DTP f, there exists a standardized size-based DTP $h << f$. An example of a standardized size-based DTP is given below in Table 3.1. In this example, the number of sites is four and the values of s and b are 1 and 3, respectively. Note that all component states of size 1 are made to wait and all component states of size 3 are terminated. For the component states of size 2, the decisions depend on the sites they contain and on the states of these sites.
Table 3.1. An example of a size-based DTP for \(n = 4 \) sites.

3.3. Site Optimal Size-Based DTP’s

In Theorem 3.2, we have shown that for every size-based DTP \(f \) there exists a standardized size-based DTP \(h \ll f \). Recall the class of quorum-based DTP’s defined in Section 2.5. In this section, we show that we can always find a quorum-based DTP \(dp \) or \(dw \) which satisfies \(E(dp) \leq E(h) \) or \(E(dw) \leq E(h) \).

Assume that partitioning has occurred and consider a component \(C \) of size \(k \). Let \(Pr(C) \) denote the probability of occurrence of the component \(C \) and let \(P(r, s, k), (0 < k < n) \), be the sum of the probabilities of all states of \(C \) with exactly \(r \) sites in state \(p \) and \(s \) sites in state \(w \). For example, the component state \(p^c \) has all its sites in state \(p \), hence \(r \) equals \(k \), \(s \) equals 0 and the
probability of its occurrence is the product of \(Pr(C)\) and \(P(k, 0, k)\), i.e.,

\[Pr(p^C) = Pr(C) P(k, 0, k).\]

Similarly

\[Pr(w^C) = Pr(C) P(0, k, k).\]

Recall that under a quorum-based DTP \(d_{p_k}\) \((k < n/2)\), all components of size less than or equal to \(k\) are wait regardless of their states; each component \(C\) of size between \(k\) and \(n - k\), exclusive, waits in the state \(w^C\) and no other component waits. For convenience, let \(PC_i\) denote the sum of the probabilities of all components of size \(i\), i.e.,

\[PC_i = \sum_{C \in \Gamma_i} Pr(C),\]

and let

\[P_i = \sum_{r+s=h} P(r, s, k).\]

Theorem 3.3. For an integer \(k\) \((0 \leq k < n/2)\), the expected number of waiting sites under the quorum-based DTP \(d_{p_k}\) is given by the following formulae:

\[E(d_{p_0}) = \sum_{i=1}^{n-1} i PC_i P(0, i, i),\]

and

\[E(d_{p_k}) = \sum_{i=1}^{k} i PC_i P_i + \sum_{i=k+1}^{n-1} i PC_i P(0, i, i)\]

for \(k > 0\).

Proof. Suppose \(k = 0\). For any integer \(i\) \((1 \leq i \leq n-1)\) and for every component \(C\) of size \(i\), the state \(w^C\) is the only waiting state of \(C\) under \(d_{p_0}\). The sum of the probabilities of these component states is given by the product of \(PC_i\) and \(P(0, i, i)\). Hence

\[E(d_{p_0}) = \sum_{i=1}^{n-1} i PC_i P(0, i, i).\]

Suppose \(k \geq 1\). For any integer \(i\) \((1 \leq i \leq k)\) and for any component \(C\) of size \(i\), all states of \(C\) wait under \(d_{p_k}\). The sum of the probabilities of occurrence of all these component states is given by \(PC_i\).
For any integer \(i \) \((k+1 \leq i < n-k)\) and for every component \(C \) of size \(i \), the state \(w^C \) is the only waiting state of \(C \) under \(dp_i \). The sum of the probabilities of these component states is given by the product of \(PC_i \) and \(P(0, i, i) \). Also for any integer \(i \) \((n-k \leq i < n)\), no component of size \(i \) waits under \(dp_i \). Hence

\[
E(dp_i) = \sum_{i=1}^{l} i \cdot PC_i \cdot P_i + \sum_{i=k+1}^{n-k-1} n \cdot PC_i \cdot P(0, i, i) \quad \text{for } k > 0.
\]

The argument used in the above proof also applies to the quorum-based DTP's \(dw_i \), proving the following theorem.

Theorem 3.4. For an integer \(k \) \((0 \leq k < n/2)\), the expected number of waiting sites under the quorum-based DTP \(dw_i \) is given by the following formulae.

\[
E(dw_0) = \sum_{i=1}^{n-1} i \cdot PC_i \cdot P(i, 0, i), \quad \text{and}
\]

\[
E(dw_i) = \sum_{i=1}^{i} i \cdot PC_i \cdot P_i + \sum_{i=k+1}^{n-k-1} i \cdot PC_i \cdot P(0, i, i) \quad \text{for } k > 0. \quad \square
\]

Under some conditions, for every size-based DTP \(f \), there exists a quorum-based DTP \(dp_i \) or \(dw_i \) such that \(E(dp_i) \leq E(f) \) or \(E(dw_i) \leq E(f) \), as stated in the following theorem.

Theorem 3.5. If \(P(0, k, k) \leq P(k, 0, k) \) for all integers \(k \) \((1 \leq k \leq n-1)\), then for every size-based DTP \(f \), there exists a quorum-based DTP \(dp_i \) \((1 \leq i < n/2)\) such that \(E(dp_i) \leq E(f) \).

Proof. It follows from Theorem 3.2 that there exists a size-based DTP \(h \) such that \(h \ll f \) and there exist two nonnegative integers \(s \) and \(b \) such that

1. \(s + b \geq n \) and \(b > n/2 \),
2. for all \(k \) \((1 \leq k \leq s)\), \(\Gamma_k \subseteq ALL_{\omega_0}(h) \),
3. for all \(k \) \((s < k < b)\), either \(\Gamma_k \subseteq ALL_{\omega_0}(h) \) or \(\Gamma_k \subseteq PONLY_{\omega_0}(h) \cup WONLY_{\omega_0}(h) \), and
4. for all \(k \) \((b \leq k < n)\), \(\Gamma_k \subseteq ALL_{\omega}(h) \).
We want to compare the expected number of waiting sites under \(h \) and that under the quorum-based DTP \(d_p \), where \(\bar{b} = n - b \). Since \(s + b \geq n \), we have \(\bar{b} \leq s < n/2 \).

For any integer \(k \) (\(1 \leq k \leq \bar{b} \)), it follows from (2) and the definition of quorum-based DTP that all components of size \(k \) wait under both \(h \) and \(d_p \) regardless of their states. Hence these two size-based DTPs have the same expected number of waiting sites for components of size \(k \) in the range \(1 \leq k \leq \bar{b} \).

For any integer \(k \) (\(\bar{b} < k < b \)), it follows from (2) and (3) that, under \(h \), a component \(C \) of size \(k \) either always waits or at least when \(C \) is in one of \(w^C \) and \(p^C \). Under \(d_p \), the component \(C \) waits only when it is in state \(w^C \). Since \(P(0, k, k) \leq P(0, 0, k) \), we have \(Pr(w^C) \leq Pr(p^C) \). Hence the expected number of waiting sites from \(C \) under \(d_p \) is at most as large as that under \(h \).

For any integer \(k \) (\(b < k < n \)), and for any component \(C \) of size \(k \), it follows from (4) that \(C \) never waits under \(h \). This is also true for \(d_p \). Hence the expected number of waiting sites under \(h \) and \(d_p \) are both equal to zero.

In each case, the expected number of waiting sites under \(d_p \) is not larger than that under \(h \). Hence \(E(d_p) \leq E(h) \). Since \(h \ll f \), this proves that \(E(d_p) \leq E(f) \). □

By replacing the quorum-based DTP \(d_p \) by the quorum-based DTP \(d_w \), we get a similar result.

Theorem 3.6. If \(P(k, 0, k) \leq P(0, k, k) \) for all integers \(k \) (\(1 \leq k \leq n-1 \)), then for every size-based DTP \(f \), there exists a quorum-based DTP \(d_w \) (\(1 \leq i < n/2 \)) such that \(E(d_w) \leq E(f) \). □

From these theorems, we see that the set \(QD \) of quorum-based DTPs plays an important role in the search for site optimal size-based DTPs. For every size-based DTP \(f \), there exists a size-based DTP \(q \) in \(QD \) such that \(q \ll f \), therefore by comparing all the quorum-based DTPs, we can find the site optimal size-based DTPs.
Theorem 3.7. If $P(0, k, k) \leq P(0, k, k)$ for all integers $k \leq k \leq n-1$, let m be an index such that

$$E(d_{p_m}) = \min\{E(d_{p_k}) : 1 \leq k < n/2\}$$

then d_{p_m} is size optimal in the set of size-based DTP's.

Proof. The optimality of d_{p_m} follows from Theorem 3.5. □

Theorem 3.8. If $P(0, k, k) \leq P(0, k, k)$ for all integers $k \leq k \leq n-1$, let m be an index such that

$$E(d_{w_m}) = \min\{E(d_{w_k}) : 1 \leq k < n/2\}$$

then d_{w_m} is size optimal in the set of size-based DTP's.

Proof. The theorem follows from Theorem 3.6. □

This concludes our search for size optimal DTP's among all size-based DTP's. In the next section, we will introduce an interesting subclass of size-based DTP's, called count-based DTP's, which is a generalization of quorum-based DTP's.

3.4. Count-Based DTP's

It is natural to assume that when a DTP decides to terminate a component, it bases its decision only on the states of the sites in the component, and not on what sites are in the component. In other words, two component states which have equal number of sites in each state, will be mapped to the same decision.

Given a component state S, let $n_p(S)$ denote the number of sites in state p and let $n_w(S)$ denote the number of sites in state w. Two component states S_1 and S_2 are state equivalent if $|S_1| = |S_2|$, $n_p(S_1) = n_p(S_2)$ (or equivalently, $n_w(S_1) = n_w(S_2)$).

Definition 3.3. A DTP f is a count-based DTP if for any two state equivalent component states S_1 and S_2, $f(S_1) = f(S_2)$.

- 31 -
An example of a count-based dependent DTP with four sites is illustrated in Table 3.2.

Theorem 3.9. Any count-based DTP is a size-based DTP.

Proof. Let \(f \) be a count-based DTP and let \(k \) be an integer such that \(1 \leq k \leq n-1 \). Suppose \(C \in \Gamma_k \) and has a state \(S \) such that \(f(S) \neq w_a \). Then for every component \(C_i \) in \(\Gamma_k \) has a state \(S_i \) such that \(S \) and \(S_i \) are state equivalent, and it follows from Definition 3.2 that \(f(S) = f(S_i) \). In particular \(f(S_i) \neq w_a \). Hence \(f \) is also a size-based DTP. \(\square \)

Consider the size-based DTP represented in Table 3.1. Let \(S_1 = \{(1, w), (4, p)\} \) and \(S_2 = \{(3, p), (4, w)\} \). These two component states have the same numbers of \(p \)'s and \(w \)'s but are

<table>
<thead>
<tr>
<th>component state</th>
<th>decision</th>
<th>component state</th>
<th>decision</th>
<th>component state</th>
<th>decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>site 1 2 3 4</td>
<td>site 1 2 3 4</td>
<td>site 1 2 3 4</td>
<td>ab w p - w ab</td>
<td>w p w ab</td>
<td></td>
</tr>
<tr>
<td>p - - wa</td>
<td>w - - p ab</td>
<td>w w - p ab</td>
<td>w w - p ab</td>
<td>ab</td>
<td></td>
</tr>
<tr>
<td>- p - wa</td>
<td>- p p wa</td>
<td>w w p ab</td>
<td>w w - p ab</td>
<td>ab</td>
<td></td>
</tr>
<tr>
<td>- - p wa</td>
<td>- p w ab</td>
<td>p - p ab</td>
<td>p - p w wa</td>
<td>wa</td>
<td></td>
</tr>
<tr>
<td>- - - p wa</td>
<td>w p p wa</td>
<td>w p w wa</td>
<td>w p w wa</td>
<td>wa</td>
<td></td>
</tr>
<tr>
<td>- w - wa</td>
<td>- - w wa</td>
<td>w w - p ab</td>
<td>w w w ab</td>
<td>ab</td>
<td></td>
</tr>
<tr>
<td>w - w ab</td>
<td>- w ab</td>
<td>p p - com</td>
<td>p p w wa</td>
<td>wa</td>
<td></td>
</tr>
<tr>
<td>w - w ab</td>
<td>p w - wa</td>
<td>w p w wa</td>
<td>w p w wa</td>
<td>ab</td>
<td></td>
</tr>
<tr>
<td>w w - ab</td>
<td>w - w ab</td>
<td>w w - p ab</td>
<td>w w w ab</td>
<td>ab</td>
<td></td>
</tr>
<tr>
<td>w w - ab</td>
<td>p - p wa</td>
<td>w w - p ab</td>
<td>w w w ab</td>
<td>ab</td>
<td></td>
</tr>
<tr>
<td>p - w ab</td>
<td>w - w ab</td>
<td>w w - p ab</td>
<td>w w w ab</td>
<td>ab</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2. An example of a count-based dependent DTP for \(n = 4 \) sites.
terminated to com and ab, respectively. Therefore this size-based DTP is not a count-based DTP.

Hence the set of count-based DTPs is a proper subset of the set of size-based DTPs.

Recall the definition of a standardized size-based DTP. Here we define a similar DTP, namely, standardized count-based DTP.

Definition 3.4. A count-based DTP h is said to be *standardized* if there exist two nonnegative integers s and b such that

1. $s + b \geq n$ and $b > n/2$,
2. for all k $(1 \leq k \leq s)$, $\Gamma_i \subseteq \text{ALL}_{\omega_0}(h)$,
3. for each k $(s < k < b)$, either $\Gamma_i \subseteq \text{ALL}_{\omega_0}(h)$ or $\Gamma_i \subseteq \text{PONLY}_{\omega_0}(h)$, or $\Gamma_i \subseteq \text{WONLY}_{\omega_0}(h)$,
4. for all k $(b \leq k < n)$, $\Gamma_i \subseteq \text{ALL}(h)$. □

It was proved in Theorem 3.2 that any size-based DTP f can be modified to a standardized size-based DTP $h \ll f$. It turns out that if f is a count-based DTP, then f can be modified to a standardized count-based DTP $h \ll f$ as shown in the next theorem.

Theorem 3.10. For any count-based DTP f, there exists a standardized count-based DTP h such that $h \ll f$.

Proof. The existence of h follows from Theorem 3.2, and h inherits the properties of a count-based DTP from f. □

In the condition (3) of Theorem 3.2, for all k $(s < k < b)$, either $\Gamma_i \subseteq \text{ALL}_{\omega_0}(h)$ or $\Gamma_i \subseteq \text{PONLY}_{\omega_0}(h) \cup \text{WONLY}_{\omega_0}(h)$. Since h is a count-based DTP, $\Gamma_i \cap \text{PONLY}_{\omega_0}(h) \neq \emptyset$ implies that $\Gamma_i \subseteq \text{PONLY}_{\omega_0}(h)$. Therefore, for each k $(s < k < b)$, either $\Gamma_i \subseteq \text{ALL}_{\omega_0}(h)$ or $\Gamma_i \subseteq \text{PONLY}_{\omega_0}(h)$ or $\Gamma_i \subseteq \text{WONLY}_{\omega_0}(h)$. □

Theorem 3.11. For any count-based DTP f, there exists a quorum-based DTP q such that $q \ll f$.

- 33 -
Proof. For any given count-based DTP f, it follows from Theorem 3.10 that there exists a standardized count-based DTP h such that $h \ll f$.

Let $P = \{ k \mid s < k < b \text{ and } \Gamma_k \subseteq PONLY_{\omega_0}(h) \}$ and $W = \{ k \mid s < k < b \text{ and } \Gamma_k \subseteq WONLY_{\omega_0}(h) \}$. If $P \neq \emptyset$, then let $m_p = \min\{ k \mid k \in P \}$. If $W \neq \emptyset$, then let $m_w = \min\{ k \mid k \in W \}$.

We now consider four cases.

Case A: suppose both P and W are empty sets, then for all k $(s < k < b)$, $\Gamma_k \subseteq ALL_{\omega_0}(h)$. Let $\bar{b} = n - b$. Since $s + b \geq n$, therefore $\bar{b} \leq s$. By comparing the waiting component states under $dp_{\bar{b}}$ and h, it is clear that $dp_{\bar{b}} \ll h$.

Case B: suppose $W = \emptyset$ and $P \neq \emptyset$, then for all k $(s < k < b)$, either $\Gamma_k \subseteq ALL_{\omega_0}(h)$ or $\Gamma_k \subseteq PONLY_{\omega_0}(h)$. Let $\bar{b} = n - b$. Since $s + b \geq n$, therefore $\bar{b} \leq s$. By comparing the waiting component states under $dp_{\bar{b}}$ and h, it is clear that $dp_{\bar{b}} \ll h$.

Case C: suppose $P = \emptyset$ and $W \neq \emptyset$, then for all k $(s < k < b)$, either $\Gamma_k \subseteq ALL_{\omega_0}(h)$ or $\Gamma_k \subseteq WONLY_{\omega_0}(h)$. Let $\bar{b} = n - b$. Since $s + b \geq n$, therefore $\bar{b} \leq s$. By comparing the waiting component states under $dw_{\bar{b}}$ and h, it is clear that $dw_{\bar{b}} \ll h$.

Case D: suppose both P and Q are nonempty sets, then either $m_1 < m_2$ or $m_2 < m_1$.

If $m_1 < m_2$. Let $m_2 \leq r < b$ and C be a component of size r. Consider a subcomponent C_1 of C with size equal to m_1, since $\Gamma_{m_1} \subseteq PONLY_{\omega_0}(h)$, therefore $h\left(w^{C_1}\right) = ab$. It is clear that, if $h\left(w^C\right) = wa$, then the value of w^C can be modified to ab because it contains the set w^{C_1}. Similarly, if $h\left(p^C\right) = wa$, then p^C can be modified to com. It then follows from Lemma 3.2 that h can be modified so that for all $m_2 \leq r < b$, $\Gamma_r \subseteq ALL_{\omega_0}(h)$ and it is also true that $s + m_2 \geq n$. Let $\bar{m} = n - m_2$. By comparing the waiting component states under $dp_{\bar{m}}$ and h, it is clear that $dp_{\bar{m}} \ll h$.

If $m_2 < m_1$, let $\bar{m} = n - m_1$. The same proof applies and $dp_{\bar{m}} \ll h$.
Since $h << f$ and there always exists a quorum-based DTP q such that $q << h$, it follows that $q << f$. □

Because of Theorem 3.11, we can compare all the quorum-based DTP's to find the site-optimal count-based DTP. Recall that QD denotes the set of all quorum-based DTP's.

Corollary 3.1. If q is a quorum-based DTP such that

$$E(q) = \min\{ES(f) \mid f \in QD\},$$

then q is the site optimal count-based DTP.

Proof. The proof follows directly from Theorems 3.11. □

Because the set of count-based DTP's is a proper subset of the set of size-based DTP's, in the search for a site-optimal count-based DTP, we have a stronger result in Corollary 3.1, i.e., the condition $P(0, k, k) \leq P(k, 0, k)$ in Theorem 3.7 (or $P(k, 0, k) \leq P(0, k, k)$ in Theorem 3.8) has been removed.
CHAPTER 4

SITE OPTIMAL SIZE-BASED CENTRALIZED TERMINATION PROTOCOLS

4.1. Introduction

In this chapter we continue our discussion on site optimal termination protocols, this time, in the centralized case. In the previous chapter, we discussed extensively the problem of finding a DTP site optimal within the class of size-based DTP's and it was found that each site optimal size-based DTP is a quorum-based DTP. We prove an analogous result in what follows.

We first investigate the properties of a CTP that distinguish it from a DTP. These properties help us in the search for site optimal CTP's. We then define the size-based CTP and try to find a CTP site optimal within the class of size-based CTP's. We also introduce the quorum-based CTP, analogous to the quorum-based DTP.

Recall the centralized three-phase commit protocol described in Section 1.4, in which coordinator sites collect the votes and broadcast decisions. In order to simplify our discussion, we assume that there is only one coordinator and, without loss of generality, we consider site 1 as the coordinator. Whenever a decision is made, the coordinator is the first site to act on the decision. For example, in the second phase, after the coordinator has broadcast "prepare-to-commit" messages, it is the first site to go into state p. Also, in the third phase, after it has broadcast "commit" messages, it is the first site to commit the transaction.

Recall that Γ denotes the set of all components. Because the coordinator has some special properties, we separate Γ into two sets: Γ' denotes the set of all components that contain the coordinator and Γ'' denotes the set of all components that do not contain the coordinator. Note that if a component is a member of Γ', then any component that is disjoint from it is in Γ''.
Recall the fundamental property of DTP stated in Lemma 2.3: if \(f \) is a DTP and \(C_1, C_2 \) are two disjoint components, then the fact that one of them belongs to \(\text{ALL}(f) \) implies that the other belongs to \(\text{ALL}_{\omega}(f) \). A CTP does not possess this property, unless both \(C_1 \) and \(C_2 \) belong to \(\Gamma' \) (see Lemma 4.4).

Lemma 4.1. Let \(f \) be any CTP and consider any two disjoint components \(C_1 \in \Gamma' \) and \(C_2 \in \Gamma'' \). Among the component states in \(\Theta(C_2) \), only \(w^{C_2} \) can be concurrent with \(w^{C_1} \).

Proof. Since the coordinator is the first site to go into state \(p \), if \(C_1 \) has all its sites, including the coordinator, in state \(w \), then all the sites in \(C_2 \) must also be in state \(w \). \(\Box \)

This lemma has two important implications:

Property One: For any component \(C_1 \) in \(\Gamma' \), if its current state is \(w^{C_1} \) then no other site can be in state \(p \).

Property Two: For any component \(C_2 \) is \(\Gamma'' \), if its current state contains a site in state \(p \), then the coordinator must be in state \(p \).

Due to the above two properties of a CTP, Lemma 2.3 does not apply to CTP. The corresponding lemmas for CTP's are proved below as Lemmas 4.2 and 4.3.

Lemma 4.2. For any CTP \(f \) and two disjoint components \(C_1 \in \Gamma' \) and \(C_2 \in \Gamma'' \), if \(C_1 \) has two component states \(S_1, S_2 \) that \(f(S_1) = \text{com}, f(S_2) = ab \), then \(f(w^{C_2}) = wa \).

Proof. No matter how many sites of \(S_1 \) and \(S_2 \) are in states \(p \) or \(w \), they are concurrent with the component state \(w^{C_2} \). Therefore the consistency condition requires \(w^{C_2} \) to wait under \(f \). \(\Box \)

Note that, if \(f \) was a DTP then it follows from Lemma 2.3 that \(C_2 \) would have to wait under \(f \) not only in \(w^{C_2} \) but also in all other states as well. The following example shows that in general this is not the case for a CTP.
Example 4.1.

Let \(I = \{1, 2, 3\} \) be the set of sites and define a CTP \(f \) as follows.

(1) For every component \(C \) that contains the coordinator site 1 and any component state \(S \) of \(C \), if \(p \in \text{state}(S) \), let \(f(S) = \text{com} \); otherwise let \(f(S) = \text{ab} \).

(2) For every component \(C \) that does not contain the coordinator and any component state \(S \) of \(C \), if \(p \in \text{state}(S) \), let \(f(S) = \text{com} \); otherwise let \(f(S) = \text{wa} \).

(2) above does not cause inconsistency because of Property Two. Consider two components \(C_1 = \{1\} \) and \(C_2 = \{2, 3\} \). It is clear that \(w^{C_2} \) is the only state of \(C_2 \) that waits under \(f \).

Lemma 4.3. For any CTP \(f \) and two disjoint components \(C_1 \in \Gamma' \) and \(C_2 \in \Gamma'' \), if \(C_2 \) has two component states \(S_1, S_2 \) such that \(f(S_1) = \text{com}, f(S_2) = \text{ab} \), then \(f(S) = \text{wa} \) for every state \(S \in \Theta_f(C_1) \).

Proof. Suppose \(S \in \Theta_f(C_1) = \Theta(C_1) - \{w^{C_1}\} \). Since it contains the coordinator and the coordinator must be in state \(p \), therefore \(S \) can occur concurrently with any component state in \(\Theta(C_2) \), in particular, \(S_1 \) and \(S_2 \). Since these two component states are mapped to conflicting decisions by \(f \), \(S \) must wait under \(f \).

If the component \(C_2 \) in Lemma 4.3 belongs to \(\text{ALL}_f(f) \), then \(f(S) = \text{wa} \) for every component state \(S \in \Theta_f(C_1) \). The following example shows that there exists a CTP \(f \) such that \(f(w^{C_1}) \neq \text{wa} \).

Example 4.2. Let \(I = \{1, 2\} \) be the set of sites, where site 1 is the coordinator. Define a CTP \(f \) as follows:

(1) \(f(\{(1, p)\}) = \text{wa} \) and \(f(\{(1, w)\}) = \text{ab} \).

(2) \(f(\{(2, p)\}) = \text{com} \) and \(f(\{(2, w)\}) = \text{ab} \).

Consider two components \(C_1 = \{1\} \) and \(C_2 = \{2\} \). According to (1), \(f \) maps \(w^{C_1} \) to \(\text{ab} \) and the other states of \(C_1 \) to \(\text{wa} \). Note that the component states \(\{(1, w)\} \) and \(\{(2, p)\} \) are not concurrent and this makes it possible to map them to \(\text{ab} \) and \(\text{com} \), respectively.
The above two lemmas show a crucial difference between a CTP and a DTP. The following lemma shows that there is also some similarity between them.

Lemma 4.4. For any CTP \(f \) and two disjoint components \(C_1, C_2 \in \Gamma' \), if \(C_1 \) has two states \(S_1, S_2 \) such that \(f(S_1) = \text{com} \), \(f(S_2) = ab \), then \(f(S) = wa \) for every state of \(C_2 \).

Proof. Since the two components \(C_1 \) and \(C_2 \) do not contain the coordinator, the proof of Lemma 2.3 carries over. \(\square \)

Lemma 4.5. For any TP \(f \) and any component \(C \), if \(f(w^C) = ab \) and \(f(p^C) = \text{com} \), then there exists a TP \(g \) such that \(g \ll f \) and \(C \in \text{ALL}(g) \).

Proof. For every component state \(S \) that is concurrent with \(w^C \) and \(p^C \), the consistency condition requires \(f(S) = wa \). Therefore \(f \) can be modified to \(g \) in the following way. If \(S \in \Theta(C) \) waits under \(f \), let \(g(S) = \text{com} \). This is consistent with the value of \(f(S) \). Therefore \(g \ll f \) and \(C \in \text{ALL}(g) \). \(\square \)

Theorem 4.1. Any site optimal CTP \(f \) has the property that \(f(w^C) = ab \) for all \(C \in \Gamma' \).

Proof. If \(f \) does not have the property, i.e., if \(f(w^C) = wa \) for some \(C \), then it can be modified to \(g \ll f \) by defining \(g(w^C) = ab \). This modification will not introduce any inconsistency, because \(w^C \) contains the coordinator and is concurrent with only those component states that contain all sites in state \(w \) and which therefore cannot be terminated to \(\text{com} \). A contradiction, since \(E(g) < E(f) \). \(\square \)

Theorem 4.1 implies that, in the search for site optimal CTP's, without loss of generality, we may assume that CTP's have the property mentioned in the theorem, i.e., \(f(w^C) = ab \) for all \(C \in \Gamma' \).
4.2. Size-Based Centralized Termination Protocols

In this section, we introduce the size-based CTP and investigate site optimal CTP's in this class (see Section 4.3).

In the decentralized case, no component can be aborted by any TP if all its sites are in state p (see Lemma 2.1). In the centralized case, however, if such a component state contains the coordinator, it can be aborted by a TP as shown in the next lemma.

Lemma 4.6. Each CTP f must satisfy the following two properties.

1. For every $C \in \Gamma$, $f(w_c) \neq \text{com}$ holds, but $f(p_c)$ can take any of the three values com, wa, and ab and

2. for every $C \in \Gamma$, $f(w_c) \neq \text{com}$ and $f(p_c) \neq \text{ab}$.

Proof. The coordinator is always the first site to go into a new state. When it is in state p, no other site could be in state c, and therefore a component containing site 1 could be aborted if it is in state p, i.e., it is possible for a CTP f to have $f(p_c) = \text{ab}$ for some component C in Γ. The rest of the lemma follows from Lemma 2.1.

Recall that Γ_i is the set of components of size k. Let Γ'_i denote the set of components of size k containing the coordinator, i.e., the intersection of Γ_i and Γ'. Similarly, let Γ''_i denote the intersection of Γ_i and Γ''. Recall also that $\Theta_j(C)$ is the set of component states in $\Theta(C)$ which have at least one site in state p and $\Theta_j(C)$ is the set of component states in $\Theta(C)$ which have at least one site in state w.

Definition 4.1. A CTP f is said to be a size-based CTP if it satisfies the following two conditions. Let k be any positive integer less than n.

1. If a component $C \in \Gamma'_i$ has a state $S \in \Theta_j(C)$ such that $f(S) = \text{wa}$, then for any $C_i \in \Gamma'_i$ has a state $S_i \in \Theta_j(C_i)$ such that $f(S_i) \neq \text{wa}$.

2. If a component $C \in \Gamma''_i$ has a state $S \in \Theta(C)$ such that $f(S) = \text{wa}$, then for any $C_i \in \Gamma''_i$ has a state $S_i \in \Theta(C_i)$ such that $f(S_i) \neq \text{wa}$.
The definition of size-based CTP is similar to that of size-based DTP (see Section 3.2) except that we consider Γ^{-} and Γ^{+} separately. In (1) of Definition 4.1, we only consider component states in $\Theta_{\pm}(C_{i})$ instead of $\Theta(C_{i})$. Since we assume that the component C_{i} in state $w^{C_{i}}$ is always aborted. (See Theorem 4.1).

In the following $WA(f)$ denotes the set of all component states in Θ that a CTP f maps to wa, i.e., $WA(f) = \{S : f(S) = wa\}$.

Lemma 4.7. For any size-based CTP f and any positive integer $k < n$, if some component $C \in \Gamma_{i}^{+}$ has a state $S \in \Theta_{\pm}(C)$ such that $f(S) \neq wa$, then there exists a size-based CTP $g << f$ such that $\Gamma_{i}^{+} \subseteq ALL_{\choose g}$.

Proof. Because of Lemma 4.5, without loss of generality, we may assume that if C does not belong to $ALL_{\choose f}$, then either $f(w^{C}) = wa$ or $f(p^{C}) = wa$. Also, because of Theorem 4.1, without loss of generality, we may assume that $f(w^{C}) = ab$ for all $C \in \Gamma_{i}^{+}$.

If some component $C \in \Gamma_{i}^{+}$ has a state $S \in \Theta_{\pm}(C)$ such that $f(S) \neq wa$, then it follows from the definition of size-based CTP that for any C_{i} in Γ_{i}^{+}, either $com \in f(\Theta_{\pm}(C_{i}))$ or $ab \in f(\Theta_{\pm}(C_{i}))$ or both. Since all the component states of $\Theta_{\pm}(C_{i})$ have the same set of concurrent component states, i.e., for any two component states $S_{1}, S_{2} \in \Theta_{\pm}(C_{i})$, S_{1} is concurrent with a component state S_{3} iff S_{2} is concurrent with S_{3}, we can modify f to g as follows.

For all component states $S \in \Theta_{\pm}(C_{i}) \cap WA(f)$, if $com \in f(\Theta_{\pm}(C_{i}))$, then let $g(S) = com$; otherwise, i.e., if $ab \in f(\Theta_{\pm}(C_{i}))$, let $g(S) = ab$. Then g terminates C_{i} if it is in any states in $\Theta_{\pm}(C_{i})$, and since $f(w^{C_{i}}) = ab$, we have $\Gamma_{i}^{+} \subseteq ALL_{\choose g}$. Since $f(S) \neq wa$ implies $g(S) \neq wa$ for any component state S, it follows that $g << f$. \square

Recall the set $PONLY_{\pm}(f)$ defined in Section 2.5, which consists of components C such that the TP f terminates C unless it is in state p^{C}. Similarly, let $PONLY_{\mp}(f)$ be the set of components C such that the TP f makes C wait unless it is in state p^{C}, i.e., $PONLY_{\mp}(f) = \{C \in \Gamma : f(p^{C}) \neq wa$ and for all $S \in \Theta_{\pm}(C_{i})$, $f(S) = wa\}$. $PONLY_{\mp}(f)$ is defined
chapter four

analogously by replacing $\Theta_p(C)$ and p^c by $\Theta_p(C)$ and w^c, respectively.

Lemma 4.8. Given a size-based CTP f, there exists a size-based CTP $g << f$ such that for every positive integer $k < n$ either $\Gamma_k \subseteq \text{ALL}_*(g)$ or $\Gamma_k \subseteq \text{WONLY}_*(g)$.

Proof. Because of Lemma 4.5, without loss of generality, we may assume that if C does not belong to $\text{ALL}_*(f)$, then either $f(w^c) = wa$ or $f(p^c) = wa$. Also, by Theorem 4.1, without loss of generality, we may assume that $f(w^c) = ab$ for all $C \in \Gamma$.

For every positive integer $k < n$, if Γ_k is not a subset of $\text{WONLY}_*(f)$, then there exists a component $C \in \Gamma_k$ that has a state $S \in \Theta_p(C)$ with $f(S) \neq wa$. It follows from Lemma 4.7 that f can be modified to a size-based CTP g such that $\Gamma_k \subseteq \text{ALL}_*(g)$. Hence the size-based CTP g has the required property. \qed

Recall the definition of a component state as a set of (site, state) pairs. If S is a subset of a component state S_1, we say that S is a **component substate** of S_1.

Theorem 4.2. For any given size-based CTP f, there exists a size-based CTP $g << f$ which has the following property.

There exists a nonnegative integer s ($0 \leq s < n$) such that

1. For each integer k ($1 \leq k \leq s$), $\Gamma_k \subseteq \text{WONLY}_*(g)$, and
2. For each integer k ($s < k \leq n-1$), $\Gamma_k \subseteq \text{ALL}_*(g)$.

Proof. It follows from Lemma 4.8 that there exists a size-based CTP h such that $h << f$ and for each positive integer $k \leq n-1$, either $\Gamma_k \subseteq \text{WONLY}_*(h)$ or $\Gamma_k \subseteq \text{ALL}_*(h)$.

If \{r $\mid \Gamma_r \subseteq \text{ALL}_*(h)$\} is nonempty, let $s = \min \{r \geq 1 \mid \Gamma_r \subseteq \text{ALL}_*(h)\}$ - 1; otherwise, let $s = n-1$. It is clear that $\Gamma_{r+1} \subseteq \text{ALL}_*(h)$ and if $s \geq 1$ then by Lemma 4.8, for each integer k ($1 \leq k \leq s$), $\Gamma_k \subseteq \text{WONLY}_*(h)$. Suppose k is an integer, if any, such that $s+1 < k \leq n-1$ and $\Gamma_k \subseteq \text{WONLY}_*(h)$. If there is no such k then the proof is complete. If there is such a k then by Lemma 4.8, $h(S) = wa$ for every $S \in \Theta_p(C)$ such that $C \in \Gamma_k$. Let S be any state of a component which contains $s+1$ sites including the coordinator and let S_1 be a substate of S. By the definition
of the constant s we have \(h(S_1) \neq w_a \). Note that any component state \(S_2 \) that is concurrent with \(S \) is also concurrent with \(S_1 \), hence we can modify \(h \) to \(g \) by defining \(g(S) = h(S_1) \). If \(g(S) \) is defined this way for all component states \(S \in \Theta (C) \) such that \(C \in \Gamma_i \), then \(\Gamma_i \subseteq ALL_i (g) \). □

Having investigated the components which contain the coordinator, we now turn our attention to those which do not contain the coordinator.

Lemma 4.9. For any size-based CTP \(f \), and each positive integer \(k < n \), if there exists \(C \in \Gamma_i \) such that \(\{ \text{com, ab} \} \subseteq f(\Theta (C)) \), then there exists a size-based CTP \(g << f \) such that \(\Gamma_i \subseteq ALL_i (g) \).

Proof. Because of Lemma 4.5, without loss of generality, we may assume that if \(C \) does not belong to \(ALL_i (f) \), then either \(f(w^C) = w_a \) or \(f(p^C) = w_a \). Also because of Theorem 4.1, without loss of generality, we may assume that \(f(w^C) = ab \) for all \(C \in \Gamma_i \).

Let \(C \in \Gamma_i \) be a component such that \(\{ \text{com, ab} \} \subseteq f(\Theta (C)) \). Let \(C_1 \subseteq I - C \) contain the coordinator and let \(C_2 \subseteq \mathcal{U} - C - \{ \text{1} \} \). Since \(\{ \text{com, ab} \} \subseteq f(\Theta (C)) \), it follows from Lemma 4.3 and the assumption in the previous paragraph that \(C_1 \in \text{WONLY}_1 (f) \). Since \(1 \leq C_1 \leq n - k \), \(\Gamma_i \subseteq \text{WONLY}_1 (f) \) for all \(r \ (1 \leq r \leq n - k) \).

Similarly, it follows from Lemma 4.4 that \(C_2 \in \text{ALL}_{w_a}(f) \). Since \(1 \leq C_2 \leq n - k - 1 \), by Definition 4.1, we have \(\Gamma_{w_a} \subseteq \text{ALL}_{w_a}(f) \) for all \(r \ (1 \leq r \leq n - k - 1) \).

We now modify \(f \) to \(g << f \) as follows. For any component state \(S \in \Theta (C) \cap \text{WA}(f) \), if \(p \in \text{state}(S) \), let \(g(S) = \text{com} \); otherwise, i.e., if \(\text{state}(S) = \{ w \} \), let \(g(S) = ab \).

If the above modification is repeated for all components \(C \) in \(\Gamma_i \), then we have \(g << f \) and \(\Gamma_i \subseteq ALL_i (g) \). □

If the condition of Lemma 4.9 does not hold, namely, if there is no \(C \in \Gamma_i \) such that \(\{ \text{com, ab} \} \) is a subset of \(f(\Theta (C)) \), can \(f \) be modified to a "better" size-based CTP? The following lemma shows that it is still possible, although the result is not as good as that of Lemma 4.9: \(\Gamma_i \) can be contained in \(\text{PONLY}_{w_a}(g) \cup \text{WONLY}_{w_a}(g) \) but not in \(\text{ALL}_i (g) \).
Lemma 4.10. For any size-based CTP f and each integer $k \ (1 \leq k < n)$, if there is no
component $C \in \Gamma_i^-$ such that \{com, ab\} is a subset of $f(\Theta(C))$, but if there is a component
$C \in \Gamma_i^-$ has a state S such that $f(S) \neq \text{wa}$, then there exists a size-based CTP g such that
$g \ll f$ and $\Gamma_i^- \subseteq \text{PONLY}_{\text{wa}}(g) \cup \text{WONLY}_{\text{wa}}(g)$.

Proof. Let S be as given in the lemma. It follows from Definition 4.1 that for any $C_i \in \Gamma_i^-$,
either \text{ab} or \text{com} belongs to $f(\Theta(C_i))$. Suppose \text{com} $\in f(\Theta(C_i))$ and let $S_i \in \Theta_p(C_i)$ be such that
$f(S_i) = \text{com}$. For any $S_j \in \Theta_p(C_j) \cap \text{WA}(f)$, a component state S_j is concurrent with S_i iff it is
concurrent with S_i. Since $f(S_i) = \text{com}$ implies that $f(S_i) \in \{\text{com, wa}\}$, it is possible to modify f to
g on S_i by defining $g(S_i) = \text{com}$. Therefore we obtain $g(\Theta_p(C_i)) = \{\text{com}\}$. Since \{com, ab\} is not a
subset of $f(\Theta(C))$, we have $f(\text{wa}) = \text{wa}$ and inherits this value and so $C_i \in \text{WONLY}_{\text{wa}}(g)$.

Similarly, if $ab \in f(\Theta(C_i))$, f can be modified to g so that $C_i \in \text{PONLY}_{\text{wa}}(g)$. Hence
$\Gamma_i^- \subseteq \text{PONLY}_{\text{wa}}(g) \cup \text{WONLY}_{\text{wa}}(g)$. □

Lemma 4.11. For any size-based CTP f and each integer $k \ (1 \leq k < n)$, if
$\Gamma_i^- \cap \text{ALL}_{\text{wa}}(f) \neq \emptyset$, then $\Gamma_i^- \subseteq \text{ALL}_{\text{wa}}(f)$.

Proof. Assume there exists $C \in \Gamma_i^- \setminus \text{ALL}_{\text{wa}}(f)$ and let $S \in \Theta(C)$ be such that $f(S) \neq \text{wa}$.
If follows from Definition 4.1 that $\Gamma_i^- \cap \text{ALL}_{\text{wa}}(f) = \emptyset$, a contradiction. Hence
$\Gamma_i^- \subseteq \text{ALL}_{\text{wa}}(f)$. □

Theorem 4.3. For any given size-based CTP f, there exists a size-based CTP $g \ll f$
such that for each integer $k \ (1 \leq k < n)$, one of the following three relations holds.

1. $\Gamma_i^- \subseteq \text{ALL}_{\text{wa}}(g)$.
2. $\Gamma_i^- \subseteq \text{PONLY}_{\text{wa}}(g) \cup \text{WONLY}_{\text{wa}}(f)$.
3. $\Gamma_i^- \subseteq \text{ALL}(f)$.

Proof. It follows from Lemmas 4.9, 4.10 and 4.11. □

The following theorem summarizes the main results of this section. The first part of this
theorem comes from Theorem 4.2.

- 44 -
Theorem 4.4. For any size-based CTP \(f \), there exists a size-based CTP \(g \ll f \) which has the following property.

(1) There exists an integer \(s \) (\(0 \leq s < n \)) such that

Case 1a. for each integer \(k : 1 \leq k \leq s \), \(\Gamma_i \subseteq \text{ONLY}_i(g) \), and

Case 1b. for each integer \(s < k < n \), \(\Gamma_i \subseteq \text{ALL}_i(g) \).

(2) There exists an integer \(b \equiv \max \{ n-s-1, in-1+2 \} \) < \(n \) such that

Case 2a. for each integer \(k : 1 \leq k < n-b \), \(\Gamma_i \subseteq \text{ALL}_s(g) \).

Case 2b. for each integer \(n-b \leq k < b \), \(\Gamma_i \subseteq \text{ALL}_s(g) \) or

\[\Gamma_i \subseteq \text{ONLY}_s(g) \cup \text{ONLY}_s(g) \), and

Case 2c. for each integer \(n-b \leq k < n \), \(\Gamma_i \subseteq \text{ALL}_s(g) \).

Proof. Part (1) follows from Theorem 4.2 and the constant \(s \) is as defined in Theorem 4.2. It remains to show the existence of \(b \). Let \(b = \min \{ k : \Gamma_i \subseteq \text{ALL}_i(g) \} \). Note that \(b \geq n-s \). For, otherwise \((s+1) + b \leq n \) and there exist two concurrent component states \(S_1 \) and \(S_2 \) such that \(S_i = S+1, S_j = b \) and \(S_j \) contains the coordinator. Then \(\Gamma_i \subseteq \text{ALL}_i(g) \), and \(\Gamma_i \subseteq \text{ALL}_i(g) \), contradicting Lemma 4.3.

To prove that \(b > (n-1)/2 \), assume otherwise, i.e., \(b \leq (n-1)/2 \). Then there are two disjoint components, \(C_1 \) and \(C_2 \), in \(\Gamma_i \). Since \(\Gamma_i \subseteq \text{ALL}_i(g) \), we have \(C_1, C_2 \in \text{ALL}_i(g) \), contradicting Lemma 4.4.

To prove 2c, suppose that \(k \geq b \) and \(\Gamma_i \) is not a subset of \(\text{ALL}_i(g) \). Let \(S \in \Theta(C) \cap \text{WA}(g) \) for some component \(C \in \Gamma_i \), and \(S_1 \) be a proper subset of \(S \) with \(\iota S_1 = b \). Then \(g(S_1) \neq wa \) by the definition of \(b \). Note that any component state \(S_2 \) that is concurrent with \(S \) is also concurrent with \(S_1 \), and therefore \(g(S) \) can be changed to \(g(S_1) \). This applies to every component state in \(\Theta(C) \cap \text{WA}(g) \) for all \(C \in \Gamma_i \). Hence, after \(g \) is modified, \(\Gamma_i \subseteq \text{ALL}_i(g) \).

To prove 2a, suppose \(1 \leq k < n-b \) and \(C \in \Gamma_i \). Let \(C_1 = I - C - \{ 1 \} \). Since \(|C_1| = n-k-1 > b \), we have \(C_1 \in \text{ALL}_i(g) \) from 2c. We thus have \(g(\Theta(C)) = \text{wa} \) from Lemma 4.4. It
then follows from Theorem 4.3 that \(\Gamma_i \subseteq \text{ALL}_{\omega_0}(g) \).

Finally to prove 2b, suppose \(n-b < k < b \) and \(C \in \Gamma''_i \). Because of the minimality of \(b \), \(\Gamma''_i \) is not a subset of \(\text{ALL}_{\omega_0}(g) \). It then follows from Theorem 4.3 that \(\Gamma''_i \subseteq \text{ALL}_{\omega_0}(g) \) or \(\Gamma''_i \subseteq \text{PONLY}_{\omega_0}(g) \cup \text{WONLY}_{\omega_0}(g) \). □

The structure of the size-based CTP \(g \) described in Theorem 4.4 is illustrated in Table 4.1.

Definition 4.2 A CTP \(f \) is a standardized CTP if it has the following property.

1. There exists an integer \(s \) (\(0 \leq s < n \)) such that

 Case 1a. for each integer \(k \) (\(1 \leq k \leq s \)), \(\Gamma_i \subseteq \text{WONLY}_i(g) \), and

 Case 1b. for each integer \(s < k < n \) \(\Gamma_i \subseteq \text{ALL}(g) \).

2. There exists an integer \(b \) (\(\max\{n-s-1, (n-1)/2\} < b < n \)) such that

 Case 2a. for each integer \(k \) (\(1 \leq k < n-b \)), \(\Gamma_i \subseteq \text{ALL}_{\omega_0}(g) \).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(\Gamma_i)</th>
<th>(\Gamma''_i)</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>(\text{ALL}_{\omega_0}(g))</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(\text{WONLY}_i(g))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s)</td>
<td></td>
<td>(\text{ALL}_{\omega_0}(g))</td>
<td>(n-b)</td>
</tr>
<tr>
<td>(s+1)</td>
<td>(\text{ALL}_i(g))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td></td>
<td>(\text{PONLY}{\omega_0}(g) \cup \text{WONLY}{\omega_0}(g))</td>
<td>(b-1)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\text{ALL}_i(g))</td>
<td></td>
<td>(b)</td>
</tr>
<tr>
<td>(n-1)</td>
<td></td>
<td>(\text{ALL}_i(g))</td>
<td>(n-1)</td>
</tr>
</tbody>
</table>

Table 4.1. Structure of the size-based CTP \(g \) in Theorem 4.3.
Case 2b. for each integer k (n-b $\leqslant k < b$), $\Gamma_{n}^{-} \subseteq \text{ALL}_{n-\sigma}(g)$ or
$\Gamma_{n}^{-} \subseteq \text{ONLY}_{n-\sigma}(g) \cup \text{WONLY}_{n-\sigma}(g)$, and

Case 2c. for each integer k (b $\leqslant k < n$), $\Gamma_{k}^{-} \subseteq \text{ALL}_{k}(g)$.

Definition 4.2 is based on Theorem 4.4. With this definition, Theorem 4.4 can be restated as follows: for any size-based CTP f, there exists a standardized size-based CTP $g \ll f$.

4.3 Site Optimal Size-Based Centralized Termination Protocols

In Theorem 4.4, it was shown that a size-based CTP can be modified to a "better" size-based CTP which has the properties mentioned in the theorem, unless it already possesses those properties. As shown in Chapter 3, in the decentralized case, a site optimal size-based DTP can be found in the set of quorum-based DTP's. In this section, we define and investigate quorum-based CTP's and show that a site optimal size-based CTP exists among them.

For a given integer k (0 $\leqslant k < n/2$), define a CTP $c_{p_{k}}$ as follows. (Recall the definition of quorum-based DTP's, denoted by $d_{P_{k}}$ and $d_{W_{k}}$.) Again, a component is treated differently depending on whether it contains the coordinator or not.

1. Let S be the state of a component which contains the coordinator.

Case 1a. $1 \leqslant |S| \leqslant k$: If $p \in \text{state}(S)$, let $c_{p_{k}}(S) = wa$; otherwise, i.e., if state(S) = \{ w \}, let $c_{p_{k}}(S) = ab$.

Case 1b. $k < |S| < n$: If $p \in \text{state}(S)$, let $c_{p_{k}}(S) = com$; otherwise, i.e., if state(S) = \{ w \}, let $c_{p_{k}}(S) = ab$.

2. Let S be the state of a component which does not contain the coordinator.

Case 2a. $1 \leqslant |S| \leqslant k-1$: Let $c_{p_{k}}(S) = wa$.

Case 2b. $k \leqslant |S| < n-k$: If $p \in \text{state}(S)$, let $c_{p_{k}}(S) = com$; otherwise, i.e., if state(S) = \{ w \}, let $c_{p_{k}}(S) = wa$.

- 47 -
Case 2c. \(n-k \leq |S| \leq n-1 \): If \(p \in \text{state}(S) \), let \(cp_i(S) = \text{com} \); otherwise, i.e., if \(\text{state}(S) = \{ w \} \), let \(cp_i(S) = ab \). □

The set of all \(cp_i \)'s is denoted by \(QCp \). The following facts follow directly from the definition of \(cp_i \). The first two are concerned with the components in \(\Gamma' \) and the last three with the components in \(\Gamma'' \).

1. For all \(r \) \((1 \leq r \leq k)\), \(\Gamma_r \subseteq \text{WONLY}_r(cp_k) \).
2. For all \(r \) \((k < r \leq n-1)\), \(\Gamma_r \subseteq \text{ALL}_r(cp_k) \).
3. For all \(r \) \((1 \leq r < k)\), \(\Gamma_r \subseteq \text{ALL}_r(cp_k) \).
4. For all \(r \) \((k < r < n-k)\), \(\Gamma_r \subseteq \text{WONLY}_r(cp_k) \).
5. For all \(r \) \((n-k < r < n-1)\), \(\Gamma_r \subseteq \text{ALL}_r(cp_k) \).

The structure of \(cp_k \) \((k \geq 1)\) is illustrated in Table 4.2, and the structure of \(cp_0 \) is illustrated in Table 4.3.

As an example, in Table 4.4, we list the values of \(cp_i \) for \(n = 4 \). (Site 1 is the coordinator.)

There is another set of quorum-based CTP's denoted by \(cw_i \) \((0 < k < n/2)\) defined as follows.

1. Let \(S \) be the state of a component which contains the coordinator.

Case 1a. \(1 \leq |S| \leq k \): If \(p \in \text{state}(S) \), let \(cw_i(S) = wa \); otherwise, i.e., if \(\text{state}(S) = \{ w \} \), let \(cw_i(S) = ab \).

Case 1b. \(k < |S| < n \): Let \(cw_i(S) = ab \).

2. Let \(S \) be the state of a component which does not contain the coordinator.

Case 2a. \(1 \leq |S| \leq k-1 \): Let \(cw_i(S) = wa \).

Case 2b. \(k < |S| < n-k \): If \(w \in \text{state}(S) \), let \(cw_i(S) = ab \); otherwise, i.e., if \(\text{state}(S) = \{ p \} \), let \(cw_i(S) = wa \).
Table 4.2. Structure of a quorum-based CTP c_{P_1}.

<table>
<thead>
<tr>
<th>r</th>
<th>Γ_r</th>
<th>$\Gamma_{r'}$</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$WONLY_1(c_{P_1})$</td>
<td>$ALL_{n_0}(c_{P_1})$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
</tr>
<tr>
<td>$k-1$</td>
<td>\cdot</td>
<td>$k-1$</td>
<td>$k-1$</td>
</tr>
<tr>
<td>k</td>
<td>\cdot</td>
<td>k</td>
<td>k</td>
</tr>
<tr>
<td>$k+1$</td>
<td>\cdot</td>
<td>$k+1$</td>
<td>$k+1$</td>
</tr>
<tr>
<td></td>
<td>$ALL_n(c_{P_1})$</td>
<td>$WONLY_{n_0}(c_{P_1})$</td>
<td>\cdot</td>
</tr>
<tr>
<td>$n-k$</td>
<td>\cdot</td>
<td>\cdot</td>
<td>$n-k$</td>
</tr>
<tr>
<td></td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
</tr>
<tr>
<td>$n-1$</td>
<td>\cdot</td>
<td>$ALL_n(c_{P_1})$</td>
<td>$n-1$</td>
</tr>
</tbody>
</table>

Table 4.3. Structure of the quorum-based CTP c_{P_0}.

<table>
<thead>
<tr>
<th>r</th>
<th>Γ_r</th>
<th>$\Gamma_{r'}$</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\cdot</td>
<td>\cdot</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>\cdot</td>
<td>\cdot</td>
<td>\cdot</td>
</tr>
<tr>
<td>$n-1$</td>
<td>\cdot</td>
<td>\cdot</td>
<td>$n-1$</td>
</tr>
</tbody>
</table>

- 49 -
Chapter 4

Component State

<table>
<thead>
<tr>
<th>Site</th>
<th>Decision</th>
<th>Site</th>
<th>Decision</th>
<th>Site</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4</td>
<td>wa</td>
<td>1 2 3 4</td>
<td>com</td>
<td>1 2 3 4</td>
<td>com</td>
</tr>
<tr>
<td>p - - -</td>
<td>p - - p</td>
<td>p - - w</td>
<td>p - - w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- p - -</td>
<td>com</td>
<td>- p p -</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - p -</td>
<td>com</td>
<td>- p w -</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - - p</td>
<td>ab</td>
<td>- w p -</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - w -</td>
<td>wa</td>
<td>- p - p</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - w -</td>
<td>wa</td>
<td>- p - w</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w w w -</td>
<td>ab</td>
<td>- - p p</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w w w -</td>
<td>wa</td>
<td>- w - p</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w w w -</td>
<td>ab</td>
<td>- w - p</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w w w -</td>
<td>wa</td>
<td>- p p -</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w w w -</td>
<td>wa</td>
<td>- p w -</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p p - -</td>
<td>com</td>
<td>p w w -</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p w - -</td>
<td>com</td>
<td>p p - p</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p - p -</td>
<td>com</td>
<td>p p - w</td>
<td>com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p - w -</td>
<td>com</td>
<td>p w - p</td>
<td>com</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.4. The decisions of cp when n = 4 sites.

Case 2c. Suppose n-k ≤ S ≤ n-1. If w ∈ state(S), let cw(S) = ab; otherwise, i.e., if state(S) = { p }, let cw(S) = com. □

The set of all cw's is denoted by QCw. Note that after the coordinator has broadcast "commit" messages, it is the first site to go into state c. If the coordinator is still in state p, no site could be in state c, and therefore a component which contains the coordinator can be aborted even if it has all its sites in state p. This makes 1b. of the above definition possible. In Table 4.5, we illustrate the structure of cw.

The union of QCp and QCw is denoted by QC. Thus QC is the set of all quorum-based CTP's.

Recall that PC is the sum of the probabilities of all components of size i. (See Section 3.3). PC denote the sum of the probabilities of all components of size i that contain the
Table 4.5. Structure of a quorum-based CTP cw_{k}.

\[
\begin{array}{|c|c|c|}
\hline
r & \Gamma_i & r \\
\hline
1 & \text{\textit{ONLY}}(cw_{k}) & 1 \\
. & . & . \\
k-1 & ALL_{cw_{k}}(cw_{k}) & k-1 \\
k & PONLY_{cw_{k}}(cw_{k}) & k \\
k+1 & . & k+1 \\
. & . & . \\
n-k & . & n-k \\
. & . & . \\
n-1 & . & n-1 \\
\hline
\end{array}
\]

cooridinator, i.e.,

\[PC_i = \sum_{c \in \Gamma_i} \Pr(C)\]

Similarly, let \(PC_i^{\prime}\) denote the sum of the probabilities of all components of size \(i\) that do not contain the coordinator, i.e.,

\[PC_i^{\prime} = \sum_{(z \in \Gamma_i^{\prime})} \Pr(C)\]

In the following, a formula for the expected number of waiting sites under a quorum-based CTP is derived. We also propose a way to find site optimal size-based CTP's.

Theorem 4.5. For any integer \(k (10 \leq k < n/2)\), the expected number of waiting sites of the quorum-based CTP \(cp_{k}\) is given by the following formulae:

\[E(cp_{0}) = \sum_{i=1}^{n-i} PC_i^{\prime} P(0, i, i),\]

and for \(k > 0\),

\[E(cp_{k}) = \sum_{i=1}^{n-i} PC_i^{\prime} P(k, i, i),\]
chapter four

\[E(cp_i) = \sum_{i=1}^{k} PC_i (P_i - P(0, i, i)) + \sum_{i=1}^{l-1} i PC_i P_i + \sum_{i=k}^{n-k-1} i PC_i P(0, i, i). \]

Proof. Suppose \(k = 0 \).

For any integer \(i \) \((1 \leq i < n-1)\), and for any component \(C \in \Gamma_i' \), \(C \) waits under \(cp_0 \) only when it is in \(w^C \). (See Table 4.3). The sum of the probabilities of these component states \(\{w^C\} \) is given by the product of \(PC_i \) and \(P(0, i, i) \). Hence

\[E(cp_0) = \sum_{i=1}^{n-1} PC_i P(0, i, i). \]

Suppose \(k > 0 \). First we consider components in \(\Gamma' \). For any integer \(i \) \((1 \leq i \leq k)\) and for any component \(C \in \Gamma_i' \), \(C \) waits under \(cp_i \) unless it is in state \(w^C \). The sum of the probabilities of the states in which components wait is given by the product of \(PC_i \) and \(P_i - P(0, i, i) \).

We now consider the components in \(\Gamma'' \). For any integer \(i \) \((1 \leq i \leq k-1)\) and for any component \(C \in \Gamma_i'' \), \(C \) always waits under \(cp_k \). The sum of the probabilities of the states in which components wait is given by the product of \(P_i \) and \(PC_i'' \). For any integer \(i \) \((k \leq i \leq n-k-1)\) and for any component \(C \in \Gamma_i'' \), \(C \) waits under \(cp_k \) only when it is in state \(w^C \). The sum of the probabilities of the states in which components wait is given by the product of \(PC_i'' \) and \(P(0, i, i) \).

Hence

\[E(cp_k) = \sum_{i=1}^{k} PC_i (P_i - P(0, i, i)) + \sum_{i=1}^{l-1} i PC_i P_i + \sum_{i=k}^{n-k-1} i PC_i P(0, i, i). \]

The following similar result applies to a quorum-based CTP \(cw_k \).

Theorem 4.6. For any integer \(k \) \((0 \leq k < n/2)\), the expected number of waiting sites under the quorum-based CTP \(cw_k \) is given by the following formulae:

\[E(cw_0) = \sum_{i=1}^{n-1} PC_i P(i, 0, i), \]

and for \(k > 0 \).

- 52 -
Theorem 4.7. If \(P(0, k, k) \leq P(k, 0, k) \) for all integers \(k \) \((1 \leq k \leq n-1)\), then for any size-based CTP \(f \) there always exists a quorum-based CTP \(c_p \), \((1 \leq i < n/2)\) such that \(E(c_p) \leq E(f) \).

Proof. It follows from Theorem 4.4 that there exists a size-based CTP \(h \) such that \(h \ll f \) having the following properties.

1. There exists an integer \(s \) \((0 \leq s < n)\) such that
 - Case 1a. for any integer \(k \) \((1 \leq k \leq s)\), \(\Gamma_i^s \subseteq \text{WONLY}(h), \) and
 - Case 1b. for any integer \((s < k < n)\), \(\Gamma_i^s \subseteq \text{ALL}(h). \)

2. There exists an integer \(b \) \((\max\{n-s-1, (n-1)/2\} < b < n)\) such that
 - Case 2a. for any integer \(k \) \((1 \leq k < n-b)\), \(\Gamma_i^s \subseteq \text{ALL}_{\omega_0}(h), \)
 - Case 2b. for any integer \(k \) \((n-b \leq k < b)\), \(\Gamma_i^s \subseteq \text{ALL}_{\omega_0}(h) \) or \(\Gamma_i^s \subseteq \text{ONLY}_{\omega_0}(h) \cup \text{WONLY}_{\omega_0}(h), \)
 - Case 2c. for any integer \(k \) \((b \leq k < n)\), \(\Gamma_i^s \subseteq \text{ALL}(h). \)

We want to compare the expected numbers of waiting sites between \(h \) and the quorum-based CTP \(c_p, \) where \(\bar{b} = n - b. \) Since \(s + b \geq n, \) we have \(\bar{b} \leq s. \)

We first consider the components in \(\Gamma_i^s. \)

Case A. \(1 \leq k \leq \bar{b}: \) Since \(\bar{b} \leq s, \) it follows from 1a. that if \(S \in \Theta_p(C) \) for some \(C \in \Gamma_i^s \) then \(S \in \text{WA}(h) \) and \(h(C) \neq \text{wa}. \) It follows from the way \(c_p, \) is defined that \(S \in \text{WA}(c_p) \) and \(c_p(S) \neq \text{wa}. \) Therefore, \(h \) and \(c_p \) have the same number of expected waiting sites.

Case B. \(\bar{b} < k \leq n-1: \) For any \(C \in \Gamma_i^s, \) we have \(\Theta(C) \cap \text{WA}(c_p) = \emptyset, \) i.e., \(C \) never waits under \(c_p. \) Therefore, the expected number of waiting sites under \(c_p \) is not larger than that under \(h. \)

\[E(cw_i) = \sum_{i=1}^{\bar{b}} i PC_i (P_i - P(0, i, i)) + \sum_{i=1}^{n} i PC_i P_i + \sum_{i=1}^{n-1} i PC_i P(i, 0, i). \square \]
Now we consider the components in Γ''.

Case C. $1 \leq k < b$: It follows from 2a. that $\Gamma'' \leq ALL_{\omega,0}(h)$. Since $\Gamma'' \leq ALL_{\omega,0}(cp_h)$, h and cp_h have the same number of waiting sites.

Case D. $b \leq k < b$: It follows from 2b. that for any $C \in \Gamma''$, either w^C or $p^C \in WA(h)$. For cp_h, w^C is the only waiting component state in $\Theta(C)$. Since $P(0, k, k) \leq P(k, 0, k)$, $Pr(w^C) \leq Pr(p^C)$. Hence the expected number of waiting sites under cp_h is not larger than that under h in this case.

Case E. $b \leq k \leq n-1$: It follows from 2c that $\Gamma'' \leq ALL_f(h)$. Also $\Gamma'' \leq ALL_f(cp_h)$ holds (see definition of cp_h). Hence, in this case, h and cp_h have the same number of waiting sites.

In each of the above five cases, the expected number of waiting sites under cp_h is not larger than that under h, and therefore $E(cp_h) \leq E(h)$. Since $h \ll f$, this implies that $E(cp_h) \leq E(f)$. □

By replacing cp_h by cw, we have a parallel result.

Theorem 4.8. If $P(0, k, k) \leq P(0, k, k)$ for all integers $k (1 \leq k \leq n-1)$, then for any size-based CTP f, there exists a quorum-based CTP cw (1 \leq k \leq n/2) such that $E(cw) \leq E(f)$. □

With the results of Theorems 4.7 and 4.8, we can compare all the quorum-based CTP's to find a site optimal size-based CTP.

Theorem 4.9. If $P(0, k, k) \leq P(0, k, k)$ for all integers $k (1 \leq k \leq n)$, let m be an index such that $E(cp_m) = \min\{E(cp_k) | 1 \leq k \leq n/2\}$.

Then cp_m is a site optimal CTP in the set of size-based CTP's.

Proof. The theorem follows from Theorems 4.7 and 4.5. □
Theorem 4.10. If \(P(k, 0, k) \leq P(0, k, k) \) for all integers \(k \) \((1 \leq k < n) \), let \(m \) be an index such that

\[
E(cw_m) = \min\{E(cw_k) : 1 \leq k < n/2\}.
\]

Then \(cw_m \) is a site optimal CTP in the set of size-based CTPs.

Proof. The theorem follows from Theorem 4.8 and 4.6. \(\square \)

This concludes our search for site optimal CTP's in the class of size-based CTP's.

4.4. Count-Based CTP's

Recall the definition of a count-based DTP given in Section 3.4. A count-based DTP maps any two state equivalent component states to the same decision. In this section we introduce an analogous concept in the centralized case.

Definition 4.3. A CTP \(f \) is a count-based CTP, if for any two state equivalent component states \(S_1 \) and \(S_2 \) the following two conditions are satisfied.

1. If both \(S_1 \) and \(S_2 \) contain the coordinator, then \(f(S_1) = f(S_2) \).
2. If neither \(S_1 \) nor \(S_2 \) contains the coordinator, then \(f(S_1) = f(S_2) \).

An example of a count-based CTP is illustrated below in the Table 4.6.

Theorem 4.11. Each count-based CTP is a size-based CTP.

Proof. Let \(f \) be a count-based CTP and let \(k \) be an integer such that \(1 \leq k \leq n-1 \). Suppose that a component \(C \in \Gamma'_i \) has a state \(S \in \Theta_i(C) \) such that \(f(S) \neq wa \). For an arbitrary component \(C_i \in \Gamma'_i \), let \(S_i \in \Theta_i(C_i) \) be state equivalent to \(S \). It follows from Definition 4.3 that \(f(S_i) = f(S) \neq wa \). Therefore, any \(C_i \in \Gamma'_i \) has a state \(S_i \in \Theta_i(C_i) \) such that \(f(S_i) \neq wa \). Similarly, Definition 4.3 (2) implies Definition 4.1 (2). Hence \(f \) is also size-based. \(\square \)

By definition, a quorum-based CTP is also a count-based CTP. Hence we have the following two results.
Theorem 4.12. Given any count-based CTP f, there exists a count-based CTP $g << f$ with the following property.

(1) There exists an integer s ($0 \leq s < n$) such that

Case 1a. for each integer k ($1 \leq k \leq s$), $\Gamma_i^s \subseteq WONLY(g)$, and

Case 1b. for each integer ($s < k < n$) $\Gamma_i^s \subseteq ALL(g)$.

(2) There exists an integer b ($\max\{n-s-1, (n-1)/2\} < b < n$) such that

Case 2a. for each integer k ($1 \leq k < n-b$), $\Gamma_i^b \subseteq ALL_{wa}(g)$.

Case 2b. for each integer k ($n-b \leq k < b$), either $\Gamma_i^b \subseteq ALL_{wa}(g)$ or $\Gamma_i^b \subseteq PONLY_{wa}(g)$ or $\Gamma_i^b \subseteq WONLY_{wa}(g)$, and
Case 2c. for each integer k where $k \leq n$, $\Gamma_k \subseteq ALL(g)$.

Proof. The proof follows from Theorem 4.4 and the proof of Theorem 3.10. □

Theorem 4.13. For any count-based CTP f, there exists a quorum-based CTP $q << f$.

Proof. The proof follows from Theorem 4.12 and the proof of Theorem 3.11. □

Hence, a site optimal count-based CTP can be found by comparing all the quorum-based CTP's. Recall that QC denotes the set of all quorum-based CTP's.

Theorem 4.14. Let q be a quorum based CTP such that

$$E(q) = \min\{E(q) \mid q \in QC\}.$$

Then q is a site optimal count-based CTP.

Proof. The proof follows from Theorem 4.13. □

In the following, we show an example of a site optimal count-based CTP in a special case, where all component states have the same probability. In this particular case, as was explained in Section 2.5, during the calculation of the expected number of waiting sites under a CTP, we have only to calculate the number of waiting sites and then multiply it with the probability of a component state.

We list the values of cp_0 in Table 4.7. The values of cp_1 were listed in Table 4.4. From these two tables, it is seen that the number of waiting sites under cp_0 is 12, whereas the number of waiting sites under cp_1 is 10. In this particular case, $E(cp_0) = E(cp_1)$. Therefore, cp_0 is a site optimal count-based CTP.

Ramarao has proposed a "highly optimal" CTP h which he claimed was a site optimal CTP in the general case [RAMA-84]. It turns out that the CTP h is actually cp_{cr}. As was pointed out above, cp_{cr} is not site optimal. Thus the above cp_1 provides a counter example to his claim.
4.5. Restricted Decentralized Termination Protocols

If S is a realizable component state in the centralized case, then it is also realizable in the decentralized case. The converse is not true in general. Consider a component state which contains the coordinator. If the coordinator is in state w and some other sites are in state p, then this component state is realizable in the decentralized case, but not in the centralized case. Hence, the set of realizable component states in the centralized case is a proper subset of the set of realizable component states in the decentralized case.
To see another difference between the two cases, consider two disjoint components C_1 and C_2. In the decentralized case, any component state $S_1 \in \Theta(C_1)$ is concurrent with any component state $S_2 \in \Theta(C_2)$. This is no longer true in the centralized case. For example, if C_1 contains the coordinator, by Property One (see Section 4.1), $S_1 = w^C_1$ is not concurrent with $S_2 = p^C_2$. However, if S_1 and S_2 are two concurrent component states in the centralized case, then they are also concurrent in the decentralized case.

The above observations make it possible to apply a DTP to the centralized case by restricting its domain. Let f be a DTP and let R be the set of all realizable component states in the centralized case. Then R is a proper subset of the domain of f. If we restrict f to R, it satisfies both the nonreversal and consistency conditions. (See Definition 2.1). Therefore, we can consider f to be a CTP. CTPs obtained in this way are called restricted decentralized terminated protocols (RDTP).

Some members of this class have been regarded as possible candidates for a site optimal CTP [RAMA-84]. However, we show here that this is not true and, in fact, there always exists a CTP which is strictly better than any RDTP.

Lemma 4.12. Given any CTP f, if there exist two disjoint components C_1 and C_2 such that $C_1 \in \text{ALL}(f)$ and $C_2 \in \text{ALL}_w(f)$, then f is not a RDTP.

Proof. Suppose f is a RDTP. It follows from Lemma 2.3 that $C_2 \in \text{ALL}_d(f)$, a contradiction. Hence f cannot be a RDTP. □

The following lemma shows that for every RDTP, there exists a "better" CTP.

Theorem 4.15. If $P(0, k, k) \leq P(k, 0, k)$ for all $k (1 \leq k \leq n-1)$, then for any RDTP f, there exists a CTP g which is not a RDTP such that $E(g) < E(f)$.

Proof. Because of Lemma 4.5, without loss of generality, we may assume that if C does not belong to $\text{ALL}(f)$, then either $f(w^C) = wa$ or $f(p^C) = wa$.

The proof is divided into three cases.
Lemma 2.3 that \(f(w_{C}) = wa \). Because \(C_{2} \) contains the coordinator, only the component state \(w_{C_{1}} \) from among those in \(\Theta(C_{2}) \) is concurrent with \(w_{C}^{F} \). Since \(f(w_{C}^{F}) = ab \), \(f \) can be modified to \(g \) by defining \(g(w_{C}^{F}) = ab \). Therefore \(E(g) < E(f) \), regardless of the relative values of \(P(0, k, k) \) and \(P(k, 0, k) \).

Case B: \(ALL_{w}(f) \cap \Gamma'' = \emptyset \) but \(ALL_{w}(f) \neq \emptyset \). Recall that \(\Theta_{p}(C) \) denotes the set of states of \(C \) which contain at least one site in state \(p \). Define a CTP \(h \) as follows.

1. For any \(C \in \Gamma \) let \(h(S) = \text{com} \) for all \(S \in \Theta_{p}(C) \).
2. For all \(C \in \Gamma' \), let \(h(w_{C}) = ab \).
3. For all \(C \in \Gamma'' \), let \(h(w_{C}) = wa \).

CTP \(h \) is defined above in such a way that it maps to \(wa \) only those states of components which do not contain the coordinator and have all their sites in state \(w \).

No \(C_{i} \in \Gamma'' \) belongs to \(ALL_{w}(f) \) and this implies that either \(f(w_{C}) = wa \) or \(f(p_{C}) = wa \). \(C_{i} \) waits under \(h \) only when it is in state \(w_{C} \). Since \(P(0, k, k) \leq P(k, 0, k) \) for every \(k \leq n-1 \), \(\Pr(w_{C}) \leq \Pr(p_{C}) \). Therefore the expected number of waiting sites in \(C_{i} \) under \(h \) is not larger than that under \(f \). Hence \(E(h) \leq E(f) \).

Because \(ALL_{w}(f) \cap \Gamma'' \neq \emptyset \), there exists a component \(C \in \Gamma'' \) such that \(C \in ALL_{w}(f) \). Since \(C \) waits under \(h \) only when it is \(w_{C} \), more sites in \(C \) wait under \(f \). Hence \(E(h) < E(f) \).

Case C: \(ALL_{w}(f) = \emptyset \). Since no \(C \in \Gamma \) belongs to \(ALL_{w}(f) \), therefore either \(f(w_{C}) = wa \) or \(f(p_{C}) = wa \). Again we compare \(f \) with the CTP \(h \) defined in Case B above. Since \(\Pr(w_{C}) \leq \Pr(p_{C}) \) and a component in \(\Gamma'' \) never waits under \(h \), we have \(E(h) < E(f) \).

The following is a parallel result to Theorem 4.15 when \(P(k, 0, k) \leq P(0, k, k) \).
Theorem 4.16. If $P(k, 0, k) \leq P(0, k, k)$ for all $k (1 \leq k \leq n-1)$, then for any RDTP f, there exists a CTP g which is not a RDTP such that $E(g) < E(f)$. \(\square\)

Theorems 4.15 and 4.16 confirm the fact that no site optimal CTP can be found among the RDTP's.
CONCLUSION

The handling of network partitioning is in general a difficult problem. Most of the known systems treat it as a catastrophic failure and handle it manually. In this thesis, our main concern is to design protocols which maximize the availability of a database in the presence of network partitioning. Transactions are normally executed under the three-phase commit protocol and a termination protocol (TP) is invoked only when a failure occurs.

We have extensively investigated two classes of TP's: count-based TP's and size-based TP's. It was shown that, in these classes, "best" TP's with the minimum expected number of waiting sites can be found among the quorum-based TP's.

The methodology used in the search for these "best" TP's was to introduce a partial order among all size-based TP's and to identify a subset which contained all candidates for the "best" TP's. The subset thus identified is the set of quorum-based TP's. We have also succeeded in demonstrating that this approach applies equally well to the decentralized and the centralized cases.

Along with the development of this methodology, characteristics of TP's were examined extensively. In particular, some of the essential characteristics of CTP's have been found which give us a better insight into the properties of CTP's.
REFERENCES

Figure 1.1: FSA of the Centralized Two-Phase Commit Protocol.
Figure 1.2. FSA of the Decentralized Two-Phase Commit Protocol.
Figure 1.3. FSA of the Centralized Three-Phase Commit Protocol.
Figure 1.4. FSA of the Decentralized Three-Phase Commit Protocol.