A Data Structure for More Efficient Runtime Support of Truly Functional Arrays

by

Melissa Elizabeth O’Neill
B.Sc., University of East Anglia, 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School
of
Computing Science

© Melissa Elizabeth O’Neill 1994
SIMON FRASER UNIVERSITY
April 1994

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author.
APPROVAL

Name: Melissa Elizabeth O’Neill
Degree: Master of Science
Title of thesis: A Data Structure for More Efficient Runtime Support of Truly Functional Arrays

Examining Committee: Dr. Bill Havens
Chair

Dr. F. Warren Burton
Senior Supervisor

Dr. Robert Cameron
Supervisor

Dr. Fred Popowich
Examiner

Date Approved: ________________________________
I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay

A Data Structure for More Efficient Runtime Support of Truly Functional Arrays.

Author:

Melissa O'Neill

April 11, 1994
Abstract

Functional languages often neglect the array construct because it is hard to implement nicely in a functional language. When it is considered, it is usually from the context of converting imperative algorithms into functional programs, rather than from a truly functional perspective.

In an imperative language, changes to an array are done by modifying array elements, destroying their original values. Unless special measures are taken to support destructive update, an array update in a functional language must produce a new array, without destroying the old one. Since most other functional data structures do not support destructive update, it would be desirable not to have to make a special case of arrays, especially since many kinds of algorithms (backtracking algorithms being a simple example) may find having multiple versions of a data-structure useful. Our goal is to be able to provide a functional array interface where array operations are reasonably cheap.

We will look existing techniques that have been used in the past to address this problem area, and then present a new runtime technique that offers very good all-round performance, and can be used where other array mechanisms fail.
Acknowledgments

The author is extremely grateful for the continuing support and guidance of her committee and in particular her supervisor, Dr. F. Warren Burton. His constructive comments have helped shape this thesis, and his enthusiasm for the topic has made this research a pleasure to undertake.
About the Author

Melissa O’Neill was born in England, growing up in the peaceful sea side resort town of Worthing in Sussex. She undertook her undergraduate degree at the University of East Anglia, in Norwich, England, gaining a First Class honours degree. It was at UEA where she first came into contact with functional programming languages, which she has made the focus of her graduate research studies here at Simon Fraser University.
Contents

Abstract .. iii
Acknowledgments .. iv
About the Author ... v
List of Tables ... ix
List of Figures ... x
1 Introduction .. 1
 1.1 Functional vs. Imperative Languages 2
 1.2 Arrays in Functional Languages 5
 1.3 Thesis Outline ... 6
 1.4 A Word on Notation 7
2 Review of Earlier Work on Functional Arrays 9
 2.1 Single Threaded Approaches 9
 2.1.1 Trailers .. 10
 2.1.2 Monads .. 12
 2.1.3 Linear Types 15
 2.1.4 Compile Time Analysis 16
 2.2 Non Single Threaded Approaches 17
 2.2.1 Monolithic Approaches 17
 2.2.2 Faking it, with Trees 18
 2.3 Non-Functional Approaches 20
 2.4 Conclusion ... 20
3 The Essence of Our Method 22
 3.1 Basic Operations for Arrays 22
 3.2 Origins of Our Method 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Functional Arrays using totally ordered timestamps</td>
<td>68</td>
</tr>
<tr>
<td>A.1.1</td>
<td>Structure Signatures</td>
<td>68</td>
</tr>
<tr>
<td>A.1.2</td>
<td>Structure Implementations</td>
<td>71</td>
</tr>
<tr>
<td>A.1.3</td>
<td>Implementations of Other Array Techniques</td>
<td>93</td>
</tr>
<tr>
<td>A.1.4</td>
<td>Functions used for Performance Timing</td>
<td>95</td>
</tr>
<tr>
<td>A.1.5</td>
<td>Array Test Code</td>
<td>97</td>
</tr>
</tbody>
</table>
List of Tables

1.1 Comparing Functional and Imperative Code. 3

2.1 An example monadic interface for arrays. 13

2.2 Two implementations of max 14

3.1 Semantics for array operations. 23

5.1 Specification of three implementations of array reversal. ... 50
List of Figures

1.1 A linked list in an Imperative Language. 4
1.2 A linked list in an Functional Language. 4

2.1 Understanding Trailers. .. 11
2.2 Understanding the Tree based Array representation. 19

3.1 How Element Histories are Represented. 26
3.2 Element Histories don’t contain entries for every Timestamp. 27
3.3 The array update process. .. 29

4.1 Handling full persistence. .. 31
4.2 Partially Ordered vs. Totally Ordered Timestamps. 32
4.3 A simple timestamping scheme. 35
4.4 The principles of compressing timestamp chains. 35
4.5 The lurid details of efficient partially ordered timestamping. 37
4.6 Potential difficulties in using linear timestamps. 44
4.7 The gap problem shown in the context of the array data structure. .. 46

5.1 Performance for the three implementations of array reversal. 52
5.2 Worst case performance for Element Histories. 56

6.1 Implementing heaps using Functional Arrays. 60
6.2 Optimization for heaps. ... 64
Chapter 1

Introduction

Functional languages are often weak when it comes to supporting arrays, even though they are one of the most widely used data structures outside of the functional language community. Neglect of arrays shows up in both *Miranda*[27] and *Standard ML*[19], which have no support for arrays at all\(^1\), and even the more recent language of *Haskell*[10] only provides functions for updating a whole array en masse, rather than allowing the update to be performed on a single array element. There are some functional programming advocates who would claim that functional languages have little need of arrays, as they have other data structuring mechanisms that are more useful, so this sort of weakness does not matter, but that sort of justification is poor at best.

This neglect of arrays is not because functional languages don’t need them, but because they present some awkward problems. In this thesis we look at these problems, and at some of the partial solutions proposed in prior works, and we then go on to develop an array representation technique that provides a better solution when truly functional arrays are required.

\(^1\)The Definition of Standard ML does not include any special features for arrays and does not include any array functions in the standard environment, but most popular implementations do provide support for non-functional array use. If one wishes to write purely functional algorithms in ML, these extensions are of little direct help.
CHAPTER 1. INTRODUCTION

1.1 Functional vs. Imperative Languages

Imperative languages have named storage locations, into which values can be placed, destroying any previously existing value that was held in that location. This act of assignment can be performed more than once on each storage location, with different values each time. Thus, different values may be read from a storage location at different points during a program’s execution. For these languages, an array is an indexed collection of storage locations, usually occupying a contiguous area of computer memory. Although the collection of locations can be considered as a whole, the process of array subscripting singles out one array element to be read or destructively updated like any other storage location.

Functional languages, on the other hand, disallow assignment. Values are manipulated directly and their storage is handled implicitly. Variables in a functional language differ from their counterparts in imperative languages in that their role is purely denotational; lambda-bound or let-bound variables of functional languages simply denote a particular value, albeit one whose value may be unknown until runtime. Thus, functional languages do not make explicit use of storage locations, and so a functional array cannot be quite the same as an imperative one. It cannot be a collection of storage locations, it can only be an indexed collection of values, and must itself be a value.

Traditional imperative programming languages often blur the distinction between storage locations and values, especially when it comes to aggregate structures, so we’ll clarify the difference here. Values are immutable, whereas storage locations tend to be seen as a chunk of computer memory that can be modified as required. In almost all languages, functional and non-functional alike, it is unreasonable to destructively change values themselves; an assignment such as ‘1 := 2’ is disallowed, since its semantics are unclear\(^2\). Similarly, since the variables of functional languages do not represent storage locations, but actual values,

\(^2\)If it were allowed, it would presumably have a deleterious effect on arithmetic, since after such an assignment it would presumably be the case that \(1 \times 1 = 4\), but it is unclear what the result of \(1 \div 2\) would be.
procedure insert(item, headptr) =
 var itemptr : list-pointer;
 while not(isnull(headptr^.next) or headptr^.next^.item > item) do
 headptr := headptr^.next;
 allocate(itemptr);
 itemptr^.item := item;
 itemptr^.next := headptr^.next;
 headptr^.next := itemptr

(a) An imperative implementation of insert.

insert(item, list) = cons (item, list), if isempty list ∨ first list > item
 = cons (first list, insert(item,rest list)), otherwise

(b) A functional implementation of insert.

Table 1.1: Comparing Functional and Imperative Code.

they cannot have their values altered. Functional languages would not al-

low a definition such as ‘f(x) = (x := 2)’ because evaluating ‘f(3)’ would be

identical to evaluating ‘(3 := 2)’. Likewise, because functional languages
do not have aggregates of storage locations, only aggregates of values, one
cannot redefine or modify the components of a compound value. One can
only create new values, possibly derived from existing ones.

The differing styles of imperative and functional languages not only
cause different coding styles to be adopted (see Table 1.1), but also result
in differing data structure usage. Typically in an imperative language,
we’ll perform destructive updates on a data structure, modifying it as ne-
cessary. Figure 1.1 shows what this means for imperative languages in
practice — namely that updates destroy prior versions of a data struc-
ture, causing us to describe such data structures as ephemeral[8]. In
imperative languages, this isn’t seen as a problem since typically a pro-
gramming style is used where we never do try to refer to refer to a pre-
vious version of a data structure. We describe such algorithms as being
single threaded[22]. The lack of storage locations and destructive update
in functional languages means that previous versions of a data structure
List1: A linked list in an imperative language. The list is made up of storage locations, that can have their values destructively modified.

List2: Typically, insertions into a list will be done destructively. Having performed the update, we can no longer reference the old version of the list. Because updates destroy prior versions of the list, we call this kind of data structure ephemeral.

Figure 1.1: A linked list in an Imperative Language.

List1: A linked list in a functional language. The list is a value that can be decomposed into two components, the first element and the rest of the list, both of which are themselves values.

List2: Insertions cannot be performed destructively, thus in order to perform the update we must copy elements of the list until we reach the point where the element is to be inserted. Notice that the old version of the list can still be accessed, for this reason we call it persistent.

Figure 1.2: A linked list in an Functional Language.
cannot be destroyed by a program’s execution\(^3\) (see Figure 1.2) causing us to describe them as *persistent*\(^8\).

1.2 Arrays in Functional Languages

Since functional programming languages do not make use of explicit storage locations, and imperative arrays are a vector of storage locations, something needs to be changed to allow arrays to be used in functional languages. The most obvious approach, if we wish to provide a fairly traditional interface, is to present arrays to the programmer as just another kind of value. If arrays are presented as values, which cannot be destructively updated, the array update operation must become a function that returns an entirely new array with the relevant change made. This leaves the original array on which we were performing the update both accessible and unchanged.

Such a scheme, however, while fitting semantics of functional languages, does seem rather inefficient, since copying the whole array for every update would be very costly for any array of reasonable size.

Functional language designers and implementors have come up with a variety of techniques that attempt to implement array operations efficiently, without violating the constraints for functional behaviour. Their motivations often lean towards providing good performance for some of the ‘classic’ array-based algorithms (such as Quicksort, various text processing algorithms, graph algorithms that use adjacency matrices and so forth\(^{23}\)). Thus, a major concern is being able to run array algorithms originally written for imperative languages in a functional context without an increase in space and time complexity.

The arrays of imperative languages are, like other data structures in such languages, *ephemeral*. As we learned earlier, the original contents of locations that have been updated do not persist and thus cannot be accessed afterwards, which restricts data structure use to a *single threaded* pattern. When a non-functional algorithm that uses its data

\(^3\)They can however cease to be referenced, and thereby be forgotten about.
structures single threadedly is re-written in a functional language, the single threaded property can be preserved. Much effort has therefore been directed towards providing good support for arrays when they are used single threadedly.

Concentrating on the ‘classic’ mode of use of arrays, and working to provide adequate performance for that case, may have helped rebut the sneers of those who scoff at the efficiency of functional languages, and allow us to re-implement some popular algorithms in a functional context, but is the price we pay for this too high? In functional languages we can write single threaded algorithms, but we are have not been required to do so, until now. Focusing only on single-threaded array access means that non-single-threaded array algorithms will be either prohibited, or incur strong runtime penalties. In cases where the semantics suggest that the original array persists after an update, we may be encouraged or even required to ignore that, and treat arrays as ephemeral structures just as we would in an imperative language. Some might argue that this doesn't matter, and point to the paucity of array algorithms that require persistence. However, this isn't a particularly valid argument, since few algorithm designers have had the option of efficient arrays that have efficient persistence as an option.

A truly functional array would allow us to use arrays non single threadedly and treat them as a persistent data structure, without huge penalties, if we so desired, or employ them as we would an ephemeral structure, accessing them single threadedly. The choice would be ours. One would hope that in such a scheme, we could still use ‘classic’ array algorithms without their having a considerably worse time or space complexity, and yet have reasonable time and space complexity for persistent usages.

1.3 Thesis Outline

In this thesis we develop and present an array representation and associated access methods that can be used to achieve the goal of providing
truly functional arrays effectively. Chapter 2 reviews many of the methods currently used to provide support for arrays in functional languages. As we have already alluded, these existing methods are far from perfect, and in this chapter, we cover some of their problems. In subsequent chapters we develop data structures and associated access methods that can be used to implement truly functional arrays effectively.

Chapter 3 presents the basic details of our method, developing partially persistent arrays. In Chapter 4, we extend that to provide fully persistent functional arrays, looking at two different schemes that can provide full persistence. We go on to examine performance issues in Chapter 5, comparing our method to some of the techniques covered in Chapter 2. Our final conclusions are presented in Chapter 7.

1.4 A Word on Notation

When describing the interfaces to functions, we will use a notation similar to the type specifications of current functional languages, such as Standard ML, Miranda and Haskell. An example function specification is shown below:

\[\text{allocate} : (\text{int, int} \rightarrow \alpha) \rightarrow \text{array}(\alpha)\]

The use of \(\alpha\) indicates a type variable, \(\text{array}\) is a parametric type, ‘:’ is read as ‘has type’, brackets are used to indicate a tuple and ‘\(\rightarrow\)’ indicates the type of the value returned by the function. Thus, in this case, the allocate function receives as parameters an integer and a function which given an integer returns an item of some unspecified but consistent type, and returns an array filled with elements of that type. In Miranda, we would have written:

\[\text{allocate} :: (\text{num, num} \rightarrow *) \rightarrow \text{array} *\]

in Standard ML, we would write:

\[\text{allocate} : \text{int} * (\text{int} \rightarrow 'a) \rightarrow 'a \text{ array}\]
and in Haskell, we would write:

\[
\text{allocate} : \text{Num } a \Rightarrow (a, a \to b) \to \text{Array } b
\]

Finally, note that when we say \(\log n \), we are referring to \(\log_2 n \), not \(\log_{10} n \).
Chapter 2

Review of Earlier Work on Functional Arrays

Many others have proposed solutions to the problem of providing a suitable interface for arrays in a functional languages. In this chapter, we shall present an overview of some of the more foundational work in this area, and discuss the advantages and shortcomings of their approaches. The approaches can be roughly divided into two categories, single threaded and non-single threaded[22].

2.1 Single Threaded Approaches

When an algorithm always accesses only the most recently updated version of an array, the algorithm is said to access the array Single Threadedly. In imperative languages, because updates are done in place, only the most recent version exists, so that is the only version that can be accessed. Thus traditional array algorithms created for imperative algorithms always access arrays single threadedly.

Since most array-based algorithms originated in imperative languages and use arrays single threadedly, an implementation technique that is optimised for, and perhaps only allows, single threaded array access will almost certainly offer good performance for the vast majority of current
array algorithms. There are, however, two general problems with the single threaded approach. The most obvious drawback is that it requires restrictions on the ways we can use arrays, as we are now preferred or required to only use arrays single threadedly. Since functional languages do not require that any other data structures be used single threadedly, it is a little restrictive to constrain our use of arrays\(^1\). A second problem is that by forcing our algorithms into a single threaded mold, we can impose an execution order that is not strictly necessary, and thus deny opportunities for parallelism.

2.1.1 Trailers

Trailers\([1, 14, 15]\) are a runtime technique developed to provide reasonably efficient support for the single threaded use of arrays. The technique also allows non-single threaded use of arrays, but such use incurs a performance penalty; the size of the penalty depends on the pattern of use, but could easily be \(O(u)\) time to access an array, where \(u\) is the number of updates that have been performed (which may typically be larger than the size of the array), instead of \(O(1)\) time.

Figure 2.1 shows how the data-structures used in the Trailers technique work. The method represents multiple versions of an array internally using a single ‘current’ array, and difference lists that trail from that array to indicate how a particular version differs from the ‘current’ version. Whenever a particular array version is accessed, the usual first step is to rearrange things so that the version in question becomes the one that uses the internal array, adjusting and creating trailers for the other versions as necessary\(^2\). Figure 2.1(c) shows how a subsequent read access to Array1 would make it the current array.

\(^1\) Although arrays are the only widely used data structure that tends to be viewed as requiring single threaded access, IO operations also tend to be viewed from a single threaded perspective, and so share many of the same issues as arrays.

\(^2\) Not all implementations of trailers always rearrange things so the array being accessed becomes the ‘current’ array for every access. In general, knowing whether to make an array version ‘current’ for a particular access requires knowledge of the future access patterns the array will have, information which is rarely available or determinable.
CHAPTER 2. REVIEW OF EARLIER WORK ON FUNCTIONAL ARRAYS

4

21

Array1 : 15 37 29

(a) An initial array, Array1.

3

15

Array2 : 12

(b) The same array after updating Array1[3] to hold value ‘12’; Array2 becomes the current array but we can still access Array1 since a chain of changes is maintained from it to the current array.

Array1 :

Array2 : Change Cell 3 To 12 Next

Array1 : Change Cell 3 To 15 Next

(c) If Array1 is subsequently accessed, it is made the current array and the change list is inverted so that now the changes required to create Array2 from Array1 are recorded.

Array2’ : 84

(d) Finally, we see what would happen if we created other array, Array2’ by modifying Array1 again. This time we have altered Array[2] to hold ‘84’. Array2’ is now current.

Array1 :

Array2’ : Change Cell 2 To 37 Last

Array1 :

Array2’ : Change Cell 3 To 15 Last

Figure 2.1: Understanding Trailers.
2.1.2 Monads

Monads[28, 30] are a very general mechanism, coming originally from the branch of mathematics known as category theory[17, 18], that can be used to incorporate non-functional features safely into a functional context. In the case of arrays, a monad can be used to bring traditional imperative arrays into a functional language, setting things up in such a way as to enforce single threaded access to arrays and thereby not violate the properties of functional programming languages. The monadic approach hides the array from the programmer (it is referenced implicitly) and severely restricts operations that can be performed on it and the way those operations can be used. One way to view an array monad is to say that it does not actually encapsulate an array in an abstract data type, it encapsulates an operation on an array. An array operation\(^3\) has a parametric type, that being the type of the result that the operation will return when executed.

Table 2.1 shows an interface for a monadic implementation of an array. The array operations are shown in Table 2.1(a). Notice that each operation will be applied to an array (via the execute function which we will cover shortly), but that array reference is implicit; they do not take an array as an argument. An array operation is applied to an array by the execute function. Execute does not take an array as an argument, rather it creates a transient array to which a supplied array operation is applied. This transient array exists only during the execution of the execute function; the array itself cannot be captured by the operation being executed and returned since none of the supplied array operations provide such a feature.

To be worthwhile, the array operation passed to execute should embody a particular array algorithm. The array operations provided in the array interface only perform simple actions, but more complex operations may be created using the function compose, which allows one to create a composite array operation which will perform the one array operation, then a second. The second operation is generated by a function

\(^3\)The term array operation is used here as a synonym for array monad. The former term is used because it is likely to create a more familiar picture for most readers.
size : \text{array-op}(\alpha, \text{int})
read : \text{int} \rightarrow \text{array-op}(\alpha, \alpha)
update : (\text{int,} \alpha) \rightarrow \text{array-op}(\alpha, \epsilon)
return : \beta \rightarrow \text{array-op}(\alpha, \beta)

(a) The functions above provide monadic operations for arrays. An \text{array-op}(\alpha, \beta) is an operation that can be performed on an array whose elements are of type \alpha, with the result of the operation being of type \beta. When no result is returned, we use the null type \epsilon.

\begin{align*}
\text{compose} : & \quad (\text{array-op}(\alpha, \beta), \beta \rightarrow \text{array-op}(\alpha, \gamma)) \rightarrow \text{array-op}(\alpha, \gamma) \\
\text{execute} : & \quad (\text{int,} \text{int} \rightarrow \alpha, \text{array-op}(\alpha, \beta)) \rightarrow \beta
\end{align*}

(b) These functions allow monadic operations to be combined and executed. Composing array operations is vital to creating array based algorithms, because the execute function takes a single array operation, creates an array, applies the operation, and returns the result of the operation while discarding the array that was used.

Table 2.1: An example monadic interface for arrays.

which is called with the result of the first array operation. This allows information to be passed along a chain of operations and thus allows useful algorithms to be specified. Those familiar with \textit{continuation-passing style}[\textcolor{red}{21, 6}] may see some broad parallels here between that area and the way we use monadic arrays. Table 2.2 shows how a simple monad based algorithm might be written.

Monads do cleverly allow pure functional languages to make available features that are usually found only in impure languages but they are not without their problems. Creating a composite array operation to perform a particular algorithm often results in complicated looking and unintuitive expressions, and algorithms that involve more than one array (such as, say, merging the contents of two arrays) cannot be implemented without specific support from the array data type (such as a two-array monad). Also, because the array is always handled implicitly,
max = compose size init
where
 init arraysize = compose (read last) (loop1 last)
 where
 last = arraysize - 1
 loop1 posn best = return best, if pos = 0
 = compose (read prev) (loop2 prev best), otherwise
 where
 prev = posn - 1
 loop2 posn best this = loop1 posn this, if this > best
 = loop1 posn best, otherwise

(a) A monad based implementation of max.

max array = loop last (read array last)
where
 last = (size array) - 1
 loop posn best = best, if posn = 0
 = loop prev this, if this > best
 = loop prev best, otherwise
 where
 this = read array pos
 prev = pos - 1

(b) A more traditional implementation of max.

Table 2.2: Two implementations of \texttt{max}. The first implementation uses monadic array operations, the latter uses a more traditional array interface. Both implementations follow the same algorithm, finding the size of the array, and then working from back to front, keeping track of the largest value found so far. The implementations are a little more wordy than is perhaps necessary; this has been done to facilitate the comparison of the two approaches.
it may not be embedded within any other data structures; this also pre-
vents multi-dimensional arrays, since arrays of arrays are not possible
without explicit support. Similar problems occur when monads are used
to support other language features such as monadic IO or continuations,
as the programmer may be forced into having to make a choice between
using arrays or IO, but not both at once.

With careful design, many of these problems are not insurmountable.
Language syntax can make the construction of monadic expressions more
palatable, and if the various kinds of monads available are well designed
and properly integrated, we can eliminate the need to make a choice
between using different monads and also allow ourselves to use more
than one array\footnote{Combining monads is an active research area\cite{16, 13}, and we
have developed a technique which can enable the use of multiple monads
which has not been described elsewhere. Our work in will probably appear
along with our further research into functional arrays\cite{20}, or in a separate paper.}.

Monads are an excellent tool in any programmer’s toolbox, having
a much wider applicability than just the problem of supporting arrays.
However, the problem of how to proceed when more than one monad is
needed is still an open research area. Given this drawback, it seems that,
current monadic approaches would appear to be less elegant than they
first appear, despite their mathematical foundations.

2.1.3 Linear Types

Linear Types\cite{29} (and also Unique Types\cite{2}) seem to be a very promising
solution to the problem of values that must be used in a single threaded
way. To quote from the Philip Wadler’s paper on Linear types\cite{29}:

> Values belonging to a linear type must be used exactly once:
like the world, they cannot be duplicated or destroyed. Such
values require no reference counting or garbage collection, an-
d safely admit destructive array update. Linear types extend
Schmidt’s notion of single threading; provide an alternative to
Hudak and Bloss’ update analysis; and offer a practical complement to Lafont and Holmström’s elegant linear languages.

By using the type system to enforce the single use property, this approach allows algorithms to be coded in a straightforward functional style (c.f. Monads above). Linear types seem like a good solution for single-threaded array operations (as well as being a fairly general solution other interesting problems, such as file I/O), but there are some areas related to linear types where more work is needed. Specifically, some work remains to be done with regard to integrating linear types Hindley-Milner-Damas[9, 5] style polymorphism and type inference used in most popular functional languages. Also, current functional languages would require wide-ranging changes to their type systems to support linear types, and at the time of writing, with the exception of Clean[12], none of the major functional languages have been retrofitted to support them. Finally, while linear types provide a good solution to those who require an ephemeral data structure and do not restrict their applicability to arrays, it is of little use to those who are interested in persistent data structures.

2.1.4 Compile Time Analysis

An alternative to forcing the programmer to code their algorithms following some alternative style that enforces single threadedness, is for a compiler to spot single threaded use of objects, such as arrays, and thus determine when update in place can be used. This technique is usually called Update Analysis[3, 11], and relies on Abstract Interpretation to determine when update in place can safely be used.

The key problem with this approach is that for an arbitrary functional program, the task of statically determining whether it will use arrays single-threadedly is undecidable. The best any technique can do is determine whether a program appears to be single-threaded, erring on the side of caution and flagging some programs that would execute single threadedly as non single threaded. Since the programmer would no doubt
wish his single threaded code to be understood by the programming language as being single threaded, she has to know something of the tests applied and their limitations. If the programmer isn’t concerned with how things work inside the compiler, we enter a new realm of unpredictability where a simple change to program can dramatically alter it’s execution behaviour if that change happens to upset update in place optimizations being applied.

2.2 Non Single Threaded Approaches

As was alluded to earlier, single threaded approaches, while useful when converting ‘classic’ array algorithms into functional languages, have their limitations. Techniques have been devised that are suitable for applying to algorithms that do not fit neatly into the single threaded mold, but it is an area that appears to have received less study.

2.2.1 Monolithic Approaches

The monolithic approach to array operations does not try to find ways of performing small operations on arrays efficiently, rather it looks at ways of operating on the array as a whole. Rather than operating at the level of the array elements, the monolithic approach operates at the level of the whole array; obviously there is a need to work at the element level, but the array operation is considered to operate ‘all in one go’, across all the elements. A very simple monolithic array operation would be

\[
\text{arraymap} : (\alpha \rightarrow \beta, \text{array}(\alpha)) \rightarrow \text{array}(\beta)
\]

Usually, people want to perform more complex operations on the entire array, and thus most monolithic approaches use a special syntax to denote the monolithic array operations.

Having a separate syntax obviously adds complexity, not only for the user, but also for the language, which may have to perform some checks
on the correctness of the operation specified; however, monolithic specification does have some useful properties, being better suited to supporting parallelism in array access.

An intriguing thought is the combination of monadic and monolithic approaches, since one could use a monad as a means to specify the array operation to be performed.

2.2.2 Faking it, with Trees

Height balanced binary trees are perhaps the most basic, and often used, methods for ‘faking’ arrays in functional languages. A reason for the popularity of this approach is that tree-based arrays can be implemented in almost any functional language. In some languages, such as Miranda[27], the programmer has little other option but to use them.

A simple tree based method would be to allocate a binary tree, and use the leaves of the tree to hold the array contents. The correct leaf of the tree for a particular integer index can be found by using the binary representation of the number to choose between taking the left or right branch. Figure 2.2(a) shows a small array represented using a binary tree. Figure 2.2(b) shows how the data structure is affected by an array update operation. While it is possible to use \(n \)-ary trees; for an \(n \)-ary tree, of size \(k \), the tree will have branch nodes of size \(n \) and height, \(\log_n k \). These properties mean that having large values of \(n \) isn’t usually sensible, since \(\log_n k \) branch nodes of size \(n \) must be replaced for every update operation. The only advantage of large \(n \) is that it speeds read access, in the limit providing \(O(1) \) read access for \(n = k \).

\(^5\) A more basic approach than binary trees is to use an association list (or just a plain list) to simulate arrays. Using lists is horribly inefficient for an array of non-trivial size; the only redeeming feature of the approach being that it is incredibly simple to implement, which may explain why it is seen more often than it deserves.

\(^6\) The representation could be optimized to eliminate an unnecessary level of indirection, by storing the contents of the leaves directly in the final branch node. This is possible because the tree has constant height, for a particular array size. This optimization isn’t shown because it would unnecessarily complicate the picture.

\(^7\) Curiously, at least to those who haven’t made a study of trees, \(n \log_n k \) has a minimum, independent of \(k \), when \(n = 3 \) not when \(n = 2 \), thus using ternary trees to support arrays is slightly more efficient than using binary trees.
CHAPTER 2. REVIEW OF EARLIER WORK ON FUNCTIONAL ARRAYS 19

(a) An initial array, Array1.

(b) The same array after updating Array1[2] to hold value '47'; notice how Array2 shares much of the tree structure of Array1.

Figure 2.2: Understanding the Tree based Array representation.
The obvious problem with using trees as an array representation is that both read and update operations take a time of $O(\log n k)$, in contrast with the $O(1)$ behaviour of the arrays found in non-functional languages. For many applications, especially those that, at least potentially, use arrays of non-trivial size this is unacceptable. Trees do, however, have the advantage of being a simple data structure, that can be used non-single-threadedly without additional complications.

2.3 Non-Functional Approaches

A final possibility is for the language to abandon the requirements for arrays to be functional, and support arrays that allow assignment. If the language is already an impure functional language and already supports assignable polymorphic references, the is no reason not to support traditional ephemeral arrays. However, functions that use such arrays could violate referential transparency, making programs that used such functions hard to reason about. While this may be acceptable in some cases, directly supported ephemeral arrays are of no use to those who need persistence.

2.4 Conclusion

None of the methods we have covered have provided good support for persistent arrays, and many are far from perfect for implementing 'classic' array algorithms, sometimes requiring cumbersome code sequences, or disallowing simple and useful operations. Some methods work successfully for some cases, but minor code changes can cause a drop to a terrible worst case performance. Finally, if the technique demands that program code access arrays in a single threaded[22] manner, that can impose an unnecessary serialisation of access that denies the potential for parallel execution.

In subsequent chapters, we shall present techniques that can provide persistent and thus truly functional arrays without increased space or
time complexity for ‘classic’ array algorithms.
Chapter 3

The Essence of Our Method

In the preceding chapter, we looked at previously available options for those who wish to use arrays in functional languages. In this chapter we begin the presentation of our alternative to these techniques, laying down the foundations for our method. Here we will develop partially persistent functional arrays, which we will extend in subsequent chapters to provide fully persistent arrays. In other words, we will describe our technique, while imposing the restriction that only the most recent version of an array may be updated, but all array versions may be read. Later we will remove this restriction.

3.1 Basic Operations for Arrays

As we mentioned in the Chapters 1 and 2, there is more than one way of integrating arrays into functional languages. Our goal is not provide a special mechanism to support them, but rather to make them just another data type to be used as the programmer sees fit. Our interface is therefore based around an abstract array data type with a few simple access functions, shown below:

\[
\begin{align*}
\text{create} & : (\text{int, int } \to \alpha) \to \text{array}(\alpha) \\
\text{subscript} & : (\text{array}(\alpha), \text{int}) \to \alpha \\
\text{update} & : (\text{array}(\alpha), \text{int}, \alpha) \to \text{array}(\alpha)
\end{align*}
\]
subscript (create (s, f), i) = f(i), if 0 ≤ i < s
= ⊥, otherwise

subscript (update (a, j, v), i) = v, if (i = j) ∧ ok
= subscript (a, i), if (i ≠ j) ∧ ok
= ⊥, otherwise

where

ok = inrange (a, i)
inrange (create(s, f), i) = 0 ≤ i < s
inrange (update (a, j, v), i) = inrange (a, i)

Table 3.1: Semantics for array operations.

These functions for the most part mirror the array operations present in imperative languages, the only exception being array update. As mentioned in Chapter 1, the semantics of a functional update operation require that the result of an update be a new array value, while the original array value supplied to the update function remains unchanged and accessible.

The interface shown above there is no fundamental problem in applying all the techniques developed in this thesis to dynamically sized arrays.

Axioms for functional arrays are shown in Table 3.1.

3.2 Origins of Our Method

Our approach to the functional array problem came originally from an unrelated programming effort in which functional arrays were a prerequisite (a functional implementation of a unification based algorithm). Having written an implementation, we then realized that our approach had not been presented elsewhere, and so began looking into the subject more closely. In researching the matter, we found parallels between our work and pre-existing work by Driscoll et al.[8], and incorporated a few refinements based on their work. Given that, it is worth noting how our work differs from and builds upon that of Driscoll et al.[8].

Driscoll et al.’s work[8] is based on providing support for persistent
data structures in imperative languages, not functional languages. While this may seem like a trivial difference, we will discover in Chapter 6, when we examine heaps, that one cannot automatically assume that it is possible to transport these features into a functional language. On a similar note, in the imperative context of Driscoll et al.’s work, timestamps are a visible part of the system, whereas in a functional context it is necessary to keep their existence hidden.

Another issue with Driscoll et al.’s work on persistent data structures[8] is that their techniques relate specifically to linked data structures (or to be more precise, linked data structures of bounded in-degree). This has two ramifications, the first is that their work has been largely ignored by the functional language community, since as we learned in Chapter 1, linked data structures are already persistent in functional languages and so Driscoll et al.’s techniques for providing persistence aren’t seen as being applicable. The second ramification is that arrays are not discussed by Driscoll et al., since arrays are not linked data structures. It is perhaps not surprising, then, that much of their work cannot be applied to arrays.

In examining the problem, we have developed techniques that can be applied to arrays, albeit with worse time complexity than Driscoll et al. manage for linked data structures of bounded in-degree[8]. We should also make it clear that we have not just applied a subset of Driscoll et al. to the area of functional arrays, but we have rather gone beyond what they present making refinements — for example, our technique guarantees $O(1)$ performance for single threaded array use, while their techniques that most closely approximate ours do not.

Finally, we also take a broader look at the issue of generating time-stamps (see Chapter 4), and cover the merits and demerits of partially ordered timestamping, presenting an algorithm for generating such time-stamps.
3.3 Data Structure Overview

Our technique uses timestamps along with ‘element histories’ to store multiple arrays, which we shall call array values, in a single data structure. Several array values are represented internally using a single master array, each element of which is a ‘history’ that holds all values that are associated with that array element. Every array value has its own unique timestamp, which is used to retrieve the values of its particular elements from the shared master array.

3.4 Element Histories

As we outlined above, each element of the array may contain more than one value. Specifically, each element of the array is a data structure which maps array timestamps to values. Figure 3.1(a) and Figure 3.1(b) show two different structures that could be used to store such information, portraying a stack and a tree respectively. Factors influencing our choice of data structure are covered later, and for much of our discussion, the exact data structure used is irrelevant. In such cases, we will use the abstract diagrammatic representation shown in Figure 3.1(c).

A key feature of the representation of element histories is that they will not, in all likelihood, contain values for every timestamp in existence. They only hold a history of changes. The only time a new timestamp/value pair is added to the element history is at a ‘cusp’, when that particular element is changed. Values for timestamps not held explicitly in the element history can be determined implicitly.

If we consider the element history to be a set of timestamp/value pairs, H, and suppose that there is some ordering relation on timestamps, then the value corresponding to some desired timestamp, t_d, can by found by finding the closest timestamp in the set, t_c, where

$$t_c = \max\{t \mid (t, v) \in H \land t \leq t_d\}$$

and retrieving the value corresponding to that timestamp. In other words,
(a) A tree-based element history, containing four different values, one for each of four possible times. Initially, at time t_0 the element held the value 12, and even though it has been accessed and updated since then to hold first 160, then 135, and then to 192, it is still possible to retrieve the value it had at time t_0.

(b) Here we have the same history entries as above, but stored in a stack. The factors to consider when choosing a particular representation are dealt with in Chapter 4.

(c) Because there is more than one way to represent element histories, and because often the exact representation is less interesting than what is actually being stored, we will usually represent them as shown here. In this way, we convey what is being stored, without actually specifying the representation used.

Figure 3.1: How Element Histories are Represented.
(a) In this element history, cusps exist at times \(t_0, t_3 \) and \(t_4 \). Entries are omitted for time-stamps \(t_1, t_2 \) and \(t_5 \), because no changes were made to this particular element at those times.

(b) Here we show not only the actual values stored in the element history, but also the values that are inferred (shown in grey).

Figure 3.2: Element Histories don’t contain entries for every Timestamp.

\(t_c \) is the greatest timestamp less than or equal to \(t_d \). This is expressed more clearly in Figure 3.2.

3.5 Array Values and the Master Array

As we outlined earlier, the master array, which is used to store multiple array versions, is simply an array of element histories. Each individual array value represents a particular version of the array, and consists of a reference to the shared master array, and a unique timestamp.

Subscripting a particular array value is done by simply retrieving the element history for the desired array element, and then retrieving the value corresponding to the array value’s timestamp. Array update is achieved by creating a new array value, with a timestamp obtained by incrementing the timestamp of the array we are updating\(^1\), and adding new entries corresponding to the new timestamp to the element history(s) of the element(s) being updated.

Figure 3.3 shows how multiple array versions are supported, showing

\(^1\)Remember that we are assuming, for the time being, that only the most recent version of the array will be updated.
a sequence of four updates on an array, leading to the creation of five different array values. Each element history is shown with both the values it contains, and the values that are inferred (distinguished by being shown in grey).

3.6 Conclusion

The techniques we have presented so far can only provide partial persistence, since we have assumed that, while every array value can be read, only the most recently changed version of the array will be updated. This would be sufficient for many applications, but this restriction means that our arrays so far could not be described as functional. In the following chapter, we will examine the ways in which this scheme can be extended to provide full persistence.

Before moving on however, we should take a final look at what we have accomplished so far. In our current scheme, update operations and read accesses on the most recently created array value take $O(1)$ time, if a stack or splay tree[24] is used to store element history entries. Reads of array elements that have been updated u times since the time of the current array take $O(\log u)$ time, if the element history is arranged as a search tree (such as a splay tree). Thus, single threaded access takes constant time, and while partially persistent access doesn’t take constant time, it is still faster than the other techniques available. Users of imperative languages should not be able to sneer at this kind of functional arrays because the only access that does not take constant time is an access not usually available to them. There is, however, a larger constant factor in the access time, but as the author’s subsequent work shows, even this can be minimised by certain optimizations [20].
CHAPTER 3. THE ESSENCE OF OUR METHOD

Array1: t_0

(a) An array data structure supporting a single array value.

Array1: t_0 Array2: t_1

(b) The array data structure after an update has been performed on the second element of the array. Thus, the master array now holds two array values.

Array1: t_0 Array2: t_1 Array3: t_2

(c) Another update has been performed on the second element array, so it now holds three array values.

Array1: t_0 Array2: t_2 Array3: t_2

Array4: t_3 Array5: t_4

(d) The array after two more updates, this time on the fourth element of the array and then the third element.

Figure 3.3: The array update process.
Chapter 4

Providing Full Persistence

The methods we have developed so far provide us with Partial Persistence[8], whereby the original array values persist after an update, but those values cannot be updated again. In this chapter we shall look at how to extend our array algorithms and data structures to provide the capacity for Full Persistence[8].

4.1 The Problem

The reason the array implementation we presented in Chapter 3 cannot provide full persistence is that the simple timestamping method we used isn’t up to the job. Figure 4.1(a) shows what would happen if we did try to update an array that had already been updated once. Our timestamping scheme generates the timestamp for the new array by simply incrementing the timestamp of the original array value. Thus, if we perform multiple updates, each new array will receive the same timestamp. This is clearly a problem. Possible solutions to this problem are shown in Figures 4.1(b) and 4.1(c), and discussed below.

4.2 Partially and Totally Ordered Timestamping

There are two methods we could use to provide fully persistent arrays, and so we shall briefly described both, before covering each in more detail.
(a) The approach that worked for the partially persistent case is not sufficient when full persistence is required. Array2 and Array2' have both been given the same timestamp, resulting in the wrong value being returned if the updated element of Array2 is accessed.

(b) Giving time-stamps a partial order allows fully persistent updates to work correctly. Under this scheme, t_1 and $t_{1'}$ are distinct, and both 'after' t_0 but are incomparable with each other.

(c) Totally ordered timestamps can also support fully persistent updates, provided sufficient care is taken. In this case, Array2' gets allocated a timestamp that is after the timestamp of Array1 and before the timestamp of Array2.

Figure 4.1: Handling full persistence. In the situation shown above, Array1 has been updated twice; Array2 is the first array derived from an update on Array1 and Array2' is the second.
(a) The partially ordered timestamping scheme used by RCS.

(b) It is quite straightforward lay a total order over the partial order of RCS. In integrating different and incomparable branches into a single time line, we are seeing things somewhat differently, however, for example previously we saw no timestamps between 1.0 and 1.1 whereas in the totally ordered view, several timestamps lie between them.

Figure 4.2: Partially Ordered vs. Totally Ordered Timestamps.

4.2.1 Partially Ordered Timestamping

The first option shown in Figure 4.1(b) gives timestamps a Partial Order, whereby the timestamp for an array resulting from an update still comes from a kind of ‘increment’ operation, in that the resulting timestamp comes after that of the original array, but where multiple updates to the same array value generate different and incomparable timestamps. In other words, we allow time to branch, forming ‘alternate timelines’ when necessary.
Some readers will have already encountered partially ordered time-stamping schemes, since they typically appear in systems for source code control (such as RCS[25]). Looking at the timestamping scheme used by RCS is helpful since we can look at it and gain a general understanding of this kind of timestamping without worrying too much about implementation details (which we present later).

Figure 4.1(b) shows a situation where we initially had an array value with timestamp \(t_0 \), which was updated once, with the resulting array value receiving timestamp \(t_1 \). Then, another update was performed on the original array requiring another timestamp after \(t_0 \) — the timestamp \(t_1' \). Under RCS we would allocate timestamps as follows: \(t_0 \) would be 1.0, \(t_1 \) would be 1.1, and \(t_1' \) would start a new branch and thus be 1.0.1.0. The first timestamp generated after \(t_0 \) is done via a simple increment, but subsequent timestamps need to form a ‘branch’. A more complex example how of branching occurs, which includes the above example, is shown in Figure 4.2(a).

4.2.2 Totally Ordered Timestamping

In totally ordered timestamping, shown in Figure 4.1(c), we recognize that while updates can generate arrays which are unrelated to each other, apart from a common ancestor, we do not need necessarily to transport this relationship into our timestamping scheme. Instead we impose a total order on top of this partial order, to gain a single timeline. Figure 4.2(b) gives an example of how we could take branched time, characterized by the example from RCS we used earlier, and impose a total order on it.

In this flattened model, we do not need to form branches, we only need to be able to allocate a new timestamp ‘just after’ an existing one (i.e., after that timestamp, but before any others that are after it). One way to envision such a scheme would be to imaging timestamps represented by real numbers. If an array value had a timestamp with value 17, a derived array value might have value 18. If another on the original array was performed, the resulting array would get a timestamp between 17 and 18,
Having introduced both techniques, we shall now cover each in more detail, presenting implementation techniques, discussing their properties and covering problems that arise in the use of each scheme.

4.3 Algorithms for Partially Ordered Timestamps

In this section, we develop a straightforward mechanism for generation partially ordered timestamps. We shall begin by specifying the interface for such a timestamping scheme:

\[
\begin{align*}
\text{create} & : \epsilon \rightarrow \text{timestamp} \\
\text{increment} & : \text{timestamp} \rightarrow \text{timestamp} \\
\text{order} & : (\text{timestamp, timestamp}) \rightarrow \{\text{before, equal, after, incomparable}\}
\end{align*}
\]

In this scheme, \text{create} creates an initial timestamp (\text{create} takes a null argument, represented by \epsilon), with further timestamps being created by \text{insert}, which creates a new timestamp that lies after the one passed. Finally, the \text{order} function exists to compare two timestamps. If two timestamps lie on different time lines, an order comparison will say that they are incomparable.

We shall begin by introducing a very simple partially ordered timestamping scheme, which we will later refine.

4.3.1 A Simple Timestamping Algorithm

Our simple partially ordered timestamping scheme is based around object identity and a simple 'cons'ing operation (see Figure 4.3). The 'increment' operation just adds a cell to the front of the chain and returns the new top of the chain. The 'order' function compares two timestamps by searching down each timestamp chain to find whether both lie on the same time line and if so, where they lie in relation to each other. Thus \(t_2\) in our example is before both \(t_3\) and \(t'_3\) but \(t_3\) nor \(t'_3\) are both incomparable with each other.

This scheme is certainly simple and does provide fast allocation of new timestamps. But the length of the timestamp chains grows with every new
After ID: 1329

After ID: 1481

After ID: 1526

After ID: 1681

Figure 4.3: A simple timestamping scheme.

Figure 4.4: The principles of compressing timestamp chains.

timestamp, which seems something of a problem. Worse perhaps is the fact that the 'order' function cannot be implemented efficiently, since the timestamp chains can grow quite long.

4.3.2 Improving the Algorithm

If we assume that long unbranched chains of timestamps will be fairly common, we can improve our timestamping algorithm to take account of this and offer improved performance. Figure 4.4 shows a slightly simplified branching chain of timestamps and how we can reduce the chains into single cells that record how long the chain is. In expressing the basic idea, we have omitted a few details, but in essence, this method is the basis of our timestamping scheme.

Having presented the basic ideas underlying this refinement, we shall now proceed to fill in the details. Timestamps have two components, one which is unique to each timestamp, and another that is shared by all
timestamps in a chain. The shared component keeps track of where this chain fits onto other timestamp chains, and also contains a chain length counter that is used to spot branching. The unshared part contains an integer indicating where the timestamp is in the chain, if this integer is equal to the chain length, then we know that no other timestamps exist after this one this chain.

If we are asked to generate a new timestamp that lies after the last entry in a chain, all we need to do is increment the chain length counter for the chain, and return a new timestamp whose position field is equal to the chain length. If, however, we are asked to generate a timestamp after a timestamp that is not at the end of a chain, we know that at least one timestamp lies after it, and so we must form a new branch. So in this case need to create a new chain, and link it to that timestamp. Figure 4.5 gives an example of an update sequence involving both simple additions to a timestamp chain and the creation of new branches.

The chief advantage to this more complex scheme is that we reduce the length of the chains we have to search. For example, in the Figure 4.5 we can determine very quickly that both t_1 and t_2 are earlier than t_3, because they all lie on the same chain and differ only by their position. However, to see that t'_2 is after t_1, we need to go to a little more work, and we need to trace back along its branch in an analogous way to the very basic scheme we began with. This unfortunately does give partially ordered timestamping a rather poor worse case time complexity, even though practical applications may rarely cause branching to occur.

4.3.3 Conclusions

The poor worst case performance of the partially ordered approach is a clear drawback, and it is not the only problem that arises with this technique. In the context of functional arrays, we run across another problem that comes from the very nature of having partially ordered timestamps. If timestamps have a partial order we cannot use them in an order based data structure. This means that we cannot be able to use a tree to store
(a) A single (initial) timestamp, t_1. Notice that there are two parts to the structure, a ‘Position’ field which is unique to this timestamp, and a common part which will be shared by all timestamps in this chain. This latter part consists of ‘Chain Length’ counter and an (empty) ‘After’ pointer.

(b) Two timestamps; t_2 is the result of incrementing t_1. Notice that while t_1 and t_2 both reference the same common data structure, they do not explicitly reference each other. (Note that we use a pointer to link the unshared part of a timestamp to the shared part.)

(c) Three timestamps; both t_2 and t_2' result from asking for a timestamp after t_1. Notice that the ‘After’ field in t_2' references t_1. While t_2 was the result of a simple increment, t_2' was the result of a branching increment.

(d) Five timestamps; t_3 is after t_2 and t_3' is after t_2'.

(e) Three timestamps; t_1, t_2 and t_2' have ceased to be referenced by the program.

Figure 4.5: The lurid details of efficient partially ordered timestamping.
element histories, instead we must use some other data structure, such as a stack. Not being able to use order to speed the search for an entry in an element history reduces further the worst case time complexity of methods based on partially ordered timestamps.

Things aren’t completely bleak, however. Despite its poor worst case performance, this may be a viable technique for algorithms that mostly perform single threaded accesses, since single threaded accesses will always create timestamps that lie on a single chain and the most recently version of an element will always be on the top of the stack of element histories.

So, while noting that applications that are mostly single threaded there may find work efficiently with partially ordered timestamps, we will turn our attention to totally ordered timestamping and see what advantages it holds.

4.4 Algorithms for Totally Ordered Timestamps

The problem of generating timestamps that follow a total order can also be viewed as the problem of ‘maintaining order in a list’. This latter problem is one of maintaining a list through a sequence of insert and delete operations, while answering order queries (to determine which of two entries comes first in the list). An interface for ordered list maintenance functions is shown below:

\[
\begin{align*}
\text{create} &: \alpha \rightarrow \text{ordered}(\alpha) \\
\text{insert} &: (\text{ordered}(\alpha), \alpha) \rightarrow \text{ordered}(\alpha) \\
\text{order} &: (\text{ordered}(\alpha), \text{ordered}(\alpha)) \rightarrow \{\text{before, equal, after}\} \\
\text{succ} &: \text{ordered}(\alpha) \rightarrow \text{ordered}(\alpha) \\
\text{value} &: \text{ordered}(\alpha) \rightarrow \alpha
\end{align*}
\]

Note that the parametric type \(\text{ordered}(\alpha) \) refers to the point in an ordered list where a particular element (of type \(\alpha \)) is stored.

The order maintenance problem presumes that we will be storing something in this ordered list, but if we don’t actually store any data in it, the problem can be viewed as a timestamp generation problem. We can therefore
apply some simplifications and produce and interface for timestamping operations, shown below\(^1\):

\[
\begin{align*}
timestamp & = ordered(\epsilon) \\
\text{create} & : \epsilon \rightarrow timestamp \\
\text{insert} & : timestamp \rightarrow timestamp \\
\text{order} & : (timestamp, timestamp) \rightarrow \{\text{before, equal, after}\} \\
\text{succ} & : timestamp \rightarrow timestamp
\end{align*}
\]

Although the techniques for addressing the order maintenance problem with \(O(1)\) time taken for insert, delete, order have been published elsewhere\([7, 26]\), it is sensible for us to outline the algorithm here, since the generation and comparison of timestamps is a fundamental part of our method.

Our particular implementation follows the first algorithm presented by Dietz and Sleator\([7]\), which is a relatively straightforward algorithm. This algorithm, which we will describe below, takes \(O(1)\) amortized time for insert and \(O(1)\) real time for order, succ and delete. Dietz and Sleator’s other algorithm provides \(O(1)\) real time for all operations, but at the cost of some algorithmic complexity. There is no fundamental problem with the use of this second algorithm, however, we have merely chosen to use the first one for the sake of simplicity.

Although the algorithm is presented elsewhere, our presentation of it may prove of some interest, since we present it from a slightly different perspective, and reveal some properties that aren’t obvious in the original presentation\(^2\).

4.4.1 A Simple Timestamping Algorithm

The algorithm we used maintains a circularly linked list. Each node in the list has an integer label, which is occasionally revised. We also impose

\(^1\)Note that \(\epsilon\) represents a null type.

\(^2\)In particular, we show that it is not necessary to refer to the ‘base’ when performing insertions; it is only necessary for comparisons. Also, some of the formulas given by Dietz and Sleator would, if implemented as presented, cause problems with overflow (in effect causing ‘mod \(M\)’ to be prematurely applied) if \(M\) is chosen, as suggested, to exactly fit the machine word size.
a fixed but arbitrary upper limit, \(N \), on the number of elements that will
be stored in the list. Typically, \(N \) might be chosen to fit the size of a
machine word, or a machine half-word (see below).

The integers used to label the nodes range from 0 to \(M - 1 \), where
\(M > N^2 \). In practice, this means that if we wished \(N \) to be \(2^{32} - 1 \), we
would need to have to set \(M \) to \(2^{64} \). If it is known that a large value
for \(N \) is not required, it may be useful for an implementation to set \(M \)
to be the machine word size, since much of the arithmetic needs to be
performed modulo \(M \), and when \(M \) is the machine word size this will
happen automatically.

Initially, the list holds a single element, which is never deleted. This
node is special in that its label (which can be assigned an arbitrary value)
is used when performing order comparisons. We shall call this element
the base.

In the discussion that follows, we shall use \(l(e) \) to denote the label of
an element \(e \), and \(s(e) \) to denote its successor in the list (corresponding
to \(\text{succ} \) function we specified in the timestamping interface). We shall
also use the term \(s^n(e) \) to refer to the \(n^{\text{th}} \) successor of \(e \), for example,
\(s^3(e) \) refers to \(s(s(s(e))) \). Finally, we define two ‘gap’ calculation functions,
\(g(e,f) \) and \(g^*(e,f) \), that find the gap between the labels of two elements:

\[
g(e,f) = (l(f) - l(e)) \ mod \ M
\]

\[
g^*(e,f) = \begin{cases}
g(e,f) \ mod \ M & \text{if } e \neq f \\
M & \text{if } e = f
\end{cases}
\]

To compare two elements of the list for order, we require the base, as
well as the elements which are to be compared. If we are comparing two
elements, \(x \) and \(y \), we perform a simple integer comparison of \(g(\text{base}, x) \)
with \(g(\text{base}, y) \), where \(\text{base} \) is the first element in the list.

Comparison of elements is trivial then, as is deletion, which is done
just by removing the element from the list. The only issue that remains
is that of insertion. We will suppose that we wish to place a new element,
\(n \), so that it comes directly after some element, \(e \). For most insertions, all
that needs to be done is to select a new label that lies between \(l(e) \) and \(l(s(e)) \). The label for this new node can be derived as follows:

\[
l(n) = l(e) + \left\lfloor \frac{g^*(e, s(e))}{2} \right\rfloor \mod M
\]

This approach is only successful, however, if the gap between the labels of \(e \) and its successor is greater than 1 (i.e. \(g(e, s(e)) > 1 \)), since there needs to be room for the new label. If this is not the case, it is necessary to relabel some of the elements in the list to make room. Thus we relabel a stretch of \(j \) nodes, starting at \(e \), where \(j \) is chosen to be the least integer such that \(g(e, s^j(e)) > j^2 \). (The appropriate value of \(j \) can be found by simply stepping through the list until this condition is met). In fact, the label for \(e \) is left as is, and so only the \(j - 1 \) nodes that succeed \(e \) need have their labels updated. The new labels for the nodes \(s^1(e), \ldots, s^{j-1}(e) \) are assigned using the formula below:

\[
l(s^k(e)) = \left(l(e) + \left\lfloor \frac{k \times g^*(e, s^j(e))}{j} \right\rfloor \right) \mod M.
\]

Having relabeled the nodes to create sufficient gap, we can then insert a new node following the procedure outlined earlier.

4.4.2 Refining the Algorithm

The algorithm, as presented so far, takes \(O(\log n) \) amortized time to perform an insertion[7], but there is a simple extension of the algorithm which allows it to take \(O(1) \) amortized time per insertion[26, 7]. To do this, we use a two-level hierarchy that uses an ordered list of ordered sublists.

The top level of the hierarchy is represented using the techniques outlined earlier, but each node in the list contains an ordered sublist which forms the lower part of the hierarchy. An order list element, \(e \), is now represented by a node in the lower list, \(c(e) \), and a node in the upper list, \(p(e) \). Nodes that belong to the same sublist will share the same node in the upper list. In other words

\[
p(e) = p(f), \ \forall e, f \ \text{s.t.} \ c(e) = s_c(c(f))
\]
where \(s_c(e_c) \) is the successor of sublist element \(e_c \). We also define \(s_p(e_p), l_c(e_c) \) and \(l_p(e_p) \) analogously.

The sublists have their order maintained using a simpler algorithm. Each sublist initially contains \(\lceil \log n_0 \rceil \) elements, where \(n_0 \) is the total number of items in the ordered list we are representing. This means that the parent order list contains \(n / \log n \) entries.

Each sublist element receives an integer label, such that the labels of the elements are, initially, \(k, 2k, \ldots, \lceil \log n_0 \rceil k \), where \(k = 2^{\lceil \log n_0 \rceil} \). When a new element, \(n_c \), is inserted into a sublist, after some element \(e_c \), we choose a label in between \(e_c \) and \(s_c(e_c) \). More formally,

\[
 l_c(n_c) = \left\lceil \frac{l_c(e_c) + l_c(s_c(e_c))}{2} \right\rceil
\]

Under this arrangement, the sublist can receive at least \(\lceil \log n_0 \rceil \) insertions before there is any risk of there not being an integer label available that lies between \(e_c \) and \(s_c(e_c) \).

To insert an element \(n \), after \(e \) in the overall order list, if the sublist that contains \(c(e) \) has sufficient space, all that needs to be done is to insert a new sublist element \(n_c \) after \(c(e) \), and perform the assignments \(c(n) \leftarrow n_c \) and \(p(n) \leftarrow p(e) \). If sublist contains \(2^{\lceil \log n_0 \rceil} \) elements, it may not be possible to make insertions after some of its elements, however. In this case, we split the sublist into two sublists of equal length, relabeling both sets of \(\lceil \log n_0 \rceil \) nodes following the initial labeling scheme. The nodes of the first sublist are left with the same parent, \(e_p \), but nodes of the second sublist is given a new parent, \(n_p \) that is inserted in the upper order list immediately after \(e_p \).

These techniques are used for insertions until the number of nodes in the overall order list, \(n \), is greater than \(2^{\lceil \log n_0 \rceil} \), since at that point \(\lceil \log n \rceil > \lceil \log n_0 \rceil \). When this happens (every time \(n \) doubles), we must reorganize the list so that we now have \(n / \lceil \log n \rceil \) sublists each containing \(\lceil \log n \rceil \) nodes, rather than having \(n / \lceil \log n_0 \rceil \) sublists of \(\lceil \log n_0 \rceil \) nodes.

Since this new scheme only creates \(n / \lceil \log n \rceil \) entries in the upper order list, the arena size, \(M \), can be slightly lower. Recall that previously we imposed the condition \(M > N^2 \). Now have a slightly smaller \(M \), since it
need only satisfy the condition:

\[M > \left(\frac{N}{\lceil \log N \rceil} \right)^2 \]

In practice, this would mean that if we required up to \(2^{32}\) list entries, we would need an arena size of \(2^{54}\) (instead of \(2^{64}\)). Similarly, if we wish all labels to fit in a machine word, and so wished \(M\) to be \(2^{32}\), we would be able to have a little over \(2^{20}\) items in an order list at one time (instead of \(2^{16}\) items).³

4.4.3 Conclusions

Following this scheme then, we can implement efficient ordered lists and by simple derivation, a quick and effective scheme for totally ordered timestamps. Their \(O(1)\) performance makes them a very attractive method, and for this reason we shall adopt them over partially ordered timestamps. The rather artificial flattened timeline they provide does itself raise some issues that we need to deal with — we address those issues in the next section.

4.5 Correctly Implementing Element Histories

To properly understand what we need from our timestamping scheme we need to briefly recap some of the things we learned in Chapter 3. We implement arrays through the use of timestamps and multiple Element Histories. An interface for element histories is shown below:

\[
\begin{align*}
\text{create} & : \epsilon \rightarrow (\alpha \rightarrow \text{ordered}(\alpha), \text{timestamp}) \\
\text{record} & : (\text{ordered}(\alpha), \text{timestamp}, \alpha) \rightarrow (\text{ordered}(\alpha), \text{timestamp}) \\
\text{locate} & : (\text{ordered}(\alpha), \text{timestamp}) \rightarrow \alpha
\end{align*}
\]

³The exact number of items allowed in this case is 1376234. Our ML implementation sets \(M\) to \(2^{29}\), and allows more than \(2^{18}\) items in the list (440239 to be precise). If this limit is exceeded, the algorithms will continue to work, but \text{insert} is no longer guaranteed to take \(O(1)\) amortized time. For functional arrays, we believe this limit to be entirely reasonable, since this only places a largish limit on the number of array versions that may exist concurrently and not the size of the arrays used.
In the totally ordered timestamping scheme, all timestamps belong to a single linear ‘time-line’, which serves all element histories and thus all the instances of a particular array. Since the same timestamps span all the element histories of a persistent array data structure, we need to consider how this affects things. So far we have only ever looked at one element history of the array at a time when considering updates. When we move out to look at the bigger picture, it becomes clear that there is a problem with the linear timestamping method.

When updates take place over more than one element history there will be ‘gaps’ in the element histories. The gaps occur because an update adds a new entry with a new timestamp to an element history, but no entries for that timestamp are added to any of the other element histories. When reading an element history to retrieve the entry corresponding to a particular timestamp, if that timestamp is missing, we retrieve the nearest one, that being the latest timestamp that is earlier than the one
we were looking for. No problems occur with this method when all we re-
quire is partial persistence, and this is exactly the method we presented
in the previous chapter.

But these missing timestamps do present a problem when implement-
ing full persistence using linear time. The problem occurs when the ele-
ment history lacks a value for the timestamp we are looking up, and we
return the nearest one (i.e., the one corresponding to the most recent
timestamp earlier than the one we are seeking). In this case, the \textit{wrong}
value can be returned. This can happen because entries can be inserted
in the element history in such a way that they reside inside a preexisting
gap. Figure 4.6 shows how such an error can occur, and how it can be
prevented.

We cannot prevent new element history entries from being added in
the places they are. But we can take steps to prevent the addition of new
entries from affecting the values returned for timestamps that lie after
the one we’ve added. If we will be adding an entry to an element history
for timestamp t, we need to check whether the entry for the nearest time-
stamp after t, $\text{succ}(t)$, exists and if so, whether it is represented in the
element history. If $\text{succ}(t)$ does exist and is not represented in the history,
we need to add an entry for $\text{succ}(t)$, giving it the value that would pre-
viously have been inferred by retrieving the value for the entry with the
latest timestamp earlier than t. (If $\text{succ}(t)$ does not exist, no timestamps lie
beyond the one we’re adding and so we do not need to take any additional
steps.)

Figure 4.7 also describes this same issue, but with the added context
of the complete array data structure. A useful exercise for the reader
might be to examine Figure 4.7(b) and investigate what happens for the
same sequence of updates when using partially ordered time stamps, to
see why the same problem does not occur in that case.
(a) This figure shows two of the element histories of a persistent array data structure after two single threaded updates, both of which have taken place on the second element of the array. The first update, on Array1, created Array2 which has timestamp \(t_1 \) and the second, on Array2, created Array3 with timestamp \(t_2 \).

(b) A naively applied fully persistent update causes problems however. A second update on Array1, this time on the fourth element, may look innocuous, but in fact it has had an unwanted effect on the values of Array2[4] and Array3[4] which should not have been affected. Their value should be the one associated with \(t_0 \), 48, but now 130 will be erroneously returned.

(c) The problems that occurred in (b) can be resolved by also adding a history entry for \(t_1 \) when adding the entry for \(t_0.5 \).

Figure 4.7: (continued over...)
(d) We do not need to add any additional entries when adding an entry for $t_{0.6}$ in element four’s history because there is already an entry for t_1. Also, we don’t have to do any extra work if we then add an entry for t_3.

Figure 4.7: The gap problem shown in the context of the array data structure.

4.6 Conclusion

In this chapter we have seen how to extend the partially persistent data structure we developed in Chapter 3. The extensions are, in fact, reasonably straightforward. The largest changes have occurred in the way we generate timestamps, since we have gone from performing a simple increment, to a more complex scheme. We have presented two timestamping schemes, both of which can address the issue. The first is reasonably straightforward to implement, but with poor worst case performance, while the second is a little more complex, but offers better time and space complexity, and is therefore more suitable for general use.

In the following chapter we look beyond complexity measures and examine the actually performance of functional arrays using totally ordered time.
Chapter 5

Performance Issues

In Chapter 4, we developed fully persistent arrays where the accesses to the most recently read or written value of an array element takes constant time, and where access to an array element which has been updated u_e times takes $O(\log u_e)$ time. In this chapter we show what this means in practice, by examining the performance of our techniques and comparing them to the performance of the other popular techniques that can be used to support functional arrays.

5.1 The Issue of Performance

While computational complexity measures are useful, in practice other issues come into play. Knowing that an array update or access can be preformed in constant time is useful, but it’s also useful to know the approximate size of the constant. For example, one might assume that an $O(n)$ algorithm is obviously better than an $O(n \log n)$ one but in practice it may not be — if it the first algorithm was thirty times slower for $n = 1$, it would only surpass the second algorithm for n over one billion. Thus we need to measure the actual performance of our method, and compare it to the performance of other techniques, comparing not only computational complexity, but actual execution times.

Measuring performance is, however, a thorny subject and a research field in its own right. Measures of performance are vulnerable to be
attacked as either being too simplistic, too contrived, or not being representative. Often performance is measured using some traditional and recognized benchmark, but for functional arrays, no such benchmark exists. This isn’t surprising, since the vast majority of array algorithms have been developed for imperative languages and ephemeral arrays, but it does mean that we have to develop our own performance measures.

We have designed our performance tests to highlight the strengths and weaknesses of each array implementation technique. One of the key issues we examine is performance for both conventional single-threaded array access and also for simple and complex non-single-threaded access. We consider performance for three implementation techniques besides our technique of *Element Histories*, namely, *Trailers*[1, 14, 15], *Binary Trees* and *Naive Copying* (in the latter technique, we just copy the whole array for every update). The actual tests used and the results obtained are described below.

5.2 A Simple Test, Reversing an Array

We use array reversal as a performance measure both because it is a readily understandable concept, and because it has a good deal in common with a variety of other operations on arrays. It is also interesting because there is more than one ‘obvious’ algorithm — we consider three algorithms, each with slightly different properties. The three implementations are shown in Table 5.1.

The first way of implementing *reverse*, shown in Table 5.1(a) is the one which probably occurs most readily to users of imperative languages. It works from the outside in, swapping leftmost and rightmost elements, stopping when we reach the middle of the array. This approach would work equally well in an imperative language, in which we would be updating the array in-place. As one would expect for an algorithm originating in the realm of imperative programming, this first reverse algorithm is single-threaded.

A programmer who has experience with functional languages and less
reverse array =
 let
 arraysize = size array
 halfway = size / 2
 rev (array, index) =
 if index < halfway then
 let
 left = subscript (array, index)
 right = subscript (array, arraysize - index - 1)
 tmparray = update(current, index, right)
 newarray = update(tmparray, size - index - 1, left)
 in
 rev (newarray, index + 1)
 else
 array
 in
 rev (array, 0)

(a) A traditional single-threaded implementation of reverse.

reverse array =
 let
 arraysize = size array
 rev (array, index) =
 if index < arraysize then
 let
 element = subscript (array, arraysize - index - 1)
 newarray = update(array, index, element)
 in
 rev (newarray, index + 1)
 else
 array
 in
 rev (array, 0)

(b) A simpler non-single-threaded implementation of reverse.

Table 5.1: (continued over...)
reverse array =
 let
 arraysize = size array
 reverse-subscript index = subscript (array, arraysize - index - 1)
 in
 create (size, reverse-subscript)

(c) A quick, monolithic, implementation of reverse.

Table 5.1: Specification of three implementations of array reversal.

imperative language indoctrination, may realize that we can reverse the
array just by working left to right (see Table 5.1(b)). This algorithm relies
on the fact that we can still access the original array, and not worry that
it will have been overwritten. It performs the same number of read and
update accesses and eliminates a little algorithmic complexity. These
differences do mean that unlike the first algorithm, this second one is not
single-threaded, but this should not be considered a problem or failing.

The third and final algorithm is one that comes from looking at the
problem a little more deeply. Array reversal changes every single element
of the array, and so the reversed array has little in common with the
original one. Since array update does not perform update-in-place but,
semantically speaking, copies the array making a single change, the oth-
er techniques generate $n - 2$ intermediate arrays, each being a partially
reversed array. We can skip these intermediate arrays and the creation
costs associated with them creating a brand new array and filling it with
the contents of the original array, reversed. This 'monolithic' approach
provides the fastest and simplest implementation for reverse, and is also
applicable to other algorithms which significantly reorganize an array;
monolithic array use is no panacea however, and may not be suited to
complicated algorithms or algorithms which may only change a few ele-
ments of the array.

Having seen the three different implementations of reverse, we now
(a) For the very traditional reverse algorithm, both Element Histories and Trailers turn in $O(n)$ performance, while Binary Trees achieve $O(n \log n)$ performance. Naively copying the array at each update is $O(n^2)$.

(b) For the simpler reverse algorithm, the Element Histories again provides $O(n)$ performance, but Trailers is $O(n^2)$. Naive copying is also $O(n^2)$, but Trailers is actually three times slower. As before, Binary Trees are $O(n \log n)$.

Figure 5.1: (continued over...)
For the monolithic approach, where instead of updating the original array, we create an entirely new one, all methods except Binary Trees turn in $O(n)$ performance. As in the previous examples, Binary Trees are $O(n \log n)$.

Figure 5.1: Performance for the three implementations of array reversal.

We need to examine their performance for each of the functional array methods. Since each of the implementations is, in its own way, reasonable, we would hope that they would take a similar amount of time, only differing by some constant factor. Figure 5.1 shows the actual results of timing each reverse algorithm for each of four array methods\(^1\) (it also shows timings for mutable (non-functional) arrays).

Timings for the first version of reverse, Figure 5.1(a), show that for single threaded access, both Trailers and Element histories offer $O(n)$ performance. The graph also shows that Element Histories are nearly four times slower than Trailers. This isn’t such a surprise, since Element Histories is a more complex technique\(^2\). Binary Trees offer $O(n \log n)$.

\(^1\)The timings come from executing an implementation of the algorithms described, written in Standard ML. Testing was done using Standard ML of New Jersey, running on a NeXTstation Turbo (Mach 2.5/BSD variant Unix, Motorola MC68040 processor at 33MHz, 48MB of RAM).

\(^2\)In addition, it is worth noting that our implementation of Element Histories was done in a modular and layered way. An implementation oriented around execution speed could
performance3, but despite that, when it comes to actual execution times
the method comes very close to matching the times for Element Histories4,
particularly for small n. Binary Trees do, however, require $O(\log n)$ space
for each array update, unlikeTrailers and Element Histories, which only
need $O(1)$ space. Moving on to Naive Copying, as one might expect, this
technique turns in $O(n^2)$ performance.

Things become interesting when we examine the performance of the
second implementation of \texttt{reverse}, see Figure 5.1(b). For the most part,
the graphs are very similar, with the exception of the line for Trailers.
Trailers has gone from a speedy $O(n)$ to a dreadful $O(n^2)$, and in terms
of actual performance times, it is three times slower than Naive Copying,
which is also $O(n^2)$. This highlights the fundamental weakness of Trailers
(which we mention in Chapter 2): for single-threaded algorithms, Trailers
is fine, turning in $O(1)$ performance for array subscript and update, but
when the array is used non-single-threadedly, it is a lottery as to what
kind of performance will result. In some cases, it may still manage to give
$O(1)$ amortized time for these accesses, but in many others it will not.

Finally, we can move on to the last implementation of \texttt{reverse}, shown
in Figure 5.1(c). What we are really looking at in this case is how long it
takes to create a new array and traverse an old one. All techniques except
Binary Trees turn in $O(n)$ performance. Binary Trees takes $O(n \log n)$.

We have seen here that in for some techniques, especially Trailers,
subtly different algorithms that intuitively seem equivalent can produce
vastly different execution times. Element Histories however, achieves
consistent results, turning in $O(n)$ performance in all three cases. Binary
Trees also give consistent results, always taking $O(n \log n)$ time. We’ve
also seen that for small n, Binary Trees may be a viable and somewhat
tsimpler approach to use.

3In fact, while we have drawn an $n \log n$ curve through the points, an $n \lceil \log n \rceil$ curve
would be more appropriate for our particular implementation.

4The Binary Tree based array implementation was fairly well optimized. Thus improve-
ments to the implementation of Element Histories would widen the gap and also make
the comparison a slightly fairer one.
5.3 The Multiple Versions Test

In this test, we make \(v \) versions of an array, all subtly different. We do this by repeatedly choosing an array version at random from those that exist, choosing an element, at random, and updating it, to make a new array version. We start with just one array and end when we have generated \(v \) versions.

The primary purpose of this test is to reveal the worst case behaviour of Element Histories. Recall that with Element Histories, the time taken to retrieve the most recently read or written value of an array element is \(O(1) \), but otherwise it may be \(O(\log v_e) \), where \(v_e \) is the number of different versions stored in that element. In our performance test, \(v_e \approx v/n \). Looking at Figure 5.2(a), we can see that when as \(v \) exceeds \(n \), the graph takes on a \(\log v \) component — since \(n \) is constant we cannot be sure whether it is \(\log v \) or, as we asserted earlier \(\log(v/n) \). Trailers also seems to be following some sort of curve, perhaps a gentle \(O(n^2) \) curve — it’s hard to be sure exactly what kind of curve to draw given the unpredictable behaviour of Trailers. Certainly with sufficient analysis we could probably find out, but this itself makes a point about Trailers, that we need to go to some trouble to know exactly how it will perform.

In the second graph, Figure 5.2(b), we keep \(v \) constant and vary the size of the array, \(n \). For Trailers, this results in constant time, but for Element Histories, we see that as we increase array size, we decrease access time, until we reach the point where \(n > v \). Binary Trees reveal their \(O(\log n) \) component here also.

5.4 Conclusion

Although our technique is more complex than the other approaches, and is therefore slower by a small factor in simple cases, it lacks the terrible worst case performance of Trailers, and does better than Binary Trees in almost all cases (see below). In many situations our technique turns in
(a) Using a test that creates v versions of an array, performing v reads and v updates to do so, we see Element Histories’ worst case performance. Instead of taking $O(v)$ time, it takes $O(v \log(v/n))$, where n is the size of the array. Trailers, on the other hand, manages to turn in $O(v)$ performance. The algorithm takes $O(v)$ time under Binary Trees because we are not varying the size of the array, only the number of versions.

(b) For Element Histories, the test takes less time as we increase the size of the array, n, (the number of concurrent array versions, v, is kept constant). The shape of the graph demonstrates that the logarithmic component is indeed $O(\log(v/n))$ and not just $O(\log v)$. The graph also reveals the $O(\log n)$ component present in Binary Trees.

Figure 5.2: Worst case performance for Element Histories.
$O(1)$ time for array subscript and update, and it’s worst case performance is only $O(\log v_e)$, where v_e is the number of different versions of that element that exist, making its worst case performance better than the worst case performance of the other techniques we’ve looked at, for most applications.

We have also observed that binary trees may sometimes be a viable approach, especially when the size of the array, n, is small and v/n is large (v is the number of array versions), since in this case $O(\log n) < O(\log v/n)$ (since typically $v_e \approx v/n$). In this one case, Binary Trees does better than our approach.

Finally, we have seen that the techniques do best when array versions are similar; if we are making wholesale changes to an array, we probably do better to just create a new array than to use repeated updates to create an array which is a descendant of an original one. However, if we do need to do the latter, Element Histories will turn in respectable performance.
Chapter 6

Case Study, Implementing Heaps

In this chapter we take a look at one use to which functional arrays can be put, that of implementing a functional heap. This is of interest for several reasons, one being that there is an equivalence between functional arrays and functional heaps, and another being that heaps themselves raise some interesting issues about the axioms of functional programming. Finally, functional heap implementation has a particular significance to the author, since it was a need for an efficient functional heap that originally motivated her work in this area.

6.1 Introduction

The heap data structure, a structure which is very useful for supporting multi-linked data structures[4] and unification based algorithms, is an ideal candidate for implementation using functional arrays. A heap abstract data type supports the following operations:

\[
\begin{align*}
\text{empty} : & \quad \text{heap} (\alpha) \\
\text{allocate} : & \quad (\alpha, \text{heap} (\alpha)) \to (\text{location} (\alpha), \text{heap} (\alpha)) \\
\text{read} : & \quad (\text{location} (\alpha), \text{heap} (\alpha)) \to \alpha \\
\text{update} : & \quad (\text{location} (\alpha), \text{heap} (\alpha), \alpha) \to \text{heap} (\alpha)
\end{align*}
\]
A heap is like an extensible piece of RAM, we can place an object in the heap, and then refer to it using a pointer, referencing a *heap location*. We can not only read the location; we can also update it. However, the update operation remains fully functional, as it returns a new heap with the change made. If a read operation is made on the updated location using the old heap, the old value is returned, thus referential transparency is preserved.

Our goal, as with the functional array construct, is to have an heap data structure whose locations can be updated or read in constant time, and where the same locations in older versions of the heap retain their old values, which are still accessible in a reasonable time.

6.2 A Straightforward Heap Implementation

If one assumes a functional array construct already exists, we can immediately see a simple implementation method for this construct (see Figure 6.1). The heap can be a functional array\(^1\), with heap locations just being indexes into that array. Usually heap locations tend to be very independent of each other, so we desire a functional array where updates to one element, or a group of elements, has little or no effect on other array elements. This is a feature of the functional array mechanism we have presented, but is lacking in most other functional array approaches (see Chapter 2).

There is only one potential problem with an array based heap implementation, and that is one of garbage collection for unreferenced heap locations. A heap location created by `allocate` may exist forever after its creation, even if all references to that location get forgotten. Whether or not this happens depends on exactly how allocation of heap pointers is managed and how garbage collection is performed on functional arrays, the later issue being one we address in our later work[20]. An obvious solution to this problem would be to add the following operation to our

\(^1\)We might perhaps add some housekeeping information, to make allocation of new heap locations faster.
(a) A heap data structure using an element-history based functional array. One heap location, Location1, has been allocated in the heap, and points to the integer value 135.

(b) The heap data structure after the allocation of another heap location. Note that the newly allocated location only exists in Heap3.

(c) The heap data structure after Location1 has been updated.

Figure 6.1: Implementing heaps using Functional Arrays.
heap specification:

\[
\text{deallocate} : (\text{location}(\alpha), \text{heap}(\alpha)) \rightarrow \text{heap}(\alpha)
\]

Since the location could be deallocated in one heap, but not in others, this is not necessarily such a bad approach, since at least the possibility of the 'resource freed while references to it still exist' bug is reduced. In some applications however, explicit deallocation is something the programmer would rather avoid if possible.

We can avoid having explicit deallocation if we implement heaps at a system level, and thereby allow the garbage collector to understand the structure of heaps. In fact, if heaps are primitive to the system, we can write functional array support in user level code, since an array could be seen as the combination of a heap and an immutable array (or vector) of heap locations. However, when we look into the issue of implementing heaps at a primitive level, and simplifying the data structures involved, we actually encounter some intriguing issues.

6.3 Problems over Referential Transparency

When we examine heaps, we uncover some curious and slightly counter-intuitive facts about referential transparency, which is a basic tenet of functional programming. The issues we raise here are interesting and probably worthy of further study, but given the issue is only very weakly related to functional arrays, we shall only touch on it briefly.

Referential transparency makes it easier for us to reason about the behaviour of functional programs, making it a very useful property, and one we should be reluctant to break. However, there are cases where it is actually more of a hindrance than a help because the rules a function must obey to be referentially transparent may actually prevent it from operating in the most useful and natural way. The heap abstract data type is an example of this. There is a very close relationship between heaps and heap locations; normally one would only expect to use a heap location with the heap to which it belongs (i.e. the heap in which it was
first created or in a descendant of that heap). Referential Transparency, however, states that we can use a location with heaps other than the one it was actually created for. This additional flexibility provides nothing useful for most normal programs, but instead allows code sequences that are almost certainly erroneous to be executed without any error being raised, and prevents some optimizations.

It would be nice if we could both have our cake and eat it; retain referential transparency and yet somehow be able to express the fact that there is a connection between a particular heap and its locations, and thereby still be able to apply some useful optimizations, and catch programming errors. The closely coupled relationship we desire would not so much break referential transparency as approximate it. Heaps themselves need not admit equality, making the issue of whether two of them are equal academic, and locations should only be used with heaps to which they belong or their descendants. We could say that failure to do so results in \bot\footnote{Or ‘may result in \bot.’ it may also return a normal result depending on the optimizations performed by the compiler. If a result is returned, it could still be a correct answer, in that it will be the value that a fully referentially transparent implementation would return. Returning \bot can be viewed as electing not to give an answer at all, rather than being an answer in itself.} (i.e. it is an untrapable error). Finally, we could require that locations may be tested for equality, but only if there exists a heap in which both are valid: testing locations which come from completely different heaps for equality could, once again, cause \bot to be the result.

Ideally, we could statically enforce restrictions only allowing code that uses locations and heaps sensibly, thus preventing \bot from ever being generated by the heap access functions. If this were the case, the heap interface could appear referentially transparent while still allowing useful optimizations and preventing erroneous code sequences. Unfortunately, how such restrictions could be applied statically is unknown at this time. At present detection of such erroneous use can be done at runtime (raising an error if the access is an invalid one — such checking can be done with only a very minor runtime penalty, and those who feel the ‘the need for speed’ could disable runtime checking if they were convinced their
code had no faults, in the same way as they might be able to disable runtime array bounds checking).

In languages such as Standard ML[19], preserving true referential transparency is often considered not quite so important, and so the optimisation we will present would probably not be considered a problem, especially since it can catch programming errors. However, purer languages are probably better off with the simple scheme, unless the requirements can be enforced at compile time (or unless they support linear/unique types, since they could be used to make all heaps distinct).

6.4 Optimising the Implementation of Heaps

Earlier we informally described how one could implement heaps given the existence of functional arrays. In fact, if the functional arrays are implemented using element histories, we can simplify the data structure used by eliminating some parts of the functional array scheme that prove unnecessary.

Figure 6.2 shows a typical data structure arrangement for implementing heaps using history stack based functional arrays. We can simplify this scheme by removing an unnecessary indirection; instead of making the heap location hold an index into an array of element histories, we make the location itself be an element history. Eliminating this indirection adds a minor access time speedup, but more importantly, simplifies heap maintenance, since we do not have to allocate an array or worry about dynamically re-sizing the array. nor do we need to worry as much about garbage collection - if a heap location ceases to be referenced anywhere, the element history associated with that heap location will be removed.

The only downside to this approach is that it is only weakly referentially transparent. Since the data is actually stored inside the location, rather than the location being a pointer into the heap, the 'heap' becomes solely a timestamp. The problem with this refinement is that while in
(a) There is some redundancy in the representation using functional arrays.

(b) We can simplify the data structure for heaps, by using element histories directly. This simplification may be problematic, however (see text).

Figure 6.2: Optimization for heaps.
many respects it is more logical, code which relied on referentially transparent semantics could fail. As has been pointed out earlier, usually only very bizarre and probably erroneous code would be affected.

6.5 Conclusion

We've shown here how the element history data structure can be used in other situations besides the management of functional arrays. We've also seen how current type systems and the conditions for referential transparency make the efficient implementation of heap data structures awkward. This latter point is probably worthy of further study.
Chapter 7

Conclusion

We have examined the problem of providing functional arrays, looked at previous approaches to the problem, and then developed our own general solution, which offers better performance than prior methods.

We began with a scheme that offered partial persistence, and developed that to provide full persistence, presenting and comparing two timestamping models that each provide full persistence. Having developed a technique for implementing truly functional arrays, we’ve examined its performance when compared to prior methods. We’ve also examined one use of functional arrays, namely their use to implement heaps, and have explored some special issues that relate to heaps.

Our technique is both effective in theory and practice, providing constant time performance for single threaded array access, and fast access to old array versions — a significant improvement over previous approaches. As well as allowing favourite imperative array algorithms to be used with little penalty in a functional context, it also allows the practical use of arrays as a persistent data structure. It is probably the first kind of array where the programmer is free to use arrays in whatever way they like without risking huge penalties.

Finally, our work here also reveals fertile ground on which to conduct further research. Two important issues we’ve not covered here are special garbage collection techniques for our functional arrays, and optimisations that can impact access times for our structures (including techniques to
reduce storage and access overheads, and ways to break up a large array when it holds many dissimilar versions). Also, our array structure is very amenable to being used in parallel access situations, and has impressive potential in this regard. These issues, among others, are covered by our later work[20].
Appendix A

Source Listings

In this section we list all some sample source code for the techniques covered by this thesis. The source code is written in Standard ML. The reader should also note that on occasion the functions are named slightly differently from the names used in the main text — however, the correlation between function names used in the source code and names used in the text should be clear enough.

A.1 Functional Arrays using totally ordered time-stamps

A.1.1 Structure Signatures

array.sig

signature ARRAY =
 sig
 type 'a array
 exception Size
 exception Subscript
 val tabulate : int * (int -> '1a) -> '1a array
 val sub : '1a array * int -> '1a
 val size : '1a array -> int
 val update : '1a array * int * '1a -> '1a array
 val method : string
 end

history.sig

signature HISTORY =
 sig
type 'a history
type timestamp
exception Unbound
val create : unit -> ('a -> 'a history) * timestamp
val locate : 'a history * timestamp -> 'a history * 'a
val record : ('a history * timestamp) * 'a -> 'a history * timestamp
val history_string : ('a -> string) -> 'a history -> string
val time_string : timestamp -> string
end

rewriting-splaytree.sig

signature REWRITING_SPLAYTREE =
 sig
datatype 'a splay =
 SplayObj of {
 value : 'a,
 right : 'a splay,
 left : 'a splay
 }
 | SplayNil
datatype 'a position =
 Before | After | Identical | Delete | Rewrite of 'a splay -> 'a splay
val splay : ('a -> 'a position) * 'a splay -> LibBase.relation * 'a splay
val join : 'a splay * 'a splay -> 'a splay
end

rewriting-splayaccess.sig

signature REWRITING_SPLAYACCESS =
 sig
eqtype 'a splay
datatype 'a position =
 Before | After | Identical | Delete | Rewrite of 'a splay -> 'a splay
exception NotFound
val empty : 'a splay
val insert : 'a splay * ('a -> 'a position) * 'a -> 'a splay
val find : 'a splay * ('a -> 'a position) -> 'a splay * 'a option
val remove : 'a splay * ('a -> 'a position) -> 'a splay * 'a option
val findafter : 'a splay * ('a -> 'a position) -> 'a splay * 'a option
val afteronly : ('a -> 'a position) -> ('a -> 'a position)
val findbefore : 'a splay * ('a -> 'a position) -> 'a splay * 'a option
val beforeonly : ('a -> 'a position) -> ('a -> 'a position)
val root : 'a splay -> 'a option
val listItems : 'a splay -> 'a list
val app : ('a -> 'b) -> 'a splay -> unit
val revapp : ('a -> 'b) -> 'a splay -> unit
val fold : ('a * 'b -> 'b) -> 'a splay * 'b -> 'b
val revfold : ('a * 'b -> 'b) -> 'a splay * 'b -> 'b
val string : ('a -> string) -> 'a splay -> string
end
timestamps.sig

signature TIMESTAMPS =
 sig
 eqtype timestamp
 val create : unit -> timestamp
 val insertAfter : timestamp -> timestamp
 val insertBefore : timestamp -> timestamp
 val delete : timestamp -> unit
 val equal : timestamp * timestamp -> bool
 val compare : timestamp * timestamp -> LibBase.relation

 (* Functions to tranverse and examine the data structure *)
 val pred : timestamp -> timestamp option
 val succ : timestamp -> timestamp option
 val string : timestamp -> string
 val label : timestamp -> string
 end

order-list.sig

signature ORDERLIST =
 sig
 eqtype 'a olist
 val create : '1a -> '1a olist
 val insertAfter : '1a olist * '1a -> '1a olist
 val insertBefore : '1a olist * '1a -> '1a olist
 val insertManyAfter : '1a olist * '1a list -> '1a olist list
 val insertManyBefore : '1a olist * '1a list -> '1a olist list
 val delete : 'a olist -> 'a
 val contents : 'a olist -> 'a
 val setContents : 'a olist * 'a -> unit
 val applyContents : 'a olist * ('a -> ('a * 'b)) -> 'b

 (* Comparison functions *)
 val equal : 'a olist * 'a olist -> bool
 val compare : 'a olist * 'a olist -> LibBase.relation

 (* Functions to tranverse and examine the data structure *)
 val pred : 'a olist -> 'a olist option
 val succ : 'a olist -> 'a olist option
 val string : ('a -> string) -> 'a olist -> string
 val label : 'a olist -> string
 end

circular-list.sig

signature CIRCULARLIST =
 sig
 eqtype 'a clist
 val create : '1a -> '1a clist
APPENDIX A. SOURCE LISTINGS

val insert : 'a clist * 'a clist -> 'a clist
val delete : 'a clist -> 'a
val equal : 'a clist * 'a clist -> bool
val splice : 'a clist * 'a clist -> unit
val chop : 'a clist * 'a clist -> unit
val move : 'a clist * 'a clist * 'a clist -> unit
val contents : 'a clist -> 'a
val setContents : 'a clist * 'a -> unit
val applyContents : 'a clist * ('a -> ('a * 'b)) -> 'b
val succ : 'a clist -> 'a clist
val pred : 'a clist -> 'a clist
val string : ('a -> string) -> 'a clist -> string
val revstring : ('a -> string) -> 'a clist -> string

double-list.sig

signature DOUBLELIST =
 sig
 eqtype 'a dlist
 val create : '1a -> '1a dlist
 val insertAfter : '1a dlist * '1a -> '1a dlist
 val insertBefore : '1a dlist * '1a -> '1a dlist
 val delete : 'a dlist -> 'a
 val chop : 'a dlist * 'a dlist -> unit
 val moveAfter : 'a dlist * 'a dlist * 'a dlist -> unit
 val moveBefore : 'a dlist * 'a dlist * 'a dlist -> unit
 val contents : 'a dlist -> 'a
 val setContents : 'a dlist * 'a -> unit
 val applyContents : 'a dlist * ('a -> ('a * 'b)) -> 'b
 val equal : 'a dlist * 'a dlist -> bool
 val pred : 'a dlist -> 'a dlist option
 val succ : 'a dlist -> 'a dlist option
 val string : ('a -> string) -> 'a dlist -> string
 end

A.1.2 Structure Implementations
double-list.sml

abstraction DoubleList : DOUBLELIST =
 struct
 datatype 'a dlist =
 Cell of { pred:'a dlist option ref,
 succ:'a dlist option ref,
 contents:'a ref}
 val pred = fn Cell {pred=ref pred,...} => pred
 val succ = fn Cell {succ=ref succ,...} => succ
 val contents = fn Cell {contents=ref contents,...} => contents
 val setContents =
 fn (Cell {contents,...}, newContents) => contents := newContents
 val applyContents =
 end
fn (Cell {contents=contents as ref value, ...}, applyFn) =>
 let
 val (newContents, result) = applyFn value
 in
 (contents := newContents; result)
 end

fun create contents : '1a dlist =
 Cell {succ=ref NONE, pred=ref NONE, contents=ref contents}

val insertAfter =
 fn (left as Cell {succ=leftsucc as ref leftsucc_val, ...},
 contents) =>
 case leftsucc_val of
 SOME (right as Cell {pred=rightpred, ...}) =>
 let
 val newCell =
 Cell {pred=ref (SOME left),
 succ=ref (SOME right),
 contents=ref contents}
 in
 leftsucc := SOME newCell ;
 rightpred := SOME newCell ;
 newCell
 end
 | NONE =>
 let
 val newCell =
 Cell {pred=ref (SOME left),
 succ=ref NONE,
 contents=ref contents}
 in
 leftsucc := SOME newCell ;
 newCell
 end
 end

val insertBefore =
 fn (right as Cell {pred=rightpred as ref rightpred_val, ...},
 contents) =>
 case rightpred_val of
 SOME (left as Cell {succ=leftsucc, ...}) =>
 let
 val newCell =
 Cell {pred=ref (SOME left),
 succ=ref (SOME right),
 contents=ref contents}
 in
 leftsucc := SOME newCell ;
 rightpred := SOME newCell ;
 newCell
 end
 | NONE =>
 let
 val newCell =
 Cell {pred=ref NONE,
 succ=ref (SOME right),
 contents=ref contents}
 in
 rightpred := SOME newCell ;
 newCell
 end
val delete = fn it as Cell {pred=itspred as ref left_opt, succ=itssucc as ref right_opt, contents=ref contents} =>
 (case left_opt of
 SOME (Cell {succ=leftsucc, ...}) =>
 leftsucc := right_opt
 | NONE => () ;
 case right_opt of
 SOME (Cell {pred=rightpred, ...}) =>
 rightpred := left_opt
 | NONE => () ;
 itssucc := NONE;
 itspred := NONE;
 contents)

val chop = fn (rangeleft as Cell {pred=rangepred as ref left_opt, ...}, rangeright as Cell {succ=rangesucc as ref right_opt,...}) =>
 (case left_opt of
 SOME (Cell {succ=leftsucc, ...}) =>
 leftsucc := right_opt
 | NONE => () ;
 case right_opt of
 SOME (Cell {pred=rightpred, ...}) =>
 rightpred := left_opt
 | NONE => () ;
 rangepred := NONE;
 rangesucc := NONE)

val moveAfter = fn (rangeleft as Cell {pred=rangepred as ref left_opt, ...}, rangeright as Cell {succ=rangesucc as ref right_opt,...}, left as Cell {succ=leftsucc as ref leftsucc_val, ...}) =>
 (case left_opt of
 SOME (Cell {succ=leftsucc, ...}) =>
 leftsucc := right_opt
 | NONE => () ;
 case right_opt of
 SOME (Cell {pred=rightpred, ...}) =>
 rightpred := left_opt
 | NONE => () ;
 case leftsucc_val of
 SOME (right as Cell {pred=rightpred, ...}) =>
 (rangepred := SOME left ;
 rangesucc := SOME right ;
 leftsucc := SOME rangeleft ;
 rightpred := SOME rangeright)
 | NONE =>
 (rangepred := SOME left ;
 rangesucc := NONE ;
 leftsucc := SOME rangeleft)
)

val moveBefore = fn (rangeleft as Cell {pred=rangepred as ref left_opt, ...}, rangeright as Cell {succ=rangesucc as ref right_opt,...}, right as Cell {pred=rightpred as ref rightpred_val, ...}) =>
 (case left_opt of
 SOME (Cell {succ=leftsucc, ...}) =>
APPENDIX A. SOURCE LISTINGS

leftsucc := right_opt
| NONE => () ;
case right_opt of
 SOME {Cell {pred=rightpred, ...}} =>
 rightpred := left_opt
| NONE => () ;
case rightpred_val of
 SOME {left as Cell {succ=leftsucc, ...}} =>
 (rangepred := SOME left ;
 rangesucc := SOME right ;
 leftsucc := SOME rangeleft ;
 rightpred := SOME rangeright)
| NONE =>
 (rangepred := NONE ;
 rangesucc := SOME right ;
 rightpred := SOME rangeright)
)
val equal = fn (Cell {pred=left1,...},Cell {pred=left2,...}) => (left1 = left2)
fun string doContents startCell =
 let
 fun doPrev NONE = "$[
 | doPrev (SOME cell) =
 (doPrev (pred cell) ^
 doContents (contents cell) ^ ","
)
 fun doRest NONE = "]$"
 | doRest (SOME cell) =
 ("," ^ doContents (contents cell) ^ doRest (succ cell))
 in
 doPrev (pred startCell)
 ^ "" "^ doContents (contents startCell) ^ ""
 ^ doRest (succ startCell)
 end

circular-list.sml

abstraction CircularList : CIRCULARLIST =
 struct
 datatype 'a clist =
 Cell of {pred:'a clist ref, succ:'a clist ref, contents:'a ref}
 fun create contents : '1a clist =
 let
 val left = ref (System.Unsafe.cast 0 : '1a clist)
 val right = ref (System.Unsafe.cast 0 : '1a clist)
 val base = Cell {succ=right,pred=left,contents=ref contents}
 in
 left := base;
 right := base;
 base
 end
 val pred = fn Cell {pred=pred pred,...} => pred
 val succ = fn Cell {succ=succ succ,...} => succ
 val contents = fn Cell {contents=ref contents,...} => contents
 val setContents =
 fn (Cell {contents,...}, newContents) => contents := newContents
val applyContents =
 fn (Cell {contents=contents as ref value,...}, applyFn) =>
 let
 val (newContents, result) = applyFn value
 in
 (contents := newContents; result)
 end

val insert =
 fn (left as
 Cell {succ=leftsucc as
 ref (right as
 Cell {pred=rightpred,...}) ,...}, contents) =>
 let
 val newCell =
 Cell{pred=ref left,
 succ=ref right,
 contents=ref contents}
 in
 leftsucc := newCell ;
 rightpred := newCell ;
 newCell
 end

val delete =
 fn it as Cell {pred=itspred as
 ref (left as Cell {succ=leftsucc,...}),
 succ=itssucc as
 ref (right as Cell {pred=rightpred,...}),
 contents=ref contents} =>
 (leftsucc := right;
 rightpred := left;
 itssucc := it;
 itspred := it;
 contents)

val equal = fn (Cell {contents=x,...},Cell {contents=y,...})
=> (x = y)

val splice =
 fn (first as Cell {pred=firstPredptr as
 ref (prefirst as Cell {succ=prefirstSuccptr,...}),...},
 second as Cell {pred=secondPredptr as
 ref (presecond as Cell {succ=presecondSuccptr,...}),...}) =>
 (prefirstSuccptr := second ;
 presecondSuccptr := first ;
 firstPredptr := presecond ;
 secondPredptr := pefirst)

val chop = fn (left, right) => splice (left, succ right)

val move = fn (left, right, after) =>
 (splice (left, succ right) ; splice (succ after, left))

fun string doContents startCell =
 let
 fun doRest cell =
APPENDIX A. SOURCE LISTINGS

if equal(cell,startCell) then
 "%"
else
 ("," ^ doContents (contents cell) ^ doRest (succ cell))
in
 "%" ^ doContents (contents startCell) ^
 doRest (succ startCell)
end

fun revstring doContents startCell =
let
 fun doRest cell =
 if equal(cell,startCell) then
 "%"
 else
 ("," ^ doContents (contents cell) ^
 doRest (pred cell))
in
 "%" ^ doContents (contents startCell) ^
 doRest (pred startCell)
 end
end

order-list.sml

structure OrderList : ORDERLIST =
(* structure OrderList = *)
let
 open LibBase
in
 struct
 structure CList = CircularList

type 'a olist = {contents:'a, label:int, first:int ref} CList.clist
exception EmptyList

val firstref = #first o CList.contents : 'a olist -> int ref
val label = #label o CList.contents : 'a olist -> int
val contents = #contents o CList.contents : 'a olist -> 'a
val isfirst = fn (entry : 'a olist) =>
 let val {first=ref firstlabel, label, ...} = CList.contents entry
 in firstlabel = label end
val equal = CList.equal : 'a olist * 'a olist -> bool
val delete = fn (entry : 'a olist) =>
 let
 val first=firstref as ref firstlabel, label=itslabel, contents =
 CList.contents entry
 in
 if firstlabel = itslabel then
 let val successor = CList.succ entry in
 if equal (entry,successor) then
 raise EmptyList
 else
 firstref := label successor
 end
 else
 ()
 ;
 CList.delete entry ;
 contents
 end
end
val succ = fn entry =>
 let val successor = CList.succ entry in
 if isfirst successor then NONE else SOME successor
 end

val pred = fn entry =>
 if isfirst entry then NONE else SOME (CList.pred entry)

val setLabel = fn (entry, newLabel) =>
 CList.applyContents
 (entry,
 fn {contents, label, first=first as ref firstlabel} =>
 ({contents=contents, label=newLabel, first=first},
 if label = firstlabel then first := newLabel else ())
)

val setContents = fn (entry, newContents) =>
 CList.applyContents
 (entry,
 fn {contents, label, first} =>
 ({contents=newContents, label=label, first=first}, ())
)

val applyContents = fn (entry, applyFn) =>
 let
 val revisedApplyFn =
 fn {contents, label, first} =>
 let val (newContents, value) = applyFn contents in
 ({contents=newContents, label=label, first=first}, value)
 end
 in
 CList.applyContents (entry, revisedApplyFn)
 end

val arena = 536870912

fun investigateGap (startEntry, n) =
 let
 val v0 = label startEntry
 fun walker (j, theEntry) =
 let
 val theGap = (label theEntry - v0) mod arena
 in
 case theGap of
 0 => (j+1,arena) (* used to be (j,arena-1) *)
 _ =>
 if theGap <= j * j then
 walker(j+1, CList.succ theEntry)
 else
 (j+1, theGap)
 end
 end
 in
 walker(n, CList.succ startEntry)
 end
 in
 investigateGap (startEntry, n)
 end

fun newLabels (startEntry, n) =
 let
 val firstLabel = label startEntry
 val (lastEntry, nodeGap) = investigateGap (startEntry, n)
 fun makeLabel nodeNo =
 let
 val newNodeLabel = label nodeNo
 val newNode = {
 contents, label = newNodeLabel
 }
 val newNodes = CList.applyContents
 (newNode, applyContents)
 in
 (newNode, newNodes)
 end
 in
 let
 val newNodes = CList.applyContents
 (startEntry, applyContents)
 val newLabels = CList.applyContents
 (startEntry, applyContents)
 in
 (newNodes, newLabels)
 end
 end

fun test () =
 let
 val entries = [
 {contents, label, first},
 {contents, label, first},
 {contents, label, first},
 ...
]
 val result = CList.applyContents
 (entries, applyContents)
 in
 result
 end
fun fixEntry (nodeNo, thisEntry) =
 if nodeNo < lastEntry then
 (setLabel (thisEntry, makeLabel nodeNo);
 fixEntry (nodeNo + 1, CList.succ thisEntry))
 else ()
 in
fixEntry(n+1, CList.succ startEntry);
makeLabel
end

(* fun newLabel thisEntry = (** OBSOLETE **) *)
let
 val thisLabel = label thisEntry
 and nextLabel = label (CList.succ thisEntry)
in
 if thisLabel < nextLabel then
 (thisLabel + nextLabel) div 2
 else
 ((thisLabel + nextLabel) div 2 + arena div 2) mod arena
end

fun create contents =
 CList.create {contents=contents, label=0, first=ref 0}
fun insertAfter (thisEntry, contents) =
 CList.insert
 (thisEntry,
 {contents = contents,
 label = newLabels (thisEntry,1) 1,
 first = firstref thisEntry })
fun insertManyAfter (thisEntry, contentsList) =
 let
 val firstRef = firstref thisEntry
 val makeLabel = newLabels (thisEntry, length contentsList)
 fun doInsert (nil, _, _) = nil
 | doInsert (value :: rest, nodeNo, afterNode) =
 let val insertedNode =
 CList.insert
 (afterNode,
 {contents = value,
 label = makeLabel nodeNo,
 first = firstRef })
 in
 insertedNode :: doInsert(rest, nodeNo + 1, insertedNode)
 end
 in
doInsert (contentsList, 1, thisEntry)
 end
fun insertBefore (thisEntry, newContents) =
 let val predEntry = CList.pred thisEntry
 val newEntry = insertAfter (predEntry, newContents)
in if isFirst thisEntry then
 let val {label, first=firstref, ...} = CList.contents newEntry
 in
 firstref := label end
else () ;
 newEntry
fun insertManyBefore (thisEntry, newContentsList) =
 let val predEntry = CList.pred thisEntry
 val newEntries = insertManyAfter (predEntry, rev newContentsList)
 in
 if isFirst thisEntry then
 case newEntries of
 nil => ()
 | leftEntry :: _ =>
 let val {label, first=firstref, ...} = CList.contents leftEntry
 in
 firstref := label
 end
 end
 else () ;
 rev newEntries
 end

fun compare (leftEntry, rightEntry) =
 if equal (leftEntry, rightEntry) then
 Equal
 else
 let
 val startLabel = ! (firstref leftEntry)
 and leftLabel = label leftEntry
 and rightLabel = label rightEntry
 in
 if ((leftLabel - startLabel) mod arena) < ((rightLabel - startLabel) mod arena) then
 Less
 else
 Greater
 end
 end

fun string doContents =
 let
 fun doEntry ({contents, label, first=ref firstlabel}) =
 ("(" ^ (if firstlabel = label then "*" else "") ^
 makestring (label:int) ^ "," ^ doContents contents ^ ")")
 in
 CList.string doEntry
 end

val label = fn entry : 'a olist =>
 let val {label, first=ref firstlabel, ...} = CList.contents entry
 in
 if firstlabel = label then "**" else "") ^ makestring label
 end
end

order-list-2.sml

structure OrderList2 : ORDERLIST =
 let
 open LibBase
 in
 struct
 structure DList = DoubleList
 structure OList = OrderList
 end
 end
type majorlist = unit OList.olist

type minorlist = {label : int, major : majorlist} DList.dlist

type 'a olist = {contents:'a, minor : minorlist} DList.dlist

val contents = #contents o DList.contents : 'a olist -> 'a

val setContents : 'a olist * 'a -> unit = fn (entry, newContents) =>
 DList.applyContents
 (entry,
 fn {contents, minor} =>

 val applyContents : 'a olist * ('a -> ('a * 'b)) -> 'b = fn (entry,applyFn)
 =>
 let
 val revisedApplyFn =
 fn {contents, minor} =>
 let val (newContents, value) = applyFn contents in

 val minor = #minor o DList.contents : 'a olist -> minorlist

val setMinor : 'a olist * minorlist -> unit = fn (entry, newMinor) =>
 DList.applyContents
 (entry,
 fn {contents, minor} =>

 val major : 'a olist -> majorlist =
 #major o DList.contents o #minor o DList.contents

val setMajor = fn (entry, newMajor) =>
 DList.applyContents
 (minor entry,
 fn {label, major} =>

val majorAndLabel = fn (entry : 'a olist) =>
 let val contents = DList.contents (#minor (DList.contents entry))
 in (#major contents, #label contents) end

val equal = DList.equal : 'a olist * 'a olist -> bool

val succ = DList.succ : 'a olist -> 'a olist option

val pred = DList.pred : 'a olist -> 'a olist option

fun create contents : '1a olist =
 let
 val major = OList.create ()
 val minor = DList.create {label=0, major=major}
 in
 DList.create {contents=contents, minor=minor}
 end

exception NotImplemented

(* fun newLabel thisEntry = (** OBSOLETE **) *)
else
 ((thisLabel + nextLabel) div 2 + arena div 2) mod arena
end *

val standardGap = 262144
val standardSize = 18

fun take (_,nil) = (nil,nil)
| take (0,x) = (nil,x)
| take (n,h :: t) = let val (taken, rest) = take (n-1,t)
 in (h :: taken, rest) end

fun group list =
 case take (standardSize,list) of
 (nil,nil) => nil
 | (taken, nil) => [taken]
 | (taken, rest) => taken :: group rest

fun deleteToStart startEntry =
 let
 fun deleter (n,thisEntry) =
 case DList.pred thisEntry of
 SOME predEntry => deleter (n+1,predEntry)
 | NONE => (DList.chop (thisEntry, startEntry) ; n)
 in
 deleter (1,startEntry)
 end

fun deleteToEnd startEntry =
 let
 fun deleter (n,thisEntry) =
 case DList.succ thisEntry of
 SOME succEntry => deleter (n+1,succEntry)
 | NONE => (DList.chop (startEntry, thisEntry) ; n)
 in
 deleter (1,startEntry)
 end

fun tabulateList (n,f) =
 let
 fun tabulate (0,acc) = acc
 | tabulate (n,acc) = tabulate (n-1,f (n-1) :: acc)
 in
 tabulate (n,nil)
 end

fun regroupAfter (startEntry : '1a olist) =
 let
 val minorEntry = minor startEntry
 val majorEntry = #major (DList.contents minorEntry)
 val minorCount = deleteToEnd minorEntry
 val majorCount = (minorCount + standardSize - 1) div standardSize
 val majorEntries = majorEntry ::
 OList.insertManyAfter
 (majorEntry, tabulateList (majorCount, fn n => ()))
 in
 fun engroup (0,_,_,SOME thisEntry, _ :: (majorEntries as newMajor :: _)) = ()
 | engroup (toDo, 0,_,SOME thisEntry, __ :: (majorEntries as newMajor :: _)) =
 let
 val newMinor = DList.create {label=0, major=newMajor}
 val succEntry = DList.succ thisEntry
 in
 engroup (toDo, 1,_,SOME newMinor, newMajor :: _) end
 end
 end

in
setMinor (thisEntry, newMinor);
engroup (toDo-1, 1, newMinor, succEntry, majorEntries)
end

| engroup (toDo, inGroup, prevMinor, SOME thisEntry,
majorEntries as thisMajor :: _) =

let
val newMinor =
 DList.insertAfter (prevMinor,
 {label=standardGap * inGroup,
 major=thisMajor})
val succEntry = DList.succ thisEntry
in
setMinor (thisEntry, newMinor);
engroup (toDo-1, (inGroup+1) mod standardSize, newMinor, succEntry, majorEntries)
end

in
engroup (minorCount, 0, minorEntry, SOME startEntry, majorEntries)
end

fun insertAfter (thisEntry : '1a olist, newContents) =
let
val thisMinor = #minor (DList.contents thisEntry)
val {label=thisMinorLabel,major=thisMajor} = DList.contents thisMinor
in let
val newMinorLabel =
 case DList.succ thisMinor of
 NONE => thisMinorLabel + standardGap
 |
 SOME succMinor =>
 let
 val {label=succMinorLabel,...} = DList.contents succMinor
 val newMinorLabel =
 thisMinorLabel + (succMinorLabel - thisMinorLabel) div 2
 in
 if newMinorLabel > thisMinorLabel then
 newMinorLabel
 else
 let
 val SOME succEntry = DList.succ thisEntry
 in
 regroupAfter succEntry;
 thisMinorLabel + standardGap
 end
 end
 end
 in
 DList.insertAfter
 (thisEntry,
 {contents=newContents,
 minor=
 DList.insertAfter
 (thisMinor, {label=newMinorLabel, major=thisMajor})))
 end
handle Overflow =>
 DList.insertAfter
 (thisEntry,
 {contents=newContents,
 minor=
 DList.create{label=0, major=OList.insertAfter (thisMajor,())}})
end
fun create contents : '1a olist =
 let
 val major = OList.create ()
 val minor = DList.create {label=0, major=major}
 in
 DList.create {contents=contents, minor=minor}
 end

fun regroupBefore (startEntry : '1a olist) =
 let
 val minorEntry = minor startEntry
 val majorEntry = #major (DList.contents minorEntry)
 val minorCount = deleteToStart minorEntry
 val majorCount = (minorCount + standardSize - 1) div standardSize
 val majorEntries = majorEntry ::
 OList.insertManyBefore
 (majorEntry, tabulateList (majorCount, fn n => ()))
 fun engroup (0,_,_,_,_) = ()
 | engroup (toDo, 0,_,SOME thisEntry, _ :: (majorEntries as newMajor :: _)) =
 let
 val newMinor =
 DList.create {label=0, major=newMajor}
 val predEntry = DList.pred thisEntry
 in
 setMinor (thisEntry, newMinor);
 engroup (toDo-1, 1, newMinor, predEntry, majorEntries)
 end
 | engroup (toDo, inGroup, prevMinor, SOME thisEntry, majorEntries as thisMajor :: _) =
 let
 val newMinor =
 DList.insertBefore (prevMinor,
 {label=standardGap * ~inGroup,
 major=thisMajor})
 val predEntry = DList.pred thisEntry
 in
 setMinor (thisEntry, newMinor);
 engroup (toDo-1, (inGroup+1) mod standardSize, newMinor, predEntry, majorEntries)
 end
 in
 engroup (minorCount, 0, minorEntry, SOME startEntry, majorEntries)
 end

fun insertBefore (thisEntry : '1a olist,newContents) =
 let
 val thisMinor = #minor (DList.contents thisEntry)
 val {label=thisMinorLabel,major=thisMajor} = DList.contents thisMinor
 val newMinorLabel =
 case DList.pred thisMinor of
 SOME predMinor =>
 let
 val {label=predMinorLabel,...} = DList.contents predMinor
 val newMinorLabel =
 predMinorLabel + (thisMinorLabel - predMinorLabel) div 2
 in
 end
 in
 DList.create {label=0, major=newMinorLabel}
 val predEntry = DList.pred thisEntry
 in
 setMinor (thisEntry, newMinorLabel);
 insertBefore (thisEntry, newContents)
 end
end
if newMinorLabel > predMinorLabel then
 newMinorLabel
else
 let
 val SOME predEntry = DList.pred thisEntry
 in
 regroupBefore predEntry;
 thisMinorLabel - standardGap
 end
| NONE => thisMinorLabel - standardGap
in
DList.insertBefore
 (thisEntry,
 {contents=newContents,
 minor=
 DList.insertBefore
 (thisMinor, {label=newMinorLabel, major=thisMajor})})
end

fun insertManyAfter (entry, nil) = nil
| insertManyAfter (entry, h :: t) = let val newEntry = insertAfter (entry, h)
in
 newEntry :: insertManyAfter (newEntry, t)
end

fun insertManyBefore (entry, nil) = nil
| insertManyBefore (entry, h :: t) = let val newEntry = insertBefore (entry, h)
in
 newEntry :: insertManyBefore (newEntry, t)
end

fun delete entry = let
 val minorEntry = minor entry
in
 case (DList.pred minorEntry, DList.succ minorEntry) of
 (NONE,NONE) =>
 OList.delete (#major (DList.contents minorEntry))
 | _ => DList.delete minorEntry ; ()
| #contents (DList.delete entry)
end

fun compare (leftEntry,rightEntry) = let
 val (leftMajor,leftLabel) = majorAndLabel leftEntry
 val (rightMajor,rightLabel) = majorAndLabel rightEntry
in
 case OList.compare (leftMajor, rightMajor) of
 Equal =>
 if equal (leftEntry,rightEntry) then
 Equal
 else
 if leftLabel < rightLabel then Less else Greater
 | notequal => notequal
 end
end

fun label entry = let
 val (major, label) = majorAndLabel entry
in
 "<" ^ OList.label major ^ "," ^ makestring label ^ ">" end

fun string doContents =
let
 fun doEntry {contents, minor} =
 let
 val {label, major} = DList.contents minor
 in
 "(<" ^ OList.label major ^ "," ^ makestring (label:int)
 ^ ">," ^ doContents contents ^ ")"
 end
 end
 end
 DList.string doEntry
end

timestamps.sml

structure TimeStamps =
 struct
 structure OList = OrderList2
 type timestamp = unit OList.olist
 val create : unit -> timestamp = OList.create
 val insertAfter : timestamp -> timestamp =
 fn x => OList.insertAfter (x, ())
 val insertBefore : timestamp -> timestamp =
 fn x => OList.insertBefore (x, ())
 val delete : timestamp -> unit = OList.delete
 val equal : timestamp * timestamp -> bool = OList.equal
 val compare : timestamp * timestamp -> LibBase.relation = OList.compare
 (* Functions to tranverse and examine the data structure *)
 val pred : timestamp -> timestamp option = OList.pred
 val succ : timestamp -> timestamp option = OList.succ
 val string : timestamp -> string = OList.string (fn () => "")
 val label : timestamp -> string = OList.label
 end

rewriting-splaytree.sml

(* splaytree.sml

* COPYRIGHT (c) 1993 by AT&T Bell Laboratories. See COPYRIGHT file for details.
*
* Splay tree structure.
*
*)

structure RewritingSplayTree : REWRITING_SPLAYTREE =
 struct
 local open LibBase in
 datatype 'a splay =
 SplayObj of {
 value : 'a,
 right : 'a splay,
 left : 'a splay
 }
 end
| SplayNil

datatype 'a position = Before | After | Identical | Delete | Rewrite of ('a splay -> 'a splay)

datatype 'a ans_t = No | Eq of 'a | Lt of 'a | Gt of 'a | Rw of ('a splay -> 'a splay) * 'a

fun lrotate SplayNil = SplayNil
| lrotate (arg as SplayObj{value,left,right=SplayNil}) = arg
| lrotate (SplayObj{value,left,right=SplayObj{value=v,left=1,right=r}})
= lrotate (SplayObj{value=v,left=SplayObj{value=value,left=left,right=1},right=r})

fun join (SplayNil,SplayNil) = SplayNil
| join (SplayNil,t) = t
| join (t,SplayNil) = t
| join (l,r) = case lrotate l of
SplayNil => r (* impossible as l is not SplayNil *)
| SplayObj{value,left,right} => SplayObj{value=value,left=left,right=right}

fun splay (compf, root) = let
fun adj SplayNil = (No,SplayNil,SplayNil)
| adj (arg as SplayObj{value,left,right}) = (case compf value of
Delete => adj (join (left,right))
| Identical => (Eq value, left, right)
| Rewrite rewrite => (Rw (rewrite,value), left, right)
| After =>
let val rec adjleft = fn
SplayNil => (Gt value,SplayNil,right)
| SplayObj{value=value’,left=left’,right=right’} => (case compf value’ of
Delete => adjleft (join (left’,right’))
| Identical => (Eq value’,left’,SplayObj{value=value,left=right’,right=rig ht})
| Rewrite rewrite => (Rw (rewrite,value’), left’,SplayObj{value=value,left=right’,right=rig ht})
| After => (case left’ of
SplayNil => (Gt value’,left’,SplayObj{value=value, left=right’,right=right’})
| _ =>
let val (V,L,R) = adj left’
val rchild = SplayObj{value=value,left=right’,right=rig ht}
end)
in (V,L,SplayObj{value=value’,left=R,right=rchild})
end

end

(* end case *)
| Before =>
| (case right’ of
SplayNil => (Lt value’,left’,SplayObj{value=value, left=right’,right=right’})
| _ =>
let val (V, L, R) = adj right'
 val rchild = SplayObj{value=value, left=R, right=right'}
 in
 (V, lchild, rchild)
 end

fun rewrite root =
 case adj root of
 (No, _, _) => (Greater, SplayNil)
 | (Eq v, l, r) => (Equal, SplayObj{value=v, left=l, right=r})
 | (Lt v, l, r) => (Less, SplayObj{value=v, left=l, right=r})
| (Gt v, l, r) => (Greater, SplayObj{value=v, left=l, right=r}) |
| (Rw (f, v), l, r) => rewrite (f [SplayObj{value=v, left=l, right=r}]) |

in rewrite root end end (* SplayTree *)

rewriting-splayaccess.sml

(* splaydict.sml
*
* Based on splay-dict.sml from the SML/NJ Library.
*
* COPYRIGHT (c) 1993 by AT&T Bell Laboratories.
* See COPYRIGHT file for details.
*
* Functor implementing a lookup table using splay trees.
* *)

structure RewritingSplayAccess : REWRITING_SPLAYACCESS =
struct
structure RSTree = RewritingSplayTree
open RSTree LibBase

exception NotFound

val empty = SplayNil

(* Insert an item. *)
fun insert (root, cmp, v) =
 case splay (cmp, root) of
 (_ , SplayNil) => SplayObj {value=v, left=SplayNil, right=SplayNil}
 | (Equal, SplayObj {value, left, right}) => SplayObj {value=v, left=left, right=right}
 | (Less, SplayObj {value, left, right}) =>
 SplayObj {value=v, left=SplayObj {value=value, left=left, right=SplayNil},
 right=right}
 | (Greater, SplayObj{value, left, right}) =>
 SplayObj {value=v, left=left, right=SplayObj {value=value, left=SplayNil, right=right}}

(* Find an item, raising NotFound if not found *)
fun find (root, cmp) =
 case splay (cmp, root) of
 (_ , r as SplayNil) => (r, NONE)
fun findbefore (root, cmp) =
 case splay (cmp, root) of
 (_, r as SplayNil) => (r, NONE)
 | (Greater, root') => (case splay (cmp, root') of
 (_, r as SplayNil) => (r, NONE)
 | (Greater, r) => (r, NONE)
 | (_, r as SplayObj{value,...}) => (r, SOME value))
 | (_, r as SplayObj{value,...}) => (r, SOME value)

fun findafter (root, cmp) =
 case splay (cmp, root) of
 (_, r as SplayNil) => (r, NONE)
 | (Less, root') => (case splay (cmp, root') of
 (_, r as SplayNil) => (r, NONE)
 | (Less, r) => (r, NONE)
 | (_, r as SplayObj{value,...}) => (r, SOME value))
 | (_, r as SplayObj{value,...}) => (r, SOME value)

fun afteronly cmp arg =
 case (cmp arg) of
 Identical => Before
 | _ => it

fun beforeonly cmp arg =
 case (cmp arg) of
 Identical => After
 | _ => it

(* Remove an item.
* Raise NotFound if not found *)

fun remove (root, cmp) =
 case (splay (cmp, root)) of
 (Equal, SplayObj{value,left,right}) =>
 (join (left,right), SOME value)
 | (_, r) => (r, NONE)

fun root SplayNil = NONE
| root (SplayObj {value, ...}) = SOME value

(* Return a list of the items (and their keys) in the dictionary *)

fun listItems root =
 let fun apply (SplayNil, l) = l
 | apply (SplayObj{value,left,right}, l) =
 apply(left, value::(apply (right,l))))
 in
 apply (root, [])
 end

(* Apply a function to the entries of the dictionary *)

fun app af root =
 let fun apply (SplayNil, {}) = ()
 | apply (SplayObj{value,left,right}) =
 (apply(left, af value; apply right))
in
 apply (root)
end

fun revapp af root =
 let fun apply SplayNil = ()
 | apply (SplayObj{value,left,right}) =
 (apply right; af value; apply left)
 in
 apply (root)
 end

(* Fold function *)
fun fold abf (root,b) =
 let fun apply (SplayNil, b) = b
 | apply (SplayObj{value,left,right},b) =
 apply(left,abf(value,apply(right,b)))
 in
 apply (root,b)
 end

fun revfold abf (root,b) =
 let fun apply (SplayNil, b) = b
 | apply (SplayObj{value,left,right},b) =
 apply(right,abf(value,apply(left,b)))
 in
 apply (root,b)
 end

fun string doContents root =
 let
 fun whiz SplayNil = ""
 | whiz (SplayObj{value,left,right}) =
 "[" ^
 whiz left ^
 "(" ^ doContents value ^ ")" ^
 whiz right ^
 "]" ^
 in
 "!" ^ whiz root ^ "!"
 end

end

history.sml

(*
functor History (structure TimeStamps : TimeStamps
 structure RewritingSplayAccess : REWRITING_SPLAYACCESS
} : HISTORY =
*)
structure ElementHistory : HISTORY =
struct
 structure Time = TimeStamps
 structure Splay = RewritingSplayAccess
 local
 open Splay LibBase
 in
 type timestamp = Time.timestamp
 type 'a entry = {tag:timestamp, value:'a}
type 'a history = 'a entry Splay.splay

exception Unbound

fun entry_string doValue ({tag,value} : 'a entry) =
 Time.label tag ^ ": " ^ doValue value

fun history_string doValue =
 Splay.string (entry_string doValue)

val time_string = Time.string

fun cmp this ({tag,...} : 'a entry) : 'a entry position =
 case Time.compare (tag, this) of
 Less => Before
 | Greater => After
 | Equal => Identical

fun create () =
 let
 val time = Time.create ()
 val position = cmp time
 in
 (fn value =>
 Splay.insert(empty,position,{tag=time,value=value} : 'a entry),
 time)
 end

fun locate (instances,time) =
 case Splay.findbefore (instances, cmp time) of
 (instances', SOME it) => (instances', #value it)
 | (_,NONE) => raise Impossible "Nodes missing in history (read)"

fun record ((entries,thisTime),value) =
 let
 val succTimeOpt = Time.succ thisTime (* Order matters here *)
 val newValue = Time.insertAfter thisTime
 val instances'' =
 case succTimeOpt
 of NONE => entries
 | SOME succTime =>
 let
 val findSucc = cmp succTime
 (* val _ = print (time_string time ^ ":\n"); *)
 in
 case Splay.findbefore (entries, findSucc)
 of (_,NONE) =>
 raise Impossible "Nodes missing in history (write)"
 | (instances', SOME {value=priorValue,tag=priorTime}) =>
 (case Time.compare (priorTime, succTime)
 of Equal => instances'
 | Less =>
 Splay.insert
 (instances',
 findSucc,
 {tag=succTime,value=priorValue})
 | Greater =>
 raise Impossible "Earlier time is later!")
 end
 end
 in
 (insert (instances''), cmp newValue, {tag=newTime,value=value}),
 end

newTime)
end
end
end

impure-array.sml

```ml
structure ImpureArray : ARRAY =
  struct
    structure Array = Array
      open Array
    fun update(a,i,v) = (Array.update(a,i,v) ; a)
    val size = length
    val method = "Mutable Arrays"
  end

**func-array.sml**

(* functor FunctionalArray ( ElementHistory : HISTORY ) : ARRAY = *)
structure FunctionalArray : ARRAY =
  struct
    structure History = ElementHistory
    structure IArray = ImpureArray
    local
      open History
      in
        exception Size = IArray.Size;
        exception Subscript = IArray.Subscript;
        type 'a array = {iarray:'a history IArray.array, ctime:timestamp}
        fun tabulate (size,init) =
          let
            val (make_history, ctime) = create ()
          in
            { iarray =
              IArray.tabulate (size, fn index => make_history (init index)),
              ctime = ctime }
          end
        fun sub ({iarray,ctime},index) =
          let
            val history = IArray.sub (iarray,index)
            val (history’, value) = locate (history,ctime);
          in
            IArray.update (iarray,index,history’);
            value
          end
        fun update ({iarray,ctime},index,value) =
          let
            val history = IArray.sub (iarray,index)
            val (history’, ctime’) = record ((history,ctime),value);
          in
            IArray.update (iarray,index,history’);
            {iarray=iarray, ctime=ctime’}
          end
```
fun size ({iarray, ...} : '1a array) = IArray.size iarray

val method = "Element Histories"
end

A.1.3 Implementations of Other Array Techniques

tree-array.sml

structure TreeArray (* : ARRAY *) =
struct
exception Size = ImpureArray.Size;
exception Subscript = ImpureArray.Subscript;

open Bits
fun odd x = System.Unsafe.cast (andb (x,1)) : bool;

datatype 'a tree =
 Branch of 'a tree * 'a tree
| Leaf of 'a
| Bud
and 'a array = Array of 'a tree * int

fun update (Array (tree, size), index, value) =
 let
 fun update' (Leaf _, 0) = Leaf value
 | update' (Branch {left,right}, index) =
 if odd index then
 Branch (left,update'(right,rshift(index,1)))
 else
 Branch (update'(left,rshift(index,1)),right)
 | update' _ = raise Subscript
 in
 Array(update'(tree,index),size)
 end

fun sub (Array(tree, size), index) =
 let
 fun sub' (Leaf value, 0) = value
 | sub' (Branch {left,right}, index) =
 if odd index then
 sub'(right,rshift(index,1))
 else
 sub'(left,rshift(index,1))
 | sub' _ = raise Subscript
 in
 sub' (tree, index)
 end

fun tabulate (size,init) =
 let
 fun tabulate' (n, level) =
 if n >= size then Bud
 else
 let
 val level' = lshift(level,1)
 in
 if level < size then
Branch (tabulate'(n,level'),
 tabulate'(n+level,level'))
else
Leaf (init n)
end

in
Array(0,1),size)
end

fun size (Array(tree,size)) = size

val method = "Trees"

end

trailer-array.sml

(*
 * Trailer (and rerooting) Based Arrays
 *)

structure TrailerArray (* : ARRAY *) =
struct
 structure ImpureArray = ImpureArray
 exception Size = ImpureArray.Size;
 exception Subscript = ImpureArray.Subscript;

datatype 'a array =
 Array of 'a array_node ref
and
 'a array_node =
 Root of 'a ImpureArray.array
 | Modification of int * 'a * 'a array

fun tabulate (size, init) =
 Array (ref (Root (ImpureArray.tabulate (size,init))))

fun reroot (root as ref (Root array)) = array
 | reroot (child as ref (Modification (index,value,Array parent))) = let
 (* val _ = print "." *)
 val array = reroot parent
 val value' = ImpureArray.sub(array,index)
in
 child := Root (ImpureArray.update(array,index,value));
 parent := Modification (index, value', Array child);
 array
 end

fun update (Array parent,index,value) = let
 val array = reroot parent;
 val value' = ImpureArray.sub(array,index)
 val result =
 Array (ref (Root (ImpureArray.update(array,index,value)))))
in
 parent := Modification (index, value', result);
 result
end

fun sub (Array array,index) =
ImpureArray.sub(reroot array,index)

fun size (Array array) =
 ImpureArray.size(reroot array)

val method = "Trailers"
end

copying-array.sml

(*
 * Naive copying implementation.
 *)

structure NaiveArray (* : ARRAY *) =
 struct
 structure Vector = Vector
 type 'a array = 'a Vector.vector
 open Vector
 fun update(array,index,value) =
 let
 fun copy i =
 if i = index then value
 else sub(array,i)
 val size = length array
 in
 if index < size then
 tabulate (size,copy)
 else
 raise Vector.Subscript
 end
 val size = length
 val method = "Naive Copying"
 end

A.1.4 Functions used for Performance Timing

timer.sml

(*
 * Comparison of array implementation methods.
 *)

(*
 * SML/NJ specific tweaks.
 *)

val gc = System.Unsafe.CInterface.gc
val _ = System.Control.Runtime.softmax := 8 * 1024 * 1024
val _ = System.Control.Runtime.ratio := 32
val _ = System.Control.Print.printDepth := 64
local
 open System.Timer
in
 val ticks_per_second = 1.0 / 50.0
 fun round accuracy x = real (floor (x / accuracy + 0.5)) * accuracy
 fun sci_round acc 0.0 = 0.0 |
 sci_round acc x = let val pow = exp (real (floor (ln (abs x)) / ln 10.0 +
\[(1.0)^{1.0} \ln 10.0 \] in \((\text{round acc } (x / \text{pow})) \times \text{pow } \) end

fun seconds (TIME \{sec:int,usec:int\}) =
 round ticks_per_second (real sec + (real usec / 1000000.0))

fun time1 action =
 let
 val timer = start_timer ()
 val result = action ()
 val utime = check_timer timer
 val stime = check_timer_sys timer
 val gctime = check_timer_gc timer
 in
 (result, seconds utime, seconds stime, seconds gctime)
 end

fun timeN (n,action) =
 let
 fun worker 1 = action ()
 | worker n = (action () ; worker (n-1))
 fun newAction () = worker n
 val (result,usecs, ssecs, gcsecs) = time1 newAction
 val rn = real n
 fun scale x = round 2.5E~7 (x / rn)
 in
 (result, scale usecs, scale ssecs, scale gcsecs)
 end

val overhead = #2 (timeN (100000, fn () => 1))

fun time action =
 let
 val _ = outputc std_out "% Timing... (*
 fun timing n =
 let
 val _ = outputc std_out (Integer.makestring n);
 val _ = flush_out std_out;
 val results as (result,usecs, ssecs, gcsecs) = timeN (n,action)
 val rn = real n
 val _ = (print "["; print usecs; print "]"; flush_out std_out)
 val tsecs = (usecs * rn) - (ticks_per_second / 2.0)
 in
 if tsecs <= 0.0 then (outputc std_out "+"; timing (n * 500))
 else (if tsecs < 4.0 then
 (outputc std_out ";")
 | timing (ceiling (rn * 5.0 / tsecs)))
 else
 let val clip =
 sci_round (sci_round 0.1 (ticks_per_second / tsecs))
 in
 (result, clip usecs - (round ticks_per_second (rn * overhead) / rn)), clip ssecs, clip gcsecs)
 end
 end
 val (result,usecs, ssecs, gcsecs) = timing 1
 val _ = outputc std_out "}\n" in
 outputc std_out
 ("% User Time: "
 ^ (Real.makestring usecs)
 ^
 "\n% System time "
 ^ (Real.makestring ssecs)
 ^ "\n% Time Collecting: "
 ^ (Real.makestring gcsecs)
 ^ \n"
A.1.5 Array Test Code

Note that test1, test2 and test3 correspond to the three implementations of reverse. The function test5 corresponds to the multi-version test.

tests.sml

functor ArrayTestsFun (Array : ARRAY) =
struct
structure Array = Array

local
 open Array
in
 fun tolist array = let
 val size = size array
 fun worker x = if x = size then nil else sub(array,x) :: worker (x+1)
 in worker 0 end

 fun sum array = let
 val size = size array
 fun worker x = if x = size then 0 else sub(array,x) + worker (x+1)
 in worker 0 end

 fun zero array = let
 val size = size array
 fun worker (x,array) = if x = size then () else worker (x+1,update(array,x,0))
 in worker (0,array) end

 fun max (array1, array2) = let
 val size = size array1
 fun worker (array,index) = if index = size then array else let

val x = sub(array1, index)
and y = sub(array2, index)
in
worker
(if Integer.< (x,y) then
 update(array, index, y)
else
 array
, index + 1)
end
in
worker (array1,0)
end

fun print_array printer array =
let
 val size = size array
 fun worker x =
 (print "{";
 if x = size then print "}"
 else
 (printer (sub(array,x));
 worker’ (x+1)))
 and worker’ x =
 (if x = size then print "}"
 else
 (print ", ";
 printer (sub(array,x));
 worker’ (x+1)))
in
 worker 0
end

fun create n = Array.tabulate (n, fn x => x)

(*
* A functional implementation of an imperative reverse algorithm,
* array techniques optimized for single threaded access should
* have no problem providing O(n) operation.
*)

fun reverse1 original =
let
 val size = size original
 val half = size div 2
 fun rev (current,count) =
 if count < half then
 let
 val count’ = count + 1
 val left = sub(current, count)
 val right = sub(current, size - count’)
 val current’ = update(current, count, right)
 val current’’ = update(current’, size - count’, left)
in
 rev (current’’, count’)
 end
 else current
in
 rev (original,0)
end
(*
* A more functional reverse algorithm.
*)

fun reverse2 original =
 let
 val size = size original
 fun rev (current,count) =
 if count < size then
 let
 val count' = count + 1
 val current' =
 update(current, count, sub(original, size - count'))
 in
 rev (current', count')
 end
 else current
 in
 rev (original,0)
 end

(*
* The monolithic approach.
*)

fun reverse3 original =
 let
 val size = size original
 fun reverse_read index =
 sub(original,size - (index+1))
 in
 tabulate (size, reverse_read)
 end

fun test4 n =
 let
 val _ = gc 1
 val _ = app print ["\nTesting ",method," , n="makestring n,"\ncreate(n) :
"
 val (x,xt) = time (fn _ => create n);
 val (y,yt) = time (fn _ => reverse1 (create(n)));
 val (z,zt) = time (fn _ => let val x = create n in max (x, reverse1(x)) end :
"
 in
 (n,(xt,yt - xt,zt - yt))
 end

fun test_rev reverse n =
 let
 val _ = gc 1
 val _ = app print ["\nTesting ",method," , n="makestring n,"\nReverse:
"
 val (_,t0) = time (fn _ => create n)
 val (_,t) = time (fn _ => reverse (create n));
 in
\[(n, t - t_0) \]

val test1 = test_rev reverse1
val test2 = test_rev reverse2
val test3 = test_rev reverse3

fun random seed =
let
val randomGenerator = Random.mkRandom seed
in
fn (x,y) => Random.range (x,y) (randomGenerator ())
end

fun versions (n,m) =
let
val initial = create n
val versions = ImpureArray.tabulate (m,fn x => initial)
val rnd = random 1.0
fun versionize x =
 if x >= (m-1) then () else
 let
 val v = rnd (0,x)
 val e = rnd (0,n-1)
 val version = ImpureArray.sub (versions,v)
 val newVersion = Array.update (version, e, Array.sub (versio
n, e) + 1)
 in
 ImpureArray.update(versions, x+1, newVersion);
 versionize (x+1)
 end
 in
 versionize 0 ; initial
 end
in
 versionize 0 ; initial
end

fun bredth_prep (n,mv) =
let
val initial = create n
val versions = ImpureArray.tabulate (mv,fn x => initial)
val rnd = random 1.0
val mv_last = mv - 1
fun breed x =
 if x < mv_last then
 let
 val v = rnd (0,x)
 val e = rnd (0,n-1)
 val version = ImpureArray.sub (versions,v)
 val newVersion = version
 in
 ImpureArray.update(versions, x+1, newVersion);
 breed (x+1)
 end
 end
 else ()
in
fun bredth (n,mv) =
 let
 val initial = create n
 val versions = ImpureArray.tabulate (mv, fn x => initial)
 val rnd = random 1.0
 val mv_last = mv - 1
 fun breed x =
 if x < mv_last then
 let
 val v = rnd (0, x)
 val e = rnd (0, n-1)
 (*
 val _ = outputc std_out ("^\text{Mv} " ^ Integer.makestring (x+1) ^
 " <- increment v" ^ Integer.makestring v ^ "[" ^ Integer.makestring e ^ "]"*)
 val _ = flush_out std_out;
 val newVersion = Array.update (version, e, Array.sub (versions, e) + 1)
 in
 ImpureArray.update (versions, x+1, newVersion);
 breed (x+1)
 end
 else ()
 in
 breed 0 ; versions
 end
 in
 bredth (n, mv)
 end

fun test5 n mv =
 let
 val _ = gc 1
 val _ = app print ["\nTesting Bredth, under ", method, ", n=" makestring n, ", v=" makestring mv,"...
 val (_,secs0) = time (fn _ => bredth_prep (n,mv));
 val (_,secs) = time (fn _ => bredth (n,mv));
 in
 (mv, secs - secs0)
 end
 end

structure TAT = ArrayTestsFun (TrailerArray)
structure FAT = ArrayTestsFun (FunctionalArray)
structure BAT = ArrayTestsFun (TreeArray)
structure CAT = ArrayTestsFun (NaiveArray)
structure IAT = ArrayTestsFun (ImpureArray)
Bibliography

