DEUTERIUM NMR INVESTIGATIONS OF A MODEL MEMBRANE CONTAINING PHYTANIC ACID AND PHYTOL

by

JUNSHI YUE

M.Sc., SHANGHAI INSTITUTE OF ORGANIC CHEMISTRY, ACADEMIA SINICA, SHANGHAI CHINA, 1982

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of CHEMISTRY

© JUNSHI YUE 1991 SIMON FRASER UNIVERSITY JAN 1991

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.
APPROVAL

Name: JUNSHI YUE

Degree: DOCTOR OF PHILOSOPHY

Title of thesis: DEUTERIUM NMR INVESTIGATION OF A MODEL MEMBRANE CONTAINING PHYTOL AND PHYTANIC ACID

Examining Committee: Chairman: Dr. D. Sutton

Dr. R. J. Cushley
Senior Supervisor

Dr. A. C. Oehlschlager
Supervisory Committee

Dr. R. Cornell
Supervisory Committee

Dr. D. H. Boal
Internal Examiner
Department of Physics

Dr. E. E. Burnell
External Examiner
Department of Chemistry
University of British Columbia

Date Approved: Jan. 28, 1991
PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay

Deuterium NMR investigations of a model membrane containing phytanic acid and phytol

Author:

(signature)

Junshi Yue

(name)

Jan. 28, 1991

(date)
ABSTRACT

The phase behavior of model membranes containing branched chain compounds (phytol, phytanic acid) has been studied using deuterium nuclear magnetic resonance spectroscopy (2H NMR) and differential scanning calorimetry (DSC). The model membrane systems were 50 wt% dispersions of 1-palmitoyl(stearoyl)-2-[3H$_3$]palmitoyl-sn-glycero-3-phosphocholine (PC-d_{31}) containing phytol or phytanic acid in deuterium depleted water (DDW) and 15 wt% dispersions of 1,2-dipalmitoyl-sn-glycerol-[α,β-3H$_4$] phosphocholine (DPPC-d_4) containing phytol or phytanic acid in DDW or "Tris buffer" (25 mM, pH 7.4, in DDW). Either branched chain compound broadens the gel to liquid crystalline phase transition of the phospholipid membrane and reduces the onset temperature of the transition, indicating that the branched chain compound causes significant disruption of the gel phase. The pretransition is clearly observed in the 2H NMR temperature studies of DPPC-d_4. Order parameters, S_{CD}, for various chain positions have been calculated. At 50°C there is no significant change in the profile of S_{CD} versus phospholipid acyl chain position, induced by either branched chain compound. Either branched chain compound (20 mol%) causes an approximate 9% increase in the mean order parameter $<S_{CD}>$. In the liquid crystalline phase, phytol induces more random movement of the head group while phytanic acid causes a
conformational change of the choline group which can be explained by the negative charge density due to the ionization of the acid on the membrane surface. The effect of branched chain compounds on the lateral diffusion of phospholipid has been studied using a DANTE pulse sequence. Deuterium spin-lattice relaxation times (T_1) and spin-spin relaxation times ($T_{2\pi}$, the decay of the quadrupolar echoes) have been measured over a wide temperature range. 20 Mol% phytol increases T_1 in the plateau region (carbons 3-10 on sn-2 chain) by 11% at the same reduced temperature. The increase of T_1 by branched chain compounds is essentially due to the phase transition temperature depression. $T_{2\pi}$ depends very much on the method of sample preparation and the morphology of the resulting liposomes. The presence of 20 mol% phytanic acid results in orientation of the DPPC bilayer in the magnetic field as shown by 2H and 31P NMR. The sample must be carried through several freeze-thaw cycles in the presence of Tris buffer in order that the phospholipid magnetic field ordering occurs. Possible explanations for the effect of phytol and phytanic acid on the dynamic structure of both hydrophilic and hydrophobic regions of phospholipids in the bilayer are suggested.
DEDICATION

To Bicheng and Bizheng
ACKNOWLEDGEMENTS

I am grateful to my supervisor, Dr. R. J. Cushley, for his guidance, advice and encouragement during the course of this study. I also wish to thank Dr. A. C. Oehlschlager, Dr. B. L. Funt and Dr. R. Cornell for their efforts and time as members of my supervisory committee.

I also wish to thank Dr. J. C. Irwin (Physics Department, SFU) for the use of his DSC facility and Dr. K. K. Nair (Biological Sciences Department, SFU) for the use of his Phase Contrast Microscope.

Thanks also due to the present and past members of Dr. Cushley's group for their cooperation, discussion and fellowship. In particular Drs. W. D. Treleaven and J. T. Thewalt provided assistance with many aspects of this study.

Financial support from Simon Fraser University, Chemistry Department and from Dr. Cushley is gratefully acknowledged.

Finally, I wish to thank my husband, Dr. Z. Z. Wu, for his encouragement during the course of this study.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Theory</td>
<td>12</td>
</tr>
<tr>
<td>1. 2H NMR</td>
<td>12</td>
</tr>
<tr>
<td>A. General theory and the powder pattern</td>
<td>12</td>
</tr>
<tr>
<td>B. Spectra of membranes and the order parameter (S_{CD})</td>
<td>17</td>
</tr>
<tr>
<td>C. Deuterium relaxation</td>
<td>20</td>
</tr>
<tr>
<td>D. Pulse sequences and precession diagram</td>
<td>26</td>
</tr>
<tr>
<td>2. 31P NMR</td>
<td>31</td>
</tr>
<tr>
<td>3. Differential scanning calorimetry (DSC)</td>
<td>33</td>
</tr>
<tr>
<td>III. Experimental Methods</td>
<td>35</td>
</tr>
<tr>
<td>1. Materials</td>
<td>35</td>
</tr>
<tr>
<td>2. Synthesis of $[^1H_{31}]$palmitic acid</td>
<td>35</td>
</tr>
</tbody>
</table>
VI. The Effect of Phytanic Acid and Phytol on the Lateral Diffusion of Phosphatidylcholine in Bilayers . . . 150

1. Results . 153

A. 2H NMR study using quadrupolar Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence 153

B. 2H NMR study using selective inversion recovery (DANTE) pulse sequence 161

C. 31P NMR study on DPPC vesicles containing phytanic acid and phytol 168

2. Discussion . 172

VII. Conclusion . 175

APPENDIX I . 180

LIST OF REFERENCES . 181
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Thermodynamic parameters relating to the phase transition of PC-d$_{31}$ multilamellar dispersions</td>
</tr>
<tr>
<td>II</td>
<td>The cooperative unit for the main transition of PC-d$_{31}$ in the presence of branched chain compounds</td>
</tr>
<tr>
<td>III</td>
<td>Quadrupolar splitting (kHz) of 2H NMR powder patterns of deuterated phospholipid dispersions containing branched chain compounds</td>
</tr>
<tr>
<td>IV</td>
<td>Quadrupolar splittings for segments of aqueous dispersions of PC-d${31}$ and PC-d${31}$ + branched chain compounds at 50°C</td>
</tr>
<tr>
<td>V</td>
<td>First moment M_1 and mean order parameter $<S_{cd}>$ for PC-d$_{31}$ incorporated with branched chain compounds at 50°C</td>
</tr>
<tr>
<td>VI</td>
<td>Spin-lattice relaxation times for multilamellar dispersions of PC-d${31}$ and PC-d${31}$ containing branched chain compounds</td>
</tr>
<tr>
<td>VII</td>
<td>Quadrupolar splittings of DPPC-d$_4$ multilamellar dispersions containing branched chain compounds</td>
</tr>
<tr>
<td>VIII</td>
<td>Spin-lattice relaxation times for segments of DPPC-d$_4$ multilamellar dispersions containing branched chain compounds</td>
</tr>
<tr>
<td>IX</td>
<td>Spin-spin relaxation times T_2 and T_2^{q-CPMG} ($\tau=50$ µs) of 50 wt% PC-d$_{31}$ dispersions containing phytol and phytanic acid at 50°C</td>
</tr>
<tr>
<td>X</td>
<td>Spin-spin relaxation times T_2^{q-CPMG}$ as function of τ for 50 wt% PC-d$_{31}$ dispersions containing phytol and phytanic acid at 50°C</td>
</tr>
<tr>
<td>XI</td>
<td>Data for lateral diffusion measurement</td>
</tr>
<tr>
<td>AI</td>
<td>Mass spectral data of $[^2H_{31}]$palmitic acid</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>Schematic structure of liposomes and vesicles</td>
</tr>
<tr>
<td>2</td>
<td>Structure of isoprenoid compounds and deuterated phospholipid used in the study</td>
</tr>
<tr>
<td>3</td>
<td>The energy levels and relative absorption lines of deuterium nucleus</td>
</tr>
<tr>
<td>4</td>
<td>The comparison of calculated with measured 2H NMR powder pattern spectrum</td>
</tr>
<tr>
<td>5</td>
<td>Larmor precession in Laboratory coordinate system and the rotation of spin magnetization under rf pulse</td>
</tr>
<tr>
<td>6</td>
<td>Precession diagrams for a spin-1 under various Hamiltonia</td>
</tr>
<tr>
<td>7</td>
<td>Precession diagrams for a spin-1 in cases of various pulse sequence</td>
</tr>
<tr>
<td>8</td>
<td>1H and 2H NMR spectra of PC-d$_{31}$ in chloroform</td>
</tr>
<tr>
<td>9</td>
<td>1H and 2H NMR spectra of DPPC-d$_4$ in chloroform</td>
</tr>
<tr>
<td>10</td>
<td>Differential scanning calorimetry trace of PC-d$_{31}$ dispersions containing phytanic acid</td>
</tr>
<tr>
<td>11</td>
<td>Differential scanning calorimetry trace of PC-d$_{31}$ dispersions containing phytol</td>
</tr>
<tr>
<td>12</td>
<td>Changes in main phase transition temperature (T_m), transition enthalpy (ΔH) and half-height width ($\Delta T_{1/2}$) of PC-d$_{31}$ incorporated with branched chain compounds</td>
</tr>
<tr>
<td>13</td>
<td>Temperature dependent 1H NMR spectra of multilamellar dispersions of PC-d${31}$ and PC-d${31}$ containing 20 mol% of branched chain compounds</td>
</tr>
<tr>
<td>14</td>
<td>1H NMR spectra of multilamellar liposomes of PC-d$_{31}$ at temperatures near the gel to liquid crystalline phase transition</td>
</tr>
<tr>
<td>15</td>
<td>1H NMR spectra of 20 mol% phytanic acid: PC-d$_{31}$ at 20°C with different τ values</td>
</tr>
</tbody>
</table>
16 Temperature dependent 1H NMR spectra of multilamellar dispersions of PC-d$_{31}^1$ containing 5 mol% of branched chain compounds .. 79

17 Variation of the first moment (M_1) with temperature for the 1H NMR spectra of PC-d$_{31}^1$ in the presence of phytanic acid .. 82

18 The extrapolation plot of M_1 as a function of pulse decay for dispersions of PC-d$_{31}^1$ containing 20 mol% of phytanic acid .. 83

19 Variation of the first moment (M_1) with temperature for the 1H NMR spectra of PC-d$_{31}^1$ in the presence of phytol .. 84

20 The depacked 1H NMR spectra at 50°C of multilamellar dispersions of PC-d$_{31}^1$ and PC-d$_{31}^1$ incorporated with 20 mol% of branched chain compounds 86

21 Plot of order parameter (S_2^∞) at 50°C versus carbon position along the phospholipid sn-2 chain of PC-d$_{31}^1$ in the presence of branched chain compounds 90

22 Comparison of the increased order parameter for the various incorporated compounds .. 92

23 Semi-log plot of the quadrupolar echo versus 2τ for 5 mol% phytol:PC-d$_{31}^1$ at different temperatures 95

24 Plot of T_2, versus temperature for PC-d$_{31}^1$ and PC-d$_{31}^1$ incorporated with phytanic acid .. 96

25 Plot of T_2, versus temperature for PC-d$_{31}^1$ and PC-d$_{31}^1$ incorporated with phytol .. 97

26 Phase contrast microscope photographs for dispersions of 20 mol% phytanic acid:DPPC-d$_4$ in DDW and Tris buffer .. 108

27 Differential scanning calorimetry trace of dispersions of 40 wt% DPPC-d$_4$.. 110

28 1H NMR spectra of 40 wt% multilamellar dispersions of DPPC-d$_4$ at different temperature .. 112

29 1H NMR spectra of 15 wt% multilamellar dispersions of DPPC-d$_4$ containing branched chain compounds at different temperature .. 114
30. 1H NMR spectra of 15 wt% multilamellar dispersions of DPPC-d_4 and DPPC-d_4 incorporated with branched chain compounds at 45°C.

31. Depacked 1H NMR spectra of 15 wt% multilamellar dispersions of DPPC-d_4 and DPPC-d_4 incorporated with branched chain compounds at 45°C.

32. Variation of the first moment, M_1, and second moment, M_2, with temperature for the 1H NMR spectra of DPPC-d_4 in the presence of branched chain compounds.

33. 31P NMR spectra of 15 wt% multilamellar dispersions of DPPC-d_4 and DPPC-d_4 containing phytanic acid.

34. 1H NMR spectra for 15 wt% multilamellar dispersions of PC-d_{31} and 20 mol% phytanic acid:PC-d_{31}.

35. Temperature dependence of deuterium spin-lattice relaxation time, T_1, of multilamellar dispersions of DPPC-d_4 and DPPC-d_4 containing branched chain compounds.

36. Plots of log(A$_i$-A) versus τ for 15 wt% dispersions of 20 mol% phytol:DPPC-d_4 in Tris buffer.

37. Semilog plots of quadrupolar echo intensity versus 2τ of DPPC-d_4 and DPPC-d_4 containing branched chain compounds.

38. Plot of T_2 versus temperature of DPPC-d_4 and DPPC-d_4 containing branched chain compounds.

39. Phase contrast microscope photographs for dispersions of PC-d_{31} and PC-d_{31} containing 20 mol% of branched chain compounds.

40. Experimental data obtained from q-CPMG pulse program.

41. Least-square fitting of $1/T$, 1CPMG vs. τ^2 for PC-d_{31} and PC-d_{31} incorporated with 20 mol% branched chain compounds.

42. Selective inversion recovery 1H NMR spectra of 5,5-['2H$_4$]DPPC aqueous dispersions with different delay time.
Semilog plots of \((A_i-A)\) versus \(t\), for inversion recovery and selective inversion recovery of 50 wt\% dispersions of PC-d_{31} and PC-d_{31} containing 20 mol\% branched chain compounds.

Semilog plot of \([(A_i-A)/2A_s]\) versus \(t\) in short \(\tau_i\) range for PC-d_{31} and PC-d_{31} incorporated with 20 mol\% branched chain compounds.

Simulated and experimental 3P NMR spectra for vesicles of DPPC and DPPC incorporated with 20 mol\% branched chain compounds.
LIST OF ABBREVIATIONS

^2H NMR, deuterium nuclear magnetic resonance;
^{31}P NMR, phosphorus-31 nuclear magnetic resonance;
CSA, chemical shift anisotropy;
DSC, differential scanning calorimetry;
EFG, electric field gradient;
ESR, electron spin resonance;
QELS, quasi-elastic light scattering;
PC, phosphatidylcholine;
PE, phosphatidylethanolamine;
egg PC, egg phosphatidylcholine;
DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine;
DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine;
SPPC, 1-stearoyl-2-palmitoyl-sn-glycero-3-phosphocholine;
POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine;
POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol;
lysoPC, lysophosphatidylcholine;
PC-$^{31}\text{H}_2$, 1-palmitoyl(stearoyl)-2-$^{3}\text{H}_2$-palmitoyl-sn-glycero-3-phosphocholine;
DPPC-$^{4}\text{H}_4$, 1,2-di-palmitoyl-sn-glycero-[a, b-$^{2}\text{H}_4$]-phosphocholine;
CDI, 1,1'-carbonyldiimidazole;
DDW, deuterium depleted water;
DMSO, dimethylsulfoxide;
EDTA, ethylenediaminetetraacetic acid;
LCAT, lecithin:cholesterol acyl transferase;
PIPES, piperazine-N,N'-bis[2-ethanesulfonic acid];
THF, tetrahydrofuran;
I. Introduction

Membranes are basic structural units of living systems, forming the boundaries of cells and intracellular organelles, providing a framework for many physiological processes. Biological membranes contain a wide variety of chemical species, of which lipids, proteins and carbohydrates are the major ones (Harrison and Lunt, 1980). Model membranes, prepared from lipids, are well-suited subjects of investigation in order to elucidate the physical properties of biological membranes. Considerable interest has focused on the structures and properties of the lipid bilayer and the lipid-protein interactions in the bilayer. Glycero-phospholipids are the most commonly found membrane lipids, of which phosphatidylcholine (PC) is the most extensively used in model membrane studies. When phospholipids are shaken in an aqueous phase, large multilamellar liposomes (>2000 Å in diameter), composed of concentric bilayers, are formed spontaneously (Bangham and Horne, 1964). The treatment of these liposomes with ultrasonic radiation leads to the formation of vesicles which are sealed unilamellar structures with an average diameter of ≈250 Å (Sheetz and Chan, 1972), (Figure 1). Both multilamellar liposomes and vesicles are commonly used in the investigation of membrane structure. In cellular membrane the long-chain hydrocarbon attached to the
Figure 1: Schematic structures of liposomes and vesicles.

\[d \approx 10,000\text{Å} \quad \tau \approx 1\text{sec} \]

\[d \approx 250\text{Å} \quad \tau \approx 10^{-6}\text{sec} \]

multilamellar liposomes \hspace{2cm} \text{vesicles}

\(\tau = \text{correlation time for tumbling} \)
sn-1 position of glycerol is usually a saturated acyl chain, while the hydrocarbon attached to the sn-2 position can be saturated, cis-unsaturated, or sometimes branched. Most model membrane studies were carried out on the lipids with linear acyl chains, however, the lipids with branched acyl chains have gained more attention lately (Dufourc et al., 1984; Silvius et al., 1985; Nuhn et al., 1986; Lewis et al., 1987a; Gutknecht, 1987, 1988).

Recently, several studies have appeared on membrane lipids containing multi-methyl branched chains joined to glycerol through either ether linkage (Aoki and Poilter, 1985; van Boeckel et al., 1984) or ester linkage (Debose et al., 1985; Pownall et al., 1987). The membrane lipids of higher organisms contain almost exclusively linear acyl and alkyl hydrocarbon chains, the membrane lipids of a variety of prokaryotes contain large amounts of branched acyl chains (Kanada, 1977). For example, 2,3-di-O-phytanyl-sn-glycerol occurs in archaeabacterial membranes and is one of the features distinguishing archaeabacteria from eubacteria and eukaryotes. DeBose et al. (1985) and Pownall et al. (1987) have investigated the effect of branched chain phospholipids on enzyme activity. The authors have found that PCs with branching in both acyl chains were unreactive to phospholipase A₂ and human lecithin:cholesterol acyltransferase.

Amphipathic isoprenoid compounds characterized by long branched chains are an important series of biologicals. These
include retinol (vitamin A), D-α-tocopherol (main constituent of vitamin E), vitamin K, ubiquinone (coenzyme Q) and phytanic acid. As well, the esterified form of phytol is the side chain which anchors the chlorophyll molecule to the thylakoid membrane.

We have been interested in the effects of three isoprenoids, phytol, α-tocopherol (Vitamin E) and phytanic acid, upon membranes. The physiology of these compounds is well understood. The most important one of the above three compounds is Vitamin E, which functions as an antioxidant, protecting unsaturated lipids from free radical attack (Tappel, 1962; Sebrell et al., 1972; Scott, 1978). Phytanic acid has been found to be a factor in the progression of Refsum's disease. An accumulation of phytanic acid up to 50% of the total fatty acid content has been found in the tissues, and up to 200 mg per 100 ml in the blood, of patients with this disease (Kahlke, 1964). The patients are unable to α-oxidize phytanic acid or similar branched chain fatty acids (Steinberg et al., 1967). The relationship between accumulation of phytanic acid and the neuropathological changes is unclear yet. It has been speculated that the high degree of branching in this acid could lead to changes in the characteristics of myelin or other membranes, and it might be a causative factor in the degeneration of the nervous system which eventually leads to death (MacBrinn and O'Brien, 1968). Gutknecht (1987, 1988) has recently reported the effects of
Figure 2: Structure of isoprenoid compounds and deuterated phospholipid used in the study.

phytol

\[
\text{HO} \quad \text{phytanic acid} \quad \text{D2} \\
\text{HO}
\]

1-palmitoyl(stearoyl)-2-[D\text{31}]-palmitoyl-sn-glycero-3-phosphocholine (PC-d\text{31})

1,2-dipalmitoyl-sn-\(\beta\)-D\text{4}l phosphatidylcholine (DPPC-d\text{4})
long-chain fatty acids on the proton/hydroxide conductance through phospholipid bilayer membranes, and the author has suggested that the fatty acids act as simple (A-type) proton carriers, this increases the proton conductance of planar bilayers. His results elucidate that phytanic acid has a twice greater effect than the similar linear fatty acids do. The mechanism of fatty acid toxicity is suggested to be partially due to the increased proton conductance.

Moreover, a number of observations have been made linking a common effect owing to the isoprenoid side chain compounds, which suggests that these compounds may play a structural role in membranes. For instance, succinic-cytochrome c reductase, which has been inactivated by its extraction from porcine liver, is reactivated not only by Vit.E, but also by 6-0-acetyl-α-tocopherol, phytanic acid and phytol (Weber et al., 1958). Numerous studies on the effect of α-tocopherol on phospholipid membranes have been reported. However many of them are restricted to a qualitative discussion and some of the results are quite conflicting (see reviews in Wassall et al., 1986). For example, the permeability of the bilayer was reported to be increased (Cushley and Forrest, 1977; Srivastava et al., 1983) and decreased (Diplock et al., 1977; Stillwell and Bryant, 1983) by the incorporation of α-tocopherol. Another conflicting example regards the interactions between projecting methyl groups of the phytyl chain of α-tocopherol and the 'pockets' present in the
polyunsaturated phospholipids of membranes. Diplock and Lucy (1973) and Maggio et al. (1977) suggested the existence of such interactions. Erin et al. (1984) have shown the formation of a complex between α-tocopherol and fatty acid using ultraviolet absorption and fluorescence spectra. The equilibrium constant for the formation is very high if the fatty acid is unsaturated. Skrypin et al. (1984) have found by using differential scanning calorimetry (DSC) that α-tocopherol protects the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer from the destructive action of linoleic acid. However, Urano et al. (1987) have suggested that no special interaction exists between projecting methyl of α-tocopherol and the 'pockets' of the unsaturated phospholipid using 13C NMR T_1 measurements. In spite of the extensive studies of the effects of α-tocopherol on membrane structure in the past decades, little attention has been paid to the effects of phytol and phytanic acid on membrane structure, although they have a similar side chain structure to α-tocopherol and are physiologically important in themselves.

Preliminary investigations on the effects of phytol, α-tocopherol and phytanic acid on the structure and function of egg yolk lecithin (EYL) model membranes have been carried out previously in this laboratory (Cushley et al., 1976, 1977, 1979). Using ESR, 31P NMR and 13C NMR, the authors found that branched compounds induce a low order, high fluidity and high
permeability of EYL bilayer.

For the evaluation of membranes' detailed organization on a molecular level, magnetic resonance techniques have become an important tool. This is particularly true for deuterium NMR which has proved to be a powerful technique in studying structure and dynamic properties of membranes (Seelig and Seelig, 1980; Jacobs and Oldfield, 1981; Davis, 1983; Bloom and Smith, 1985). Due to the low natural abundance of the deuterium isotope, preparation of deuterated phospholipid is required for 2H NMR measurement. Employing specifically deuterated phospholipids enables the investigation to be focused on any part of the lipid bilayer system. Due to the strong quadrupolar interaction, the 2H NMR spectrum for multilamellar bilayers is simple, and the orientation of the C-D bond with respect to the axis of molecular motion can be measured directly. This is the advantage of 2H NMR over the conventional proton or carbon NMR, since the 1H and 13C NMR spectra for multilamellar membranes are usually very complicated, caused by the strong dipolar interactions. Furthermore, quadrupolar and dipolar interactions are expected to be the two contributions to the relaxation in deuterated systems. Because of the large quadrupole moment of the deuteron and small nuclear gyromagnetic ratio, the quadrupolar interaction is expected to dominate the relaxation processes. The interaction of a quadrupole moment and the electric field gradient is time dependent due to the molecular reorientation
Thus, the advantage of \(^2\)H NMR over other NMR techniques is that \(^2\)H NMR easily detects anisotropic motions, so it can directly measure the order of molecules in membranes, and that \(^2\)H NMR relaxation time is dominated by quadrupolar interaction, so it measures the dynamic properties of the membrane.

Almost the same information can be obtained from Electron Spin Resonance (ESR) using spin labels, which is a more sensitive method. The ESR order parameter is easily determined from the anisotropy of hyperfine splitting, while the correlation time can be deduced from the linewidth (Seelig, 1976). The ESR spectrum of spin labelled membranes is influenced by the amplitude of anisotropic motion of the nitrooxide group and by the geometry of the oxazolidine ring of the nitrooxide (Taylor and Smith, 1983). However, the attachment of a bulky nitrooxide spin label causes severe steric interaction and the order parameter may not reflect the order in the natural membrane. Compared with the spin label ESR technique, deuterium-labelling takes a great advantage of the identity of the van der Waals radii between \(^1\)H and \(^2\)H; in other words, deuterium substitution does not alter membrane structure. Therefore \(^2\)H NMR is a sterically non-perturbing probe technique.

The investigation in this thesis has focussed on the studies of the dynamic structures of membranes incorporated with phytanic acid or phytol by using \(^2\)H NMR technique. The
phospholipids used in model membrane systems are phospho-
choline with two saturated acyl chains, PC-d_{31} and DPPC-d_{4}, as
shown in Figure 2. The reasons of choosing these two PCs are
that DPPC is stable and the most common phospholipid used in
model membrane studies, and that the DPPC membrane has a gel-
liquid crystalline phase transition temperature at 42°C. Thus
we can easily investigate the system over a wide temperature
range and in different phases.

The gel-liquid crystalline phase transition is a first-
order thermotropic transition. At the transition temperature
the hydrocarbon chains of the phospholipid undergo a
transition from an ordered crystalline-like state to a more
disordered liquid-like state. In the gel phase the hydrocarbon
chains are fully extended, tilted with respect to the plane of
bilayer, and packed in a quasi-hexagonal lattice; whereas in
the liquid crystalline phase the hydrocarbon chains melt
assuming a liquid-like conformation, the average orientation
of the chains is perpendicular to the plane of bilayer, and
the chains are packed in a regular hexagonal lattice. Certain
phospholipids, e.g., phosphatidylethanolamine (PE) may form a
different structure other than a lamellar-bilayer structure in
the liquid crystalline phase. In fact, the bilayer structure
is the most important one, because it represents the natural
membrane. Natural membranes contain a complex mixture of
lipids, sterols and proteins. Their phase transition is not as
sharp as those of synthetic phospholipid. However, the
hydrocarbon chains in natural membranes are believed to be generally in a liquid-like state at physiological temperatures (Harrison and Lunt, 1980).

Deuterium NMR is the major technique in this study. Although phosphorus NMR is less informative, it is used in some cases. Differential scanning calorimetry is another tool to measure the phase behavior of the model membranes. The effects of branched chain compounds have been studied as three aspects: (1) on the hydrophobic region of the bilayer, (2) on the hydrophilic region, (3) on the diffusion properties of phospholipids in bilayer. Chapters IV, V and VI of the thesis present the results and discussion of these three aspects respectively. Chapter III is the experiment part, chapter II is a brief review of the theory of the techniques used in the investigation, and chapter VII is the summary.
II. Theory

This Chapter presents a concise survey of the theories related to the measurements and calculations employed in this thesis.

1. 2H NMR

The general NMR theory can be found in the books of Slichter (1978) and Harris (1983). The application of 2H NMR to lipid membranes is discussed in the reviews by Seelig (1977) and Davis (1983).

A. General theory and the powder pattern

The Nuclear Magnetic Resonance technique measures transitions between states of nuclear spin orientation in a magnetic field. The deuterium nucleus (nuclear spin I=1) has a non-spherically symmetric charge distribution, which results in an electric quadrupolar moment. The total Hamiltonian for a deuterium nucleus in a magnetic field is composed of two parts: \(H_M \) and \(H_Q \). The magnetic Hamiltonian \(H_M \) describes the interaction of the nuclear magnetic moment \(\mu_M \) with the magnetic field \(B_0 \). The quadrupole Hamiltonian \(H_Q \) describes the electrostatic interaction of the nuclear quadrupole moment
with the electric field gradient at the position of the nucleus.

Due to H_H, the energy level of deuterium nuclei in a magnetic field B_0 is split into three Zeeman energy levels:

$$E_m = -g\beta_B B_0 m$$
$$= -\gamma_B B_0 m$$ \hspace{1cm} (m = 0, \pm 1) \hspace{1cm} (1)$$

where β_B is the nuclear magneton, g is the nuclear g-factor, m is the magnetic quantum number and $\gamma_B = g\beta_B/\hbar$ is the gyromagnetic ratio of deuterium. According to the selection rules, only $\Delta m = \pm 1$ transitions are allowed, which will give one absorption line in the NMR spectrum with frequency ν_0.

$$\nu_0 = \Delta E/\hbar = \gamma_B B_0/2\pi$$ \hspace{1cm} (2)$$

Considering a single crystal containing only one type of deuterium spin, the principal axes of the electric field gradient are X, Y, Z and the components V_{XX}, V_{YY}, V_{ZZ} are in the order of: $V_{ZZ} \geq V_{XX} \geq V_{YY}$. In the principal axis set (Slichter, 1978):

$$H_0 = \frac{e\Omega}{4I(2I-1)} [V_{II}(3I^2 - I^2_I) + (V_{II} - V_{II})(I^2_I - I^2_J)] \hspace{1cm} (3)$$

where I^2, I^2_I, I^2_J and I^2_I are the operators of the nuclear angular moment. Defining $V_{II} = eq$ and $\eta = (V_{II} - V_{II})/V_{II}$, equation
The quadrupolar effects manifest themselves as a perturbation of the Zeeman interaction. As a result of first order approximation, the energy levels of the total Hamiltonian are

\[
E_m = E_H + E_Q
\]

\[
= -g\beta_B B_0 m + \frac{eQ}{4I(2I+1)} v^{(2,0)}[3m^2-I(I+1)]
\]

where \(e \) is the elementary charge of the proton, \(Q \) is the scalar quadrupole moment and \(v^{(2,0)} \) is the irreducible component of the electric field gradient along the direction of \(B_0 \) at the position of the nucleus. From eq(5), the three equally spaced Zeeman energy levels are shifted due to the quadrupolar coupling. Transitions between \(\Delta m = \pm 1 \) will give two separated lines with \(v_0 \) at the center (see Figure 3), the separation of the lines is called the quadrupole splitting:

\[
\Delta v_Q = (3/2)(eQ/h)v^{(2,0)}.
\]
Figure 3: The energy levels and relative absorption lines of deuterium nucleus.
If the B_0 direction is defined using spherical polar angles (θ, ϕ) in the electric field gradient principal axis system, we can calculate the transformed element by applying the Wigner rotation matrix $D^{(2)}(\alpha \beta \gamma)$. Choosing the Euler angles $\alpha = \Phi$, $\beta = \Theta$, $\gamma = 0$, we find:

$$V^{(2,0)} = \sum_{p=0, \pm 1, \pm 2} D^{(2)}_{p,0} V^{(2,p)}_p$$

$$= V_{II} [(3\cos^2\theta - 1) + \eta \sin^2\theta \cos 2\phi]/2$$ \hspace{1cm} (7)

where $V^{(2,p)}_p$ are the five irreducible components of the electric field gradient in the principal axis coordinate system and $D^{(2)}_{p,0}$ are the five elements of the rotation matrix $D^{(2)}(\alpha \beta \gamma)$. By substituting eq(7) into eq(6), we have

$$\Delta V_q = (3/2)(e^2 q Q/h) [(3\cos^2\theta - 1)/2 + \eta \sin^2\theta \cos 2\phi]/2$$ \hspace{1cm} (8)

where $(e^2 q Q/h)$ is referred to as the static quadrupolar coupling constant, which is 168 kHz (Burnett and Muller, 1971; Davis and Jeffrey, 1977) for a paraffinic C-D bond. In the case of a C-D bond, the asymmetry parameter $\eta \leq 0.05$, therefore neglecting η, eq(8) becomes:

$$\Delta V_q = (3/2)(e^2 q Q/h) [(3\cos^2\theta - 1)/2].$$ \hspace{1cm} (9)

For a polycrystalline powder sample, where the nuclear sites are randomly oriented with respect to B_0, each
orientation will give an unique doublet and the NMR spectrum is the so-called "powder pattern" which is the sum of lines for all θ (see Fig. 4a). The splitting of the principal peaks of the powder pattern corresponds to $\theta = 90^\circ$, thus

$$\Delta v_\theta = \frac{3}{4} \left(\frac{e^2 q Q}{h} \right).$$

(10)

B. Spectra of membranes and the order parameter (S_{CP})

From the biological point of view, the most important structure of the phospholipid liquid crystalline phase is the bilayer. We define a director Z', usually the bilayer normal, around which the acyl chain and head group undergo rapid rotational motions. As the motion is anisotropic, $\nu^{(2,0)}$ is not averaged to zero and therefore gives rise to a quadrupole splitting. Also, the rate of motion is much faster than the time scale of NMR, so only an average result is observed. If β is the angle between the C-D bond and the director Z', and β' is the instantaneous angle between Z' and B_θ, from eq(9) the quadrupole splitting is:

$$\Delta v_\theta = \frac{3}{2} \left(\frac{e^2 q Q}{h} \right) \left(\frac{3 \cos^2 \theta - 1}{2} \right).$$

$$\Delta v_\theta = \frac{3}{2} \left(\frac{e^2 q Q}{h} \right) \left(\frac{3 \cos^2 \theta' - 1}{2} \right) \left\langle \frac{3 \cos^2 \beta - 1}{2} \right\rangle.$$

(11)
Figure 4: 2H NMR powder pattern spectra:

(a) The spectrum is from a calculation of a sum of Lorentzian lines of such an intensity distribution that the nuclear sites are randomly oriented with respect to B_0. Spectral width $= 200$ kHz, quadrupolar splitting $= 29.1$ kHz, line broadening $= 160$ Hz.

(b) Experimental spectrum of 5,5-DPPC-d$_2$/H_2O dispersion recorded at 45$^\circ$C using 90°-τ-90°-t pulse sequence. 90° pulse $= 6.5$ μs, τ $= 50$ μs, t $= 250$ ms; sweep width $= \pm 100$ kHz; data size $= 4K$ in complex; line broadening $= 50$ Hz; number of acquisitions $= 8,000$.

5,5-DPPC-d$_2$ is a kind gift from Dr. R.S. Chana.
For $\beta'=90^0$, we obtain

$$\Delta v_\phi = (3/4)(e^2qQ/h)S_{CD} \quad (12)$$

where $S_{CD} = \langle (3\cos^2\beta - 1)/2 \rangle$, is a measure of the time average of the angular fluctuations of the C-D bonds with respect to the director axis Z', and is defined as the orientational order parameter for a C-D bond, the angular brackets denote a time average. The 2H NMR spectra from measurement of a model membrane and from the calculation of a sum of Lorentzian lines (Seelig, 1977) are shown in Figure 4.

C. Deuterium relaxation

The magnetization of spin I along the Z axis in a magnetic field B_0 is M_0, at thermal equilibrium. Following an rf pulse in the x-y plane the nuclear spin system returns to equilibrium by relaxation processes. The relaxation is treated as a first-order process with characteristic time constants which are referred to as relaxation times. For spin $I=1/2$ system, two relaxation times T_1 (the spin-lattice relaxation time) and T_2 (the spin-spin relaxation time) are enough to describe the relaxation process. With time constant T_1, the magnetization M_r returns back to M_0, whereas with T_2 magnetizations both M_r and M_γ decay to zero. In a classical approach, the motion of magnetization is described by the
Bloch equations (Farrar and Becker, 1971):

\[
\frac{dM_x}{dt} = \gamma (M_y B_0 + M_z B_z \sin \omega t) - M_x / T_1
\] \hspace{1cm} (13)

\[
\frac{dM_y}{dt} = \gamma (M_x B_0 \cos \omega t - M_z B_z) - M_y / T_1
\] \hspace{1cm} (14)

\[
\frac{dM_z}{dt} = -\gamma (M_x B_0 \sin \omega t + M_y B_z \cos \omega t) - (M_x - M_y) / T_1
\] \hspace{1cm} (15)

For deuterium (I=1), the classical Bloch equations are insufficient to determine the relaxation times and the best way to deal with the dynamics of the spin system is in terms of a 3 X 3 density matrix \(\rho(t) \). The expectation of \(M \) is simply equal to \(T_T(\rho M) \) (Slichter, 1978). The density matrix is expanded in terms of the unit operator and a set of eight orthonormal, Hermitian operators \(P_i \), where \(i=1,2\ldots8 \):

\[
\rho(t) = C_0 1_{\rho \rho} + \sum_i C_i(t) P_i
\] \hspace{1cm} (16)

In the presence of a Hamiltonian \(H \), the equation of motion is

\[
\frac{dC_i}{dt} = -\sum_j Q_{ij} C_j
\] \hspace{1cm} (17)

where \(Q_{ij} = -Q_{ji} = -iT_T\{P_i[P_j,H]\} \). Hamiltonian \(H \) is also expressible in \(P_i \). Different sets of the orthonormal, Hermitian operators may be chosen (Vega and Pines, 1977; Jeffrey, 1981; Bloom, 1987). According to Bloom (1987); a
common operator set is given as following:

\[P_1 = \frac{I_x}{\sqrt{2}}, \quad P_2 = \frac{I_y}{\sqrt{2}}, \quad P_3 = \frac{I_z}{\sqrt{2}}, \]
\[P_4 = \frac{(3I_z^2 - 2)}{\sqrt{6}}, \quad P_5 = \frac{(I_xI_x + I_zI_x)}{\sqrt{2}}, \quad P_6 = \frac{(I_yI_x + I_zI_y)}{\sqrt{2}}, \]
\[P_7 = \frac{(I_x^2 - I_y^2)}{\sqrt{2}}, \quad P_8 = \frac{(I_zI_y + I_yI_z)}{\sqrt{2}}. \]

Five relaxation times have been chosen to characterize the time dependence of \(C_i(t) \). They are \(T_{1Z} \) (time constant of the return of Zeeman order, related to \(C_3 \)), \(T_{1q} \) (time constant of the decay of quadrupolar order, related to \(C_4 \)), \(T_{2D} \) (time constant of the decay of double-quantum coherence, related to \(C_7 \) and \(C_8 \)) and two other spin-spin relaxation time, \(T_{2a} \) and \(T_{2b} \) (related to \(C_1, C_2, C_5 \) and \(C_6 \)). In an NMR experiment, the observed signals are proportional to \(T_{r}(\rho I_x) \) and \(T_{r}(\rho I_y) \) which are associated with \(C_1 \) and \(C_7 \). To determine these relaxation times special pulse sequences and techniques may be employed (Jacobsen and Schaumberg, 1976; Vold and Vold, 1977). The relaxation theory for a spin \(I=1 \) system and the various pulse sequences for measuring these relaxation times in membrane systems are discussed in the paper of Jeffrey (1981).

The measurement of deuterium relaxation times offers the advantage that the dominant relaxation pathway is quadrupolar relaxation. The interaction of a quadrupole moment and the electric field gradient is time dependent due to the molecular reorientation (Seelig, 1977). Usually, \(T_1 = T_{1Z} \) and \(T_2 \) (\(1/T_2 = 1/2T_{2a} + 1/2T_{2b} \)) are measured. The relaxation times are expanded
in terms of spectral densities, which are related to the motions of deuterium sites in different frequency ranges. Following the general relaxation theory (Abragam, 1961), the simplest case of deuterium relaxation is that of a fast-tumbling spherical molecule in an isotropic liquid:

\[1/T_1 = \frac{3}{80}(e^2qQ/\eta)^2(1+\eta)[J(\omega_0)+4J(2\omega_0)] \] (18)
\[1/T_2 = \frac{1}{160}(e^2qQ/\eta)^2(1+\eta)[9J(0)+15J(\omega_0)+6J(2\omega_0)] \] (19)

where \(J(\omega) \) is the spectral density.

In ordered media such as the membrane system, the deuterium relaxation is complicated. The relaxation rate is related to not only the correlation time but also the order of the media. Assuming that motional fluctuations with respect to the director can be described by a single correlation time \(\tau_c \), and that the motion is in the extreme narrowing limit \((\omega_c^2\tau_c^2<<1) \), the expression for \(T_1 \) is (Brown, 1979; Brown et al., 1979; Brown and Davis, 1981):

\[1/T_1 = \frac{3}{8}(e^2qQ/\eta)^2(1-S_{CD}^2)\tau_c \] (20)

Experimentally, \(T_1>>T_2 \) is found in the membrane system. This fact implies that there must exist motions with correlation time \(\tau_1 \leq \omega_0^{-1} \), which are responsible for \(T_1 \) relaxation, and that other motions with correlation time \(\tau_2 >> \omega_0^{-1} \), which are dominant in \(T_2 \) relaxation (Davis, 1979; Bloom...
and Sternin, 1987).

In the case of a multilamellar system, the dependence of T_2 on the orientation is obvious (Jeffrey, 1981; Volke, 1984). T_{2e} is experimentally measured from the decay of the quadrupole echo signals. Thus, T_{2e} is an orientationally averaged value. In order to describe the relationship between T_{2e} and the correlation time, the second moment of a spectrum is introduced.

The nth moment of a spectrum with lineshape $f(\omega)$ is defined by: (Davis, 1983)

$$ M_n = \int_0^\infty \omega^n f(\omega) \, d\omega / \int_0^\infty f(\omega) \, d\omega $$

(21)

For the second moment, the equation is

$$ M_2 = (1/5)(\Delta\omega_0)^2 = (4\pi^2/5)(\Delta v_q)^2 $$

(22)

Due to the rotation of the molecule-fixed principal axes about the axis Z' having spherical polar angles (β, α) in the principal axis coordinate system, the apparent second moment of a powder pattern changes by

$$ (1/5)(3e^2Q/4\pi)[(1 + \eta^2/3) - (S_{10} + \eta \sin^2 \beta \cos^2 \alpha)^2]. $$

Neglecting η, we have

$$ \Delta M_2 = (1/5)(3e^2Q/4\pi)^2(1 - S_{10}^2) $$

(23)

for the fast motion limiting case, $\Delta M_2 T_e^2 << 1$.

24
\[1/T_{2e} = \Delta M_2 \cdot \tau_c \] (24)

while for the slow motion limiting case, \(\Delta M_2 \tau_c^2 \gg 1 \), giving:

\[T_{2e} = p \cdot \tau_c \] (25)

where \(p \) is a constant for a given spin system (Pauls et al., 1985). To distinguish the two limiting regions of \(\tau_c \), a quadrupolar CPMG pulse sequence \(90^\circ - [\tau - 90^\circ - \tau]_n - t \) is employed, the decay constant of echoes appearing at time \(2n\tau \) is the relaxation time \(T_{2q-CPMG} \) (Bloom and Sternin, 1987; Blicharski, 1986)

\[1/T_{2q-CPMG} = \Delta M_2 \tau_c \left[1 - (\tau_c/\tau) \tanh(\tau/\tau_c) \right] \] (26)

For the fast motion limiting case, \(\tau_c \ll \tau \), \(T_{2q-CPMG} \) equals \(T_{2e} \). While in the slow motion limiting case, using \(\tau \ll \tau_c \), in the pulse train, we have

\[1/T_{2q-CPMG} = \Delta M_2 \tau^2/3\tau_c + 1/T_2 \neq 1/T_{2e}. \] (27)

\(1/T_2 \) is the spin-spin relaxation rate due to processes having correlation times \(\ll (\Delta M_2)^{-1/2} \) (eq.19), thus, \(\tau_c \) can be obtained from \(\tau^2 \) dependence of \(1/T_{2q-CPMG} \).
D. Pulse sequences and precession diagram

The Block equations (eq. 13-15) describe the motions of magnetization of a spin half system, which are composed of the Larmor precession and the relaxation. For the solution of the Block equations, precession diagrams are often used to describe the motions of magnetization in the magnetic field. For a spin half system, under a static magnetic field B_0 along Z axis, the nuclear magnetization precesses about Z axis with Larmor frequency $\omega_0 = \gamma B_0$. Applying an alternating magnetic field $B_1 \cos\omega_0 t$ along X axis introduces precession about X axis with frequency ω_1 in a coordinate system that rotates about Z axis at frequency ω_0. In such a coordinate system, the alternating magnetic field becomes static. Figure 5 illustrates the precessions of magnetization for these cases.

The precession diagrams give us a good way to understand how the pulse sequences work for different purposes. Three dimensional space is not enough for the precession of a spin one system, therefore, the space spanned by the basic operator set must be considered. Using commutation relations between the basic operators, the solutions of eq. 17 can be represented by precession diagrams (Bloom, 1987). Figure 6 presents the precession diagrams under various Hamiltonian operations and Figure 7 illustrates the evolution of motions of magnetization under various pulse sequences.
Figure 5: a) Larmor precession of the magnetization in the static magnetic field (in the laboratory coordinate system).

b) 90° r.f. pulse along Y axis brings the magnetization M from Z axis to X axis in a coordinate system which is rotating around Z axis with Larmor frequency.
Figure 6: Precession diagram for a spin-1 under various Hamiltonian operations.

The diagrams in the first column are equivalent to the classical Larmor precession. The diagrams in the other two columns describe the evolution of the higher order components of the density matrix, which do not have classical vector analogues.

\[H = -\sqrt{2} \omega \rho_p \]

Static magnetic field

\[H = -\sqrt{2} \omega_1 \rho_1 \]

rf pulse along X

\[H = -\sqrt{2} \omega_1 \rho_2 \]

rf pulse along Y

\[H = -\sqrt{2/3} \omega_q \rho_q \]

Quadrupolar interaction

\[\rho_p, \rho_1, \rho_2, \rho_q \]
Figure 7: Precession diagrams for a spin-1 in cases of various pulse sequence.

FID

FID

Quadrupolar Echo

Quadrupolar Echo

Inversion Recovery

Inversion Recovery

Quadrupolar Echo
Selective Inversion Recovery

\[90^\circ \gamma \]

\[\omega_q t_D = \pi \]
\[\omega_q t_D = 0, 2\pi \]
\[\omega_q t_D = \theta \]

Not inverted Inverted Partially inverted

\[90^\circ \gamma \]

\[\tau_1, \text{ Relaxation and Diffusion} \]

Quadrupolar Echo
The application of 3P NMR to lipid membranes can be found in the review by Smith and Ekiel (1984).

The 3P chemical shift of phospholipid in the solid state depends on the orientations of the phosphodiester moiety with respect to the magnetic field. For a polycrystalline sample 3P NMR spectrum is the sum of spectra for all possible orientation, which is a broad band characterized by three principal chemical shift values σ_{11}, σ_{33} and σ_{22} as two edges and one peak. 3P NMR for phospholipid in membranes is an axially symmetric powder pattern due to the rapid anisotropic motion of the phospholipid molecule and/or of the phosphodiester moiety. The width of the powder pattern represents the chemical shift anisotropy (CSA), $\Delta \sigma = \sigma_2 - \sigma_1$, which is related to the orientation of the axis of motional averaging with respect to the principal components of the chemical shift tensor and also related to the order of the phosphate group, i.e., the amplitude of angular excursion during motional averaging. The lineshape of 3P NMR of phospholipid in membrane is further affected by the isotropic motions.

The isotropic motions, i.e., phospholipid lateral diffusion and membrane tumbling, are two factors determining the lineshape of 3P NMR spectra obtained from phospholipid in a membrane. In the case of multilamellar liposomes, the
particles are big, the tumbling of the particles and lateral diffusion are so slow compared with the width of spectrum that the motional averaging does not happen and the spectrum is an asymmetrical broad line. In the case of sonicated unilamellar vesicles, particles are much smaller and narrow symmetrical 'high resolution' NMR spectra are obtained as a result of the motional averaging. With increasing viscosity of the medium, the tumbling motion slows down and the narrow spectral line becomes broad. The lateral diffusion constant of phospholipid can be measured from the spectral simulation (Bayerl et al., 1984) and from the viscosity-dependent linewidth of the spectra (Cullis, 1976; Cushley et al., 1987). In certain ranges of viscosity and vesicle size the lineshape of spectra can be changed gradually from a narrow Lorentzian line to an asymmetric broad one, which was predicted by the theory of Campbell et al. (1979). The rate of isotropic motion for a membrane vesicle, 1/τₖ, has contributions from tumbling (1/τₖ) and lateral diffusion (1/τ_diff), which is expressed:

\[
\frac{1}{\tau_\kappa} = \left(\frac{1}{\tau_t} \right) + \left(\frac{1}{\tau_{\text{diff}}} \right) \\
= \left(\frac{3kT}{4\pi\eta r^3} \right) + \left(\frac{6D_t}{r^2} \right) \\
\]

(28)

where \(\eta \) is the viscosity, \(r \) is the radius of the vesicle and \(D_t \) is the diffusion coefficient.
3. Differential scanning calorimetry (DSC)

DSC is one of the most popular techniques for the study of phase behavior of model or biological membranes. Reviews can be found in Mabrey and Sturtevant (1978) and McElhaney (1982, 1986). DSC is a relatively simple and straightforward physical technique which measures the thermally induced phase transition. In the DSC experiment a sample and an 'inert' reference material are simultaneously heated in cells at an identical rate. In our case the sample is a very small amount of lipid multilamellar liposome sealed in a sample pan while the reference is an empty sample pan. Since equal quantities of heat are initially being applied to both cells, the temperature of both sample and reference increase linearly with time, such that their differential temperature is maintained at zero. However, if the sample undergoes a thermally induced phase transition, part of the heat is absorbed (or liberated) by the sample, which results in a temperature difference between the sample and reference cells. The instrumental control system will supply more (or less) heat to the sample cell so that the same temperature of both cells will be maintained. DSC measures the extra heat flow required to keep a sample and reference cell at the same temperature. Both pre- and main gel to liquid crystalline transitions of phospholipid liposomes are first order transitions, which give endothermal peaks in DSC thermogram.
The phase transition temperature T_a is the temperature at which the extra heat flow reaches maximum. The peak area under DSC trace when calibrated with a known standard is a direct measurement of enthalpy for the phase transition:

$$ \Delta H_{\text{cal}} = \int_{T_1}^{T_2} (\frac{dH}{dt})_t (dt/dT) dT. \quad (29) $$

For a symmetric phase transition, T_a represents the temperature at which the transition from the gel to liquid crystalline state is one-half complete. At the phase transition midpoint-temperature the change in free energy (ΔG) of the system is zero, the entropy change (ΔS) associated with the transition can be calculated:

$$ \Delta G = \Delta H_{\text{cal}} - T_a \Delta S \quad (30) $$
III. Experimental Methods

1. Materials

Palmitic acid was purchased from Fisher Scientific Co. Ten percent palladium on activated carbon, phosphorus oxychloride and trimethylamine were purchased from Aldrich Chemical Co. Egg yolk lysophosphatidylcholine (lysoPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycerol, phytol, 1,1'-carbonyldiimidazole (CDI), Trizma base, Trizma hydrochloride and deuterium depleted water (DDW) were purchased from Sigma Chemical Co. Sigma lysoPC (from egg yolk) contains 66 - 68% palmitic acid, 24 - 26% stearic acid, and 6 - 10% other saturated acids (Thewalt et al., 1985). 2-Bromoethanol-1,1,2,2-d₄ and deuterium oxide were purchased from MSD Isotopes. Phytanic acid was purchased from Analabs. "Baker analysed" Silica gel, 60-200 mesh, was purchased from J.T. Baker Chemical Company. The solvents were A. R. grade from Fisher or BDH. The chemicals were used as received unless otherwise stated.

2. Synthesis of [²H₁₁]palmitic acid

Perdeuterated palmitic acid ([²H₁₁]palmitic acid) was prepared by deuterium exchange of a melt of palmitic acid with
deuterium gas in the presence of 10% palladium on activated carbon following the general method of Hsiao et al. (1974). Palmitic acid was analyzed by GC-Mass Spectroscopy (Hewlett-Packaged 5985 GC-MS, column DB-1) of its methyl ester and contained 1% of pentadecanoic acid and 2% of heptadecanoic acid. Deuterium gas was generated using a Varian Aerograph model 9650 hydrogen generator. A 150 ml round-bottomed flask was equipped with an inlet tube and a magnetic stir bar. The flask was charged with palmitic acid (25 g) and 10% palladium on activated carbon (5 g). The reaction mixture was heated with a silicon oil bath (195±5°C) under stirring. Deuterium gas was introduced into the flask for 40 days. The reaction was monitored by mass spectroscopy. At the end of the exchange reaction, chloroform was added to the mixture, and the catalyst was filtered off. Chloroform was removed under reduced pressure to give crude perdeuterated palmitic acid (27.6 g). The crude acid (8 g) was then purified by column chromatograph on silica gel (60-200 mesh) with hexane eluent followed by chloroform eluent to provide white crystals (6 g) of [2H\textsubscript{3}]palmitic acid with 73.9% yield. The purified [4H\textsubscript{3}]palmitic acid was analyzed by mass spectroscopy to show 97.4% of deuteration level (see Appendix I for the calculation).

3. Synthesis of 1-palmitoyl(stearoyl)-2-[2H\textsubscript{3}]palmitoyl-sn-glycero-3-phosphocholine (PC-d\textsubscript{3})
PC-\textsubscript{d\textsubscript{31}} was synthesized by condensing of 2\textsubscript{H\textsubscript{31}}palmitic acid and egg yolk lysoPC with 1,1'-carbonyldiimidazole (CDI) according to the published procedure (Grover and Cushley, 1979) and the modifications of Thewalt et al. (1985).

\[
\begin{align*}
\text{C}_{15}\text{H}_{31}\text{COOH} & \xrightarrow{\text{H}_2, \text{Pd}} \text{C}_{15}\text{H}_{31}\text{COOH} \\
\text{CH}_2\text{OPO(O−)OCH}_2\text{CH}_2\text{N}'(\text{CH}_3)_3 & \xrightarrow{\text{C}_{15}\text{H}_{31}\text{COOH, CDI}} \\
\text{HO-CH} & \\
\text{C}_{15}\text{H}_{31}\text{COO-CH}_2 & \text{(or C}_{17}\text{H}_{35}\text{COO-)}
\end{align*}
\]

A 50 ml pear shaped flask was equipped with an inlet tube and a magnetic stir bar, and was flame dried under a stream of nitrogen. The flask was charged with 2\textsubscript{H\textsubscript{31}}Palmitic acid (1.26 g, 4.4 mmol, freshly dried under high vacuum overnight at room temperature) and dry benzene (20 ml, freshly distilled from sodium) under nitrogen. To the benzene solution CDI (0.78 g, 4.8 mmol) was added from a freshly opened bottle. Carbon dioxide was immediately generated indicating formation of the palmitoylimidazole derivative. In one hour of stirring at room temperature, egg yolk lysoPC (2 g, 4.2 mmol, freshly dried under high vacuum overnight at room temperature) was added to
the mixture. The reaction mixture was kept stirring at room temperature under nitrogen, the solvent was removed by the stream of nitrogen, and the residue was further dried under high vacuum. The dried residue in sealed flask was incubated at 85°C in an oil bath for 3 hr. During the incubation, the formation of imidazole crystals indicated that the palmitic acid had esterified the lysoPC. The reaction mixture was cooled to room temperature and dissolved into petroleum ether (30-60, 25 ml)/95% ethanol (4 ml). The solution was then transferred into a 150 ml Erlenmeyer flask. A precipitate was formed when cold acetone (90 ml) was added into the solution. The precipitation was repeated once, PC-d$_{31}$ (white solid powder, 2.0 g, 65.5%) unreacted [3H$_{31}$]palmitic acid and lysoPC were separated, by column chromatography on silica gel (60-200 mesh) with chloroform-methanol-water (70:25:4, by vol.). A thin layer chromatogram (TLC) of PC-d$_{31}$ on silica gel with chloroform-methanol-water (65:25:4, by vol.) showed a single spot, $R_f = 0.29$, which was identical to that of an undeuterated authentic sample of DPPC (Sigma).

The proposed structure of PC-d$_{31}$ was supported by Mass Spectroscopy and proton NMR. The mass spectrum showed two sets of lines centered at $m - 183$ ($m - ^4\text{N}(\text{CH}_3)_3(\text{CH}_2)_2\text{PO}_4^-) = 580$ and 608, corresponding to phospholipid with a mixed palmitoyl and stearoyl sn-1 chain. The relative intensities for these two sets were 2.85:1 which was in agreement with the composition of Sigma lysoPC. The proton NMR spectrum of PC-d$_{31}$ in CDCl$_3$
Figure 8: 1H and 2H NMR spectra of PC-d$_{31}$ in chloroform.

a) 1H NMR spectrum of DPPC (from Sigma) in CDCl$_3$ solution,
b) 1H NMR spectrum of PC-d$_{31}$ in CDCl$_3$ solution,
c) 2H NMR spectrum of PC-d$_{31}$ in CHCl$_3$ solution.

Concentration: 10 mg/ 0.5 ml. Spectra were measured using a Bruker WM 400 spectrometer (1H, at 400.1 MHz; 2H, at 61.6 MHz). Chemical shifts were expressed in ppm downfield from TMS, using the residue solvent peak as a reference.
(Fig. 8b) is characterized by the presence of two doublets of doublets at δ = 4.12 and δ = 4.39 ppm for the CH₂OCO glycerol protons and a multiplet at δ = 3.94 ppm for the CH₂OP glycerol protons. Similar chemical shifts are obtained for Sigma DPPC (Fig. 8a), in agreement with the published spectra of 1,2-distearoyl-sn-glycero-3-phosphocholine (Ponpipom and Bugianesi, 1980). 1,3-Distearoyl-sn-glycero-3-phosphocholine shows a doublet at δ = 4.24 ppm for CH₂OCO glycerol protons (Ponpipom and Bugianesi, 1980), which is not shown in ¹H NMR spectrum of PC-d₃₁. Therefore, in PC-d₃₁ the deuterated fatty acid chains were attached to the sn-2 position.

4. Synthesis of 1,2-dipalmitoyl-sn-glycero-3-[α, β-²H₄] phosphocholine (DPPC-d₄)

DPPC-d₄ was synthesized with five steps starting from 1,2-dipalmitoyl-sn-glycero according to H. Eibl et al. (1978, 1978a, 1980). Minor modifications were made to improve the yield in our small scale synthesis.

\[R^- = \text{CH}_3\text{COOCH}_2 \]

\[\text{C}_{15}\text{H}_{31}\text{COOCH}_3 \]

\[\text{CH}_2^- \]

\[\text{POCl}_3 \]

\[\text{R-OH} \xrightarrow{\text{R-O-POCl}_2} \]

41
\[
\text{BrC}_2\text{H}_4\text{C}_2\text{H}_2\text{OH} \xrightarrow{} \text{R-O-P(O)ClOC}_2\text{H}_2\text{C}_2\text{H}_2\text{Br}
\]

\[
\text{HCOOH}, \text{H}_2\text{O}, \text{Na}_2\text{CO}_3 \xrightarrow{} \text{R-O-PO(ONa)}\text{OC}_2\text{H}_2\text{C}_2\text{H}_2\text{Br}
\]

40 wt\% (CH\text{\textsubscript{3}})\text{N aq.} \xrightarrow{} \text{R-O-PO(ONa)}\text{OC}_2\text{H}_2\text{C}_2\text{H}_2\text{N(CH\text{\textsubscript{3}})}_3\text{Br}

Silica gel column purification

\[
\text{CHCl}_3-\text{Me}_3\text{OH-25\%NH}_4\text{OH aq. (70/26/4 by vol.)} \xrightarrow{}
\]

\[
\text{R-O-PO(O^\text{-})}\text{OC}_2\text{H}_2\text{C}_2\text{H}_2\text{N}^\text{\textalpha}(\text{CH}_3)_3
\]

\[
\alpha \beta
\]

\[
\text{(DPPC-d}_4\text{)}
\]

1,2-Dipalmitoyl-sn-glycerol was converted into 1,2-dipalmitoyl-sn-glycerol-3-phosphoric acid dichloride. An anhydrous tetrahydrofuran (THF) (3 ml, freshly distilled from sodium and benzophenone) solution of triethylamine (0.3 g, 3 mmol, freshly distilled from sodium) was added to phosphorus oxychloride (0.45 g, 3 mmol, freshly distilled) with stirring under nitrogen at room temperature. To the above solution an anhydrous THF solution (7 ml) of 1,2-dipalmitoyl-sn-glycerol (1 g, 1.8 mmol, freshly dried under vacuum overnight) was added dropwise over 15 min at 5\textdegree\text{C}. The reaction mixture was stirred for 20 min, and precipitated triethylamine hydrochloride was filtered off. To the filtrate was added 2.5 ml of toluene, and the solvents were then removed under reduced pressure leaving an oily residue. To an anhydrous THF solution (4 ml) of the oily residue was added an anhydrous THF...
solution (2 ml) of dried triethylamine (0.5 g, 5 mmol) followed by dropwise addition of an anhydrous THF solution (6 ml) of 2-bromoethanol-1,1,2,2-d₄ (0.35 g, 2.7 mmol) over 25 min with stirring under nitrogen. The reaction mixture was then kept at 40°C with stirring for 1 hr. The resulting phosphorous chloride ester in the above reaction mixture was hydrolyzed by adding an aqueous solution of formic acid (4M, 5 ml) at 10°C. The hydrolyzed product was extracted by hexane (10 ml), and to the hexane solution was added toluene (3 ml). The solvents were then removed under reduced pressure. A di-isopropyl ether solution (10 ml) of the residue was washed with 0.5 M Na₂CO₃ (10 ml) and methanol (10 ml). After phase separation, acetone (30 ml) was added to the upper phase to precipitate 1,2-dipalmitoyl-sn-glycero-3-phosphoric bromoethyl ester, which was filtered in 1 hr of storage at -18°C. This bromoethyl ester was then converted into the phosphocholine bromide (DPPC-d₄ bromide). To a chloroform solution (4.5 ml) of the bromoethyl ester were added (at 50°C) 2-propanol (7.5 ml), acetonitrile (7.5 ml) and 40% aq. trimethylamine (10.5 ml, prepared from 25% aq. and pure trimethylamine). The reaction mixture was incubated at 50°C for 12 hr, and the reaction was monitored by TLC (silica gel with chloroform-methanol-water, 65:25:4, by vol.). After the solvents were removed, the residue was dissolved in a mixture of water (20 ml), chloroform (20 ml) and methanol (26 ml) with vigorous stirring. The bottom phase, containing DPPC-d₄ bromide, was
Figure 9: 1H and 2H NMR spectra of DPPC-d$_4$ in chloroform.

a) 1H NMR spectrum of DPPC (from Sigma) in CDCl$_3$ solution,
b) 1H NMR spectrum of DPPC-d$_4$ in CDCl$_3$ solution,
c) 2H NMR spectrum of DPPC-d$_4$ in CHCl$_3$ solution.

Concentration: 10 mg/0.5 ml. Spectra were measured using a Bruker WM 400 spectrometer (1H, at 400.1 MHz; 2H, at 61.6 MHz). Chemical shifts were expressed in ppm downfield from TMS, using the residue solvent peak as a reference.

* contaminated by DMSO.
taken to dryness by evaporating the solvent under reduced pressure, and the residue was further dried under high vacuum. Crude DPPC-d₄ bromide was further precipitated in chloroform solution (5 ml) by adding cold acetone (35 ml). The DPPC-d₄ bromide precipitate was then purified by column chromatography on silica gel (60-200 mesh) with chloroform-methanol-25% ammonium hydroxide (70:26:4 by vol.) to provide the zwitterionic form of DPPC-d₄ (0.75 g, 55.6%).

TLC analysis (silica gel with chloroform/methanol/water, 65:25:4, by vol.) of the purified DPPC-d₄ showed a single spot at Rᵥ = 0.29. The proton NMR spectrum of DPPC-d₄ was identical to that of an authentic sample of DPPC (Sigma), except for loss of signals at 4.31 and 3.81 ppm. A deuterium NMR spectrum of DPPC-d₄ showed the chemical shifts at 4.3 and 3.8 ppm (Figure 9c). Both ¹H NMR and ²H NMR confirmed existence of the deuterated choline methylenes (>NCD₂CD₂-O-).

5. Preparation of multilamellar dispersions

Aqueous multilamellar dispersions of deuterated phospholipid (PC-d₃1 or DPPC-d₄) and deuterated phospholipid incorporated with branched chain compounds (phytol or phytanic acid) were prepared according to the following two methods.
A. Method I: Preparation of 50 wt% dispersions.

The general procedure was employed to prepare 50 wt% dispersions of 20 mol% phytol:PC-d$_{31}$ in DDW. PC-d$_{31}$ (≈150-200 mg) was dissolved in a chloroform solution of phytol (purified on a silica gel column, eluted with ether-hexane (3:4 by vol.)) to bring the mole ratio of phospholipid:phytol to 4:1. The solution was evaporated to a thin film in a test tube using a stream of dry nitrogen, and the film was further dried under high vacuum overnight. Deuterium depleted water (DDW), equal in weight to total lipid, was added to make 50 wt% dispersions. The sample was mixed to homogeneity at a temperature above the gel to liquid crystalline phase transition temperature (45°C) using a spatula and a vortex mixer. The sample was sealed in an NMR tube and heated to 50°C for two hours to ensure that the hydration of the phospholipid had reached equilibrium. The sample was stored at -18°C until used for the NMR experiments.

The procedures for preparation of 50 wt% dispersions of PC-d$_{31}$, 5 mol% phytol:PC-d$_{31}$, 5 mol% phytanic acid:PC-d$_{31}$ and 20 mol% phytanic acid:PC-d$_{31}$, and 40 wt% dispersions of DPPC-d$_4$, all in DDW, were similar, except that the amount of DPPC-d$_4$ used was ≈80 mg.
B. Method II: Preparation of 15 wt% dispersions

DPPC-d₄ (70-80 mg) was used to make ≈30 wt% dispersions in DDW or Tris buffer¹ in DDW (pH 7.4) according to method I. Then another 3.5 ml of DDW (or Tris buffer) was added stepwise in portions of 0.5, 1, 1 and 1 ml. For each step the dispersions were vortexed to homogeneity. Five freeze-thaw cycles (liquid nitrogen/45°C) and vortex mixing at 45°C were applied to the dispersions. Then, the dispersions were centrifuged at 45,000 rpm for 3 hr at 25°C, in a Ti 75 rotor. The resulting pellet (≈0.5 ml) was collected and transferred to an NMR tube. The sample was sealed and stored at -18°C until used for the NMR experiments. Samples made in this way are referred to as ≈15 wt% dispersions in the text.

Particle sizes of the multilamellar dispersions were determined using a Zeiss Phase Contrast Microscope, calibrated by a standard stage scale. Mean diameters were calculated by counting 200-300 particles.

6. Preparation of phospholipid unilamellar vesicles

Unilamellar vesicles of DPPC and DPPC containing 20 mol%

¹25 mM tris(hydroxymethyl)aminomethane / tris(hydroxymethyl)aminomethane hydrochloride in DDW, pH 7.4.
of phytol (phytanic acid) were prepared by sonication. DPPC (≥300 mg) was dispersed in 5 ml of water using method I, above. The homogenous suspension was sonicated until the suspension became clear (2 hrs; 50% duty cycle) under nitrogen using a Heat Systems model W-375 sonicator at a power output control setting 4. The temperature was maintained above the phase transition of DPPC (45-50°C). The solution was centrifuged on a clinical centrifuge for 10 min to remove multilamellar dispersions of DPPC and titanium particles, and then filtered through a 0.22 μm Milipore filter. The procedures for preparation of unilamellar vesicles of 20 mol% phytol:DPPC and of 20 mol% phytanic acid:DPPC were similar to the above except that the sonication time was 50 min. The vesicle samples were examined by TLC to make sure that no lysoPC was formed during sonication. The vesicle samples were stored in a water bath at 45-48°C prior to NMR experiments.

Particle size of the unilamellar vesicles was measured by Quasi-Elastic Light Scattering using a Nicomp Model 270 Submicron Particle Sizer. The scattering angle was 90°. The autocorrelation function was analysed using 64 channels and evaluated by a Gaussian analysis. Mean diameter ± standard deviation was obtained from the Gaussian analysis. Usually 10 repeated runs were taken for each of the samples, and mean diameter and standard deviation were averaged values from ten runs.
7. Nuclear magnetic resonance spectroscopy

A. 2H NMR

2H NMR experiments were performed at 38.8 MHz using a Nalorac 5.9 T superconducting magnet and a home-built spectrometer. The temperature of all the experiments was controlled to an accuracy of ±0.5°C, with a nitrogen or air flow, by a solid state temperature controller built by the SFU Electronic Shop. Samples were allowed to equilibrate for 20-30 min at a given temperature. Normally, spectra were recorded as a function of temperature. Sometimes when a relatively low temperature spectrum was recorded following a relatively high temperature run, the sample needed to be cooled down lower than the desired temperature then heated up to that temperature in order to avoid hysteresis effects. Spectra were measured using the quadrupolar echo pulse sequence $90°_1-\tau-90°_1-\tau$ (Davis et al., 1976) and a broadband probe with a horizontally mounted coil. The $90°$ pulse was 6.5 μs or 7.5 μs depending on the size of the coil. The spectral parameters are given in the Figure legends. Data collection was accomplished with a Nicolet Explorer IIIA digital oscilloscope. For the experiments of acyl chain deuterated PC the spectra were recorded in one channel mode. Fourier transforms were performed using a Nicolet BNC-12 computer. After modification
of the instrument, a Vaxstation I microcomputer was used as the data acquisition and processing system (Sternin, 1988). In the new system a CYCLOPS phase alternating pulse sequence was used to eliminate the imperfections due to phase and length of the rf pulse (Hoult and Richards, 1975; Rance and Byrd, 1983). Quadrature detection was used in the modified system, however most of the spectra presented in this thesis were symmetrized by zeroing the out of phase channel and reflecting the spectra about the carrier frequency, resulting in an increase in the signal to noise ratio of $\sqrt{2}$. The frequency of the spectrometer was adjusted to be at the center of the symmetrical powder pattern. The symmetrized spectra were compared with the non-symmetrized spectra to ensure that no distortion was induced by the folding process.

Prior to Fourier transformation the FID data points were shifted, so that the initial point in the data set was at the top of the echo, thus eliminating distortion of the spectra (Davis, 1983). In the VAX system, the FID data points went through a phase correction routine before they were shifted. Spectral moments were calculated on either the Nicolet BNC-12 computer or Vaxstation I microcomputer according to the following equation:

$$M_2 = \frac{\int_0^\infty \omega^2 f(\omega) \, d\omega}{\int_0^\infty f(\omega) \, d\omega}$$

where $f(\omega)$ is the spectral intensity at frequency ω. Phase transitions were measured from the M_1 curves with the
following definitions: $T_s =$ transition onset temperature, the intersection determined from extrapolation of gel phase M_1 and transition region M_1; $T_i =$ transition completion temperature, the intersection of transition region M_1 and liquid crystalline phase M_1. Depaking was performed on an IBM 4341 computer to calculate the "aligned" 1H NMR spectrum from the "random" powder pattern spectrum using a program by Sternin (1982). Data were transferred between the Nicolet or Vaxstation I and the main frame via an interface routine written by Dr. I. Gay (Chemistry, SFU) or via Kermit. Generally six iterations were performed for calculating the depaked spectra. Order parameters S_{cd} were calculated from the quadrupolar splitting of the "aligned" spectra using the following equation (Seelig, 1977):

$$
\Delta v_0 = (3/2)(e^2qQ/h)S_{cd}
$$

where Δv_0 is the quadrupolar splitting in the depaked spectra.

Spin-lattice relaxation time, T_1, was measured at 38.8 MHz using the inversion-recovery quadrupolar echo sequence $180^\circ - \tau_1 - 90^\circ - \tau - 90^\circ - t$. Either the FID echo height (below the phase transition temperature) or the spectral peak intensity (above the phase transition temperature) was used to calculate T_1 from the expression.
\[A(\tau_1) = A(\infty) [1 - 2\exp(-\tau_1/T_1)] \]

(32)

where \(A(\infty) \) is the intensity at the longest \(\tau_1 \) value. The delay time, \(\tau \), was adjusted to be longer than \(5T_1 \). The details are given in the Figure legends and table notations. Transverse relaxation time, \(T_{2e} \), was determined from the initial slope of the semi-log plot of \(A(2\tau) \) versus \(2\tau \) using the expression

\[A(2\tau) = A(0) \exp(-2\tau/T_{2e}) \]

(33)

where \(A(0) \) is the maximum echo intensity. The range of \(\tau \) values employed depended on the samples and on the temperatures at which measurements were taken. The details are given in the Figure legends and table notations.

B. \(^3\)P NMR

\(^3\)P NMR spectra were acquired at 102.2 MHz on the home-built spectrometer. The spectra were collected without proton decoupling using a broad band probe. The simulated spectra were generated using a computer program obtained from Dr. Burnell. Burnell et al. (1980) were able to simulate experimental spectra of DOPC vesicles for different temperatures and viscosities of the medium or different sizes.
8. Diffusion study of PC in the presence of branched chain compounds

Diffusion measurements of PC-d$_{31}$, with or without incorporation of branched chain compounds, were performed on the multilamellar liposome samples by 2H NMR using T_2^q-CPMG pulse program (Bloom and Sternin, 1987) and a modified DANTE pulse program (see Chapter II). The lateral diffusion coefficients, D_m, for DPPC in the presence of branched chain compounds were calculated for vesicle samples from the simulation of their 31P NMR spectra.

9. Differential scanning calorimetry (DSC)

DSC was performed over the heating range from -30°C to 60°C on a Dupont Instruments Series 99 Thermal Analyzer fitted with a 910 DSC accessory. Both temperature and enthalpy measurements were calibrated with gallium as the standard ($T_m = 29.8^0$C, $\Delta H = 19.2$ cal/g). DSC traces were measured with 1 - 2 mg samples of 50 wt% phospholipid multilamellar dispersions in hermetically sealed sample pans. For enthalpy measurements \approx5 mg of sample was employed. Each sample was heated at a rate of 5°C/min. The temperature of maximum heat absorption was defined as T_m. T_g and T_l were determined by the intersections of the extrapolated endothermic peak and the baseline. The
weight of phospholipids in the sample pan was determined with two methods: (1) from the difference between the sample weight and the water weight, (2) phosphorus analysis. In method one water weight was calculated from the ice melting peak, assuming that 11 moles of water are tightly bound to 1 mole of PC (Ruocco and Shipley, 1982), and that this fraction of the water is not seen in the 0°C DSC peak (Ladbrooke and Chapman, 1969). In some cases method two was utilized, i.e., the amount of phospholipid in the sample pan was determined by phosphorus analysis as described by Ames (1966). Good agreement between these two methods was observed.

The entropy change \(\Delta S \) of the phase transition was calculated using the equation

\[
\Delta S = \frac{\Delta H}{T_m}
\]

(34)

where \(\Delta H \) is the transition enthalpy determined from the area under the endothermic peak. The peak areas were measured by planimetry.
IV. The Effects of Branched Chain Compounds on Acyl Chain Perdeuterated Phosphatidylcholine Membranes

1. Differential scanning calorimetry

The effects of phytanic acid and of phytol on the thermotropic phase transition of PC-d$_{31}$ were studied with Differential Scanning Calorimetry (DSC). Phospholipid multilamellar dispersions (≈50 wt% in DDW) of PC-d$_{31}$ and PC-d$_{31}$ containing various amounts of phytanic acid or phytol were prepared at 50°C. PC-d$_{31}$ was synthesized by condensing [H$_{1}$]palmitic acid to the sn-2 position of egg yolk lysoPC. [H$_{1}$]palmitic acid is 97% pure, with the remaining 1% of perdeuterated pentadecanoic acid and 2% of perdeuterated heptadecanoic acid. The sn-1 position is palmitoyl/stearoyl = 3:1. The properties of PC-d$_{31}$ closely resemble those of DPPC (Thewalt et al., 1985). The DSC trace of PC-d$_{31}$ (the curves in both Figure 10a and 11a) shows a pretransition onset at 30.5°C, a main gel to liquid crystalline phase transition onset T$_{s}$ at 39.3°C, and a completion temperature T$_{f}$ at 43.0°C. Figures 10 and 11 show that concentrations of phytanic acid and phytol as low as 1 mol% introduce a visible perturbation in PC-d$_{31}$, both pre- and main transition temperatures decrease (the curves 10b and 11b). As the concentration of branched chain compound increases further, the pretransition of PC-d$_{31}$
Figure 10: Differential scanning calorimetry trace of multilamellar dispersions of 50 wt% PC-d_{J1} (a) and PC-d_{J1} incorporated with different concentrations of phytanic acid: 1 mol% (b); 5 mol% (c); 10 mol% (d) and 20 mol% (e). Scanning rate was 5°C/min over the range of -30 to 60$^\circ$C.
Figure 11: Differential scanning calorimetry trace of multilamellar dispersions of 50 wt% PC-d31 (a) and PC-d31 incorporated with different concentrations of phytol: 1 mol% (b); 5 mol% (c); 10 mol% (d) and 20 mol% (e).

Scanning rate was 5°C/min over the range of -30 to 60°C.
is eliminated and the main transition is further broadened and shifted to lower temperature. For example, the values of T_s for 20 mol% phytanic acid and for 20 mol% phytol have been lowered to 28.3°C and 27.3°C, respectively, from the T_s of 39.3°C for PC-d$_{31}$. In both cases the half height width of the transition has been broadened to 8°C from 1.7°C for PC-d$_{31}$.

Table I summarizes the thermodynamic parameters obtained from the DSC measurement. As shown in Figure 10, Figure 11 and Table I, the phase behavior of PC-d$_{31}$ is very sensitive to the incorporated branched chain compounds. Especially for the pretransition, 1 mol% of phytanic acid reduces the onset of the pretransition by 5°C while 5 mol% of phytanic acid eliminates the pretransition. Furthermore, phytol exhibits a slightly weaker effect on the pretransition of PC-d$_{31}$ than that of phytanic acid. The pretransition is still detected at 5 mol% incorporation of phytol as shown in Figure 11c.

The rationale for the effect of the incorporation of a branched chain compound on the pretransition is attributed to steric hindrance in the phospholipid head group region. Comparison of the phase behavior between PC and phosphatidylethanolamine (PE) might help one to understand the effect on the pretransition. PC possesses both a pre- and a main transition, whereas PE has only a main transition at temperatures 20-25°C higher than PC. PC has a larger head group than PE has, the pretransition has been suggested to be a consequence of steric hindrance in the head group region of
Table I: Thermodynamic Parameters Relating to the Phase Transition of PC-d$_{31}$ Multilamellar Dispersions

<table>
<thead>
<tr>
<th>Phytanic Acid in PC-d$_{31}$ (mol%)</th>
<th>Transition Temperature (DSC)</th>
<th>Enthalpy of Transition</th>
<th>Entropy of Transition</th>
<th>(°C)</th>
<th>kcal/mole</th>
<th>kcal/mole</th>
<th>cal/mole°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pre- (onset)</td>
<td>T$_S$</td>
<td>T$_M$</td>
<td>T$_L$</td>
<td>pre-</td>
<td>main</td>
<td>main</td>
</tr>
<tr>
<td>0</td>
<td>30.5</td>
<td>39.5</td>
<td>41.4</td>
<td>43.0</td>
<td>1.5</td>
<td>8.8</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>25.4</td>
<td>38.4</td>
<td>40.2</td>
<td>41.8</td>
<td>1.2</td>
<td>8.6</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>35.2</td>
<td>38.5</td>
<td>41.0</td>
<td>8.3</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>32.2</td>
<td>36.5</td>
<td>41.2</td>
<td>7.8</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>28.3</td>
<td>36.3</td>
<td>40.0</td>
<td>7.4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phytol in PC-d$_{31}$ (mole)</th>
<th>(°C)</th>
<th>kcal/mole</th>
<th>kcal/mole</th>
<th>cal/mole°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.6</td>
<td>38.1</td>
<td>40.1</td>
<td>41.9</td>
</tr>
<tr>
<td>5</td>
<td>19.5</td>
<td>34.1</td>
<td>37.8</td>
<td>40.8</td>
</tr>
<tr>
<td>10</td>
<td>30.8</td>
<td>37.1</td>
<td>40.8</td>
<td>8.8</td>
</tr>
<tr>
<td>20</td>
<td>27.3</td>
<td>37.1</td>
<td>41.8</td>
<td>7.9</td>
</tr>
</tbody>
</table>

T_S = onset temperature of gel to liquid crystalline phase transition
T_M = temperature of maximum heat absorption
T_L = completion of transition
PC (Chapman et al., 1974). Once either phytol or phytanic acid is incorporated into PC membranes, their molecules are situated in the lipid phase with the phytyl chains parallel to the phospholipid acyl chains, with the hydroxy or carboxyl groups located in the hydrophilic region. Consequently, incorporation of phytol or phytanic acid makes the phospholipid head group region less crowded, leading to elimination of the pretransition.

The concentration effects of phytanic acid and of phytol on the main transition of PC-d_{31} studied by DSC may be also found in Figure 12. The effects of phytol and phytanic acid are qualitatively similar: with increasing concentration of phytanic acid or phytol both \(\Delta H \) and \(T_m \) are diminished (Figure 12a,b), whereas the half-height width of the transition peak is increased (Figure 12c). This observation is similar to that reported recently for another branched chain compound, i.e., of \(\alpha \)-tocopherol (Vitamin E) (Ortiz, 1987).

Klausner et al. (1980) have used the direction of shifts in the midpoint of the phase transition curve to determine whether a free fatty acid partitions into the gel or liquid crystalline phase. According to ideal solution theory, the following equation is obtained (Klausner et al., 1980):

\[
T_{\text{mid}} = T_0 \left(\frac{\Delta H}{\Delta H + RT_0 \ln \gamma} \right)
\]

(35)
where γ is the ratio of the mole fraction of solvent in the gel phase to that in the liquid crystalline phase, T_o is the phase transition temperature of pure solvent, ΔH is the phase transition enthalpy and T_{mid} is the midpoint temperature of the phase transition. If the midpoint decreases in the presence of a solute, this indicates that the solute tends to partition into the liquid crystalline phase. We assume that Klausner's theory is applicable to our phospholipid system containing branched chain compounds, and that T_m is close to the midpoint of the phase transition. On the basis of the diminution of T_m, we conclude that either phytol or phytanic acid preferentially partitions into the liquid crystalline phase. As shown in Table I, the onset temperature T_s decreases rapidly with increasing concentration of branched chain compounds, while the completion temperature T_i decreases, but to a much lesser degree (maximum $3^\circ C$). The diminution of T_s and T_i broadens the main transition. Such a broadening effect may be explained by the preference of the branched chain compounds for the liquid crystalline phase, which introduces a heterogeneity of the distribution of branched chain compound in phospholipid during the melting process.

The ΔH values of DPPC/water dispersions have been reported to be in the range of 1.6-2.3 kcal/mole and 8.7-9.7 kcal/mole for pre- and main transition, respectively (Phillips et al., 1969; Albon and Sturtevant, 1978; Silvius and Lyons,
Figure 12: Changes in main phase transition temperature (T_m), transition enthalpy (ΔH) and half-height width ($\Delta t_{1/2}$) of PC-d_{31} incorporated with phytol(o) and phytanic acid(•).
ΔH for 1-stearoyl-2-palmitoyl-sn-glycero-3-phosphocholine (SPPC) has also been reported in the range of 7.3-8.3 kcal/mole (Stumpel et al., 1983; Chen and Sturtevant, 1981). Our ΔH values for pre- and main transition of PC-d_{31} are 1.5 and 8.8 kcal/mole, respectively, which are in a good agreement with the above reported values. The main gel to liquid crystalline phase transition is a chain melting transition, and the transition enthalpy depends on the number of gauche conformations and the distance between hydrocarbon chains in the gel phase. The incorporation of phytanic acid or phytol increases the number of gauche conformations, which is supported by our 2H NMR results (see discussion of 2H NMR spectral moments). The monolayer surface areas of phytanic acid and phytol are 61 Å2 and 55 Å2 per molecule, respectively (Gaines, 1966), while the areas of one hydrocarbon chain of DPPC in the liquid crystalline and in gel phase are only 23.5 Å2 and 19.5 Å2, respectively (Ruocco and Shipley, 1982). Obviously, the branched chain compounds are too large to fit into the lattice arrangement of phospholipid acyl chain packing. ΔH decreases as concentration of phytanic acid increases, which implies that phytanic acid incorporated into PC-d_{31} not only acts as a defect in the gel phase structure, but also destroys the hexagonal packing arrangement. A higher concentration of phytol is necessary to achieve the same effect, as shown in Figure 12b, which is consistent with the fact of the smaller surface area of phytol than phytanic acid.
Table II: The Cooperative Unit for the Main Transition of PC-\textsubscript{d_31} in the Presence of Branched Chain Compounds

<table>
<thead>
<tr>
<th>Phytanic acid in PC-\textsubscript{d_31} (mol%)</th>
<th>T_m (°C)</th>
<th>$\Delta t_{1/2}$ (°C)</th>
<th>CU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.4</td>
<td>1.7</td>
<td>46</td>
</tr>
<tr>
<td>1</td>
<td>40.2</td>
<td>1.7</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>38.5</td>
<td>2.7</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>36.5</td>
<td>5.5</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>36.5</td>
<td>8.0</td>
<td>11</td>
</tr>
</tbody>
</table>

Phytol in PC-\textsubscript{d_31}

1	40.1	1.8	44
5	37.8	3.2	23
10	37.1	5.4	14
20	37.1	7.8	11

The DSC data may be described in terms of the cooperative unit. The cooperative unit (in molecules), CU, equals $\Delta H_{\text{fg}}/\Delta H_{\text{cal}}$, where $\Delta H_{\text{fg}} \approx 6.9 T_m^2 / \Delta t_{1/2}$. ΔH_{fg} is the standard enthalpy change in a two-state phase change (Mabrey and Sturtevant, 1978). CU is a measure of the degree of intermolecular cooperation between phospholipid molecules in a bilayer. Since the CU value is very sensitive to the
presence of impurities and the measurement of CU is also limited by an instrument, the CU values which we measured may not be comparable with the values reported by others. The comparison within this study, however, is still valuable. Table II lists the results of our calculations. The trend of the CU values indicates a monotonic reduction in intermolecular interactions of phospholipid by phytanic acid and phytol. As shown in Table I, the enthalpy of the pretransition decreases rapidly with increasing concentration of branched chain compounds, the cooperative property of the pretransition is more affected by the branched chain compounds than that of main transition.
2. Deuterium nuclear magnetic resonance

A. Results

Representative 2H NMR spectra for 50 wt% multilamellar dispersions (in DDW) of PC-\(d_{31}\), 20 mol\% phytol:PC-\(d_{31}\) and 20 mol\% phytanic acid:PC-\(d_{31}\) were recorded as a function of temperature, as shown in Figure 13. Table III lists the quadrupolar splittings (Δv_q) for the three samples at all temperatures studied.

At \(-5^\circ C\), the spectrum for PC-\(d_{31}\) (Figure 13a) has a broad component with edges at ± 63 kHz and a central component of high intensity with $\Delta v_q \approx 17$ kHz (Table III). The broad component is characteristic of C^2H_2 groups of which the lineshape provides evidence that a large fraction of the chains are static on the 2H NMR time scale, while the narrow component corresponds to the C^2H_3 moiety undergoing significant motion. At $20^\circ C$, a gel-state spectrum is obtained for PC-\(d_{31}\) (Figure 13b) which is characterized by decreased intensity of the ± 63 kHz edge and a monotonic increase in intensity toward the narrow component. Such a spectrum is not a simple powder pattern and straightforward analysis of this type of spectrum is not possible (Davis, 1983). The spectra for PC-\(d_{31}\) show the same overall gel state pattern from 20 to $37^\circ C$ with an abrupt change to liquid crystalline state spectrum occurring at
Figure 13: Temperature dependent 2H NMR spectra of multilamellar dispersions of
(a-f) PC-d$_{31}$
(g-l) 20 mol% phytanic acid:PC-d$_{31}$
(m-r) 20 mol% phytol:PC-d$_{31}$.

Spectral parameters: pulse width = 6.5 μs (flip angle = 90°); τ, the interval between pulses in quadrupolar echo sequences, = 75 μs; τ, the delay between echo sequence, = 1 s; sweep width = ±250 kHz; data size = 2K; line broadening = 200 Hz, number of acquisitions = (a,i,q)2000, (j,k,l)500, (m,r)1500, others,1000.
Table III: Quadrupolar Splitting (kHz) of 2H NMR Powder Patterns of PC-d_{31} Multilamellar Dispersions in the Presence of Branched Chain Compounds

<table>
<thead>
<tr>
<th>PC-d_{31}</th>
<th>20 mol% Phytanic acid:PC-d_{31}</th>
<th>20 mol% Phytol:PC-d_{31}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(\degree C)$</td>
<td>Narrow a Broad b component</td>
<td>$T(\degree C)$ Narrow a Broad b component</td>
</tr>
<tr>
<td>-5</td>
<td>17.0</td>
<td>126</td>
</tr>
<tr>
<td>20</td>
<td>13.5</td>
<td>125</td>
</tr>
<tr>
<td>24</td>
<td>13.4</td>
<td>125</td>
</tr>
<tr>
<td>27.5</td>
<td>13.2</td>
<td>124</td>
</tr>
<tr>
<td>30</td>
<td>8.5,13.2</td>
<td>124</td>
</tr>
<tr>
<td>32.5</td>
<td>8.0,12.6</td>
<td>122</td>
</tr>
<tr>
<td>35</td>
<td>7.9,12.6</td>
<td>122</td>
</tr>
<tr>
<td>36</td>
<td>7.9,12.2</td>
<td>122</td>
</tr>
<tr>
<td>37</td>
<td>7.7,12.1</td>
<td>120</td>
</tr>
<tr>
<td>38</td>
<td>3.8</td>
<td>120</td>
</tr>
<tr>
<td>39</td>
<td>3.5</td>
<td>29.6</td>
</tr>
<tr>
<td>40</td>
<td>3.3</td>
<td>28.5</td>
</tr>
<tr>
<td>42</td>
<td>2.9</td>
<td>27.5</td>
</tr>
<tr>
<td>45</td>
<td>2.5</td>
<td>25.8</td>
</tr>
<tr>
<td>50</td>
<td>2.3</td>
<td>24.8</td>
</tr>
<tr>
<td>55</td>
<td>2.0</td>
<td>23.9</td>
</tr>
</tbody>
</table>

a measured from the separation of the top of the peaks.

b measured from the edge of the broad component.
38-39°C (Figure 14). Above 39°C an axially symmetric powder pattern is observed as the characteristic of PC-d_{31} in the liquid crystalline phase (Figure 13f). The liquid crystalline phase spectrum possesses well-defined sharp edges ($\Delta v_q = 28$ kHz) associated with a plateau in the variation of the order parameter, S_{CD}, with the deuterium position along the phospholipid acyl chain.

In the presence of 20 mol% phytol or phytanic acid the gel spectra occur at a much lower temperature, -5°C, than for PC-d_{31} alone (Figure 13g,m). In addition, inside the inner doublet (≈ 17 kHz) there is evidence, more pronounced with phytanic acid, of a second doublet, splitting $\approx 8-10$ kHz. The equivalent situation for PC-d_{31} alone does not occur until ≈ 30°C (Figure 13d). The behavior of PC-d_{31} dispersions containing 20 mol% branched chain compounds is distinctly different from PC-d_{31} dispersions over the temperature range 20-30°C. At 20°C (Figure 13h,n) a gel-state spectrum is still observed but with significantly reduced intensity of the sloping, featureless component seen for PC-d_{31}. The lineshape of 2H NMR spectra for 20 mol% phytol (or phytanic acid) depends on the delay time τ of the quadrupolar echo pulse sequence at 20-24°C. Figure 15 illustrates such a lineshape change for 20 mol% phytanic acid:PC-d_{31}. The spectrum of $\tau = 75$ μs, which is the same as Figure 13h, has a much lower intensity for the broad component than that of $\tau = 20$ μs.
Figure 14: 2H NMR spectra of multilamellar liposomes of PC-d_{31} at temperatures near the gel to liquid crystalline phase transition.

Spectral parameters are the same as in Figure 13 except that the number of acquisition is 1000.
Figure 15: 1H NMR spectra of 20 mol% phytanic acid: PC-d$_{31}$ at 20°C with different τ values.

Spectral parameters are same as in Figure 13 except for the number of acquisition: 500 ($\tau=20\mu$s) and 1000 (others).
\(^1\text{H}\) NMR spectra for 20 mol% phytol (or phytanic acid):PC-\(d_{31}\) do not show an abrupt change from a gel state spectrum to a liquid crystalline spectrum. Instead, a number of gradual temperature dependent changes are exhibited. The inner \(\text{CH}_3\) doublet dominates and narrows, the gel features and ±63 kHz edge gradually disappear and a new broad feature appears \(\Delta v_0\approx 46-48\) kHz. The significant reduction in the intensity of the broadest components compared with PC-\(d_{31}\) is attributed to \(T_1\) spectral distortion (see Discussion). Over the temperature range of 20-30°C the narrow doublet splitting for 20 mol% phytanic acid:PC-\(d_{31}\) is always less than for 20 mol% phytol:PC-\(d_{31}\) at any given temperature (Table III). As temperature increases further, the characteristic liquid crystalline spectrum appears (Figure 13k,l) for the samples containing branched chain compounds but at lower temperatures than that for PC-\(d_{31}\) alone.

The temperature-dependent \(^1\text{H}\) NMR spectra of 5 mol% phytol (or phytanic acid):PC-\(d_{31}\), represented in Figure 16, also show a gradual change from a gel state to a liquid crystalline state but over a narrower temperature range than that for 20 mol% branched chain compound.

Spectral moment analysis gives a more quantitative interpretation. The first moments \(M_1\) calculated from the \(^1\text{H}\) NMR spectra for PC-\(d_{31}\), 5 mol% phytanic acid:PC-\(d_{31}\) and 20 mol% phytanic acid:PC-\(d_{31}\) dispersions are plotted versus temperature.
Figure 16: Temperature dependent 2H NMR spectra of multilamellar dispersions of 5 mol% phytanic acid:PC-d$_{31}$(a-d) and 5 mol% phytol:PC-d$_{31}$(e-h).

Spectral parameters are the same as in Figure 13 except for number of acquisitions = (e,f)1800, others 1500.
in Figure 17. In the phase transition region the first moment depends on the delay time \(\tau \) between the two 90° pulses of the quadrupolar echo pulse sequence. The values plotted in Figure 17 were obtained by extrapolation to zero delay of \(M_1 \) measured as a function of \(\tau \). Figure 18 shows the extrapolation of \(M_1 \) for 20 mol% phytanic acid:PC-d\(_{31}\) at different temperatures. The uncertainty of the data is approximately 1% except in the transition temperature region where the uncertainty is approximately 5%.

Figure 17 shows that, for PC-d\(_{31}\) the first moment \(M_1 \) drops very rapidly from a gel to a liquid crystalline value at the main transition temperature over a range of approximately 1.5°C. Also seen on the \(M_1 \) plot is an inflection point at 30.5°C which reflects the pre-transition of PC-d\(_{31}\). The \(M_1 \) transition range \((T_1-T_3)\) increases with increasing phytanic acid concentration: 34-38°C for 5 mol% phytanic acid:PC-d\(_{31}\) and 28-39°C for 20 mol% phytanic acid:PC-d\(_{31}\). Upon addition of phytanic acid the pretransition disappears.

A plot of \(M_1 \) versus temperature for 5 and 20 mol% phytol: PC-d\(_{31}\) (Figure 19) shows an almost identical observation to that for phytanic acid. The only significant difference appears at 20 mol% concentration at temperature range less than 25°C, in which \(M_1 \) for phytol is greater than one for phytanic acid.
Figure 17: Variation of the first moment (M_1) with temperature for the 2H NMR spectra of (•) PC-d$_{31}$, (▲) PC-d$_{31}$ + 5 mol% phytanic acid and (○) PC-d$_{31}$ + 20 mol% phytanic acid.
Figure 18: The extrapolation plot of M_1 as a function of pulse decay, τ for dispersions of PC-d_{31} containing 20 mol% of phytanic acid.
Figure 19: Variation of the first moment (M_1) with temperature for the 2H NMR spectra of (•) PC-d$_{31}$, (○) PC-d$_{31}$ + 5 mol% phytol and (○) PC-d$_{31}$ + 20 mol% phytol.
The 2H NMR spectra of the liquid crystalline phase give information about the motionally averaged orientation of a C-2H bond with respect to the normal to the bilayer plane. The orientational order parameter for the C-2H along the entire sn-2 acyl chain can be deduced from a single spectrum of PC-d$_{31}$. Using a depaking program (Sternin et al., 1983) "aligned" spectra with enhanced resolution were obtained from the powder pattern spectra. The depaked spectra for PC-d$_{31}$, 20 mol% phytol:PC-d$_{31}$ and 20 mol% phytanic acid:PC-d$_{31}$ dispersions at 50°C are compared in Figure 20.

The depaked spectrum for PC-d$_{31}$ (Figure 20a) contains five well-resolved pairs of peaks plus a broad, composite pair of outermost peaks possessing two shoulders on their inner side. The depaked spectrum of PC-d$_{31}$ with incorporation of 20 mol% phytol (Figure 20b) is slightly different from PC-d$_{31}$ alone. The inner peaks are better resolved than those for the latter. Also the broad outermost pair has a larger quadrupolar splitting, and the inner shoulders have grown up further. The depaked spectrum for 20 mol% phytanic acid:PC-d$_{31}$ (Figure 20c) shows seven well-resolved doublets and the broad composite pair of outermost peaks are resolved into two pairs, indicating a longer T$_{2e}$. The peak assignments of the sn-2-[2H$_{31}$]palmitoyl segments are based upon the assumption that quadrupolar splittings decrease monotonically towards the terminal methyl group except at the 2-position (Pauls et al.,
Figure 20: The depaked 2H NMR spectra at 50°C of multilamellar dispersions of
(a) PC-d$_{31}$,
(b) 20 mol% phytol:PC-d$_{31}$,
(c) 20 mol% phytanic acid:PC-d$_{31}$.

Spectral parameters: pulse width = 6.5 µs (flip angle = 90°); τ, the interval between pulses in quadrupolar echo sequence, = 75 µs; t, the delay between echo sequences, = 1.5 s; sweep width = (a,c)±50 kHz, (b)±100 kHz; data size = 2K; line broadening = 50 Hz, number of acquisitions = (a)6000, (b)2000, (c) 7000.

Six iterations were performed in each depaking.
The respective assignments for the two broad composite pairs in Figure 20c need further study of selectively deuterated PC. The splitting of the broad composite pair indicates that the incorporated phytanic acid affects the various methylene segments in the plateau region differently. Spectra for multilamellar dispersions of PC-d$_{31}$ containing 5 mol% of branched chain compounds at 50°C were depaked as well, and show similar features to the 20 mol% ones. The quadruple splittings, measured from the depaked spectra, are listed in Table IV.

Profiles of order parameter S_{ϕ} versus phospholipid acyl chain position calculated from the depaked spectra in Figure 20 are plotted in Figure 21. The vertical bar in the plateau region is used to denote the uncertainty in calculating these order parameters and is due to the width of the outermost composite peak in the depaked spectra. The shape of the profile is essentially unaffected by the incorporation of 20 mol% of branched chain compounds. The effect of branched chain compounds appears to be an overall higher degree of ordering along the lipid chain. The mean order parameters $\langle S_{\phi} \rangle$, calculated from M_1 using equation (36) (Davis, 1979) are listed in Table V.

$$M_1 = \frac{4\pi}{3\sqrt{3}} \langle \Delta v_\phi \rangle = \frac{\pi e^2 qQ}{\sqrt{3} \ h} \langle S_{\phi} \rangle$$

(36)
Table IV: Quadrupolar Splittings for Segments of Aqueous Dispersions of PC-d$_{31}$ and PC-d$_{31}$ + Branched Chain Compounds at 50°C.

<table>
<thead>
<tr>
<th>Acyl Chain Position</th>
<th>PC-d$_{31}$</th>
<th>5 mol%</th>
<th>20 mol%</th>
<th>Phytanic acid in PC-d$_{31}$</th>
<th>5 mol%</th>
<th>20 mol%</th>
<th>Phytol in PC-d$_{31}$</th>
<th>5 mol%</th>
<th>20 mol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-2</td>
<td>11.80</td>
<td>11.94</td>
<td>11.86</td>
<td>11.70</td>
<td>12.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.00</td>
<td>18.40</td>
<td>18.52</td>
<td>17.84</td>
<td>19.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-3 to 9</td>
<td>25.52</td>
<td>27.40</td>
<td>28.90</td>
<td>25.48</td>
<td>27.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.20</td>
<td>27.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-10</td>
<td>23.44</td>
<td>23.70</td>
<td>24.62</td>
<td>23.24</td>
<td>25.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-11</td>
<td>22.10</td>
<td>22.38</td>
<td>23.20</td>
<td>22.16</td>
<td>24.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-12</td>
<td>19.64</td>
<td>20.14</td>
<td>20.66</td>
<td>19.80</td>
<td>21.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-13</td>
<td>18.00</td>
<td>18.40</td>
<td>18.52</td>
<td>17.84</td>
<td>19.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-14</td>
<td>14.84</td>
<td>15.22</td>
<td>15.22</td>
<td>14.88</td>
<td>16.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-15</td>
<td>11.80</td>
<td>11.94</td>
<td>11.86</td>
<td>11.70</td>
<td>12.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-16</td>
<td>2.76</td>
<td>2.80</td>
<td>2.80</td>
<td>2.76</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Quadrupole powder pattern splitting is a half of the splitting measured from the depaked spectra.
Figure 21: Plot of order parameter (S_{CD}) at 50°C versus carbon position along the phospholipid sn-2 chain:
(●) PC-d_{31}, (□) PC-d_{31} + 20 mol% phytanic acid, (○) PC-d_{31} + 20 mol% phytol.
Table V: First Moment M_1 and Mean Order Parameter $<S_{CD}>$ for PC-d$_{31}$ Incorporated with Branched Chain Compounds at 50°C.

<table>
<thead>
<tr>
<th>Sample</th>
<th>M_1 (104s$^{-1}$)</th>
<th>$<S_{CD}>$</th>
<th>M_1 (104s$^{-1}$)</th>
<th>$<S_{CD}>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-d$_{31}$</td>
<td>4.22</td>
<td>0.138</td>
<td>4.38</td>
<td>0.144</td>
</tr>
<tr>
<td>5 mol% Phytanic Acid:PC-d$_{31}$</td>
<td>4.51</td>
<td>0.148</td>
<td>4.53</td>
<td>0.149</td>
</tr>
<tr>
<td>20 mol% Phytanic Acid:PC-d$_{31}$</td>
<td>4.62</td>
<td>0.152</td>
<td>4.78</td>
<td>0.157</td>
</tr>
<tr>
<td>5 mol% Phytol:PC-d$_{31}$</td>
<td>4.48</td>
<td>0.147</td>
<td>4.56</td>
<td>0.150</td>
</tr>
<tr>
<td>20 mol% Phytol:PC-d$_{31}$</td>
<td>4.73</td>
<td>0.155</td>
<td>4.80</td>
<td>0.157</td>
</tr>
</tbody>
</table>

*a From the powder pattern relevant to Figure 20.

*b From the values for extrapolation to $\tau = 0$.

The increased mean order parameters, i.e., $\frac{<S_{CD}>-<S_{CD}>(PC)}{<S_{CD}>(PC)}$, of the incorporation of phytol and phytanic acid are compared with those of the incorporation of decanol, palmitic acid, α-tocopherol and cholesterol in Figure 22.
Figure 22: Comparison of the increased order parameter of PC-d_{31} for the various incorporated compounds: (o) phytol, (□) phytanic acid, (¶) decanol (Thewalt et al., 1985), (Δ) α-tocopherol (Wassall et al., 1986), (·) palmitic acid (Pauls et al., 1983), (•) cholesterol (Thewalt and Cushley, 1987).
The spin-lattice relaxation time, T_1, was measured in the liquid crystalline phase for aqueous dispersions of PC-d$_{33}$ and PC-d$_{31}$ containing 20 mol% phytanic acid or phytol. Examination of the data of T_1 in Table VI reveals that T_1 increases with increasing temperature and with incorporation of either phytanic acid or phytol. At 45°C each of the branched chain compounds increases T_1 of the terminal methyl group by ≈11%. In the plateau region, phytol and phytanic acid increase T_1 by 19% and 5%, respectively.

T_2, the time constant for the decay of quadrupolar echo, was measured as a function of temperature. Figure 23 presents semi-log plots of quadrupolar echo versus 2τ at various temperatures for 5 mol% phytol:PC-d$_{33}$. Figures 24 and 25 are the plots of T_2 versus temperature for PC-d$_{31}$ incorporated with phytanic acid and phytol, respectively. T_2 passes through a minimum value as temperature increases. The minimum T_2 values (corresponding temperature in parenthesis) are 115 µs (36°C), 116 µs (33°C), and 70 µs (24°C) for PC-d$_{31}$, 5 mol% phytanic acid:PC-d$_{31}$ and 20 mol% phytanic acid:PC-d$_{31}$, respectively. The corresponding T_2 minima for phytol-containing dispersions are: 116 µs at 31±1°C for 5 mol% phytol and 62 µs at 22±2°C for 20 mol% phytol.
Table VI: Spin-lattice Relaxation Times for Multilamellar Dispersions of PC-\textsubscript{d\textsubscript{31}} and PC-\textsubscript{d\textsubscript{31}} Containing Branched Chain Compounds.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temp (\textdegree C)</th>
<th>(T_1f \text{ (ms)})</th>
<th>(C^2\text{H}_2i)</th>
<th>(C^2\text{H}_3b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>plateau region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC-\textsubscript{d\textsubscript{31}}</td>
<td>45</td>
<td>28.1±0.2</td>
<td>309±5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>30.3±0.2</td>
<td>343±11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>35.6±0.2</td>
<td>367±12</td>
<td></td>
</tr>
<tr>
<td>20 mol% Phytol:PC-\textsubscript{d\textsubscript{31}}</td>
<td>45</td>
<td>33.5±0.4</td>
<td>342±10</td>
<td></td>
</tr>
<tr>
<td>20 mol% Phytanic acid:PC-\textsubscript{d\textsubscript{31}}</td>
<td>45</td>
<td>29.6±0.2</td>
<td>346±8</td>
<td></td>
</tr>
<tr>
<td>DPPC</td>
<td>45</td>
<td>26.4(C-4)c</td>
<td>275d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32.5(C-8)c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

f \(T_1\) values and the standard deviation were obtained by using a weighted least squares fit routine, samples of fitting can be found in Figure 43.

i \(T_1\) was measured from the inversion recovery of the outmost composite peak of the powder pattern. The relaxation delay values were 2, 5, 10, 20, 30, 40, 50, 60 and 1500 ms. The pulse repetition delay time was 1 s.

b The relaxation delay were 60, 100, 150, 200, 250 and 1500 ms. The pulse repetition delay time was 2 s.

c from selectively deuterated DPPC, at 34.4 MHz (Brown and Davis, 1981)

d at 34.4 MHz (Davis, 1979)
Figure 23: Semi-log plot of the quadrupolar echo versus 2τ for 5 mol% phytol:PC-d$_{31}$ at different temperatures.
Figure 24: Plot of T_2e versus temperature for (•) PC-d$_{31}$ (●) 5 mol% phytanic acid:PC-d$_{31}$ and (○) 20 mol% phytanic acid:PC-d$_{31}$. In most cases, τ values of 40-125 μs were employed. For 20 mol% phytanic acid:PC-d$_{31}$ τ values of 20-70 μs were employed for temperatures $T \leq T_s$.

\[\text{Temperature (°C)} \]

\[T_2e (\mu s) \]
Figure 25: Plot of T_{2e} versus temperature for (•) PC-d$_{31}$ (•) 5 mol% phytol:PC-d$_{31}$ and (o) 20 mol% phytol:PC-d$_{31}$. In most cases, τ values of 40-125 μs were employed. For 20 mol% phytol:PC-d$_{31}$ τ values of 20-70 μs were employed for temperatures $T \leq T_s$.
B. Discussion

For paraffinic C-²H bonds the static quadrupolar coupling constant e^2qQ/h equals 168 kHz (Burnett and Muller, 1971; Davis and Jeffrey, 1977). The quadrupolar splitting Δv_q for such static C-²H bonds is 126 kHz. Even in a solid the rapid rotation of C²H₃ group about the symmetry axis exists, this motion reduces the coupling constant to an effective value of $<e^2qQ/h> = 56$ kHz (Meier et al., 1983). The quadrupolar splitting for C-²H bonds in methyl group is 42 kHz. Thus, a powder pattern for solid PC-d₃₁ is predicted to have a broad component, $\Delta v_q = 126$ kHz, due to the C²H₃ segments plus a narrow component with $\Delta v_q = 42$ kHz, due to the C²H₃ group. The ratio of broad to narrow signal is expected to be 9:1, the ratio of (C²H₃)₁₁/C²H₃. The broad component in Figure 13, however, is clearly too small. A possible explanation involves distortion of the spectrum at large $\pm \omega$ from the center of the powder pattern due to the duration of the $\pi/2$ pulse (Bloom et al., 1980). The intensity of a quadrupolar echo is given by $F(\omega) = [\sin(\Theta k)/k]^3$ where Θ = flip angle and $k = [1 + (\omega^2/4\omega_p^2)]^{1/2}$, where ω = frequency from the center of the powder pattern and $\omega_p = \Theta/t_p$ with $t_p = \pi/2$ pulse width. For $t_p = 6.5$ µs, the intensity of the ±63 kHz edges gives $F(\omega) = 0.33$, i.e., the intensity is only about 1/3 of the intensity which would be obtained using a narrow ($t_p \leq 2$ µs) pulse width.
At -5°C the $^{2}H_{3}$ splitting for PC-d_{31} (17 kHz) is much less than the predicted value (42 kHz) for a static $^{2}H_{3}$ group, indicating that the $^{2}H_{3}$ group undergoes significant motion while a great amount of the methylenes are static. On the other hand, the typical gel-phase spectrum and a second, smaller methyl splitting (~8 kHz) caused by incorporation of 20 mol% phytanic acid indicates the onset of a new motion at -5°C not seen with pure PC-d_{31} until ~30°C. With incorporation of 20 mol% phytol, this new motion is suggested by the appearance of a pair of shoulders on the inner side of methyl peaks at 0°C. In all probability this motion involves $^{2}H_{3}$ segments near the terminal $^{2}H_{3}$ end of the phospholipid acyl chain caused by onset of gauche-anti isomerization of the last few $^{2}H_{2}$ segments (Huang et al., 1980; Meier et al., 1983; Westman et al., 1982) in addition to the hindered rotation about the molecular long axis. At higher temperatures more rapid rotation about the acyl chain long axis, further gauche-anti isomerization and fluctuations of the axis itself will contribute to the spectral lineshape.

The significantly reduced intensity of the sloping region in Figure 13h,i,n,o is a consequence of spectral distortion caused by shorter T_{2e} values in the presence of the branched chain compounds (see Figure 24 and 25). Figure 15 illustrates the lineshape changes due to such a distortion: as the spacing between 90° pulses in the quadrupolar echo sequence, τ, increases, the intensity of the sloping region decrease
dramatically. The intensities of the broad component measured from the spectra in Figure 15 are 64%, 47%, 23% and 10% for τ values of 20, 40, 75 and 125 ms, respectively. Figure 15 also implies that T_2^e for C^2H_2 is much shorter than that for C^2H_3. Since T_2^e was determined as the time constant of echo decay, the difference of T_2^e values for C^2H_2 and C^2H_3 were not measurable for PC-d$_{31}$. A theoretical basis for the distortion effect of short T_2^e can be found in Spiess and Sillescu (1981).

The motions of deuterated acyl chains in the liquid crystalline phase are described in terms of the spin-lattice relaxation time T_1. It has been suggested that both fast (gauche-anti isomerization) and slow (collective director fluctuation) motions may contribute to T_1 of DPPC due to the $1/\omega^{1/2}$ dependence of T_1 (Brown et al., 1983). We only consider the simplest case and assume that the rate of the fast motion can be expressed with a single correlation time τ_c. The linear plot of $\ln T_1$ versus $1000/T(4K)$ provides the activation energy, E_a. For C^2H_2 and C^2H_3 values of E_a are 5±1 and 3.7±0.3 kcal/mol, respectively. The E_a value for C^2H_3 is consistent with the average E_a value of 3.5 kcal/mol for DPPC (Brown et al., 1979). The E_a value for C^2H_2 is however in agreement with the value of 5.0-5.2 kcal/mol for positions 3 and 4 of potassium palmitate above 85°C (Davis et al., 1978). Apparently, incorporation of the branched chain compounds increases T_1, i.e., reduces the correlation time of the fast motion. This effect may be attributed to the suppression of the phase
transition temperature.

Since the phase transition temperature is reduced by the incorporation of branched chain compounds, it is reasonable to compare T_1 values at the same reduced temperature. Reduced temperature is defined as $\theta=(T-T_m)/T_m$ (Seelig and Browning, 1978). With comparison of T_1 for PC-d_{31} in the presence of 20 mol% branched chain compounds at 45°C with T_1 for PC-d_{31} alone at 50°C (see table VI), we conclude that phytol increases the rate of the fast motion of C-2H$_2$ in plateau region and has no effect in center region of bilayer; phytanic acid doesn't have any effect on the fast motion of the acyl chain of PC.

The motions of the deuterated acyl chains in PC-d_{31} are also described by the behavior of the quadrupolar echo relaxation time, i.e., T_{2e}. Pauls et al. (1985) have described that for fast reorientation of the deuteron spins T_{2e} is proportional to $1/\tau_c$, (τ_c is the correlation time for the deuteron motions), whereas, for slow motions T_{2e} is proportional to τ_c. Thus, the value of T_{2e} must pass through a minimum value at some intermediate motion, as shown in Figure 24 and 25. PC-d_{31} is shown to have a narrow valley with a rapid increase in T_{2e} through the phase transition, which then levels off in the liquid crystalline phase. The minima for PC-d_{31} incorporated with phytol (62 μs at 22°C) and phytanic acid (70 μs at 24°C) are broad and much below the PC-d_{31} minimum (115 μs at 36°C). The corresponding temperatures of the T_{2e} minima are in good agreement with the temperatures at which the M_1 values
deviate from the gel phase slope and start to drop down (Figure 17 and 19). Above the phase transition T_{β_e} for PC-d$_{31}$ becomes approximately 2-fold longer upon addition of 5, 20 mol% phytanic acid, or 5 mol% phytol. A similar observation has been found for incorporation of n-alkanol anesthetics into PC-d$_{31}$ (Thewalt et al., 1985). This T_{β_e} effect is responsible for the increased resolution in the depaked spectrum at 50°C (Figure 20c). Incorporation of 20 mol% phytol, however, does not increase PC-d$_{31}$'s T_{β_e} above the phase transition (Figure 25). This implies that in contrast to the effect of phytanic acid and small amount of phytol (5 mol%), a substantial amount of phytol does not affect the acyl chain slow motions.

The effects of branched chain compounds on the phase transition of PC-d$_{31}$ are most clearly enunciated from the variation of first moments M_1 with temperature (Figure 17 and 19). At temperatures between 10-30°C a slight decrease in M_1 is shown for PC-d$_{31}$. At the phase transition onset temperature, T_β (approximately 39°C), there is a rapid drop of M_1 from approximately 1×10^5 s$^{-1}$ to 5×10^4 s$^{-1}$. Above the completion temperature (i.e., T_λ), M_1 also slightly decreases with increasing temperature. Below the phase transition, incorporation of phytanic acid (Figure 17) progressively lowers M_1 and decreases T_β for gel to liquid crystalline melting; whereas above T_λ it increases M_1. Phytanic acid addition abolishes the pretransition while the completion
temperature remains essentially the same. The effect of progressive addition of phytol (Figure 19) is remarkably similar to phytanic acid. Meier et al. (1983) have been able to show that below the pretransition of DMPC the population of gauche conformation of chain terminal group increases as temperature increases. That M_1 of PC-d$_{31}$ decreases below pretransition temperature can be attributed to the increase of gauche conformation. The low M_1 value in the gel phase for dispersions containing branched chain compounds implies that the branched chain compounds induce an increase of gauche conformations. The most notable effect of phytol and phytanic acid on PC-d$_{31}$ is to lower the onset temperature at which liquid crystalline phase begins to emerge.

The branched-chain compounds phytol and phytanic acid have quite different effects on the phospholipid gel to liquid crystalline phase transition than do their straight-chain analogues: hexadecanol and palmitic acid. In contrast to the transition temperature lowering effects of the branched chain compounds, hexadecanol and palmitic acid elevate the transition temperature of DPPC. DSC results (Eliasz et al., 1976) have shown that a 25 mol% hexadecanol concentration raises the transition onset temperature of DPPC by 3.5°C, and broadens the half-height width of the transition to 9.2°C from 1.5°C. Similarly, ESR results (Pringle and Miller, 1979) have indicated that a 20 mol% hexadecanol concentration raises the DPPC transition temperature T_x by 2°C. In contrast, 20 mol%
phytol lowers the T_s of PC-d$_{31}$ by 10°C (measured from the M_1 plot, Figure 19) and lowers T_m by 4°C (measured from DSC, Table I).

A 20 mol% palmitic acid concentration causes a 3°C elevation of T_s, and increases the half-height width of the DSC peak from 1.5°C to 6.3°C (Eliasz et al., 1976). A 2H NMR study (Pauls et al., 1983) have shown that 20 mol% palmitic acid incorporation raises T_s of [2H$_{62}$]DPPC by 2°C and increases the transition range from 2 to 10°C. In contrast, a 20 mol% concentration of phytanic acid lowers the T_s by 10°C (measured from M_1 curve, Figure 17) and lowers T_m by 5°C (measured from DSC, Table I). Compounds which raise the phase transition temperature of phospholipids are able to intercalate between the all-anti, closely packed phospholipid acyl chains and stabilize the gel phase. Evidently, the branched-chain compounds phytol and phytanic acid cause significant gel phase disruption of the phospholipid. We propose that the isoprenoid compounds force nearest neighbor hydrocarbon chains of PC-d$_{31}$ apart in the gel phase, thus lowering the transition temperature.

The slight effects of phytol and phytanic acid on PC-d$_{31}$ organization at 50°C are shown in Figure 21. The order of the plateau region increases in the sequence PC-d$_{31}$ ($S_{CD}=0.20$) < PC-d$_{31}$/20 mol% phytol ($S_{CD}=0.22$) ≈ PC-d$_{31}$/20 mol% phytanic acid ($S_{CD}=0.22$). Phytanic acid also slightly increases the order of the segments 10-14. On the other hand, phytol increases the
order including segment 15. \(\alpha \)-Tocopherol, another branched chain compound, causes approximately twice the order increase in the plateau region and three to four times the order increase over segments 10-16 (Wassall et al., 1986). From the mean order parameters, calculated from the \(M_1 \) values (Table V column 5), we find 20 mol\% phytol or phytanic acid increase \(<S_{CD}> \) by 9\%. \(\alpha \)-Tocopherol (20 mol\%) has been shown to increase \(<S_{CD}> \) by 17\% (Wassall et al., 1986). A 20 mol\% concentration of palmitic acid has been shown to increase the order of \([^2H_{52}]DPPC\) by \(\approx 10\% \) (Pauls et al., 1983), while 5% increase of \(<S_{CD}> \) by 25 mol\% decanol incorporation has been observed by Thewalt et al. (1985). Phytol has a greater effect upon phospholipid order than decanol does, which may be caused by the four methyl branches or by the longer acyl chain. However, phytanic acid has the same effect upon phospholipid order as palmitic acid, in spite of containing the four methyl branches. The effect upon the last two segments is consistent with phytanic acid incorporating with the carboxyl function located at the hydrophilic region of the bilayer, while phytol and Vitamin E sit relatively lower in the bilayer, their chains penetrating deeper into the bilayer.

A word may be added about the seeming inability of phytol and phytanic acid to affect the bilayer order more than palmitic acid, in spite of their containing bulky methyl branches, while \(\alpha \)-tocopherol increases the bilayer order substantially (vide supra). \(\alpha \)-Tocopherol contains a rigid
two-ring chromanol moiety situated in the plateau region of the bilayer. Incorporation of 25 mol% cholesterol increases the mean order parameter $<S_{[\parallel]}>$ of PC-d$_{31}$ approximately 63% (Thewalt and Cushley, 1987) and cholesterol has a rigid four-ring steroid moiety in the plateau region of the bilayer. We conclude that a rigid structural element in the plateau region is the main determinant in increasing order significantly in liquid crystalline phospholipid bilayer.

Our further observations of 2H NMR study on a head group deuterated phospholipid (DPPC-d$_4$) show that the pretransition of DPPC-d$_4$ at 20 mol% incorporation of branched chain compounds can be detected by the first moment of 2H NMR spectra measurement (see Chapter V). This implies that the elimination of the pretransition is only a consequence of the broadening of the endothermal peak, while the transition of the head group motion is still perceived.
V. The Effects of Branched Chain Compounds on Head Group Deuterated Phosphatidylcholine Membranes

1. Results

Multilamellar dispersions of 40 wt% DPPC-\(d_4\) in DDW, \(\simeq 15\) wt% DPPC-\(d_4\) in DDW and in Tris buffer, \(\simeq 15\) wt% phytol(or phytanic acid)/DPPC-\(d_4\) (molar ratio 1:4) in DDW and in Tris buffer were prepared using the methods described in Chapter III. The liposome particles were examined by phase contrast microscopy. Dispersions of DPPC-\(d_4\), 20 mol% phytol:DPPC-\(d_4\) and 20 mol% phytanic acid:DPPC-\(d_4\), all in DDW, showed spherical morphology; mean diameters were measured to be: 0.7±0.3, 0.7±0.2 and 1.5±0.8 μm, respectively. Different morphology was observed for dispersions of DPPC-\(d_4\), 20 mol% phytol:DPPC-\(d_4\) and 20 mol% phytanic acid:DPPC-\(d_4\), all in Tris buffer. These particles appeared more transparent, i.e., less dense than those in DDW. Their mean diameters were 1.0±0.7, 0.4±0.1 and 1.5±0.8 μm, respectively. Of these three dispersed samples (in buffer), the one containing phytanic acid showed extremely transparent particles. The microscope photographs for 20 mol% phytanic acid:DPPC-\(d_4\) dispersed in DDW and in buffer are compared in Figure 26.

DPPC has been shown to display a calorimetric pretransition and a gel to liquid crystalline phase transition
Figure 26: Phase contrast microscope photographs for dispersions of 20 mol% phytanic acid:DPPC-d₄ (a) in DDW and (b) in Tris buffer (25 mM, pH 7.4). (magnification = 3,000X)
at approximately 35°C and 41°C, respectively (Mabrey and Sturtevant, 1976). The DSC measurement was performed on an aqueous dispersion of DPPC-d₄. Figure 27 is the DSC trace of DPPC-d₄, which shows a pre-transition onset at 34.7°C and a main gel to liquid crystalline phase transition peak at 42.1°C. The onset and completion temperature for the main transition are 41.5 and 43.7°C, respectively (half-height width 1.3°C). DSC measurements show that the phase behavior of DPPC-d₄ is identical to that of DPPC, in spite of the substitution of the four deuterons.

¹H NMR spectra of 40 wt% dispersions of DPPC-d₄ in DDW, and ~15 wt% dispersions of DPPC-d₄, DPPC-d₄ containing 20 mol% phytanic acid and DPPC-d₄ containing 20 mol% phytol in DDW or Tris buffer were measured over the temperature range 15°C to 55°C. Figure 28 presents the ¹H NMR spectra of 40 wt% DPPC-d₄ dispersions in DDW at various temperatures. At temperatures below the pretransition (gel phase), the ¹H NMR spectrum is a smooth curved broad band, whose width decreases from 9.7 kHz to 8.6 kHz (measured at 80% intensity) as the temperature increases from 20°C to 30°C. At the pretransition temperature (31°C) the band shows a square feature, i.e., a plateau of 6 kHz of the width on the top region of the spectrum. With temperature further increasing the intensity at the edges of the plateau becomes higher than that at the center. At 33-35°C region a pair of broad peaks were observed. The splitting of these peaks (measured from 80% intensity) is about 7.2 kHz.
Figure 27: Differential scanning calorimetry trace of multilamellar dispersions of 40 wt% DPPC-d$_4$.
Scanning rate 5°C/min over the range -30 to 60°C.
throughout the temperatures between pre- and main transition. Also, in this temperature range, the intensity at the center and the wings decreases with increasing temperature. The width for each peak was measured to be about 2.4 kHz at 40°C. The total width of low field to high field shoulder decreases from about 30 kHz to about 20 kHz, as temperature increases from 31 to 40°C. Above the main transition temperature, the spectrum is a typical powder pattern. As temperature increases further the inner splitting narrows, providing better resolution.

The 2H NMR spectra of DPPC-d$_4$ dispersions containing 20 mol% of branched chain compound were measured as a function of temperature (Figure 29). At 14.5°C the spectra for DPPC-d$_4$ incorporated with phytol or phytanic acid show an broad featureless band (width = 6.1 kHz, see Figure 29a,f), which is narrower than DPPC-d$_4$ without incorporation (Figure 28, 25°C). As temperature increases, the broad band narrows, and a broad splitting develops (Figure 29c,h,i). This observation is very similar to DPPC-d$_4$ in the temperature between pre- and main transitions (Figure 28: 35, 40°C). At 34°C the spectrum for 20 mol% phytol:DPPC-d$_4$ (Figure 29j) shows an axially symmetric powder pattern indicating that the liquid crystalline phase has been reached, while the spectrum for 20 mol% phytanic acid:DPPC-d$_4$ (Figure 29e) shows a distorted powder pattern feature (vide infra). As temperature increases further, the inner splitting narrows and the outer splitting remains unchanged, which is the same as DPPC-d$_4$ without incorporation.
Figure 28: \(^2\)H NMR spectra of 40 wt\% multilamellar dispersions of DPPC-d\(_4\) at different temperature. Spectral parameters: pulse width = 6.5 \(\mu\)s (flip angle = 90\(^\circ\)); \(\tau\), the interval between pulses in quadrupolar echo sequence, = 50 \(\mu\)s; \(t\), the delay between echo sequences, = 400 ms; sweep width = ±50 kHz; data size = 4K in complex; line broadening = 25 Hz; number of acquisitions = 30,000(35\(^\circ\)C), 25,000(45\(^\circ\)C), 20,000(\text{others}).
Figure 29: 2H NMR spectra of 15 wt% multilamellar dispersions of 20 mol% phytanic acid:DPPC-d$_4$ (a–e) and 20 mol% phytol:DPPC-d$_4$ (f–j) in Tris buffer at different temperature.

Spectral parameters: pulse width = 7.5 µs (flip angle = 90°); τ, the interval between pulses in quadrupolar echo sequence, = 60 µs; t, the delay between echo sequences, = 200 ms; sweep width = ±50 kHz; data size = 4K in complex; line broadening = 50 Hz; number of acquisitions = 30,000.
Representative 1H NMR spectra of DPPC-d$_4$ with and without incorporated branched chain compounds at 45°C are shown in Figure 30. Spectrum a) in Figure 30 illustrates the characteristic powder spectrum for the choline deuteromethylene groups of DPPC-d$_4$. The outer doublet, $\Delta v_q = 6.0$ kHz, is assigned to the $\alpha-\text{C}_2^2\text{H}_4$ segment while the inner doublet, $\Delta v_q = 4.9$ kHz, is assigned to the $\beta-\text{C}_2^2\text{H}_4$ (Gally et al., 1975). The spectrum of Tris buffer dispersion of DPPC-d$_4$ containing 20 mol% phytanic acid (Figure 30d) is a unique one. The intensity of the shoulders is essentially eliminated, the intensity of the region at 0 kHz is decreased markedly, and the peaks are narrowed revealing a doublet structure for the outer pair (Figure 30d, inset). DPPC-d$_4$ containing 20 mol% phytol (Figure 30e,f) shows decreased quadrupolar splittings due to incorporation of the branched chain compound, but the powder pattern is undistorted. The splittings are more clearly seen in Figure 31 where we present the depaked spectra of DPPC-d$_4$ with and without branched chain compounds added, at 45°C. Table VII lists the quadrupolar splitting of DPPC-d$_4$ multilamellar dispersions in the liquid crystalline phase in the presence and absence of incorporated branched chain compounds. Phytol decreases both the α- and $\beta-\text{C}_2^2\text{H}_4$ splittings while phytanic acid decreases the splitting of $\beta-\text{C}_2^2\text{H}_4$ but increases that of $\alpha-\text{C}_2^2\text{H}_4$.
Figure 30: 1H NMR spectra of 15 wt% multilamellar dispersions at 45°C of
(a) DPPC-d$_4$ in DDW,
(b) DPPC-d$_4$ in Tris buffer, pH 7.4,
(c) 20 mol% phytanic acid:DPPC-d$_4$ in DDW,
(d) 20 mol% phytanic acid:DPPC-d$_4$ in Tris buffer,
(e) 20 mol% phytol:DPPC-d$_4$ in DDW,
(f) 20 mol% phytol:DPPC-d$_4$ in Tris buffer.

Spectral parameters: pulse width = 7.5 μs (flip angle = 90°); τ = 100 μs; t, the delay between echo sequences, = 200 ms; sweep width = ±50 kHz; data size = 4K in complex; line broadening = 25 Hz; number of acquisitions = 30,000 (a,c,d,f), 25,000 (b), 40,000 (e).

The inset in (c) and (d) is an expansion of the peak for the C$_2$-segment without line broadening. Figures g-i are the first quarter of the free induction decay patterns for b,d and f, respectively.
Figure 31: Depaked 2H NMR spectra of 15 wt% multilamellar dispersions at 45°C of
(a) DPPC-d$_4$ in DDW,
(b) DPPC-d$_4$ in Tris buffer, pH 7.4,
(c) 20 mol% phytanic acid:DPPC-d$_4$ in DDW,
(d) 20 mol% phytanic acid:DPPC-d$_4$ in Tris buffer,
(e) 20 mol% phytol:DPPC-d$_4$ in DDW,
(f) 20 mol% phytol:DPPC-d$_4$ in Tris buffer.

Spectral parameters are same as in Figure 30. Six iterations were performed in each depaking.
Table VII: Quadrupolar Splitting of DPPC-d$_4$ Multilamellar Dispersions Containing Branched Chain Compounds

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Temperature (°C)</th>
<th>Quadrupolar Splitting (kHz)</th>
<th>α-C2H$_2$</th>
<th>β-C2H$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DDW Buffer</td>
<td>DDW Buffer</td>
<td>DDW Buffer</td>
</tr>
<tr>
<td>DPPC-d$_4$</td>
<td>45</td>
<td>6.0</td>
<td>6.3</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>6.0</td>
<td>6.3</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>6.1</td>
<td>6.4</td>
<td>4.4</td>
</tr>
<tr>
<td>20 mol% Phytol:DPPC-d$_4$</td>
<td>40</td>
<td>5.7</td>
<td>6.1</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>5.7</td>
<td>6.1</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>5.7</td>
<td>6.2</td>
<td>3.8</td>
</tr>
<tr>
<td>20 mol% Phytanic acid:DPPC-d$_4$</td>
<td>40</td>
<td>6.5,6.0</td>
<td>7.5,7.1</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>6.6,6.1</td>
<td>7.5,7.0</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>6.5,6.0</td>
<td>7.5,7.0</td>
<td>2.9</td>
</tr>
</tbody>
</table>

a Measured from depaked spectra, accuracy = ±0.1 kHz. Quadrupolar powder pattern splittings are reported, which are a half of the splittings from the depaked spectra.

b 25 mM Tris buffer in DDW, pH 7.4.
First (M_1) and second (M_2) moments of the temperature-dependent 2H NMR spectra were calculated according to eq. 22. The results of the calculations are presented in Figure 32. Moment analysis of the spectra is quite straightforward in 2H NMR. M_1 (M_2) gives the mean (mean square) quadrupolar splitting of deuterium, which is sensitive to the degree and type of orientational averaging occurring at the 2H site. Unlike PC-d_{11}, the moments of 2H NMR spectra of DPPC-d_4 do not show a τ dependency. The data of M_1 and M_2 in Figure 32 are the averages of four to five different spectra determined at different τ values (60-150 μs). The standard deviations are about 2% and 6% for M_1 and M_2, respectively. In Figure 32 there are discontinuities in both M_1 and M_2 curves of DPPC-d_4 at 310C and 420C, corresponding to the pretransition and main gel to liquid-crystalline phase transition. Below the pretransition both M_1 and M_2 decrease as temperature increases. For temperatures between the pre- and main transitions there is an abrupt decrease in both M_1 and M_2, and above the main transition both M_1 and M_2 decrease slightly.

31P NMR studies were conducted in order to verify the unique character of the 2H NMR spectrum of phytanic acid:DPPC-d_4 (Figure 30d). Figure 33 shows the 31P NMR spectra for DPPC-d_4 and 20 mol% phytanic acid:DPPC-d_4 dispersions in Tris buffer. The spectra were taken in the following order: at 150C (Figure 33a,d), 450C (Figure 33b,e), 150C (Figure 33c,f). The spectra for DPPC-d_4 show a powder pattern in both gel and liquid-
Figure 32: Variation of the first moment, M_1, and second moment, M_2, with temperature for the 1H NMR spectra of (•,Δ) DPPC-d$_4$, (□) 20 mol% phytanic acid:DPPC-d$_4$, and (○) 20 mol% phytol:DPPC-d$_4$, all in Tris buffer, pH 7.4.
Figure 33: 31P NMR spectra of 15 wt% multilamellar dispersions of: (a-c) DPPC-d$_4$, and (d-f) 20 mol% phytanic acid:DPPC-d$_4$, all in Tris buffer, pH 7.4. Spectrum (g) is the difference of (f) and (d).

Spectral parameters: one pulse experiment, no phase cycling; pulse width = 6.5 µs (flip angle = 60°); delay between pulses = 3 s; delay before acquisition = 10 µs; sweep width = 50 kHz; data size = 4K in complex; line broadening = 25 Hz; number of acquisitions = 2,000 (e), 3,000 (others). The chemical shift is given in ppm relative to external H$_3$PO$_4$.

124
crystalline phase (Figure 33a, b). The spectra of DPPC-\(d_4\) containing phytanic acid show a powder pattern in the gel phase (Figure 33d) but a distorted powder pattern in the liquid crystalline phase (Figure 33e).

In order to clarify that the distortion of the NMR spectra is the characteristic for phytanic acid:PC dispersions in buffer prepared with the freeze-thaw method, dispersions of 20 mol% phytanic acid:PC-\(d_{31}\) and PC-\(d_{31}\) alone were prepared in four types for \(^1\)H NMR spectroscopy. For example, 20 mol% phytanic acid:PC-\(d_{31}\) was dispersed in DDW and in Tris buffer (pH 7.4), with and without the freeze-thaw method, respectively. Among these eight samples, only one, i.e., 20 mol% phytanic acid:PC-\(d_{31}\) in buffer prepared by the freeze-thaw method was observed to possess the distorted \(^1\)H NMR spectrum, as shown in Figure 34.

Spin-lattice relaxation times, \(T_1\), and spin-spin relaxation times, \(T_2\), were determined for DPPC-\(d_4\) with or without incorporated branched chain compound (≈15 wt% dispersions in Tris buffer) over the temperature range 14-55°C. The temperature dependence of \(T_1\) for three dispersion samples is plotted in Figure 35. There are two abrupt \(T_1\) changes for DPPC-\(d_4\) at the pre-(31°C) and main(42°C) phase transition temperatures, while for DPPC-\(d_4\) incorporated with phytol or phytanic acid only one inflexion can be observed at the temperature around 25°C.
Figure 34: 2H NMR spectra for multilamellar dispersions prepared with freeze-thaw method measured at 45°C: (a,b) PC-d$_{31}$, (c,d) 20 mol% phytanic acid:PC-d$_{31}$, where (a,c) are dispersions in DDW and (b,d) in Tris buffer, pH 7.4.

Spectral parameters: pulse width = 7.5 µs (flip angle = 90°); τ, the interval between pulses in quadrupolar echo sequence, = 75 µs; t, the delay between echo sequences, = 1 s; sweep width = ±50 kHz; data size = 4K in complex; line broadening = 25 Hz; number of acquisitions = 8,000.

* Spectra were obtained without zeroing the out of phase channel.
Figure 35: Temperature dependence of deuterium spin-lattice relaxation time, T_1, of multilamellar dispersions of: (•) DPPC-d_4, (o) 20 mol% phytol:DPPC-d_4 and (Δ) 20 mol% phytanic acid, all in Tris buffer, pH 7.4. T_1's were measured by the inversion recovery method, five to eight different relaxation delay values (τ_1) were used, delay between pulse sequences were 250 ms. Echo heights were used to calculate T_1's. Thus T_1's are average values for α- and β-CH_2.
Figure 36: Plots of $\log(A_e - A)$ versus τ_1 for 15 wt% dispersions of 20 mol% phytol:DPPC-d$_4$ in Tris buffer at 14.5°C (a), 23°C (b), 34°C (c) and 45°C (d).
The linear plots of $\log(A_n-A)$ versus τ, the relaxation delay of the inversion recovery pulse sequence, for 20 mol% phytool:DPPC-d$_4$ at different temperatures are given in Figure 36.

Semilog plots of quadrupolar echo versus 2τ, where τ is the delay between quadrupolar pulses, are shown in Figure 37. We found that T_{2e} was very much dependent on the method of sample preparation. For 40 wt% DPPC-d$_4$ in DDW the quadrupolar echo follows a single exponential decay over a wide range of τ values (50-300 µs) at temperatures below or above the main phase transition, and slightly deviates from an exponential decay at temperatures around the transition. For the other samples the echo decays do not follow a single exponential at the large τ values. In those cases, T_{2e} was obtained from the initial slope of the semilog plot of echo intensity versus 2τ. For 20 mol% phytanic acid:DPPC-d$_4$ in Tris buffer T_{2e} was not able to be measured in the liquid crystalline phase since the echo intensity remains constant at short τ values.

Figure 38 shows the temperature dependence of T_{2e} for 40 wt% dispersions of DPPC-d$_4$ in DDW, and 15 wt% dispersions of DPPC-d$_4$, 20 mol% phytool:DPPC-d$_4$ and 20 mol% phytanic acid:DPPC-d$_4$, all in Tris buffer. The curves for DPPC-d$_4$ dispersions show a narrow valley with T_{2e} rapidly increasing through the main transition temperature. The T_{2e} minima occur at temperatures between the pre- and main transitions. The minimum for DPPC-d$_4$ containing phytool (23°C) is broad and lower
Figure 37: Semilog plots of quadrupolar echo intensity versus 2τ at 45°C of: (Δ) DPPC-d_4 in DDW, (○) DPPC-d_4, (□) 20 mol% phytol:DPPC-d_4 and (★) 20 mol% phytanic acid:DPPC-d_4, all in Tris buffer, pH 7.4. DPPC-d_4 in DDW is 40 wt% multilamellar dispersions; all others are ≈15 wt%.
Figure 38: Plot of T_2e, the time constant for the decay of the quadrupolar echo, versus temperature of: (Δ) DPPC-d₄ in DDW, (○) DPPC-d₄, (α) 20 mol% phytol: DPPC-d₄, and (•) 20 mol% phytanic acid:DPPC-d₄, all in Tris buffer, pH 7.4. DPPC-d₄ in DDW is 40 wt% multilamellar dispersions; all others are ≈15 wt%.
than the DPPC-\textsubscript{d}\textsubscript{4} minimum (35 or 38\textdegree C), while the minimum in the presence of phytanic acid is even lower (18\textdegree C). These results are similar to those we obtained from acyl chain deuterated PC containing the two branched chain compounds (see Chapter IV).

2. Discussion

The Phase behavior of DPPC in excess water has been extensively studied by calorimetry (McElhaney, 1982), 13C NMR (Wittebort et al., 1981), 2H NMR (Davis, 1979), X-ray diffraction (Janiak et al., 1976, Ruocco and Shipley, 1982), Raman (Yellin et al., 1977; Gaber, 1978) and FT-IR (Cameron and Mantsch, 1978; Cameron et al., 1980). The main gel to liquid crystalline phase transition of DPPC has been proposed to be due to the melt of the fatty acyl chains (Phillips et al., 1969) while the pretransition to be due to the packing of the hydrocarbon chains changing from quasi-orthorhombic to hexagonal (Ruocco and Shipley, 1982), which is associated with the appearance of "ripples" on the bilayer surface (Doniach, 1979). Based on a 2H NMR study of DMPC with a chain terminal deuteromethyl group, the pretransition was shown to coincide with the onset of a fast rotational motion about the molecular long axis (Westerman et al., 1982). This rotational motion was also reported to be hindered in that the molecules flip about a two-fold symmetry axis.
Controversial results about the effect of pretransition on the head group region were reported. Gally et al. (1975) reported that no discontinuity was observed at pretransition temperature either in the phosphorus chemical-shift anisotropy or in the quadrupole splitting of the C₈ or Cᵧ segment of aqueous dispersions of DPPC. Sixl and Watts (1982), however, showed an abrupt decrease of ²H quadrupolar splitting of the Cᵧ segment of aqueous dispersions of DMPC. Also, Akutsu (1986) showed significant changes in the phosphorus chemical-shift anisotropy and large enhancement of the fluctuation of the rotational axis of the polar group at the pretransition temperature.

Our moment analysis of DPPC-d₄ (Figure 32) clearly shows that the ²H NMR spectral moments change discontinuously at both the pre- (31°C) and main (42°C) transition temperatures. Since the pretransition discontinuity in the M₁ (M₂) versus temperature curves for DPPC-d₄ occurs about 4°C lower than one measured by DSC, the moment analysis is detecting the onset of head group motion(s) at a temperature lower than found for the thermotropic phase transition. The discrepancy of 4°C might be accounted for by kinetic reasons, i.e., the difference between the slow pretransition rate and the fast DSC scanning rate (Lentz et al., 1978). Some have attempted to obtain the true equilibrium pretransition temperature by measuring the transition temperature as a function of scanning rate and extrapolating to zero scan rate (Lewis et al., 1987). The M₁
method seems to be closer to the equilibrium transition temperature than does DSC.

As shown in Figure 17, in dispersions of PC-d_{31} there was a decrease in the acyl chain M_1 due to the pretransition and we noted changes in the quadrupolar splitting of the chain terminal methyl deuterons beginning at $\approx 30^\circ C$. However, in the case of the chain perdeuterated compound the DSC pretransition also occurred at $\approx 30^\circ C$. Thus, the motional property of both choline methylenes on the surface of the bilayer and the acyl chain terminal methyl on the center of the bilayer are related to the pretransition. Furthermore, the change in the bilayer center happens at a slightly higher temperature than that on the bilayer surface.

The effect of phytanic acid and phytol on the head group region of the DPPC bilayer is quite significant as shown by the M_1 versus temperature curve (Figure 32). At $14.5^\circ C$ the M_1 values for DPPC-d_{4}, 20 mol% phytol:DPPC-d_{4} and 20 mol% phytanic acid:DPPC-d_{4} are 2.84×10^4, 2.33×10^4 and 2.07×10^4 (s^{-1}), respectively. The low M_1 value of DPPC-d_{4} containing phytanic acid and phytol at temperatures below the main phase transition($42^\circ C$) is due to the fact that the branched chain compounds lower the phase transition temperature, producing a different orientation of the head group. The PC-d_{31} results (Chapter IV) show that incorporation of 20 mol% of either phytanic acid or phytol causes the gel to liquid crystalline phase transition onset temperature to drop from $38^\circ C$ to $28^\circ C$, 137
with no significant change in the completion temperature of the phase transition (see Figure 17, 19). As shown in Figure 32, the rapid M_1 decrease for DPPC-\textsubscript{d4} containing branched chain compounds occurs at temperatures around 15-20°C with no further rapid decrease above 25°C. This finding suggests that, in the presence of phytol and phytanic acid, the M_1 curve reflects pretransition changes and is insensitive to main transition effects. However, the pretransition was not detected by DSC and 2H NMR on acyl chain deuterated PC containing 20 mol\% branched chain compound. The decrease in M_1 of DPPC-\textsubscript{d4} due to the pretransition is about 55\% of the total M_1 decrease while the decrease in acyl chain M_1 due to the pretransition is only 5\% of the total. This small M_1 depression is abolished in the presence of branched chain compounds. The significant M_1 decrease of DPPC-\textsubscript{d4} in the presence of the branched chain compounds at 15-20°C implies that the transition associated with the head group motion does not contribute to the enthalpy change, although it corresponds to the pretransition of DPPC in the absence of the branched compounds. At 50 °C the M_1 value in the presence of phytol (1.00×10^4 s-1) is smaller than for DPPC-\textsubscript{d4} alone (1.14×10^4 s-1) while with phytanic acid it is larger (1.30×10^4 s-1). This effect is simply due to the fact that phytol narrows Δv_θ of C_α- and C_β- segments from 6.3 and 4.2 kHz to 6.2 and 3.3 kHz, respectively, whereas phytanic acid narrows the splittings of $\beta-C_2^\text{H}_2$ to 2.4 kHz but increases the splitting of $\alpha-C_2^\text{H}_2$.

138
significantly (to 7.5 kHz), resulting in a larger M_i.

As we have suggested (Chapter IV), the branched chain compounds incorporated into phospholipid bilayers force nearest neighbor hydrocarbon chains apart, thus loosening the packing of the choline in the hydrophilic region of the membranes. The 31P chemical shift anisotropies for PC-d_{31}, 20 mol% phytol:PC-d_{31} and 20 mol% phytanic acid:PC-d_{31} multilamellar dispersions at 45°C are 45, 42 and 40 ppm, respectively. The decrease of chemical shift anisotropy induced by phytol and phytanic acid may be due to this looser packing. The decrease of Δv_ϕ of both α- and β-C^2H_2 of DPPC-d_4 induced by phytol can be attributed to the same cause. This is similar to the effect of cholesterol on the head group region of a DPPC model membrane (Brown and Seelig, 1978).

Phytanic acid has a totally different effect on the choline group; the decrease in Δv_ϕ of β-C^2H_2 and increase in Δv_ϕ of α-C^2H_2 implies a conformational change of the head group. As shown in Table VII, these changes are enhanced by the buffer solution. The pH value for DDW dispersions of 20 mol% phytanic acid:PC-d_4 was 5.2, thus, in buffer (pH 7.4), more phytanic acid was ionized, indicating a conformational change in the head group. The negatively charged carboxyl group near the membrane surface attracts the positively charged end of the zwitterionic choline group. This observation is consistent with those of Six1 and Watts (1983) as well as Scherer and Seelig (1987), who found that negatively charged lipids mixed
with phosphatidylcholine increased Δv_2 of $\alpha-C^2H_2$ and decreased Δv_2 of $\beta-C^2H_2$. Table VII also shows that in the liquid crystalline phase all six samples have the same temperature dependence, i.e., the quadrupolar splittings for $\beta-C^2H_2$ decrease while those for $\alpha-C^2H_2$ remain unchanged as temperature increases. This suggests that in all six samples the average orientation of the $\alpha-C^2H_2$ segment is quite stable while the orientation of $\beta-C^2H_2$ changes due to rotation of the $C(\alpha)-C(\beta)$ bond. This rotation is less pronounced in the presence of phytanic acid.

Cushley et al. (1979) have reported that phytanic acid dramatically increases the permeation rate of Pr$^{3+}$ through the egg yolk PC bilayer while phytol only slightly increases permeability. The effects of phytanic acid and phytol on the dynamic structure of the hydrophobic region of the phospholipid bilayer were observed to be similar to each other (see Chapter IV), but their effects on the head group organization are different (vide supra). Therefore, we suggest that the permeation rate is related to the organization of the hydrophilic region of the phospholipid membrane. This argument is supported by the recent work of Gutknecht (1988) who has found that long chain fatty acids increase proton conductance of the phospholipid bilayer membranes and that the increase by phytanic acid is 2-fold more than that by straight chain fatty acids.

Seelig et al. (1987) have shown that the phosphatidyl-
choline head group is sensitive to the surface charge of the membrane and that Δv_0 for α-C_2H_2 follows a linear relationship with charge density, σ, in the range of ≤ 0.3 e/lipid. Using Figure 6 in Seelig's report (Seelig et al., 1987) the surface charge density of 20 mol% phytanic acid:DPPC-d_4 dispersions in Tris buffer can be estimated to be $\sigma \approx 0.09-0.12$ e/lipid. On the basis of this σ value we calculate that the pK value of the phytanic acid carboxyl group is 7.2 - 7.5, which is in good agreement with the value of 7.0 for stearic acid (Tscharner and Radda, 1981) and with 7.5 for oleic acid (Small et al., 1984) in PC vesicles. Tsui et al. (1986) have proposed that the rationale for the shift of pK values for the carboxyl group of fatty acids from 4.8 (in aqueous phase) to the physiological pH (7.4) range in membranes is partially due to the low dielectric constant of the PC surface.

Recently, Roux et al. (1989) have proposed a continuum model for the interaction between charged particles near the membrane surface and the head group. The treatment of Roux et al. makes several simplifying assumptions, the most serious one being that the head group is a "quasirigid body hinged at the glycerol backbone". Nevertheless, the model qualitatively relates reorientation to surface charge density. Using their method and assuming that the rotation angle of the head group about the hinge point can be considered as the change of the orientational angle of the $C_6^{-2}H_2$ bonds with respect to the bilayer normal, we estimate that the carboxylate from the
branched chain acid is between 0.1 Å to 0.9 Å below the planar surface charge.

Another effect of phytanic acid on the ^2H NMR spectrum of DPPC-d_4 is shown by the doublet splitting of the α-C^2H_2 group (Figure 30d, inset). The different quadrupolar splittings for the α-deuterons in the presence of phytanic acid is more clearly shown in the depaked spectra (Figure 31c,d). The nonequivalence of the α-deuterons is an orientation effect. The C^2H_2 segment rapidly interconverts between conformations where the individual C^2H bonds of the segment are oriented differently with respect to the magnetic field. This may be the same situation as pertains to the C-2 position of the sn-2 acyl chain, whose ^2H NMR shows a doublet splitting (Pauls et al., 1983). The lack of a doublet splitting for DPPC-d_4 and 20 mol% phytol:DPPC-d_4 implies that phytanic acid may enhance such an orientational difference and/or may enhance resolution by narrowing the spectral lines. The latter is supported by the long T_2^e recorded for the sample containing phytanic acid. T_2^e values for DDW dispersions of DPPC-d_4, 20 mol% phytol:DPPC-d_4 and 20 mol% phytic acid:DPPC-d_4 at 45°C are 540±10, 510±40 and 1000±200 μs, respectively. The particle sizes for these three samples are 0.7±0.3, 0.7±0.2 and 1.5±0.8 μm, respectively, as determined by phase contrast microscopy. The long T_2^e in the presence of phytanic acid results from the large sized particles (vide infra). That 20 mol% phytic acid:DPPC-d_4 dispersions in Tris buffer give excellent
resolution (Figure 30d) is the consequence of phospholipid orientation ("alignment") in the magnetic field (vide infra).

In order to examine the effect of phytanic acid and phytol on the motions of the choline head group, spin-lattice relaxation times (T_1) and quadrupolar echo relaxation times (T_{2e}) were determined. For all three samples (≈ 15 wt% DPPC-d$_4$, 20 mol% phytol:DPPC-d$_4$ and 20 mol% phytanic acid:DPPC-d$_4$ in Tris buffer prepared with freeze-thaw method), T_1 increases as the temperature increases (Figure 35), which is indicative of motion in the fast correlation time limit, usually associated with fast conformational changes about the single bonds. Figure 35 shows that phytol and phytanic acid have an identical effect on the average T_1 of α- and β- C$^{-2}$H bond, i.e., they slightly decrease the correlation time for the C2H$_2$ motion. The increase of T_1 or the decrease of τ_c by the branched chain compounds is the consequence of depression of the phase transition temperature, because the T_1 differences at the same reduced temperature are negligible. For DPPC-d$_4$, the activation energies were calculated from the linear plot of log T_1 versus the reciprocal of temperature to be 3.1\pm0.2, 5.6\pm0.4 and 7.4\pm0.2 kcal/mole for gel phase, intermediate phase and liquid-crystalline phase, respectively. The activation energy for the C$_4$-segment above the phase transition temperature has been reported as 5\pm2 kcal/mol (Gally et al., 1975), which is comparable with our data. For 20 mol% phytol:DPPC-d$_4$ and 20 mol% phytanic acid:DPPC-d$_4$, the
Table VIII: Spin-Lattice Relaxation Times, T_1, of Head Group Deuterated Phosphatidylcholine (DPPC-d$_4$) Containing Branched Chain Compounds

<table>
<thead>
<tr>
<th>Lipid</th>
<th>Temperature (°C)</th>
<th>T_1^a (ms)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>α-C$_2^2$H$_2$</td>
<td>β-C$_2^2$H$_2$</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>DPPC-d$_4$</td>
<td>45</td>
<td>25.0b</td>
<td>27.1b(27.8c)</td>
<td>27.2b(27.4c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>29.9</td>
<td>33.5(33.2)</td>
<td>32.8(32.4c)</td>
<td></td>
</tr>
<tr>
<td>20 mol% Phytol:DPPC-d$_4$</td>
<td>45</td>
<td>28.4</td>
<td>30.4</td>
<td>32.1</td>
<td></td>
</tr>
<tr>
<td>20 mol% Phytanic acid:DPPC-d$_4$</td>
<td>45</td>
<td>26.8</td>
<td>32.2</td>
<td>32.3</td>
<td></td>
</tr>
</tbody>
</table>

a Intensities of echo (for "average") and powder pattern peaks (for α-C$_2^2$H$_2$ and β-C$_2^2$H$_2$) were used to fit a semi-log linear regression, correlation constant $r \geq 0.999$. $\tau = 150$ μs; T_1 values: 5, 10, 20, 30, 40, 50, 60 and 150 ms; $t = 200$ ms.

b $\tau = 100$ μs.

c $\tau = 60$ μs, data show reproducible in the measurements.
activation energies in the liquid crystalline phase are 6.1 ± 1 and 5.7 ± 0.2 kcal/mole, respectively. These values are lower than that for DPPC-d_4 in the liquid crystalline phase. We suggest that the looser packing in the presence of the branched chain compounds may cause the lower energy barrier to the head group conformational change. Examination of the T_1 values for the C_a- and C_b- segments (Table VIII), shows that the phytanic acid slightly reduces the rate of the C_a-segment motion and increases the rate of the C_b-segment motion, compared to phytol. This result is consistent with a conformational change of the choline group in the presence of phytanic acid.

Figure 38 shows that the T_{2e} minimum of DPPC-d_4 shifts from $38^\circ C$ to $23^\circ C$ (in the presence of phytol) and to $18^\circ C$ (in the presence of phytanic acid), which is similar to what we have observed for the acyl chains (see Figures 24, 25). T_{2e} is more sensitive to slow motions such as the lateral diffusion of phospholipid molecules in the bilayer, or the rotational diffusion of the whole particle. Above the phase transition temperature the T_{2e} values depend on the method of sample preparation. The T_{2e} values for DPPC dispersions in DDW without freeze-thawing are about twice as long as those for dispersions in Tris buffer with freeze-thawing. The difference may result from the different morphology of the liposomes (see Results). The short T_{2e} value for DPPC liposomes containing phytol is consistent with the small liposome particles.
observed by phase contrast microscopy. The unusual T$_{2e}$ behavior of Tris buffer dispersions of DPPC-d$_4$ containing phytanic acid in the liquid crystalline phase may be explained by the deformation of the liposome particles caused by the magnetic field ordering (vide infra). The diffusion of phospholipids in such oriented bilayers does not change the orientation of the C-2H bond with respect to the magnetic field, resulting in extremely long correlation times, τ_c. In the slow motion region τ_c is proportional to T$_{2e}$ (Pauls et al., 1985), thus a long τ_c results in an extremely long T$_{2e}$. This would explain the plateauing of the echo intensities for short τ values (Figure 37).

The most interesting observation is that phytanic acid causes a distortion of the 2H spectrum of DPPC-d$_4$ (Figure 30d). There are two possible reasons for this distortion: one being the orientational dependency of spin-spin relaxation and the other being orientation of the phospholipids in the magnetic field. We exclude the former possibility, i.e. the orientational dependency of T$_{2e}$ as the cause of the distortion of the powder pattern lineshape, because the 2H NMR spectra are similar in spite of using various τ values (60-150 μs) in the quadrupolar echo pulse sequence, and also the first moments (M$_1$) of these spectra are close to within 5%. Thus, Figure 30d is evidence for sample orientation in the magnetic field. This is supported by the FID (Figure 30h) which is seen to be much longer than the FIDs for DPPC-d$_4$ or DPPC-d$_4$:phytol,
and is indicative of intensity loss in the wings.

The 31P NMR spectra confirm that the distortion effect is due to magnetic orientation. In the 31P NMR spectrum of DPPC-d$_4$ incorporated with 20 mol% phytanic acid in Tris buffer at 45°C (Figure 33e) the intensity of the 90° edge (σ_1) is enhanced, while the intensities for other angles are diminished (compare with Figure 33b). When the sample is cooled to the gel phase in the magnetic field, the orientation effect persists (Figure 33f) and this is quantified by the difference spectrum (Figure 33g).

The driving force for magnetic orientation is the negative diamagnetic anisotropy of the phospholipid acyl chains. When such chains become parallel to each other in the bilayer they enhance the tendency to orient with their long axis perpendicular to the magnetic field. To our knowledge only two examples for this kind of orientation have been reported. Seelig et al. (1985) have reported the magnetic field orientation of the phospholipids in 15 wt% dispersions of a mixture of POPE and POPG (83/17 w/w) in 0.1 M NaCl:10 mM PIPES:1 mM EDTA, pH 7.0. Recently, Speyer et al. (1987) have reported a high degree of orientation in the magnetic field of 50 wt% dispersions of mixtures of N-palmitoylsphingomyelin and DMPC (60:40 mole:mole).

The magnetic orientation has been proposed to be due to either a deformation of spherical liposome particles or an alignment of elliptically-shaped liposome particles (Speyer et
al., 1987). Our results are consistent with the former mechanism. When our 15 wt% dispersions were prepared with a five-fold freeze-thaw procedure, bilayers in the center of the liposome particles were ruptured, leading to a decreased number of bilayers in the multilamellar structure and to an increased interlamellar space. It has been also shown in the literature that repetitive freeze-thaw cycles can induce a homogenous distribution of solute inside and out of the egg PC bilayers, and increase trapped volumes dramatically (Mayer et al., 1985). The deformation under Brownian flow, of the large, less dense particles containing phytanic acid, was clearly observed using the phase contrast microscope. Since the DDW dispersions of 20 mol% phytanic acid:DPPC-d₄ did not orient in the magnetic field, it is apparent that increased negative charge in the surface of the bilayers caused by ionization of phytanic acid in Tris buffer, facilitates the deformation, presumably by decreasing the number of bilayers in the liposome particles. This is analogous to the observation that the negatively charged phospholipids such as phosphoglycerol forms large single bilayer vesicles spontaneously when dispersed in water. As shown in Figure 26 the particles of DDW dispersions are denser than the buffer dispersion, and the particles of buffer dispersion resemble "hollow" particles, which tend to deform easily in the magnetic field. In fact, the deformation of these "hollow" particles under flow was observed under the microscope.
In order to clarify the condition for the magnetic orientation, we measured the 2H NMR spectrum at 45°C for dispersions of 20 mol% phytanic acid:DPPC-d$_4$ in Tris buffer without the freeze-thaw procedure and no spectral distortion was detected. Furthermore, we measured 2H NMR spectra (Figure 34) for PC-d$_{31}$ and 20 mol% phytanic acid:PC-d$_{31}$ dispersed in DDW and in Tris buffer with the freeze-thaw procedure. The spectrum for 20 mol% phytanic acid:PC-d$_{31}$ dispersions in buffer (Figure 34d) shows a distortion effect, i.e., the intensity of the powder pattern shoulder is reduced. This suggests that the magnetic orientation occurs for whole phospholipid molecules.
VI. The Effect of Phytanic Acid and Phytol on the Lateral Diffusion of Phosphatidylcholine in Bilayers

In the liquid crystalline phase, 20 mol% of phytanic acid increases T_{2e} of PC-d$_{31}$ by two-fold while 20 mol% of phytol has no effect on T_{2e} of PC-d$_{31}$ (Chapter IV, Figures 24,25). In Chapter V we have demonstrated that T_{2e} values depend on the method of sample preparation and the resulting morphology of the liposomes. However, under the phase contrast microscope, the dispersions (50 wt% in DDW) of PC-d$_{31}$, 20 mol% phytanic acid:PC-d$_{31}$ and 20 mol% phytol:PC-d$_{31}$ show a similar morphology (Figure 39). The diameters of liposome particles for these three samples were measured to be 1.1±0.6, 0.8±0.5 and 0.8±0.7 μm, respectively. Bloom and Sternin (1987) have recently shown that a large fraction of the 1H NMR T_{2e} relaxation in model membranes is due to extremely slow motion such as lateral diffusion of the phospholipid molecules along the curved membrane surface. That the PC-d$_{31}$ dispersions containing phytanic acid and phytol possess almost the same particle sizes but unequal T_{2e} values implies that these two isoprenoid compounds might have different effects on the lateral diffusion of PC in bilayers. In this Chapter we present evidence that phytanic acid and phytol influence the lateral diffusion of phospholipids in the bilayer differently.
Figure 39: Phase contrast microscope photographs for DDW dispersions of (a) PC-d$_{31}$, (b) 20 mol% phytol:PC-d$_{31}$ and (c) 20 mol% phytanic acid:PC-d$_{31}$. (magnification = 3,000 times)
1. Results

A. ^1H NMR study using quadrupolar Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence

In a ^2H NMR study on multilamellar membrane system spin-spin relaxation time (T_{2e}) is measured from the decay of the quadrupolar echo, which has been interpreted in terms of the changes in the apparent second moment of the powder pattern spectra due to rotation (Pauls et al. 1985). No quantitative relationship between T_{2e} and correlation time has been deduced so far, if the motions responsible for T_{2e} are extremely slow. In order to compare the effects of phytanic acid and of phytol on the slow motion of phosphocholine molecules the spin-spin relaxation times (T_2), were measured on DDW dispersions of PC-d$_{31}$, 20 mol\% phytol:PC-d$_{31}$ and phytanic acid:PC-d$_{31}$, respectively, using a quadrupolar CPMG pulse sequence, 90°$_1$-[τ-90°$_1$-τ]$_n$-τ (Bloom and Sternin, 1987).

The typical data of a series of echoes from a quadrupolar CPMG experiment are plotted in Figure 40a. Each 90$_1$ pulse generates an echo, the intensity of echo progressively decays due to relaxation. As shown in Figure 40b, the decay of echo intensity in the whole time range deviates from exponential. However, we approximately determined T_{2e} values assuming echo decays exponentially in a certain time domain:
A(2nτ) = A(0) exp[-2nτ/T₂^q-CPMG] (37)

where A(2nτ) is the intensity for nth echo. Table IX lists T₂^q-CPMG values for three samples studied (T₂ₑ values are also listed for comparison). For the same sample, T₂^q-CPMG is much longer than T₂ₑ. T₂^q-CPMG determined from the time range of 2-4 ms is much longer than that from the initial time range of 0-1 ms. Nevertheless, T₂^q-CPMG or T₂ₑ for these three samples shows similar order, i.e., phytanic acid: PC-d₃₁ > PC-d₃₁ > phytol:PC-d₃₁.

<table>
<thead>
<tr>
<th>Sample</th>
<th>T₂ₑ (µs)</th>
<th>T₂^q-CPMG (ms) 0<2nτ<1 ms</th>
<th>T₂^q-CPMG (ms) 2<2nτ<4 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-d₃₁</td>
<td>210</td>
<td>0.81</td>
<td>4.31</td>
</tr>
<tr>
<td>20mol% Phytanic acid:PC-d₃₁</td>
<td>360</td>
<td>1.83</td>
<td>6.70</td>
</tr>
<tr>
<td>20mol% Phytol:PC-d₃₁</td>
<td>210</td>
<td>0.74</td>
<td>4.40</td>
</tr>
</tbody>
</table>
Figure 40:
(a) Echoes recorded from a q-CPMG experiment for 50 wt% dispersions of 20 mol% phytanic acid:PC-d$_3$ in DDW at 50°C.
Spectral parameter: 90° pulse width = 6.5 µs; τ, the interval between pulses, = 75 µs; t, the delay between echo sequences, = 3 s; dwell time = 5 µs; data size = 2K; number of acquisitions = 2,000.

(b) Semilog plot of echo intensity vs. time for data in Fig.(a).
According to Bloom and Sternin (1987), the extremely slow motion, such as diffusion of phospholipid along the curved bilayer of the membranes, can be distinguished from the other motions contributing to the spin-spin relaxation process. The equation is:

\[
\frac{1}{T_2^{q-\text{CPMG}}} \approx \left(\frac{2M_{2r}D_t}{R_{\text{eff}}^2} \right) \tau^2 + \frac{1}{T_2} \tag{38}
\]

where \(\tau \) is the interval in the q-CPMG pulse train, \(T_2^{q-\text{CPMG}} \) is measured from the initial region of decay, \(M_{2r} \) is the residual second moment of the \(^2\text{H} \) NMR spectrum, \(R_{\text{eff}} \) is the effective radius for diffusion relaxation, and \(T_2 \) is the spin-spin relaxation time due to motions with correlation time \(< \Delta M_2^{-1/2} \).

For three samples (50 wt% dispersions of PC-d_{31}, 20 mol% phytanic acid:PC-d_{31} and 20 mol% phytol:PC-d_{31}), we performed the quadrupolar CPMG experiment at 50°C using various \(\tau \) values (50, 75, 100, and 125 \(\mu \)s). By fitting the first few echo intensities to a single exponential decay, the \(T_2^{q-\text{CPMG}} \) values were determined. Table X lists those values and the number of echoes being used in the fitting. From \(\tau^2 \) dependence of \(1/T_2^{q-\text{CPMG}} \), the linear least square fitting plots (Figure 41) were obtained according to equation 38. The resulting intercept \(\frac{1}{T_2} \) and slope \(\left(\frac{2M_{2r}D_t}{R_{\text{eff}}^2} \right) \) are also listed in columns 5 and 6 of Table X. \(M_{2r} \) values were measured to be \(2.9 \times 10^9 \) and \(3.2 \times 10^9 \) s\(^{-2} \) for PC-d_{31} and PC-d_{31} incorporated with phytol or phytanic acid, respectively.
Figure 41: Least-square fitting of $1/T_2^q$-CPMG vs. τ^2 for
(a) PC-d$_{31}$,
(b) 20 mol% phytanic acid:PC-d$_{31}$ and
(c) 20 mol% phytol:PC-d$_{31}$.
The error bars of the data represent the standard deviations.
Using the average particle size as the effective radius of diffusion, we calculated the lateral diffusion coefficient D_t to be 1.2×10^{-9}, 0.9×10^{-9} and 1.1×10^{-9} cm2s$^{-1}$ for PC-d$_{31}$, 20 mol% phytanic acid:PC-d$_{31}$ and 20 mol% phytol:PC-d$_{31}$, respectively. Also the spin-spin relaxation time (T_2), due to the motion with correlation time $\tau_c << \Delta \tau^{-1/2}$ was obtained from the intercept to be 1.0, 2.1 and 0.9 ms for PC-d$_{31}$, 20 mol% phytanic acid:PC-d$_{31}$ and 20 mol% phytol:PC-d$_{31}$, respectively.

<table>
<thead>
<tr>
<th>Sample</th>
<th>τ (μs)</th>
<th>Point of fitting</th>
<th>$1/T_2$ (s)$^{-1}$</th>
<th>$1/T_2$ (s)$^{-1}$</th>
<th>Slope (s)$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-d$_{31}$</td>
<td>50</td>
<td>8</td>
<td>1.04</td>
<td>1.05±0.04</td>
<td>2.2±1.2</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>5</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>3</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 mol% Phytanic acid:PC-d$_{31}$</td>
<td>50</td>
<td>8</td>
<td>0.51</td>
<td>0.48±0.01</td>
<td>3.5±0.2</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>5</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>4</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>3</td>
<td>0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 mol% Phytol:PC-d$_{31}$</td>
<td>50</td>
<td>8</td>
<td>1.11</td>
<td>1.09±0.04</td>
<td>4.4±0.7</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>5</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>4</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>3</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. 2H NMR study using selective inversion recovery (DANTE) pulse sequence

The diffusion of phosphatidylcholine molecules along the bilayer surface can be also demonstrated by a selective inversion recovery experiment. Brown and Davis (1981) have reported such an experiment on 4,4-DPPC-d$_2$/H$_2$O dispersions, using a soft 180° pulse to selectively invert the frequencies near the middle of the spectrum. They found that the recovery of these inversions was non-exponential, the initial slope was due to the transfer of magnetization across the spectrum. We have modified a phase-rotating DANTE pulse sequence, $90^\circ_Y - \tau_Y - 90^\circ_Y -$, to selectively invert the magnetization in certain frequency domains. This pulse sequence followed by a delay time τ_1 and a quadrupolar echo pulse sequence forms the selective inversion recovery pulse sequence employed in this study. Figure 42 demonstrates such a selective inversion recovery experiment of 5,5-DPPC-d$_2$/H$_2$O dispersions. For short delay ($\tau_1 = 0.5$ ms), the principal peaks of the powder pattern are inverted (Figure 42a). With τ_1 increasing, the peak intensity becomes positive and increases, and the spectrum shows a normal powder pattern at longest delay ($\tau_1 = 160$ ms, Figure 42b).
Figure 42: 2H NMR spectra for different values of delay time (a, $\tau_1 = 0.5$ ms; b, $\tau_1 = 160$ ms), recorded at 38.8 MHz using a selective inversion recovery pulse sequence, $90^\circ_\gamma-t_0-90^\circ_\gamma-\tau_1-90^\circ_\gamma-\tau-90^\circ_\gamma-t$, for 50 wt% dispersions of 5,5-DPPC-d$_2$/H$_2$O at 45°C.

Spectral parameters: 90° pulse = 6.5 μs, $t_0 = 35$ μs, $\tau = 50$ μs, $t = 250$ ms; sweep width = ±100 kHz; data size = 4K in complex; line broadening = 50 Hz; number of acquisitions = 8,000.

* 5,5-DPPC-d$_2$ is a kind gift from Dr. R.S. Chana.
The spectra for dispersions of PC-d$_{31}$, 20 mol% phytanic acid:PC-d$_{31}$ and 20 mol% phytol:PC-d$_{31}$ were taken using the selective inversion recovery with various delay times at 45$^\circ$C. The time interval, t_0, was adjusted to invert the principle peaks of the powder pattern for the methylene segments of the plateau region (C3-C9). The semilog plots for the peak intensity recovery ($A-A_0$) vs. delay time t_1 are compared with those for spin-lattice relaxation measurement, which are depicted in Figure 43. The initial decay for selective inversion recovery is non-exponential, while the decay in the long time range ($t_1 > 10$ ms) is parallel to that for T_1 experiments. The least square fits for the selective inversion recovery data in $t_1 > 10$ ms range give the rate constants: 27.9, 30.3 and 31.5 ms for PC-d$_{31}$, 20 mol% phytanic acid:PC-d$_{31}$ and 20 mol% phytol:PC-d$_{31}$, respectively. These values are very close to those of T_1 measured from the normal inversion recovery experiments (Table VI). In order to compare the diffusion rates for these three samples, the relative intensity ($A-A_0$)/2A_0 is plotted versus t_1 (Figure 44). Qualitatively, Figure 44 illustrates that the rate for phospholipid molecules diffusing from a 90$^\circ$ (or 32$^\circ$) orientation to the other orientation angle with respect to the magnetic field is in the order: phytol:PC-d$_{31}$ > PC-d$_{31}$ > phytanic acid:PC-d$_{31}$.
Figure 43: Semilog plots of \((A_t-A)\) versus \(t_1\) for inversion recovery experiment (---) and selective inversion recovery experiment (-o-) at 45°C.

(a) 50 wt% dispersions of PC-d_{31} in DDW,
(b) 50 wt% dispersions of 20 mol% phytanic acid:PC-d_{31} in DDW,
(c) 50 wt% dispersions of 20 mol% phytol:PC-d_{31} in DDW.

\(A\) is the spectral intensity of the composed peaks of the powder pattern, which were assigned to the deuteron attached to carbon position C3-9 of the acyl chain. The time interval, \(t_p\), in selective inversion recovery pulse sequence was adjusted properly in order to obtain the maximum inversion of these peaks.
Figure 44: Semilog plot of \([\langle A_{s} - A \rangle / 2A_{s} \rangle\) versus \(\tau_{1}\) in short \(\tau_{1}\) range for PC-d_{31} (o), 20 mol\% phytanic acid:PC-d_{31} (+) and 20 mol\% phytol:PC-d_{31} (x).
C. 31P NMR study on DPPC vesicles containing phytanic acid and phytol

We simulated the 31P NMR spectra for the vesicles of DPPC, 20 mol% phytol:DPPC and 20 mol% phytanic acid:DPPC using a computing program obtained from Dr. E. E. Burnell, University of British Columbia. The computing program is based on the theory of Freed et al. (1971), which was originally used to calculate the ESR lineshape under the rotationally dependent perturbation in the spin-Hamiltonian. In Burnell's model (Burnell et al., 1980), they assumed that the 31P nucleus possessed an axially symmetrical chemical-shift tensor, and that the reorientational motion of the 31P nucleus was governed by the isotropic diffusion equation (see eq. 28). The program needs three parameters to simulate the spectra: the chemical shift anisotropy, Lorentzian line broadening and the effective correlation time of the isotropic motion. In our simulation, we assumed that the 31P chemical shift anisotropies for DPPC in vesicles were the same as those found in multilamellar liposomes of PC-d$_{31}$. The chemical shift anisotropies were measured to be 45, 42 and 40 ppm for PC-d$_{31}$, 20 mol% phytol:PC-d$_{31}$ and 20 mol% phytanic acid:PC-d$_{31}$, respectively. We employed Lorentzian line broadenings of 65 Hz (for 20 mol% branched chain compounds:DPPC) and 215 Hz (for DPPC), which were consistent with the 50 and 200 Hz used in the experimental spectra plus a 15 Hz natural line width. The best simulation
was obtained by varying the effective correlation time τ_e. Figure 45 presents both the simulated and experimental spectra. From the τ_e values of the simulated spectra, we calculated the diffusion coefficient, D_T, using equation 28. The D_T values were determined as 6.1×10^{-8}, 1.6×10^{-8} and 4.7×10^{-9} cm2s$^{-1}$ for DPPC in vesicles by itself, with 20 mol% phytol incorporation and with 20 mol% phytanic acid incorporation, respectively (Table XI).

<table>
<thead>
<tr>
<th>Vesicles</th>
<th>r (nm)</th>
<th>$(\sigma_1-\sigma_0)^2$ (Hz)</th>
<th>τ_e (s)</th>
<th>η (poise)</th>
<th>D_T (cm2s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPPC</td>
<td>65.5</td>
<td>4600</td>
<td>1.0×10^{-4}</td>
<td>0.119</td>
<td>6.1×10^{-8}</td>
</tr>
<tr>
<td>20 mol% phytanic acid:DPPC</td>
<td>26.1</td>
<td>4100</td>
<td>1.1×10^{-4}</td>
<td>0.119</td>
<td>4.7×10^{-9}</td>
</tr>
<tr>
<td>20 mol% phytol</td>
<td>31.1</td>
<td>4250</td>
<td>0.8×10^{-4}</td>
<td>0.119</td>
<td>1.6×10^{-8}</td>
</tr>
</tbody>
</table>

a These values were measured from multilamellar liposomes samples.

b 75% glycerol in water at 45°C (Chana, 1989).

$$1/\tau_e = (1/\tau_t) + (1/\tau_{diff})$$
$$= (3kT/4\pi\eta r^3) + (6D_T/r^2)$$

(28)
Figure 45: Simulated (---) and experimental (——) 102 MHz 31P NMR spectra for vesicles of
(a) 20 mol% phytanic acid:DPPC, 45$^\circ$C, 75% glycerol,
(b) 20 mol% phytol:DPPC, 45$^\circ$C, 75% glycerol,
(c) DPPC, 45$^\circ$C, 75% glycerol.

Spectral parameters: one pulse experiment, no phase cycling; pulse width = 6.5 µs (flip angle = 73$^\circ$); delay between pulses = 2 s; delay before acquisition = 10 µs; sweep width = 25 kHz; data size = 4K in complex; number of acquisitions = 20,000; line broadening = 50 Hz (a,b), 200 Hz (c).

Simulation parameters:
(a) $\Delta_0 = 4100$ Hz (40.1 ppm), $\tau_e = 1.1 \times 10^{-4}$ s, line broadening 65 Hz,
(b) $\Delta_0 = 4250$ Hz (41.6 ppm), $\tau_e = 0.8 \times 10^{-4}$ s, line broadening 65 Hz,
(c) $\Delta_0 = 4600$ Hz (45.0 ppm), $\tau_e = 1.0 \times 10^{-4}$ s, line broadening 215 Hz.
2. Discussion

We have used three methods, i.e., 1) 2H NMR: quadrupolar CPMG pulse sequence, 2) 2H NMR: selective inversion recovery pulse sequence and 3) 31P NMR: lineshape fitting, to study the effects of phytol and phytanic acid on the diffusion properties of PC in the bilayer membranes above the gel to liquid crystalline phase transition temperature.

Using 2H NMR quadrupolar CPMG method, the diffusion coefficient of phospholipid in the membrane, D_7, was measured from multilamellar liposome samples. The obtained D_7 value of PC-d_{31} liposomes (1.2×10^{-9} cm2s$^{-1}$) is lower than the literature value ($D_7 \approx 2-5 \times 10^{-8}$ cm2s$^{-1}$ for DPPC, Cullis, 1976; Kuo and Wade, 1979) by one order of magnitude. Such a great deviation implies that the method of Bloom and Sternin (1987), which was used in our experiments, may not be appropriate to our cases. Nevertheless, if we assume that the above deviation is a systematic one, the comparison of D_7 (or T_2) values for PC-d_{31}, 20 mol% phytol:PC-d_{31} and 20 mol% phytanic acid:PC-d_{31} may still be meaningful. The diffusion coefficient values for the three samples are similar to each other, which are 1.2×10^{-9}, 0.9×10^{-9} and 1.1×10^{-9} cm2s$^{-1}$ for PC-d_{31}, 20 mol% phytanic acid:PC-d_{31} and 20 mol% phytol:PC-d_{31}, respectively. However, 20 mol% phytanic acid:PC-d_{31} has a longer T_2 value (2.1 ms) than PC-d_{31} (1.0 ms) and 20 mol% phytol:PC-d_{31} (0.9 ms). This finding implies that
phytanic acid increases the slow motion \((1/\omega_0 < \tau_c << \Delta M_t^{-1/2})\) of the phospholipid, whereas phytol does not affect the phospholipid motion in this frequency region.

We used a selective inversion recovery pulse sequence \((^2H\ \text{NMR})\) to investigate the diffusion property of the phospholipid in multilamellar bilayers. The sequence is a modified DANTE followed by a quadrupolar echo sequence, which is similar to Sternin's (1988). The ordinary DANTE pulse sequence is a pulse train of many short pulses \(P_0\) and delays \(t_0\): \((P_0-t_0)_n\) (Morris and Freeman, 1978). The DANTE pulse sequence has been used for selective solvent suppression in \(^1H\ \text{NMR}\) (Haasnoot, 1983) and the phospholipid lateral diffusion studies in \(^31P\ \text{NMR}\) (Larsen et al., 1987). Our modification is to use two 90° pulses with time separation of \(t_0\) and phase change \(\pi\) as the rotating-phase DANTE sequence (Blondet et al., 1987) for a spin 1 system. The time \(t_0\) was adjusted to invert the principle peaks of the powder pattern. The principle peaks of the powder pattern represent the phospholipids in the domains whose bilayer normal is 90° or 32° with respect to the external magnetic field. The rapid initial non-exponential decay for selective inversion recovery (Figure 43) follows the transfer of magnetization across the spectrum, i.e., the phospholipid molecules oriented at 90° or 32° diffuse to other orientation domains and vice versa. Unfortunately, no quantitative equation has been deduced to date for relating the selective inversion recovery to the lateral diffusion. The qualitative
comparison was, however, made according to the relative intensity plot (Figure 44), i.e., the rate for PC molecules to diffuse across a fixed orientation angle with respect to the magnetic field is in the order: phytol:PC-d$_{31}$ > PC-d$_{31}$ > phytanic acid:PC-d$_{31}$. The average particle sizes for three samples are: PC-d$_{31}$ (1.1±0.6 μm) > phytanic acid:PC-d$_{31}$ (0.8±0.5 μm) > phytol:PC-d$_{31}$ (0.8±0.7 μm). Thus, we conclude that phytanic acid slows down the diffusion of PC, whereas the effect of phytol is not clear from these experiments.

Diffusion coefficients, D$_t$, calculated from the simulated 3P NMR spectra are 6.1X10$^{-8}$, 1.6X10$^{-8}$ and 4.7X10$^{-9}$ cm2s$^{-1}$, for DPPC, 20 mol% phytol:DPPC and 20 mol% phytanic acid:DPPC, respectively. The lineshape of 3P NMR spectra is quite sensitive to the τ$_e$ value around 10$^{-4}$ s, the uncertainty of τ$_e$ for simulation is about ± 0.2X10$^{-4}$s. The uncertainty of D$_t$ is estimated as ±(0.1-1)X10$^{-8}$ cm2s$^{-1}$. The D$_t$ value for DPPC (6.1 X10$^{-8}$ cm2s$^{-1}$) is close to the reported one (2-5 X10$^{-8}$ cm2s$^{-1}$, Cullis, 1976; Kuo and Wade, 1979). Apparently, phytol slightly slows down the diffusion of PC (D$_t$ = 1.6X10$^{-8}$ cm2s$^{-1}$), while phytanic acid diminishes the D$_t$ of DPPC by one order of magnitude.

From the last two methods, we conclude that the lateral diffusion rate of phosphatidylcholine in membranes is in the order: PC ≥ phytol:PC > phytanic acid:PC.
VII. Conclusion

The effects of the incorporation of phytol and phytanic acid have been studied on (1) phase behavior, (2) order parameter and quadrupolar splitting, (3) lateral diffusion of phosphatidylcholine, (4) relaxation times and (5) magnetic ordering of model membranes by means of 2H NMR and 31P NMR. 2H NMR studies with an sn-2 chain perdeuterated PC (PC-d$_{31}$) and a choline methylene deuterated PC (DPPC-d$_4$) provide the structure and dynamical information for both hydrophobic and hydrophilic regions.

(1) The phase behaviors have been studied by moment analysis of 2H NMR spectra and by DSC. Either branched chain compound broadens the gel to liquid crystalline phase transition of the phospholipid membranes and reduces the onset temperature of the transition. For PC-d$_{31}$ the first moment M_1 of 2H NMR spectra drops very rapidly from 1×10^5 s$^{-1}$ to 5×10^4 s$^{-1}$ at the main transition temperature over a range of approximately 1.5°C. The onset temperature for the main phase transition of PC-d$_{31}$ is lowered from 38°C to 34°C and 28°C by the incorporation of 5 mol% and 20 mol% of either branched chain compound, respectively. The M_1 transition range (T_L-T_g) increases with increasing the branched chain compound concentration: $34-38^\circ$C for 5 mol% incorporation and $28-39^\circ$C for 20 mol% incorporation, respectively. The moment analysis of
DPPC-\textsubscript{d}\textsubscript{4} spectra is very sensitive to the pretransition, the decrease in \textit{M}_1 associated with the pretransition is much more significant (about 55\% of the total) than that in PC-\textsubscript{d}\textsubscript{31} (about 5\%). Twenty mol\% of either branched chain compound abolishes the pretransition of PC-\textsubscript{d}\textsubscript{31}, however a transition at 15-20\textdegree C has been observed in the \textit{M}_1 curve of DPPC-\textsubscript{d}\textsubscript{4} in the presence of 20 mol\% of either branched chain compound. The pretransition temperature of DPPC-\textsubscript{d}\textsubscript{4} determined from the \textit{M}_1 curve (31\textdegree C) is lower than that from DSC (35\textdegree C), while the pretransition of PC-\textsubscript{d}\textsubscript{31} detected from the \textit{M}_1 curve is the same as that from DSC (30\textdegree C). These observations suggest that both head group and acyl chain terminal group are involved in the pretransition, while the changes of the head group motion may not contribute to an enthalpy change which can be detected by DSC. The pretransition has also been suggested to take place as a compromise between the nonpolar hydrocarbon chains maintaining rigid structure and the polar head group achieving the laterally expanded state (Parsegian, 1983). Based upon our 1H NMR results on PC-\textsubscript{d}\textsubscript{31} and DPPC-\textsubscript{d}\textsubscript{4}, we conclude that the pretransition occurs when the hydrocarbon terminal chain positions and the polar head group commence restricted motion.

The branched chain compounds broaden and lower the phase transition temperature of PC membranes; they also decrease the \textit{M}_1 in the gel phase, indicating that the branched chain compounds cause significant disruption of the gel phase. The straight chain analogues of the branched chain compounds
(i.e., palmitic acid and hexadecanol) elevate the transition of DPPC (Eliasz et al., 1976; Pringle and Miller, 1979). These controversial effects suggest that phytanic acid and phytol, with four methyl branching attached on the chain, force nearest neighbor hydrocarbon chains of PC apart in the gel phase, lowering the transition temperature.

(2) Order parameters, S_{CD}, for various chain positions have been calculated from depaked spectra. At 50°C there is no significant change in the profile of S_{CD} versus phospholipid acyl chain position, induced by either branched chain compound. Either branched chain compound (20 mol%) causes an approximate 9% increase in the mean order parameter $<S_{CD}>$, mainly due to the increase in the plateau region (C3-C9). 20 mol% phytanic acid increases S_{CD} of C10-C14 positions by 2-5%. 20 mol% phytol increases S_{CD} of C10-C15 positions by 5-9%. The branched chain compounds have almost the same effect as palmitic acid (Pauls et al., 1983), in spite of the four methyl groups on the chain.

From quadrupolar splitting of DPPC-d$_4$, we have learned that in the liquid crystalline phase, phytol induces more random movement of the head group while phytanic acid causes a conformational change of the choline group due to the increased negative charge at the surface of membrane.

(3) The effect of branched chain compounds on the lateral diffusion of phospholipid in multilamellar bilayers has been studied using a DANTE pulse sequence and a quadrupolar CPMG
pulse sequence. Phytanic acid significantly slows down the diffusion of phosphatidylcholine in the membranes. The observations are consistent with the lateral diffusion constant (D_T) values determined for DPPC unilamellar vesicles using 31P NMR. The D_T values are 6.1×10^{-8}, 1.6×10^{-8} and 4.7×10^{-9} cm2s$^{-1}$ for DPPC, 20 mol% phytol:DPPC and 20 mol% phytanic acid:DPPC, respectively.

(4) Deuterium spin-lattice relaxation times (T_1) and spin-spin relaxation times (T_{2e}, the decay of the quadrupolar echoes) for PC-d$_{31}$ and DPPC-d$_{4}$ have been measured over a wide temperature range. The branched chain compounds increase the T_1 values, via depression of the phase transition temperature. Only 20 mol% phytol increases T_1 in the plateau region (C3-C9 on sn-2 chain) by 11% at the same reduced temperature, indicating that phytol increases the fast motion rate of the plateau segments. T_{2e} depends very much on the method of sample preparation and the morphology of the resulting liposomes. T_{2e} has a minimum at the temperature between pre- and main transition. Either branched chain compound lowers the T_{2e} minimum and the corresponding temperature in both PC-d$_{31}$ and DPPC-d$_{4}$ membranes.

(5) The orientation of the DPPC bilayer in the magnetic field caused by the incorporation of 20 mol% phytanic acids is shown by both 2H and 31P NMR. The sample needs to be carried through several freeze-thaw cycles in the presence of Tris buffer in order that the phospholipid magnetic field ordering
occurs. Our results, along with those reported by others (Seelig et al., 1985; Speyer et al., 1987), prompt us to suggest a general method for routine preparation of oriented bilayers. Addition of sufficient lipids bearing a negative charge, together with repetitive freeze-thaw cycles, favors formation of "hollow" liposome particles, i.e., particles which tend to deform easily in a magnetic field. These oriented membranes may be valuable for further studies using 2H NMR.
Calculation of the deuterated level of \([^{2}H_{31}]\)palmitic acid was performed on the mass spectral analysis data.

<table>
<thead>
<tr>
<th>Mass</th>
<th>Experiment data</th>
<th>Corrected for M+2</th>
<th>Corrected for M+1</th>
<th>Number of deuterium atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>283</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>27</td>
</tr>
<tr>
<td>284</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
<td>28</td>
</tr>
<tr>
<td>285</td>
<td>26.3</td>
<td>26.3</td>
<td>25.3</td>
<td>29</td>
</tr>
<tr>
<td>286</td>
<td>65.4</td>
<td>65.3</td>
<td>62.6</td>
<td>30</td>
</tr>
<tr>
<td>287(M)</td>
<td>93.7</td>
<td>93.2</td>
<td>84.0</td>
<td>31</td>
</tr>
<tr>
<td>288(M+1)</td>
<td>14.4</td>
<td>13.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289(M+2)</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deuteration level = \[\frac{2.2 \times 27 + 7.3 \times 28 + 25.3 \times 29 + 62.6 \times 30 + 84.0 \times 31}{(2.2 + 7.3 + 25.3 + 62.6 + 84.0) \times 31}\]

= 97.4 %
LIST OF REFERENCES

Bloom, M. (1987) Notes in NMR course in Department of Physics, University of British Columbia, Vancouver, Canada.

Harris, R.K. (1983) in Nuclear Magnetic Resonance
Spectroscopy, Pitman press, Great Britain.

Roux, M., Neuman, J.M., Hodges, R.S., Devaux, P.F. and Bloom,

