PHOTOADDITION OF N-NITROSAMINES TO
CONJUGATED DOUBLE BONDS

by

CARLOS JOSÉ COLÓN DE ZENGOTITA
B. Sc., University of Alberta, 1965

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
in the Department
of
Chemistry

© CARLOS JOSÉ COLÓN DE ZENGOTITA, 1970
SIMON FRASER UNIVERSITY
October, 1970
Name: Carlos José Colón De Zengotita

Degree: Doctor of Philosophy

Title of Dissertation: Photoaddition of N-nitrosamines to Conjugated Double Bonds

Examinining Committee:

Dr. Y. L. Chow
Senior Supervisor

Dr. K. R. Kopecky
External Examiner
Associate Professor
University of Alberta
Edmonton, Alberta

Dr. E. Kiehlmann
Examinining Committee

Dr. L. K. Peterson
Examinining Committee

Date Approved: October, 1970
ABSTRACT

The photoaddition of N-nitrosamines to conjugated cyclic and acyclic, dienes has been investigated. The 1:1 photoadducts were obtained in which the 1,4-addition mode occurs preferentially over the 1,2-addition mode. In acyclic dienes, the 1,4-addition resulted in the trans-orientation of the olefinic bond; in the 1,2-addition to unsymmetrical acyclic 1,3-dienes the addition of nitrosamine did not lead to rearrangement of the remaining unsymmetrical double bond. The photoaddition to 1-vinylcyclohexene gave only a normal 1,2-adduct and the "inverse"-1,4-adducts. The result is interpreted in terms of steric restrictions present in the transition state leading to product formation.

The attempts at isomerizing cis, cis-1,3-cyclooctadiene, trans-1,3-pentadiene and cis-1,3-pentadiene by N-nitrosopiperidine photosensitization failed.

The photosensitized addition of N-nitrosopiperidine using several aromatic compounds as sensitizers led to the conclusion that a singlet energy transfer from an excited aromatic compound to nitrosamine occurred since the quantum yield of photoaddition can be directly correlated to the sensitizer of the aromatic compounds. It was also found that a singlet
quencher, such as perylene, could retard the photoaddition of N-nitrosopiperidine to cyclohexene. It was established that naphthalene and other aromatic compounds whose triplet energies lie below 62 Kcal/mole could suppress the photodecomposition of N-nitrosopiperidine.

The photoaddition of N-nitrosamine to anthracene and acenaphthylene gave 1:1 addition products. The other aromatic compounds studied gave products only under forcing conditions but no 1:1 adducts were obtained.

In the photosensitized addition of N-nitrosopiperidine to anthracene, the first singlet of anthracene was capable of photosensitizing the nitrosamine.
To Gisela and the Children.
## CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Introduction</strong></td>
<td>1</td>
</tr>
<tr>
<td><strong>Results</strong></td>
<td>6</td>
</tr>
<tr>
<td><strong>Section I</strong></td>
<td>6</td>
</tr>
<tr>
<td>1. Photolysis of N-nitrosopiperidine in the</td>
<td>6</td>
</tr>
<tr>
<td>presence of cyclic 1,3-dienes</td>
<td></td>
</tr>
<tr>
<td>2. Photolysis of N-nitrosopiperidine in the</td>
<td>22</td>
</tr>
<tr>
<td>presence of acyclic 1,3-dienes</td>
<td></td>
</tr>
<tr>
<td>3. Quantum yield determination for the</td>
<td>40</td>
</tr>
<tr>
<td>disappearance of N-nitrosopiperidine</td>
<td></td>
</tr>
<tr>
<td>4. Temperature effect in the photoaddition</td>
<td>45</td>
</tr>
<tr>
<td><strong>Section II</strong></td>
<td>47</td>
</tr>
<tr>
<td>1. Sensitization and quenching of the</td>
<td>47</td>
</tr>
<tr>
<td>photoaddition of N-nitrosopiperidine to</td>
<td></td>
</tr>
<tr>
<td>saturated hydrocarbons</td>
<td></td>
</tr>
<tr>
<td>2. Quenching of the photoreduction process</td>
<td>52</td>
</tr>
<tr>
<td><strong>Section III</strong></td>
<td>55</td>
</tr>
<tr>
<td>1. Sensitized photoaddition of N-nitrosamines</td>
<td>55</td>
</tr>
<tr>
<td>to aromatic hydrocarbons</td>
<td></td>
</tr>
<tr>
<td><strong>Discussion</strong></td>
<td>69</td>
</tr>
<tr>
<td><strong>Section I</strong></td>
<td>69</td>
</tr>
<tr>
<td>Addition of N-nitrosopiperidine to 1,3-dienes</td>
<td>69</td>
</tr>
<tr>
<td><strong>Section II</strong></td>
<td>82</td>
</tr>
<tr>
<td>Sensitization and quenching of the nitrosamine</td>
<td>82</td>
</tr>
</tbody>
</table>
Addition of N-nitrosamines to aromatic hydrocarbons

Experimental

Section I

General

Materials

Lamp sources

General Procedure for the Photolysis of N-nitrosopiperidine in the presence of a 1,3-diene

1. Photoaddition of N-nitrosopiperidine to 1,3-dienes

   A. To 1,3-cyclooctadiene
   B. To 1,3-cyclohexadiene
   C. To cyclopentadiene
   D. To cis-1,3-pentadiene
   E. To trans-1,3-pentadiene
   F. To cis, trans-2,4-hexadiene
   G. To 1-vinylcyclohexene
   H. To butadiene

2. Beckmann dehydration of crude 4-piperidino-2-butenal oxime

3. Synthesis of 4-piperidinocrotonitrile

4. Beckmann cleavage of anti-1-piperidino-cis-3-penten-2-one oxime (I-20)
5. Beckmann cleavage of crude mixture of I-19 and I-20 124

6. Beckmann cleavage of **anti-1-piperidino-trans-3-penten-2-one oxime** 125

7. Beckmann cleavage of a crude mixture of I-22 and I-23 125

8. Beckmann cleavage of the crude mixture of I-25 and I-27 126

9. Beckmann dehydration of the mixture of I-30 and I-31 126

10. Isomerization of **cis, cis-1,3-cyclooctadiene (COD)** using acetophenone as sensitiser 127

11. Attempted isomerization of **cis, cis-1,3-COD** using N-nitrosopiperidine 128

12. Attempted isomerization of **cis, cis-1,3-COD** using N-nitrosopiperidine in the presence of acid 128

13. Attempts to isomerize 1,3-pentadiene using N-nitrosopiperidine under neutral conditions 129

14. Attempts to isomerize **cis-1,3-pentadiene** in acidic media 129

15. Attempts to isomerize **trans-1,3-pentadiene** in acidic media 130

16. Photolysis of N-nitrosopiperidine in the presence of **cis and trans-1,3-pentadiene** 130

17. Photolysis of N-nitrosopiperidine in the presence of **cis, trans-, and trans, trans-2,4-hexadiene** 131
18. Photolysis of N-nitrosopiperidine in the presence of 1,3-cyclohexadiene
   A. At -75° 131
   B. At 49° 132

19. Quantum yield determinations for the disappearance of N-nitrosopiperidine 133

Section II

1. Photolysis of N-nitrosopiperidine in the presence of 1,3-pentadiene and naphthalene 137

2. Naphthalene-sensitized photoaddition of N-nitrosopiperidine to 1,3-pentadiene 138

3. Naphthalene sensitized photoaddition of N-nitrosopiperidine to cyclohexene 139

4. Naphthalene photosensitized addition of N-nitrosopiperidine to cyclohexene in the presence of benzonitrile 141

5. Attempted perylene photosensitized addition of N-nitrosopiperidine to cyclohexene 142

6. Attempted triphenylene sensitized photoaddition of N-nitrosopiperidine to cyclohexene 144

7. 1,2-Benzanthracene sensitized addition of N-nitrosopiperidine to cyclohexene 144

8. Attempted 1,4-dimethylanthracene sensitized photoaddition of N-nitrosopiperidine to cyclohexene 146

9. Anthracene sensitized photoaddition of N-nitrosopiperidine to cyclohexene 147

10. Attempted acetophenone photosensitized addition of N-nitrosopiperidine to cyclohexene 148
11. Acetophenone sensitized addition of N-nitrosopiperidine to cyclohexene 150

12. Quenching of the photolysis of N-nitrosopiperidine 150

A. In presence of naphthalene 150
B. In presence of acetophenone 152
C. In presence of triphenylene 152
D. In ethanol 153

Section III 155

General procedure 155

1. Anthracene sensitized photoaddition of N-nitrosopiperidine in the presence of cyclohexene 156

A. Under a nitrogen atmosphere 156
B. Under helium atmosphere 160
C. In the presence of 0.6M cyclohexene 161
D. Irradiation at 300 μm under helium atmosphere 163
E. In the presence of 0.2M bromobenzene 164

2. Photoaddition of N-nitrosopiperidine to anthracene 165

A. Under a nitrogen atmosphere 165
B. Under a helium atmosphere 166
C. Under an oxygen atmosphere 167
D. In the presence of 0.2M bromobenzene 170
E. In the presence of 0.6M bromobenzene

F. In the absence of hydrochloric acid

3. Bromobenzene-sensitized isomerization of cis-4-methyl-2-pentene

4. Anthracene sensitized photoaddition in the presence of bromobenzene and cis-4-methyl-2-pentene

5. Irradiation of anthracene in the presence of bromobenzene and cis-4-methyl-2-pentene

6. Irradiation of N-nitrosopiperidine in the presence of bromobenzene and cis-4-methyl-2-pentene

7. Attempted isomerization of cis-4-methyl-2-pentene by N-nitrosopiperidine

8. Photolysis of N-nitrosopiperidine in the presence of bromobenzene and cyclohexene

9. Photoaddition of N-nitrosopiperidine to cyclohexene in the presence of oxygen

10. Photolysis of 9-piperidino-10-anthrone oxime (III-1)

11. Irradiation of 1,4-dimethylanthracene in presence of N-nitrosopiperidine

12. Preparation of 1,4-dimethylanthracene

13. Photolysis of 1,3-dimethylanthracene

14. Preparation of 1,3-dimethylanthracene

15. Photolysis of 1,2-benzanthracene

16. Irradiation ofacenaphthylene in presence of N-nitrosodimethylamine
17. Photolysis of N-nitrosodimethylamine in presence of phenanthrene 188

18. Irradiation of pyrene in the presence of N-nitrosopiperidine 189

19. Irradiation of azulene in presence of N-nitrosopiperidine 190

20. Photolysis of N-nitrosodimethylamine in the presence of cyclohexene and oxygen 192

References 194

A proposal for further research 200
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table I</td>
<td>The chemical shifts of the various protons of the 1:1 adducts to 1,3-dienes</td>
<td>7</td>
</tr>
<tr>
<td>Table II</td>
<td>The variation in quantum yield of the photoaddition of N-nitrosopiperidine to olefin or diene in 0.06N methanolic HCl solution</td>
<td>42</td>
</tr>
<tr>
<td>Table III</td>
<td>The variation in quantum yield of the photoaddition of N-nitrosopiperidine to olefin or diene in 0.5N methanolic HCl solution</td>
<td>43</td>
</tr>
<tr>
<td>Table IV</td>
<td>Quantum yield determination of the disappearance of N-nitrosopiperidine in 0.5N methanolic HCl solution with varying concentration of olefin</td>
<td>44</td>
</tr>
<tr>
<td>Table V</td>
<td>The variation of the rate of disappearance of N-nitrosopiperidine with temperature</td>
<td>46</td>
</tr>
<tr>
<td>Table VI</td>
<td>Results of the photosensitized addition of N-nitrosopiperidine to unsaturated hydrocarbon</td>
<td>48</td>
</tr>
<tr>
<td>Table VII</td>
<td>The rate of photosensitization of N-nitrosopiperidine with different sensitizers</td>
<td>49</td>
</tr>
<tr>
<td>Table VIII</td>
<td>Photosensitization of N-nitrosopiperidine using anthracene</td>
<td>62</td>
</tr>
<tr>
<td>Table IX</td>
<td>Reagents, quantities and conditions used in photolyses of N-nitrosopiperidine in the presence of 1,3-dienes</td>
<td>99</td>
</tr>
<tr>
<td>Table X</td>
<td>Products obtained from the photolyses of N-nitrosopiperidine in the presence of the various 1,3-dienes</td>
<td>100</td>
</tr>
</tbody>
</table>
### List of Figures

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The mass spectrum of I-1 at 80 eV</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>The mass spectrum of I-2 at 80 eV</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>The mass spectrum of I-3 at 80 eV</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>The mass spectrum of I-4 at 80 eV</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>The coupling pattern of the olefinic protons of a mixture of I-1 and I-5</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>The nmr spectrum of I-6 at 60 Mc</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>The $H_A$, $H_B$, $H_E$ and $H_X$ signals of I-6 at 100 Mc</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>The nmr spectrum of I-7 at 60 Mc</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>The $H_A$, $H_B$ and $H_C$ signals of I-7 at 100 Mc</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>The nmr spectrum of I-8 at 60 Mc</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>The $H_A$, $H_B$ and $H_C$ signals of I-8 at 100 Mc</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>The nmr spectrum of I-11 at 60 Mc</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>The nmr spectrum of I-9 at 60 Mc</td>
<td>21</td>
</tr>
<tr>
<td>14</td>
<td>The nmr spectrum of I-10 at 60 Mc</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>The nmr spectrum of 4-piperidinocrotonitrile I-15 at 60 Mc obtained from a) the crude photolysate b) synthetic mixture c) I-14</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>The nmr spectrum of cis-crotonitrile obtained a) from I-19 b) crude mixture</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>The vpc analysis of a) of the products from Beckmann dehydration of a mixture of I-19, I-20 b) commercial mixture</td>
<td>29</td>
</tr>
</tbody>
</table>
Fig. 18 The olefinic pattern of I-22 (500 cps sweep width) and I-23 (250 cps sweep width) at 60 Mc

Fig. 19 The vpc analysis of the crotonitrile obtained from Beckmann cleavage of a) crude mixture of I-22 and I-23 b) mixed injection of a) and c) commercial mixture of crotonitrile

Fig. 20 The nmr spectrum of crotonitrile obtained from Beckmann cleavage of a) I-23 b) mixture of I-22 and I-23 c) I-23 in 2% KOH d) commercial mixture of cis- and trans-crotonitrile

Fig. 21 The 1:1 adducts of cis, trans-2,4-hexadiene

Fig. 22 Plot of Fe$^{+2}$ concentration versus optical density of actinometer solution complexed with 1,10-phenanthroline measured at 510 mu.

Fig. 23 Plot of temperature versus the rate of disappearance of N-nitrosopiperidine

Fig. 24 Plot the rate of sensitization of N-nitrosopiperidine versus $\hat{\Phi}_f$

Fig. 25 The structure of III-1

Fig. 26 The structure of III-9 and III-10

Fig. 27 The conformation of the 1,2- and 1,4-adducts of N-nitrosopiperidine to cyclohexene

Fig. 28 Proposed complex leading to the 1,2-addition of N-nitrosopiperidine to a carbon carbon double bond

Fig. 29 Proposed complex leading to 1,4-addition of N-nitrosopiperidine to a 1,3-diene

Fig. 30 The photolysis apparatus
Acknowledgment

The author wishes to express his sincere gratitude to Professor Y. L. Chow for his continued guidance, advice, patience and assistance.

Thanks are also due to:
Professor Karl Kopecky, University of Alberta, for some 100 Mc nmr spectra and decoupling experiments.
Professor William Ayer, University of Alberta for some MS-9 mass spectra.
Professor Edward Piers, University of British Columbia for some 100 Mc spectra.
The Faculty members of the Chemistry Department, Simon Fraser University for their encouragement.
The Fellow students for the fellowship, cooperation and discussion.
Introduction

Several years ago it was discovered in our laboratory that a nitrosamine could undergo photolytic addition to a carbon-carbon double bond very efficiently in the presence of an acid (1). Prior to this discovery, it was demonstrated by Chow (2,3) as well as by Burgess (4) that a nitrosamine undergoes photodecomposition in the presence of an acid to give the corresponding α-τ-amidoxime. Subsequently these photo-reactions were extensively studied in this laboratory (5,6,7) and much information has accumulated concurrent with this investigation. With respect to the nitrosamine photodecomposition, various fellow investigators simultaneously found that a photoexcited nitrosamine reacts with methanol to give piperidine, formaldehyde, N-piperidinoformamide and, probably, HNO (5,6,7).

However, the photoaddition to an olefin was a more efficient process than all these photodecompositions since irradiation of a nitrosamine in methanolic solution of an olefin generally gave more of the photoadduct than the photodecomposition products (8). It was proven to be that the amino moiety attached itself to the least substituted carbon atom of the double bond and the nitroso group to the most substituted carbon atom (8). The primary photoadduct was shown to
be a 1-amino-2-nitrosoalkane which dimerized reversibly to the corresponding trans-dimer or tautomerized to the corresponding oxime (8). Generally, both the dimer of the C-nitroso compound and the oxime could be isolated in a good yield; the former could be transformed to the latter under the irradiation conditions. Further, HNO (formed in situ) was shown to add to a C-nitroso compound leading to N-nitrosophydroxylamine (5,6). Concurrent work by S.C. Chen of this laboratory demonstrated that an ionic mechanism was unlikely and that the trans-addition mode pertained in the photoaddition (5). He further proposed a free radical mechanism to explain the photoaddition (8). The pattern of the photoaddition can be summarized as follows:
A survey of the literature has revealed that the photo-additions of the various XY addenda across a carbon-carbon double bond to give X-C-C-Y-type compounds generally follow a free radical chain process (9).

Of particular interest to this work is the addition of N-chloramines to olefins (10 - 13). This addition has been postulated to proceed through an aminium free radical intermediate as shown below.

\[ \overset{\text{N}}{\text{H}} + \overset{\text{C}=\text{C}}{\text{<}} \rightarrow \overset{\text{N}}{\text{C}}-\text{C}^\equiv \]

\[ \overset{\text{N}}{\text{C}}-\text{C}^\equiv + \overset{\text{N}}{\text{H}}-\text{Cl} \rightarrow \overset{\text{N}}{\text{C}}-\text{C}-\text{Cl} \]

+ \overset{\text{N}}{\text{H}}
Thus by analogy it could be expected that the N-nitrosoamines would photolytically cleave in a similar manner to give an aminium radical and nitric oxide. However, evidence against such a process was found through the study of the photoaddition of hindered nitrosamines to olefins (14). A salient point in this study, was the fact that the supposedly more hindered N-nitroso-2,6-dimethylpiperidine would add to styrene almost quantitatively while the supposedly less hindered N-nitroso-2-methylpiperidine would do so in about 50% yield. A nmr study on the conformation in solution of several N-nitrosamines (15) revealed that the N-nitroso-2,6-dimethylpiperidine had the 2,6-methyl groups axially oriented while in the N-nitroso-2-methylpiperidine, the methyl group is equatorially oriented. The equatorial methyl group hindered the photoaddition while ones at axial positions did not. If an aminium radical was the reactive species generated in solution, it is expected in the N-nitroso-2,6-dimethylpiperidinium radical would have the 2,6-dimethyl groups equatorially oriented. This would be reflected in very low yields of photoaddition product. Thus the N-nitrosamines must add to unsaturated hydrocarbons as a complete entity. In order to unravel the subsequent steps after the initial addition step, it was decided to investigate the nitrosamine photoaddition to conjugated
dienes and to aromatic hydrocarbons. At the same time, the probability of an aromatic hydrocarbon-photosensitized reaction of N-nitrosamine was investigated.
Results
Section I

1. Photolysis of N-nitrosopiperidine in the presence of cyclic 1,3-dienes

The photolysis of N-nitrosopiperidine in methanolic solution containing at least one equivalent of mineral acid and in the presence 1,3-cyclooctadiene, proceeded smoothly. The N-nitrosopiperidine absorption band at ca. 350 μm decreased with the expected zero order kinetics. The neutral fraction of the photolysate was shown to contain N-nitrosopiperidine and 1,3-cyclooctadiene by ir and nmr spectral analysis. The basic resin, upon treatment with cyclohexane, gave white crystals as the major product. The major product was shown by elemental analysis to be a 1:1 adduct, syn-4-piperidino-2-cycloocten-1-one oxime (I-1). The mass spectrum did not show the molecular ion peak, but showed the (M+ - OH) peak distinctly at m/e 204 (Fig. 1). The ir spectrum showed the typical oximino group absorption in the 1000-900 cm⁻¹ region and the C=C absorption at 1615 cm⁻¹. The nmr spectrum of this compound showed the olefinic protons as a part of an ABX system in which H_A appeared as a doublet (J_AB=12.5 cps), H_B as a quartet and H_X as a multiplet. The chemical shift for the various protons appear in Table I. The coupling constant
TABLE I

The chemical shifts of the various protons
of the 1:1 adducts to 1,3-dienes

<table>
<thead>
<tr>
<th></th>
<th>$H_A$</th>
<th>$H_B$</th>
<th>$H_X$</th>
<th>$H_C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>3.54</td>
<td>4.27</td>
<td>6.34</td>
<td>-</td>
</tr>
<tr>
<td>I-2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I-3</td>
<td>3.98</td>
<td>3.71</td>
<td>6.38</td>
<td></td>
</tr>
<tr>
<td>I-4</td>
<td>3.84</td>
<td>4.18</td>
<td>7.9</td>
<td>8.6</td>
</tr>
<tr>
<td>I-5</td>
<td>3.8</td>
<td>4.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-6</td>
<td>3.55</td>
<td>3.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-9</td>
<td>3.73</td>
<td>3.73</td>
<td>7.47</td>
<td></td>
</tr>
<tr>
<td>I-10</td>
<td>3.43</td>
<td>3.43</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>I-11</td>
<td>3.6</td>
<td>3.6</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>I-15</td>
<td>3.28</td>
<td>4.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-16</td>
<td>3.38</td>
<td>3.93</td>
<td>6.96</td>
<td></td>
</tr>
<tr>
<td>I-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-19</td>
<td>3.69</td>
<td>4.2</td>
<td>7.91</td>
<td>7.91</td>
</tr>
<tr>
<td>I-20</td>
<td>3.97</td>
<td>4.21</td>
<td>8.23</td>
<td></td>
</tr>
<tr>
<td>I-22</td>
<td>3.96</td>
<td>3.96</td>
<td>8.25</td>
<td></td>
</tr>
<tr>
<td>I-23</td>
<td>3.36</td>
<td>3.36</td>
<td>8.18</td>
<td></td>
</tr>
<tr>
<td>I-24</td>
<td>3.86</td>
<td>3.86</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>I-25</td>
<td>3.96</td>
<td>3.96</td>
<td>8.18</td>
<td></td>
</tr>
<tr>
<td>I-26</td>
<td>3.94</td>
<td>3.18</td>
<td>6.82</td>
<td></td>
</tr>
<tr>
<td>I-27</td>
<td>3.28</td>
<td>3.28</td>
<td>8.12</td>
<td></td>
</tr>
<tr>
<td>I-29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. The mass spectrum of I-1 at 80 eV.
Fig. 2. The mass spectrum of I-2 at 80 eV.
of 12.5 cps clearly indicates the cis configuration for the double bond and the coupling patterns place the piperidine ring at the C-4 carbon atom. The spectral evidence also excludes the alternate structures I-2 and I-4, i.e. the 1,2-addition products from this diene. The geometry of the oximino group was assigned as syn* configuration (vide infra).

I-2, I-3, I-4, I-5 were isolated as minor photolysis products by chromatography of the cyclohexane mother liquor. The first compound eluted was identified as syn-8-piperidino-2-cycloocten-1-one oxime (I-2); mp 111-115°. The mass spectrum of I-2 gave the correct M^+ ion (222) for C_{13}H_{22}N_{2}O and the readily interpretable fragmentation pattern (Fig. 2) which is very similar to that of the corresponding anti-isomer I-4. The syn** configuration was assigned on the basis of the tlc mobility of I-2 in comparison to that of the corresponding anti-isomer I-4. We had shown (16) that the syn isomers of \alpha-L-amino oximes generally have higher mobility than the corresponding anti-isomers on tlc analysis. Also the syn isomer was generally stained light yellow with iodine vapour.

*Syn, in the case of 1,4-addition, is defined as the isomer having the oxime hydroxyl group on the same side as the c=c double bond, the anti being the opposite case.

**The syn configuration of \alpha-L-amino substituted oximes is assigned to the isomer which has the hydroxyl group of the oximino moiety on the same side as the \alpha-amino substituent. The anti-isomer is the opposite case.
Fig. 3. The mass spectrum of I-3 at 80 eV.
Fig. 4. The mass spectrum of I-4 at 80 eV.
while the anti-isomer stained dark brown.

The next compound eluted was identified as 4-piperidino-2-cycloocten-1-one (I-3). This oil showed a strong carbonyl absorption at 1665 cm\(^{-1}\). The nmr spectrum showed the olefinic protons as a part of an ABX system in which \(H_A\) proton appeared as a doublet (\(J_{AB} = 10\) cps), \(H_B\) proton as a double doublet and \(H_X\) as a multiplet. This data indicated that I-3 contained a \(\delta\)-amino-\(\alpha,\beta\)-unsaturated ketone system. The mass spectrum substantiated the molecular formula \(C_{13}H_{21}NO\) by showing a distinct \(M^+\) peak at m/e 207 (Fig. 3).

On continued elution, anti-8-piperidino-2-cycloocten-1-one oxime (I-4) was obtained. The ir spectra showed absorption at 1660 and 1000-900 cm\(^{-1}\) and molecular formula \(C_{13}H_{22}N_2O\) was confirmed by \(M^+\) ion peak at 222 (Fig. 4). The nmr spectrum showed the olefinic protons as part of a poorly resolved ABX\(_2\) system. Proton \(H_A\) appeared as a doublet (\(J_{AB} = 12\) cps) and the proton \(H_B\) as a multiplet. The signal for \(H_X\) was superimposed on the signals due to the remaining methylene protons (\(\gamma 7.9 - \gamma 8.6\)). The signals for \(H_C\) were a broad multiplet centered at \(\gamma 6.57\).

The remaining fraction from chromatography was a mixture of the syn- and anti-1,4-adducts. The anti-4-piperidino-2-cyclooct-2-en-1-one oxime I-5 could not be obtained in pure
state but its presence was indicated by the nmr spectrum of the mixture (Fig. 5). The complex signals in the olefinic region can be resolved into two doublets (due to $H_A$ and $H_A'$) and two double doublets (due to $H_B$ and $H_B'$). The doublet ($H_A$) at $\tau 3.26$ and the double doublet at $\tau 4.2$ ($H_B$) are due to the olefinic proton of syn isomer I-1. The second doublet ($H_A'$) at $\tau 3.8$ and the remaining double doublet at $\tau 4.46$ ($H_B'$) were assigned to the olefinic protons of anti-isomer I-5.

![Diagram of coupling pattern of olefinic protons]

**Fig. 5.** The coupling pattern of the olefinic protons of a mixture of I-1 and I-5.
HA and HB were more deshielded by a long range anisotropic effect of the syn oximino group.

The photolysis of N-nitrosopiperidine in the presence of 1,3-cyclohexadiene gave similar results. Evaporation of the photolysate yielded a salt. A part of this salt was basified and the product recrystallized to afford anti-4-piperidino-2-cyclohexen-1-one oxime (I-6). In addition to the pertinent analysis data and the ir absorption, the nmr spectrum at 60 Mc (Fig. 6) showed HA at 73.55 and HB at 73.92 as the AB part of an ABX system. Since the pattern of the multiplet in the region of 76.14-7.0, integrated to ~1.5 protons, remained unchanged at higher temperature (60°, 80° and 100°C), this signal cannot be due to two slowly equilibrating chair conformations of I-6. The nmr spectroscopy at 100 Mc (17) (Fig. 7) revealed that the multiplet could be resolved into two components: one proton double triplet HE (J = 17 and 7 cps) centered at 76.59 and one proton multiplet at 76.85 for HC. The low chemical shift of HE clearly indicated the anti configuration of I-6 since Tragger and Huitric (18) found that the equatorial proton syn to the oximino hydroxyl group resonated at ca. 76.61 in 4-butylcyclohexanone oxime.
Fig. 6. The nmr spectrum of I-6 at 60 Mc.

Fig. 7. The $H_A$, $H_B$, $H_E$ and $H_X$ signals of I-6 at 100 Mc.
The minor products were syn-6-piperidino-2-cyclohexen-1-one oxime, I-7, and the corresponding anti-isomer I-8. The corresponding syn-1,4-adduct, syn-4-piperidino-2-cyclohexen-1-one oxime, could not be detected among the minor products. The 1,2-adducts I-7 and I-8 showed the expected hydroxyl, olefinic and oximino group stretching absorptions in the IR region. The NMR spectra for these two isomers differed only in the chemical shift of those protons affected by the diamagnetic anisotropic effect of the oximino group. Each isomer showed the signals due to the olefinic protons as the AB part of an ABX₂ system, indicating that the piperidine ring was not located at the C-4 position. The position of the piperidine ring at C-6 was established by the double doublet (J = 5, 3 cps) of the methine proton H₃ which indicated that H₃ was coupled to equatorial and axial protons of the vicinal methylene group. The syn and anti isomerism of I-7 and I-8 was established by the TLC method (16) and further substantiated by NMR spectral analysis. Isomer I-7 showed the oximino hydroxyl proton at δ -4.1 in contrast to that of I-8 which appeared at δ 2.53 under a comparable concentration (0.1M) and indicated a possible intramolecular hydrogen bonding (19) between this proton and the piperidine nitrogen atom. The methine proton H₃ (Fig. 8.9) in I-7 shifted downfield
Fig. 8. a) The nmr spectrum of I-7 at 60 Mc.

Fig. 9. The $H_A$, $H_B$ and $H_C$ signals of I-7 at 100 Mc.
(7 5.92) while in I-8 appeared at a higher field (7 6.98). In contrast, the olefinic pattern of I-8 appeared at lower field (7 3.5) relative to that of I-7 (3.9) (Fig. 10, 11). These patterns of the chemical shifts are in agreement with the assignments of the syn-configuration to I-7 and the anti to I-8.

The photoaddition to cyclopentadiene showed quite a different uv profile during the reaction. While the 350 µm band decreased with zero order kinetics, two new absorption bands appeared at ca. 300 µm and 407 µm. The 300 µm band reached the maximum after three quarter hours of irradiation and then gradually disappeared. The second absorption band at 407 µm reached a maximum intensity at the end of photolysis (1 hour and forty minutes). This band gradually disappeared upon standing in the dark. Though the course of the photoaddition appeared different, the products were syn-5-piperidino-2-cyclopenten-1-one oxime (I-9), anti-5-piperidino-2-cyclopenten-1-one oxime (I-10) and 4-piperidino-2-cyclopenten-1-one oxime (I-11). The 1,4-adduct, I-11, was the major product. The three adducts showed the characteristic absorptions for a hydroxyl (3200 cm⁻¹), an olefinic (1625 cm⁻¹) and an oximinogroup (1000-900 cm⁻¹) stretching frequencies in their ir spectrum. The nmr spectrum for I-11 (Fig. 12) showed an
Fig. 10. a) The nmr spectrum of I-8 at 60 Mc.

Fig. 11. The $H_A$, $H_B$ and $H_C$ signals of I-8 at 100 Mc.
Fig. 12. The nmr spectrum of I-11 at 60 Mc.

Fig. 13. The nmr spectrum of I-9 at 60 Mc.

Fig. 14. The nmr spectrum of I-10 at 60 Mc.
ABX pattern substantiating the assignment of a 1,4-adduct. The syn-anti isomerism of the 1,2-adducts I-9 and I-10 was established by the tlc method and by the downfield shift of those protons on the same side of the oximino hydroxyl group (Fig. 13, 14).

2. Photolysis of N-nitrosopiperidine in the presence of acyclic 1,3-dienes

In an attempt to shed more light on the mechanism of photoaddition, the photoaddition to acyclic 1,3-dienes were investigated. The photoaddition N-nitrosopiperidine to butadiene gave syn and anti-1-piperidino-3-buten-2-one oximes (I-12, I-13) as the minor products. The ir spectra for these two isomers showed the characteristic hydroxyl, olefinic and oximino group stretching absorption. The nmr spectra of these compounds showed a clean ABX system for the three olefinic protons. The methylene group of syn isomer I-12, as expected, appeared at a lower field (γ 6.56) relative to anti isomer I-13 (γ 6.82). The major photoadduct was 4-piperidino-2-butenal oxime (I-14). The ir spectrum of I-14 showed the expected absorption for the structure. The nmr spectrum showed the methylene signal at γ 6.91 which was coupled to the olefinic protons. However, the complex coupling pattern of the olefinic protons did not allow the determination of the configuration of the double bond. Treatment of aldoxime I-14 with
p-toluenesulfonyl chloride in pyridine (Beckmann dehydration) converted it to 4-piperidino-trans-2-crotonitrile (I-15) (Scheme 1) in which the trans-configuration of the double bond was decided by the coupling constant (16 cps) between the olefinic protons (Fig. 15c).

Scheme 1:

Beckmann dehydration of the crude product yielded a basic fraction which was shown, without further purification, to be pure I-15 as indicated by a comparison of the nmr spectrum with that of a synthetic mixture of the cis and trans-4-piperidinocrotonitrile (Fig. 15a and 15b). The analysis demonstrated the absence of 4-piperidino-cis-2-crotonitrile in the Beckmann dehydration product and therefore the absence of 4-piperidino-cis-2-butenal oxime in the crude mixture from photolysis.
Fig. 15. The nmr spectrum of 4-piperidinocrotonitrile I-15 at 60 Mc, obtained from:

a) the crude photolysate

b) synthetic mixture

c) I-14
The photoaddition to cis- and trans-1,3-pentadiene gave a more complex mixture of adducts. Since 1,3-pentadienes are readily isomerized by photosensitization (20) it was necessary to examine whether the photoexcited nitrosoamine could sensitize such isomerization. In the absence of an acid, the ratio of a cis-trans mixture (40:60) of 1,3-pentadiene was not changed when irradiated in the presence of N-nitrosopiperidine in a pyrex apparatus (Sect. I, 13). This negative result did not safeguard that similar results would be obtained under the conditions in which the photoaddition took place, i.e. in an acidic media. When the photoaddition to pure cis- or trans-1,3-pentadiene was terminated at about 80% completion, it was found that the remaining 1,3-diene was not isomerized at all, as analysed by vpc (Exp. Sect. I, 14, 15).

The photoaddition of N-nitrosopiperidine to cis-1,3-pentadiene following the usual experimental procedures gave 5-piperidino-trans-3-penten-2-one oxime (I-16) as the major product (Scheme 2). I-16 showed the ir absorption at 3200, 1620, 1000-900 cm⁻¹. The nmr spectrum taken in pyridine showed an ABX₂ system with a large J_AB coupling (16 cps) indicating that the double bond had the trans configuration. The methylene hydrogens (Hₓ) resonated at 6.96 as a doublet (J_BX 6 cps) which confirm the location of the piperidine ring
Scheme 2:

\[
\text{Scheme 2:}
\]

\[
\text{I-16}
\]

\[
\text{I-19}
\]

\[
\text{I-20}
\]

\[
\text{I-17}
\]

\[
\text{I-21}
\]

\[
\text{I-18}
\]
The terminal methyl group appeared as the singlet at $\gamma 7.87$. The product of the alternative mode of addition, (4,1-addition) 4-piperidino-trans-2-pentenal oxime (I-17), was also observed in 12% yield. This compound could not be obtained in spectrosopically pure form since a small amount of I-16 could not be removed through conventional chromatographic or recrystallization techniques. However, the nmr spectrum of a mixture of I-17, 70% enriched in I-17, showed the signal for $H_B$ as doublet at $\gamma 2.3$ ($J_{BC} = 9$ cps). The signals for $H_C$ and $H_D$ were superimposed with the olefinic proton signals of I-16. The methyl group at $\gamma 8.78$ was split into a doublet ($J = 6$ cps) by $H_E$.

The 1,2-adducts syn-2-piperidino-4-pentene-3-one oxime (I-18), syn-1-piperidino-cis-3-penten-2-one oxime (I-19) and anti-1-piperidino-cis-3-penten-2-one oxime (I-20) were obtained by chromatography of the crude basic resin and they were minor products. Compounds I-19 and I-20 are the "normal" 1,2-adducts while compound I-18 is a reverse or 4,3-addition product to the disubstituted double bond. The corresponding anti isomer of the 4,3-adduct, anti-2-piperidino-4-penten-3-one oxime (I-21), could be detected by nmr and tlc but could not be properly characterized.
Fig. 16. The nmr spectrum of cis-crotonitrile obtained:
   a) from I-20
   b) crude mixture
Fig. 17. The vpc analysis of a) the products from Beckmann dehydration of a mixture of I-19, I-20. b) commercial mixture.
The nmr spectra of the 1,2-adducts were very useful for the determination of the stereochemistry. The coupling constants for the ABX₃ pattern for the olefinic protons of adducts I-19 and I-20 were 12.5 and 12 cps respectively, showing that the double bond had retained the original cis configuration. This conclusion was further substantiated by Beckmann cleavage reaction (21) of anti-1,2-adduct I-20 and a crude mixture of the 1,2-adducts to give cis-crotonitrile exclusively as shown by the nmr and vpc analyses (Fig. 16, 17, Scheme 3).

Scheme 3:

Similar results were obtained from the addition of N-nitrosopiperidine to trans-1,3-pentadiene. The major product from photolysis was again the 1,4-adduct, I-16. The inverse 4,1-adduct, I-17 was also present but only in ~3% yield. Careful tlc and nmr analyses of the crude mixture from photolysis showed that the inverse 4,3-adducts, I-18 and I-21 were present in trace amounts. The normal 1,2-adducts, syn-1-piperidino-trans-3-penten-2-one oxime (I-22) and anti-1-piperidino-trans-3-penten-2-one oxime (I-23), were isolated
Fig. 18. The olefinic pattern of I-22 (500 cps sweep width) and I-23 (250 cps sweep width) at 60 Mc.
Fig. 19. The vpc analysis of the crotonitrile obtained from Beckmann cleavage of a) crude mixture of I-22 and I-23 b) mixed injection of a) and c) c) commercial mixture of crotonitrile
Fig. 20. The nmr spectrum crotonitrile obtained from Beckmann cleavage of a) I-23 b) mixture of I-22 and I-23 c) I-23 in 2% KOH d) commercial mixture of cis-and trans-crotonitrile.
in 10% and 17% yield, respectively. The nmr spectrum in benzene-d$_6$ (Fig. 18) of syn isomer I-22 showed the olefinic proton H$_A$ as a doublet and H$_B$ as two quartets ($J_{AB} = 16$ cps). The nmr spectrum of anti isomer I-23 (Fig. 18) showed the olefinic proton H$_A$ as a doublet. Each line of the doublet is further slightly split (1 cps) by the methyl group (H$_X$) through an allylic coupling. The H$_B$ proton appeared as two quartets with $J_{AB} = 16$ cps and $J_{BX} = 6$ cps. The larger olefinic couplings (16 cps) proved these compounds to have the trans configuration. The trans configuration of 1,2-adducts I-22 and I-23 was further substantiated through Beckmann cleavage reaction. The first reaction carried out, using 2% aqueous KOH was inconclusive since a pure sample of trans I-23 gave a mixture of trans:cis crotonitrile (80:20). The isomerization might have happened during cleavage reaction. However when the cleavage reactions were run at low temperatures in pyridine, a pure sample of I-23 afforded pure trans crotonitrile. Under the same conditions a crude mixture of trans:anti crotonitrile was cleaved to trans-crotonitrile. The vpc and nmr analyses (Fig. 19 and Fig. 20) showed that no cis-crotonitrile was present in the crude reaction mixture. Thus, the addition to the trans 1,3-diene is also a stereospecific addition.
The experimental results appear to point out that a cis double bond was more reactive than the trans double bond towards the photoaddition, since the inverse-4,1-adduct (I-17) was isolated in amounts four times larger in the former case. For this reason the addition to cis-trans-2,4-hexadiene was investigated. Irradiation of N-nitrosopiperidine in the presence of the olefin gave the 1,4-adduct, namely 5-piperidino-trans-3-hexen-2-one oxime (I-24) as the major product. The minor products were syn-2-piperidino-trans-4-hexen-3-one oxime (I-25), 5-piperidino-trans-3-hexen-2-one (I-26) and the anti-2-piperidino-trans-4-hexen-3-one oxime (I-27). The trans configuration in I-25 was indicated by the ABX₃ coupling pattern in the nmr spectrum in which the coupling constant for the olefinic protons (centered at 73.96) was 16 cps. The methyl group (H₅) appeared as a doublet (Jₓₓ = 6 cps). The nmr spectrum of I-27 showed the olefinic protons as the part of an ABX₃ system in which Hₐ and Hₜ are centered at 73.28 (Jₐₕ = 17 and Jₕₐ = 7 cps). The syn and anti configuration was deduced from the chemical shifts of the double bond as well as from their tlc mobility.

In order to find out the selectivity of addition to the cis and the trans double bond, the crude 1,2-adducts were
converted to the crotonitrile by Beckmann cleavage reaction. The nmr and vpc analysis of the crude nitrile fraction showed that the ratio of cis-to trans-crotonitrile was 3 to 97.

Fig. 21. The 1:1 adducts to cis, trans-2,4-hexadiene.

The third minor product isolated in a small amount was the ketone I-26. This compound was isolated as an oil which showed a carbonyl stretch at 1678 cm$^{-1}$. The nmr spectrum showed an ABX system for the olefinic protons with H$_B$ at $\gamma$ 3.18 as a double doublet ($J_{AB} = 17$ and $J_{AX} = 7$ cps) and H$_A$ proton at $\gamma$ 3.94 as a doublet. The H$_X$ proton at $\gamma$ 6.12 appeared as two quartets ($J_{DX} = 7$ cps) (Fig. 21). It is assumed that the small amount of ketone isolated comes from hydrolysis of the corresponding oxime during work-up.
The last photoaddition investigated in this sequence was the addition to 1-vinylcyclohexene. This diene was synthesized as described in the literature (22) which consisted of treating cyclohexanone with the potassium salt of acetylene

Scheme 4:

\[
\text{Cyclohexanone} + \text{CH}_2\text{C}^-\text{K}^+ \xrightarrow{\text{H}_2/\text{Pt}} \text{1-vinylcyclohexanol} \xrightarrow{\text{KHSO}_4} \text{1-vinylcyclohexene}
\]

to give 1-acetylene-1-cyclohexanol as the first step. The acetylene derivative was then reduced over platinum to give 1-vinylcyclohexanol and this was then dehydrated over potassium hydrogen sulfate to give 1-vinylcyclohexene (Scheme 4). The product, though it gave the correct boiling point, contained about 5% of I-28 as an impurity, as shown by the nmr analysis. The mixture was used for the photoaddition. The irradiation of N-nitrosopiperidine in the presence of this
diene followed zero order kinetics until the complete disappearance of the 350 μm band. The solution was worked up as described in the experimental section to afford compounds I-29, I-30 in 13% yield and I-31 in 27% yield. (Scheme 5).

The compound I-29 showed ir absorptions at 3110 cm⁻¹, 1680 cm⁻¹, and 1608 cm⁻¹. The typical N-O stretching modes appeared in the 1000-900 cm⁻¹ region. The nmr spectrum showed a D₂O exchangeable proton at 0.07, the olefinic proton at 4.03, and the methylene singlet at 6.62. Microanalysis and mass spectral analyses of I-29 showed the compound to have the molecular formula C₁₃H₂₂N₂O. This information showed that the compound was the 1,2-adduct across the vinyl group. Compounds I-30 and I-31 were the syn and anti isomers resulting from the "inverse" 4,1-addition and were obtained as a
mixture. Syn isomer I-30 showed $H_A$ as a doublet at $\gamma_{1.92}$ ($J_{AB} = 10$ cps) coupled with the olefinic proton $H_B$ ($\gamma_{3.97}$).

Scheme 6:

I-30  +  I-31

\[ \text{pTsCl} \]

I-32
Anti isomer I-31 showed H_A at a higher field (γ 2.10, J_{AB} = 10 cps) relative to H_A of the syn isomer coupled with the olefinic proton H_B (γ 3.41). The chemical shift patterns were in full agreement with the long range anisotropic effect of an oximino group (18). A mixture of these isomers was dehydrated (Scheme 6) to give the same nitrile I-32, substantiating the syn and anti-assignments. The 100 Mc nmr spectrum of nitrile I-32 showed the H_C proton as a broad singlet (γ 4.62) which was resolved to a doublet when either H_A (γ 7.73) or H_B (γ 7.21) was decoupled from which the coupling constants were found to be J_{CA} = 1.0 and J_{CB} = 1.4 cps. It has been shown that trans allylic coupling is always smaller than cis coupling by about 0.5 cps (23). Thus, compound I-32 has the piperidine group oriented trans to the nitrile group. Thus the configuration of oximes I-30 and I-31 must have the piperidino and the aldoximino group in the trans relation as shown.

3. Quantum yield determination for the disappearance of N-nitrosopiperidine

The quantum yields were determined using a merry-go-round apparatus. The chemical actinometry described by Parker and Hatchard was used for photon count (24). The plot of the optical density of the actinometer solution com-
Fig. 22. Plot of $\text{Fe}^{2+}$ concentration versus optical density of actinometer solution complexed with 1,10-phenanthroline measured at 510 μm.
**TABLE II**

The variation in quantum yield of the photoaddition of N-nitrosopiperidine to olefin or diene in 0.06N methanolic HCl solution

<table>
<thead>
<tr>
<th>olefin</th>
<th>olefin moles</th>
<th>N-nitrosopiperidine moles</th>
<th>optical density 0 min</th>
<th>optical density 20 min</th>
<th>nitrosamine disappearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>----</td>
<td>2.06x10^{-3}</td>
<td>1.74</td>
<td>1.40</td>
<td>2.56</td>
</tr>
<tr>
<td>cyclohexene</td>
<td>2.6x10^{-3}</td>
<td>2.06x10^{-3}</td>
<td>1.74</td>
<td>1.38</td>
<td>2.66</td>
</tr>
<tr>
<td>1,3-pentadiene</td>
<td>3.2x10^{-3}</td>
<td>2.06x10^{-3}</td>
<td>1.74</td>
<td>1.38</td>
<td>3.02</td>
</tr>
<tr>
<td>trans, trans-2,4-hexadiene</td>
<td>2.4x10^{-3}</td>
<td>2.06x10^{-3}</td>
<td>1.74</td>
<td>1.31</td>
<td>3.23</td>
</tr>
<tr>
<td>cis, trans-2,4-hexadiene</td>
<td>2.2x10^{-3}</td>
<td>2.06x10^{-3}</td>
<td>1.74</td>
<td>1.30</td>
<td>3.31</td>
</tr>
</tbody>
</table>
## TABLE III

The variation in quantum yield of the photoaddition of N-nitrosopiperidine to olefin or diene in 0.5 N methanolic HCl solution

<table>
<thead>
<tr>
<th>olefin</th>
<th>olefin moles</th>
<th>N-nitrosopiperidine moles</th>
<th>optical density 0 min</th>
<th>optical density 20 min</th>
<th>$\Phi_B$ for nitrosamine disappearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>---</td>
<td>2.05x10^-3</td>
<td>1.65</td>
<td>1.30</td>
<td>2.46</td>
</tr>
<tr>
<td>cyclohexene</td>
<td>2.0x10^-3</td>
<td>2.05x10^-3</td>
<td>1.65</td>
<td>1.26</td>
<td>2.74</td>
</tr>
<tr>
<td>1,3-pentadiene</td>
<td>2.0x10^-3</td>
<td>2.05x10^-3</td>
<td>1.65</td>
<td>1.215</td>
<td>3.06</td>
</tr>
<tr>
<td>trans, trans-2,4-hexadiene</td>
<td>2.1x10^-3</td>
<td>2.05x10^-3</td>
<td>1.65</td>
<td>1.216</td>
<td>3.05</td>
</tr>
<tr>
<td>cis, trans-2,4-hexadiene</td>
<td>2.3x10^-3</td>
<td>2.05x10^-3</td>
<td>1.65</td>
<td>1.23</td>
<td>2.95</td>
</tr>
</tbody>
</table>
TABLE IV

Quantum yield determination of the disappearance of N-nitrosopiperidine in 0.5N methanolic HCl solution with varying concentration of olefin

<table>
<thead>
<tr>
<th>(cyclooctene) M</th>
<th>N-nitrosopiperidine moles</th>
<th>optical density 0 min</th>
<th>optical density 20 min</th>
<th>$\Phi_B$ for nitrosamine disappearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>2.08x10^{-3}</td>
<td>1.700</td>
<td>1.328</td>
<td>2.89</td>
</tr>
<tr>
<td>2.0x10^{-2}</td>
<td>2.08x10^{-3}</td>
<td>1.328</td>
<td>1.235</td>
<td>3.56</td>
</tr>
<tr>
<td>4.0x10^{-2}</td>
<td>2.08x10^{-3}</td>
<td>1.680</td>
<td>1.214</td>
<td>3.80</td>
</tr>
<tr>
<td>8.0x10^{-2}</td>
<td>2.08x10^{-3}</td>
<td>1.665</td>
<td>1.263</td>
<td>3.26</td>
</tr>
<tr>
<td>16.0x10^{-2}</td>
<td>2.08x10^{-3}</td>
<td>1.69</td>
<td>1.200</td>
<td>3.69</td>
</tr>
</tbody>
</table>
plexed with 1,10-phenanthroline versus ferrous ion concentration is shown in Fig. 22.

The quantum yields in the presence of varying cyclooctene concentrations are summarized in Table IV, and were shown to be independent of olefin concentrations within 5% of the average value (3.55). In Table II and III, the quantum yields of the disappearance of the nitrosamine in the presence of various unsaturated hydrocarbons, determined at two different acid concentrations, are tabulated. The average values are about the same. A comparison shows the quantum yield to be highest in the presence of a 1,3-diene, medium in the presence of an olefin and lowest in the absence of an unsaturated hydrocarbon.

4. Temperature effect in the photoaddition

The rate of the photoaddition process for N-nitrosopiperidine to 1,3-cyclohexadiene at various temperatures was investigated (Table V). The rate of disappearance of the nitrosamine (k, μ moles/minute) is plotted against temperature on Fig. 23. It shows a 14 fold decrease by lowering from room temperatures to 198°K and only a slight increase by elevating the temperatures. The product distribution in each addition did not appear to vary appreciably as shown by nmr and ir spectral analysis and tlc analysis.
TABLE V

The variation of the rate of disappearance of N-nitrosopiperidine with temperature

<table>
<thead>
<tr>
<th>Rate $k$</th>
<th>Temp. $K^\circ$</th>
<th>$1/T^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 $\mu$ moles/min</td>
<td>322$^\circ$</td>
<td>3.1 x $10^{-3}$</td>
</tr>
<tr>
<td>111 $\mu$ moles/min</td>
<td>273$^\circ$</td>
<td>3.7 x $10^{-3}$</td>
</tr>
<tr>
<td>8.3 $\mu$ moles/min</td>
<td>198$^\circ$</td>
<td>5.0 x $10^{-3}$</td>
</tr>
</tbody>
</table>

Fig. 23. Plot of temperature versus the rate of disappearance of N-nitrosopiperidine.
Results

Section II

1. Sensitization and quenching of the photoaddition of N-nitrosopiperidine to unsaturated hydrocarbons

A photosensitized rearrangement of cis, cis-1,3-cyclooctadiene to cis, trans-cyclooctadiene (25) using N-nitrosopiperidine as the sensitizer in both neutral and acidic media, was found to be totally absent. Neither did trans- or cis-1,3-pentadiene isomerize under the same conditions.

In order to establish the energy and the multiplicity of the excited states of N-nitrosopiperidine, the sensitized photoaddition of the nitrosamine to cyclohexene, was investigated (Table VI). The symbols $E_S$, $E_T$, and $E_T^1$ represent the energies of the lowest singlet and the second and the first triplet excited states of the sensitzers, respectively. The symbols $\Phi_f$, $\Phi_{isc}$, $\Phi_p$ represent the quantum yields of fluorescence, intersystem crossing and phosphorescence respectively. The rate of formation, $k$, for the sensitized addition of the nitro- 
samine is given in millimoles per hour, if it can be estimated by uv analysis or by actual isolation; unless otherwise it is listed as positive or negative using tlc analysis as the means of detection. In all determination, caution was taken to keep
TABLE VI
Results of the photosensitized addition of N-nitrosopiperidine to unsaturated hydrocarbon

<table>
<thead>
<tr>
<th>Sensitizer*</th>
<th>$E_{S1}$</th>
<th>$E_{T2}$</th>
<th>$E_{T1}$</th>
<th>$\Phi_F$</th>
<th>$\Phi_{isc}$</th>
<th>$\Phi_P$</th>
<th>mmoles/hr</th>
<th>olefin</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetophenone</td>
<td>78.6</td>
<td>76.0</td>
<td>0.0</td>
<td>0.99</td>
<td>0.62</td>
<td>(+)</td>
<td>cyclohexene</td>
<td></td>
</tr>
<tr>
<td>anthracene</td>
<td>76.4</td>
<td>74.4</td>
<td>42.5</td>
<td>0.27</td>
<td></td>
<td>4.3x10^{-1}</td>
<td>cyclohexene</td>
<td></td>
</tr>
<tr>
<td>triphenylene</td>
<td>80.6</td>
<td>66.6</td>
<td>0.08</td>
<td>0.95</td>
<td>0.84</td>
<td>0.75x10^{-1}</td>
<td>cyclohexene</td>
<td></td>
</tr>
<tr>
<td>naphthalene</td>
<td>90.8</td>
<td>60.9</td>
<td>0.19</td>
<td>0.39</td>
<td>0.03</td>
<td>2.78x10^{-1}</td>
<td>cyclohexene</td>
<td></td>
</tr>
<tr>
<td>&quot; (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot; (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.30x10^{-1}</td>
<td>cyclohexene</td>
</tr>
<tr>
<td>&quot; (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-)</td>
<td>1,3-pentadiene</td>
</tr>
<tr>
<td>1,2-benzenanthracene</td>
<td>69</td>
<td>47</td>
<td>0.20</td>
<td>0.55</td>
<td>0.001</td>
<td>2.8x10^{-1}</td>
<td>cyclohexene</td>
<td></td>
</tr>
<tr>
<td>1,4-dimethylanthra-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-)</td>
<td>cyclohexene</td>
</tr>
<tr>
<td>cene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>perylene</td>
<td>65</td>
<td></td>
<td>0.98</td>
<td></td>
<td></td>
<td>(-)</td>
<td>cyclohexene</td>
<td></td>
</tr>
</tbody>
</table>

*See ref. (76) for energy values.
TABLE VII
The rate of photosensitization of N-nitrosopiperidine with different sensitizers

<table>
<thead>
<tr>
<th>Sensitizer*</th>
<th>$\Phi_F$</th>
<th>$\Phi_{ISC}$</th>
<th>(k) in mmoles/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) naphthalene</td>
<td>0.19</td>
<td>0.39</td>
<td>$2.78 \times 10^{-1}$</td>
</tr>
<tr>
<td>(b) naphthalene in presence of benzonitrile</td>
<td>0.19</td>
<td>0.39</td>
<td>$2.36 \times 10^{-1}$</td>
</tr>
<tr>
<td>(c) triphenylene</td>
<td>0.05</td>
<td>0.95</td>
<td>$0.75 \times 10^{-1}$</td>
</tr>
<tr>
<td>(d) 1,2-benzanthracene</td>
<td>0.20</td>
<td>0.55</td>
<td>$2.8 \times 10^{-1}$</td>
</tr>
<tr>
<td>(e) 1,4-dimethylnaphthalene</td>
<td>-</td>
<td>-</td>
<td>44</td>
</tr>
<tr>
<td>(f) anthracene</td>
<td>0.3</td>
<td>-</td>
<td>$4.3 \times 10^{-1}$</td>
</tr>
<tr>
<td>(g) acetophenone</td>
<td>0.0</td>
<td>0.99</td>
<td>0</td>
</tr>
</tbody>
</table>

* See ref. (74-76) for energy values.
the conditions as comparable as possible. Certain reactions were shown to be reproducible (Exp. Sect. II). The rate of photosensitized addition, \( k \), can be correlated directly with the quantum yield of fluorescence \( \Phi_f \) of the sensitizers (Fig. 24, Table VII) with the exception of perylene, who with a \( \Phi_f = 0.95 \), showed negative sensitization.

The direct irradiation of N-nitrosopiperidine in the presence of cis- and trans-1,3-pentadiene was carried out using napthalene as quencher. For a comparison, the same reaction was carried out in the absence of napththalene. The rate of disappearance for the nitrosamine was 0.005 moles per hour in both cases. It was concluded that napthalene does not quench the photoaddition.

When perylene was used as the quencher of N-nitrosopiperidine addition to cyclohexene, the uv absorptions of perylene at 400 mu and longer wavelength increased in intensity at first, then gradually decreased and broadened. At the conclusion of the irradiation at 350 mu (9 hrs.), a third of the original N-nitrosopiperidine and almost all of the perylene was recovered. The photoadduct, 2-piperidinocyclohexanone oxime, was isolated in 37% yield and a trace of a purple compound was observed by tlc. As a control, the identical reaction
1) acetophenone
2) triphenylene
3) naphthalene
4) naphthalene; benzonitrile
5) 1,2-benzanthracene
6) anthracene
7) 1,4-dimethylanthracene

Fig. 24. Plot of the rate of sensitization of N-nitrosopyridine versus $\phi_f$. 
was performed in the absence of perylene, and yielded 72% of 2-piperidinocyclohexanone oxime.

2. Quenching of the photoreduction process

In ethanol solution, N-nitrosopiperidine photolytically reacted with ethanol to give acetaldehyde, piperidine and N-piperidinoacetamide (Scheme 7); this process is very similar to the photoreduction of carbonyl compounds (26-29). Acetaldehyde and N-piperidinoacetamide were obtained by reaction between ethanol and N-nitrosopiperidine.

The photoreduction of N-nitrosopiperidine in the presence of a triplet quencher was investigated. The photolysis, in the presence of acetophenone ($E_{T_1} = 73.6$ Kcal/mole) (30), or in the absence of acetophenone, gave the same rate in the disappearance of nitrosamine, as determined by the disappearance of the 350 mu peak, (0.0025 moles per hour). The products obtained were piperidine, as the hydrochloride in almost quantitative amounts, and a trace of N-piperidinoacetamide. Using triphenylene ($E_{T_1} = 66.6$ Kcal/mole) (30) as the quencher, an identical result was obtained. In this case, acetaldehyde which could not be isolated as the 24-DNPH derivative in the previous case, was identified as the 2,4-dinitrophenyl-hydrazone (2,4-DNPH) derivative.
Scheme 7:

\[
\begin{align*}
\text{Cyclohexylamine} & \quad + \quad \text{CH}_3\text{CH}_2\text{OH} \\
\text{hr} \quad \downarrow \\
\Rightarrow \\
\text{Cyclohexylhydroxamate} & \quad \Rightarrow \\
\text{Pyrolysis} \\
\Rightarrow \\
\text{Cyclohexylamine} & \quad + \quad \text{CH}_3\text{CO}_2\text{H} \\
+ \\
\text{H}^+\text{NO} & \\
+ \\
\text{CH}_3\text{CHO} \\
\Rightarrow \\
\text{Cyclohexylurea} & 
\end{align*}
\]
Using naphthalene ($E_T = 60.9$ Kcal/mole) (30) as the quencher, the nitrosamine absorption band at 350 mu region did not decrease and the solution turned slowly yellow. On prolonged irradiation, the uv absorption at 350 mu gradually broadened and increased in intensity, and the photolysate turned deep red-brown. Analysis of the photolysate revealed that the nitrosamine had survived, and a trace of red compound was detected by tlc analysis.
Results
Section III

1. Sensitized photoaddition of N-nitrosoamines to aromatic hydrocarbons

During the investigation of the sensitized addition of N-nitrosopiperidine to olefins, it was discovered that some of the aromatic hydrocarbon sensitizers were capable of reacting with the nitrosamine. The aromatic hydrocarbons that underwent addition with an excited nitrosamine were anthracene, acenaphthylene, 1,3-dimethylantracene (1,3-DMA), 1,4-dimethylantracene (1,4-DMA), 1,2-benzanthracene, phenanthrene, azulene and pyrene.

Irradiation of anthracene in the presence of N-nitrosopiperidine, in which anthracene absorbed more than 95% of the light, under helium atmosphere, gave 9-piperidinoanthrone oxime (III-1). The compound III-1 showed the ir absorption peaks at 3300, 1500, 1000-900, and 800-700 cm$^{-1}$. The nmr spectrum (in pyridine d-5) showed multiplets at $\gamma 0.9$ (H$_A$), $\gamma 1.8$ (H$_B$), $\gamma 2.5$(H$_C$) and a singlet at $\gamma 5.18$(H$_D$) (Fig. 25). Since the molecular formula was shown to be C$_{19}$H$_{20}$N$_2$O by elemental analysis, the structure of III-1 was confirmed.

The neutral fraction afforded anthracene dimer (III-2) identified by comparison of its spectrum with that of an authentic sample. From this fraction a small amount of
Fig. 25. The structure of III-1.

9-ethoxyanthrone oxime (III-3) was also isolated. This compound showed ir absorption bands at 3400, 1000-900 cm\(^{-1}\) and 1295 cm\(^{-1}\); the last of which is due to C-O stretch of ether linkage. The nmr spectrum showed in addition to the signals for the aromatic protons and the methine protons (\(\tau 2.5\) and \(\tau 4.60\)), a quartet (\(\tau 6.44, J_{AB} = 7\) cps) and a triplet (\(\tau 8.76, J_{AB} = 7\) cps) indicating the presence of an ethoxy group. Mass spectral analysis confirmed the molecular formula of C\(_{16}\)H\(_{15}\)NO\(_2\) (m/e 253). Compound III-3 probably arises from III-1, since irradiation of III-1 gave III-3 in a small amount (Scheme 8).

Scheme 8:
When the irradiation of anthracene was carried out under a nitrogen or oxygen atmosphere other products were obtained in addition to III-1, III-2, III-3. These products were 9-nitroanthracene (III-4), anthraquinone (III-5), cis and trans-9-piperidino-10-ethoxy-9,10-dihydroanthracene (III-6 and III-7) and 9-piperidino-10-hydroxy-9,10-dihydroanthracene (III-8).

Compounds III-4 and III-5 were identified by direct comparisons with those of authentic samples. Compounds III-6 and III-7 showed the IR absorption at 1290 cm\(^{-1}\) due to C-O stretching vibration of the ether linkage (31). The methine protons appeared at \(\gamma 4.84\) and \(\gamma 5.39\) for III-6 and at \(\gamma 4.26\) and \(\gamma 5.31\) for III-7. In addition the ethoxy protons in both compounds showed typical quartet and triplet signals. Mass spectrum and analytical data set the molecular formula for the two isomers at C\(_{21}\)H\(_{25}\)NO. At present definite assignment of cis-trans stereochemistry to these two compounds is not possible.

The IR spectrum of III-8 showed absorptions at 3200 and 1290 cm\(^{-1}\) indicating the presence of an alcohol group. The NMR spectrum of III-8 showed a D\(_2\)O exchangeable signal at \(\gamma 3.86\) and singlets at \(\gamma 4.76\) and \(\gamma 6.07\) for the methine protons. The major product of photolysis under oxygen atmosphere was III-8.
It was necessary at this point to see the effect of oxygen on the photoaddition. The photoaddition of N-nitrosopiperidine to cyclohexene was carried out in the presence of oxygen, and the cis (III-9) and trans (III-10) isomers of 2-piperidino-1-nitratocyclohexane were isolated as the hydrochlorides in good yield. Compound III-9; III-10 exhibited IR absorption at 1640, 1260, 870 cm\(^{-1}\) characteristic of a C=O-NO\(_2\) group (31). The \(H_A\) for the nitrato compound III-9 appeared at \(\gamma 4.47\) as a triplet (\(J = 3\) cps) and \(H_A\) of III-10 resonated at \(\gamma 4.77\) as two partially superimposed triplets (\(J = 6\) cps) (Fig. 26).

![Fig. 26. The structure of III-9 & III-10.](image)

The smaller coupling constant of 3 cps is characteristic of cis configuration while the larger coupling constant of 6 cps is that of trans configuration (32). Both isomers III-9 and III-10 gave the expected elemental analyses. The nitrato compounds III-9 and III-10 are stable only in the form of their salts. The free base decomposed rapidly to
2-piperidinocyclohexanone which further decomposed to a red tar. The cyclohexanone compound was oximated to yield 2-piperidinocyclohexanone oxime (III-14). The similar nitrateto derivatives were obtained in the photoaddition of nitro- sodimethylamine to cyclohexene and were reduced by sodium borohydride to give a mixture of cis and trans-2-dimethylamino- cyclohexanol.

Scheme 9:
The formation of a nitrato compound in the photolysis led us to suspect that the precursor of the aromatic oxygenated products (III-4, III-5, III-6, III-7, III-8) was a nitrato compound (III-11). This was inferred by the typical nitrato absorptions at 1640, 1260, 870 cm\(^{-1}\) shown by the crude residue obtained from a photoaddition to anthracene in the presence of oxygen (31). Many attempts to isolate this intermediate failed. When the crude residue from the photolysate was chromatographed on a silicic acid column, the nitrate of 9-piperidinoanthrone (III-12) was obtained.

III-12 exhibited strong absorption at 1678 cm\(^{-1}\) due to the carbonyl stretching vibration. The nmr spectrum of III-12 in D\(_2\)O showed a singlet at \(\gamma 3.98\) in addition to the aromatic proton signal at \(\gamma 2.2\). Further, the elemental analysis confirmed the molecular formula C\(_{19}\)H\(_{20}\)N\(_2\)O\(_4\). On standing III-12 gave anthraquinone III-5. This information led us to propose that III-12 and III-5 were formed from the nitrato precursor III-11 by elimination and air oxidations. The formation of III-6, III-7 and III-8 could be interpreted as substitution of the nitrate group in III-11 by solvents (Scheme 10).

During the investigation of this reaction it was found that the product distribution and the yields of the products were highly dependent on reaction conditions. As seen in
Scheme 10:

\[
\text{III-11} \xleftarrow{\text{ROH}} \quad \text{III-6} \quad \text{III-12} \quad \text{III-5}
\]
TABLE VIII

Photosensitization of N-nitrosopiperidine using anthracene

<table>
<thead>
<tr>
<th>Added reagents</th>
<th>Atmosphere</th>
<th>III-1</th>
<th>III-3</th>
<th>III-4</th>
<th>III-5</th>
<th>III-6</th>
<th>III-7</th>
<th>III-8</th>
<th>III-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) cyclohexene 0.12 M</td>
<td>N₂</td>
<td>1%</td>
<td>---</td>
<td>2%</td>
<td>18%</td>
<td>4</td>
<td>1/2%</td>
<td>21%</td>
<td>2%</td>
</tr>
<tr>
<td>b) cyclohexene 0.12 M</td>
<td>He</td>
<td>45%</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>7%</td>
<td>1%</td>
</tr>
<tr>
<td>c) &quot;</td>
<td>He</td>
<td>34%</td>
<td>6%</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>d) &quot;</td>
<td>He</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1%</td>
<td>---</td>
</tr>
<tr>
<td>e) cyclohexene 0.12 M</td>
<td>He</td>
<td>1%</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>5%</td>
<td>1%</td>
<td>---</td>
</tr>
<tr>
<td>bromobenzene 0.2 M</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>f) none</td>
<td>N₂</td>
<td>35%</td>
<td>---</td>
<td>1%</td>
<td>8%</td>
<td>5%</td>
<td>13%</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>g) none</td>
<td>He</td>
<td>95%</td>
<td>5%</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>h) none</td>
<td>O₂</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>11%</td>
<td>---</td>
<td>---</td>
<td>5%</td>
<td>27%</td>
</tr>
<tr>
<td>i) bromobenzene 0.2 M</td>
<td>He</td>
<td>49%</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>j) &quot;</td>
<td>He</td>
<td>46%</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>k) no hydrochloric acid</td>
<td>He</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1%</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>l) cis-4-methyl-2-pentene 0.12 M</td>
<td>He</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>2%</td>
</tr>
</tbody>
</table>

All photolyses were run at 350 μm except (d) which was run at 300 μm

The yields of all products were based using the yields of III-1, III-3 in reaction (g) as the 100% standard.
Table VIII, under nitrogen atmosphere, the oxygen containing by-products (III-4 III-8) were obtained in which III-6 and III-7 were the predominant by-products. These products disappeared (g) or became negligibly small under a helium atmosphere (b). That the by-products were formed through an oxidation reaction due to the trace of oxygen in the commercial nitrogen was shown by carrying out the reaction under oxygen atmosphere (h) from which the oxygenated products (III-5-III-8) consisted of the major part of the products; III-5 and III-8 became the dominant ones.

The sensitized nitrosamine photoaddition to anthracene was also sensitive to the presence of bromobenzene, and olefin. Optimum yield of III-1 was obtained when neither of these reagents was present (g). When the reaction was carried out in the presence of 0.12M (b) or 0.6M of cyclohexene (c), the yield of III-1 decreased to ca 50% and 30%, respectively, relative to the yield obtained the absence of cyclohexene. Curiously in these two reactions 2-piperidinocyclohexane oxime (III-14) was obtained in very small amounts. It was also surprising to find that this photoaddition virtually does not take place when the reagents were irradiated with Rayonet 300 mu lamp (d). In the presence of 0.2M (i) and 0.6M (j) of bromobenzene, the yield of III-1, III-1
decreased by ca 50% in both cases. The photoaddition was, however, retarded severely when both cyclohexene (0.13M) and bromobenzene (0.2M) were added; only small amounts of III-1, III-6, III-7, III-14 were obtained. When cyclohexene was substituted by cis-4-methyl-2-pentene in this reaction, however, no such effect was observed as that observed in (i). It was also noticed that this olefin was not isomerized during the photoaddition of N-nitrosopiperidine to anthracene and that scarcely any photoadduct to this olefin was detected. A control reaction showed that neither the yield of III-14 nor the rate of the photoaddition of the N-nitrosopiperidine to cyclohexene was affected by the presence of bromobenzene. Further, it was shown that while bromobenzene could efficiently isomerize cis-4-methyl-2-pentene into the trans isomer when a methanol solution was irradiated through corex filter, N-nitrosopiperidine did not sensitize the isomerization.

The photoaddition of N-nitrosodimethylamine to acenaphthylene gave, as the basic products, anti-2-dimethylaminoacenaphth-1-one oxime (III-15) as the major product and the syn-2-dimethylaminoacenaphth-1-one oxime (III-16) in lesser amount (Scheme 11). Compound III-15 showed hydroxyl absorption at 3100 cm\(^{-1}\) and typical oximino absorptions in the 1000-900 cm\(^{-1}\) region. The nmr spectrum showed a D\(_2\)O exchange-
Scheme 11.

\[
\begin{align*}
\text{III-15} & \quad + \quad \text{III-17} \\
\text{III-18} & \quad \text{III-16}
\end{align*}
\]
able proton at γ -1.0 and a one proton multiplet at γ1.6 for HB. The signals for the remaining aromatic protons appeared in the γ 2.3 region. The methine proton appeared as a singlet at γ4.78 and the signals for the dimethylamino group at γ7.86. The syn isomer III-16 showed the methine proton and the dimethylamino group signals shifted downfield relative to those of III-15 at γ4.57 and γ7.58. The minor products in this photoaddition were acenaphthylene dimer (III-17) and acenaphthoquinone (III-18). The physical data for these compounds are in agreement with those reported in the literature (33, 34).

The photolysis of 1,3-DMA in the presence of N-nitrosopiperidine did not proceed readily and gave small amounts of various products under forcing conditions in glacial acetic acid solution containing hydrochloric acid. These products were 1,3-DMA dimer (III-19), 9-chloro-1,3-DMA (III-20 19-chloro-1,3-DMA (III-21), 1,3-dimethyl-9-acetoxyanthrone III-22 9-piperidino-10-hydroxy -9,10-dihydro-1,3-DMA (III-23) and 10-piperidino-9-hydroxy-9,10-dihydro-1,3-DMA (III-24). Due to the small amounts available for investigation, the structural elucidations were based exclusively on spectral data (Exp. Sect. III) and the assignments should be regarded as tentative ones. Other sensitized additions of N-nitrosop-
piperidine to aromatic hydrocarbons gave similar results. The are summarized as follows.

The photolysis of 1,4-DMA in the presence of N-nitroso-piperidine under nitrogen atmosphere gives minor amount of 1,4-DMA dimer (III-25), 9-piperidino-10-methoxy-9,10-dihydro-1,4-DMA (III-26) and 9-piperidino-10-hydroxy-9,10-dihydro-1,4-DMA (III-27) (Scheme 12).

The photolysis of 1,2-benzanthracene in the presence of N-nitrosodimethylamine proceeded very sluggishly and gave a darkened solution on prolonged irradiation. The products were small amounts of 9-methoxy-10-dimethylamino-9,10-dihydro-1,2-benzanthracene (III-28) and 9-hydroxy-9,10-dihydro-10-dimethylamino-1,2-benzanthracene (III-29). The self sensitized photo-addition of N-nitrosopiperidine to phenanthrene, azulene and pyrene gave low yields of compounds containing the amino group. In the case of pyrene, 1-piperidinopyrene (III-30) was the only isolable product. The position of the piperidino group was determined by comparison of the nmr spectrum of III-30 with that of 3-acetamidopyrene which showed a very different nmr pattern. In the case of azulene, x-piperidino-azulene (III-31, 15%) was the only isolable product. Only minor amounts of azulene were recovered and large amount of black gum was also obtained. The phenanthrene photolysis gave x-dimethylaminophenanthrene (III-32) in minute yield.
Scheme 12.

\[
\text{III-25} + \text{III-26} \rightarrow \text{III-27}
\]
Discussion

Section I

It is generally recognized that a conjugated diene undergoes addition reaction more readily than does an isolated double bond (35). In the present case, N-nitrosopiperidine also shows a remarkable facility to add to a conjugated diene system similar to the general reactivity pattern. Thus the reaction exhibits a potential utility for the synthesis of alpha, beta-unsaturated oximes. The photoaddition is regio-specific (36) in its orientation in which the piperidino group always attaches itself to the 1-position of the symmetrical diene system while the nitrosogroup goes to either the 2-position or the 4-position. A free radical addition to a conjugated diene generally gives more 1,4-adducts than 1,2-adducts (37,38), while the trend is reversed if a metal ion is involved during the addition (39,40). However, there is no predictable pattern on the mode of addition in an ionic mechanism (35). Although nitrosopiperidine preferentially adds to the symmetrical conjugated dienes in 1,4-mode, this information alone does not allow a decision to be made on the reaction mechanism.

\[ \text{I-33} \]

\[ \text{I-34} \]
That the C-nitroso compounds (I-33 and I-34) are the primary photoadducts is shown by the typical blue color developed during the photoaddition to cyclopentadiene. An attempt to trap the C-nitroso compounds I-33 and I-34 as the corresponding dimers (41) by performing the photoaddition at a low temperature gave a dark blue solution which turned to a tar on continuing irradiation. When the photolysis was run at room temperature, the oximes I-9, I-10 and I-11 were obtained in good yields although a pale blue color was still observed during the reaction. At this temperature I-33 and I-34 probably tautomerize very rapidly due to the allylic nature of the migrating hydrogen (8), which may account for the good yields of I-1 ~ I-11. With a high concentration of I-33 and I-34 at a low temperature and under the photolysis conditions, an unknown secondary reaction of I-33 and I-34, probably photolytic in nature, prevails leading to tar formation.

The tautomerization of the C-nitroso compounds to syn or anti oximes is governed by the energetics of the transition states along the reaction axis to the respective oximes (14) and very much related to conformational problems in alpha, beta-unsaturated oximes. The requirement of coplanarity in the cyclohexenone oxime system in syn I-6 makes the OH group
Fig. 27. The conformation of the 1,2- and 1,4-adducts of N-nitrosopiperidine to cyclohexène.
experience a severe interaction with the C-2 olefinic proton (H_A) and thus destabilized the syn-oxime I-6 greatly \(^{(15)}\) in comparison to the anti-oxime. The only 1,4-adduct obtained is therefore assigned the anti-configuration (I-6). In agreement, the C-6 equatorial proton resonates at \(\gamma 6.78\) which is comparable to the chemical shift of the cis- \(\alpha\)-equatorial proton (\(\gamma 6.61\)) in t-butylcyclohexanone oxime (18). The sole 1,4-adduct obtained from cyclopentadiene is also assigned the anti-configuration I-11 for similar but even more severe steric reasons.

The syn-cyclohexenone oxime I-7 must have the forced conformation (Fig. 27), with the axial orientation of the piperidine ring, since a severe \(A^{1,3}\) interaction \(^{(15, 42)}\) would not allow an equatorial orientation of piperidine ring in the alternative conformation. Since the severe \(A^{1,3}\) interaction no longer exists in anti-oxime I-8, the conformation can be represented as shown in (Fig. 27) and is supported by the chemical shift of C-6 axial methine proton\(^*\) at \(\gamma 6.98\) (16). In this conformation, however, there exists an interaction between the OH group and C-2 olefinic proton (H_A), though the magnitude must be less than the interaction between

\*The corresponding proton in anti-2-piperidinocyclohexanone oxime shows the chemical shift at \(\gamma 7.24\).
the OH and an axial piperidine conformation. Due to the unfavourable interactions in both conformations (Fig. 27), the actual shapes of I-7 and I-8 are probably distorted to relieve the strains. The distortion is indicated by the coupling pattern of the C-6 proton in I-8 (6 and 3 cps) and I-7 (5 and 3 cps) which are far from the expected values for axial and equatorial protons.

Finally the coupling constants between H_C and the olefinic protons in I-11 and I-6 merit a discussion in connection with the conformations. If the assignments of the olefinic nmr signals to H_A and H_B are accepted the allylic coupling J_AC in I-6 and I-11 (2.5 and 2 cps, respectively) turns out to be equal to or larger than the vicinal coupling constant J_AB (2.5 and 1.5 cps, respectively). Such a situation can arise only where the C-H_C bond orients itself perpendicular, or nearly so, to the plane defined by C_2-C_3-C_4 in (Fig. 27 ). In this case the maximum allylic coupling and the minimum vicinal coupling are achieved (23, 43). An analogous situation is observed in I-11.

The photoaddition to acyclic 1,3-dienes provided a better opportunity for the study of the specificity of the addition. The salient points can be summarised as follows. Firstly, the photoaddition to acyclic dienes is also regiospecific in
which the amino group always attaches itself to the terminal carbon of the diene system and does so predominantly on the least substituted carbon if an alternative possibility exists. The isolation of minor amounts of reverse 4,1-adduct I-17 from the 1,3-pentadienes are the first instance of such reverse photoaddition. The reverse addition of a nitrosamine to a simple olefin has never been observed. This reverse photoaddition may be due to the increased reactivity of the diene toward an excited nitrosamine causing a loss in selectivity.

Secondly, the 1,4-(or 4,1-) addition exclusively results in the formation of trans-configuration on the newly formed double bond. A survey of the literature indicates that trans-double bond is exclusively or predominantly formed in 1,4-additions by a free radical mechanism (37, 38). The 1,4-conjugated additions by ionic mechanism do not show a uniform tendency in this respect (39, 40), but the adduct containing the cis-double bond can be made the dominant product if the addition is catalysed by a metal ion.

Thirdly, in the 1,2-photoadducts the original stereochemistry of the remaining double bond is completely retained as shown in I-18, I-19, I-22 and I-23. This claim is amply substantiated by converting the crude products to the confi-
gurationally pure crotonitrile in each case by the amino group assisted Beckmann cleavage reaction (21) which does not disturb the stereochemistry of the double bond under the experimental condition. The retention of the double bond configuration in a generated allyl radical is known to pertain under special conditions, namely, at a low temperature and/or under rapid removal of the allyl radical (35). This suggests a very rapid reaction of the second step in this photoaddition if it follows a stepwise free radical addition as suggested before (44).

Fourthly, the photoaddition always gave 1,4-adducts as the major product and 1,2-adducts the minor. Finally the addition to cis, trans-2,4-hexadiene appeared to take place nearly exclusively to the cis-double bond. The possibility of isomerization during the addition process can be dismissed in the light of the results from the addition to 1,3-pentadienes. A priori, two alternative interpretations can be considered. First of all, and the simplest, an excited nitrosamine may preferentially attack at the cis-double bond over the trans-double bond. Secondly, the initial attack to the trans-double bond may lead to 1,4-addition exclusively while the addition to cis-double bond collapses partially to the 1,2-adducts, I-25 and I-27. Since there is no preferen-
tial addition of a photoexcited N-nitrosopiperidine to cis, trans-over trans, trans-2,4-hexadiene when the photoaddition is run in the presence of a mixture (1:1) of the isomers*, the first explanation is not tenable. The ratio of the isomeric dienes was shown to be the same after the photoaddition was terminated at 80% completion. Although extension of an argument based on intermolecular process to that of an intramolecular process requires caution, the initial attack of an excited nitrosamine to a diene is apparently random, at least in the intermolecular cases. It, therefore, appears that the second explanation is more probable.

The photoaddition to 1-vinylcyclohexene does not completely follow the addition pattern observed in the cyclic and acyclic dienes series; the 1,2-adducts (I-29) are formed in less amount than the 1,4-adducts (I-30, I-31) and the latter adduct follows the reverse addition. The totally different mode of the addition may indicate the importance of a preferential complexation of the diene with the nitrosamine prior to the photoaddition step.

*In agreement we also observed no preferential photoaddition to cis-1,3-pentadiene over trans-1,3-pentadiene (Exp. Sect I).
Fig. 28. Proposed complex leading to the 1,2-addition of N-nitrosopiperidine to a carbon carbon double bond.

Fig. 29. Proposed complex leading to 1,4-addition of N-nitrosopiperidine to a 1,3-diene.
Recent flash photolysis experiments carried out by M. P. Lau (45) have established that the nitrosamine must be complexed with the unsaturated hydrocarbon previous to undergoing photoaddition and is also supported by nmr spectroscopy in which it was shown that the nitrosamine complexes with \( \pi \) electron cloud systems (46).

The products obtained in the addition to vinylcyclohexene lead us to the assumption that only certain nitrosamine-diene complexes are formed. The complexes envisaged are shown in (Figs. 28, 29). The first one (Fig. 28) leads to the 1,2-adduct I-29; the second one (Fig. 29) leads to the 4,1-adducts I-30 and I-31. Similar types of complexes have been proposed for the Cope and Oxy-Cope rearrangements (47). Finally the quantum yield values for the disappearance of the N-nitrosamine in the absence and presence of unsaturated hydrocarbons show values greater than one. Such results indicate that the disappearance of the N-nitrosamine follows a free radical pathway.

This compilation of salient points permits us to suggest a possible mechanism for the photoaddition reaction. The suggested mechanism follows.
\[
>\text{N-NOH} + >\text{C} = \text{C} < = [ >\text{N} - \text{N=OH} ---- >\text{C} = \text{C} < ] (1)
\]

\[
[ >\text{N-NOH} ---- >\text{C} = \text{C} < ] \rightarrow \quad \quad [ \quad \quad \quad \quad \quad \quad (2)
\]

\[
\rightarrow \quad \quad \quad \quad \quad \quad (3)
\]

\[
\rightarrow \quad \quad \quad \quad \quad \quad (4)
\]
The first step shows the formation of the nitrosamine-olefin complex previous to excitation. The second step is excitation of the complex which leads to a diradical. This diradical may close into a 4 membered ring intermediate, and rearrange to give the c-nitroso intermediate (steps 3, 4), or collapse to give nitric oxide and an alkyl radical (step 5). The alkyl radical and nitric oxide may recombine to give the nitroso compound step (6). The last step involves the abstraction of nitrous oxide from the nitrosamine-olefin complex to give the c-nitroso compound and another alkyl radical which either recombines with nitrous oxide (step 6) or abstracts nitric oxide from the nitrosamine olefin complex (step 7). This step is included in view of the higher than one quantum yield values.
Section II

Although the photoreaction of nitrosamine has been demonstrated, it is still not clear which excited state is responsible for the photoreactions observed. A nitrosamine generally shows a n- $\Pi^*$ band at 340 µm region and a $\Pi - \Pi$ band at 250 µm region; the latter generally tails into the 300 µm region (48). In these photolyses it can be assumed both bands are irradiated. It has been shown by Lau (45) that irradiation of either n- $\Pi$ or $\Pi - \Pi^*$ band does promote the photoaddition reaction. Unfortunately a nitrosamine does not give either fluorescence or phosphorescence. The determination of the lowest singlet and triplet energy therefore must be done by other means.

The failures of N-nitrosopiperidine to isomerise 1,3-pentadiene and cis,cis-1,3-cyclooctadiene are surprising. The reason can be i) that the photoaddition is efficient and rapid from the singlet excited state or ii) that the $E_{T_1}$ and $E_{S_1}$ of nitrosopiperidine are far lower than those of the dienes. The former reason implies that every collision of the excited nitrosamine results in reaction and does so irreversibly.

We have failed to sensitize the photoaddition of N-nitrosopiperidine to a mixture of cis and trans-1,3-penta-
diene with naphthalene. This is not surprising in view of
the reported efficiency of the pentadienes to quench the sin-
glet and triplet excited naphthalene molecule (49). However,
it was gratifying to find a series of aromatic hydrocarbons
that sensitize the photoaddition of nitrosopiperidine to
cyclohexene (Table VII). The successful linear correlation
of the fluorescence quantum yields with the rate of photosen-
sitization suggests that the photoaddition reaction is rela-
ted to the singlet state of nitrosopiperidine. Since energy
transfer from the singlet state aromatic hydrocarbon to nitro-
sopiperidine presumably occurs, the $E_{S_1}$ of nitrosopiperidine
must be comparable to that of the lowest $E_{S_1}$ of those aroma-
tic hydrocarbons; anthracene has the lowest $E_{S_1}$ (76.4 Kcal/
mole). Thus the failure of perylene ($E_{S_1}$ 65 Kcal/mole) (50)
to sensitize the photoaddition should be interpreted as the
$E_{S_1}$ of nitrosopiperidiene being higher by more than 5 Kcal/
mole. It is interesting to point out that perylene quenches
the photoaddition of nitrosopiperidine to cyclohexene by 50%,
while naphthalene does not quench the photoaddition.

Investigation on photoreduction of N-nitrosopiperidine
reveals that acetophenone and triphenylene cannot quench the
photoreduction, but naphthalene quenches effectively. Merely
from this information it is suspected that $E_T$ of N-nitroso-
piperidine is higher than that of naphthalene (61 Kcal/mole), if the triplet state of N-nitrosopiperidine is assumed responsible for photoreduction. However on prolonged photolysis of N-nitrosopiperidine in the presence of naphthalene, it appears that a reaction is taking place between naphthalene and N-nitrosopiperidine although the red oil is not characterised. It is therefore premature to conclude that the triplet state of N-nitrosopiperidine is undergoing photoreduction.
Section III

The photoaddition of N-nitrosopiperidine to anthracene in ethanol solutions where anthracene absorbed greater than 95% of the incident light should be regarded as a self sensitization by anthracene to give the 1:1 adduct III-1 as the product. The ability of anthracene to add x-y type addenda across the 9,10-position such as photodimerization, photocycloaddition of maleic anhydride (51) and photoaddition of oxygen (52), are well known and extensively investigated. In the photoaddition of the nitrosamine to anthracene a mineral acid is required for the photoaddition to take place, indicating the similarity with the additions of N-nitrosamine to olefins and 1,3-dienes. In this reaction it is also demonstrated that, in the presence of cyclohexene, the additions of nitrosopiperidine to both cyclohexene and anthracene take place to give the 1:1 adducts, III-14 and III-1, suggesting the additions are triggered by photoexcited nitrosamine. Since in this photoaddition anthracene absorbs all of the incident light, it must be concluded that an singlet excited anthracene molecule transfers its energy to give an excited nitrosamine. That this energy transfer occurs at the singlet manifold is discussed in Sect. II.
Scheme 13:

III-1a

\[ \text{III-12} \rightarrow \text{III-5} \]

\[ \text{III-11} \rightarrow \text{III-6} \]
The by-products other than III-3 obtained in the reaction appear to result from secondary reaction of the 1:1 adduct as shown in Scheme 13. It is observed that addition of $\text{N}$-nitrosopiperidine to cyclohexene in the presence of oxygen gives the cis and trans mixture of nitrato compounds III-9, III-10, which indicates that the primary photoadduct, 1-nitroso-2-piperidinocyclohexane is undergoing a photooxidation. Such photooxidation of C-nitroso compounds has been demonstrated in benzene solution (53) and has been proposed to follow the mechanism similar to that shown below.

![Chemical structures and reactions](attachment:image.png)
The recombination of nitrogen trioxide and cyclohexane radical naturally gives the cis and trans compounds (III-9 and III-10). Thus it is expected that the nitrato intermediate III-11 must arise from photolysis of the C-nitroso compound III-1a, the tautomer of III-1, which is oxidized to nitrate III-11 as shown in Scheme 13. It is assumed that the oxime III-1 and its tautomer III-1a are in equilibrium due to the labile hydrogen in both structures. Whether the position of the equilibrium is affected by photoexcitation of the molecules is, however, not known. The decomposition of III-11 to the ketone III-12 is similar to the behaviour of III-9, III-10 which give 2-piperidinocyclohexanone upon basification. The oxidation of ketone III-12 to anthraquinone (III-5) takes place either on standing or during photolysis, probably caused by air in the former case or by the nitric oxides present in the photolysate in the latter case. The formation of III-6, III-7, III-8 may arise from solvolysis of the nitrato intermediate III-11. It is worthwhile to comment the formation of these products derived from the nitrato compound III-11 when the reaction is run under nitrogen atmosphere. These compounds (III-4 - III-8) are always obtained even when the commercial nitrogen gas was carefully scrubbed with either vanadyl sulphate solution or Fieser's solution. Obviously nitrato compound III-11 is
formed under nitrogen atmosphere. The genesis of this formation may be attributed to the disproportionation of nitric oxide when the C-nitroso compound III-1a was homolytically dissociated. A similar disproportionation has been proposed (54). However, the fate of the two anthracenyl radicals remaining from the disproportionation is not known (Scheme 14).

Scheme 14:
Mechanistically, three excited states of anthracene can be responsible for the photosensitization, namely the $S_1$ state (76.4 Kcal/mole), the $T_2$ state (74.4 Kcal/mole) and the $T_1$ state (42.5 Kcal/mole) (55). The $T_1$ state may be excluded since the nitrosamine triplet energy appears to be around 58 Kcal/mole (6). The $T_2$ state of anthracene has been shown to be capable of transferring its energy (55) to olefins. However, since acetophenone ($E_T$ 73.6 Kcal/mole) is unable to sensitize the nitrosamine photoaddition, it can also be disregarded.

The remaining possibility, the singlet energy transfer from anthracene to the nitrosamine was corroborated by carrying the reaction in the presence of bromobenzene. Bromobenzene has been shown to quench the fluorescence of anthracene (56, 57). That bromobenzene is not promoted to an excited state in the process, was shown by the lack of isomerization of cis-4-methyl-2-pentene when the latter was included in the reaction mixture. In this connection we have ascertained that photoexcited bromobenzene readily isomerizes cis-4-methyl-2-pentene to the trans isomer. The photoreactions carried out in 0.2M and 0.6M bromobenzene solutions showed ca 50% decrease in the formation of III-1, showing that the
singlet excited anthracene molecules are being demoted to the ground state by bromobenzene.

The photoaddition of N-nitrosopiperidine to anthracene in (0.2M) bromobenzene solution containing cyclohexene shows a further drastic reduction in the yield of III-1 but no concurrent increase in the yield of III-14 was observed. When cis-4-methyl-2-pentene is used, however, no such decrease in the yield of III-1 is observed. At present, no definite interpretation can be offered concerning this phenomenon.

With respect to the other aromatic compounds investigated, only acenaphthylene gave the 1:1 adducts III-15 and III-16. Acenaphthaquinone III-18 was obtained as a by-product and most likely arose via the corresponding C-nitrato compound which decomposed in an analogous manner as that proposed for the formation of III-11.

The 1,3-DMA, 1,4-DMA and 1,2-benzanthracene photolyses gave poor yields of basic products, primarily the amino ethers or amino alcohols. The lack of formation of oxime derivatives is ascribed to steric restrictions imposed by flanking methyl or aromatic group in the transition state. Alternatively the same steric effect may prevent the C-nitroso intermediate from tautomerizing to the more stable oxime. The formation of the ethers (III-26, III-28) and alcohols
(III-23 III-24, III-27, III-28) probably follows the same mechanism as proposed for the anthracene case. The low yield of basic products may be due to the formation of red coloration during photolysis which acted as an internal filter.

With regard to pyrene, azulene and phenanthrene, forcing condition had to be used to obtain small yields of basic products. It is quite likely that this is due to the poor reactivity of the aromatic compound to undergo addition reactions.
Experimental

Section I

Microanalyses were performed by Dr. A. Bernhardt, West Germany. Melting points were determined on a Gallenkamp apparatus and were not corrected. The infrared spectra were recorded as nujol mulls for solid samples and as film for a liquid sample with either a Unicam SP-200 or a Perkin Elmer model 457. The ultraviolet spectra were recorded with either a Cary Model 14 or a Unicam SP-800 recording spectrophotometer. The nmr spectra were obtained with a Varian A 56/60 instrument and were reported in (\gamma) values. Unless otherwise stated, the nmr spectra were recorded in CDCl\textsubscript{3} solution, using tetramethylsilane as the internal standard; coupling constants (J) are given in cycles per second (cps); s, d, d-d, t, 2t, qt, bm, m, o, designated singlet, doublet, doublet of doublet, triplet, two triplets, quartet, broad multiplet, multiplet and octet respectively. Decoupling experiments were performed with a Varian HA-100 spectrometer. The mass spectral analyses were performed using a Hitachi-Perkin Elmer model RMU-6E or an MS-9. The vapour phase chromatographic analyses were performed on an Aerograph autoprep model 700 using a (20 ft x 3/8 in., 30\% SE-30, chrom W) column, or with a Varian Aerograph (series 1200) using a (12 ft. x 1/8 in.,
on firebrick) column, or a (6 ft. x 1/8 in., 20% tris-cyanoethoxypropane (TCEP), on chrom W) column. The separations by column chromatography were performed using basic alumina Brockman, Activity I (80-200 mesh) or silicic acid Mallinckrodt, analytical reagent (100 mesh). Thin layer chromatography (tlc) analyses were performed on (20 cm x 5 cm) plates (0.3 mm thick) using Camag Aluminiumoxid DS-5.

Material

The CP olefins were used as supplied without further purification. Cyclopentadiene (bp 42°) was distilled before use. Cyclooctadiene was also distilled and the fraction of bp 82-83° was used for the experiment. The cis-1,3-pentadiene was obtained by treating a mixture of cis- and trans-1,3-pentadiene with 1.2 equivalents of maleic anhydride. The cis-1,3-pentadiene was recovered by distillation and the fraction of bp 40° was used. The purity of this fraction was established by vpc (20 ft. x 3/8 in., 30% SE-30, chrom W, 88 ml of He/min, 22°C) to be 99.99% pure cis 1,3-pentadiene.

The 1-vinylcyclohexene was prepared according to the procedure described (20) and distilled: bp 143-144, 11t (20) 144-145°. The nmr spectrum showed signals at 9.0 (t) due to the presence of x-ethylcyclohexene. This minor component was present in 8-10% by nmr analysis.
The analytical reagent grade solvents were used without further purification. For chromatography on silicic acid, Shawnigan, reagent grade, CHCl₃ (0.75% EtOH) or "Macco" CHCl₃ (0.75% EtOH) were used.

The nitrosamines were prepared according to the procedure described previously (2) and distilled. The naphthalene, (reagent grade, Allied Chemical) was sublimed before use: mp 79-80°. Anthracene (reagent grade, Matheson, Coleman and Bell) was sublimed: mp 215-217°, Acetophenone (BDH, reagent grade) was distilled at reduced pressure (18 mm Hg) and the fraction of 96-97° was used for the experiments.

1,4-Dimethylantranthracene was prepared by reacting phthalic anhydride with p-xylene to give o-xyloylbenzoic acid. This acid was then cyclized with concentrated sulphuric acid to the 1,4 dimethylantraquinone (58). The anthraquinone was then reduced to the 1,4-dimethylantracene with zinc and KOH (59). The 1,4-dimethylantracene was recrystallized three times from methanol and the crystals melting at 68-70° were used. The 1,3-dimethylantracene was prepared from phthalic anhydride and m-xylene in an analogous manner, and recrystallized three times from methanol: mp 74.5-76°.

Perylene: mp 276-278°, (Aldrich, puriss.) was used as supplied without further purification. Triphenylene was chro-
matographed on alumina (30g). Elution with petroleum ether afford white, sharp melting crystals: mp 193.5-195°
lit (60) 199°. 1,2-Benzanthracene (Aldrich, reagent) was recrystallized once and sublimed to give pale yellow crystals:
mp 158-159° lit (61) 162°. Bromobenzene (Matheson, Coleman and Bell, reagent) was distilled and the fraction of 156-157°
was collected. Benzonitrile (Eastman Kodak, reagent, aniline free) was used as supplied. Zinc powder (Allied Chemical,
technical) was activated with 2% CuSO₄ solution before use.

Lamp sources

The solutions were irradiated with an RPR 3000Å, or
RPR 3500Å, or 200 watt Hanovia source (type 654A36) or a
450 watt Hanovia (type 679A36) source. For the quantum yield
measurements a PEK (model 911-Q) 100 watt lamp whose emission
was filtered through a corning filter #5030, maximum trans-
mittance at 366 µm, was used.

General Procedure for the Photolysis of N-nitrosopiperidine in the presence of a 1,3-diene.

The photolyses were carried out in specially made pyrex
vessels (Figure 30). The vessels were equipped with a con-
denser at the upper end and an inlet at the lower end of the
cell to introduce the inert gas. The photocell was then
Fig. 3:0. The photolysis apparatus
immersed in an ice bath, and the cell was filled to about three quarters of its volume with methanol. The solution was stirred while a stream of nitrogen was introduced. After about fifteen minutes, the stirring and the flow of nitrogen were reduced to a moderate rate and the reagents for the reaction were then introduced. The photocell was then filled to its full volume.

Any traces of oxygen or hydrogen sulphide which could be present in the nitrogen gas were removed by scrubbing the inert gas through Fieser's solution followed by (5%) lead acetate solution. The gas was then dried by passing through concentrated sulfuric acid before being allowed to enter the photocell. The solutions were then irradiated by placing a light source in the hole of the photocell. The optical density of the nitrosamine was measured at 350 μm by pipetting out an aliquot portion of the photolysate at suitable intervals. This aliquot was properly diluted (usually 1/10 dilution) for spectroscopic measurement in the 250-400 μm region. The decrease in this absorption maximum (350 μm) showed zero order kinetics and the solution was irradiated until this absorption had disappeared. The solvent of the photolysate was then removed under vacuum using a rotary evaporator and the residue was diluted with water. This acidic aqueous
TABLE IX

Reagents, quantities and conditions used in the photolyses of N-nitrosopiperidine in the presence of 1,3-dienes

<table>
<thead>
<tr>
<th>olefin</th>
<th>N-nitrosopiperidine</th>
<th>Methanol</th>
<th>Irrad. time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>moles</td>
<td>moles</td>
<td>mls</td>
</tr>
<tr>
<td>butadiene</td>
<td>5.8 (0.1)</td>
<td>5.70 (0.05)</td>
<td>200</td>
</tr>
<tr>
<td>cis-1,3-pentadiene</td>
<td>4.0 (0.06)</td>
<td>5.70 (0.05)</td>
<td>200</td>
</tr>
<tr>
<td>trans-1,3-pentadiene</td>
<td>3.74 (0.055)</td>
<td>5.70 (0.05)</td>
<td>200</td>
</tr>
<tr>
<td>cis,trans-2,4-hexadiene</td>
<td>4.1 (0.06)</td>
<td>4.56 (0.04)</td>
<td>200</td>
</tr>
<tr>
<td>cyclopentadiene</td>
<td>6.64 (0.1)</td>
<td>5.70 (0.05)</td>
<td>300</td>
</tr>
<tr>
<td>1,3-cyclohexadiene</td>
<td>8.0 (0.1)</td>
<td>5.70 (0.05)</td>
<td>200</td>
</tr>
<tr>
<td>1,3-cyclooctadiene</td>
<td>10.8 (0.1)</td>
<td>5.70 (0.05)</td>
<td>200</td>
</tr>
<tr>
<td>1-vinylcyclohexene</td>
<td>2.5 (0.02)</td>
<td>2.3 (0.02)</td>
<td>200</td>
</tr>
</tbody>
</table>

*lamp 1, RPR 3500A
lamp 2, Hanovia 200 watt
lamp 3, Hanovia 450 watt
TABLE X

Products obtained from the photolyses of N-nitrosopiperidine in the presence of the various 1,3-dienes

<table>
<thead>
<tr>
<th>olefin</th>
<th>1,2-syn (%)</th>
<th>1,2-anti (%)</th>
<th>1,4-adduct (%)</th>
<th>4,3-syn</th>
<th>4,3-anti</th>
<th>4,1-adduct</th>
<th>ketone</th>
</tr>
</thead>
<tbody>
<tr>
<td>butadiene</td>
<td>10%</td>
<td>16%</td>
<td>57%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cis-1,3-pentadiene</td>
<td>2-3%</td>
<td>7-8%</td>
<td>72%</td>
<td>(trace)</td>
<td>(trace)</td>
<td>12%</td>
<td>-</td>
</tr>
<tr>
<td>trans-1,3-pentadiene</td>
<td>10%</td>
<td>14-17%</td>
<td>60%</td>
<td>(trace)</td>
<td>(trace)</td>
<td>4.5%</td>
<td>-</td>
</tr>
<tr>
<td>cis, trans-2,4-hexadiene</td>
<td>3%</td>
<td>6-8%</td>
<td>85%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2%</td>
</tr>
<tr>
<td>cyclopentadiene</td>
<td>7%</td>
<td>18%</td>
<td>56%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,3-cyclohexadiene</td>
<td>2%</td>
<td>2%</td>
<td>61%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1,3-cyclooctadiene</td>
<td>(trace)</td>
<td>(trace)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1-vinylcyclohexene</td>
<td>-</td>
<td>13%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>27%</td>
</tr>
</tbody>
</table>
solution was then extracted with an organic solvent (50 ml x 3) to give a neutral fraction. The aqueous solution was then basified to pH 9-10 with a saturated K₂CO₃ solution and extracted again with an organic solvent to afford a basic fraction. The organic extracts were washed with water (20 ml x 3), dried (MgSO₄) and evaporated under vacuum. The residues were then examined by thin layer chromatography (tlc), nmr, and ir spectroscopy. The separation of its components was done by chromatography on basic alumina or on silicic acid column. The reaction conditions and yields of products are summarized in Tables IX, X.

1. Photoaddition of N-nitrosopiperidine to 1,3-dienes.

A. To 1,3-cyclooctadiene.

N-nitrosopiperidine (5.70g, 0.05 moles), cis,cis-1,3-cyclooctadiene (18.8g, 0.1 moles) and concentrated hydrochloric acid (5 ml, 0.06 moles) were dissolved in methanol (200 ml). This solution was photolyzed as described with a 200 watt Hanovia lamp for 120 minutes until the absorption maxima at 350 μν had completely disappeared. The decrease in the optical density of the nitrosamine showed zero order kinetics up to 85% completion. The solvent was then removed under vacuum and the residue was treated with water (50 ml). The aqueous solution was extracted with ether (50 ml x 3).
The ether extract was washed with water and dried (MgSO₄). Evaporation of the ether under vacuum gave an oil (114 mg) which contained N-nitrosopiperidine and cyclooctadiene by ir and nmr spectral analysis. The aqueous acidic layer was basified with a saturated K₂CO₃ solution to pH 9-10 and extracted with ether (50 ml x 3). The ether was removed under vacuum to give a mixture of oil and crystals (13.3g). This residue was treated with cyclohexane (25 ml) and the mixture filtered to give white crystals (5.4g): mp 130-140°. These crystals were recrystallized from 2-propanol three times and further sublimed to give an analytical sample of syn-4-piperidino-2-cycloocten-1-one oxime (I-1): mp 153-156°; ir 3080, 1615, 1100, 1000-900, 870, 755; nmr (pyridine) δ 3.54 (d, 1H, J=12.5cps), δ 4.27 (d-d), 1H, J=12.5cps, J=7cps), δ 6.34 (m,1H), δ 7.61 (m,4H), δ 8.58 (m,14H); mass spectrum (80eV) m/e (rel intensity) 204 (9), 186 (32), 119 (53), 84 (100); Anal. Calcd for C₁₃H₂₂N₂O: C,70.23; H,9.97; N,12.60. Found: C,70.33; H,10.08; N,12.75.

The cyclohexane mother liquor was evaporated to dryness to give a resin (4.76g), a part of which (1.5g) was chromatographed on silicic acid (40g). The first compound was eluted with 2% methanol in CHCl₃ as an oil (23 mg). This oil showed as a single spot on a tlc plate and could be crystallized from
2-propanol to give white crystals (5 mg) of syn-8-piperidino-2-cycloöcten-1-one oxime (I-2): mp 111-115°; ir 3200, 1620, 1100, 1090, 980, 960, 940, 760, 740, 710; mass spectrum 80 (eV) m/e (rel intensity) 222 (0.5), 204 (31), 164 (30), 124 (100).

The next compound was eluted with 3% methanol in CHCl₃ as an oil (50 mg). This oil was contaminated by I-2 and was rechromatographed again on silicic acid (2g) to afford pure 4-piperidino-2-cycloöcten-1-one (I-3, 15 mg) as an oil (tlc single spot): ir 3000, 1665, 1460, 1100, 760; nmr δ 3.71 (d-d, 1H, J=10cps, J=5cps), δ 3.98 (d, 1H, J=10cps), γ 6.38 (m, 1H, J=5cps), γ 7.5 (m, 6H), γ 8.50 (m, 12H); mass spectrum (80eV) m/e (rel intensity) 207 (10), 178 (25), 150 (100).

The next fraction (362 mg), eluted with 3% methanol in CHCl₃ was rechromatographed on silicic acid to afford a fraction (125 mg, tlc one spot) which was crystallized from 2-propanol to give white crystals (35 mg) of anti-8-piperidino-2-cycloöcten-1-one oxime (I-4): mp 162-164°; ir 3080, 1660, 1620, 1080, 980, 960, 940, 870, 858, 760, 750, 730; nmr (pyridine) δ 3.84 (d, 1H, J=12cps), δ 4.18 (m, 1H), γ 6.57 (m, 1H), γ 7.5 (m, 4H), γ 7.9-8.6 (bm, 14H); mass spectrum (80eV) m/e (rel intensity) 222 (1), 204 (22), 164 (100).
The syn and anti mixture of I-1 and I-5 (1.2g) was eluted with 4-10% methanol in CHCl₃. The syn and anti mixture of these 1,4 adducts, ir 3300, 1630, 1100, 1000-900 could not be separated by rechromatography or recrystallization. The nmr of this mixture showed two different ABX patterns; the signals due to the syn isomer I-1 at τ 3.25 (d, 1H, J=12cps) τ 4.28 (qt, 1H, J=13cps, J=6cps), τ 6.5 (m, 1H) and those due to the anti isomer I-5 at τ 3.79 (d, 1H, J=12.5 cps), τ 4.12 (qt, 1H, J=12.5cps, J=6cps), τ 6.5 (m, 1H). In addition the signals at τ 7.5 (m, 4H), τ 8.5 (m, 12H) were also observed.

B. To 1,3-cyclohexadiene

The nitrosamine (5.70g, 0.05 moles), 1,3-cyclohexadiene (8.0g, 0.1 moles) and concentrated hydrochloric acid (5 ml, 0.06 moles) were dissolved in methanol (200 ml). The solution was irradiated with the 450 watt Hanovia lamp until the nitrosamine absorption at 350 μm had disappeared (45 min). Upon evaporation of the methanol to a small volume, crystals appeared which were filtered (4.5g). These crystals (2g) were dissolved in water and the solution was basified with a saturated K₂CO₃ solution to pH 9-10. The solution was then extracted with CHCl₃ (50 ml x 3) to give an oil (1.6g). This oil when treated with 2-propanol gave white powdery crystals of 4-piperidino-2-cyclohexen-1-one oxime (1.2g, I-6): mp
129-132°. The crystals were recrystallized 5 times from 2-propanol to afford an analytical sample (single spot on tlc): mp 139-140°; ir 3150, 1618, 1166, 1120, 1050-880 multiple peaks, 815, 740, 730; nmr (pyridine) τ3.55 A part of AB qt (d, 1H, J=10cps), τ3.92 B part of AB qt (d, 1H, J=10cps), τ6.50-6.78 (m, 2H), τ7.60 (m, 4H), τ7.96-8.25 (m, 3H), τ8.61 (m, 6H); nmr 100 Mc (pyridine) τ3.55 (o, 1H, J=10cps, 2.5 cps and 1 cps) τ3.80-3.86 (o, 1H, J=10 cps, = 2.5 cps and 4 cps), multiplet at τ6.50-6.78 (d of t, 1H, J=17 and 4 cps); Anal. Calcd for C_{11}H_{18}N_{2}O:C, 68.01; H, 9.34; N, 14.42. Found: C, 68.13; H, 9.12; N, 14.01.

The acidic aqueous layer from photolysis was basified with a saturated K_2CO_3 solution to pH 9-10 and extracted with CHCl_3 (50 ml x 3) to give a resin (2.56g). This resin, and the mother liquour which gave the crystals of I-6 were combined and treated with 2-propanol to give white crystals (1.26g) which by tlc analysis were shown to be identical with the analytical sample of I-6. The mother liquour was evaporated to dryness to give a resin (2.0g). This resin was chromatographed on silicic acid (35g). The first fraction (310 mg) was eluted with CHCl_3 and was shown to contain a 1:1 mixture of the nitrosamine and syn-6-piperidino-2- cyclohexen-1-one oxime (I-7). This fraction was treated with petroleum
ether to give pale yellow crystals of 1-7 (35 mg): mp 108-111°, which showed a single spot on tlc. They were sublimed (90°/0.1 mm Hg) to give white crystals: mp 111.5-113.5°; ir 3130, 1635, 1095, 998, 970, 958, 943, 920, 870, 790, 754; nmr γ-4.1 (D2O exchangeable) (b, 1H), γ 3.9 (m, 2H), γ 5.95 (m, 1H), τ 7.3 (m, 4H), τ 7.9 (bm, 4H), τ 8.4 (m, 6H); nmr (pyridine) 100 Mc (15) τ 3.63 (d, 1H, J=10 cps), τ 3.98 (2t, 1H, J=10 cps, J=4.5 cps), τ 5.92 (d-d, 1H, J=5 cps, J=3.2 cps).

Continued elution with 1-4% methanol in CHCl₃ gave crude anti-6-piperidino-2-cyclohexen-1-one oxime (I-8, 200 mg) contaminated with I-7 by tlc analysis. This mixture was rechromatographed on silicic acid (3 g) to afford a pure fraction of I-8 (39 mg, tlc single spot) which was sublimed (100°/0.1 mm Hg) to give white crystals: mp 132-134°; ir 3290, 1638, 1100, 985, 978, 937, 778; nmr τ 2.53 (b, 1H, D2O exchangeable), τ 3.28 (d, 1H, J=10 cps), τ 3.77 (2t, 1H, J=10 cps, J=4 cps), τ 6.98 (d-d, 1H, J=5.5 cps, J=4 cps), τ 7.49 (m, 4H), τ 7.77-8.03 (m, 4H), τ 8.48 (m, 6H); nmr 100 Mc (pyridine) τ 3.29 (qt, 1H, J=10.5 cps, J=3.5 cps), τ 3.77 (2t, 1H, J=10.5 cps, J=4 cps), τ 6.95 (d-d, 1H, J=5.5 cps, J=3.5 cps).
C. To cyclopentadiene.

N-Nitrosopiperidine (5.70 g, 0.05 moles), freshly distilled cyclopentadiene (6.64 g, 0.1 moles) and concentrated hydrochloric acid (5 ml, 0.06 moles) were dissolved in methanol (300 ml). This solution was photolyzed as described with a 200 watt Hanovia lamp under a nitrogen atmosphere for one hour and forty minutes. A new absorption at 300 μm reached a maximum absorption after 3/4 of an hour of irradiation and gradually disappeared after 1/2 hour of irradiation. The 407 μm absorption reached a maximum height at the end of the irradiation but gradually disappeared upon leaving the solution in the dark. The methanol was then removed under vacuum and treated with water (50 ml). The neutral fraction (114 mg) was extracted with ether (50 ml x 3) and was shown to contain N-nitrosopiperidine and cyclopentadiene by ir and nmr spectral analysis. The aqueous solution was basified with K₂CO₃ and extracted with CH₂Cl₂ (50 ml x 4) and was worked up in the usual manner to give a thick oil (9.37 g). One gram of this oil was chromatographed on alumina (30 g) with benzene as eluant. The fraction eluted with 50% benzene in CHCl₃ gave a solid (80 mg) which was recrystallized from cyclohexane twice to give syn-5-piperidino-2-cyclopenten-1-one oxime (I-9): mp 103-105°; ir 3200, 1000-905 (multiple peaks), 878, 750,
738, nmr \( \tau 0.34 \) (b, 1H, D\(_2\)O exchangeable), \( \tau 3.73 \) (m, 2H), \( \tau 5.72 \) (d-d, 1H, J=7 cps, J=4 cps), \( \tau 7.47 \) (m, 6H), \( \tau 8.46 \) (m, 6H). Further elution showed no separation and the compounds were stripped off from the column with methanol.

Another gram of the basic crude mixture was chromatographed on silicic acid (30 g). Fifty ml fractions were collected in succession. The fractions 5 and 6 eluted with 3\% methanol in CHCl\(_3\) gave I-9 (38 mg) as shown by tlc analysis. Fraction 7 gave an oil (71 mg) which was crystallized from 2-propanol to give white crystals of anti-5-piperidino-2-cyclopentene-1-one oxime (I-10): mp 130-132\°; ir 3200, 1630, 1100-918 (multiple peaks), 870, 750, 720, 658; nmr \( \tau 0.97 \) (b, 1H, D\(_2\)O exchangeable), \( \tau 3.43 \) (qt, 2H, J=5 cps), \( \tau 6.09 \) (d-d, 1H, J=6 cps, J=4 cps), \( \tau 7.4 \) (bm, 6H), \( \tau 8.48 \) (bm, 6H).

The following fractions eluted with 4\% methanol in CHCl\(_3\) gave a solid (800 mg) which was recrystallized from a solution of benzene-petroleum ether to give 4-piperidino-2-cyclopentene-1-one oxime (I-11, tlc single spot): mp 101-104\°; ir 3200, 1648, 1000, 960, 950, 800; nmr \( \tau 1.6 \) (b, 1H, D\(_2\)O exchangeable), \( \tau 3.6 \) (m, 2H, J=5 cps, J=1.5 cps), \( \tau 6.0 \) (m, 1H), \( \tau 7.36 \) (d, 2H, J=5 cps), \( \tau 7.56 \) (m, 4H), \( \tau 8.54 \) (m, 6H); Anal. Calcd for C\(_{10}\)H\(_{16}\)N\(_2\)O:C, 66.62; H, 8.95; N, 15.55. Found: C, 66.52; H, 8.98; N, 15.41.
D. To cis-1,3-pentadiene.

The nitrosamine (5.70 g, 0.05 moles), cis-1,3-pentadiene (4.0 g, 0.06 moles) and concentrated hydrochloric acid (5 ml, 0.06 moles) were dissolved in methanol (200 ml). This solution was irradiated with 450 watt Hanovia lamp (70 min). The solvent was removed under vacuum at a water bath temperature of 40°. The usual work up gave a neutral fraction from ether which contained, N-nitrosopiperidine (116 mg) as shown by ir and nmr analysis. The basic fraction was extracted with CHCl₃ (50 ml x 3) to give a mixture of crystals and oil (9.7 g). To this mixture was added some ether and the mixture was cooled. Filtration of the mixture gave nice white crystals (3.73 g): mp 132-136°. These crystals were recrystallized from a mixture of benzene-skelly solve B three times to afford 5-piperidino-trans-3-penten-2-one oxime (I-16): mp 141-142°; ir 3200, 1620, 1092, 1010-895 (multiple peaks), 763; nmr 7 0.0 (b, 1H, D₂O exchangeable), 7 3.82 (m, 2H), 7 6.92 (m, 2H), 7 7.59 (m, 4H), 7 8.05 (s, 3H), 7 8.50 (m, 6H); nmr (pyridine) ABX₂ pattern) 7 3.38 (d, 1H, J=16 cps), 7 3.93 (2t, 1H, J=16 cps, J=6 cps), 7 6.96 (d, 2H, J=6 cps), 7 7.66 (m, 4H), 7 7.87 (s, 3H), 7 8.58 (m, 6H); Anal. Calcd for C₁₀H₁₈N₂O: C, 65.90; H, 9.95; N, 15.37. Found: C, 65.62; H, 9.85; N, 15.68.
The mother liquor was evaporated to dryness to give a mixture of crystals and oil (5.95 g). This mixture was chromatographed on silicic acid (60 g). The first six fractions eluted with 0-3% methanol in CHCl₃ (600 ml) gave Fraction A as an oil (360 mg). Next six fractions eluted with 4% methanol in CHCl₃ gave the only fraction B, (580 mg). Eluting with 6% methanol in CHCl₃ gave fraction C as a resin (908 mg). With 8% methanol in CHCl₃ an oil (442 mg) and fraction D with 20% methanol in CHCl₃ were eluted.

Fraction A showed one predominant spot at Rf 0.3 and two smaller spots at Rf 0.6. The oil was rechromatographed on silicic acid (5 g) giving an oil (109 mg) as the first fraction eluted with CHCl₃. The nmr spectrum showed this oil to be mostly N-nitrosopiperidine and another compound. This oil was then distilled (110°/0.1 mm Hg) to remove the more volatile nitrosamine giving a colorless resinous liquid (30 mg) of syn-4-piperidino-1-penten-3-one oxime (I-18): ir 3300, 1660, 1280, 1260, 1100, 995, 940; nmr \( \delta 3.74 \) (qt, 1H, J=17 cps, J=11 cps), \( \delta 4.70 \) (qt, 1H, J=17 cps, J=8 cps), \( \delta 4.8 \) (d, 1H, J=11 cps), \( \delta 6.68 \) (qt, 1H, J=7 cps), \( \delta 8.72 \) (d, 3H, J=7 cps); mass spectrum (80eV) m/e (rel intensity) 182 (6.2), 112 (88), 98 (90), 84 (100), 41 (92). The third fraction from this chromatograph gave an oil (27 mg) which showed a single spot
on a tlc plate. This oil was distilled (100°/0.1 mm Hg) to afford a colorless oil identified as syn-1-piperidino-cis-3-penten-2-one oxime (I-19): ir 3300, 1640, 1110, 1000-900 (multiple peaks); nmr γ 3.69 (d-d, 1H, J=12.5 cps, J=1 cps), γ 4.2 (d-d, 1H, J=12.5 cps, J=7 cps), γ 6.41 (s, 2H), γ 7.54 (m, 4H), γ 7.91 (d-d, 3H, J=7 cps, J=1 cps); mass spectrum (80eV) m/e (rel intensity) 195 (44), 182 (3), 98 (100).

Fraction B consisted predominantly of a new compound as shown by tlc, and was rechromatographed on silicic acid (10g). On eluting with 1% methanol in CHCl₃ an oil (230 mg tlc single spot) was obtained which was distilled in small scale (90°/0.2 mm Hg) to give anti-1-piperidino-cis-3-penten-2-one oxime (I-20): ir 3350, 1643, 1459, 1370, 1300, 1270, 1110, 1008, 985, 940, 860, 760; nmr γ 0.9 (b, 1H, D₂O exchangeable), γ 3.97 (d, 1H), γ 4.21 (qt, 1H), γ 6.85 (s, 2H), γ 7.61 (m, 4H), γ 8.23 (d, 3H), γ 8.53 (m, 6H); nmr (pyridine) γ 3.48 (d-d, 1H, J=12 cps, J=1 cps), γ 4.17 (d-d, 1H, J=12 cps, J=7 cps), γ 6.70 (s, 2H), γ 7.61 (m, 4H), γ 7.12 (d-d, 3H, J=7 cps, J=1 cps), γ 7.64 (m, 6H); mass spectrum (20eV) m/e (rel intensity 182 (2), 164 (26), 98 (100).

Fraction C showed one predominant spot on tlc analysis which corresponded to the 1,4-adduct I-16: nmr γ 3.9 (m, 2H), γ 6.9 (m, 2H), γ 7.6 (m, 4H), γ 8.0 (s, 2H), γ 8.5 (m, 6H). In
addition another minor spot could be detected by tlc which ran slightly ahead but superimposed on the spot of the 1,4-adduct. This spot contributed signals at \( \tau 3.55 \) (qt, \( J=16 \) cps, \( J=7 \) cps), \( \tau 4.1 \) (d, \( J=7 \) cps), \( \tau 8.7 \) (d, \( J=6 \) cps) to the nmr spectrum of the mixture. This minor compound is probably \textit{anti-2-piperidino-4-penten-3-one oxime} (I-21).

Fraction D consisted of a mixture of I-16 and another compound which on the tlc showed an additional spot beside the spot of I-16. The nmr of this mixture showed in addition to the signals typical of I-16 at \( \tau 4.0 \) (m), \( \tau 7.5 \) (m, 4H), \( \tau 8.03 \) (s, 3H), \( \tau 8.5 \) (m), signals at \( \tau 2.3 \) (d, 1H, \( J=9 \) cps), \( \tau 4.0 \) (m, superimposed with the olefinic proton signals of I-12), and \( \tau 8.78 \) (d, 3H). The ratio of the integration for the signals at \( \tau 8.03 \) and \( \tau 8.78 \) was 15:38, respectively, which indicated that this compound is about 70% (38:53) of the total mixture. This fraction was recrystallized from 2-propanol and the crystals were examined by nmr. The same ratio for the signals at \( \tau 8.03 \) and \( \tau 8.78 \) was observed (15:38). On the basis of nmr spectral evidence this new compound is assigned to be \textit{4-piperidino-trans-2-pentenal oxime} (I-17). The % yield of compound I-17 was estimated by nmr analysis to be 12%. 


E. To trans-1,3-pentadiene.

The photolysis was carried out as previously described. The quantities of starting materials appear in Table IX. The reaction was worked up in the usual manner. The acidic ether extract gave a crude oil (36 mg) which was not investigated further. The basic extract was obtained by extracting with CHCl₃ (50 ml x 3) which upon evaporation of the solvent gave a resin (9.3 g). This resin was treated with ether to give crystals (8.6 g); superimposable ir and nmr with those of I-16. The mother liquour was evaporated down to give a resin (5.29 g) which was chromatographed on silicic acid (60 g). The first compound eluted with CHCl₃ (100 ml) was a solid (670 mg) which showed to be a single spot by tlc analysis and was recrystallized from cyclohexane to give syn-1-piperidino-trans-3-penten-2-one oxime (I-22, 360 mg):

mp 96-97.5; ir 3180, 1650, 1009, 1005-900 (multiple peaks), 863, 790; nmr \( \gamma \) 0.9 (b, 1H), \( \gamma \) 3.96 (m, 2H), \( \gamma \) 6.65 (s, 2H), \( \gamma \) 7.60 (m, 4H), \( \gamma \) 8.25, (d, 3H, J=5 cps), \( \gamma \) 8.54 (m, 6H); nmr (benzene-d₆) ABX₃ pattern \( \gamma \) 3.63 (d, 1H, J=16 cps), \( \gamma \) 4.0 (2 qt, 1H, J=16 cps, J=6 cps), \( \gamma \) 8.38 (d, 3H, J=6 cps); Anal. Calcd for C₁₀H₁₈N₂O: C, 65.90; H, 9.95; N, 15.37. Found: C, 65.90; H, 9.73; N, 15.19.
The next fraction eluted with 2% methanol in CHCl₃ was
an oil (1.4 g) which could be crystallized from petroleum ether
to give white crystals (350 mg, tlc single spot): mp 72-73.5°.
They were sublimed (70°/0.2mm Hg) to give anti-1-piperidino-
trans-3-penten-2-one oxime (I-23): mp 72-73.5°; ir 3250, 1640,
1113, 1118, 1000-940 (multiple peaks), 760; nmr γ 0.9 (b, 1H,
D₂O exchangeable), γ 3.36 (m, 2H), γ 6.87 (s, 2H), γ 7.65 (m, 4H)
γ 8.18 (d, 3H, J=6 cps), γ 8.57 (m, 6H); nmr (benzene-d₆) ABX₃
pattern γ 3.0 (d-d, 1H, J=16 cps, J=1 cps), γ 7.35 (2 qt, 1H,
J=16 cps, J=6 cps), γ 8.42 (qt, 3H, J=6 cps, J=1 cps). The
mother liquour from the recrystallizations were combined to
give a residue. This residue was slightly contaminated by
I-22 showing signals at γ 2.8 and γ 6.6. This residue was sub-
jected to the amino group assisted cleavage.

Continued elution with 2% methanol in CHCl₃ gave com-
pound I-16 (1.3 g); ir 3200, 1620, 1010-895; nmr γ 3.82
(m, 2H), γ 6.92 (m, 2H), γ 7.59 (m, 4H), γ 8.05 (s, 3H),
γ 8.50 (m, 6H). In the last fraction from this chromatogra-
phy, compound I-19 appeared admixed with compound I-16 as
shown by a doublet at γ 2.34 and γ 8.78, the rest of the sig-
als being superimposed with those of I-16.
F. **To cis, trans-2,4-hexadiene.**

The reaction was carried in the same manner as described. The conditions are described on Table IX, X. The compounds isolated and the yields appear on Table X. The acidic extract (60 mg) showed several unidentified compounds. The CHCl₃ extraction (50 ml x 3) of the basic aqueous solution afforded a light yellow oil (10.0 g) which was chromatographed on silicic acid (60 g).

The first fraction A eluted with CHCl₃ was an oil (516 mg) and on a tlc plate showed 2 predominant spots, Rf 0.42 and 0.29. Continued elution with CHCl₃ gave fraction B which was a mixture of 2 compounds showing spots on the Rf 0.16 and 0.08. The remaining fraction C was eluted with 1-20% methanol in CHCl₃ to give predominantly the last compound showing Rf of 0.08 (6.48 g) on tlc.

Fraction A was rechromatographed on silicic acid (15 g). Elution with CHCl₃ gave four consecutive fractions which showed a single spot on a tlc plate. These fractions were combined (200 mg) and distilled to give a colorless oil (170 mg) of syn-2-piperidino-trans-4-hexen-3-one oxime (I-25);

ir 3350, 1660, 1620, 1590, 1390, 1340, 1150, 1110, 990, 940;
nmr 7-1.25 (b, 1H, D₂O exchangeable), 73.96 (m, 2H), 76.57 (qt, 1H, J=7 cps), 77.5 (m, 4H), 78.18 (d, 3H, J=5 cps),
\[ \tau 8.47 \text{ (m, 6H), } \tau 8.67 \text{ (d, 3H, } J = 7 \text{ cps)}; \text{ nmr (pyridine) ABX}_3 \text{ pattern } \tau 3.3 \text{ (2 qt, 1H, } J = 16 \text{ cps), } \tau 3.74 \text{ (d, 1H, } J = 16 \text{ cps), } \tau 8.23 \text{ (d, 3H, } J = 6 \text{ cps)}; \text{ mass spectrum (80 eV) m/e (rel intensity) 196 (1), 111 (32), 84 (53), 41 (100). Continued elution with 1\% methanol in CHCl}_3 \text{ gave a fraction which on the plate showed a single spot. This oil was distilled on a small scale (110°/0.2 mm Hg) to give a colorless sample (40 mg) of 5-piperidino-trans-3-hexen-2-one (I-26): ir 2950, 2800, 1678, 1630, 1450, 1360, 1258, 1110; 990; nmr } \tau 3.18 \text{ (d-d, 1H, } J = 17 \text{ cps, } J = 7 \text{ cps), } \tau 3.94 \text{ (d, 1H, } J = 17 \text{ cps), } \tau 6.82 \text{ (2 qt, 1H, } J = 7 \text{ cps, } J = 7 \text{ cps), } \tau 7.5 \text{ (m, 4H), } \tau 7.71 \text{ (s, 3H), } \tau 8.46 \text{ (m, 6H), } \tau 8.76 \text{ (d, 3H, } J = 7 \text{ cps)}; \text{ mass spectrum (20 eV), m/e (rel intensity) 181 (4), 111 (46), 84 (100).}

\begin{align*}
\text{Fraction } B \text{ was rechromatographed on silicic acid (15 g). Eluting with up to 1\% methanol in CHCl}_3 \text{ gave 4 fractions which were predominantly a new compound contaminated slightly by I-26 and I-27. Continued elution with 2\% methanol in CHCl}_3 \text{ gave an oil (28 mg) which showed a single spot on a tlc plate. This oil was distilled to afford an analytical sample of anti-2-piperidino-trans-4-hexen-3-one oxime (I-27): ir 3350, 2995, 1650, 1638, 1458, 1383, 1120, 963, 940; nmr } \tau 0.9 \text{ (b, 1H, D}_2\text{O exchangeable), } \tau 3.28 \text{ (m, 2H, } J = 17 \text{ cps),}
\end{align*}
\( \gamma \) 6.67 (qt, 1H, J=7 cps), \( \tau \) 7.50 (m, 4H), \( \tau \) 8.12 (d, 3H, J=6 cps) \( \tau \) 8.50 (m, 6H), \( \tau \) 8.73 (d, 3H, J=7 cps): mass spectrum (80 eV) m/e (rel intensity) 196 (1.8), 179 (5.4), 84 (8), 41 (100); Anal. Calcd for \( \text{C}_{11}\text{H}_{20}\text{N}_{20} \): C, 67.31; H, 10.27; N, 14.27. Found: C, 67.20; H, 10.26; N, 14.47.

One of the fractions from fraction C (single spot on tlc, 300 mg) crystallized from petroleum ether: mp 83-85°.

These crystals were recrystallized three times from petroleum ether and then sublimed (90°/0.2 mm Hg) to give white crystals of 5-piperidino-trans-3-hexen-2-one oxime (I-24): mp 88-89°; ir 3000, 1630, 1145, 1110, 1060, 980-900 (multiple peaks), 870, 840, 780, 675; nmr \( \gamma \)-1.00 (b, 1H, D\(_2\)O exchangeable), \( \gamma \) 3.86 (m, 2H), \( \gamma \) 7.0 (m, 1H), \( \gamma \) 7.52 (m, 4H), \( \gamma \) 8.04 (s, 3H), \( \gamma \) 8.52 (m, 6H), \( \gamma \) 8.81 (d, 3H, J=6.5 cps); nmr (pyridine) \( \gamma \) 3.5 (d, 1H, J=16 cps), \( \gamma \) 3.98 (d-d, J=16 cps, J=7 cps); Anal. Calcd for \( \text{C}_{11}\text{H}_{20}\text{N}_{20} \): C, 67.31; H, 10.27; N, 14.27. Found: C, 67.25; H, 10.14; N, 14.40.

G. To \( \text{1-vinylcyclohexene} \).

The photolysis was carried out in a similar manner as shown in 1A. The conditions and yields are described in Table IX and X. The acidic ether extract gave an oil (50 mg) which contained N-nitrosopiperidine and other minor unidentified products. The basic CHCl\(_3\) extract (50 ml x 3)
gave an oil (4.14 g). This oil was chromatographed on silicic acid (60 g). Six fractions (A) were eluted with CHCl₃ and were shown to be predominantly one compound (700 mg). Continued elution with 2% methanol in CHCl₃ afforded fraction B (1.2 g).

Fraction A was chromatographed on alumina (15 g) using cyclohexane and benzene as eluent. Four fractions were eluted with benzene and up to 60% CHCl₃ in benzene to give a solid (200 mg) which was sublimed (85°/0.2 mm Hg) to give white crystals of I-29 (13%): mp 98-99°; ir 3110, 1680, 1608, 1100, 1043, 1000, 980, 968, 928, 785; nmr Τ 0.07 (b, 1H, D₂O exchangeable), Τ 4.03 (m, 1H), Τ 6.62 (s, 2H), Τ 7.61 (m, 8H), Τ 8.46 (m, 12H); mass spectrum (15 eV) m/e (rel intensity) 222 (18), 205 (15), 98 (100) 84 (16); Anal. Calcd for C₁₃H₂₂N₂O: C, 70.23; H, 9.97; N, 1260. Found: C, 70.13; H, 9.79; N, 12.46.

Fraction B showed a single spot on tlc but the nmr spectrum showed it to be a mixture of the syn and anti isomers, I-30 and I-31 (27%) showing two sets of quartets centered at Τ 2.94 and Τ 2.75. The mixture was chromatographed an alumina (15 g). Two fractions eluted with CHCl₃ (300 mg) were combined and distilled in small scale to give a colorless oil: ir 3350, 1650, 1260, 1200, 1000-900 (multiple peaks).
760; nmr \( \tau 1.00 \) (b, 1H, D\(_2\)O exchangeable), \( \tau 1.92 \) (d, 1H, J=10 cps), \( \tau 3.97 \) (d, 1H, J=10 cps for the syn isomer), \( \tau 2.10 \) (d, 1H, J=10 cps), \( \tau 3.41 \) (d, 1H, J=10 cps for the anti isomer), \( \tau 7.5 \) (m, 7H), \( \tau 8.5 \) (m, 12H); mass spectrum (25 eV) m/e (rel intensity) 222 (38), 162 (56), 59 (100); Anal. Calcd for C\(_{13}\)H\(_{22}\)N\(_2\)O: C, 70.23; H, 9.97; N, 12.60. Found: C, 70.41; H, 10.01; N, 12.62.

The aqueous basic solution was continuously extracted with CHCl\(_3\). The CHCl\(_3\) was evaporated to give a light oil which smelled strongly of piperidine. This oil was dissolved in ether and treated with HCl gas to give a white precipitate (17 mg). The nmr and ir spectra of this solid was identical to those of an authentic sample of piperidine hydrochloride.

H. To butadiene.

N-nitrosopiperidine (5.70 g, 0.05 moles) and concentrated hydrochloric acid (15 ml) were dissolved in methanol (190 ml). The photocell was immersed in an ice-salt water bath and the solution cooled down to \(-8^\circ\). Butadiene was condensed in a U-tube at liquid nitrogen temperature until a suitable amount had liquified (5.8 g). The U-tube was connected to the inlet tube of the photocell and the butadiene was allowed to evaporate into the cold solution at a moderate rate. After 1/2 hour of irradiation more butadiene (5.8 g)
was charged into the solution in the same manner. The solution was irradiated with the 200 watt Hanovia lamp for 105 min. The photolysate was worked up by the usual procedure. The acidic extract gave an oil (234 mg) which contained N-nitrosopiperidine and some minor unidentified non-basic components. The basic CHCl₃ extract gave a light oil (7.1 g). This oil was treated with cyclohexane to give white crystals (1.25 g, tlc single spot): mp 91-93°. These crystals (120 mg) were sublimed to give crystals of 4-piperidino-trans-2-butenal oxime (I-14): mp 97-99°; ir 3200, 1620, 1150, 1118, 1108, 1046, 990, 960, 910, 870, 778; nmr τ-1.0 (b, 1H, D₂O exchangeable), τ 2.28 (d, 1H, J=9 cps), τ 3.89 (m, 2H), τ 6.91 (d, 2H, J=5 cps), τ 7.54 (m, 4H), τ 8.47 (m, 6H); Anal. Calcd for C₉H₁₆N₂O: C, 64.25; H, 9.59; N, 16.65. Found: C, 64.35; H, 9.60; N, 16.84.

The mother liquor from the crystallization was evaporated to give an oil (5.85 g), a part of which (1.0 g) was chromatographed on silicic acid (30 g). The following compounds were identified in their order of elution from the column. With 4% methanol in CHCl₃ an oil (47 mg, tlc single spot) was eluted and then distilled (70/0.1 mm Hg) to give white crystals of syn-1-piperidino-3-buten-2-one oxime (I-12, 40 mg): mp 87-90°; ir 3150, 1630, 1320, 1258, 1110, 1040, 1010, 985,
925, 908, 890, 790, 720; nmr T -1.8 (b, 1H, J=17 cps), T 4.72 (d, 1H, J=11 cps), T 6.56 (s, 2H), T 7.52 (m, 4H), T 8.48 (m, 6H).

With 5% methanol in CHCl₃ an oil (87 mg) was eluted which showed a single spot on a tlc plate. It gave the picrate with poorly defined melting point: mp 70-80°. The tlc shows this compound to have a lower Rf (0.18) than I-14 (0.24) on the plate. This oil is assigned to be anti-1-piperidino-3-buten-2-one oxime (I-13): ir 3300, 1610, 1305, 1280, 1120, 1040, 1020, 995, 950, 918, 870, 795; nmr T 2.0 (b, 1H, D₂O exchangeable), T 3.02 (qt, 1H, J=18cps, J=11 cps), T 4.02 (qt, 1H, J=18 cps, J=1.5 cps), T 4.50 (qt, 1H, J=11 cps, J=1.5 cps), T 6.82 (s, 2H), T 7.60 (m, 4H), T 8.53 (m, 6H).

Further elution with 8% methanol in CHCl₃ gave I-14 as identified by ir, nmr and tlc analysis.

2. Beckmann dehydration of crude 4-piperidino-2-butenal oxime (I-14).

The crude resin (1.59 g, 0.0088 moles) obtained from the photoaddition of the nitrosamine to butadiene without further purification, was dissolved in pyridine (30 ml). To this solution was added p-toluenesulfonyl chloride (3.0 g, 0.015 moles) as a finely ground powder. The solution was stirred at room temperature for 24 hours. At this time, the pyridine
was removed under vacuum leaving a dark black oil. This oil was treated with saturated K₂CO₃ solution and stirred for one hour at room temperature. This solution was then extracted with ether (20 ml x 3). The ether extract was re-extracted with a 2N hydrochloric acid solution (20 ml x 3). The acidic washings were combined and basified with a saturated K₂CO₃ solution and extracted with CHCl₃ (50 ml x 3). The solvent was evaporated giving a brown-black oil (860 mg). The oil was then distilled by bulb distillation at a vacuum of 0.2 mm Hg. The forerun collected distilled at a chamber temperature of 70-76° and the main distillate was collected at a temperature range of 76 to 88°. Both the forerun and the main fraction showed nmr signals at 73.28 (2t, 1H, J=16 cps, J=5.5 cps), 74.38 (2t, 1H, J=16 cps, J=2 cps), 76.90 (d-d, 2H, J=5.5 cps, J=2 cps), 77.61 (m, 4H), 78.50 (m, 6H) and ir at 2225, 1640, 1108 which were superimposable with that of trans-4-piperidinocrotonitrile (I-15).


N-bromosuccinimide (17.8 g, 0.11 moles) and 10 g of a 40:60 cis, trans mixture of crotonitrile were refluxed in CCl₄ for 15 hours. At this time, the succinimide had crystalized as a top layer in the CCl₄ solution and was filtered. To the CCl₄ filtrate was then added piperidine (20 g, 0.24
moles). Upon standing at room temperature piperidine hydrobromide (15.5 g, 0.095 moles) precipitated and was filtered. The filtrate was then refluxed for one hour. The CCl₄ was then removed under vacuum to give a brown oil which was dissolved in ether and the ether solution washed with water (50 ml x 3), dried (MgSO₄) and evaporated to give a crude oil (11.4 g): ir 2225, 1640, 1108. This oil was distilled to give a main fraction (76-82°/1.5 mm Hg): ir 2225, 1640, 1108; nmr 72.5 (m, 1H), 72.6 (m, 1H), 76.8 (m, 2H), 77.6 (m, 4H), 78.5 (m, 6H).


In a round bottom flask (50 ml) equipped with a condenser, I-20 (244 mg, 0.0013 moles) was dissolved in pyridine (10 ml). The top of the condenser was closed with a stopper. To the solution was added p-toluenesulfonyl chloride (600 mg, 0.003 moles) and the resulting solution was stirred for 18 hours. It was then treated with ether. The ether layer was washed with 2N hydrochloric acid solution (30 ml x 3), and then with a saturated K₂CO₃ solution and lastly with water. The ether extract was then dried (MgSO₄) and filtered. The ether solution was concentrated to a small volume (10 ml) in a distillation apparatus equipped with a vigoreaux column.
This residual ether (10 ml) was examined by vpc and nmr. The vpc analysis (20 ft. x 3/8 in., 30% SE-30, chrom W, 100 ml of He/min, 120°) showed that no trans-crotonitrile was present. The nmr showed signals at \( \gamma 3.5 \) (2 qt, 1H, \( J=11 \) cps, \( J=7 \) cps), \( \gamma 4.66 \) (2qt, 1H, \( J=11 \) cps, \( J=1.5 \) cps), \( \gamma 8.0 \) (qt, 3H, \( J=7 \) cps, \( J=1.5 \) cps).


A second photolysis was run in an identical manner as that described in 1-D. The crude product obtained from the basic extract was chromatographed on silicic acid (60 g). The fractions obtained were examined by tlc and those fractions containing the minor products other than I-12 were combined. This crude material (1.73 g, 0.0095 moles) was dissolved in pyridine and cooled in an ice bath to 3° with constant stirring. To this solution was added finely powdered p-toluenesulfonyl chloride (3.8 g, 0.02 moles) and the resulting solution was stirred overnight. The temperature rose gradually to 22° after stirring for 18 hours. The solution was diluted with ether (50 ml). The ether was washed with 2N hydrochloric acid solution, followed by washing with a saturated \( \text{K}_2\text{CO}_3 \) solution. The ether was then washed with water and dried (\( \text{MgSO}_4 \)) and filtered. The ether solution was then carefully distilled to small volume (10 ml). The
nmr and vpc analysis in the same manner (135 ml/min, 100°) showed only cis-crotonitrile.


I-23, (300 mg, 0.0016 moles) as finely ground crystals, was dissolved in pyridine (15 ml). p-Toluenesulfonyl chloride (960 mg, 0.002 moles) was added and this solution was stirred for 16 hours. The reaction was worked up as previously described. A vpc analysis (150 ml of He/min, 123°) and nmr spectrum of the concentrated ether solution showed it to contain only trans-crotonitrile.

An analogous reaction was carried out in an aqueous 2% KOH solution. The recovered crotonitrile was analysed to contain about 20% cis and 80% trans isomer by vpc analysis (125 ml of He/min, 85°). The commercially available cis and trans crotonitrile mixture was stirred for 20 hours in an aqueous 2% KOH solution. The cis to trans ratio was found to be unchanged.


A second photolysis was carried out as described in 1-E. The basic crude mixture from photolysis was chromatographed on silicic acid (60 g). All the fractions which showed the
presence of the minor components other than I-16 by tlc analysis were combined (2.124 g, 0.0118 moles). The oil was treated with p-toluenesulfonyl chloride (4.85 g, 0.025 moles) in pyridine (20 ml) the solution was stirred for 16 hours. The solution was then worked up in the usual manner. The concentrated ether extract was examined by vpc (120 ml of He/min, 126°) and nmr and was shown to contain only trans-crotonitrile.


A second photolysis was carried out as described in 1-F. The basic fraction was chromatographed and all the fractions which showed the presence of minor components other than I-24 were combined to give a crude mixture (560 mg, 0.0029 moles). This crude mixture was treated with p-toluenesulfonyl chloride (1.3 g, 0.0065 moles) in pyridine (20 ml) for 22 hours at room temperature and the solution was worked up in usual way. The ether extract was examined by vpc analysis (30% SE-30 on chrom W, 150 ml of He/min, 80°) and shown to contain cis- and trans-crotonitrile in a ratio of 3 to 97 by mixed injection. The retention times for the trans-crotonitrile was 8 min. and for the cis isomer 9.5 min.


The crude mixture of I-30 and I-31 (895 mg), obtained from the chromatography of the basic fraction was treated
with p-toluenesulfonyl chloride (1.4 g, 0.010 moles) in pyridine (30 ml) for 36 hours at room temperature. The reaction mixture was worked up in the same manner as described in 2 to afford a basic fraction (250 mg) as an oil. This oil was distilled (120°/0.2 mm Hg) twice to give a colorless oil of 1-32: ir 3050, 3000, 2700, 2220, 1673, 1625, 1165, 1118, 1101; nmr $\delta$4.62 (s, 1H), $\delta$7.26 (m, 3H), $\delta$7.65 (m, 4H), $\delta$8.51 (m, 12H). Decoupling experiments of 1-32 at 100 Mc showed that irradiation of $H_A$ at $\delta$7.73 resolves $H_C$ at $\delta$4.62 into a doublet, $J$=1.4 cps; irradiation of $H_B$ at $\delta$7.21 resolves $H_C$ into a doublet, $J$=1.0 cps.

10. **Isomerization of cis, cis-1,3-cyclooctadiene (COD) using acetophenone as sensitizer.**

The isomerization and identification of the products formed was carried out according to procedure described by R.S. Liu (23). A solution of cis, cis-1,3-cyclooctadiene (20 g, 0.2 moles) and acetophenone (2.0 g, 0.016 moles) in pentane was irradiated with the 200 watt Hanovia lamp for 20 hours. The isomerization of cis, cis-1,3-COD was followed by vpc (6 ft x 3/8 in., 20% TCEP, chrom W, 80 ml of He/min, 85°). The increase in a peak of retention time of 9.8 min. was followed. After 20 hours of irradiation this peak appeared in a ratio of 1:2 relative to cis, cis-1,3-COD whose retention
time was 8 min. under the conditions employed.

11. Attempted isomerization of cis, cis-1,3-COD using N-nitrosopiperidine.

A mixture of cis, cis-1,3-COD (10.0 g, 0.1 moles) and N-nitrosopiperidine (4.0 g, 0.035 moles) in pentane (200 ml) was irradiated for 20 hours with the 200 watt Hanovia lamp. The vpc analysis of the solution during the irradiation revealed no new peak having a retention time of the cis, trans-1,3-COD (9.8 min.).

12. Attempted isomerization of cis, cis-1,3-COD using N-nitrosopiperidine in the presence of acid.

A photoaddition was carried in the same manner as described in 1-A using a mixture of N-nitrosopiperidine (2.4 g, 0.02 moles), cis, cis-1,3-COD (10.0 g, 0.1 moles) and concentrated hydrochloric acid (2 ml, 0.024 moles) in methanol (200 ml). This solution was irradiated with the 200 watt Hanovia lamp until the nitrosamine absorption had completely disappeared (2 hr.). During the irradiation the solution was examined by vpc (20% TCEP, in chrom W, 80 ml of He/min, 85°). While the one hour and the two hour sample (2 ul) showed a decrease in the concentration of cis, cis-1,3-cyclooctadiene by 20%, no new peaks or peaks having a retention time of 9.8 min. appeared during the irradiation.
13. **Attempts to isomerize 1,3 pentadiene using N-nitrosopiperidine in neutral conditions.**

The nitrosamine (4.0 g, 0.035 moles) and a mixture of **cis** and **trans-1,3-pentadiene** (40:60) in cyclohexane (360 ml) was irradiated for 18 hours with a 200 watt Hanovia lamp. The photolysis solution was analyzed by vpc (20 ft. x 3/8 in., 30% SE-30, chrom W, 86 ml of He/min, 85°). The 0 hr. sample showed the trans:cis ratio of 60:40; the one hr. sample 58.5:41.5; the 3 hr, 59.5:40.5; the 18 hr, 59.5:40.5. The retention time for trans-1,3-pentadiene was 16.5 min. and for the **cis-1,3-pentadiene**, 17.5 min. under the conditions employed.

14. **Attempts to isomerize cis-1,3-pentadiene in acidic media.**

N-Nitrosopiperidine (2.3 g, 0.02 moles) **cis-1,3-pentadiene** (2.2 g, 0.032 moles) and concentrated hydrochloric acid (2 ml, 0.024 moles) in methanol (1.41.) was irradiated with a RPR 3500Å lamp to about 80% completion (4 hr). To this solution was added water (50 ml) followed by sodium bicarbonate (pH 7-8). The photolysate solution was partially distilled to collect 25 ml of distillate (bp 64-65°) while the receiver was cooled with acetone-CO₂. This distillate was examined by vpc to show the peak for **cis-1,3-pentadiene** with
a retention time of 13.4 min. No other peak having a retention time of trans-1,3-pentadiene (11.2 min.) was present.

15. **Attempts to isomerize trans-1,3-pentadiene in acidic media.**

N-Nitrosopiperidine (3.42 g, 0.03 moles), trans-1,3-pentadiene (3.40 g, 0.05 moles) and concentrated hydrochloric acid (3 ml, 0.036 moles) in methanol (360 ml) was photolyzed for 5 hours with a RPR 3500A lamp to completion. The remaining diene was examined by vpc in the usual manner to show the peak of trans-1,3-pentadiene at 13 min. but no peak at 14.2 min. cis-1,3-pentadiene.

16. **Photolysis of N-nitrosopiperidine in the presence of cis and trans-1,3-pentadiene.**

A solution of N-nitrosopiperidine (2.3 g, 0.02 moles), concentrated hydrochloric acid (2 ml, 0.024 moles) and a (60:40) cis and trans mixture of 1,3-pentadiene (2.72 g, 0.04 moles) in methanol (380 ml) was irradiated for 5 hours and was worked up in the same manner as 14 to afford the forerun (20 ml). The forerun was examined by vpc (60 ml of He/min, 70°) to show that the cis:trans ratio of the 1,3-pentadiene was 60:40, having identical ratio as the 0 hr. sample 6:40. Under the conditions employed trans-1,3-pentadiene had a retention time of 19 min., the cis isomer, 20.4 min.
17. **Photolysis of N-nitrosopiperidine in the presence of cis, trans-and trans, trans-2,4-hexadiene.**

A solution of N-nitrosopiperidine (2.51 g, 0.022 moles), concentrated hydrochloric acid (3 ml, 0.036 moles) and cis, trans-2,4-hexadiene (1.64 g, 0.02 moles) and trans, trans-2,4-hexadiene (1.64 g, 0.02 moles) in methanol (200 ml) was irradiated in the same manner as 14 for 7 hrs. The photoly-sate was analyzed by vpc (20 ft. x 3/8 in., 30% SE-30, chrom W, 120 ml of He/min, 90°). The cis, trans isomer had a retention time of 16 min. and the trans, trans isomer of 18.2 min. At the zero hour the ratio of cis, trans to trans, trans isomer was 1:1 and at the end of photolysis the corresponding ratio is again 1:1.

18. **Photolysis of N-nitrosopiperidine in the presence of 1,3-cyclohexadiene.**

A. **At - 75°**

A solution of the nitrosamine (1.14 g, 0.01 moles), 1,3-cyclohexadiene (1.64 g, 0.02 moles) and methanolic hydro-chloric acid (5 ml, 0.01 moles) in methanol (200 ml) was cooled to -75° by immersing in an acetone-dry ice mixture. The solution was irradiated with the 450 watt Hanovia lamp which was cooled by passing a fast stream of air directly
into the sleeve. After 16 hours of irradiation, the nitrosamine absorption had decreased, from 0.86 at 0 hour; to 0.26. A plot of optical density against time showed that 20 hours were required to effect 100% disappearance of the nitrosamine. As the clear solution starts to warm up to room temperature it turned light green in color. The color faded to light yellow after a while. The solvent was removed under vacuum to a small volume at a water bath temperature of 15°. The products were isolated in the usual manner. The acidic ether extract gave an oil (50 mg) whose ir spectrum was superimposable with that of authentic N-nitrosopiperidine. The basic extract gave upon evaporation, an oil (1.0 g) whose ir, nmr and tlc were identical to the basic crude extract described in section I-B.

B. At 49°

The same quantities of reactants as described in 1-A were used. The solution was warmed to 49° by passing a stream of water which was maintained at 49° through the cold finger of the photocell. The optical density of the nitrosamine was measured to be 0.82 and did not change after 20 min. under this condition. The solution was irradiated for 20 min. with the 450 watt Hanovia lamp. After 8 min. of irradiation the optical density had decreased to 0.32 (61%) but tappered
off; at 10 min., 0.32; 13 min., 0.27; 16 min., 0.20; 19 min., 0.28. The irradiation was discontinued and the photolysate was worked up in the usual manner. The neutral extract gave a crude product (1.11 g) whose ir, nmr and tlc behaviour were identical to that of the crude product described in section I-B.

19. Quantum yield determinations for the disappearance of N-nitrosopiperidine.

A. With varying concentration of cyclooctene

A stock solution of N-nitrosopiperidine (232 mg, 0.002 moles) in freshly distilled methanol (100 ml) containing concentrated hydrochloric acid (4.2 ml, 0.05 moles, 0.5 M) was prepared.

In five separate volumetric flasks (10 ml), the appropriate amounts of freshly distilled cyclooctene: bp 149° were introduced (see Table IV). The flasks were then filled with the stock solution (0.5M HCl, 0.02M nitrosamine). The optical density at 350 mu was measured for each flask. These solutions (5 ml) were placed in 5 separate tubes respectively and each tube was degassed by the freeze-pump-thaw cycle three times under a vacuum of 5u. In the sixth tube, the ferrioxalate solution (5 ml) (22) was placed. The samples
\[
\frac{N_b}{N_{Fe} + 2} \frac{\Phi_{Fe + 2}}{(366 \text{ mu})} = \frac{\Phi_B}{(5 \text{ ml})} \quad (i)
\]

where

\[\Phi_B = \text{quantum yield for the disappearance of N-nitrosopiperidine}\]

\[\Phi_{Fe + 2} = 1.21 = \text{quantum yield of the actinometer solution at 366 mu}\]

\[N_{Fe + 2}(5 \text{ ml}) = \text{moles of Fe}^{+2} \text{ produced upon irradiation}\]

and

\[N_{Fe + 2}(5 \text{ ml}) = \left[\begin{array}{c} \text{Fe}^{+2} \\ \vdots \end{array}\right] \cdot \frac{V_1 V_3}{V_2} \quad (ii)\]

where \(\left[\begin{array}{c} \text{Fe}^{+2} \\ \vdots \end{array}\right]\) = determined using the measured optical density of the actinometer solution at 510 mu and extrapolating that value using the graph (Fig. 22).

\[V_1 = \text{volume of actinometer solution irradiated}\]

\[V_2 = \text{volume of irradiated actinometer solution taken for analysis}\]
\[ V_3 = \text{final volume to which the aliquot } V_2 \text{ is diluted} \]

and

\[ N_b = (\text{moles of N-nitrosopiperidine}) \]

\[
\frac{V_4}{V_5} \cdot \frac{0.\text{D.}_{\text{min.}}}{0.\text{D.}_{\text{20 min.}}} - 0.\text{D.}_{\text{20 min.}}
\]

where

\( V_4 = \text{volume of aliquot irradiated from stock solution} \)

\( V_5 = \text{total volume of stock solution} \)

\( 0.\text{D.}_{\text{min.}} = \text{optical density of the aliquot taken of stock solution at 0 min.} \)

\( 0.\text{D.}_{20\text{min.}} = \text{optical density of the aliquot } V_4 \text{ after being irradiated for 20 min.} \)

The quantum yields for the disappearance of N-nitrosopiperidine with different olefins in the range of 0.5N and 0.06N methanolic hydrochloric acid solution were carried out in an identical manner as described in the above determination. All the pertinent data appears in Tables II and III, respectively. In addition the determination of the lamp intensity used for the quantum yield determinations was calculated through equation (IV) to be \( \sim 3 \times 10^{11} \) quanta/sec.
\[
I_i^o = \frac{N_{Fe}^{+2} (5 \text{ ml})}{Fe^{+2} t (1-10^e A l)} \quad \text{(iv)}
\]

where

\[
N_{Fe}^{+2} (5 \text{ ml}) = \text{same value as in equation (ii)}
\]

\[
Fe^{+2} = 1.21
\]

\[
t = 20 \text{ min. } \times 60
\]

\[
e = 1.11 \times 10^4 \text{ lit/mole-cm (Fig. 22)}
\]

\[
A = 0.4 \times 10^{-6} \text{ moles/liter}
\]

\[
l = \text{cell path length, 1cm}
\]

\[
I_i^o = \text{incident light intensity}
\]
Experimental

Section II

1. **Photolysis of N-nitrosopiperidine in the presence of 1,3-pentadiene and Naphthalene.**

In the photolysis apparatus, N-nitrosopiperidine (3.42 g, 0.03 moles), 1,3-pentadiene (*cis:*trans; 60:40), concentrated hydrochloric acid (3 ml, 0.036 moles) and naphthalene (5.12 g, 0.04 moles) in methanol (400 ml) was irradiated. The experiment was followed by measuring the decrease of the optical density of the nitrosamine at 350 μm. This was done by pipetting out an aliquot (2 ml) and diluting to the appropriate volume (10 ml) for spectroscopic measurement. A plot of optical density against time gave a straight line up to 80% completion. The solution was irradiated to completion with the RPR 3500A lamp (6 hrs.). The rate of disappearance of the nitrosamine was calculated from the slope to be 0.005 moles per hour. An identical reaction was carried out in the absence of naphthalene. The rate of disappearance of the nitrosamine was determined in the same way to be 0.005 moles per hour. The photolysate was evaporated to a small volume (40 ml) and was diluted with water (50 ml). The precipitated naphthalene was filtered. The acidic aqueous solution was extracted with CHCl₃ (50 ml x 3) which was washed with water,
dried (MgSO₄) and evaporated to give a residue (500 mg). The residue contained nitrosamine and naphthalene as shown by IR and NMR analysis. The acidic aqueous layer was basified to pH 9-10 with a saturated K₂CO₃ solution and extracted with CHCl₃ (50 ml x 3). The CHCl₃ extract was washed with water, dried (MgSO₄), filtered and evaporated to give a resin (6 g). The resin was treated with ether and cooled to give crystals (4.3 g, 79%). The crystals were identified as I-16 by IR and NMR and TLC analysis with those of an authentic sample.

2. Naphthalene sensitized photoaddition of N-nitrosopiperidine to 1,3-pentadiene.

A homogeneous solution containing N-nitrosopiperidine (3.42 g, 0.03 moles), 1,3-pentadiene (cis:trans); 60:40, 3.40 g, 0.05 moles), concentrated hydrochloric acid (3 ml, 0.036 moles) and naphthalene (10.2 g, 0.08 moles, 0.2M) was prepared in methanol (400 ml). At 300 μm the optical density of this solution was 0.68 (1/100 dilution). A filter solution of N-nitrosodimethylamine (0.18M) in methanol which exhibited an optical density of 0.4 at 300 μm and 1.82 at 345 μm was circulated through the cold finger. The solution was irradiated with a RPR 3000Å lamp. The optical density at 350 μm after 3 hours of irradiation changed to 1.52 from that of 1.51 at zero hour. More naphthalene (6 g) was added
to make a saturated solution. The solution was again irradiated with the RPR 3000Å. After 8 hours of irradiation the optical density at 350 μm changed to 1.43 and after 15 hours to 1.47 from that of 1.45 at starting point. The filter solution was removed and the solution was irradiated at 300 μm for 1 hour. The optical density of the nitrosamine decreased 6% in this time interval. The reaction was not investigated further.

3. **Naphthalene sensitized photoaddition of N-nitrosopiperidine to cyclohexene**

N-Nitrosopiperidine (3.42 g, 0.03 moles), cyclohexene (24.6 g, 0.3 moles), concentrated hydrochloric acid (3 ml, 0.036 moles) and naphthalene (15.4 g, 0.12 moles) were dissolved in methanol (400 ml). The optical density of the solution without naphthalene was 0.04 (1/10 dilution) at 300 μm and 1.43 at 350 μm. The solution with naphthalene showed an optical density of 0.68 (1/100 dilution) at 300 μm. The cold finger of the photocell was filled with a filter solution of N-nitrosodimethylamine (0.21M). The filter solution had an optical density of 2.0 from 348 μm to 335 μm and 0.3 at 300 μm. The filter solution was not circulated since the RPR 3000Å or the RPR 3500Å do not generate sufficient heat during irradiation to require external cooling. The temperature of the photolysate at equilibrium state was
27-28°. The solution was irradiated with the RPR 3000 Å.
After 4 hours irradiation the optical density decreased to
1.37, after 28 hours to 1.05 at 350 μm, equivalent to 26% decomposition. The methanol was evaporated to a small volume,
water was added and the preceipitated naphthalene was filtered.
The aqueous filtrate was extracted with ether (50 ml x 3) to
give a mixture of N-nitrosopiperidine and naphthalene as shown by ir and nmr analysis. The basic extract gave a light oil
(1.77 g) which showed on tlc analysis one major spot with
Rf 0.22 and 3 minor spots with Rf of 0.42, 0.70 and 0.75 respectively. The major spot had an identical tlc mobility with
that of authentic 2-piperidinocyclohexanone oxime (Rf 0.22).
The crude product was chromatographed on silicic acid (30 g).
The first five fractions (150 mg) eluted with CHCl₃, and up
to 4% methanol in CHCl₃, were shown to contain the 3 minor products by tlc analysis. The rest of the fractions eluted
with 6 to 10% methanol in CHCl₃ contained 2-piperidinocyclo-
hexanone oxime (700 mg) identified by comparison of the ir
and nmr and tlc analysis with those of an authentic sample.
The mixture was rechromatographed on silicic acid (1.0 g).
The spots which on tlc showed Rf's of 0.70 and 0.75 could
not be separated from one another. The third component of
Rf 0.45 was obtained pure (6 mg) showing a single spot on
tlc. It was sublimed to give a white solid which was identified as 2-piperidinocyclohexanol: ir 3400, 1640, 1400-1300 (multiple peaks) 1078; mass spectrum (15 eV) m/e (rel intensity) 183 (30), 124 (57), 85 (100), 88 (83).

4. Naphthalene photosensitized addition of N-nitroso-piperidine to cyclohexene in the presence of benzonitrile

A solution of N-nitrosopiperidine (3.42 g, 0.03 moles), cyclohexene (24.6 g, 0.3 moles), benzonitrile (25 g, 0.24 moles, 0.6M) and concentrated hydrochloric acid (3 ml, 0.036 moles) in ethanol (400 ml) exhibited an optical density of 0.63 at 350 μm and 0.04 at 300 μm with 1/10 dilution. Naphthalene was then dissolved. The optical density at 300 μm was 0.68 with 1/100 dilution. The cold finger of the photocell was filled with a filter solution of N-nitrosodimethylamine (0.028M) in methanol whose optical density was 2.0 from 360 μm to 330 μm and 0.26 at 300 μm. The photocell was immersed in a water bath and was irradiated with the RPR 3000A for 28 hours. The temperature of the photolysate was 27° at this time. The optical density at 350 μm had decreased from 0.68 to 0.54 during this period. Evaporation of the ethanol afforded an oil which was dissolved in CHCl₃ and extracted with 2N hydrochloric acid solution (50 ml x 3). The CHCl₃ layer was washed with water, dried (MgSO₄) and evaporated under
vacuum to afford the nitrosamine, naphthalene and benzonitrile by ir and nmr analysis. The aqueous acidic extract was basified with a saturated \( \text{K}_2\text{CO}_3 \) solution. The basic fraction obtained in an usual manner afforded an oil (900 mg). This oil was shown by nmr and tlc analysis to contain benzonitrile and 2-piperidinocyclohexanone oxime in a 1:1 ratio. The crude oil was chromatographed on silicic acid (15 g). The later fractions eluted with 4 to 10% methanol in \( \text{CHCl}_3 \) gave 2-piperidinocyclohexanone oxime (516 mg) identified by the ir and tlc comparison with those of an authentic sample.

5. **Attempted perylene photosensitized addition of N-nitrosopiperidine to cyclohexene**

A solution of the nitrosamine (2.3 g, 0.02 moles), cyclohexene (16.4 g, 0.2 moles) and hydrochloric acid (2 ml, 0.024 moles) in ethanol (400 ml) exhibited an optical density of 0.5 at 350 \( \mu\)m with 1/10 dilution. To this solution was added perylene (400 mg) which did not dissolve completely. The solution exhibited absorptions at 438 \( \mu \)m, 408 \( \mu \)m and 378 \( \mu \)m with optical densities corresponding to 1.58, 1.24 and 0.72, respectively with 1/100 dilution. A filter solution containing sodium nitrate (62), and sodium phthalate which absorbed 100% of the light below 400 \( \mu \)m, was circulated through the cold finger. The solution was irradiated with the 200 watt
Hanovia lamp for 6 hours. The optical density at 350 μm after 1 hour of irradiation was 0.58, after 3 1/2 hours, 0.59 and after 6 hours 0.62. At this time, the irradiation was discontinued and the filter solution was replaced by a soft glass filter which absorbs 100% of the light at 300 μm, 50% of the light at 320 μm and is fully transparent at 350 μm. The solution was irradiated with the RPR 3500A lamp for 9 hours. The photolysate turned red in color and the optical density increased to a value greater than 2 at 438, 2.0 at 408 and 1.16 at 378 μm after 5 hours of irradiation. After this point the absorption maxima of the perylene decreased gradually and broadened. The solution was worked up in the usual manner. The neutral CHCl₃ extract was treated with methanol to afford perylene (300 mg): mp 267-270°C lit (63) 276-278°C. The mother liquor from these crystals was evaporated to dryness giving a mixture (562 mg) of N-nitrosopiperidine and perylene and a trace (by tlc) of a purple colored compound. The basic fraction gave a brown oil (1.45 g) which was dissolved in petroleum ether to give crystals (600 mg): mp 86-106°C. The nmr and ir spectra were identical with those of an authentic sample of 2-piperidinocyclohexanone oxime.
6. Attempted triphenylene sensitized photoaddition of N-nitrosopiperidine to cyclohexene

A solution of the nitrosamine (640 mg, 0.0057 moles), cyclohexene (16.4 g, 0.2 moles) and concentrated hydrochloric acid (1 ml, 0.012 moles) in ethanol (400 ml) showed an optical density of 0.10 at 300 μm with 1/10 dilution. The triphenylene (1.0 g) was added to give a heterogeneous solution. The optical density at 300 μm was measured to be 1.34 with 1/10 dilution. The cold finger of the photocell was filled with N-nitrosodimethylamine (0.028M) in methanol solution. The solution was irradiated with the RPR 3000 lamp for 28 hours. The photolysate was worked up in the usual manner to afford solid triphenylene (870 mg), an acidic (244 mg) and a basic extract (422 mg). By nmr and ir and tlc analysis the acidic fraction was shown to be N-nitrosopiperidine and triphenylene. The basic fraction was a mixture of oil and solid which by ir and nmr spectra and tlc analysis was shown to be 2-piperidino cyclohexanone oxime. Two more minor components were detected by tlc analysis.

7. 1,2-Benzanthracene sensitized addition of N-nitrosopiperidine to cyclohexene

A solution of the nitrosamine (2.38 g, 0.02 moles), cyclohexene (16.4 g, 0.2 moles) and concentrated hydrochloric acid
(2 ml, 0.024 moles) in ethanol (1.4 l.) showed the optical density of 0.015 at 350 μm with 1/100 dilution. The optical density of 1,2-benzanthracene was shown to be 0.34 with 1/100 dilution. The heterogeneous solution was irradiated with the RPR 3500A lamp for 14 hours. At this time the solution was greenish in color. The solution was then filtered to give 1,2-benzanthracene (1.0 g). The filtrate was evaporated to a small volume and extracted with CH₂Cl₂ (100 ml). The CH₂Cl₂ solution was then extracted with 2N hydrochloric acid solution (50 ml x 3). The CH₂Cl₂ was washed with water, dried (MgSO₄) and evaporated to give a solid (5.15 g) which by ir and nmr comparison with those of an authentic sample was shown to be 1,2-benzanthracene and a minor amount of N-nitrosopiperidine. The acidic aqueous layer was worked up in the usual manner to give a crude basic resin (776 mg) which was shown by ir and nmr spectral analysis to be mainly 2-piperidinocyclohexanone oxime. This crude resin was chromatographed on silicic acid (15 g). The second fraction (61 mg) eluted with CHCl₃ showed a strong ir peak at 1680 cm⁻¹. Continued elution with 2 to 10% methanol in CHCl₃ gave 2-piperidinocyclohexanone oxime (306 mg) by ir and nmr spectral comparison with those of an authentic sample. The fraction (ir. 1680 cm⁻¹) was rechromatographed on alumina (2 g). Elu-
tion with benzene gave an oil (10 mg) which showed a single spot on tlc: ir 1680, 1640, 1620, 1280, 1118, 1000, 940, 760 cm\(^{-1}\). The compound decomposed in attempted distillation. A tlc comparison against the minor products obtained by direct photolysis of the nitrosamine in the presence of cyclohexene showed that this compound is not one of the minor components obtained from direct irradiation since it showed an Rf different from the minor products.

8. Attempted 1,4-dimethylanthracene sensitized photo-addition of N-nitrosopiperidine to cyclohexene

The nitrosamine (2.3 g, 0.02 moles), cyclohexene (3.28 g, 0.04 moles) and hydrochloric acid (2 ml, 0.024 moles) were dissolved in ethanol (1.4 l.). The optical density at 350 μm was 0.33 with 1/5 dilution. The 1,4-dimethylanthracene was added (6.4 g, 0.02 moles) and the optical density at 350 μm was measured to be 0.72 with 1/100 dilution. The homogeneous solution was irradiated with the RPR 3500\(^{a}\) source for 16 hours. The solution was worked up in the usual manner to give acidic aqueous solution. This acidic solution was extracted with CH\(_2\)Cl\(_2\). The acidic CH\(_2\)Cl\(_2\) extract (6.9 g) gave 1,4-dimethylanthracene as shown by ir, nmr, and tlc analysis. This acidic aqueous solution was basified with Na\(_2\)CO\(_3\) and then extracted with CH\(_2\)Cl\(_2\). The basic CH\(_2\)Cl\(_2\) extract gave
a solid (185 mg). A careful tlc and nmr analysis revealed that the crude solid was mostly 1,4-dimethyl-9-piperidino-10-hydroxy-9, 10-dihydroanthracene (III-27), a small amount of N-nitrosopiperidine and a minor compound but that no 2-piperidinocyclohexanone oxime was present.

9. Anthracene sensitized photoaddition to cyclohexene

A solution of the nitrosamine (2.3 g, 0.02 moles), cyclohexene (16.4 g, 0.02 moles) and hydrochloric acid (2 ml, 0.024 moles) in ethanol (1.4 l.) had an optical density of 0.142 at 350 μm with 1/10 dilution. Anthracene was then added (5.2 g) and the heterogeneous solution was vigorously stirred. The optical density was shown to be 0.30 at 350 μm with 1/100 dilution. The solution was irradiated for 14 hours with the RPR 3500 source. At this time the ethanol was evaporated to a small volume and the precipitated anthracene was filtered: mp 200-208°. The filtrate was worked up in the usual manner to give an acidic fraction (1.2 g) which was shown to be a mixture of anthracene and N-nitrosopiperidine by ir and nmr spectral analysis. Analysis by tlc of this crude mixture showed a trace of an unidentified compound (Rf 0.15). The acidic aqueous solution was basified with a saturated K₂CO₃ solution to pH 9-10 to give a precipitate (1.3 g). The precipitate was filtered and worked up in the
same manner as described on page 148, to give pure III-1: mp 176-179° dec. The aqueous layer was extracted with CH₂Cl₂ (30 ml x 3) to give a mixture of an oil and solid (607 mg). The mixture was treated with CHCl₃ to give crystals of III-1 (96 mg). The mother liquor was evaporated to dryness and chromatographed on silicic acid (10 g). The first fraction eluted with CHCl₃ and up to 4% methanol in CHCl₃ (200 ml combined volume), gave III-8 (69 mg), III-1 (125 mg) and small amounts of N-nitrosopiperidine. The last fractions eluted with 6% and up to 10% methanol in CHCl₃ were 2-piperidinocyclohexanone oxime (125 mg) as shown by comparison of their nmr spectra and tlc behaviour against those of an authentic sample.

10. Attempted acetophenone photosensitized addition of N-nitrosopiperidine to cyclohexene

A solution of the nitrosamine (2.3 g, 0.02 moles), cyclohexene (16.4 g, 0.2 moles) and hydrochloric acid (2 ml, 0.024 moles) in methanol (400 ml) showed an optical density of 0.5 at 350 μm and 0.06 at 300 μm with 1/10 dilution. Acetophenone (14.4 g, 0.12 moles, 0.3M) was then added. The optical density was measured to be 2.0 at 300 μm and 1.94 at 310 μm with 1/10 dilution. The cold finger of the photocell was filled with N-nitrosodimethylamine (0.020M)
as filter solution. The solution was irradiated at 300 μm with the RPR 3000A source for 20 hours. The uv curve showed a slight decrease (1%) between the 310 to 355 μm region. The solution turned slightly yellow at the end of the photolysis. The solution was worked up in the usual manner. The acidic CH₂Cl₂ extract gave an oil (15 g) which was shown to be mostly acetophenone by ir and nmr analysis. The vpc analysis (10 ft., 1/8 in., 30% SE-30, chrom W, 30 ml of N₂/min., 200°C) showed the presence of an unidentified minor component (1%) which ran slightly behind the acetophenone peak. The basic CH₂Cl₂ extract gave an oil (485 mg) which was chromatographed on silicic acid (5 g). Elution with CHCl₃ gave acetophenone (73 mg) identified by ir and nmr spectra comparison. Further elution with 1 to 6% methanol in CHCl₃ gave an oil (62 mg, two spots on tlc, Rf 0.75) whose nmr spectrum showed only aliphatic protons from τ6 to τ8.5. Elution with 6 to 10% methanol in CHCl₃ gave a mixture (140 mg, tlc two spots) whose Rf values (0.52 and 0.18) were close to two of the basic products (Rf's 0.42 and 0.23 respectively) obtained from the direct photolysis. The characterization of these compounds was not pursued further.
11. Acetophenone sensitized addition of N-nitrosopiperidine to cyclohexene

The same quantities of reagents as described in No. 10 were used except that t-butanol was used instead of methanol. The reaction was carried out in an identical manner as No. 10 and the same isolation procedure was followed. The neutral fraction contained acetophenone as the major component. The ir spectra was identical as that of an authentic sample except for two extra peaks of small to medium intensity at 1090 and 985 cm\(^{-1}\). The nmr spectrum of this oil showed that the weak signals at \(\tau 6.14, \tau 6.5\) and \(\tau 8.6\) were due to N-nitrosopiperidine. The basic extract gave an oil (600 mg) which by ir and nmr analysis consisted mainly of acetophenone. The tlc analysis of this oil showed a spot (Rf 0.22) equivalent to that of authentic 2-piperidinocyclohexanone oxime on the same plate.

12. Quenching of the photolysis of N-nitrosopiperidine

A. In presence of naphthalene

A solution of the nitrosamine (2.4 g, 0.02 moles) and naphthalene (3.45 g, 0.027 moles) and concentrated hydrochloric acid (2 ml, 0.024 moles) in methanol (200 ml) was irradiated with an RPR 3500\(^{2}\) source. The optical density at 350 mu increased from 1.08 at 0 hour, to 1.25 after 1/2 hour irradiation; to 1.28 after 1 hour; to 1.43 after 2 hours; to
2.0 after 12 hours. The photolysate had turned deep red-brown at this time. The solution was then worked up in the usual manner. The acidic CHCl₃ extract gave a red solid (3.5 g) which was chromatographed on alumina (60 g). Elution with cyclohexane gave naphthalene (1.4 g): mp 72-79. Further elution with benzene gave N-nitrosopiperidine (308 mg). Elution with CHCl₃ and up to 10% methanol in CHCl₃ did not yield any other products. The basic CHCl₃ extract gave a crude oil (140 mg) which contained mostly naphthalene (A₂B₂ system at γ2.48) N-nitrosopiperidine and a trace of a basic compound (broad signal at γ7.44).

In a separate experiment, the nitrosamine (4.56 g, 0.04 moles), naphthalene (2.56 g, 0.02 moles) and concentrated hydrochloric acid (5 ml, 0.06 moles) were dissolved in methanol (400 ml) and irradiated with the 450 watt Hanovia lamp. After 110 minutes of irradiation a 50 ml aliquot was taken and worked up in the usual manner. The neutral fraction (864 mg) was shown to contain only nitrosamine and naphthalene and traces of a red colored compound by tlc analysis. The basic portion gave N-nitrosopiperidine (241 mg) and was shown to contain traces of a red colored compound by tlc analysis. The irradiation was continued for another 2 hours and worked up in the usual manner. The neutral CH₂Cl₂
extract gave a residue (2.56 g) which by ir and nmr and tlc analysis was shown to contain naphthalene and N-nitrosopiperidine. The aqueous layer was basified with Na₂CO₃ to pH 10-11 and extracted with CH₂Cl₂. Evaporation of the CH₂Cl₂ gave a crude resin (536 mg). Analysis by tlc showed the presence of naphthalene (A₂B₂ at λ 2.48), N-nitrosopiperidine, and a trace of the red colored compound.

B. In presence of acetophenone

A solution of the nitrosamine (2.3 g, 0.02 moles), concentrated hydrochloric acid (2 ml, 0.024 moles) and acetophenone (4.7 g, 0.039 moles) in ethanol (400 ml) was irradiated with the RPR 3500Å lamp through a soft glass filter. The disappearance of the 350 μm absorption was complete after 8 hours of irradiation. The solvent was evaporated under vacuum at 40° to give a mixture of oil and solid. This crude product was treated with ether and filtered to give crystals of piperidine hydrochloride (2.17 g): mp 210-215°; nmr and ir spectra superimposable with an authentic sample of piperidine hydrochloride. The ether mother liquour was evaporated to give an oil which was identified as acetophenone.

C. In presence of triphenylene

The nitrosamine (2.3 g, 0.02 moles) and concentrated hydrochloric acid (2 ml, 0.024 moles) were dissolved in etha-
nol (400 ml). The optical density at 350 μm was 0.56. After triphenylene (750 mg) was added the optical density at 350 μm was shown to be 0.58. The solution was irradiated for 8 hours with the RPR 3500A lamp through a soft glass filter. At this time the absorption at 350 μm disappeared. The photolysate was evaporated to a small volume and the triphenylene (690 mg) was filtered. The solution was evaporated further. A trace of triphenylene was removed by extracting with benzene (20 ml x 3). The syrupy ethanolic aqueous layer was dissolved in CHCl₃ and was diluted with ether to give a mixture of crystals and oil. The crystals (135 mg; mp 215-219°) were filtered and identified as piperidine hydrochloride. The mother liquor was treated with benzene and the benzene was distilled under vacuum. The process was repeated until all the water had been removed giving a white solid (1.2 g) which was identified to be piperidine hydrochloride. In addition the nmr showed a small singlet peak at 7.97 which is probably due to the presence of N-piperidinoacetamide.

D. In ethanol

The same photolysis as described in 12-C was repeated excluding triphenylene. The solution was irradiated for 8 hours. The rate of disappearance of nitrosamine was found to be 0.0025 moles per hour which was the same with that of
12-B and 12-C. The solvent was evaporated down to a small volume under vacuum. The distilled ethanol was recovered and a small portion (25 ml) was treated with 2,4-dinitrophenylhydrazine to give yellow crystals of a 2,4-dinitrophenylhydrazone of acetaldehyde: mp 140-143° lit (64) 147°; ir superimposable with an authentic sample. The residue left after evaporation of the photolysate was recrystallized from CHCl₃-ether solution to give white crystals of piperidine hydrochloride (1.9 g): mp 190-205°.
Experimental

Section III

General procedure

In a photocell, N-nitrosopiperidine (2.3 g, 0.02 moles), concentrated hydrochloric acid (2 ml, 0.024 moles) were dissolved in ethanol (1.4 l.). The optical density of the undiluted solution at 350 μm was measured to be 1.42. To this solution was then added the aromatic compound (4-5 g, 0.025-0.03 moles) to give a heterogeneous solution. The optical density was then measured again at 350 μm with 1/100 dilution. The ratio of the incipient light absorbed by the aromatic compound and the nitrosamine was calculated (see specific examples). The aromatic compound usually absorbed 95% or better of the incident light. In the water jacketed inner sleeve one of the following lamps was placed; RPR 3500A, RPR 3000A, 200 watt Hanovia or the 450 watt Hanovia lamp. The solutions were kept under inert gas atmosphere. Nitrogen was scrubbed with either a Fieser's solution (65) or a vanadyl sulfate (66) solution. Helium gas was used directly from a bottle without purification. The solution was then irradiated for periods of 14-18 hours. To ensure that the concentration of the aromatic compound remained constant in the solution, an aliquot (0.1 ml) was pipetted out at suitable intervals and was pro-
properly diluted (10 ml) for spectroscopic measurement. The optical density above 300 μm stayed nearly constant during the irradiation e.g., the optical density at 350 μm at 0 hour was 0.30, after 3 hours 0.36, at 14 hours 0.41 with 1/100 dilution which corresponded to 95.3%, 96% and 96.5% of the light been absorbed by the aromatic compound.

On completion of the photolysis, the major part of the solvent was removed under vacuum at a bath temperature lower than 40°. The aromatic compound usually precipitated and was filtered. The filtrate was concentrated further and then treated with water (50-100 ml). This acidic aqueous layer was then extracted (50 ml x 3) with ether, CHCl₃ or CH₂Cl₂ to give a neutral fraction. The aqueous solution was then basified to pH 10-11 with a saturated K₂CO₃ solution. In some cases the basic product precipitated and was filtered. The filtrate was further extracted with an organic solvent. The crude products were chromatographed and/or recrystallized in order to effect purification. Generally a small sample was further recrystallized from a suitable solvent followed by sublimation to afford an analytical sample.

1. **Anthracene sensitized photoaddition of N-nitroso-piperidine in the presence of cyclohexene.**

   A. **Under a nitrogen atmosphere**
In a photocell, N-nitrosopiperidine (2.3 g, 0.02 moles) and cyclohexene (16.4 g, 0.2 moles) and concentrated hydrochloric acid (2 ml, 0.024 moles), ethanol (1.4 l.) were charged. The optical density of the undiluted solution at 350 mu was recorded to be 1.42. To this solution anthracene (5.4 g, 0.03 moles) was added. The suspension was vigorously stirred for 1/2 hour under nitrogen atmosphere. A sample of the supernatant solution showed the optical density 0.30 at 350 mu with 1/100 dilution. The ratio of the optical density shows that 95% of the incident light at 350 mu is absorbed by the anthracene. While the heterogeneous mixture was agitated with a magnetic stirrer and a stream of nitrogen the solution was irradiated with a RPR 3500\(^\circ\) lamp for 14 hours. At the 4 and 14 hour periods, the photolysate of the same dilution (1/100) showed optical densities of 0.36 and 0.41 which indicated that greater than 95% of the incident light is absorbed by anthracene throughout the reaction. The photolysate was worked up as described. Anthracene (3.3 g), which precipitated upon the evaporation of the methanol, had mp 198-203\(^\circ\) lit (67) 218\(^\circ\). The acidic ether extract was evaporated to give a mixture of an oil and crystals (1.0 g) which was shown to contain N-nitrosopiperidine contaminated with anthracene: ir 1280, 1180, 1098, 985, 1600, 1500, 860, 720; nmr \(\tau\) 5.82 (m),
γ6.3(m), γ8.35(m), γ2.5(m). The basic portion was evaporated to afford crystals (760 mg: mp 158-159°) which were recrystallized from 2-propanol twice followed by sublimation to give white crystals of 9-piperidino-10-ethoxy-9,10-dihydroanthracene III-7: mp 170-171°; ir 1317, 1290, 1250, 1178, 1115, 1080, 1065, 1038, 983, 880, 805, 748, 735; nmr γ2.45 (m, 2H), γ2.78 (m, 6H), γ4.26 (s, 1H), γ5.31 (s, 1H), γ6.17 (qt, 2H, J=7 cps), γ7.73 (m, 4H), γ8.60 (t, 3H, J=7 cps), γ8.63 (m, 6H); Anal. Calcd for C21H25NO: C, 82.04; H, 8.20; N, 4.56. Found: C, 82.19; H, 8.27; N, 4.70.

The remaining basic extract, after removal of III-7, was chromatographed on silicic acid (30 g). A solid (69 mg) was eluted with pure CHCl₃ and was recrystallized from CHCl₃ to give needles of 9-nitroanthracene (III-4): mp 141-144° lit (68) 146°; ir 900, 875, 946, 780, 730; nmr 1.60 (s, 1H), 2.34 (m, 8H). The ir and nmr were superimposable with those of an authentic sample of III-4. The following fractions eluted with CHCl₃ gave a solid (372 mg) which was recrystallized from a 2-propanol-CHCl₃ mixture to give pale pink crystals of anthraquinone (III-5): mp 264-269° lit (69) 274°; ir 1670, 1338, 1280, 1165, 940, 811, 698; nmr (trifluoroacetic acid) γ1.83 (A₂B₂). The ir and nmr spectra were superimposable with those of an authentic sample of III-5. The next 3 frac-
tions eluted with 1-4% methanol in CHCl₃, gave a mixture of 3 compounds (300 mg) in a ratio of (4:2:1) by nmr analysis. The minor component was identified to be III-7 by nmr and tlc comparison. The second minor component was N-nitrosopiperidine by comparison of the nmr spectra of the mixture with that of authentic N-nitrosopiperidine. The major component was identified as 9-piperidino-10-hydroxy-9,10-dihydroanthracene (III-8) by nmr and tlc analysis. The nmr spectrum of the mixture exhibited signals at 72.78 (m, 8H), 74.76 (s, 1H), 76.07 (s, 1H), 77.58 (m, 4H), 78.62 (m, 6H).

Continued elution with 6% methanol in CHCl₃ gave a mixture (900 mg). This mixture was rechromatographed on silicic acid (16 g). With pure CHCl₃, III-7 (300 mg) was eluted. Elution with 2% methanol in CHCl₃ gave a fraction which was shown to be 9-piperidino-10-anthrone oxime (III-1, 37 mg) by tlc and ir comparison. Elution with 2-6% methanol in CHCl₃ gave a fraction (332 mg) which was shown by tlc analysis to contain a small amount of III-1 as the impurity. The impurity, III-1, was easily removed by preferentially dissolving this fraction in petroleum ether and filtering the solution. The petroleum ether was then concentrated further to give crystals of the other isomer of 9-piperidino-10-ethoxy-9,10-dihydroanthracene (III-6, 150 mg): mp 77-80°; ir 1310, 1280,
1155, 1118, 1078, 998, 763; nmr \( \gamma 2.70 \) (m, 8H), \( \gamma 4.84 \) (s, 1H), \( \gamma 5.39 \) (s, 1H), \( \gamma 6.43 \) (qt, 2H, J=7 cps), \( \gamma 7.5 \) (m, 4H), \( \gamma 7.65 \) (m, 6H), \( \gamma 7.87 \) (t, 3H, J=7 cps); mass spectrum (80 eV) m/e (rel intensity) 307 (2), 222 (12), 195 (48), 178 (100), 83 (77).

A tlc analysis of the basic crude product prior to purification, showed the presence of a faint new spot. This spot had an identical Rf(0.30) as that of an authentic sample of 2-piperidinocyclohexanone oxime (III-14). The compound however could not be isolated in column chromatography.

B. Under helium atmosphere

The same quantities as those described in 1-A were photolyzed in the same manner except that a helium atmosphere was used. The irradiation was done with a RPR 3500\(^{\circ}\) source for 14 hours. Following the same isolation procedure anthracene (3 g) and a residue (1.2 g) from CHCl\(_3\) extraction of the aqueous solution were obtained. The ir and nmr spectra of the latter fraction showed it to be a 2:1 mixture of N-nitrosopiperidine and anthracene. The aqueous layer was then basified and a white solid (1.3 g, mp 176\(^{\circ}\)dec) precipitated. The solid (0.3 g) was crystallized twice from 2-propanol to give 9-piperidinoanthrone oxime (III-1, 100 mg): mp 182-184\(^{\circ}\) (decomposition with evolution of gas); ir 3300, 2400, 1500, 1325,
1193, 1165, 1144, 1118, 1098, 1072, 1060, 1038, 1000, 978, 962, 953, 940, 930, 894, 878, 850, 782, 758, 740, 719, 660; nmr (pyridine-d$_5$) $\tau$ 0.9 (m, 1H), $\tau$ 1.8 (m, 1H), $\tau$ 2.5 (m, 6H), $\tau$ 5.18 (s, 1H), $\tau$ 7.54 (m, 4H), $\tau$ 8.75 (m, 6H); Anal. Calcd for C$_{19}$H$_{20}$N$_2$O: C, 78.05; H, 6.90; N, 9.58. Found: C, 77.73; H, 7.00; N, 9.49.

The filtrate was extracted with CH$_2$Cl$_2$ (50 ml x 3) to give a mixture of oil and solid (607 mg). The mixture was treated with CHCl$_3$ to afford crystals of III-1 (95 mg). The mother liquor was evaporated to dryness and was chromatographed on silicic acid (10 g) to afford on elution with up to 2% methanol in CHCl$_3$, III-8 (69 mg), with 3-4% methanol in CHCl$_3$, III-1 (125 mg), with 6-10% methanol in CHCl$_3$, a resin (125 mg). This last resin was identified as 2-piperidinocyclohexanone oxime (III-14) by ir and nmr spectra and tlc comparison with those of an authentic sample.

C. In the presence of 0.6 M cyclohexene

The same experiment as 1-B except the quantity of cyclohexene was 69 g (0.84 moles) was repeated. The optical density measurement at 350 mu before (1.44 no dilution) and after (0.29 at 1/100 dilution) the addition of anthracene showed that 95% of the incident light at 350 mu was absorbed by anthracene. The solution was irradiated for 14 hours.
The ethanol was filtered to give white crystals which were identified as anthracene dimer (III-2, 1.29 g): mp 252-262° lit(70) 265; ir 1290, 1218, 1167, 1000, 943, 818, 860, 680. The ethanol was evaporated to a small volume (30 ml) and treated with CHCl₃ (100 ml). The CHCl₃ solution was extracted with a 2N hydrochloric acid solution (75 ml x 4). The CHCl₃ layer was evaporated to give a resinous solid. This solid was recrystallized from methanol to give anthracene (700 mg) identified by ir spectral comparison with that of an authentic sample. The mother liquor was evaporated to dryness to give an oil (400 mg) whose nmr spectrum showed it to be an equal mixture of N-nitrosopiperidine and 9-ethoxyanthrone oxime (III-3) by comparison of the nmr spectrum with those of authentic samples.

The basic CHCl₃ extract was obtained and worked up in a usual manner to give a solid which was crystallized from CHCl₃ to give white crystals of III-1 (700 mg): mp 180-183° decomposition with evolution of gas). The mother liquor was concentrated to give a second crop of III-1 (200 mg): mp 173-178°. The mother liquor was then evaporated to dryness to give a resin (468 mg) which by ir, nmr and tlc analysis was shown to contain mostly 2-piperidinocyclohexanone oxime (III-14) a trace of N-nitrosopiperidine and small amounts of III-1.
D. **Irradiation at 300 µm under helium atmosphere**

The nitrosamine (640 mg, 0.0057 moles), cyclohexene (16.4 g, 0.02 moles), hydrochloric acid (2 mg, 0.024 moles) and ethanol (1.4 l.) were placed in a photocell. The optical density of the undiluted solution was 0.03 at 300 µm. Anthracene (2.5 g, 0.014 moles) were suspended in the solution. This solution showed optical density of 1.60 at 300 µm with 1/100 dilution. The ratio of the optical densities shows that anthracene absorbs greater than 99% of the light at 300 µm. The cold finger of the photocell was filled with a solution of N-nitrosodimethylamine (0.024M) in methanol which absorbs 100% of the light between 360 and 325 µm and showed an optical density of 0.36 and 300 µm. The solution was irradiated with the RPR 3000° for 14 hours. The solvent was evaporated to a small volume and filtered to give anthracene (1.8 g). The filtrate was treated with water and extracted with CHCl₃ (30 ml x 3) to give a mixture of oil and solid (600 mg), which by nmr was shown to consist of N-nitrosopiperidine and anthracene. The acidic aqueous layer was basified and extracted with CHCl₃ (30 ml x 3). The CHCl₃ was washed with water, dried (MgSO₄) and evaporated to give a solid (29 mg) whose nmr was superimposable with that of III-8.
E. In the presence of 0.2 M bromobenzene

The same quantities of nitrosamine, cyclohexene, anthracene and hydrochloric acid as described in 1-A were dissolved in ethanol (1.4 l.). In addition bromobenzene (44.0 g, 0.28 moles, 0.2M solution) was also included. The solution was irradiated at 350 μm (14 hrs.) under a helium atmosphere. The photolysate was concentrated to about 50 ml and treated with 2 N hydrochloric acid (50 ml). The usual work-up procedure gave III-2 (450 mg); mp 270-275° as the precipitate and a neutral CHCl₃ extract. This extract was then treated with methanol and the crystals filtered to give anthracene (500 mg). The filtrate was evaporated to give a residue which was chromatographed on silicic acid (60 g). Anthracene (1 g) bromobenzene (1 g) and N-nitrosopiperidine (0.5 g) were eluted out first. The 4 fractions eluted with 3-6% methanol in CHCl₃ gave a solid. Comparisons of the nmr spectra of these fractions indicated that these were mixture of the hydrochlorides of III-6 and III-7 in variable ratios. Free bases of each fraction were liberated. The first of the four fractions is nearly pure III-6 as shown by the signals at 74.2, 75.7 and 77.12. The content of III-7 increased in the following fractions since the intensity of the signals at 74.85 (s), 75.38 (s), 76.4 (qt) increased.
The acidic aqueous layer was then basified to pH-10 and extracted with CHCl$_3$ (30 ml x 3). The CHCl$_3$ was washed with water, dried (MgSO$_4$) and evaporated to give a resin (330 mg). The nmr and ir spectra of this resin showed typical absorption of 2-piperidinocyclohexanone oxime (III-14) and in addition showed a small singlet at $\tau$5.3 for III-1. The resin was dissolved in CHCl$_3$ to give crystals of III-1 (17 mg), superimposable ir spectrum.

2. **Photoaddition of N-nitrosopiperidine to anthracene**

A. **Under a nitrogen atmosphere**

The nitroso compound (2.3 g, 0.02 moles) concentrated hydrochloric acid (2 ml, 0.024 moles) in ethanol (1.4 l.) exhibited an optical density of 1.40 at 350 mu. Anthracene (5.4 g, 0.03 moles) was added and vigorously stirred for 1/2 hour. The supernatant liquid exhibited optical density of 0.34 at 350 mu with 1/100 dilution. The heterogeneous solution was irradiated for 14 hours with an RPR 3500$^\circ$ source. The photolysate was concentrated to 60 ml and diluted with water. The precipitated anthracene (2.68 g) was filtered. The acidic aqueous layer was extracted with CH$_2$Cl$_2$ (50 ml x 3). The CH$_2$Cl$_2$ extract was washed with water, dried (MgSO$_4$) and evaporated to give a resin (2.0 g) which was chromatographed on silicic acid (60 g). Eluting with CHCl$_3$ gave crystals
(13 mg) which were identified as 9-nitroanthracene III-4: mp 138-143° lit (68) 146°. The following fraction gave a mixture of an oil and a solid (665 mg). The crystals were filtered and identified as anthraquinone (III-5, 200 mg): mp 270° (sublimation). The mother liquor was shown to be N-nitrosopiperidine by nmr analysis. Eluting with 2-20% methanol in CHCl₃ gave a mixture of hydrochlorides of III-6 and III-7 (800 mg). The mixture was dissolved in CHCl₃ and washed with a K₂CO₃ solution, CHCl₃ was washed with water, dried (MgSO₄) and evaporated to afford a mixture of III-6 and III-7 in about a 3:1 ratio by nmr spectral comparison with those of authentic samples.

The acidic aqueous layer was then basified to pH-10 with a saturated K₂CO₃ solution to give pure crystals of III-1 (1.25 g): mp 183-4° (decomposition).

B. Under a helium atmosphere

The same quantities as described in 2-A were used. The solution was kept under a helium atmosphere and irradiated with a RPR 3500A lamp for 17 hours. The usual isolation procedure was followed. The recovered anthracene (2.8 g) was contaminated with a small amount of anthracene dimer III-2: ir 820, 770, 680 cm⁻¹. The neutral extract gave a resin (1.5 g) which was chromatographed on silicic acid (40 g).
Eluting with CHCl₃ gave anthracene (76 mg). The following fractions gave N-nitrosopiperidine (500 mg). Eluting with 2% methanol in CHCl₃ gave a solid which was sublimed to give crystals of 9-ethoxyanthrone oxime (III-3, 200 mg): mp 155-158°; ir 3400, 1680, 1320, 1295, 1000, 980, 950, 800, 780, 715, 693; nmr τ1.5 (m, 1H), τ2.05 (m, 1H), τ2.53 (m, 6H), τ4.60 (s, 1H), τ6.44 (qt, 2H, J=7 cps), τ8.76 (t, 3H, J=7 cps); mass spectrum (15 eV) m/e (rel intensity) 253 (89), 208 (100). The following fractions eluted with 8-32% methanol in CHCl₃ gave III-3 (160 mg). The last fraction (38 mg) was green in color but the color faded gradually. A tlc analysis showed the presence of III-3 and two spots of higher Rf in this mixture.

The aqueous layer was basified with a saturated K₂CO₃ solution to give a white precipitate (3.3 g) of nearly pure III-1: mp 182-184°; ir superimposable with the analytical sample. The aqueous filtrate was extracted with CH₂Cl₂ (50 ml x 3) to afford a mixture (50 mg) which by tlc analysis showed 6 spots. The characterization of the compounds in this mixture was not pursued.

C. Under an oxygen atmosphere

The same quantities of starting materials as those described in 2A were used. The procedure was the same except
that oxygen gas was used instead of nitrogen. The solution was irradiated for 17 hours with a RPR 3500\textsuperscript{O} source. The precipitate (2.0 g) upon evaporation of the solvent was identified as a mixture of anthracene and anthraquinone: ir peaks at 1680, 900, 740 cm\textsuperscript{-1} and mp 185-258\textdegree. The CH\textsubscript{2}Cl\textsubscript{2} neutral extract (1.0 g) gave a mixture of an oil and solid which was shown to be N-nitrosopiperidine and anthracene by ir and nmr analysis.

The aqueous solution, on basification with a saturated K\textsubscript{2}CO\textsubscript{3} solution turned pink and afforded a red basic resin upon the usual work-up. The resin upon treatment with ethanol gave crystals of III-5 (285 mg: mp 274-277\textdegree, sublimation); ir 1680, 840, 820, 700 cm\textsuperscript{-1}. The mother liquor was evaporated to a smaller volume to give a second crop of crystalline crude III-8 (533 mg, 155-158\textdegree) which were contaminated by a trace of anthraquinone nmr, ($\gamma$ 2.1 (m); ir 1680 cm\textsuperscript{-1}). The mother liquor was evaporated to dryness (680 mg) and chromatographed on silicic acid (15 g). Eluting with benzene gave a mixture of anthracene and anthraquinone (28 mg): nmr $A_2B_2$ systems at $\gamma$ 2.0 and $\gamma$ 2.5. The following fractions eluted with benzene and up to 4% methanol in CHCl\textsubscript{3} gave III-8 (single spot on tlc, 300 mg). One of these fractions (154 mg) was sublimed but turned yellowish in the process. The subli-
mate was recrystallized twice from ethanol to give diamond-like crystals of III-8: mp 168-170°; ir 3200, 1275, 1000, 900, 760; nmr $\gamma$ 2.78 (m, 8H), $\gamma$ 3.86 (bm, 1H, D$_2$O exchangeable). $\gamma$ 4.76 (s, 1H), $\gamma$ 6.07 (s, 1H), $\gamma$ 7.58 (m, 4H), $\gamma$ 8.62 (m, 6H);
Anal. Calcd for C$_{19}$H$_{21}$NO: C, 81.68; H, 7.58; N, 5.01. Found: C, 81.62; H, 7.64; N, 5.11.

Elution with 8-20% methanol gave a mixture of the hydrochlorides of III-6 and III-7 (200 mg). The mixture of the bases of III-6 and III-7 was liberated with K$_2$CO$_3$ solution:
nmr $\gamma$ 4.82 (s), $\gamma$ 4.85 (s), $\gamma$ 5.7 (s), $\gamma$ 5.88 (s), $\gamma$ 6.12 (qt), $\gamma$ 6.4 (qt).

In a second experiment the same reaction was repeated. The photolysate was concentrated to give crude anthracene (2.3 g) which contained some anthraquinone: mp 185-190; ir 1680 cm$^{-1}$. The filtrate was evaporated further to give a second crop (150 mg) of anthraquinone: mp 274-279°.

The methanol was removed and the residue was chromatographed on silicic acid (60 g). Eluting with CHCl$_3$ gave anthracene, followed by N-nitrosopiperidine. Continued elution with CHCl$_3$ and 2-12% methanol in CHCl$_3$ gave an oil which decomposed on heating. One of the fractions was dissolved in CHCl$_3$. Addition of ether afforded crystals (400 mg); mp 100° (decomposition). Continued heating of the melting point
sample up to 270° gave a yellow sublimate. This crop of crystals were recrystallized three times from CHCl₃-ether and is tentatively assigned as the nitrate salt of 9-piperidino-anthrone (III-12): mp 158.5-160° (decomposition); 2800, 2200, 1678, 1600, 1580, 1300, 940, 720, 700; nmr $\delta$2.2 (m, 8H), $\gamma$3.98 (s, 1H), $\gamma$6.60 (bm, 4H), $\gamma$8.18 (bm, 6H); Anal. Calcd for C₁₉H₂₀N₂O₄: C, 67.05; H, 5.92; N, 8.23. Found: C, 67.34; H, 5.89; N, 8.29.

Upon standing for 6 months the mother liquor from these crystals was dissolved in CHCl₃. The CHCl₃ extract was washed with base and then with water. The CHCl₃ was then dried and evaporated to give a resin (624 mg) whose ir showed it to be mostly anthraquinone: ir 1680, 1280, 948, 820, 700 cm⁻¹.

D. In the presence of 0.2M bromobenzene

A solution of the nitrosamine (638 mg, 0.0056 moles), bromobenzene (12.56 g, 0.08 moles, 0.2M) and concentrated hydrochloric acid (2 ml, 0.024 moles) in methanol (400 ml) showed an optical density of 0.14 at 350 μm with 1/10 dilution. Anthracene (1.99 g, 0.0084 moles) was added and stirred. The supernatant liquid showed an optical density of 0.24 at 350 μm with 1/100 dilution. The ratio of the optical densities showed that anthracene absorbs 94% of the incident light at 350 μm. While the solution was kept under a helium
atmosphere it was irradiated (RPR 3500Å lamp) for 12 hours.

The photolysate was concentrated down to about 30 ml and CH$_2$Cl$_2$ (100 ml) was added. The CH$_2$Cl$_2$ was extracted with 2N hydrochloric acid solution (30 ml x 3) washed with water, dried (MgSO$_4$), filtered and evaporated to give a mixture of solid and oil (5.4 g). The nmr spectrum of this crude product indicate the presence of bromobenzene, anthracene and a small amount of N-nitrosopiperidine. This fraction was not investigated further. The acidic aqueous layer was basified to pH-10 and extracted with CH$_2$Cl$_2$ (30 ml x 3). The CH$_2$Cl$_2$ extract was washed with water, dried (MgSO$_4$) and evaporated to give a solid (420 mg) which was crystallized from CHCl$_3$ to give III-1: mp 176-179° (dec, gas).

E. In the presence of 0.6M bromobenzene

The same solution of 2-B carrying bromobenzene (132 g, 0.84 moles, 0.6M) and anthracene (3.2 g, 0.018 moles) in ethanol (1.41.) was photolysed for 14 hrs. under helium atmosphere with a RPR 3500Å lamp. White crystals of anthracene dimer III-2 (660 mg) were filtered off from the photolysate: mp 256-262°. The filtrate was evaporated to a small volume and CHCl$_3$ was added (100 ml) to give a crystalline precipitate. This precipitate was dissolved in water and the solution was basified to pH-10 to give white crystals of III-1 (0.81 g)
whose ir was superimposable with that of an authentic sample. The acidic CHCl₃ extract was washed, dried (MgSO₄) and evaporated to give a mixture of oil and solid which was filtered to give a solid (460 mg): mp 210-216°; ir superimposable with that of anthracene. The mother liquour contained bromobenzene and N-nitrosopiperidine by ir and nmr analysis. The acid aqueous solution was basified to give crystals of III-1 (0.82 g) whose ir was identical with that of an authentic sample of III-1.

F. In the absence of hydrochloric acid

The same solution as 2A containing the nitrosamine (2.3 g, 0.02 moles) and anthracene (3.7 g) but no hydrochloric acid was irradiated with a RPR 3500° lamp for 15 hours under helium atmosphere. At the end of the photolysis, hydrochloric acid (3 ml, 0.036 moles) was added and the solution was evaporated to a small volume (100 ml). The precipitate was filtered (1.85 g, mp 208-260°) which by ir (960, 820, 770, 730, 680), was shown to be a 1:1 mixture of anthracene and anthracene dimer III-2. The filtrate was separated into an neutral (1 g) and a basic (171 mg) fraction in the usual manner. The neutral fraction contained anthracene and N-nitrosopiperidine as shown by ir which showed peaks at 1200, 1100, 1000 and 890. The basic fraction, upon treatment
with methanol gave anthraquinone (III-5, 20 mg, ir 1680, 1280, 948, 820, 700). The mother liquour was evaporated to dryness and chromatographed on silicic acid (4 g) to afford N-nitroso-piperidine (30 mg) and a solid (100 mg). The solid showed ir 3200, 100, 750; nmr \( \tau 2.8 \) (m, 8H), \( \tau 4.8 \) (s, 1H); \( \tau 6.1 \) (s, 1H), \( \tau 7.63 \) (m, 4H), \( \tau 8.6 \) (m, 6H) that were superimposable with authentic sample of III-8.

3. Bromobenzene sensitized isomerization of cis-4-methyl-2-pentene

The cis-4-methyl-2-pentene (2.8 g, 0.03 moles, 0.2M) and bromobenzene (13.3 g, 0.12 moles, 0.6M) were dissolved in ethanol (140 ml). This solution was irradiated with the 200 watt Hanovia lamp whose emission was filtered through a Corex filter: 100\% absorption at 2550\( \AA \), 50\% absorption at 2700\( \AA \), and 0\% absorption at 3000\( \AA \). The isomerization was followed by vpc (12 ft. x 1/8 in., 30\% AgNO\(_3\) - TEG (1:3) on firebrick, 35 ml of N\(_2\)/min., 22\( ^\circ \)). After 3 hours of irradiation, 88\% of the cis-olefin was isomerized to the trans isomer. The trans isomer had a retention time of 6 min., the cis isomer 8 min.

4. Anthracene sensitized photoaddition in the presence of bromobenzene and cis-4-methyl-2-pentene

The nitrosamine (2.3 g, 0.02 moles), cis-4-methyl-2-pentene (16.4 g, 0.2 moles), bromobenzene (44. g, 0.36 moles)
and concentrated hydrochloric acid in ethanol (1.4 l.) showed optical density of 0.72 at 350 μm. To the solution was added anthracene (4. g, 0.02 moles) and the measured optical density was 0.85 at 350 μm with 1/50 dilution. The optical density ratio showed 97% of the incident light is absorbed by anthracene. The solution was irradiated with RPR 3500Å lamp through a soft glass filter for 22 hours. After 15 and 22 hours of irradiation, the vpc analysis of the olefin showed that no isomerization of the olefin had occurred. The deposed white crystals (685 mg) were filtered to give anthracene dimer III-2: ir 820, 770, 680 cm⁻¹.

The solution was worked up in the usual manner to give the neutral and basic fraction. The neutral fraction contained bromobenzene, anthracene and N-nitrosopiperidine as identified by ir and nmr spectral analysis. The basic fraction gave crystals of III-1 (1.44 g; ir 100, 900, 780, 758) and a resin which by ir and nmr spectral comparison with authentic samples was shown to be a (1:1) mixture of N-nitrosopiperidine and III-1: nmr 72.1 (m, 1H), 7.4.7 (s, 1H), 7.5.9 (m, 2H), 7.6.3 (m, 2H).

5. Irradiation of anthracene in the presence of bromobenzene and cis-4-methyl-2-pentene

Bromobenzene (37.9 g, 0.24 moles) and cis-4-methyl-2-pentene (6.72 g, 0.082 moles, 0.2M) were dissolved in ethanol
(400 ml). To this solution was added anthracene (1.6 g, 0.009 moles) and the heterogeneous solution was stirred vigorously under helium atmosphere. The solution was irradiated with the RPR 35000 lamp filtered through soft glass. The solution was examined by the same vpc analysis which showed that the olefin was not isomerized as witnessed by the absence of a peak with the retention time (6 min) corresponding to trans-4-methyl-2-pentene.

The solution was then filtered to give white crystals (1.0 g): mp 263-268°; ir 820, 770, 680 superimposable with authentic III-2.

6. Irradiation of N-nitrosopiperidine in the presence of bromobenzene and cis-4-methyl-2-pentene

N-nitrosopiperidine (2.3 g, 0.02 moles), bromobenzene (13.3 g, 0.084 moles) and cis-4-methyl-2-pentene (2.5 g, 0.033 moles) were dissolved in ethanol (140 ml). The solution was irradiated through soft glass with a RPR 35000 source for 24 hours. At this time the vpc analysis showed 2% isomerization by the appearance of the new vpc peak corresponding to the retention time of trans-4-methyl-2-pentene (6 min.).
7. Attempted isomerization of cis-4-methyl-2-pentene by N-nitrosopiperidine

A solution of nitrosamine (2.3 g, 0.02 moles) and cis-4-methyl-2-pentene (2.5 g, 0.033 moles) in ethanol (140 ml) was irradiated through soft glass with a RPR 3500A source for 24 hours. During the irradiation, the vpc analysis of the solution showed no new peaks having the retention time of the trans-4-methyl-2-pentene.

8. Photolysis of N-nitrosopiperidine in the presence of bromobenzene and cyclohexene

The nitrosamine (2.3 g, 0.02 moles), cyclohexene (4.1 g, 0.005 moles), bromobenzene (12.56 g, 0.08 moles) and concentrated hydrochloric acid (2 ml, 0.024 moles) were dissolved in methanol (400 ml). The solution was irradiated to completion of reaction (6 hrs.) with a RPR 3500A lamp. The basic extract contained the crude addition product to cyclohexene III-14 (2.55 g) as shown by ir and nmr spectral comparison with authentic sample.

An identical reaction was repeated except that bromobenzene was omitted in the reaction mixture. The rate of disappearance of the nitrosamine was 0.0033 moles per hour which was the same as in the presence of bromobenzene. The basic extract (2.62 g) gave off a resin whose ir and nmr
spectral analysis showed it to be the cyclohexene adduct III-14. A comparison of the two crude basic extracts on a tlc plate showed them indistinguishable from one another. The crude extract showed spots with Rf of 0.54, 0.22, 0.14, 0.09. The last of which corresponded to III-14. The three upper spots are the minor unidentified products.

9. **Photoaddition of N-nitrosopiperidine to cyclohexene in the presence of oxygen**

A solution of N-nitrosopiperidine (2.3 g, 0.02 moles), cyclohexene (2.56, 0.03 moles) and concentrated hydrochloric acid (2 ml, 0.024 moles) in methanol (140 ml) was prepared and irradiated with the 200 watt Hanovia lamp for 80 minutes while oxygen gas was bubbled at a moderate rate through the solution. The methanol was evaporated to a small volume under vacuum at a water bath temperature of 10° (if heated, the solution darkens). The methanol was cooled to 0° and then ether was added gradually to produce slight cloudiness. Crystals (1.1 g) appeared upon standing at 0°: mp 159-161° (decomposition). They were recrystallized three times from 2-propanol to give the hydrochloride salt of cis-1-nitrato-2-piperidinocyclohexane (III-9); mp 169-170°; ir 2500, 1640, 1266, 870; nmr (D₂O) \( \tau 4.47 \) (m, 1H), \( \tau 6.76 \) (bm, 3H), \( \tau 7.12 \) (bm, 2H), \( \tau 8.33 \) (bm, 14H); Anal. Calcd for
C_{11}H_{21}N_{2}O_{3}Cl.H_{2}O: C, 47.05; H, 7.48; N, 9.98; Cl, 1265.
Found: C, 46.82; H, 7.89; N, 10.12; Cl, 12.56.

The mother liquor from the first crop of crystals was cooled for another 3 months at -10° to give a second crop of crystals (300 mg) which showed in the nmr spectra a broad multiplet at \( \tau 4.77 \). These crystals were recrystallized three times from a mixture of 2-propanol-ether to afford the hydrochloride salt of trans-1-nitrato-2-piperidinocyclohexane (III-10): mp 134-137°; ir 3250, 2650, 2530, 1630, 1270, 880; nmr (D_{2}O) \( \tau 4.77 \) (bm, 1H), \( \tau 6.65 \) (b, 5H), \( \tau 8.15 \) (bm, 14H);
Anal. Calcd for C_{11}H_{21}N_{2}O_{3}Cl: C, 49.90; H, 7.95; N, 10.58; Cl, 13.40. Found: C, 50.10; H, 7.76; N, 10.42; Cl, 13.27.

The presence of 2-piperidinocyclohexanone hydrochloric acid salt (III-13) could be detected by ir (1680 cm\(^{-1}\)).

10. Photolysis of 9-piperidino-10-anthrone oxime (III-1)

Compound III-1 (1.0 g, 0.003 moles) and concentrated hydrochloric acid (2 ml, 0.024 moles) were dissolved in ethanol (400 ml). The optical density at 310 nm was 2 with 1/10 dilution. The solution was irradiated with a RPR 3000 Å source for 13 hours. The solvent was removed under vacuum to a small volume (30 ml) to afford a green solution. The solution was treated with water (50 ml) and the mixture extracted with CHCl_{3} (30 ml x 3). The green color passes into the organic
layer. Upon washing the CHCl₃ extract with water the green color disappears. The CHCl₃ was dried (MgSO₄) and evaporated to give a solid (288 mg). The solid was suspended in a small amount of CHCl₃ and filtered to give III-1 (256 mg): mp 178-180° (decomposition). The mother liquor was evaporated to dryness to give a crude resin (32 mg) whose nmr spectra showed it to contain mostly III-3: nmr 7.43 (s, 1H), 7.64 (qt, 2H), 7.87 (t, 3H). The acidic aqueous layer was basified to pH 9-10 and was worked to give III-1 (641 mg): mp 182-184° dec.

11. **Irradiation of 1,4-dimethylanthracene in presence of N-nitrosopiperidine**

The nitrosamine (3.05 g, 0.03 moles) concentrated hydrochloric acid (17.5 ml) and 1,4-dimethylanthracene (1,4-DMA, 3.24 g, 0.014 moles) were dissolved in methanol (400 ml). The solution was irradiated under nitrogen with the 200 watt Hanovia lamp for 6 hours. The deposited crystals were filtered to give 1,4-DMA dimer III-25 (335 mg): mp 242-250; ir 1160, 1030, 938, 807, 760, 750, 660; nmr 7.316 (m, 8H), 7.356 (s, 4H), 7.527 (s, 4H), 7.74 (s, 12H). The filtrate was worked up in the usual manner to give the syrupy neutral (5.3 g) and the basic fraction (930 mg). This crude neutral resin (1.0 g) was chromatographed on silicic acid (50 g). Elution with CHCl₃ gave N-nitrosopiperidine (100 mg).
Elution with CHCl₃ and up to 5% methanol in CHCl₃ gave several fractions of a resin which consisted of mostly of the hydrochloride of III-26 (400 mg); ir 3450, 2490, 1600, 1500, 1250, 900, 820, 750; nmr ⁷1.75 (m, 2H), ⁷2.52 (m, 4H), ⁷3.37 (s, 1H), ⁷4.50 (s, 1H), ⁷6.44 (s, 3H), ⁷6.56 (b, 4H), ⁷7.31 (s, 3H), ⁷7.48 (s, 3H), ⁷8.30 (m, 6H). One of these fractions (153 mg) was treated with a saturated K₂CO₃ solution to give a crude resin (100 mg) whose nmr and ir spectra were identical with those of authentic III-25: nmr ⁷4.77 (s), ⁷5.70 (s), ⁷6.52 (s).

The basic syrup was treated with 2-propanol to give crystals (155 mg) which were recrystallized 4 times and sublimed (115°, 0.2 mm Hg) to afford an analytical sample of 1,4-dimethyl-9-piperidino-10-methoxy-9, 10-dihydroanthracene (III-26); mp 145-146°; ir 1612, 1585, 1078, 935, 825, 810, 760, 740; nmr ⁷2.60 (s, 4H), ⁷2.87 (s, 2H), ⁷4.77 (s, 1H), ⁷5.70 (s, 1H), ⁷6.52 (s, 3H), ⁷7.1-8.0 (m, 4H), ⁷7.48 (s, 3H), ⁷7.52 (s, 3H), ⁷8.65 (m, 6H); Anal. Calcd for C₂₂H₂₇NO: C, 82.84; H, 8.41; N, 4.36. Found C, 82.16; H, 8.34; N, 4.51. The mother liquor was evaporated to dryness (384 mg) and chromatographed on alumina (40 g). Eluting with 20% CHCl₃ in CH₂Cl₂ gave a resin (90 mg) identified as III-26 by ir spectral comparison. The following 3 fractions (30 mg) gave a solid which was crystallized from methanol to
give 1,4-dimethyl-9-piperidino-10-hydroxy-9,10-dihydroanthracene III-27: mp 206-207°; ir 3300, 1600, 1500, 1108, 1070, 1039, 980, 970, 950, 828, 820, 750; nmr \( \tau 2.76 \) (m, 4H), \( \tau 3.00 \) (s, 2H), \( \tau 4.38 \) (s, 1H), \( \tau 5.63 \) (s, 1H), \( \tau 7.50 \) (s, 3H), \( \tau 7.60 \) (s, 3H), \( \tau 7.50-7.60 \) (m, 4H), \( \tau 8.61 \) (m, 6H); mass spectrum (1,7 kV) m/e (rel intensity) 307 (81), 224 (100), 204 (80); (M+) Calcd for \( \text{C}_{21}\text{H}_{23}\text{N}0; 307.1936. \) Found 307.1932.

12. Preparation of 1,4-dimethylanthracene

A similar procedure as that described by Feiser (58) was used. Phthalic anhydride (75 g, 0.5 moles) was dissolved in p-xylene (350 ml). To this solution was added AlCl\(_3\) (134 g) and mixture was cooled in an ice water bath. After the evolution of heat had subsided the reaction was heated in a steam bath for 45 min. The red vat was worked up in the usual manner to give the crystalline o-xyloylbenzoic acid (110 g): mp 95-111°. The solid was then poured into cold 0° concentrated sulfuric acid (600 ml). After all the solid had gone into solution another 300 ml of sulfuric acid were added and the solution was warmed on the steam bath at 65-68° for 20 min. The solution was cooled to 10° and poured into ice. The solid was then dissolved in CH\(_2\)Cl\(_2\) (1 l.) and the solution washed with a saturated K\(_2\)CO\(_3\) solution (300 ml x 3). The CH\(_2\)Cl\(_2\) solution was then washed with water and dried (MgSO\(_4\)) and concentrated
to a smaller volume (400 ml) to give crystals of 1,4-dimethylanthraquinone: mp 134-137° lit (71) 140-141°.

A modification of the Clemmensen reduction (59) was used for the reduction of the anthraquinone. To a solution of the anthraquinone (20 g, 0.085 moles) in xylene (200 ml) water was added (200 ml) followed by zinc (41. g, 0.64 moles) and KOH (51 g, 128 moles). The solution was refluxed with stirring for 90 hours until the red color disappeared. The xylene layer was worked up and then evaporated under vacuum to a small volume (60 ml). Treatment with methanol to cloudiness gave crystals of 1,4-DMA (16 g): mp 68-70° lit (72) 72°.

13. Photolysis of 1,3-dimethylanthracene

N-nitrosopiperidine (1.14 g, 0.01 moles), 1,3-dimethylanthracene (1,3-DMA, 1.17 g, 0.005 moles) and concentrated hydrochloric acid (10 ml, 0.120 moles) were placed in glacial acetic acid. The resulting heterogeneous solution was irradiated with the 450 watt Hanovia lamp for 8 hours. At this time the solution was filtered to give crude crystals of 1,3-DMA dimer (III-19, 125 mg): mp 230-234°: ir 1610, 1585, 1030, 860, 848, 760, 660; nmr T 3.14 (m, 10H), T 7.68 (s, 3H), T 7.76 (s, 3H), T 7.87 (s, 3H), T 7.95 (s, 3H). To the glacial acetic acid solution was added Na₂CO₃ (7.2 g) and the acetic acid was removed under vacuum to a small volume. The
residue was diluted with water (50 ml) and the water was extracted with ether. The ether was then washed with a solution of K₂CO₃ (100 ml x 3) and then with water. The resin (1.1 g) obtained from ether fraction was chromatographed on silicic acid (45 g). Elution with CHCl₃ gave fraction A (423 mg) which was a mixture of several compounds by tlc analysis. On continued elution, a second fraction B gave a resin (136 mg) which on inspection by tlc showed one predominant spot. Continued elution with CHCl₃ and up to 10% methanol in CHCl₃, gave fraction C (450 mg) which consisted of a mixture of 2 compounds by nmr and tlc analysis.

Fraction A was dissolved in methanol to afford crystals of 1,3-DMA dimer (III-19, 28 mg): mp 203-215°; ir 1610, 1585, 1030, 860, 848, 760, 660. The mother liquor from these crystals was evaporated to dryness (400 mg) and was chromatographed on alumina (12 g). Elution with cyclohexane gave 6 fractions (175 mg) which contained two predominant compounds as shown by tlc with Rf 0.87 and 0.81 respectively. The first fraction obtained from cyclohexane (95 mg) was recrystallized from 2-propanol to give 1,3-dimethyl-9-chloroanthracene. (III-20, 20 mg): mp 177-180°; ir 1613, 1591, 896, 883, 868, 855, 790, 765, 733, 685, nmr τ 2.63 (m, 1H), τ 3.18 (m, 4H), τ 3.52 (m, 1H), τ 4.89 (s, 1H), τ 7.70 (s, 3H), τ 7.96 (s, 3H); mass
spectrum (1.5 kV) m/e (rel intensity) 242 (100), 225 (4), 206 (32); (M⁺) calcd for C₁₆H₁₃Cl: C₁₆H₁₃Cl : C₁₅H₁₃Cl: 240.0710; 242.0674; 243.0706. Found: 240.0706; 242.0676; 243.0710. The other chlorosubstituted 1,3-DMA (III-21) could not be separated from III-20 but the compound exhibited a similar nmr: 7 2.63-3.52 (m, 6H), 7 4.95 (s, 1H), 7 7.78 (s, 3H), 7 7.96 (s, 3H). Continued elution with benzene and up to 25% CHCl₃ in benzene gave the anthraquinone (40 mg); superimposable ir spectrum.

Fraction B was predominantly one compound contaminated by an impurity (7 7.73). The resin was dissolved in a mixture of methanol-water to afford crystals (55 mg, mp 130-134°) which were recrystallized from 2-propanol twice to afford an analytical sample of 1,3-dimethyl-9-acetoxyanthrone (III-22): mp, 134-138°; ir 1740, 1660, 1340, 1210, 1100; nmr 7 1.85 (m, 1H), 7 2.11 (m, 1H), 7 2.44 (m, 3H), 7 2.78 (m, 2H), 7 7.58 (s, 3H), 7 7.63 (s, 3H), 7 7.99 (s, 3H); mass spectrum (1.5 kV) m/e (rel intensity) 280 (16), 238 (40), 221 (100); (M⁺) calcd for C₁₈H₁₆O₃: 280.1099. Found: 280.1098.

Fraction C consisted of a mixture (450 mg) of 1,3-dimethyl-9,10-dihydro-9-piperidino-10-hydroxy anthracene (III-23) and 1,3-dimethyl-9,10-dihydro-9-hydroxy-10-piperidinoanthracene (III-24). The mixture was rechromatographed on silicic
acid (20 g) but could not be separated. The physical data of
the mixture was: ir 3400, 1660, 1610, 1595, 1000-900, 738;
nmr τ2.74 (m, 4H), τ3.07 (s, 2H), τ3.83 (b, 1H, D2O
exchangeable), τ4.46 (s, 7/12H), τ4.81 (s, 5/12H), τ5.70
(s, 5/12H), τ6.14 (s, 7/12H), τ7.53-7.74 (m, 10H), τ8.59
(m, 6H).

14. Preparation of 1,3-dimethylanthracene

The same procedure as described in 12 was used. The
phthalic anhydride (75 g, 0.5 moles) was dissolved in m-xylene
(200 ml) and treated with AlCl3 (155 g). The vat was cooled
until the heat had subsided and then heated on the steam bath
for 1/2 hour. The red paste was worked up to give crystals
of o-xyloylbenzoic acid: mp 123-218°. These crystals were
then treated with concentrated sulfuric acid (900 ml) on a
hot plate at 105° for 5 min. to give crystals of 1,3-dimethyl-
anthraquinone (50 g): mp 154-156° lit (73)162° . The 1,3-
dimethylanthraquinone (20 g) was reduced with aqueous KOH
(44 g) and a zinc (51 g) suspension in xylene (280 ml) to
afford pale yellow crystals of 1,3-DMA (16 g): mp 74-76°
lit (73)79-80°

15. Photolysis of 1,2-benzanthracene

N-nitrosodimethylamine (1.45 g, 0.02 moles) and concen-
trated hydrochloric acid (1.75 ml, 0.02 moles) were dissolved
in glacial acetic acid (300 ml). To the solution was added 1,2-benzanthracene (1.15 g, 0.005 moles) and the heterogeneous solution was irradiated with a 450 watt Hanovia lamp for 135 minutes. The photolysate was transferred to a round bottom flask and the photocell washed with methanol and the washings were combined with the acetic acid solution. The photolysate was worked up to give the neutral (1.27 g) and the basic (534 mg) fraction. The neutral fraction was a mixture (1.27 g) of 1,2-benzanthracene and N-nitrosodimethylamine contaminated by small amounts of the basic products III-29 and III-28 by nmr analysis, $\gamma$ 6.48 (s), $\gamma$ 7.38 (s), $\gamma$ 7.46 (s). The basic fraction was chromatographed on alumina (15 g). Elution with benzene gave a compound which was identified as 9-methoxy-10-dimethylamino-9,10-dihydro-1,2-benzanthracene (III-28, 90 mg): nmr $\gamma$ 1.75 – 2.87 (m, 10H), $\gamma$ 4.24 (s, 1H), $\gamma$ 5.20 (s, 1H), $\gamma$ 6.57 (s, 3H), $\gamma$ 7.72 (s, 6H). Continued elution with 10-20% CHCl₃ in benzene afforded a solid (170 mg), which was crystallized from 2-propanol twice and sublimed to give crystals of 9-hydroxy-10-dimethylamino-9,10-dihydro-1,2-benzanthracene (III-29): mp 170-172°; ir 3200, 1162, 1141, 984, 955, 868, 818, 762, 746, 737; nmr $\gamma$ 2.16-300 (m, 10H), $\gamma$ 3.66 (b, 1H), D₂O exchangeable), $\gamma$ 3.84 (s, 1H), $\gamma$ 6.10 (s, 1H), $\gamma$ 7.88 (s, 6H); mass spectrum
(1.7 kV) m/e (rel intensity) 289 (65), 245 (100), 229 (85). (M\(^+\)) calcd for C\(_{20}\)H\(_{19}\)NO: 289.1467. Found: 289.1476.

16. **Irradiation of Acenaphthylene in presence of N-nitrosodimethylamine.**

A solution of the nitrosamine (3.70 g, 0.05 moles) concentrated hydrochloric acid (7.5 ml, 0.09 moles) and acenaphthylene (9.10 g, 0.06 moles) in methanol (400 ml) was irradiated with the 200 watt Hanovia lamp for 8 hours. The solution was then filtered to give crystals of acenaphthylene dimer (III-17, 603 mg): mp 227-229\(^\circ\) lit (31) 234 ; ir 3030, 1600, 1800, 860, 770; nmr T 2.89 (m, 3H), T 5.2 (s, 1H); Anal. Calcd for C\(_{24}\)H\(_{16}\): C, 94.74; H, 5.26. Found: C, 94.44; H, 5.40.

The solution was evaporated to a volume of 40 ml and cooled to give crystals (800 mg, mp 230-235\(^\circ\) dec) which were crystallized from 2-propanol three times to give acenaphthoquinone (III-18): mp 252-255\(^\circ\) lit (32) 261\(^\circ\) ; ir 1720, 1260; Anal Calcd for C\(_{12}\)H\(_{6}\)O\(_2\): C, 79.12; H, 3.31. Found: C, 78.82; H, 3.45.

The concentrated photolysate solution was worked up in the usual manner to give a neutral (3.7 g) and a basic (5.9 g) fraction. The neutral fraction contained acenaphthylene and N-nitrosodimethylamine by ir and nmr spectral analysis. The
basic fraction was treated with benzene to afford crystals (1.05 g): mp 80-87° of the anti isomer. These crystals were recrystallized five times from benzene to afford an analytical sample of anti-2-dimethylaminoacenaphth-1-one oxime (III-15); mp 123-125°; ir 3100, 970, 930, 858, 850, 800, 785; nmr τ -1.0 (b, 1H, D2O exchangeable), τ 1.6 (qt, 1H, J=7 cps), τ 2.3 (m, 5H), τ 4.78 (s, 1H), τ 7.86 (s, 6H).

The presence of syn-2-dimethylaminoacenaphth-1-one oxime (III-16) could be detected in the crude basic extract by a second set of signals at τ 4.57 (s) for the methine proton alpha to the dimethylamino group, and at τ 7.58 for the dimethylamino group. The syn isomer, III-16, accounted for approximately 30% of the syn-anti mixture by nmr analysis. Attempts to isolate this isomer were not pursued.

17. Photolysis of N-nitrosodimethylamine in presence of phenanthrene

A solution of the nitrosamine (1.8 g, 0.025 moles) concentrated hydrochloric acid (7.5 ml, 0.090 moles) and phenanthrene (4.5 g, 0.025 moles) in methanol (500 ml) was irradiated with the 200 watt Hanovia lamp for 2 hours. At this time the solvent was removed to a small volume (100 ml) and the precipitated phenanthrene (2.7 g) was filtered. The filtrate was worked up in the usual manner to afford a neutral
solid fraction (1.13 g: mp 85-92°), whose ir and nmr spectra were superimposable with those of phenanthrene, and a basic fraction (514 mg). This latter fraction was treated with hexane to give crystals of the hydrochloride of x-dimethylaminophenanthrene (III-32) (79 mg: mp 171-175° dec.) ir 1000 940, 790, 750, 730; nmr τ 2.70 (m, 7H), τ 7.1 (s), τ 7.69 (s), τ 7.87 (s). This compound could not be identified. The mother liquor was evaporated to dryness to give a residue (40 mg) and which was not investigated further.

18. **Irradiation of pyrene in the presence of N-nitrosopiperidine**

A heterogeneous solution of N-nitrosopiperidine (2.3 g, 0.02 moles), concentrated hydrochloric acid (2 ml, 0.024 moles) and pyrene (2.1 g, 10.01 moles) in methanol (300 ml) was irradiated under nitrogen with 450 watt Hanovia lamp for 3 hours. At this time the solution had turned black in color. The photolysate was evaporated to 100 ml and filtered to give crystals of pyrene (502 mg): mp 110-118°, the ir and nmr spectra were identical to those of pyrene. The photolysate was worked up in the usual manner to give neutral (2.53 g) and the basic (58 mg) fractions. The neutral oil (1.5 g) was chromatographed on alumina (45 g). Eluting with 20% benzene in petroleum ether gave the major component as a solid (700 mg). The com-
pound was recrystallized 3 times from benzene-2-propanol solution to give 1-piperidinopyrene (III-30): mp 90-91.5°; ir 1600, 1590, 1513, 1226, 840; nmr τ 2.00 (m, 9H); τ 6.9 (m, 4H), τ 8.25 (m, 6H); Anal. Calcd for C_{21}H_{19}N: C, 88.38; H, 6.71; N, 4.91. Found: C, 88.00; H, 6.82; N, 5.00. Compound III-30 is unstable in CHCl₃ solution, the solution turning brown-purple after a while.

Continued elution with 75% benzene in petroleum ether gave N-nitrosopiperidine (100 mg). Elution with 1% methanol in benzene gave a mixture of 3 compounds (200 mg) showing Rf values on tlc of 0.8, 0.44 and 0.27 respectively. The ir of this mixture showed peaks of 3400, 2400, 1678, 1620, 1600, 1175, 1090, 980, 838, 755, 715. The components in this mixture were not identified. The basic fraction (54 mg) whose nmr showed mostly aliphatic protons from τ 6-8.85 was not investigated further.

19. Irradiation of azulene in presence of N-nitrosopiperidine

A homogeneous solution of N-nitrosopiperidine (913 mg, 0.008 moles), azulene (552 mg, 0.004 moles) and concentrated hydrochloric acid (0.7 ml, 0.0084 moles) in methanol (200 ml), was irradiated for 40 min. with the 450 watt Hanovia lamp. The blue color of azulene disappeared quite readily (10 min.).
The methanol was evaporated to a small volume (10 ml) to give a black residue which was treated with water (50 ml). Addition of ether to the aqueous solution resulted in an emulsion. Treatment of this emulsion with sodium chloride followed by K$_2$CO$_3$ saturated solution produced no improvement. The emulsion was then extracted with CH$_2$Cl$_2$ (100 ml x 4) and concentrated to give a blue oil (440 mg) which on tlc analysis showed 3 spots (Rf 0.68, 0.52 and 0.42). The oil was chromatographed on alumina (15 g). Elution with benzene gave two consecutive fractions containing a basic compound (150 mg) as an oil. The oil was distilled (75-100°/0.04 mm Hg) to afford a green oil of x-piperidinoazulene (III-31): ir 3000, 1580, 1510, 1400, 1035, 998, 900, 763, 740; nmr $\tau$ 1.89 (t, 2H, J=9.5 cps), $\tau$ 2.43 (d, 1H, J=4 cps), $\tau$ 2.67 (s, 0.5H), $\tau$ 2.85 (d, 1.5H, J=4 cps), $\tau$ 3.23 (t, 2H, J=9.5 cps), $\tau$ 7.0 (m, 4H), $\tau$ 8.3 (m, 6H); impurity at $\tau$ 8.72 (s) and $\tau$ 9.1 (bm). Continued elution with benzene gave N-nitrosopiperidine (155 mg); superimposable ir spectrum. Further elution with CHCl$_3$ and up to 20% methanol in CHCl$_3$ gave trace amounts of unidentified product (s) (26 mg).
20. Photolysis of N-nitrosodimethylamine in the presence of cyclohexene and oxygen

The N-nitrosodimethylamine (1.48 g, 0.02 moles) and cyclohexene (3.28 g, 0.04 moles) and concentrated hydrochloric acid (2 ml) were dissolved in methanol (130 ml).

While under oxygen atmosphere, the solution was irradiated with the Hanovia 200 watt lamp for one and one half hours. The usual work up afforded the hydrochlorides of cis and trans 2-dimethylamino-1-nitratocyclohexane III-33: mp darken 109°, decomposition 119-122° with evolution of gas; ir 1640, 1280, 870; nmr (D$_2$O) $\tau$ 4.3 (m, 1H), $\tau$ 4.7 (bm, 1H), $\tau$ 6.5 (bm, 1H), $\tau$ 7.1-7.2 (2s, 6H), $\tau$ 7.5-9 (bm, 8H); Anal. Calcd: C, 42.76; H, 7.57; N, 12.47; Cl, 15.81. Found: C, 42.87; H, 7.47; N, 12.35; Cl, 15.70.

The mother liquor of III-33 was evaporated to give a syrup which was dissolved in methanol (50 ml). The solution was treated with NaBH$_4$ (1.54g, 0.04 moles) added in small portions while stirring. After 12 hours the solution was treated with concentrated hydrochloric acid (20 ml) and then with water (40 ml). Basification of the solution and extraction with CH$_2$Cl$_2$ afforded upon evaporation of the CH$_2$Cl$_2$ an oil (2.2g) of the cis and trans mixture of 2-dimethylaminocyclo-
hexanol III-34: ir 3450, 1270, 980, 960, 880; nmr \( \tau \) 6.0 (m, 1.5H); \( \tau \) 7.0 (bm, 1H), \( \tau \) 7.8 (s, 6H), \( \tau \) 7.8-9.2 (bm, 8H).
REFERENCES


17. We thank Dr. Karl Kopecky of the University of Alberta for providing the spectrum.


65. L.F. Fieser, "Experiments in Organic Chemistry"
67. Handbook of Chemistry and Physics, 46th Ed., The
   Chemical Rubber Co., Cleveland, Ohio, p. c-121.
68. See ref. 67, p. c-122.
69. See ref. 67, p. c-123.
   12 823 (1958).
72. L.F. Fieser and Heymann, J. Am. Chem. Soc., 64, 376
   (1942).
73. Van Baum and Bayer, Ber., 59 914 (1926).
74. Calvert and Pitts, "Photochemistry", John Wiley and
   Sons, Inc., p. 297, 298, 309.
75. W.G. Herkstroeter, A.A. Lamola, and G.S. Hammond,
76. V.L. Ermolaev, Urpekhi Fis. Nauk., 80, 3 (1963),
   English translation; Soviet Physics, Upseki, Nov.-Dec.,
A proposal for further research

The photoaddition of N-nitrosopiperidine to the 1,3-dienes has been shown to be a general reaction. However, the results obtained in the addition to 1-vinylcyclohexene suggest that a steric hindrance is imposed on the approaching nitrosamine molecule at some point in the reaction axis leading to product formation. The magnitude of this steric impediment should be assessed in order to ascertain the limitations and further synthetic possibilities of the nitrosamine photochemistry. It is proposed that a study be conducted, using as model several 1,2-disubstituted and 2,3-disubstituted 1,3-dienes. The substituents in these 1,3-dienes should be the usual methyl, ethyl, isopropyl and t-butyl groups, which should enable a good assessment of the magnitude of the steric interactions involved. Having this information available one could extend safely into the natural product field. There are several terpenes which have a 1,3-diene system. Some of them are dehydroergostenol, vitamin B₃, 22-dehydroergosterol, δ⁹,₁₁-ergosterol and abeitic acid. The corresponding structures are shown below.

Another project which can be fruitfully exploited is the extension of the photoaddition of N-nitrosamines to
Dehydroergostenol

Vitamin - B₃

22-Dehydroergosterol

\(\Delta^{9,11} - \text{Ergosterol}\)

Abeitic acid
olefins in the presence of oxygen into the 1,3-diene field. The expected products (shown below) could either be a 1-nitrato-4-amino-2-alkene or its decomposition product, a dieneamine.

\[
\begin{align*}
\text{N} & \quad \text{ONO}_2 \\
\text{C} & \quad \text{C} \\
\text{N} & \quad \text{C} \\
\end{align*}
\rightarrow
\begin{align*}
\text{N} & \quad \text{C} \\
\text{C} & \quad \text{C} \\
\end{align*} + \text{HNO}_3
\]

Such a reaction enables the simultaneous introduction of nitrogen and oxygen substituents at the 1,4-positions in a carbon chain. This could make this reaction a very useful synthetic tool.

As a last project, the photo-addition of N-nitrosamines to unsaturated hydrocarbons in the presence of acetyl or benzoyl chloride instead of a mineral acid, could be attempted. The reason for this change is the following. It has been proposed in this thesis (page 77) that a cyclic intermediate may exist in the transition state. This cyclic intermediate eventually leads to the primary photoadduct, the c-nitroso compound (see page 79, equation 4). Thus as shown below acetylation or benzoylation of the nitrosamino oxygen would prevent the rearrangement of the cyclic intermediate into the c-nitroso compound.
However, acetylation of the nitrosamine oxygen does not prevent the formation of the corresponding oxime acetate shown below.

An alternative way of approaching this problem is through the \( c \)-nitroso dimer. Acetylation or benzoylation of the \( c \)-nitroso dimer followed by photolysis may produce the desired intermediate. This is shown below.
Proof of the existence of the 4-membered ring intermediate would certainly settle some of the most important mechanistic aspects of the photoaddition reaction.
I-1
I-2
I-3
I-4
I-5
I-6
I-7
I-8
I-9