STUDIES IN REGULAR SOLUTION THEORY

by

ABHIJIT PURKAYASTHA
B.Sc.(Hons), Jadavpur University, 1965

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
in the Department
of
Chemistry
Simon Fraser University

© ABHIJIT PURKAYASTHA 1970
SIMON FRASER UNIVERSITY
August, 1970
EXAMINING COMMITTEE APPROVAL

Name: Abhijit Purkayastha
Degree: Doctor of Philosophy
Title of Thesis: Studies in Regular Solution Theory
Date: October 27, 1970

(Dr. John Walkley)
Research Supervisor

(Dr. D. G. Tuck)
Examing Committee

(Dr. R. G. Korteling)
Examining Committee

(Dr. E. Brian Smith)
External Examiner
Department of Chemistry
The development of Regular Solution theory for binary and ternary mixtures is discussed and the reasons for its failure are noted.

The thermodynamic properties of ternary nonpolar mixtures have been predicted using a modified version of the solubility parameters for the mixed solvents. Excellent agreement between theoretical and experimental properties is observed for dilute ternary mixtures. The theory has also been extended to the concentrated solutions but not with much success, and the probable reasons for this failure are also noted.

The "scaled particle" theory of fluids is used in calculating the partial molal entropy of solution of solid solutes and has been found to be in excellent agreement with the experimental results from different sources.
# TABLE OF CONTENTS

**LIST OF TABLES**

**LIST OF FIGURES**

**INTRODUCTION**

**CHAPTER I.** A general discussion on Regular Solution theory

**CHAPTER II.** Solubility of solid solutes in mixed solvents

Heat of solution and Regular Solution theory for three component systems

Experimental Results Discussion

Excess properties in mixed solvent:

Introduction Theory Discussion

Concentrated solution

Introduction List of notation Results Discussion

Conclusion
CHAPTER III. Calculation of entropy of solution from scaled particle theory

Introduction 189
Method of calculation 190
Discussion 195
Conclusion 204

REFERENCES 209

APPENDIX AI.1. Important thermodynamic relations 216

APPENDIX AI.2. Repulsive forces 223

APPENDIX AII.1. Derivation of excess volume of mixing 232

APPENDIX AII.2. Derivation of $\mathcal{H}_1(\text{max})$ for $(1/A) \Delta \mathcal{H}(\ln x_m^2)$ 233

APPENDIX AII.3. 237

APPENDIX AIII.1. Entropy of compressing a mixture of rigid spheres 239

APPENDIX AIII.2. Calculation of hard sphere diameter 242

APPENDIX AIII.3. 245
LIST OF TABLES

Table I.1: Solubility parameter for SnI$_4$ -- calculated from saturation solubility data 39

Table I.2: Comparision of observed and experimental values of $x_{2}^{\text{max}}$ 41

Table I.3: Comparision between calculated and experimental values of partial molal volumes of different solutes. 45

Table II.1: Saturation solubility and partial molal volume of iodine in mixed benzene -- cyclohexane solvent 121

Table II.2: Iodine in benzene -- cyclohexane solvent 122

Table II.3: Iodine in benzene -- carbon tetrachloride solvent 123

Table II.4: Iodine in benzene -- cyclohexane and benzene -- CCl$_4$ mixed solvents 124

Table II.5: SnI$_4$ in benzene -- c-C$_6$H$_{12}$ solvent 125

Table II.6: Solubility parameters of C$_6$H$_6$ -- c-C$_6$H$_{12}$ mixed solvents for C$_6$H$_6$ -- SnI$_4$ -- c-C$_6$H$_{12}$ system 126

Table II.7: $\Delta V^E$ in mixed solvents 127
Table II.8: Partial molal volume of solute in pure solvents

Table II.9: Saturation solubility of naphthalene in CCl$_4$ - c-C$_6$H$_{12}$ mixed solvent at 298 K

Table II.10: Saturation solubility of naphthalene in CH$_2$I$_2$ - c-C$_6$H$_{12}$ mixed solvent at 25°C

Table II.11: Solubility parameters of mixed solvents in the CCl$_4$ - naphthalene - c-C$_6$H$_{12}$ system

Table II.12: δ values for CH$_2$I$_2$ - c-C$_6$H$_{12}$ mixed solvent for CH$_2$I$_2$ - naphthalene - c-C$_6$H$_{12}$ system

Table II.13: δ$_m$(expt) for CCl$_4$ - c-C$_6$H$_{12}$ in CH$_2$I$_2$ - naphthalene - c-C$_6$H$_{12}$ system along with N$_1$/N$_2$ values

Table II.14: δ$_m$(expt) for CH$_2$I$_2$ - c-C$_6$H$_{12}$ in CH$_2$I$_2$ - naphthalene - c-C$_6$H$_{12}$ system along with N$_1$/N$_2$

Table II.15: Values for ΔH$_m$ for CCl$_4$ - naphthalene - c-C$_6$H$_{12}$ and CH$_2$I$_2$ - naphthalene - c-C$_6$H$_{12}$ systems

Table III.1: Hard sphere diameters of different solvents and solutes

Table III.2: ΔS$_P^P$ for different nonpolar binary mixtures
Table III.3: Excess entropy of mixing for different nonpolar binary mixtures

213

Table III.4: Saturation solubility of Sn(C₆F₅)₄

214

Table III.5: Partial molal volumes of Sn(C₆F₅)₄

215

Table AI.1.1: A summary of relations between thermodynamic functions

224

Table AI.1.2: Thermodynamic functions for fusion

229
LIST OF FIGURES

Figure I.1: Parameters used in describing pair potential 9

Figure I.2: Partial and total pressure of an ideal mixture 22

Figure I.3: Positive deviation from Raoult's Law 22

Figure I.4: Negative deviation from Raoult's Law 22

Figure II.1: Saturation solubility of iodine in benzene - c-C_{6}H_{12} mixed solvent versus volume fraction of benzene 136

Figure II.2: Excess saturation solubility and partial molal volume of I_{2} in benzene - c-C_{6}H_{12} mixed solvent versus volume fraction of benzene 137

Figure II.3: \((\ln a_{2}^{\frac{i}{2}} - \ln x_{2}^{\frac{m}{i}})\) of I_{2} in benzene - c-C_{6}H_{12} mixed solvent versus volume fraction and "effective volume fraction" of benzene 139

Figure II.4: Saturation solubility of I_{2} in benzene-cyclohexane mixed solvent versus "effective volume fraction" of benzene 140
Figure II.5: Partial molal volume of iodine in benzene - cyclohexane mixed solvent versus "effective volume fraction" of benzene

Figure II.6: \[(\ln a^i_2 - \ln x^m_2)^{1/3}\) of I\(_2\) in benzene - carbon tetrachloride mixed solvent versus "effective volume fraction" of benzene

Figure II.7: Saturation solubility of iodine in benzene - CCl\(_4\) mixed solvent versus volume fraction and "effective volume fraction" of benzene

Figure II.8: \[(\ln a^i_2 - \ln x^m_2)^{1/3}\) of I\(_2\) in CCl\(_4\) - n-C\(_7\)F\(_{16}\) mixed solvent versus volume fraction and "effective volume fraction" of benzene

Figure II.9: Saturation solubility of SnI\(_4\) in benzene - cyclohexane mixed solvent versus the volume fraction of benzene

Figure II.10: \[(\ln a^i_2 - \ln x^m_2)^{1/3}\) of SnI\(_4\) in benzene - cyclohexane mixed solvent versus volume fraction and "effective volume fraction" of benzene

Figure II.11: Saturation solubility of SnI\(_4\) in benzene - cyclohexane mixed solvent versus "effective volume fraction" of benzene
Figure II.12: $\delta_m$ for benzene - c-C$_6$H$_{12}$ in benzene - I$_2$ - c-C$_6$H$_{12}$ system versus volume fraction and "effective volume fraction" of benzene

Figure II.13: $\delta_m$ for benzene - CCl$_4$ in benzene - I$_2$ - CCl$_4$ system versus volume fraction and "effective volume fraction" of benzene

Figure II.14: $\delta_m$ for benzene - c-C$_6$H$_{12}$ in benzene-SnI$_4$ - c-C$_6$H$_{12}$ system versus volume fraction and "effective volume fraction" of benzene

Figure II.15: Excess saturation solubility terms in a hypothetical system versus $\xi_1$

Figure II.16: Excess saturation solubility terms for I$_2$ in C$_6$H$_6$ - c-C$_6$H$_{12}$ mixed solvent versus volume fraction of benzene

Figure II.17: Excess saturation solubility terms for I$_2$ in C$_6$H$_6$ - c-C$_6$H$_{12}$ mixed solvent versus volume fraction of benzene

Figure II.18: Excess saturation solubility terms for SnI$_4$ in C$_6$H$_6$ - CCl$_4$ mixed solvent versus volume fraction of benzene

Figure II.19: Excess saturation solubility terms for I$_2$ in CCl$_4$ - n-C$_7$F$_{16}$ mixed solvent versus volume fraction of CCl$_4$
Figure II.20: Saturation solubility of I$_2$ in CCl$_4$ - n-C$_7$F$_{16}$ mixed solvent versus volume fraction of CCl$_4$  

Figure II.21: Excess saturation solubility of naphthalene in a hypothetical mixed solvent versus $\phi_1$  

Figure II.22: $(\ln a_2^i - \ln x_2^m)^{1/2}$ of naphthalene in a hypothetical mixed solvent versus $\phi_1$  

Figure II.23: Excess saturation solubility of SnI$_4$ in a hypothetical mixed solvent versus $\phi_0$  

Figure II.24: $(\ln a_2^i - \ln x_2^m)^{1/2}$ of SnI$_4$ in a hypothetical solvent versus $\phi_1$ and $\phi^*$  

Figure II.25: Partial molal volume of Br$_2$ in CCl$_4$ - c-C$_4$Cl$_2$F$_6$ mixed solvent versus effective volume fraction of CCl$_4$  

Figure II.26: $\Delta V^E, M$ for I$_2$ in benzene - c-C$_6$H$_{12}$ mixed solvent versus volume fraction of benzene  

Figure II.27: $\Delta V^E, M$ for Br$_2$ in CCl$_4$ - c-C$_4$Cl$_2$F$_6$ mixed solvent versus volume fraction of CCl$_4$  

Figure II.28: Saturation solubility of naphthalene in CCl$_4$ - c-C$_6$H$_{12}$ mixed solvent versus temperature
Saturation solubility of naphthalene in CH$_2$I$_2$ - c-C$_6$H$_{12}$ mixed solvent versus mole fraction of CH$_2$I$_2$  

Saturation solubility of naphthalene in CH$_2$I$_2$ - c-C$_6$H$_{12}$ mixed solvent versus volume fraction of CH$_2$I$_2$  

$(\ln a_i^2 - \ln x_i^m)^{1/2}$ for naphthalene in CCl$_4$ - c-C$_6$H$_{12}$ mixed solvent versus volume fraction and "effective volume fraction" of c-C$_6$H$_{12}$  

$(\ln a_i^2 - \ln x_i^m)^{1/2}$ for naphthalene in CH$_2$I$_2$ - c-C$_6$H$_{12}$ mixed solvent versus volume fraction and "effective volume fraction" of c-C$_6$H$_{12}$  

$(\ln a_i^2 - \ln x_i^m)^{1/2}/\phi_m$ of naphthalene in CCl$_4$ - c-C$_6$H$_{12}$ mixed solvent versus volume fraction and "effective volume fraction" of c-C$_6$H$_{12}$  

$(\ln a_i^2 - \ln x_i^m)^{1/2}/\phi_m$ of naphthalene in CH$_2$I$_2$ - c-C$_6$H$_{12}$ mixed solvent versus volume fraction and "effective volume fraction" of c-C$_6$H$_{12}$
ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my research supervisor Dr. John Walkley, for his ideas, many of which appear here, for his interest, and most of all for his constant approachability.

Thanks for reading the first manuscript are due to Dow Maharajh who has been my research colleague for the last two years. This period has been marked by discussions, arguments and debates but more importantly by a good friendship.

I also thank Mr. R. McMillan for computational assistance, Miss M. Cheveldayoff for reading the final draft of this thesis, and other fellow students of the group for their help during this work.

I thank the National Research Council of Canada for financial support.

Last but not least, I would like to thank Mr. Fred Jones and Miss Philadel Marples who typed this thesis.

Abhijit Purkayastha.
INTRODUCTION

The properties of nonelectrolyte solutions are of great interest to chemical engineers for whom they represent design data and to chemists for whom they represent a source of information about intermolecular forces and the thermodynamic behavior of molecules in solutions. From either point of view the aim is to develop methods that will be able to predict the properties of solutions either from the results of a few measurements on solutions or more hopefully from the properties of pure components.

Since the early twentieth century, many attempts have been made to develop theories of the solutions of nonelectrolytes but the most widely used and the most successful theory in its limited field is the Regular Solution theory. This theory was first developed by Hildebrand to calculate the thermodynamic properties of solutions of nonelectrolytes. It is one of the simplest theories proposed on this subject and over the decades it has been the basis of many discussions and many improvements on the theories of solutions. In Chapter I we shall discuss the different aspects of Regular Solution theory and its limitations.

The most attractive systems for studying on the basis of Regular Solution theory are the three component systems whose components have almost similar molar
volumes. In such cases the effects of molar volume disparities of the components on the free energy of mixing would be negligible. The extension of the Regular Solution theory, which was originally developed for binary systems, to ternary systems assumes that the ternary systems may be considered as a pseudo-binary system of one solute and one mixed solvent whose solubility parameter is given by the volume fraction average of the solubility parameters of the components of the mixed solvent. Although the resultant solubility equation is a very simple one, unfortunately it has been observed from solubility studies of solid solutes in mixed solvents (all three components are nonelectrolytes) that the experimental saturation solubility is always greater than the predicted value. In earlier studies of the partial molal volumes of $\text{Br}_2$ in $\text{CCl}_4 - n-\text{C}_7\text{F}_{16}$ and in $\text{CCl}_4 - \text{c-C}_4\text{Cl}_2\text{F}_6$ mixed solvents, it was shown that the partial molal volume of $\text{Br}_2$ is less than the calculated values derived from the assumption that the solubility parameter of the mixed solvents is given by the volume fraction average of the solubility parameters of the components of the mixed solvent. Such an assumption about the solubility parameter of the mixed solvents implies that the distribution of components of the mixed solvents around the solute molecule depends upon the volume fraction of the components and not on the interactions of the solute molecules with the
individual components. In this thesis it is proposed to study the effect of solute - pure solvent interactions on the solubility studies of solid solutes in the mixed solvents. A detailed account of the studies of iodine, stannic iodide and other solid solutes in mixed solvents will be presented, and a theory developed which allows the ratio of the "nearest neighbours" mixed solvent component molecules around the solute molecules to be calculated. This new term, denoted as the "effective volume fraction," is introduced to represent the nearest environment of the solute molecule in the mixed solvents.

This "effective" volume fraction essentially implies a preferential solvation of the solute molecules by one solvent partner in the mixed solvent. By making allowances for this preferential solvation of the solute molecule, it will be shown that the Regular Solution theory can be successfully applied to explain all the available data on the solutions of the nonpolar solid solutes in nonpolar mixed solvents.

In Chapter II of this thesis we shall discuss the different aspects of the three component systems.

The other interesting phenomenon to study is the effect of solvent-solute volume disparity in the binary systems because it is well known that if the solvent-solute volume disparity is too large, the entropy of mixing of supercooled liquid (the assumed standard
state of the solids in the Regular Solution theory) solute and the liquid solvents are no longer zero and Regular Solution theory can not be applied successfully in these cases. It is difficult to calculate the magnitude of the excess entropy because it has been observed that for spherical solid solute molecules such as tetraphenyl tin the usually used "Flory-Huggins" entropy of mixing to take account of the volume disparity between solute and solvent are usually unreliable. To examine the effect of the solvent-solute volume disparity on the solubilities of the solids, we have carried out the solubility studies along with the experimental determination of the partial molal volume of tetra perfluorophenyl tin \( \text{Sn}(C_6F_5)_4 \) whose molar volume is 404.4 cc in different organic solvents of molar volumes around 100 cc.

In this thesis we shall also present a method to calculate partial molal entropy of mixing solid solutes in liquid solvents. This method will be developed from the scaled particle theory of dense fluids and it will also be shown that this method can successfully be applied in predicting the partial molal entropies of iodine, stannic iodide, tetraphenyl tin, along with tetra perfluorophenyl tin. We developed this method to calculate partial molal entropy because, as mentioned earlier, the Regular Solution theory usually can not cope with systems such as ours and the Flory-Huggins
entropy term is unreliable.

In Chapter III we shall discuss the scaled particle theory and its application in deriving the properties of pure liquid and binary liquid mixtures.
Chapter I

Regular Solution Theory
Any complete understanding of mixtures of nonelectrolytes must need a clear solution of the problems involving intermolecular forces in the theory of the liquid state. To date there exist only approximate treatments but it is surprising that these theories can be applied more successfully in formulating the theory of solutions than one would expect from the drastic approximations involved in them. Or conversely it could be said that the empirical success of the theories of the solutions may not be used to justify the theories of the liquid state or of intermolecular forces from which the postulated theory has been derived.

Under these circumstances we shall discuss the theories on the liquid state and intermolecular forces very briefly and the main topic of our discussion in this chapter will be the Regular Solution theory which, as Scott[1] wrote in 1956, "...offers a useful initial approach to a very wide area of solution like a small-scale map for a very broad long distance air view of the subcontinent."

The success of Regular Solution theory lies in its ability to predict the excess free energy of mixing and hence the saturation solubilities within a few percent of the experimental values. However the theory is not accurate in predicting many other thermodynamic properties such as the heat of solution or the volume change upon mixing.
Intermolecular Forces

The properties of solutions depend upon the nature of the interactions between the various types of molecules, both like and unlike, in the solution. Two commonly used potential functions for the interactions of spherical molecules are Lennard-Jones (L-J) potential, i.e. $12-6$ potential and exp-$6$ potential. The Lennard-Jones potential is defined as

$$U(r) = \epsilon [(r_o/r)^{12} - 2(r_o/r)^6]$$  \hspace{1cm} (1a)$$

or as

$$U(r) = \epsilon [(\sigma/r)^{12} - 2(\sigma/r)^6]$$  \hspace{1cm} (1b)$$

The exp-$6$ potential is defined as

$$U(r) = \frac{\epsilon \alpha}{\alpha - 6} \sigma^6 \exp[-\alpha(r - r_o)/\sigma] - (r_o/r)^6$$  \hspace{1cm} (2)$$

In both of these expressions $\epsilon$ represents the depth of the potential well, $r$ is the distance and $r_o$ is the separation at which the minimum in the potential occurs. The $\sigma$ in the equation (1b) is the distance at which the potential is zero (see Figure 1). The $\alpha$ in the equation (2) is the steepness of the exponential repulsion and is usually about 13.5.
The 12-6 potential has only two adjustable parameters whereas the exp-6 potential has three. One modification of the L-J potential is the Kihara core potential in which the point center of the L-J potential is replaced by a hard core. The potential is given by

$$U(r) = \epsilon \left[ (r_o/\sigma)^{12} - 2(r_o/\sigma)^6 \right]$$  \hspace{1cm} (3)

where $\sigma$ is the shortest distance between hard cores and $r_o$ is its value at the potential minimum. The net effect of the Kihara core potential is to make the attractive energy a mildly steeper function of $r$ and the repulsive energy a much steeper function in comparison to L-J potential.
For interactions between unlike molecules, the following commonly used rules are available: the geometric mean rule for the energy parameters is

$$\varepsilon_{ij} = (\varepsilon_{i1} \varepsilon_{j1})^{\frac{1}{2}}$$  \hspace{1cm} (4)

and the arithmetic combining rule for the distance parameters is

$$r_{ij} = \frac{r_{i1} + r_{j1}}{2} \quad \text{or} \quad \sigma_{ij} = \frac{\sigma_{i1} + \sigma_{j1}}{2}$$  \hspace{1cm} (5)

In using these "combination rules" one must remember that in the cases where the potential functions for the components of a solution have different shapes, the relations of this kind cannot give full information on the interactions between the unlike molecules.[4]

Recent publications[4-9] along with earlier reviews by London,[10] Hargenau,[11] and Rowlinson[12] summarise our present knowledge about the intermolecular forces. As more kinds of information on intermolecular forces become available, it seems that the simple analytical potential expressions as discussed above are not adequate in describing the intermolecular interaction, even for the spherical molecules[13,14]

Another important aspect of the intermolecular potential is the nonadditivity of the intermolecular forces (which has been known for a long time) yet the most usual method of describing the intermolecular energy of a group of molecules is to assume that the
intermolecular energy may be represented by the sum of the pair energies, i.e.

\[ U = \frac{1}{2} \sum_{i} \sum_{j} U(r_{ij}) \]  

(6)

or in other words the contribution of the triplet interaction term in the total intermolecular energy is very small. There has been a recent revival of interest concerning the contribution of the triplet interaction energies (in excess over the sum of the pair energies in equation (6) ) to the total interaction of a group of molecules. The main problem with the triplet interaction term is the uncertainty about the magnitude of this contribution to the total energy: the estimate for argon may vary from less that 1½ to as high as 15%[14,15]

For liquids there is no definite way of deciding whether the contribution of the triplet interaction term will be negligible or not. But from the physical pictures it seems, as mentioned by Hildebrand et al.[19] that the different orientations in the liquid state "largely eliminates this factor for large number of atoms as closely packed as in a liquid," and throughout all our discussion we shall assume that the contribution due to the triplet interaction term is negligible.

Information about intermolecular forces can be obtained from quantum mechanical calculations, from molecular beam scattering experiments, from the meas-
urement of transport properties in the gaseous state and the measurement of the equilibrium thermodynamic properties of liquids and gases. Information about intermolecular forces can also be obtained from the heat of vaporisation data and from the measurement of the $(\frac{dP}{dT})_V$ of normal liquids. The last two sources of information will be discussed because of the use of these properties in Regular Solution theory.

**Heat of Vaporisation**

Hildebrand and Wood\(^{23}\) showed that the potential energy of liquid can be expressed in terms of its molecular pair potential and its distribution function as

\[
E = \frac{2\pi N_o^2}{V} \int U(r) g(r) r^2 \, dr \tag{7}
\]

where \(N_o\) is Avogadro's number when the equation (7) is written for one mole of liquid, \(E\) is the total potential energy per mole of liquid, \(V\) is the molar volume, and \(g(r)\) is the radial distribution function of the liquid.

They expressed \(U(r)\) in terms of an n-6 potential defined as

\[
U(r) = \frac{j}{r^n} - \frac{k}{r^6} \tag{8}
\]
Substituting the equation (8) in the equation (6) one obtains

\[ E = \frac{2\pi N_0^2}{V} \left\{ \int g(r) \frac{J}{r^{n-2}} - k \int g(r) \frac{J}{r^4} \right\} \, dr \] (9)

Hildebrand, Wakeham and Boyd [21] evaluated \( k, \ j \) and \( n \) for mercury by setting \( E = -\Delta E_{\text{Vap}} \), the heat of vaporisation, and by using the experimentally determined value for \( g(r) \), they obtained the values for \( k, \ j \) and \( n \) which are in remarkably good agreement with these values determined from the other sources. This agreement has a considerable significance in formulation of the Regular Solution theory because in this theory the interaction terms are described in terms of the cohesive energy density, where the cohesive energy density is defined as the heat of vaporisation divided by the molar volume at the same (extrapolated) temperature.

**Measurements of the \( \left( \frac{\partial \rho}{\partial T} \right)_V \) of normal liquids**

Further evidence about the intermolecular potential energies are obtained from the behaviour of a van der Waals liquid, for which

\[ \left( \frac{\partial E}{\partial V} \right)_T = \frac{a}{V^2} \] (10)

Comparing equation (10) with the thermodynamic equation of state
\[ P + \frac{a}{V^2} = \frac{RT}{V - b} \]  

one obtains

\[ P + \frac{\partial P}{\partial T} = T \left( \frac{\partial P}{\partial T} \right)_V \]  

(12)

Smith and Hildebrand\textsuperscript{[22]} determined \( \left( \frac{\partial P}{\partial T} \right)_V \) for different liquids and they observed that \( V^2 \left( \frac{\partial E}{\partial V} \right)_T \) decreases for \( c-C_6F_{11}CF_3 \) with increasing temperature. Similar phenomenon was also observed by Scott et al.\textsuperscript{[25]} for \( CC14 \). This drifting was correlated by Frank\textsuperscript{[26]} by writing \( E = \frac{a}{V^n} \) for dilute vapors. This allows one to write

\[ V^{n+1} \left( \frac{\partial E}{\partial V} \right)_T = n V^n \Delta E^{Vap} = \text{constant} \]  

(13)

for dilute vapors.

From the equation (13) a definition of \( n \) can also be found as \( n \) is the ratio of \( \left( \frac{\partial E}{\partial V} \right)_T \) to \( \left( \frac{\Delta E^{Vap}}{V} \right) \) of the liquid. Smith and Hildebrand found that \( n \) has value larger than unity for the liquids they studied.

Potential energies between unlike molecules

The van der Waals constant \( a \) for one mole of binary mixture and the constants for the pure components are related by
\[ a = x_1 a_1^2 + 2x_1 x_2 a_{12} + a_2^2 \]  \hspace{1cm} (14)

where \( a_{12} \) is the interaction between the unlike molecules and the \( x \)'s are the mole fractions.

Writing

\[ a_{12} = (a_1 a_2)^{\frac{1}{3}} \]  \hspace{1cm} (15)

and then substituting equation (15) in equation (14) one obtains

\[ a = (x_1 a_1^{\frac{1}{3}} + x_2 a_2^{\frac{1}{3}})^2 \]  \hspace{1cm} (16)

The validity of the geometric mean assumption in the equation (15) was tested by Hildebrand and Carter[27] by measuring the \( \frac{\partial F}{\partial T} \) of the three pure liquids and of their binary liquid mixtures. The calculated values for \( a_{12} \) from the equation (15) were within 1\% of the experimental values for \( a_{12} \). (Another interesting discussion about the geometric mean assumption is given by Barker[4])

The potential energies between the unlike molecules will be considered in the latter part of this chapter. In this section we discussed the importance of the thermodynamic measurements in relation to the intermolecular forces.

**Liquid State**

In the beginning of this chapter we mentioned the two approximations that are involved in formulating any theory of solutions: one involves use of a formal
expression for the intermolecular potential function
(as has been discussed above) and the other involves
the approximations in the liquid state theory used.

Detailed discussion and the extensive review of
the theories of liquids and dense gases which will be
beyond the scope of this chapter may be found else-
where,[28-30] but there are mainly two approaches to
the formulation of the liquid state. One approach is
the formal approach used by Meyer, Kirkwood and others.
This approach is based on the use of a radial distrib-
ution function. At present the most promising and in-
teresting theories based on this approach are the Scaled
Particle theory and the perturbation theory of Barker
and Henderson[29]. The Scaled Particle theory
will be discussed in a later chapter.

The other approach is to use theories based on em-
pirical mathematical models. The most commonly used
model theories are cell theory[33] and the significant
structure theory[32] Both these theories have been wide-
ly used in calculating the properties of liquids.[29,31,32]

But as our main topic of discussion is the Regular
Solution theory and its applications, and as the Regular
Solution theory is based on the assumption of "maximum
randomness," the whole idea of a model approach is un-
acceptable because all the theories based on the model
approach assume some sort of "quasi-lattice" order in
the liquid state.
The controversy over the properties and the "structure" of liquids has been best summarized in an article written by Eyring, Hildebrand and Rice[33] in 1963. Hildebrand[34] in the book named Regular Solutions also discussed the experimental evidence in favour of the "maximum randomness" in the liquids. Considering that our interest is to apply the Regular Solution theory in the studies of solutions of nonelectrolytes, we shall accept the formal approach in the following discussion.

Regular Solutions

The name "Regular Solution" was first proposed by Hildebrand[36] in 1929 in describing the solubilities of iodine in different nonpolar solvents. In 1931, G. Scatchard[37] put forward a theory to explain the behavior of such regular solutions. This theory of Scatchard is known as the Regular Solution theory. A regular solution may be defined as

...one involving no entropy change when a small amount of its component is transferred to it from an ideal solution of the same composition, the total volume remaining unchanged.[38]

Some Important Thermodynamic Relations

Before discussing the different aspects of the Regular Solution theory it seems important to specify some of the notation and thermodynamic relations which
will be used frequently in this thesis.

The following superscripts will be used to distinguish the state and the kind of process:

\[ g = \text{gas} \quad i = \text{ideal} \]

\[ l = \text{liquid} \quad e = \text{excess over ideal solutions} \]

\[ o = \text{standard state} \quad m = \text{mixing or in mixed solvent} \]

\[ (\text{in this discussion the standard state is always pure liquid}) \quad r = \text{regular} \]

The following notations will be used for the thermodynamic functions:

\[ F = \text{Gibbs free energy} \quad P = \text{pressure} \]

\[ A = \text{Helmholtz free energy} \quad V = \text{volume} \]

\[ E = \text{energy} \quad f = \text{fugacity} \]

\[ H = \text{enthalpy} \quad T = \text{temperature in degrees absolute} \]

\[ S = \text{entropy} \]

The thermodynamic relations which will be needed frequently are:

\[ F = H - TS, \quad A = E - TS = F - PV, \quad E = H - PV. \]

The other important thermodynamic relations are given in Appendix Al.1.

**Ideal Solution**

The concept of ideal solution serves the same purpose in the studies of real solutions as the concept
of ideal gas does in the studies of real gases. Perhaps very few solutions are ideal, which is not surprising, but the advantage of introducing the concept of ideal solution in thermodynamic studies of solutions is that it is thermodynamically well-defined. An ideal solution\[^{39}\] is defined as one in which the fugacity of each component is proportional to the mole fraction of that component in the solution and this proportionality is obeyed over the complete composition range of the solution. So according to this definition the fugacity of component 1, \( f_1 \), of an ideal solution is given by

\[
f_1^i = f_1^o x_1
\]

(20)

where \( f_1^o \) is the proportionality constant for a given temperature and pressure. If we can proceed over the whole range of concentration to \( x_1 = 1 \), \( f_1^o \) appears as the fugacity of the pure component 1.

From the definition of activity, \( a_1 \), we obtain

\[
a_1^i = \frac{f_1^i}{f_1^o}
\]

(21)

If the fugacities can be replaced by vapor pressures then we may write equation (21) as

\[
\frac{p_1^i}{p_1^o} = x_1
\]

(22)

which is Raoult's Law for solutions.
The free energy change for an ideal solution can be derived from equation (21) as

\[ \overline{F}_1^i - F_1^0 = RT \ln x_1 \]  
(23a)

\[ \overline{F}_2^i - F_2^0 = RT \ln x_2 \]  
(23b)

\[ \Delta F^M = n_1(\overline{F}_1^i - F_1^0) + n_2(\overline{F}_2^i - F_2^0) \]

\[ = n_1 RT \ln x_1 + n_2 RT \ln x_2 \]  
(23c)

If the equations (23a) and (23b) hold over a range of temperature and pressure, the following occurs:

\[ \overline{S}_1^i - S_1^0 = -\left(\frac{\partial (\overline{F}_1^i - F_1^0)}{\partial T}\right)_{P,x} = -R \ln x_1 \]  
(24a)

\[ \overline{S}_2^i - S_2^0 = -\left(\frac{\partial (\overline{F}_2^i - F_2^0)}{\partial T}\right)_{P,x} = -R \ln x_2 \]  
(24b)

\[ \Delta S^M = -\left(\frac{\partial \Delta F^M}{\partial T}\right)_{P,x} \]

\[ = -R(n_1 \ln x_1 + n_2 \ln x_2) \]  
(25)

From the thermodynamic relation

\[ H = F + TS \]  
(26)
we obtain

$$\Delta H_1 = \Delta H_2 = \Delta H^M = 0 \quad (27)$$

Similarly for the volume change on mixing we find

$$V_1^i - V_1^o = \left\{ \frac{\partial (F_1^i - F_1^o)}{\partial P} \right\}_{T,x} = 0 \quad (28a)$$

$$V_2^i - V_2^o = \left\{ \frac{\partial (F_2^i - F_2^o)}{\partial P} \right\}_{T,x} = 0 \quad (28b)$$

$$\Delta V^M = \left\{ \frac{\partial (F^M)}{\partial P} \right\}_{T,x} = 0 \quad (29)$$

Thus the thermodynamic properties of an ideal solution formed from liquid components can be stipulated as follows:

1. There is no volume change on mixing for an ideal solution;
2. There is no heat of mixing for an ideal solution;
3. The entropy of mixing for a binary ideal solution is given by

$$\Delta S^M = -R(n_1^R \ln x_1 + n_2^R \ln x_2)$$

In this section we have defined the ideal solution from the thermodynamic point of view and we will use this definition for the ideal solution throughout this
Mole fraction of A in a hypothetical ideal mixture of A and B - partial and total pressure of A and B.

Partial and total pressure for a nonideal mixture of A and B with $\gamma > 1$.

Partial and total pressure of a nonideal solution of A and B with $\gamma < 1$. 
Nonideal or Real Solution

In the earlier section we defined an ideal solution as a solution for which the activity of a component in the solution is equal to the mole fraction of that component in the solution such that

\[ a_2 = x_2 \]

But for most of the solutions, this is not the case, and for convenience we define a term called activity coefficient (see Appendix A1.1) as

\[ \gamma_1 = \frac{a_1}{x_1} \quad \text{and} \quad \gamma_2 = \frac{a_2}{x_2} \quad (30) \]

So for an ideal solution,

\[ \gamma_1 = 1 \quad \text{and} \quad \gamma_2 = 1 \quad (31) \]

Again from the equation the partial molal free energy of mixing may be written as

\[ \Delta F_1 = \bar{F}_1 - F_1^o = RT \ln a_1 = RT \ln x_1 + RT \ln \gamma_1 \quad (32a) \]

\[ \Delta F_2 = \bar{F}_2 - F_2^o = RT \ln a_2 = RT \ln x_2 + RT \ln \gamma_2 \quad (32b) \]

\[ \Delta F_M = RT(x_1 \ln a_1 + x_2 \ln a_2) \]

\[ = RT(x_1 \ln x_1 + x_2 \ln x_2) + RT(x_1 \ln \gamma_1 + x_2 \ln \gamma_2) \quad (33) \]
In equations (32a), (32b) and (33) we see that the first terms in the right hand side are ideal free energies of mixing so the second terms are the excess over the ideal free energies of mixing and they are known as the "excess" free energies of mixing. So the excess free energy of mixing is defined as

\[ \overline{F}_1^E = RT \ln \gamma_1 \]  
\[ \overline{F}_2^E = RT \ln \gamma_2 \]  
\[ F^E = RT(x_1 \ln \gamma_1 + x_2 \ln \gamma_2) \]

Similarly other excess properties may be defined with reference to the ideal solutions.

The positive value of the excess free energy of mixing, i.e. \( \gamma \), is greater than unity, and is known as a positive deviation from Raoult's Law. Similarly the negative value of the excess free energy of mixing, i.e. \( \gamma \), is less than unity, and is known as a negative deviation from Raoult's Law.

In Figures 2-4 we show the different thermodynamic properties of ideal and non-ideal solutions for mixtures of hypothetical liquids A and B.

**Solubility of Nonelectrolytes and Regular Solution Theory**

In this section we limit our discussion to the solubilities of nonelectrolytes because the long-range nature of the electrostatic forces yields problems which
are beyond the scope of this thesis.

Primary consideration will be given to mixtures of two or more liquids. For mixtures with a solid as the solute we shall assume that the standard state of the solids is the hypothetical supercooled liquid of the solid at that temperature.

As mentioned earlier, Hildebrand in 1929 drew attention to the very significant similarity in behavior of a class of nonideal solutions which he named regular solutions. The absence of any specific interactions is the most important feature of these solutions. The pure components of a regular solution have the properties of simple fluids or liquids.

The difference between a regular solution and an ideal solution is that for a regular solution the heat of mixing has a positive value whereas for ideal solution the heat of mixing is zero. As mentioned earlier, the entropy of mixing for a regular solution is equal to the ideal entropy of mixing.

**Heat of Mixing and Hildebrand-Scatchard Equation**

The first attempt to calculate the change in entropy or enthalpy when two liquids are mixed, was made by van Laar in 1906 but it was not very successful.

In 1931, G. Scatchard\textsuperscript{[37]} published a paper where he derived an equation to calculate $\Delta E_v^M$ or energy change on mixing two liquids at constant volume. To do so he assumed
(1) The mutual energy of two molecules depends only upon the distance between them and their relative orientation and not at all on the nature of the other molecules between or around them, or on temperature;

(2) the distribution of the molecules in position and in orientation is random, i.e. it is not dependent on the temperature or on the nature of other molecules present;

(3) the change of volume on mixing is zero.

These assumptions allowed him to write the "cohesive energy" of a mole of liquid mixture,

\[ -E_M = \frac{C_{11}V_1^2V_2^2 + 2C_{12}X_1X_2V_1V_2 + C_{22}X_2V_2^2}{x_1V_1 + x_2V_2} \]  \( (36) \)

For pure liquids \(-E = C_{11}V_1\), etc. For liquids the vapor is nearly ideal at ordinary temperature so \(-E\) can be identified with the energy of vaporization \(\Delta E_{Vap}\) or \(C_{11}\frac{\Delta E_{Vap}}{V_i}\). In terms of the volume fractions equation (36) becomes

\[ -E_M = (x_1V_1 + x_2V_2)(C_{11}\phi_1^2 + 2C_{12}\phi_1\phi_2 + C_{22}\phi_2^2) \]  \( (37) \)

where \(\phi_i = \frac{N_iV_i}{N_1V_1 + N_2V_2}\) and so on.

So the energy of mixing is given by

\[ \Delta E^M = E_m - x_1E_1 - x_2E_2 \]
\[ = A_{12}(x_1V_1 + x_2V_2)\phi_1\phi_2 \]  \( (38) \)
where \( A_{12} = C_{11} + C_{22} - 2C_{12} \).

Then it is assumed that

\[
C_{12} = \left( C_{11}C_{22} \right)^{\frac{1}{2}}
\]

or

\[
A_{12} = \left( C_{11} - C_{22} \right)^{\frac{1}{2}}
\]

and substituting \( C_{11} = \frac{\Delta E_v}{V_1} \) in equation (38) the energy change on mixing becomes

\[
\Delta E^m = \left( x_1V_1 + x_2V_2 \right) \left( \left( \frac{\Delta E_v}{V_1} \right)^{\frac{1}{2}} - \left( \frac{\Delta E_v}{V_2} \right)^{\frac{1}{2}} \right) \phi_1 \phi_2
\]

The square root of the "cohesive energy" density, i.e. \( \left( \frac{\Delta E_v}{V_1} \right)^{\frac{1}{2}} \) is called the "solubility parameter" and is denoted by \( \delta \). So equation (24) may be written as

\[
\Delta E^m = (x_1V_1 + x_2V_2)(\delta_1 - \delta_2) \phi_1 \phi_2
\]

As equation (42) was derived from the assumption that the volume change on mixing is zero, \( \Delta E^m \) in equation (42) is actually \( \Delta E^m_v \).

Since \( \Delta V^M \) is very small, then

\[
P^E = A^E_v = E^E_v = T S^E_v
\]

By definition \( \Delta S^E = 0 \) for regular solution, so

\[
P^E = E^E_v = \Delta E^M_v
\]

Combining equation (41) with equation (44), one obtains

\[
P^E = (x_1V_1 + x_2V_2)(\delta_1 - \delta_2) \phi_1 \phi_2
\]
The corresponding partial molal free energy for a solute is
\[ \Delta F_2^E = RT \ln \gamma_2 = \frac{v_2^0}{\phi_1^2} \left( \delta_1 - \delta_2 \right)^2 \] (46)
where \( \gamma_2 \) is the activity coefficient of solute 2, or
\[ \Delta F_2^E = RT \ln a_2 = RT \ln x_2 + \frac{v_2^0}{\phi_1^2} \left( \delta_1 - \delta_2 \right)^2 \] (47)
Rearranging equation (47), one obtains
\[ \ln a_2 = \ln x_2 + \frac{v_2^0}{RT} \frac{\phi_1^2}{\phi_1^2} \left( \delta_1 - \delta_2 \right)^2 \] (48)
where \( a_2 \) is the activity for solute 2.

Hildebrand and Wood derived the same equation by integrating the intermolecular potential between pairs throughout the liquid with the aid of a continuous distribution function[23]

In equation (48), we see that the Scatchard-Hildebrand equation is valid only for the solutions for which the excess free energies are positive, i.e. those solutions which show positive deviations from Raoult's Law. This is the direct consequence of the geometric mean assumption in equation (39).

Hildebrand and Wood[23] derived an equation similar to equation (41) for heat of mixing by integrating the intermolecular pair potentials throughout the liquid using a continuous distribution function.

In a pure liquid of spherically symmetrical molecules, a spherical shell of radius \( r \) around a desig-
nated central molecule and thickness \( dr \) will contain \( N \pi r^2 g(r) dr \) molecules where \( g(r) \) is the radial distribution function. The potential energy, \( E \), of pure liquid of \( N \) molecules in volume \( V \) is given by

\[
E = \frac{2\pi N^2}{V} \int_0^\infty U(r) g(r) r^2 dr
\]

\[
= n \frac{2\pi N_o^2}{V} \int_0^\infty U(r) g(r) r^2 dr . \tag{49}
\]

where \( U(r) \) is the pair potential at a distance \( r \), \( N_o \) is Avogadro's number, and \( n \) is the number of moles.

Similarly for a binary mixture of liquids containing \( n_1 \) moles of type 1 and \( n_2 \) moles of type 2, the potential energy of the mixture of total volume \( V_m = n_1 V_1 + n_2 V_2 = (n_1 + n_2) (x_1 V_1 + x_2 V_2) \) \( \tag{50} \)

is given by

\[
E_m = (n_1 V_1 + n_2 V_2) 2\pi N_o \left\{ \frac{\pi^2}{V_1^2} \int U_{11} g_{11} r^2 dr
+ \frac{2\pi^2}{V_1 V_2^2} \int U_{12} g_{12} r^2 dr + \frac{\pi^2}{V_2^2} \int U_{22} g_{22} r^2 dr \right\} \tag{51}
\]

The energy of two unmixed components is given by

\[
E_1 + E_2 = 2\pi N_o^2 (n_1 V_1 + n_2 V_2) \left\{ \frac{\pi^2}{V_1^2} \int U_{11} g_{11}^o r^2 dr
+ \frac{\pi^2}{V_2^2} \int U_{22} g_{22}^o r^2 dr \right\} \tag{52}
\]
Therefore the energy of mixing is

\[ \Delta E^M = E_m - E_1 - E_2 \]

\[ = (n_1 V_1 + n_2 V_2) 2 \pi N_o^2 \left\{ \frac{2}{V_1} \int U_{11}(g_{11} - g_{11}^o) r^2 dr \right. \]
\[ + \frac{2}{V_2} \int U_{22}(g_{22} - g_{22}^o) r^2 dr \left. \right) \]
\[ - \frac{1}{V_1} \int U_{11} g_{11}^o r^2 dr + \frac{1}{V_2} \int U_{22} g_{22}^o r^2 dr \]  

(53)

The \( \Delta E^M \) in equation (53) is the energy of mixing at constant volume and the terms in the brackets in equation (53) can be identified with Scatchard's \( (C_{11} + C_{22} - 2C_{12}) \) term in equation (38).

Next Hildebrand et al. wrote the intermolecular pair potential as

\[ \int U(r) g(r) r^2 dr = -k \int g(r) \frac{r}{r^4} dr + j \int g(r) \frac{1}{r^{n-2}} dr \]  

(54)

From the discussion of the intermolecular forces given earlier \( j \), the coefficient of the repulsive interaction can be expressed in terms of \( k \) and the equilibrium distance, (see Appendix Al.2) as

\[ j = \frac{\delta}{n} (r_o)^{n-6} k \]  

(55)

(Where \( r_o \) is the equilibrium distance)

Substituting equation (55) in equation (54), one obtains
\[
\int u(r)g(r)r^2 \, dr = -k \left\{ -\int \frac{g(r)}{r^4} \, dr \right. \\
+ \left. \frac{6}{n} (r_o)^{n-6} \int \frac{g(r)}{r^{n-2}} \, dr \right\} \tag{56}
\]

It was then assumed\([40]\) that \(g\)'s are functions of \(\frac{r}{\sigma}\) or \(\frac{r}{r_o}\) where \(\sigma\) is the collision diameter of molecules. This assumption can be justified from the observation by Hildebrand et al. that the distribution functions of different species can be superimposed when compared at equal degree of expansion by plotting \(g(r)\) versus \(\frac{r}{r_{\text{max}}}\), where \(r_{\text{max}}\) is the position of the first maximum. As \(\sigma\) and \(r_o\) are proportional to \(r_{\text{max}}\) and if the substances have same type of potential, then

\[
g(r) = g(r/\sigma) = g(y); \quad y = \frac{r}{\sigma} \tag{57}
\]

Substituting equation (57) in equation (56) one obtains

\[
\int u(r)g(r)r^2 \, dr = k \left\{ \frac{-1}{\sigma^2} \int \frac{g(y)}{y^4} \, dy \right. \\
+ \left. \frac{6(r_o)^{n-6}}{n(\sigma)^{n-3}} \int \frac{g(y)}{y^{n-2}} \, dy \right\} \tag{58}
\]

Assuming \(r_o = \sigma\) \tag{59}

and then substituting \(\sigma\) for \(r_o\) in equation (58) one obtains
\[ \int U(r) g(r) r \, dr = \frac{k}{\sigma^3} \left\{ -\int \frac{g(y)}{y^4} \, dy + \frac{6}{n} \int \frac{g(y)}{y^{n-2}} \, dy \right\} \quad (60) \]

Substituting equation (60) into equation (53) and then assuming that each radial distribution function is independent of composition of the solution, i.e.

\[ g^{0}_{11}(r) = g_{11}(r); \quad g^{0}_{22}(r) = g_{22}(r) \quad (61) \]

the expression for the energy of mixing, \( \Delta E^M \), of a regular solution may be rewritten as

\[ \Delta E^M = 2\pi N_o \left( n_1 V_1 + n_2 V_2 \right) \phi_1 \phi_2 \left\{ \frac{2k_{12}}{v_1 v_2 (\sigma_{11} + \sigma_{22})^3} \right. \\
- \frac{k_1}{v_1^2 (2\sigma_{11})^3} - \frac{k_2}{v_2^2 (2\sigma_{22})^3} \left\{ -\int \frac{g(y)}{y^4} \, dy + \frac{6}{n} \int \frac{g(y)}{y^{n-2}} \, dy \right\} \quad (62) \]

Equation (61) is the mathematical statement of Scatchard's assumption that "...the distribution of the molecules in position and in orientation is random, i.e. it is not dependent on...the nature of other molecules present (in a regular solution)."

Returning to equation (62), the values for \( k_{12} \) can be found in London's relation\(^4\]

\[ k_{12} = \frac{2I_1^{1/3} I_2^{1/3}}{I_1^{1/3} + I_2^{1/3}} k_1^{1/3} k_2^{1/3} \quad (63a) \]

where \( I \)'s are the ionization potentials.
Substituting equation (63a) into equation (62),

\[
\Delta E^M = 2\pi N_0^2 \left( n_1 V_1 + n_2 V_2 \right) \left( \frac{1}{V_1} \frac{k_1}{(2\sigma_{11})^3} \right.
\]

\[
- \frac{4I_1^{\frac{1}{3}} I_2^{\frac{1}{3}} \frac{k_1^{\frac{1}{3}} k_2^{\frac{1}{3}}}{V_1 V_2(I_1 + I_2)(\sigma_{11} + \sigma_{22})^3} + \frac{1}{V_2} \frac{k_2}{(2\sigma_{22})^3} \right)
\]

\[
\int \left\{ \frac{1}{y^4} - \frac{6}{ny^{n-2}} \right\} g(y) \, dy
\]

(63b)

The equation (63b) will reduce to Scatchard's equation if one assumes "cohesive energy densities", \( c \)'s, as

\[
C_{11} = \frac{\Delta E_{1}^{Vap}}{V_1}
\]

\[
= \frac{2\pi N_0^2}{8\sigma_{11} V_1^2} \int \left\{ \frac{1}{y^4} - \frac{6}{ny^{n-2}} \right\} g(y) \, dy
\]

(64a)

\[
C_{22} = \frac{\Delta E_{2}^{Vap}}{V_2}
\]

\[
= \frac{2\pi N_0^2}{8\sigma_{22} V_2^2} \int \left\{ \frac{1}{y^4} - \frac{6}{ny^{n-2}} \right\} g(y) \, dy
\]

(64b)

\[
C_{12} = \frac{2I_1^{\frac{1}{3}} I_2^{\frac{1}{3}}}{8V_1 V_2(\sigma_{11} + \sigma_{22})^3 (I_1 + I_2) k_1^{\frac{1}{3}} k_2^{\frac{1}{3}}}
\]

\[
\int \left\{ \frac{1}{y^4} - \frac{6}{ny^{n-2}} \right\} \, dy
\]

(64c)

**Geometric Mean Assumption**

Before discussing the other aspects of the Regular Solution theory, it is important to consider the
reliability of the geometric mean assumption given in equation (39), i.e.

\[ C_{12} = \sqrt{C_{11}C_{22}} \]

and its effect on the magnitude of the interaction constant, \( A_{12} \), in equation (39).

From equation (64c) we see that

\[ C_{12}^2 = \left\{ \frac{2\pi N_0^2}{8\sqrt{1/2}} \frac{2I_1^{1/2}I_2^{1/2}}{(I_1 + I_2)} \frac{k_1^{1/2}k_2^{1/2}}{(\sigma_{11} + \sigma_{22})^{3/2}} \right\} \int \left\{ \frac{1}{y} - \frac{6}{ny^{n-2}} \right\} dy \]

or

\[ C_{12}^2 = \frac{I_1I_2}{[(I_1 + I_2)/2]^2} \frac{(\sigma_{11} + \sigma_{22})/2}{[(\sigma_{11} + \sigma_{22})/2]^5} C_{11}C_{22} \quad (65) \]

From equation (65) we see that if

\( I_1 = I_2 \quad \text{and} \quad \sigma_{11} = \sigma_{22} \quad (66) \)

then only

\[ C_{12} = \sqrt{C_{11}C_{22}} \]

For a number of systems these conditions are not satisfied. For example, hydrocarbons and fluorocarbons have ionization potentials about 10 eV and 16 eV respectively and it is now generally accepted that systems such as hydrocarbon-fluorocarbon mixtures do not obey geometric mean assumptions. Reed in an attempt to account for the large excess free energies which have been observed for hydrocarbon-fluorocarbon mixtures,
reexamined the role of the differences in ionization potentials and the collision diameters of the components in the geometric assumptions. He wrote

$$A_{12} = C_{11} + C_{22} - 2C_{12} = (\delta_1 - \delta_2)^2 + 2\delta_1 \delta_2 (1 - f_I f_\sigma)$$

(67)

where

$$f_I = \frac{\frac{\overline{I}_1^\dagger}{1}}{\frac{\overline{I}_1^\dagger}{1} + \frac{\overline{I}_2^\dagger}{1}}$$

and

$$f_\sigma = \left(\frac{2\sigma_1^\dagger c_{11}^{\dagger} c_{22}^{\dagger}}{c_{11} + c_{22}}\right)^3$$

Reed estimated that, for hydrocarbon-fluorocarbon mixtures, $f_I$ is about 0.97 and $f_\sigma$ is about 0.995. So for $\delta_1 = 7.5$ and $\delta_2 = 6.0 \text{ cal}^2/\text{cm}^{-3}/\text{eV}$, the second term in equation (67) becomes about 3 cal cm$^{-3}$ which when coupled with molar volume from 100 to 200 cm$^3$ can produce an energy of mixing at constant volume as much as 150 cal mole$^{-1}$ in excess of that predicted from equation (38).

The consideration of the difference in ionization potentials offers a satisfactory explanation for the anomalously large heat of mixing and excess free energy of mixing observed for hydrocarbon-fluorocarbon mixtures. It would predict for other solutions similar anomalies which are not observed experimentally, e.g. CCl$_4$ and I$_2$ have ionization potentials of 11.0 and 9.7 eV respectively but their mixtures with fluorocarbons show excess free energy in good agreement with equation (38) with no need for a correction term. On the other
hend it has also been reported\textsuperscript{[43]} that for a benzene-
toluene mixture, where the differences in ionization
potential of the components are not very large, the
values of $C_{12}$ calculated from experimentally deter-
mined $\Delta E_V^M$ are consistently lower than values calcu-
lated from $\delta_1$ and $\delta_2$. Recent measurements\textsuperscript{[44]} of
activity coefficients of hydrocarbon solutes in alkane
solvents such as $n$-$C_{24}H_{50}$, $n$-$C_{30}H_{62}$ and $n$-$C_{36}H_{74}$,
by gas-liquid partition chromatography, also indicate
that for aromatic hydrocarbons, the $\delta$ value of the
solvent $n$-$C_{30}H_{62}$ has to be changed from 7.730 to
6.850 to fit the experimental values for activity coef-
ficients whereas for alkane hydrocarbons no such adjust-
ment is needed.

Hudson and McCoubrey\textsuperscript{[55]} examined the effect of
the differences in the collision diameters of molecules
on the geometric mean assumption. Assuming that $I_1 = I_2$ they rewrote the equation (65) as

$$C_{12} = \frac{\sigma_{11}^3 \sigma_{22}^3}{(\sigma_{11} + \sigma_{22}/2)^6} \quad (68)$$

They used the equation (68) to calculate the crit-
ical temperature for the binary liquid mixture of $c$-$C_6H_{12}$
- $c$-$C_6F_{12}$ and obtained a better agreement with the
experimental values.
Vitoria and Walkley\textsuperscript{[53]} looked into the effects of the differences of the molar volumes upon $C_{12}$'s of tetraphenyl tin - organic solvents mixtures. They wrote equation (68) as

$$C_{12} = k_0 C_{11} C_{22}$$

(69)

where

$$k_0 = \left\{ \frac{2^6}{\left( V_1^{\frac{4}{3}} + V_2^{\frac{4}{3}} \right)^6} \right\}$$

and then they rewrote the experimentally determined $(\delta_1 - \delta_2)^2$ as

$$(\delta_1 - \delta_2)^2 = \delta_1^2 - \delta_2^2 - 2b\delta_1\delta_2$$

or,

$$b = \frac{\delta_1^2 + \delta_2^2 - (\delta_1 - \delta_2)^2}{2\delta_1\delta_2}$$

(70)

where $b$, in the left hand side of the equation, was calculated from the saturation solubilities. They found that for tetraphenyl tin $k_0$ is much smaller than unity but $b$ is nearly equal to unity if excess entropy of mixing is included in writing the saturation solubility equation. Or in other words the experimentally determined $b$ indicates that the effects of solvent-solute molar volume disparity on the geometric mean assumption is much smaller for the systems containing tetraphenyl tin as solute than one would have expected from equations such as the equation (69).
In conclusion, though the geometric mean assumption is based on a narrow theoretical basis, this assumption when used in the form of solubility parameters has been proven to be quite useful in calculating the thermodynamic properties of the solutions of nonelectrolytes.

**Determination of "Solubility Parameter"**

The Regular solution theory requires $\delta$ to be a self-consistent parameter. The $\delta$ value has been calculated for a large number of substances, either

1. from the relation $\delta = \left(\frac{\Delta E}{V} \right)^{\frac{1}{2}}$, which is usually used for substances which are liquid at room temperature, or
2. by determining saturation solubility, i.e. $x_2$ and then substituting $x_2$ in the equation (48), provided $\delta_1$ is known.

The $\delta_2$ value for SnI$_4$ was determined by E. B. Smith and J. Walkley[45] from its solubility in a large number of organic solvents. In Table 1 $\delta_2$ value for SnI$_4$ is given to show that there exist a reasonable consistency in $\delta_2$ when determined from saturation solubility.

The "solubility parameter" can also be calculated from the calorimetric heat of vaporization. At low vapour pressure, the vapour in equilibrium with liquid is essentially ideal and $-E$ can be replaced by $\Delta E^V$, the energy of vaporization, which in turn can be replaced by $\Delta H^V - RT$ where $\Delta H^V$ is the heat of vaporization.
Table I.1: Solubility parameter for SnI$_4$ - calculated from saturation solubility data.[45]

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Solubility $100x_2$</th>
<th>$\delta_1$ for solvent</th>
<th>$\delta_2$ for SnI$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCl$_4$</td>
<td>1.459</td>
<td>8.6</td>
<td>11.6</td>
</tr>
<tr>
<td>SiCl$_4$</td>
<td>0.382</td>
<td>7.6</td>
<td>11.4</td>
</tr>
<tr>
<td>CCl$_2$F$_2$CF$_2$Cl</td>
<td>0.128</td>
<td>7.5</td>
<td>11.8</td>
</tr>
<tr>
<td>C$_6$H$_6$</td>
<td>2.181</td>
<td>9.2</td>
<td>11.8</td>
</tr>
<tr>
<td>c-C$_4$Cl$_4$F$_6$</td>
<td>0.0337</td>
<td>7.1</td>
<td>11.9</td>
</tr>
<tr>
<td>n-C$<em>7$F$</em>{16}$</td>
<td>0.001</td>
<td>5.9</td>
<td>12.0</td>
</tr>
<tr>
<td>C$_6$H$_5$CH$_3$</td>
<td>2.507</td>
<td>8.9</td>
<td>11.6</td>
</tr>
</tbody>
</table>

$\delta$'s are expressed in cal. $\text{cm}^3$ $\text{mol}^{-1}$. 
R. L. Scott proposed an empirical rule for heat of vaporization at 298° K and at boiling point of the liquid which is given below.

$$\Delta H_{298}^V \text{ (cal/mole)} = -2950 + 23.7T_B + 0.02T_B^2$$  \hspace{1cm} (72)

$$\Delta H_B^V \text{ (cal/mole)} = 17.0T_B + 0.009T_B^2$$  \hspace{1cm} (73)

$T_B$ is the boiling point of the liquid. It should be mentioned here that $\delta$ calculated from equation (71) may not be appropriate for solids because of the long extrapolation involved in such cases.

Volume Change on Mixing

It has been assumed before that the volume change on mixing is zero for regular solution, or in other words the heat of mixing can be identified with the energy of mixing. So $x_2^{\text{max}}$ or mole fraction of component 2 at which the heat of mixing will be maximum can be calculated from equation (11).

The experimental and the predicted values for $x_2^{\text{max}}$ are given in Table 2. These values are taken from reference [46]. It is clear from Table 2 that the calculated value of $x_2^{\text{max}}$ quite often does not agree with the experimental value. One of the reasons, as suggested by G. Scatchard [47] is that the $\Delta V^m$ or the volume
Table I.2: Observed and predicted values for $x_{2}^{\text{max}}$ (i.e., mole fraction of component 2 at which the heat of mixing is maximum).

<table>
<thead>
<tr>
<th>System</th>
<th>$V_1$</th>
<th>$V_2$</th>
<th>$H_{\text{max}}^M$</th>
<th>$T^0_{\text{A}}$</th>
<th>$x_{2}^{\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cc</td>
<td>cc</td>
<td>cal/mole</td>
<td>ob.</td>
<td>calc'd</td>
</tr>
<tr>
<td>$n$-$C_6H_{14}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ $c$-$C_6H_{12}$</td>
<td>132</td>
<td>109</td>
<td>53</td>
<td>293</td>
<td>0.63</td>
</tr>
<tr>
<td>$iso$-$C_8H_{18}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ hexadecane</td>
<td>166</td>
<td>294</td>
<td>55</td>
<td>293</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
</tr>
<tr>
<td>$n$-$C_6F_{14}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ $n$-$C_6H_{14}$</td>
<td>205</td>
<td>131</td>
<td>516</td>
<td>298</td>
<td>0.52</td>
</tr>
<tr>
<td>$C_6H_{6}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ $c$-$C_6H_{12}$</td>
<td>89</td>
<td>109</td>
<td>182</td>
<td>298</td>
<td>0.53</td>
</tr>
<tr>
<td>$CCl_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ $c$-$C_6H_{12}$</td>
<td>97</td>
<td>109</td>
<td>40</td>
<td>298</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.48</td>
</tr>
</tbody>
</table>
change on mixing is never zero for a regular solution. So it becomes necessary to convert the experimental numbers which are usually determined at constant pressure to the constant volume numbers.

The method of making these thermodynamic corrections was first outlined by G. Scatchard. His equations were derived from a two-step process, a mixing of two components at constant volume followed by an expansion or contraction of the mixture (as the case may be) to recover the pressure, i.e. the initial pressure. He obtained the constant volume functions $\Delta A^M_V$, $\Delta S^M_V$ and $\Delta E^M_V$ by expanding the constant pressure functions $\Delta A^M_P$, $\Delta S^M_P$ and $\Delta E^M_P$ in the form of a Taylor series expansion around $V^M = V^0 + \Delta V^E$ as

\[
\Delta A^M_P = \Delta A^M_V - \left(\frac{\partial A}{\partial V}\right)_V V = V^0 + V^E - \frac{1}{2} \left(\frac{\partial^2 A}{\partial V^2}\right)_V (V^E)^2
\]  

\[\Delta S^M_P = \Delta S^M_P \left(\frac{\partial P}{\partial T}\right)_V V^E\]  

\[\Delta E^M_P = \Delta E^M_V + \left\{ T \left(\frac{\partial P}{\partial T}\right)_V - P \right\} V^E\]

$\Delta F^M_P$ and $\Delta H^M_P$ are obtained by adding $\Delta PV$ to equation (74) and equation (76) respectively. As the initial and final pressures are the same, $\Delta PV$ is merely $P\Delta V^M$, or

\[\Delta F^M_P = \Delta A^M_P + P\Delta V^M = \Delta A^M_V - \frac{1}{2\beta V} (\Delta V^M)^2\]
\[ \Delta H^M_P = \Delta E^M_P - PV^E = \Delta E^M_V - T \left( \frac{\partial P}{\partial T} \right)_V V^E \]

\[ = \Delta E^M_V - T \left( \frac{\alpha}{\beta} \right) V^E \] (78)

The \( \alpha \) and \( \beta \) in equation (78) are the coefficients of thermal expansion and isothermal compressibility of the mixture, respectively.

Rearranging the equation (78), one obtains

\[ \Delta E^M_V = \Delta H^M_P - T \left( \frac{\alpha}{\beta} \right) V^E \] (79)

So the knowledge of \( \alpha \) and \( \beta \) allows one to compare experimentally determined \( \Delta H^M_P \) with calculated \( \Delta E^M_V \).

From equation (77) we also see that the difference between \( \Delta E^M_P \) and \( \Delta A^M_V \) is dependent on \( (V^E)^2 \) and not on \( V^E \) or as long as \( V^E \) is small, the difference between \( \Delta E^M_P \) and \( \Delta A^M_V \) is small. It has been observed that Regular Solution theory predicts free energy of mixing within a few percent of the experimental values whereas for the heat and the entropy of mixing the agreement between the experimental and the predicted values is not very good.[1,19,43]

**Magnitude of Volume Change at Constant Pressure**

V^E, the excess volume of mixing, is given by an exact thermodynamic relation as
\[ V^E = \left( \frac{\partial F^E}{\partial P} \right)_T \]

and writing
\[ F^E = A^E_V(T,V) + \frac{1}{2(\frac{V^E}{m})^2} (V^E)^2 \]

and if \( V^E \) is small \( (V^E)^2 \) can be neglected to make \( F^E = A^E_V(T,V) \), or

\[ V^E = \left( \frac{\partial F^E}{\partial P} \right)_T = \left( \frac{\partial A^E}{\partial P} \right)_T = \left( \frac{\partial E^E}{\partial P} \right)_T - T \left( \frac{\partial S^E}{\partial P} \right)_T \]

(80)

For regular solutions \( S^E_V = 0 \), and it is independent of pressure. So equation (80) becomes

\[ V^E = \left( \frac{\partial E^E}{\partial P} \right)_u T = \left( \frac{\partial E^E}{\partial V} \right)_u \left( \frac{\partial V}{\partial P} \right)_u T = (\beta V)_u \left( \frac{\partial E^E}{\partial V} \right)_u \]

(81)

\( u \) in equation (81) corresponds to the pressure, volume, compressibility, etc. of the unmixed initial state of the system. Now if \( E^E_V = E_m - E_u \) where \( E_m \) is the energy of the mixture and \( \left( \frac{\partial E}{\partial V} \right)_u \) is replaced by \( n(\frac{V}{V}) \) where \( n \) is the ratio of internal pressure to cohesive energy density, equation (81) becomes

\[ V^E = - (\beta V)_u \left\{ \left( \frac{\partial E_m}{\partial V} \right)_u T - \left( \frac{\partial E_u}{\partial V} \right)_u T \right\} = (\beta V)_u \left[ \frac{n_m E_m - n_u E_u}{V_u} \right] \]

(82)

Assuming \( n_m \) and \( n_u \) are the same for the mixtures and the unmixed components and then invoking the condition that \( S^E_V = 0 \) and \( \Delta E_V = F^E \), \( V^E \) can be written as
\[ v^E = n \frac{(\beta V)(E^* - E_u)}{V_u} = n \beta \Delta F^E = n \beta F^E \]  
(83a)

**Partial molal volume in dilute solutions**

Of special interest are the partial molal volumes of solutes in the highly dilute solutions. Differentiation of equation (83a) in the limit as \( x_2 \to 0 \) yields the equation

\[ v^E_2 = v^E - v^o_2 = n_1 \beta_1 F^E_2 = \frac{a_1 T}{\delta_1^2} F^E_2 \]  
(83b)

Recalling equation (46)

\[ v^E_2 = n_1 \beta_1 RT \ln \gamma_2 = n_1 \beta_1 v^o_{\gamma_2} 2(\delta_1 - \delta_2)^2 \]  
(83c)

In Table 3 a comparison between experimental and predicted values for the partial molal volumes are given.

**Table 3**

<table>
<thead>
<tr>
<th>Solute</th>
<th>Solvent</th>
<th>( V^o_2 )</th>
<th>( V_2(\text{obs}) )</th>
<th>( V^E_2(\text{obs}) )</th>
<th>( V^E_2(\text{calc'd}) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_2</td>
<td>n-C_7F_{16}</td>
<td>59</td>
<td>100 cc</td>
<td>41</td>
<td>60 [49]</td>
</tr>
<tr>
<td>Br_2</td>
<td>&quot;</td>
<td>51</td>
<td>73 cc</td>
<td>21</td>
<td>24.7 [50]</td>
</tr>
</tbody>
</table>

\( V_2(\text{calc'd}) \) in Table 3 was calculated from equation (82c). It should be mentioned here that though for \( Br_2 \) the agreement between the calculated value and experimental value is not bad, the equations (83a, b, c) are very
approximate equations. But these equations can explain the results qualitatively.

**Entropy of mixing molecules of unequal size [84-91]**

So far we have assumed that a solution is ideal if the heat of mixing is zero (see equation (47)). But it has been known since 1933 that the entropy of mixing unequal molecules may not be ideal even if the heat of solution and the volume change on mixing are zero.

J. H. Hildebrand[51] derived the expression for the entropy of mixing of unequal molecules from the "free volume theory" point of view as

\[
\Delta S^M = -R \left\{ x_1 \ln \frac{x_1 V^f_1}{x_1 V^f_1 + x_2 V^f_2} + x_2 \ln \frac{x_2 V^f_2}{x_1 V^f_1 + x_2 V^f_2} \right\} \tag{84}
\]

for one mole of solution formed at constant pressure. By differentiating equation (84),

\[
\Delta \overline{S}_1 = -R \left\{ \ln \frac{x_1 V^f_1}{x_1 V^f_1 + x_2 V^f_2} + \frac{x_2 (V^f_2 - V^f_1)}{x_1 V^f_1 + x_2 V^f_2} \right\} \tag{85}
\]

Then he assumed that \( \frac{V_1}{V_2} = \frac{V^f_1}{V^f_2} \). So equation (85) becomes

\[
\Delta \overline{S}_1 = -R \left[ \ln \phi_1 + \phi_2 \left( 1 - \frac{V_1}{V_2} \right) \right] \tag{86a}
\]

Similarly,

\[
\Delta \overline{S}_2 = -R \left[ \ln \phi_2 + \phi_1 \left( 1 - \frac{V_2}{V_1} \right) \right] \tag{86b}
\]
When \( V_1 \approx V_2 \), the equation (86b) becomes

\[
\Delta S_2 = -R \ln x_2 \tag{87}
\]

Adding equation (87) to the heat of mixing term as derived previously, the equation (47) becomes

\[
\Delta F_2 = RT \ln \alpha_2 = RT [\ln \phi_2 + \phi_1 (1 - \frac{V_2}{V_1}) + \frac{V_j^o}{V_1} \phi_1^2 (\delta_1 - \delta_2)^2] \tag{88}
\]

If \( x_2 \ll x_1 \) such that \( x_1 \to 1 \), then

\[
\phi_1 = \frac{x_1 V_1}{x_1 V_1 + x_2 V_2} \approx 1 \tag{89}
\]

\[
\phi_2 = \frac{x_2 V_2}{x_1 V_1 + x_2 V_2} = \frac{x_2 V_2}{V_1} \tag{90a}
\]

\[
\ln \phi_2 = \ln x_2 + \ln \frac{V_2}{V_1} \tag{90b}
\]

So equation (88) can be written as

\[
\ln \alpha_2^i = \ln x_2 + \ln \frac{V_2}{V_1} + (1 - \frac{V_2}{V_1}) + \frac{V_j^o}{RT} (\delta_1 - \delta_2)^2 \tag{91}
\]

Entropy of solution of a solid

In deriving the Regular Solution theory, it has been assumed that the mixing is "random." It is possible to determine the partial molal entropy change of solid solute for a very dilute solution from the temperature dependence of the saturation solubility and can
be compared with the predicted values. It is related
to the temperature coefficient of the solubility by
means of the thermodynamic equation

\[
\frac{S_2 - S^S_2}{S_2} = -\left\{\frac{\partial (F_2 - F^S_2)}{\partial T}\right\}_{P,T}
\]

\[
= \left\{\frac{\partial (F_2 - F^S_2)}{\partial \ln x_2}\right\}_{P,T} \left\{\frac{\partial \ln x_2}{\partial T}\right\}_{F_2-F^S_2,P}
\]

(92)

The second factor on the right hand side of the equation
(92) is just the change of solubility with temperature
at constant pressure if \( F_2 - F^S_2 = 0 \), in the first fac-
tor, \( F_2 - F^S_2 = RT \ln \left( \frac{f_2}{f^S_2} \right) \), where \( f_2 \) is the fugacity
of the solute in the solution and \( f^S_2 \) is that in the
solid state. If the solid state is the pure solute
(i.e. if no solid solution is formed), \( f^S_2 \) is indepen-
dent of \( x_2 \) and so it can be written as

\[
\left\{\frac{\partial (F_2 - F^S_2)}{\partial \ln x_2}\right\}_{P,T} = RT \left\{\frac{\partial \ln f_2}{\partial \ln x_2}\right\}_{P,T} = RT \left\{\frac{\partial \ln a_2}{\partial \ln x_2}\right\}_{P,T}
\]

(93)

or

\[
\frac{S_2 - S^S_2}{S_2} = R \left\{\frac{\partial \ln x_2}{\partial \ln T}\right\}_{\text{Sat.p}} \left\{\frac{\partial \ln a_2}{\partial \ln x_2}\right\}_{P,T}
\]

(94)

\[
\left\{\frac{\partial \ln a_2}{\partial \ln x_2}\right\}_{P,T}
\]

is the Henry's Law correction factor; it
is close to unity for a dilute solution of solids.

Since at saturation solubility, \( F_2 = F^S_2 \) \( \) the heat of
solution may be written as

\[
\bar{H}_2 - \bar{H}^S_2 = T(S_2 - S^S_2) = RT \left\{\frac{\partial \ln x_2}{\partial \ln T}\right\}_{\text{Sat.p}}
\]

(95a)

The alternate form of equation (95a),

\[
\frac{\partial \ln x_2}{\partial T} = \frac{H_2 - H_2^S}{RT^2}
\]

is the "van't Hoff equation" and is extensively used to calculate the heat of solution of a dilute solute.

Equation (94) gives the entropy of solution at constant pressure but Regular Solution theory is mainly concerned with constant volume quantities. So equation (95) has to be converted to the constant volume entropy change. From equation (75),

\[
(\bar{S}_2 - S_2^S)_V = (\bar{S}_2 - S_2^S)_P - \left( \frac{\partial P}{\partial T} \right)_V V^E
\]

at \( x_2 \to 0 \) where \( \alpha \) and \( \beta \) of the mixture approach the values of the pure solvent.

**Discussion**

From the Regular Solution theory, it is expected that when \( \Delta S_2^V \), i.e. \( (\bar{S}_2 - S_2^S)_V \) is plotted against \(-R \ln x_2\), a straight line should be obtained whose slope is expected to be equal to unity and the intercept to be equal to the entropy of fusion of the solid solute at that temperature.

E. B. Smith and J. Walkley\[^{52}\] plotted \((\bar{S}_2 - S_2^S)_P\) and \((\bar{S}_2 - S_2^S)_V\) against \(-R \ln x_2\) for SnI\(_4\) and they obtained a straight line which had a unit slope and a
correct intercept. J. H. Hildebrand plotted \((S_2 - S_2^S)_V\) versus \(-R \ln x_2\) for iodine. He obtained a straight line but the slope was 1.10 and the intercept was different from the expected value. It should be mentioned here that there are uncertainties involved regarding the determination of \(V^o_2\) of a solid with high melting point. \(V^o_2\) of a solid at any temperature is the volume of the hypothetical liquid supercooled below melting point. Usually it involves a long extrapolation.

In the case of non-violet solution of iodine, the entropy of solution should not be expected to be ideal as it has been suggested that the change of colour of the iodine solution from the violet to the non-violet is due to the formation of "charge-transfer" complex.

As expected, the agreement between the calculated \((S_2 - S_2^S)_V\) from \(-R \ln x_2\) and experimental \((S_2 - S_2^S)_V\) becomes worse when the difference between the molar volume becomes larger as in the case of tetraphenyl tin in ordinary nonpolar solvents\([53,54]\) or bromine in \(n-C_7F_{16}\)\([50]\).

Regarding \(V_2\), as predicted by equation (83), it has been mentioned before that this is only an approximate equation and is only qualitative in nature. It predicts the increase of \(V_2\) of solute with the increase of \((\delta_1 - \delta_2)^2\) value which has been verified by E. B. Smith and J. Walkley\([52]\) and M. Vitoria and J. Walkley \([53,54]\) by plotting \(V_2\) against \(\delta_1\) of the solvent.
The application of the simple Regular Solution theory to mixtures of unequal molecules raises a few yet-unsolved problems, particularly when the entropy of mixing unequal molecules is almost invariably non-ideal, even if the molecules are spherical and have their bonds highly covalent. Equation (86b) which is known as the "Flory-Huggins term" is often used to calculate \((\bar{S}_2 - S^s_2)\)_V but there are doubts about its reliability.\[53,54\]

This problem will be discussed in more detail in later chapters.
Chapter - II

Solubility Studies in Mixed Solvents
Hildebrand and Scott\[56\] calculated the heat of mixing for three component systems following the similar procedure used by Scatchard\[37\] for binary nonelectrolyte systems. They wrote the cohesive energy per mole of a ternary mixture as

\[-E_m = (x_1 V_1 + x_2 V_2 + x_3 V_3) (c_{11} \phi_1^2 + c_{22} \phi_2^2 + c_{33} \phi_3^2 + 2c_{12} \phi_1 \phi_2 + 2c_{13} \phi_1 \phi_3 + 2c_{23} \phi_2 \phi_3)\]  (1)

where \(x\)'s, \(\phi\)'s, and \(V\)'s have the meaning of mole fraction, volume fractions and volumes, and \(C\)'s are the cohesive energy densities.

In equation (1), \(C\)'s are the constants of binary systems and there are not constants depending on all three components simultaneously. This is the direct consequence of the assumption that the energy of three sets of molecules can be represented by the sum of the three pairs taken independently.

Recalling that \(-E_{11} = C_{11} V_1\) etc., the heat of mixing, \(\Delta H^M\), may be written as

\[\Delta H^M = E_m - x_1 E_1 - x_2 E_2 - x_3 E_3\]

\[= (x_1 V_1 + x_2 V_2 + x_3 V_3) x (A_{12} \phi_1 \phi_2 + A_{13} \phi_1 \phi_3 + A_{23} \phi_2 \phi_3)\]  (2)
where

\[ A_{12} = C_{11} + C_{22} - 2C_{12} \]  \hspace{1cm} (3a)

\[ A_{23} = C_{22} + C_{33} - 2C_{23} \]  \hspace{1cm} (3b)

\[ A_{31} = C_{33} + C_{11} - 2C_{31} \]  \hspace{1cm} (3c)

The \( A \)'s are the interaction constants of three separate binary systems; so the ternary systems may be completely described if all three two-component systems are known.

Differentiating equation (2), one obtains partial molal heats of mixing:

\[ \Delta H_1 = v_1 \left[ A_{12} \phi_2^2 + A_{13} \phi_3^2 + (A_{12} - A_{23}) \right] \]  \hspace{1cm} (4a)

\[ \Delta H_2 = v_2 \left[ A_{12} \phi_1^2 + A_{23} \phi_3^2 + (A_{12} - A_{13}) \right] \]  \hspace{1cm} (4b)

\[ \Delta H_3 = v_3 \left[ A_{13} \phi_1^2 + A_{23} \phi_2^2 + (A_{13} - A_{12}) \right] \]  \hspace{1cm} (4c)

If the assumption that the interaction energy between the unlike pair is the geometric mean of that between the like pairs, then

\[ A_{i,j} = (\delta_i - \delta_j)^2 \]  \hspace{1cm} (5)

and the equations (4a, b, c) reduce to

\[ \Delta H_1 = v_1 \left[ (\delta_1 - \delta_2)\phi_2^2 + (\delta_1 - \delta_3)\phi_3^2 \right]^2 \]  \hspace{1cm} (6a)

\[ \Delta H_2 = v_2 \left[ (\delta_2 - \delta_1)\phi_1^2 + (\delta_2 - \delta_3)\phi_3^2 \right]^2 \]  \hspace{1cm} (6b)

\[ \Delta H_3 = v_3 \left[ (\delta_3 - \delta_1)\phi_1^2 + (\delta_3 - \delta_1)\phi_3^2 \right]^2 \]  \hspace{1cm} (6c)
The equations \((6a,b,c)\) can be rearranged in different ways:

(1) Each of the equations may be rearranged in such a way as to show that the heat of mixing of liquid 2 with liquids 1 and 3 is equivalent to the heat of mixing of liquid 2 with a hypothetical liquid whose \(\delta\) is the volume fraction average of 1 and 3.

\[
\Delta H_2 = V_2(\delta_2 - \delta_m)^2 \frac{\delta_m^2}{\delta_m}
\]

(7)

where

\[
\delta_m = \frac{\phi_1 \delta_1 + \phi_3 \delta_3}{\phi_1 + \phi_3}
\]

(8)

and

\[
\phi_m = \phi_1 + \phi_3
\]

(9)

The equations (7), (8), and (9) can be rearranged further in terms of the volume fractions \(\phi_1^0\) of component 1 and 3 in pure mixed solvents when component 2 has not yet been added, such that

\[
\phi_1^0 + \phi_3^0 = 1
\]

(10)

whereas analysis of the equations (7), (8), and (9) yields

\[
\phi_m + \phi_2 = 1
\]

or

\[
\phi_1^s + \phi_3^s + \phi_2^s = 1
\]

(11)

The transformation of the equations (7), (8), and (9) in terms of equation (10) can be done in a much
simpler manner in the following way:

From equation (7),

$$\Delta H_2 = V_2 (\delta_m \delta_2 - \delta_m \delta_m)^2$$

or

$$\delta_m \delta_m = \frac{\delta_s \delta_1}{\delta_m} + \frac{\delta_s \delta_3}{\delta_m}$$

$$= \delta_s \delta_1 + \delta_s \delta_3$$  \hspace{1cm} (12)

Now there exists a relationship between the $\delta_1^0$'s in pure mixed solvents and $\delta_1$'s in three component systems such that

$$\frac{\delta_1}{\delta_1^0} = \frac{\delta_3}{\delta_3^0} = 1 - \delta_2$$ \hspace{1cm} (13)

or

$$\delta_1 = \delta_1^0 (1 - \delta_2)$$ \hspace{1cm} (14)

$$\delta_3 = \delta_3^0 (1 - \delta_3)$$ \hspace{1cm} (15)

Substituting $\delta_1$ and $\delta_3$ from the equations (14) and (15) in equation (12) one obtains

$$\delta_m \delta_m = \delta_1^0 (1 - \delta_2) \delta_1 + \delta_3^0 (1 - \delta_2) \delta_3$$

$$= \delta_1^0 \delta_1 - \delta_2 \delta_1 + \delta_3^0 \delta_3 - \delta_2 \delta_3$$

$$= \delta_1^0 \delta_1 + \delta_3^0 \delta_3 - \delta_1^0 \delta_1 - \delta_2 \delta_3$$ \hspace{1cm} (16)

Again if one defines $\delta_m$ in terms of $\delta_1^0$ and $\delta_3^0$ then

$$\delta_m \delta_m (1) = \delta_m (\delta_1^0 \delta_1 + \delta_3^0 \delta_3)$$
\[ (1 - \phi_2)(\delta_1^0 + \delta_3^0) = \delta_1^0 + \delta_3^0 - \delta_1^0 \delta_1 - \delta_3^0 \delta_3 \]

As equations (16) and (17) are identical and \( \delta_m \)'s in both the equations are the same, \( \delta_m(1) = \delta_m \) or \( \delta_m \) for a mixed solvent can be defined in terms of the volume fractions of component 1 and 3 in pure mixed solvent such that
\[ \delta_m = \delta_1^0 + \delta_3^0 \]

such that
\[ \delta_1^0 + \delta_3^0 = 1 \]

(ii) An alternate transformation of the equations (6a,b,c) leads to the partial molal heat of mixing as a function of the \( \delta \) of the pure substance and the average \( \delta \) of the ternary mixture:
\[ \Delta H_2 = V_2 \left[ \delta_2(1 - \phi_2) - \phi_1^0 \delta_1 - \phi_3^0 \delta_3 \right]^2 \\
= V_2 \left[ \delta_2 - \phi_2 \delta_2 - \phi_1^0 \delta_1 - \phi_3^0 \delta_3 \right]^2 \\
= V_2 \left[ \delta_2 - \overline{\delta} \right]^2 \]

where
\[ \overline{\delta} = \phi_1^0 \delta_1 + \phi_2 \delta_2 + \phi_3^0 \delta_3 \]

Activity Coefficient in Regular Ternary Systems

For regular solutions, the entropy is ideal and the activity coefficients are directly related to the
partial molal heats of mixing. Hence for the equations (7) and (19), one may write,

\[
\ln \gamma_2 = \frac{\Delta H_2}{RT} = \frac{V_2}{RT} \phi_m^2 (\delta_2 - \delta_m)^2
\]

\[
= \frac{V_2}{RT} (\delta_2 - \bar{\delta})^2
\]

or the saturation solubility of the solute 2 can be formulated as

\[
\ln a_2^i = \ln x_2^m + \frac{V_2}{RT} \phi_m^2 (\delta_2 - \delta_m)^2
\]

where \( a_2^i \) is the ideal solubility of component 2.

In this chapter we investigate the relationship

\[
\delta_m = \phi_1^0 \delta_1 + \phi_2^0 \delta_2
\]

and other excess thermodynamic properties of component 2 in mixed solvents. Our investigation suggests that such a relationship of \( \delta_m \) can only be assumed if we are allowed to define an "effective volume fraction" term. This re-definition arises due to the fact that the solvent molecule environment around a solute molecule is not adequately described by the simple volume fractions, so that one has to take account of the possibility that the solute may be preferentially solvated by a particular solvent partner. In order to emphasize this preferential solvation, we first chose benzene as a mixed solvent partner in the benzene-iodine-cyclohexane system. Later we determined
the solubility of stannic iodide in benzene - c-C₆H₁₂ mixtures. We selected I₂ and SnI₄ as solutes and C₆H₆ - c-C₆H₁₂ as the solvents because of the fact that all necessary thermodynamic data for these systems are available and the binary systems of each solute in each solvent are well studied.[69,70,71-73]

Experimental

Temperature Control

The temperature of the bath in which the saturated solutions were prepared was controlled by means of a contact thermoregulator and an electronic relay box - both supplied by Fisher Scientific Co. Ltd.

A Beckmann thermometer was inserted in the bath to determine any temperature fluctuations.

The thermoregulator was connected to an electronic relay box as was a heating coil. In addition to the heating coil and thermoregulator, one pump for circulating water and a cooling coil were immersed in the bath. The cooling coil was connected to the cold water supply in the laboratory, which is sufficiently cold to keep temperature of the bath at 20°C (the lowest temperature used in this experiment). The temperature of the bath was held within ± 0.01°C of the desired value.

For the determination of the partial molal volume of the solute a toluene regulator instead of thermoregulator was used. No fluctuation of the liquid level
in the stem of the dilatometer was observed using a cathetometer.

**Determination of the solubility:**

The method used in determining the saturation solubility was a simple and quick one. The procedure can be described in the following way:

The solvent and excess solute were placed in 50 ml flask along with a small teflon-coated magnet bar. The flask was placed at the side wall of the thermostated bath. A Fisher "Thermix" magnetic stirrer was placed outside the bath in contact with the side wall. With such an arrangement the solution can be stirred as long as needed. Usually the solution was stirred for 24 hours and the solution allowed to settle for further 12 hours. Then the flask was opened and the required amount of solution was taken out by means of a volumetric pipet. Two test solutions were pipetted out. Then the flask was closed again and the whole procedure was repeated. This procedure was repeated for each solvent-solute system at one temperature, until three consecutive self-consistent pairs of values were found.

The amount of solute in the solution was measured spectroscopically at an appropriate absorption peak of the solute ($I_2 : 520 \text{ m}\mu; \text{SnI}_4 : 320 \text{ m}\mu; \text{and Sn(C}_6\text{F}_5)_4 : 267 \text{ m}\mu$). A Beer's law calibration plot was constructed
for each solute, using known quantities solute in different solvent mixtures.

The saturated solution of solute pipetted out (1-2 ml) was too concentrated for direct spectroscopic studies. Each sample removed from the dissolution cell was diluted (usually 1 : 250 for I₂ and 1 : 500 for SnI₄ and Sn(C₆F₅)₄) with c-C₆H₁₂ and then the optical density of the diluted solution was measured at the absorption peak of the solute using a Cary - 14 spectrometer.

The accuracy of this technique was verified by comparing the solubility data obtained by this method with available solubility data obtained by other means. A comparison of the solubility of I₂ determined spectroscopically with the solubility of I₂ determined by means of chemical analysis (titration) is given below.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Temperature</th>
<th>x₂ (spectroscopic method)</th>
<th>x₂ (titration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₆H₆</td>
<td>25°C</td>
<td>0.0481</td>
<td>0.0485[75]</td>
</tr>
<tr>
<td>n-heptane</td>
<td>25°C</td>
<td>0.00676</td>
<td>0.00679[75]</td>
</tr>
</tbody>
</table>

The general consistency of the final results also confirmed the accuracy of this technique (the percentage average error in the saturation solubility is ± 1%).
The spectroscopic analysis is simpler in technique and quicker in determining the amount of solute in solution than any other method of chemical analysis.

The solvents were spectroscopic grade (supplied by Fisher Scientific Co. Ltd.) and were used without further purification.

**A typical experimental result:** - Saturation solubility of I$_2$ in a benzene - cyclohexane mixed solvent at 25°C.

Volume fraction of benzene in solute-free mixed solvent = 0.7604

<table>
<thead>
<tr>
<th>Number of observation</th>
<th>Saturation solubility of I$_2$ in gms/liter of solvent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>110.2</td>
</tr>
<tr>
<td>2</td>
<td>109.5</td>
</tr>
<tr>
<td>3</td>
<td>107.5</td>
</tr>
<tr>
<td>4</td>
<td>107.5</td>
</tr>
<tr>
<td>5</td>
<td>109.5</td>
</tr>
<tr>
<td>6</td>
<td>109.0</td>
</tr>
</tbody>
</table>

Average = 108.9  
Average error = $\pm$ 0.9%  
or, the saturation solubility of I$_2$ = 108.9 $\pm$ 0.9 gms/liter of solvent.

**Effect of average error on $\delta_m$**

(a) **Effect of positive error on $\delta_m$**

Saturation solubility of I$_2$ = 108.0 $+ 0.9$ gms/liter of solvent
or, \( x_2 = 0.0392 \)

Writing the saturation solubility as

\[
\ln a_i^2 = \ln x_2^m + \frac{(V_2/RT)}{x_2^m} = (\delta_1 - \delta_2)^2
\]

we obtain,

\[
\delta_m = \delta_2 + [(V_2/RT)(\ln a_i^2 - \ln x_2^m)]^{1/2}
\]

(where \( \delta_2 = 14.1, \ V_2 = 59 \ \text{cc} \) and \( \ln a_i^2 = -1.355 \))\[^{110}\]

or, \( \delta_m = 9.75 \)

(b) Effect of negative deviation on \( \delta_m \)

Saturation solubility of \( I_2 \) in gms/liter of solvent

\[
= 108.9 - 0.9
\]

or, \( x_2 = 0.0385 \)

or, \( \delta_m = 9.73 \)

\( \delta_m \) determined from the average saturation solubility

= 9.74. So, we see that a 1\% average error affects \( \delta_m \) for the benzene – \( I_2 \) – cyclohexane system by one in second decimal place, so that the effect is one in thousand.

The effect of \( \pm 1\% \) error on \( \delta_m \) for the benzene – SnI\(_4\) – cyclohexane system will be much smaller because for SnI\(_4\), \( (V_2/RT)^{1/2} = 1.98 \) in comparison to \( (V_2/RT)^{1/2} = 3.168 \) for \( I_2 \).

**Determination of partial molal volume**

The common method of determining partial molal volume, by determining the density of solution of known composition, requires that the density be measured with an accuracy difficult to obtain with volatile compounds; moreover the method is inaccurate if the solution is
dilute[95]. We, therefore, adopted a simple dilatometric method, which has been applied successfully previously for measuring the partial molal volume of iodine, [95] stannic iodide[52] and tetraphenyl tin[54].

The two dilatometers which were built by Dr. M. Vitoria[54] consisted of cylindrical glass bulbs -- one being of 150 ml capacity, the other of 10 ml capacity to conserve solvent. The stem of the dilatometer is calibrated capillary of uniform internal diameter of 0.2 cm[54].

The dilatometer bulb was placed in the thermostated water bath whose temperature was kept constant at 25 ± 0.01°C. A weighed amount of solute was sealed into a long thin-walled capillary, narrow enough to slip down through the stem into the bulb. This was broken under the solvent by a glass ball sealed in the dilatometer and the solute was dissolved by carefully shaking the glass ball. The rise of the liquid level in the capillary was determined by using a cathetometer, after equilibrium of the solution was reached. A correction was made for the amount of glass added and the partial molal volume of the solute was calculated from the expression

\[ \bar{V}_2 = \frac{\pi r^2 \Delta \ell M_2}{\bar{W}_2} \]

where \( r \) is the radius of the capillary, \( \Delta \ell \) is the corrected rise in the liquid level, \( \bar{W}_2 \) is the weight of the solute and \( M_2 \) is the molecular weight of the solute. A
typical experimental result along with error analysis is given below[71].

A typical experimental result:

Composition of mixed solvent:

\[ \phi_{\text{Benzene}} = \phi_1 = 0.6927 \]
\[ \phi_{c-C_6H_{12}} = \phi_3 = 0.3073 \]

Wt. of glass = 0.0324 gm

Wt. of glass + I\(_2\) = 0.0456 ± 0.0001 gms

so, wt. of I\(_2\) = 0.0141 ± 0.0001 gms.

Total rise of liquid level = 0.565 ± 0.001 cm.

Rise due to glass = 0.453 ± 0.002 cm.

(Density of glass was taken as 2.26 ± 0.01 g/cc[72].)

Rise due to I\(_2\) in solution = 0.112 ± 0.003 cm.

Partial molal volume of I\(_2\) = \( V_2 \)

\[ = 63.3 ± 1.7 \text{ cc.} \]

Results

Saturation solubility, entropy of solution \((\delta S_P^R)\), partial molal volumes and other relevant data for I\(_2\) in C\(_6\)H\(_6\) - c-C\(_6\)H\(_{12}\) are given in Table II.1. In Figure II.1 we give \(-R \ln x_2\) versus \(1\) (volume fractions of benzene) plots at 20\(^\circ\), 25\(^\circ\) and 30\(^\circ\)C. In Figure II.2 we plot the excess quantities

\[ R(\Delta \ln x_2^m) = R[ \ln x_2^m - (\phi_1 \ln x_2^1 + \phi_3 \ln x_2^3)] \]

and

\[ \bar{V}_2^{m(\text{excess})} = \bar{V}_2^m - (\phi_1 \bar{V}_2^1 + \phi_3 \bar{V}_2^3) \]
Assymetry of both the excess curves was noted.

In Table II.5 we give the saturation solubility and other relevant data for SnI$_4$ in benzene - c-C$_6$H$_{12}$.

In Figure II.9 we plot $-R \ln x^m_2$ (for SnI$_4$) against $\phi^0_1$ (volume fraction of benzene) at 25°C.

The saturation solubility of naphthalene in CH$_2$I$_2$ - c-C$_6$H$_{12}$ mixed solvent determined spectroscopically is given in Table II.10. The saturation solubility of Sn(C$_6$F$_5$)$_4$ determined spectroscopically is given in Table III.4 and the partial molal volumes of Sn(C$_6$F$_5$)$_4$ in different organic solvents are given in Table III.5.
Discussion

In terms of Regular Solution theory, the saturation solubility of iodine in the mixed solvent and iodine in pure \( c-C_6H_{12} \) solvent are given by

\[
\ln x_2^m = \frac{V_2}{RT} \phi_m^2 (\delta_2 - \delta_m)^2 + \ln x_2^m
\]  

(22)

\[
\ln x_2^3 = \frac{V_2}{RT} \phi_3^2 (\delta_2 - \delta_3)^2 + \ln x_2^3
\]  

(23)

where subscript \( m \) refers to the particular property or quantity of the mixed solvent for \( I_2 \) in \( C_6H_6 - c-C_6H_{12} \) system, subscript 1 always refers to benzene, 2 to iodine and 3 to \( c-C_6H_{12} \).

\[
\delta_m = \phi_1^0 \delta_1 + \phi_3^0 \delta_3
\]

\( x_2^m \) is the saturation mole fraction solubility of 2 in the mixed solvent; similarly \( x_2^3 \) is the saturation mole fraction solubility of 3 in pure solvent 3 (here \( c-C_6H_{12} \)). For a dilute solution as in the case of \( I_2 \) in \( c-C_6H_{12} \) or \( I_2 \) in \( C_6H_6 - c-C_6H_{12} \) mixed solvent, the iodine mole fraction solubilities are of the order of \( 10^{-2} \), and \( \phi_2 \) and \( \phi_m \) can be assumed to be equal to 1. So equations (22) and (23) can be rewritten as

\[
\left\{ \frac{RT}{V_2}(\ln x_2^1 - \ln x_2^m) \right\}^5 = \delta_2 - \delta_m
\]

\[
= \delta_2 - (\phi_1^0 \delta_1 + \phi_3^0 \delta_3)
\]

\[
= (\delta_2 - \delta_3) - \phi_1^0 (\delta_1 - \delta_3)
\]  

(24)
Similarly for iodine in the pure solvent 3,

\[
\left\{ \frac{RT}{V^2} \left( \ln a^1_2 - \ln x^3_2 \right)^{1/3} \right\} = \delta_2 - \delta_3
\]

Dividing equation (24) by equation (25) and then rearranging, one obtains

\[
\left( \ln a^1_2 - \ln x^m_2 \right)^{1/3} = -\left( \ln a^1_2 - \ln x^3_2 \right)^{1/3} \phi_1 \left\{ \frac{\delta_1 - \delta_3}{\delta_2 - \delta_3} \right\}
\]

Equation (26) implies that a linear relationship exists between the \( \left( \ln a^1_2 - \ln x^m_2 \right)^{1/3} \) and \( \phi_1 \) for which the intercept value at \( \phi_1 = 0 \) can be compared to an experimental quantity and for which the ratio of the slope:intercept may be compared with \( \delta_1 \)'s.

The relationship between \( \left( \ln a^1_2 - \ln x^m_2 \right)^{1/3} \) and \( \phi_1 \) for iodine in \( \text{C}_6\text{H}_6 - \text{c-C}_6\text{H}_{12} \) is shown in Figure 11.3 and \( \left( \ln a^1_2 - \ln x^m_2 \right)^{1/3} \) and \( \phi_1 \) i.e. volume fraction of benzene for SnI\(_4\) in \( \text{C}_6\text{H}_6 - \text{c-C}_6\text{H}_{12} \) is shown in Figure 11.10. Assuming that an expected linear proportionality exists, the best intercept value for iodine in \( \text{C}_6\text{H}_6 - \text{c-C}_6\text{H}_{12} \) mixed solvent obtained by drawing the best line is 1.755 which compares badly with the experimental value of 1.835 for \( \left( \ln a^1_2 - \ln x^3_2 \right)^{1/3} \). An analysis of the plot in Figure 11.3 suggests that the relationship is not in fact linear. On the contrary, if a smooth curve is drawn through the experimental
points, then the intercept of the plot compares favourably with the expected value. The above analysis rests on the validity of the assumption that $\delta_m = \frac{\phi_1}{\phi_3} \delta_1 + \frac{\phi_3}{\phi_3} \delta_3$ but not on any assumption of the actual $\delta$ values.

In Table II.2 $\delta_m$ for C$_6$H$_6$ - c-C$_6$H$_{12}$ mixed solvent in C$_6$H$_6$ - I$_2$ - c-C$_6$H$_{12}$ system calculated from the solubility relationship, equation (22), and those calculated according to the relationship $\delta_m = \frac{\phi_1}{\phi_3} \delta_1 + \frac{\phi_3}{\phi_3} \delta_3$ for $\delta_3 = 8.2$ and $\delta_1$ (for benzene) of both 9.2 and 9.99, are compared. The former $\delta_1$ value being the thermodynamic $(\frac{\Delta E}{V})^{1/3}$ value, the latter being derived from the experimental saturation solubility of iodine in pure benzene. The first set of the calculated $\delta_m$ values are quite incompatible with the $\delta_m$ (experimental) and the latter are only in moderate agreement.

The disagreement between the calculated $\delta_m$'s and the experimental $\delta_m$ values suggests either that a pairwise additivity approximation does not hold, or that the nearest solute neighbours of solute in the mixed solvent are probably not reflected by the volume fractions composition of the bulk solvent mixture.

In analysing the first assumption, we see that in the absence of dipole interactions and molar volume difference of the solute and solvents, this assumption is similar to the one that is usually made in formulating the additivity rule for dispersion or van der Waals
forces in calculating intermolecular forces. Although it has been shown by Axilord and Teller\(^{[59,60]}\) (and later by Jansen and co-workers\(^{[61-63]}\)) that the additivity rule for van der Waals or dispersion forces are only approximate but the magnitude of the contribution of the nonadditivity to the total intermolecular forces and their importance are not very clear at present. Anyway it seems that at room temperature, the contribution due to the nonadditivity is negligible provided no dipole and steric interactions are present. A similar conclusion was drawn by Hildebrand et al.\(^{[19]}\)

The second assumption originates from the earlier assumption that the partial heat of mixing of liquid 2 with liquids 1 and 3 is equivalent to the heat of mixing of liquid 2 with a hypothetical new liquid whose \(\delta\) is the volume fraction average of 1 and 3 in solute free pure mixed solvents. In a previous work\(^{[64]}\) concerning the partial molal volume of bromine in \(\text{CCl}_4 - \text{c-C}_4\text{Cl}_2\text{F}_6\) a preferential contact between bromine and \(\text{CCl}_4\) was needed to explain the experimental results. Christian et al.\(^{[65,66]}\) in their studies of the effect of the solvents on the formation of electron donor-acceptor complexes, proposed a "distribution coefficient" of the acceptor and donor in the solvents. This idea was introduced in order to correlate the variation of equilibrium constant of donor acceptor complexes with solvents. In other words for a given donor and acceptor, the num-
ber of donor molecules around the acceptor molecules depends upon the ability of solvent to solvate the acceptor, provided the number of the nearest neighbour of the acceptor does not change. The distribution coefficient, $K_{A,i}$ of acceptor $A$ in a solvent $i$ with respect to a reference solvent, ref, was written[66] as

$$K_{A,i} = \frac{\gamma_{D,i}^{\text{ref}} \nu_{\text{ref}}}{\gamma_{D} \nu_i}$$

(27)

where $\gamma_{D}$'s are the activity coefficients of component of acceptor in reference solvent and the solvent $i$, $\nu_{\text{ref}}$ is the molar volume of reference solvent, and $\nu_i$ is the molar volume of solvent $i$.

Christian defined $\gamma$'s of the solute (here acceptor) from Regular Solution theory as

$$\gamma_{2}^{\text{ref}} = \frac{V_D}{RT} (\delta_{\text{ref}} - \delta_{A})^2$$

(28)

where $V_D$ is the molar volume of $D$, and $\delta$'s are the solubility parameters.

Defining the distribution coefficients of the donor in terms of the equations (27) and (28), Christian was able to correlate $K_{eq}$ for pyridine-iodine in various nonpolar solvents with the distribution coefficient $K_{D2i}$.

Murrell et al.[67,68] introduced the idea of a "well defined solvation shell" which is supposed to form around the acceptor molecule in the solution. The formation of an
electron donor acceptor complex in solution results in the elimination of the solvent molecules of the so-called "well defined solvation shell."

These experimental results definitely indicate that in three component systems there is a preferential solvation around the solute by one of the solvents, or in other words the volume fractions of components 1 and 3 in pure mixed solvent do not adequately define the environment around the solute molecules in the mixed solvent. Considering the possibility that there may be some preferential solvation effect around the solute molecule, we selected benzene as one of the components of the mixed solvent, because of the well-known "likeliness" of iodine for benzene (due to the formation of electron donor acceptor complex between benzene and iodine.\[^{[69,70]}\]

The relative number of nearest neighbour molecules of a particular solvent around a solute molecule in the three component system can be calculated from the experimental $\delta_m$ from the equations

$$\delta_m(\text{expt}) = \hat{\phi}_1^* \delta_1 + \hat{\phi}_3^* \delta_3$$

and

$$\hat{\phi}_1^* + \hat{\phi}_3^* = 1$$

where $\hat{\phi}$'s are now defined as the effective volume fractions, which are the measure of the relative number of benzene and cyclohexane molecules around the iodine solute molecule.
We may also define the "effective volume fractions" \( \hat{\phi}^* \) in terms of the relative number of solvent molecules around the solute molecule as

\[
\frac{\hat{\phi}_1^*}{\hat{\phi}_3^*} = \frac{N_1^* V_1}{N_3^* V_3} = \frac{N_1}{N_3} \frac{(\delta_2 - \delta_3)^2}{(\delta_2 - \delta_1)^2} \frac{V_1}{V_3} = \frac{\hat{\phi}_1^0}{\hat{\phi}_3^0} \frac{(\delta_2 - \delta_3)^2}{(\delta_2 - \delta_1)^2}
\]

(31)

when

\[
\hat{\phi}_1^0 + \hat{\phi}_3^0 = 1
\]

and

\[
\hat{\phi}_1^* + \hat{\phi}_3^* = 1
\]

(32)

Although we have not been able to justify this type of definition for \( \hat{\phi}^* \) from the complete mathematical derivations, it can be clearly seen that equations (31) and (32) are based upon the interaction constants for 1-3 and 2-3 systems given in the saturation solubility equation for two component systems. These equations say that the ratio of the 1 and 3 types of the nearest neighbour molecules is the bulk solvent mixture ratio weighted by the respective heats of mixing of iodine in pure solvents. The total effect of the "effective volume fraction" \( \hat{\phi}^* \) defined by equations (31) and (32) is the minimization of partial molal excess free energy of component 2 in the three component systems. As we are unable to justify these equations from the mathematical derivations of an established equation,
these equations can be justified from experimental results from different sources and from the effects of these equations on other thermodynamic properties of three component systems. From the physical significance of the "preferred environment around the solute molecule" (i.e. 2) we expect that the numbers of the preferred molecules, in this case benzene, in the solution must be greater than the number of molecules of component 2 in the solution. As in this section we are dealing with very dilute solutions of component 2, where the composition of three component are such that the number of "preferred molecules" are always greater than the solute molecules, we need not mention these restrictions. But for nondilute solutions, as will be discussed later, this restriction will play a very important role in determining the thermodynamic properties.

Using $\delta_2$, $\delta_1$ and $\delta_3$ values of 14.1, 9.99 and 8.2 respectively for iodine in benzene-cyclohexane mixed solvent, we calculated $\delta^*_m$ from the relationship

$$\delta^*_m = \phi^*_1 \delta_1 + \phi^*_2 \delta_2 + \phi^*_3 \delta_3$$

(33)

These are given in Table II.2. Clearly $\delta^*_m$'s are in excellent agreement with $\delta_m$ (experimental). In Figure II.3 the $(\ln \frac{\delta^*_1}{x^*_2})^3$ versus $\delta^*_1$ is also plotted. An excellent linear relationship is seen to exist, the intercept of 1.85 agreeing well with the experimental value 1.835 and from the ratio of the slope to inter-
cept, \( \delta_1 \) is calculated as 9.9, in exact self-consistent agreement with the value previously used.

In Figure II.4 and II.5 we plotted both \(-R \ln x^m_2\) and partial molal volume against \( \delta^*_1 \). These plots are in sharp contrast with the dependence of \(-R \ln x_2\) and \( V^M_2 \) on \( \delta_1 \). The Figures II.4 and II.5 suggest almost linear dependence of \(-R \ln x^m_2\) and \( V^M_2 \) on \( \delta^*_1 \) values, such that

\[
R \ln x^m_2 = \delta^*_1 R \ln x^1_2 + \delta^*_2 \ln x^3_2 \quad (34)
\]

and

\[
V^M_2 = \delta^*_1 V^1_2 + \delta^*_3 V^3_2 \quad (35)
\]

Although Figures II.4 and II.5 suggest a linear relationship between \( \delta^*_1 \) and \(-R \ln x^m_2\) and \( V^M_2 \), we will see in a later section of this chapter that equations (34) and (35) are merely limiting cases of more rigorous equations.

It is useful to examine the \( \delta^*_1 \) term for other systems. We consider data for the solubility of iodine in a mixed benzene - carbon tetrachloride solvent reported by S. E. Wood et al.\(^{73}\) The \((\ln a^1_2 - \ln x^m_2)^{1/2}\) versus \( \delta^*_1 \) plot is given in Figure II.6. The linearity is seen to be excellent and the intercept \((\ln a^1_2 - \ln x^3_2) = 1.785\) is in good agreement with experimental value 1.80. In this calculation superscript and subscript 1 stand for benzene, 2 for iodine and 3 for \( \text{CCl}_4 \). (\( x^3_2 \) i.e. mole fraction saturation solubility
of iodine in CCl₄ was taken from Wood's data.) δ₃
(for CCl₄) was calculated from \( x_2^3 \). From the slope
we again find that for iodine solute the "best"
δ parameter for benzene is of value 9.99. In Table
II.3 we compare the experimental δₘ value with those
values calculated using both volume fraction and effec-
tive volume fraction terms. The latter data show an
excellent agreement with the experimental value. In
Figure II.7 we plot \( \ln x_2^m \) against \( \phi \) and \( \phi_1^* \) and
using \( \phi_1^* \), the experimental data appears to be addi-
tive in terms of the saturation solubility of iodine
in two pure solvents. Clearly this linear dependence
of both \( \ln x_2^m \) and \( \nabla_2^m \) upon \( \phi_1^* \), with the inference
of "zero excess property of mixing term" is a special
case of a more generalized formulation of Regular Solu-
tion theory, which will be discussed later. In this
section we are more interested in examining the valid-
ity of the definition of \( \phi^* \) 's. As mentioned above, we
chose benzene as one component of our solvent mixture
because of the electron donor acceptor interaction be-
tween benzene and iodine. The enhancement of the δ₁
parameter for benzene from 9.2 to 9.99 reflects this.

So far, we have limited our discussion to systems
where the solute has a special liking for one solvent,
thus enlarging the effect of preferential solvation.
Now we examine the cases where no such special inter-
actions such as the electron donor acceptor interaction
exist. This is the case with iodine in a mixed CC\textsubscript{4} - n-C\textsubscript{7}F\textsubscript{16} solvent\textsuperscript{[74]} only two data points exist for this system. The agreement between equation (26) and the above data is examined by recognizing that the \((\ln a^i_2 - \ln x^m_2)^{\frac{1}{3}}\) relationship can be predicted knowing the saturation solubility of the solute in the pure solvent, the ideal saturation solubility and the three \(\delta_1\) values. In Figure II.8 this relationship is plotted for the iodine - CC\textsubscript{4} - n-C\textsubscript{7}F\textsubscript{16} system and it is seen that data points lie on the observed line only if they are plotted against \(\hat{\phi}^*\) value.

From the above discussions, it is clear that if \(\delta_1\) and \(\delta_3\) are adjusted with respect to a constant \(\delta_2\) value from the saturation solubility for 2 in 1 and 2 in 3, no further adjustment of \(\delta\) parameters is needed for three component systems. Besides we also showed the importance of \(\hat{\phi}^*\) in calculating the saturation solubility and \(\nabla^m_2\) of 2 in a mixed solvent. To verify these statements we changed the solute from iodine to stannic iodide -- but we keep the mixed solvents as benzene - c-C\textsubscript{6}H\textsubscript{12} mixture. The reason for this can be found in the fact that for SnI\textsubscript{4}, \(\delta_1\) i.e. solubility parameter of benzene, calculated from the saturation solubility data, assuming \(\delta_2\) (solubility parameter of stannic iodide) equal to 11.8, was found to be 9.24 in \((\text{cal/cm})^\frac{1}{3}\), an excellent agreement with the \(\delta_1\) value 9.2, calculated from the heat of vaporization.
\[ \ln x_2^{m} \text{ versus } \delta_1 \] is found to be 0.38 which is in good agreement with the value 0.376, calculated for the slope from equation (26) with \( \delta_1 = 9.24 \), \( \delta_2 = 11.8 \) and \( \delta_3 = 8.5 \text{ (cal/cm}^2) \). In the case of SnI\(_4\) in \(\text{C}_6\text{H}_6 - \text{c-C}_6\text{H}_{12}\) mixed solvent, we see that we definitely need a preferential solvation around the SnI\(_4\) molecule by one of the solvents, i.e. benzene, even though there are no specific interactions between SnI\(_4\) and benzene molecules. But because of the close proximity of \( \delta_1 \) and \( \delta_3 \) values, the actual preferential solubility is much less than that in the case of \( I_2 \) in benzene - c-C\(_6\)H\(_{12}\) or \( I_2 \) in benzene - CCl\(_4\) mixed solvents.

In Figure II.11 we plot \( \ln x_2^{m} \) versus \( \delta_1 \) for SnI\(_4\) in benzene - c-C\(_6\)H\(_{12}\). Unlike \( I_2 \) in benzene - c-C\(_6\)H\(_{12}\) or \( I_2 \) in benzene - CCl\(_4\), the experimental \( \ln x_2^{m} \) is not linearly dependent on \( \delta_1 \), which indicates that the "excess property of mixing" is no longer zero for this system.

Finally we test the validity of the definition of \( \delta^* \) 's from the expected linearity of \( \delta_m \text{(experimental)} \) and \( \delta \) or \( \delta^* \) because if

\[
\delta_m(\text{expt}) = \delta_1^0 \delta_1 + \delta_3^0 \delta_3 \\
= \delta_1^0 \delta_1 + (1 - \delta_1^0) \delta_3 \\
= \delta_1^0 (\delta_1 - \delta_3) + \delta_3
\]  

(36)
data. Whereas for iodine-benzene system, as mentioned earlier, $\delta_1$ for benzene had to be shifted to 9.99 (assuming that the solubility parameter of iodine is equal to 14.1) to take account of the electron donor acceptor interaction between benzene and iodine. From the saturation solubility of stannic iodide in cyclohexane, $\delta_3$ (i.e. the solubility parameter of cyclohexane) was found to be 8.50 in comparison to 8.2 calculated from the heat of vaporization data.

In Table II.5 we have given the saturation solubility along with the values for $(\ln a_1^i - \ln x_2^m)^{1/3}$ of SnI$_4$ in five mixed solvents at 25°C. In Table II.6 we compare $\delta_m$ (experimental) calculated from the saturation solubilities of SnI$_4$ in the mixed solvents assuming $\delta_2 = 11.8$ with $\delta_m$ (calc'd) calculated from the relationship

$$\delta_m = \delta_1^o \delta_1 + \delta_3^o \delta_3$$

and

$$\delta_m^* = \delta_1^o* \delta_1 + \delta_3^o* \delta_3$$

Clearly $\delta_m^*$ values are in much better agreement with the experimental $\delta_m$ values than $\delta_m$ calculated from the simple volume fractions. In Figure II.10 $(\ln a_1^i - \ln x_2^m)^{1/3}$ for SnI$_4$ in C$_6$H$_6$ - c-C$_6$H$_{12}$ is plotted against both $\delta_1$ and $\delta_1^*$. Again we see that an excellent linear relationship exists between the $(\ln a_1^i - \ln x_2^m)^{1/3}$ and $\delta_1^*$ rather than $\delta_1$. The slope line ( $\ln a_1^i$ -
or if
\[ \delta_m(\text{expt}) = \Phi_1 \delta_1 + \Phi_3 \delta_3 \]
\[ = \Phi_1 (\delta_1 + \delta_3) + \delta_3 \]
then one should expect a straight line when \( \delta_m \) (experimental) is plotted either against \( \Phi_1 \) or \( \Phi_3 \), with an intercept equal to \( \delta_3 \) and a slope equal to \( (\delta_1 - \delta_3) \). In Figure II.12 we plot \( \delta_m \) (experimental) against \( \Phi_1 \) (volume fraction of benzene) and \( \Phi_1^* \), for I\(_2\) in benzene - c-C\(_6\)H\(_{12}\) system. Clearly \( \delta_m \) (experimental) when plotted against \( \Phi_1^* \) is in much better agreement with the expected line than when plotted against \( \Phi_1 \).

In Figure II.13 \( \delta_m \) (experimental) for C\(_6\)H\(_6\) - CCl\(_4\) mixed solvent in C\(_6\)H\(_6\) - I\(_2\) - CCl\(_4\) system is plotted against \( \Phi_1 \) and \( \Phi_1^* \) (volume fraction of benzene), and in Figure II.14 \( \delta_m \) (experimental) for C\(_6\)H\(_6\) - c-C\(_6\)H\(_{12}\) mixed solvent in C\(_6\)H\(_6\) - SnI\(_4\) - C-C\(_6\)H\(_{12}\) is plotted against \( \Phi_1 \) and \( \Phi_1^* \) (volume fraction of benzene).

From both of the figures, it is clear that \( \delta_m \) (experimental) is better described in terms of \( \Phi_1^* \)'s rather than \( \Phi_1 \), or in other words, an assumption of preferential solvation of solute by one solvent is definitely needed to describe the different properties of solutes in mixed solvents. By "describing," we mean to correlate the solubility and thermodynamic properties of solute with those properties of solute and solvents in two component systems containing solute 2 and solvent 1, and solute 2 and solvent 3.
Excess Properties of Mixing for Dilute Solutions

Introduction

In previous sections, we have attempted to show that Regular Solution theory may be usefully employed to interpret the solubility properties of a dilute solute in mixed solvents. We also tried to show that there is needed a term called the "effective volume fraction," \( \phi_i^* \), to define the immediate environment of solute molecules in a mixed solvent. We also showed that in some cases there exist linear relationships between \( \ln x_2^m \), \( V_2^m \), and \( \phi_i^* \) such as

\[
\ln x_2^m = \phi_1^* \ln x_2^1 + \phi_3^* \ln x_2^3
\]

and

\[
V_2^m = \phi_1^* V_2^1 + \phi_3^* V_2^3
\]

(the notations are the same as in previous section).

The relationship between \( \delta_m \) and \( \phi^* \) satisfies the condition that a mixed solvent may be considered as a hypothetical solvent whose solubility parameter (here \( \delta_m \)) is the volume fraction average of the two pure components. The other two relationships, although very attractive at first glance, do have a very limited applicability because, as suggested earlier, these two relationships hold because of the "zero excess property of mixing." In this section we will derive the excess properties with respect to the binary systems, and from
the Regular Solution theory we will try to predict these excess quantities. We shall also try to show that $\xi_1^*$ is needed to define the excess properties and the volume fraction of the mixture, where the maximum of the "excess properties" would be observed.

The main purpose of this chapter is to generalize the solubility relationships for three component systems and so derive the limiting conditions where the saturation solubilities of the solute in mixed solvents can depend linearly on, say, $\xi_1^*$. In the first part of this section we limit our discussions to very dilute solutions such that

$$\ln a_{12}^i = \ln x_2^m + \frac{V_2}{RT} (\delta_1 - \delta_2)^2$$

i.e. the $\delta_2$ (i.e. the volume fraction of the solute) in the solution approaches zero.

**Theory**

**Excess Saturation Solubility**

Having established the definition of $\xi_1^*$ and the importance of this term in three component systems, we now turn to the generalized properties of solubility relationships for three component systems. In all the discussions in the previous section we limited ourselves to the case where $\delta_1 < \delta_2 > \delta_3$. For those cases where
\( \delta_1 > \delta_2 > \delta_3 \), at certain volume fraction of \( \hat{\Phi}_1 \), the \( \delta_m \) value becomes equal to the \( \delta_2 \) value (of the solute) and the partial molal heat of solution of component 2 then becomes zero and the saturation solubility of the solute \( (x_2) \) is equal to the ideal solubility \( (a_2^i) \) of the solute. All the derivations discussed in the previous section are applicable where \( \delta_1 > \delta_2 > \delta_3 \) as long as the solubility of component 2 is very small, i.e., where \( \hat{\Phi}_1^s + \hat{\Phi}_3^s \to 1 \).

We shall accept that the saturation solubility of some dilute solute 2 in a solvent S may be written with the usual Regular Solution notations as

\[
\ln x_2 = \ln a_2^i - A(\delta_2 - \delta_s)^2
\]  

where

\[
A = \frac{V_2 \hat{\Phi}_s^2}{RT}
\]

\[
= \frac{V_2}{RT} \quad \text{(for a dilute solution)} \quad (39)
\]

For the cases where the solvent is a binary mixture of components 1 and 3, we then assume

\[
\delta_s = \hat{\Phi}_1^o \delta_1 + \hat{\Phi}_3^o \delta_3 = \delta_m
\]  

(40)

If one writes the saturation solubility of component 2 in mixed solvent in terms of the saturation solubility of the solute in pure solvents 1 and 3, as done in equation (34), then
\[
\ln x^m_2(i) = \Phi^0_1 \ln x^1_2 + \Phi^0_3 \ln x^3_2 \tag{41}
\]

Substituting equation (38) into equation (41) for the case for which \( \delta_S = \delta_1 \) or \( \delta_3 \) then

\[
\ln x^m_2(i) = \ln a^1_2 - A[\delta^2_2 - 2\delta_2(\Phi^0_1 \delta_1 + \Phi^0_3 \delta_3) + \Phi^0_1 \delta^2_1 + \Phi^0_3 \delta^2_3] \tag{42}
\]

Again substituting equation (40) into equation (38) we find

\[
\ln x^m_2 = \ln a^1_2 - A(\delta^2_2 - \delta^2_m)^2 = \ln a^1_2 - A(\delta^2_2 - 2\delta_2 \delta_m + \delta^2_m) \tag{43}
\]

Again substituting equation (40) into equation (42) and then comparing equation (42) with equation (43) we see that

\[
\delta^2_m = \Phi^0_1 \delta^2_1 + \Phi^0_3 \delta^2_3 \tag{45}
\]

a requirement which is obviously in contradiction with the condition given in equation (40) for \( \delta_m \).

In equation (41) we used the notation \( \ln x^m_2(i) \) to identify this as the "thermodynamic" saturation solubility in mixed solvent, relative to the saturation solubilities of a solute in two pure solvents.

The thermodynamic justification of this notation is based on the fact that the partial molar excess free energy is also zero with respect to that of the solute in the pure solvents. (Note that \( \ln x^m_2(i) \) is not
\[ \Delta(\ln x_2^m) = \ln x_2^m(i) - \ln x_2^m \]  

(46)

Using equation (41), we see that \( \Delta(\ln x_2^m) \) can be evaluated from the experimentally determined quantities \( \ln x_2^1 \), \( \ln x_2^3 \) and \( \ln x_2^m \). It can also be determined from the Regular Solution theory. Equation (38) is defined in terms of the pure solvents 1 and 3, and the mixed solvents, m, as

\[ \Delta(\ln x_2^m) = \phi_1^0 A(\ln x_2^1) + \phi_3^0 A(\ln x_2^3) \]

\[ - A(\delta_2 - \delta_m)^2 \]

\[ = A(\phi_1 \delta_1^2 + \phi_3 \delta_3^2 - \delta_m^2) \]  

(47)

i.e.

\[ \frac{1}{A} \Delta(\ln x_2^m) = \phi_1 \phi_3 (\delta_1 - \delta_3)^2 \]  

(48)

So far we have not used the effective volume fractions, but if one writes the \( \ln x_2^m(i) \) in terms of the effective volume fraction, then

\[ \frac{1}{A} \Delta^*(\ln x_2^m) = \phi_1^* \phi_3^*(\delta_1 - \delta_3)^2 \]  

(49)

To be rigorous, even if we allow ourselves to use the "effective volume fraction" terms in defining the \( \delta_m \), and if we recognize that the effective volume
fraction describes only the immediate solvent environment of the solute molecule, we must still define the \( \ln x^{m}_{2}(i) \) in terms of \( \delta^{o} \)'s and not \( \delta^{*} \)'s because the "ideal" term must refer to the composition of the bulk solvent, as in equation (41). So, writing \( \delta_{m} \) as

\[
\delta_{m} = \delta^{*}_{1} + \delta^{*}_{3}
\]

in the expression for \( \Delta \ln x^{m}_{2} \),

\[
\Delta(\ln x^{m}_{2}) = A(\delta^{*}_{1} \ln x^{1}_{2} + \delta^{*}_{3} \ln x^{3}_{2}) - A(\delta_{2} - \delta_{m})^{2}
\]

one obtains the excess saturation solubility as

\[
\frac{1}{A} \Delta(\ln x^{m}_{2*}) = [\delta^{*}_{1} + \delta^{*}_{3} - \delta_{m}^{2} - 2\delta_{2}(\delta^{*}_{1} + \delta^{*}_{3} - \delta_{m})]
\]

In equation (50) one can clearly see that we have made

\[
\delta_{m} = \delta^{*}_{1} + \delta^{*}_{3}
\]

and not

\[
\delta_{m} = \delta^{o}_{1} + \delta^{o}_{3}
\]

The notation of subscript \( 2* \) has been used to denote that the possibility of the immediate solute 2 environment is different from the "average" bulk solvent environment.

**Excess Volume of Mixing**

For a very dilute solution of non-electrolytes one may calculate the partial molal volume of solute
from Regular Solution theory[78] We may write for a very dilute solution

\[ V_2^E = V_2 - V_2^o = n_1 \beta_1 \bar{V}_2 \]

where \( V_2 \) is the partial molal volume of the solute in solution, \( V_2^o \) is the reference volume of the solute, \( n_1 \) is the ratio of the internal pressure of the solvent to its cohesive energy density, and \( \beta_1 \) is the coefficient of isothermal compressibility of the pure solvent, \( i \).

From the Regular Solution theory,

\[ \bar{F}_2^E = V_2^o (\delta_2 - \delta_1)^2 \]

or we may obtain a very useful equation such as

\[ V_2 - V_2^o = n_1 \beta_1 V_2^o (\delta_2 - \delta_1)^2 \] (51)

or[78]

\[ V_2 - V_2^o = \frac{\alpha_{1TV}^o}{\delta_2^2} (\delta_2 - \delta_1)^2 \] (52)

where \( \alpha_{1} \) is the coefficient of thermal expansion.

As mentioned earlier, equations (51) and (52) were derived as approximate equations and their applicability is far less than the applicability of Regular Solution theory in predicting the excess free energy of mixing. Remembering the limitations of these equations, we now define a term \( \Delta_V \) as

\[ \Delta_V = \frac{V_2^i - V_2^o}{V_2^o} \]
So far the expressions for $V_2^E$ have been written for binary systems. For the mixed solvents, the partial molal volume of solute, $V_2$, is given by

$$V_2^M - V_2^O = V_2^O n_m \beta_m (\delta_2 - \delta_m)^2$$

or,

$$\Delta_v = \frac{V_2^M - V_2^O}{V_2^O} = n_m \beta_m (\delta_2 - \delta_m)^2$$

In the following derivations, we will assume that only $\delta^*$'s describe $\delta_m$ correctly rather than $\delta$'s.

Now we define another term $\Delta_v^{M,1,3}$ in terms of the properties of the solute in each of the pure solvents as

$$\Delta_v^{M,1,3} = \delta_1 \Delta_v^1 + \delta_3 \Delta_v^3$$

or we may define the excess partial molal volume of mixing for solute 2 in a mixed solvent system with respect for the excess partial molal volume of solute (2) in pure solvents, i.e.

$$V_2^{E,M} = -V_2^O (\Delta_v^M - \Delta_v^{M,1,3})$$

Substituting the respective equations in equation (55) we obtain

$$\Delta_v^{M,1,3} = \delta_1 [n_1 \beta_1 (\delta_1 - \delta_2)^2] + \delta_3 [n_3 \beta_3 (\delta_1 - \delta_3)^2]$$

(57)
or using the assumption that

\[ n_1 \beta_1 = \frac{\alpha_1 T}{\delta_1} \]

or

\[ n_1 \delta_1 \beta_1 = \alpha_1 T \] (58)

we obtain

\[ \Delta V_{M,1,3} = (\hat{\delta}_1 n_1 \beta_1 + \hat{\delta}_3 n_3 \beta_3) \delta_2 \]

\[ - 2\delta_2 [\hat{\delta}_1 (\frac{\alpha_1}{\delta_1}) + \hat{\delta}_3 (\frac{\alpha_3}{\delta_3})] T \]

\[ + (\hat{\delta}_1 \alpha_1 + \hat{\delta}_3 \alpha_3) T \] (59)

We may similarly rewrite the equation (56) as

\[ \Delta V_{E,M} = n_m \delta_m \delta_2 \]

\[ - 2\delta_2 (\frac{\alpha_m}{\delta_m}) T + \alpha_m T \] (60)

We may further assume that the mechanical properties of the mixed solvent may be expressed in terms of those of the pure solvents by *

\[ n_m \delta_m = \hat{\delta}_1 n_1 \beta_1 + \hat{\delta}_3 n_3 \beta_3 \] (61)

---

* Probably a more reasonable approximation would be to write \( n_m \delta_m \) in the following manner:

\[ n_m \delta_m = (\hat{\delta}_1 \beta_1 + \hat{\delta}_3 \beta_3)(\hat{\delta}_1 n_1 + \hat{\delta}_3 n_3) \]

\[ = \hat{\delta}_1 n_1 \beta_1 + \hat{\delta}_3 n_3 \beta_3 - (\hat{\delta}_3^2 n_3 \beta_1 + \hat{\delta}_1^2 n_1 \beta_3) \]

Neglecting the higher terms in \( \hat{\delta}'s \) we obtain equation (61).
and
\[ a_m = \xi_1 a_1 + \xi_3 a_3 \]  
(62)
Besides equation (61) and (62), we also assume that
\[ n_m \beta_m \delta_m^2 = \xi_1 n_1 \beta_1 \delta_1^2 + \xi_3 n_3 \beta_3 \delta_3^2 \]  
(63)
Substituting equations (61), (62) and (63) in equation (56), the excess terms, i.e. \( \Delta V_{2}^{E,M} \), becomes
\[ \Delta V_{2}^{E,M} = 2 \delta_2 T_{V_2}^{O} \frac{a_m}{\delta_m} - \left( \frac{\alpha_1}{\delta_1} + \frac{\alpha_3}{\delta_3} \right) \]  
(64)
If we do not choose to use \( a_i \)'s, then the excess volume, \( \Delta V_{2}^{E,M} \), becomes more complex. (see Appendix AII.1 for derivations) and is given by
\[ \Delta V_{2}^{E,M} = \left( \frac{2 \delta_2 T_{V_2}^{O}}{\delta_m} \left[ \xi_1 n_1 \beta_1 \delta_1 + \xi_3 n_3 \beta_3 \delta_3 \right] \right. \]
\[ + \left. \left( \xi_1 n_1 \beta_1 \delta_1^2 + \xi_3 n_3 \beta_3 \delta_3^2 \right) \right) 
- \left( \xi_1 n_1 \beta_1 + \xi_3 n_3 \beta_3 \delta_3^2 \right) \left( \xi_1 n_1 \beta_1 + \xi_3 n_3 \beta_3 \delta_3 \right) \]  
(65)
As seen in equation (65) we have not assumed that
\[ n_m \beta_m \delta_m^2 = \xi_1 n_1 \beta_1 \delta_1^2 + \xi_3 n_3 \beta_3 \delta_3^2 \]  
(as in equation (63)) which is probably an incorrect assumption.

The expression \( \Delta V_{E,M}(\text{expt}) \) can be written as
\[ \Delta V_{E,M}(\text{expt}) = V_{E,M} - (\xi_1 V_1 - \xi_3 V_3) \]  
(66)
In the following discussion we will refer to $\Delta V_{2}^{E,M}$ (calc'd) as it is given in equation (65) and not as in equation (64).

In our above discussion of the volume of mixing term we have developed both equation (64) and (65) without defining $\delta_m$, i.e. these equations are independent of the definition of $\delta_m$. In these equations, any derivation of $\delta_m$ can be substituted as long as the solution is dilute in solute. But, as we have mentioned earlier, $\delta_m$'s are better described by $\psi^*$ values. In further discussions on excess volumes we will use only $\delta_m$'s calculated from $\psi^*$'s.

Discussion

We shall first discuss those systems in which the solute solubility parameters are greater than those of either component mixtures, i.e. $\delta_1 < \delta_2 > \delta_3$. We see from the equation (48) that the magnitude of the excess term, i.e. $\frac{1}{A}(\ln x_2^m)$, is governed by the square of the difference of the solubility parameters of the components of the mixed solvents. The maximum value for the excess term will occur at

$$\frac{\delta[\frac{1}{A}(\ln x_2^m)]}{\delta\psi_1^O} = 0 = (1 - 2\psi_1) \text{ at } \psi_1^O = \psi_1^{O}(\text{max})$$

or

$$\psi_1^{O}(\text{max}) = 0.5 \quad (67)$$
Similarly, the excess term \( \frac{1}{A^*}(\ln x_2^m) \) in equation (44) will have its maximum value displaced from \( \phi_1 = 0.5 \) by the relative \((\delta_2 - \delta_3)^2\) and \((\delta_2 - \delta_1)^2\) values. (See the definition of \( \phi^* \) values.) It can be shown that the position of this maximum, given by

\[
\frac{\partial\left[\frac{1}{A^*}(\ln x_2^m)\right]}{\partial \phi_1^o} = 0 \quad \text{at} \quad \phi_1^o = \phi_1^{o}(\text{max})
\]

(See Appendix AII.2 for the derivation.)

From the equation (69) we see that in those cases where \( |\delta_2 - \delta_3| = |\delta_2 - \delta_1| \), (i.e. for which \( \phi^*_1 = \phi_1^* \) with the implication that there is no preferential solvation of the solute molecules by either of the solvent molecules) the equation reduces to \( \phi(\text{max}) = 0.5 \) in agreement with the position of maximum for the \( \frac{1}{A^*}(\ln x_2^m) \) term. We also see from equation (69) that for a solute in a mixed solvent whose components are of widely disparate \( \delta \) such that \( |\delta_2 - \delta_3| > |\delta_2 - \delta_1| \), a considerable shift in \( \phi(\text{max}) \) will occur for these equations.

In Figure II.15, we illustrate the three excess functions, equation (48), equation (49) and equation (50) for hypothetical systems with a solute of \( \delta_2 = 14 \) in a mixed solvent of components \( \delta_1 = 12 \) and \( \delta_3 = 6 \).
We ignore the possibility of the likely immiscibility of the solvent mixtures. From the equation (69), the position of the maximum of the $\frac{1}{A}\Delta^*(\ln x_2^m)$ curve will be shifted to $\xi_1(\text{max}) \approx 0.5$. The position of the maximum of the excess $\frac{1}{A}\Delta(\ln x_2^m)$ does not appear capable of any simple formulation but it is seen to be at a position $\xi \approx 0.1$. We further see from Figure II.15 the considerably larger value of the excess function for the $\frac{1}{A}\Delta(\ln x_2^m)$ formulation over the whole range of solvent composition.

In Figure II.16, we present the excess saturation solubility terms $\Delta(\ln x_2^m)$ and $\Delta(\ln x_2^{m*})$ for the system of solute iodine in mixed benzene-cyclohexane solvent. In Figure II.17 we present similar plots of excess properties of iodine in benzene - CCl$_4$ mixed solvents. Both these systems were discussed earlier, particularly with respect to equation (22). As commented earlier, this equation depends quite critically on the use of $\xi_1$ or $\xi_1^*$ in the expression for $\delta_m$. The agreement between the experimental curves and the calculated excess curves $\Delta(\ln x_2^{m*})$ rather than $\Delta(\ln x_2^m)$ curve observed in Figures II.16 and II.17 again argues well for the use of the effective volume fractions in the description of $\delta_m$. It is obvious from the data presented in Figure II.15 that $\Delta^*(\ln x_2^m)$ curve will fit the experimental data no better than does $\Delta(\ln x_2^m)$ curve, because for both these curves
the maximum value of the excess properties is the same even if $\xi_{(max)}$'s are different.

Earlier it was shown that for both these systems, the experimental data obey the relationship

$$\ln x_2^m = \xi_1^* \ln x_2^1 + \xi_3^* \ln x_2^3$$

rather than

$$\ln x_2^m = \xi_1^0 \ln x_2^1 + \xi_3^0 \ln x_2^3$$

Recognizing that the saturation solubility in the mixed solvent is given by

$$\ln a_2^1 = \ln x_2^m + \frac{V^0}{RT} (\delta_2 - \delta_m)^2$$

if $\delta_m$ is written as $\delta_m = \xi_1^* \delta_1 + \xi_3^* \delta_3$ we see that the magnitude of any divergence from the $\ln x_2^m$ versus $\xi_1$ linearity will be equal to the excess saturation solubility term, $\Delta (\ln x_2^m)$ and not $\Delta (\ln x_2^m)$ because the $\delta_m$ (experimental) is not described by $\xi_1^0 \delta_1 + \xi_3^0 \delta_3$. Similarly, the nonlinearity of $\ln x_2^m$ versus $\xi_1^*$ plot will be of the magnitude of the excess $\xi_1^* (\ln x_2^m)$ term. The excess term $\Delta^* (\ln x_2^m)$ seems to be very small for the two systems with iodine as solute. Hence the linearity observed in $\ln x_2^m$ versus $\xi_1^*$ plots (Figures II.4 and II.6) for iodine in benzene-cyclohexane and iodine in benzene - carbon tetrachloride mixed solvents, is due to the negligible magnitude of the excess term,
as concluded earlier. (See equation (45).) In these cases, $\delta_m^2 = \delta_1^2 + \delta_3^2$ is a fair assumption. In Figure II.18 we plot $\Delta(\ln x^m_2)$, $\Delta^*(\ln x^m_2)$ and $\Delta(\ln x^m_2)$ for SnI$_4$ in benzene - c-C$_6$H$_{12}$ mixtures. For SnI$_4$, although $(\delta_3 - \delta_1)^2$ is smaller than that for iodine, the $V_2^O$ of SnI$_4$ is almost three times bigger than $V_2^O$ of iodine (cf. 151 cc for SnI$_4$ to 59 cc for iodine). This makes the magnitude of excess terms bigger for SnI$_4$ in benzene - c-C$_6$H$_{12}$ systems than for iodine in benzene - c-C$_6$H$_{12}$ system. This explains the nonlinearity of $\ln x^m_2$ (for SnI$_4$) on $\delta_1^*$. In the case of SnI$_4$, we tried to demonstrate the effect of $V_2^O$ of solute on the excess property -- because at the same temperature, the excess of solubility of two solutes in mixed solvents depends simultaneously on the $V_2^O$ of the solute and the square of the difference of the solubility parameters of the solvents.

Next we consider the system iodine ($\delta_2 = 14.1$) in the mixed solvent CCl$_4$ ($\delta_1 = 8.6$) plus n-C$_7$F$_{16}$ ($\delta_3 = 5.6$) which offers a greater test for the proposed theory. This system has a large miscibility gap and only two data points exist for the mixtures. It has been shown earlier that this system was best expressed by the $\delta^*$ formulation for $\delta_m$. In Figure II.19 we show the excess saturation solubility curves $\Delta(\ln x^m_2)$, $\Delta^*(\ln x^m_2)$ and $\Delta(\ln x^m_2)$ and in Figure II.20 we plot the $\ln x^m_2$ against $\delta_1$ and $\delta_3^*$, where $\ln x^1_2$ and $\ln x^3_2$ are the
actual experimental values. It is seen in Figure II.19 that the available experimental data points lie well on the $\Delta(\ln x^m_2)$ curve. Again the $\Delta^*(\ln x^m_2)$ curve for this system is of small magnitude and consequently the two data points lie on a linear $\ln x^m_2$ versus $\xi^*$ plot as seen in Figure II.5.

From the saturation solubility equation

$$\ln a^i_2 = \ln x^m_2 - \frac{V^0}{RT} (\delta_2 - \delta_m)^2$$

with the assumption that $\delta_m = \phi^0_1 \delta_1 + \phi^0_j \delta_j$ it is easily shown that (see Appendix AII.3)

$$\frac{\partial \ln x^m_2}{\partial \phi^0_1} = 0 \quad \text{where} \quad \phi_1 = \phi^{\text{max}}_1 = \left(\frac{\delta_2 - \delta_3}{\delta_1 - \delta_3}\right)$$ (70)

This latter relation is seen to predict a maximum value of $\phi_1$ which is meaningful (i.e. $0 < \phi_1 < 1$) only if $\delta_1 > \delta_2 > \delta_j$ $(i, j = 1, 3 \ i \neq j)$. In other words, in the cases where $\delta_1 > \delta_2 > \delta_j$ and $\delta_m = \phi^0_1 \delta_1 + \phi^0_j \delta_j$, at certain volume fractions of the $i$th and $j$th component of mixed solvent, $\delta_m$ will be equal to $\delta_2$ and consequently $x^m_2 = a^i_2$; i.e. in that mixture, $\ln x^m_2$ will be a maximum. Or the volume fraction of component 1 of mixed solvent at which $\delta_m = \delta_2$, is the $\phi^{\text{max}}_1$ in equation (70).

Similarly if one defined $\delta_m$ in terms of "effective volume" fractions, the position of the maximum is
given by
\[ \frac{\partial \ln x_m^2}{\partial \phi^*} = 0 \] where
\[ \phi^*_{\text{max}} = \frac{\delta_2 - \delta_3}{\delta_1 - \delta_3} \] (71)

or converting \( \phi^*_{\text{max}} \) to \( \phi^0 \) values, i.e. \( \phi^0_{\text{max},*} \), one obtains (see Appendix AII.3 for derivation)
\[ \phi^0_{\text{max},*} = \frac{\delta_2 - \delta_1}{\delta_3 - \delta_1} \] (72)

The equations (71) and (72) are again only valid if \( \delta_1 > \delta_2 > \delta_3 \). Comparing equation (70) with (72) we also see
\[ \phi^0_{\text{max},*} + \phi^0_{1,\text{max}} = 1 \] (73)

For the systems where \( |\delta_2 - \delta_1| = |\delta_2 - \delta_3| \), \( \phi^0_{\text{max},*} = 0.5 \). Such a behavior pattern is shown in Figure II.21 for naphthalene (\( \delta_2 = 10 \)) in hypothetical solvent mixtures (i) \( \delta_1 = 12 \), \( \delta_3 = 8 \) and (ii) \( \delta_1 = 14 \), \( \delta_3 = 6 \). In this plot we only give \( \frac{1}{A}(\ln x_m^2) \) term because \( |\delta_2 - \delta_1| = |\delta_2 - \delta_3| \), and \( \phi^0_{\text{max}} \) are equal over the complete range of composition. All three excess solubility equations reduce to \( \frac{1}{A}(\ln x_m^2) \) form. In Figure II.22, we plot \( (\ln a^1_2 - \ln x_m^2)^n \) against \( \phi^* \). It is seen that at \( a^1_2 = x_m^2 \) (i.e. the maximum solubility) \( \phi^* = \frac{\delta_2 - \delta_3}{\delta_1 - \delta_3} = \phi^0_{1,\text{max}} \) which is in agreement with the discussion given above. Furthermore, we can see from the relationship
that this relationship is valid only over the range $\Phi^*_1 = 0$ to $\Phi^*_1 \leq \Phi^*_1 \text{,max}$. The range $\Phi^*_1 \text{,max} \leq \Phi^*_1 \leq 1$ can be determined if the reference state is changed from the saturation solubility of solute 2 in pure solvent 3, (i.e. $x_2^3$ ) to saturation solubility of solute 2 in pure solvent 1 (i.e. $x_2^1$ ). The relationship then can be rewritten as

\[
(ln a_2^1 - ln x_2^m) \frac{1}{2} = (ln a_2^1 - ln x_2^1) \frac{1}{2}
\]

\[
- \Phi^*_3 (ln a_2^1 - ln x_2^m) \frac{1}{2} (\frac{\delta_3 - \delta_1}{\delta_2 - \delta_1})
\]

The appropriate plots for naphthalene in two hypothetical solvent mixtures are given in Figure II.23. As $|\delta_2 - \delta_1| = |\delta_2 - \delta_3|$, the symmetry of these plots is retained.

In Figure II.23 we examine the three excess saturation solubility terms $\Lambda(ln x_2^m)$, $\Lambda^*(ln x_2^m)$ and $\Lambda(ln x_2^{m*})$ for another hypothetical system for which $\delta_2 = 11.7$ (e.g. SnI$_4$ ) in mixed solvents whose components have $\delta_1 = 5.6$ and $\delta_3 = 14.0$. The considerable asymmetry due to the large difference in the $|\delta_2 - \delta_1|$ and $|\delta_2 - \delta_3|$ term is also shown in Figure
where \((\ln a_2^i - \ln x_2^m)^{1/2}\) is plotted against both \(\xi_1^*\) and \(\xi_1^0\); only the plot of \((\ln a_2^i - \ln x_2^m)^{1/2}\) against \(\xi_1^*\) is linear. The purpose of these hypothetical systems and the plots is to show the effect of the difference between \(|\delta_2 - \delta_1|\) and \(|\delta_2 - \delta_3|\) on the different properties of mixed solvents.

So far we have only discussed the excess saturation solubilities. In the remaining part of this discussion we will consider the excess volume of mixing, \(\Delta V^E\), and the effect of the "effective" volume fractions on this quantity.

In the derivation of the equations describing the excess volume of mixing, we mentioned that basic equations as derived from the Regular Solution theory are only approximate. In general for single component solvent systems both equation (51) and equation (52) are found to predict \(V_2\) values in good agreement with the experimental data. But our calculations on excess volume of mixing are completely dependent on the ability of these basic equations to predict the partial molal volume of solute in a one-component solvent.

Earlier, we have shown (see Figure II.5) that the partial molal volume data for iodine, i.e. \(V_2^M\), in C\(_6\)H\(_6\) - c-C\(_6\)H\(_{12}\) mixed solvent system was a good linear function of the "effective" volume fractions of the mixed solvent (cf. equation (35)). In Figure II.25 we plot \(V_2^M\) for bromine in mixed CCl\(_4\) - c-C\(_6\)H\(_{12}\) sys-
tem. Although the experimental scatter for this system is large, it would appear that there occurs a large deviation from the linearity for $\bar{V}_2^M$ even as a function of $\delta_1^*$ (i.e. the effective volume fraction of $\text{CCl}_4$).

In Figure 11.26 we plot the excess function $\Delta V_{E,M}$ for iodine in $\text{C}_6\text{H}_6 - \text{c-C}_6\text{H}_{12}$ mixture and compare it with the experimental values, $\Delta V_{E,M}^{(\text{expt})}$ in equation (66). The experimental data compare extremely well with the calculated line which has been calculated writing $\delta_m = \delta_1^* \delta_1 + \delta_2^* \delta_3$. We plot the excess volume of mixing terms for bromine - $\text{CCl}_4 - \text{c-C}_4\text{Cl}_2\text{F}_6$ mixed solvent in Figure 11.27. The theoretical expression appears to underestimate the magnitude of the excess term. For bromine in mixed $\text{CCl}_4 - \text{n-C}_7\text{F}_{16}$ solvent the theoretical $\Delta V_E^E$ term is of a magnitude far greater than that found from the experimental data. We give data for all these systems in Table 11.7. It is worth noting that $\Delta V_{E,M}^{(\text{expt})}$ value is very dependent upon the accuracy of the $\bar{V}_2$ values of the solute in each pure solvent and $\Delta V_{E,M}^{(\text{calc'd})}$ value is very dependent upon the accuracy of equation (51) in predicting the partial molal volume of the solute. In deriving the excess term (calculated) we used equation (51) to describe $\bar{V}_2^1$ and $\bar{V}_2^3$ where for experimental $\Delta V_{E,M}^E$ we used experimentally determined $\bar{V}_2^1$ and $\bar{V}_2^3$. In Table 11.8 we compare the calculated and experimental $\bar{V}_2$'s in different solvents.
From Table II. 8 we see that for Br₂ in n-C₇F₁₆, the calculated \( \bar{V}_2 \) is equal to 77.08 cc/mole in comparison to the experimental value 71.8 cc/mole, whereas for Br₂ in CCl₄, the calculated and experimental values are in good agreement. As equation (51) predicts bigger \( \bar{V}_2^3 \) than the experimental \( \bar{V}_2^3 \) for bromine in n-C₇F₁₆, this error will be manifested in all quantities derived from equation (51) for this system; for Br₂ in c-C₄Cl₂F₆, the \( \bar{V}_2^3 \) (calc'd) = 60.89 cc in comparison to the \( \bar{V}_2^3 \) (expt) = 64.3 cc, i.e. the equation (51) predicts a lower value for \( \bar{V}_2^3 \) for Br₂ in c-C₄Cl₂F₆ whereas for Br₂ in n-C₇F₁₆, it predicts a higher value. Or in other words errors introduced in \( \Delta\bar{V}_2^{E,M} \) (equation (65)) because of the inadequacy of equation (51) will have the opposite sign (which has been observed) for Br₂ in CCl₄ - c-C₄Cl₂F₆ and Br₂ in CCl₄ - n-C₇F₁₆. In one case equation (65) overestimates the excess term whereas in the other case it underestimates.

As the basic theoretical expression (viz. equation (51)) is inadequate in predicting the partial molal volume of solute in pure solvent, any extensive comparison of the calculated and experimental excess term, \( \Delta\bar{V}_2^{E,M} \), is not worth while.
Concentrated Solution

So far we have limited our discussion to the dilute solution such that \( \phi_m^2 \to 0 \), i.e. the solubility of the solute is so small that the volume fraction of the solute in the solution is negligible, a condition satisfied in the earlier discussion because in all the cases discussed earlier, \( \phi_m^2 < 0.01 \) and the basic solubility equation

\[
\ln a^i_2 = \ln x^m_2 + \frac{V_2}{RT} \phi_m^2 (\delta_2 - \delta_m)^2
\]

reduces to

\[
\ln a^i_2 = \ln x^m_2 + \frac{V_2}{RT} (\delta_2 - \delta_m)^2
\]

as \( \phi_m^2 \to 0 \), \( \phi_m \to 1 \).

But there are cases where the solubility of the solute is high enough to make \( \phi_m^2 \neq 0 \) such that

\( \phi_1^S + \phi_2^m + \phi_3^S = 1 \). In this section we shall discuss a few of these cases. Most of the experimental data available are for the solute naphthalene in different organic solvents, and hence our discussion will be limited to the case of naphthalene in different mixed solvents.

Notation

Before discussing the problems associated with concentrated solutions, we must first describe some of the notation we shall use in this section.
We shall use the superscript $o$, such as $x_1^o$ and $\phi_1^o$, in the following discussion to denote these two quantities in solute-free (or pure) mixed solvents such that

$$ x_1^o + x_2^o = 1 \quad (76) $$

$$ \phi_1^o + \phi_2^o = 1 \quad (77) $$

We shall also use the superscript $s$, such as $x_1^s$ and $\phi_1^s$, to denote these quantities in the saturated solutions such that

$$ x_1^s + x_2^m + x_2^s = 1 \quad (78) $$

$$ \phi_1^s + \phi_2^m + \phi_2^s = 1 \quad (79) $$

(for solute we shall use superscript $m$ to be consistent with earlier discussion). Comparing equations (76) and (77) with (78) and (79), one sees that there exist relationships such that

$$ \frac{\phi_1^s}{\phi_1^o} = \frac{x_1^s}{x_1^o} = 1 - \phi_2^m \quad (80) $$

$$ \frac{x_1^s}{x_1^o} = \frac{x_2^s}{x_2^o} = 1 - x_2^m \quad (81) $$

which connect $x_1^o$'s and $\phi_1^o$ with $x_1^s$ and $\phi_1^s$ respectively.
Results: Naphthalene in CCl$_4$ - c-C$_6$H$_{12}$ mixed solvent

The solubility of naphthalene in CCl$_4$ - c-C$_6$H$_{12}$ mixed solvent was studied by Heric et al.\textsuperscript{[79]} from 10$^\circ$C to 70$^\circ$C. They used a "static method" to determine the saturation solubility. Unfortunately no data was reported at 25$^\circ$C. For that reason, we plotted their results of the mole fraction saturation solubility of naphthalene, $x_2$, in a particular solvent against the absolute temperature (see Figure II.28) and the saturation solubility at 298$^\circ$K was read from the plot. The mole fraction saturation solubility of naphthalene calculated in this manner is given in Table II.9 along with the mole fractions and the volume fractions of CCl$_4$ (subscript 1) and c-C$_6$H$_{12}$ (subscript 3) in a solute free pure mixed solvent denoted with subscript o.

Naphthalene in methylene iodide - c-C$_6$H$_{12}$ mixed solvent

In Table II.10 we show the saturation solubility of naphthalene in methylene iodide - cyclohexane mixed solvents. These solubilities were determined by J. Lee\textsuperscript{[80]} in this laboratory.

In Figure II.29a we plot the mole fraction of naphthalene in saturated solution against the $x_1^0$, i.e. the mole fraction of methylene iodide in pure mixed solvents. By pure mixed solvent we meant solute free mixed solvent such that $x_1^0 + x_2^0 = 1$
similarly

\[ \xi_1^0 + \xi_2^0 = 1 \]

In Figure II.29b we plot \(-\ln x_2^m\) of naphthalene in the methylene iodide - c-C_6H_{12} mixed solvent against \(\xi_1^0\).

Discussion

As mentioned earlier and can be seen in Tables II.8 and II.9, in the cases of naphthalene \(\xi_2^m\) can no longer be assumed zero. For dilute solutions, we have assumed \(\xi_2 = 0\) for all the expressions -- the excess terms and even the linear relationship between \((\ln a_2^i - \ln x_2^m)\) versus \(\xi_1^0\). Clearly those expressions are no longer valid in these cases.

The obvious difficulty in calculating the thermodynamic properties for the concentrated solutions arises due to the fact that \(\xi_2^m \neq 0\). There is another problem associated with naphthalene: there is no definite value for the ideal solubility of naphthalene to be found in the literature. The values reported by different authors range from 0.298 to 0.322 depending upon the source of data.\[^{81,82}\]

We decided to calculate \(a_2^i\) for napthalene by other means. Recalling the original equation for the solubility in mixed solvent, i.e.

\[ \ln a_2^i = \ln x_2^m - \frac{V_2 \xi_m^2}{RT} (\delta_2 - \delta_m)^2 \]
it is seen that for the cases where \( \delta_1 > \delta_2 > \delta_3 \), i.e. the solubility parameter of the solute lies between the solubility parameter of the two solvents, at certain mixed solvent composition, \( \delta_m = \delta_2 \) and the solubility of solute in that mixture becomes equal to the ideal solubility of the solute. We choose naphthalene as solute in methylene iodide - c-C\(_6\)H\(_{12}\) mixed solvent because the solubility parameter of naphthalene (\(\delta_2\)) lies in between the solubility parameters of methylene iodide (\(\delta_1\) (therm) = 11.8) and that of c-C\(_6\)H\(_{12}\) (\(\delta_1\) (therm) = 8.2). Therefore this particular system satisfies the condition \( \delta_1 > \delta_2 > \delta_3 \). If the Regular Solution theory is applicable to this system, then we should be able to determine \( a_i^j \) for naphthalene by determining the solubility of naphthalene for the complete range of CH\(_2\)I\(_2\) - c-C\(_6\)H\(_{12}\) mixed solvent composition. From Figure II.28 where the saturation mole fraction solubility of naphthalene in CH\(_2\)I\(_2\) - c-C\(_6\)H\(_{12}\) \(x_2^m\), is plotted against \( \delta_1^o \), we see that the maximum value for \( x_2^m \) is 0.300 which is in excellent agreement with the range 0.298 to 0.322. (the reported values for \( a_2^1 \) are found in the literature \([81,82]\)) Considering that the uncertainty involved in calculating \( a_2^1 \) from the thermal data because of the long extrapolation involved in these cases, we decided to use \( x_2^m(max) = 0.300 \) as the \( a_2^1 \) for naphthalene in further discussions. So far as we know, this is the only case where the \( x_2^m(max) \) for a simple solid solute
in a mixed solvent system such that \( \delta_1 > \delta_2 > \delta_3 \) goes to ideal solubility. The only other studies reported in systems where \( \delta_1 > \delta_2 > \delta_3 \) are those for the solubility of phenanthrene in \( \text{CH}_2\text{I}_2 - \text{c-C}_6\text{H}_{12} \) mixed solvent. This work was done by Scott et al.\(^3\) in 1952. Although they observed the expected enhancement of the solubility of phenanthrene, the solubility in the best solvent mixture fell short of the ideal.

Phenanthrene and naphthalene have solubility parameters similar to one another, i.e. 9.8 for phenanthrene and 9.9 for naphthalene, but the nature of their interaction with cyclohexane is very different. Scott et al. found that the solubility parameter of \( \text{c-C}_6\text{H}_{12} \) has to be shifted from 8.2 (the thermodynamic value for \( \text{c-C}_6\text{H}_{12} \)) to 7.0 to satisfy the solubility equation for phenanthrene in cyclohexane, whereas for naphthalene in \( \text{c-C}_6\text{H}_{12} \), although a re-evaluation of \( \delta \) solubility parameter for cyclohexane is needed, the magnitude of shift from 8.2 to 7.66 is much smaller than that for phenanthrene in cyclohexane. At present, the reason for this lack of agreement between the predicted and experimental values for the solubility of phenanthrene in the best solvent mixture is not clear.

A close examination of the phase diagram for the binary system of methylene iodide - cyclohexane as given by Gordon and Scott reveals that at 298 \( ^\circ \text{K} \) there is a definite miscibility gap in the methylene iodide -
cyclohexane system when \( x_3^0 \) lies between 0.28 and 0.58. Thus the stoichiometric composition of the best solvent mixture for phenanthrene lies close to the \( \text{CH}_2\text{I}_2 - \text{c-C}_6\text{H}_{12} \) solvent-solvent critical temperature and composition. From this observation Scott et al.\(^83\) suggested that there is an extensive "clustering" around the phenanthrene molecule in its best solvent mixture and this clustering is the reason for the apparent lack of agreement between the ideal solubility and the maximum solubility of phenanthrene in its best solvent mixture. It is true that there is a solvent-solvent miscibility gap when the mole fraction of cyclohexane in pure mixed solvent lies between 0.28 and 0.58. But we also observed that the solvent-solvent miscibility gap disappears in the presence of naphthalene in the ternary systems of \( \text{CH}_2\text{I}_2 - \text{naphthalene} - \text{c-C}_6\text{H}_{12} \): Besides, for naphthalene, the stoichiometric composition of the best solvent mixture is also near to the solvent-solvent critical composition and temperature. But our observation that the maximum solubility of naphthalene in the best solvent mixture is equal to the ideal solubility of naphthalene, suggests that the "clustering" as mentioned by Scott cannot be a main factor for the discrepancies observed in the case of phenanthrene in \( \text{CH}_2\text{I}_2 - \text{c-C}_6\text{H}_{12} \) mixed solvents.

Subsequently we established that in the case of naphthalene, \( x_2^m(\text{max}) \) in the best solvent can be used
safely to replace \( a_2 \) for naphthalene in further calculations. Using \( a_2 = 0.300 \), we calculated \( \delta_m \), \( \delta_1 \), and \( \delta_3 \) for systems with naphthalene as solute. In Table II.11 we give the experimental \( \delta_m \)'s for \( \text{CCl}_4 - \text{naphthalene} - \text{c-C}_6\text{H}_{12} \) and in Table II.12 we show the experimental \( \delta_m \) values for \( \text{CH}_2\text{I}_2 - \text{naphthalene} - \text{c-C}_6\text{H}_{12} \). In these calculations the \( \delta_2 \) value for naphthalene was taken as 9.9 -- the thermodynamic solubility parameter for naphthalene.

Next we chose to calculate \( \delta_m \) for the mixed solvent. We showed earlier that \( \delta_m \) can be calculated

\[
\delta_m = \phi_1^{0} \delta_1 + \phi_3^{0} \delta_3
\]

such that

\[
\phi_1^{0} + \phi_3^{0} = 1
\]

or

\[
\delta_m = \phi_1^{*} \delta_1 + \phi_3^{*} \delta_3
\]

such that

\[
\phi_1^{*} + \phi_3^{*} = 1
\]

and \( \phi_1^{*} \) and \( \phi_3^{*} \) are defined as

\[
\phi_1^{*} = \frac{\phi_1^{0} (\delta_2 - \delta_3)^2}{\phi_3^{0} (\delta_2 - \delta_1)^2}
\]

In Table II.13 we compare the \( \delta_m \) calculated from the experimental saturation solubility of naphthalene with the \( \delta_m \) written in terms of \( \phi_1^{0} \) and in terms of \( \phi_1^{*} \) for \( \text{CCl}_4 - \text{c-C}_6\text{H}_{12} \) system. Clearly \( \delta_m \) (writ-
ten in terms of \( \delta^* \)'s) is in better agreement with the 
\( \delta_m \) (experimental) -- a situation we also faced in dilute solutions. But we also see in the Table II.13 that the 
agreement between the experimental \( \delta_m \) and the \( \delta^*_m \) 
(calculated from \( \delta^* \)'s) are not so good for the mixed 
solvent in which the concentration of carbon tetrachloride is very small. From the definition of "effective" 
volume fraction, we clearly see that in the case of 
carbon tetrachloride - naphthalene - cyclohexane system, 
carbon tetrachloride is a preferred solvent for naphthalene than cyclohexane. We also see that in the case 
of the mixed solvent where \( \hat{\xi}_1^0 = 0.1575 \), the volume 
fraction of naphthalene, \( \hat{\xi}_2^m \), in solution is greater 
than the volume fraction, \( \hat{\xi}_2^s \), of carbon tetrachloride 
in the solution -- a situation we did not come across 
in the case of dilute solution. This phenomenon becomes 
more prominent for naphthalene in \( \text{CH}_2\text{I}_2 \ - \ \text{c-CH}_2\text{H}_12 \) mixed 
solvents. In Table II.14 we compare \( \delta_m \) (expt) with 
\( \delta_m \) (calcd) and \( \delta^*_m \)'s. We see in Table II.14 that \( \delta_m \) 
calculated from the experimental solubility of naphthalene agrees with \( \delta^*_m \) (calculated from \( \delta^* \)'s) when the 
volume fraction of methylene iodide in pure mixed solvent is greater than 0.403. We also see in Table II.14 
that at very low concentration of methylene iodide \( \delta_m \)'s 
(calculated from \( \hat{\xi}_1^0 \)) rather than \( \delta^*_m \)'s (calculated 
from \( \delta^* \)'s) is in much better agreement with \( \delta_m \) (expt). 
But in most of the cases where \( \hat{\xi}_1^0 \leq 0.403 \) we see that
δ_m(expt) lies between δ_m's (calculated from \( \delta^0 \)) and δ_m's (calculated from \( \delta^* \)). Or in other words we could say there is a minimum value for the volume fraction of CH_2I_2 up to which the "effective" volume fractions concept is acceptable. But if the volume fraction of methylene iodide is less than that minimum value, the nearest neighbour of the solute is neither defined by the "effective" volume fractions \( \delta^* \) nor by \( \delta \) 's. The reason why \( \delta \)'s do not adequately describe the nearest environment of the solute has been discussed earlier.

For concentrated solutions, it seems that there exists a minimum value for the number of moles of the preferred solvents which must exist in the solution so that the nearest neighbours of the solute in a mixed solvent may be adequately described by the effective volume fractions. At present we were not able to predict this minimum value for the preferred solvent but from the experimental results it is clear that \( \delta^S_1 \) (the volume fraction of the preferred solvent in the solution) must be greater than the \( \delta^S_2 \) (the volume fraction of the solute in solution). In Table II.13 we compare the \( \delta_m \) (experimental) with both \( \delta_m \) and \( \delta^*_m \) for CCl_4 - naphthalene - c-C_6H_12 system. The situation is analysed in more detail in the case of methylene iodide - naphthalene - cyclohexane because more experimental data are available for this system. In Table II.14 \( \delta_m \) (expt)
is compared with \( \delta_m(\text{calc'd}) \) and \( \delta_m^* \). In Table II.14 we also give the values of \( \delta_1^S \) and \( \delta_2^S \) for this system. It can be seen that when \( \delta_1^S \) is less than \( \delta_2^S \), \( \delta_m \) (expt) is less than \( \delta_m^* \) but greater than \( \delta_m(\text{calc'd}) \). However \( \delta_m(\text{expt}) \) is adequately described by \( \delta_m^* \) when \( \delta_1^S \geq \delta_2^S \). For the methylene iodide- naphthalene - cyclohexane system, the experimental results suggest that the minimum value for \( \frac{\delta_1^S}{\delta_2^S} \) in the solution must be equal to one if the nearest neighbour environment of the solute may be adequately described by the "effective" volume fraction term. When \( \delta_1^S < \delta_2^S \), neither \( \delta_1^S \) nor \( \delta_1^* \) describes the immediate environment of solute correctly.

Next we looked into the problem of the square root plot, i.e. \((\ln a_2^i - \ln x_2^m)^{1/2}\) versus \(\frac{\delta_1^o}{\delta_1^*}\) (or \(\frac{\delta_1^o}{\delta_1^*}\)) as described in Sections 1 and 2 of this chapter. As mentioned in those sections \((\ln a_2^i - \ln x_2^m)^{1/2}\) and \(\frac{\delta_1^o}{\delta_1^*}\) have a linear relationship if and only if \(\delta_2^o = 0\), i.e. very dilute solution. For concentrated solution such relationships may be found between \((\ln a_2^i - \ln x_2^m)^{1/2}\) versus \(\frac{\delta_1^o}{\delta_1^*}\). A very similar relationship is derived by following the same procedure as before. Writing the solubility equation for component 2 in a mixed solvent in terms of Regular Solution theory we find

\[
\ln a_2^i = \ln x_2^m + \frac{V_2}{RT} \delta_m^2 (\delta_2 - \delta_m)^2
\]
or

\[
\left( \ln a_2^i - \ln x_2^m \right)^{\frac{1}{\phi}} = \left( \frac{V_2}{RT} \right)^{\frac{1}{\phi}} \Phi_m (\delta_2 - \delta_m)
\]

\[= \left( \frac{V_2}{RT} \right)^{\frac{1}{\phi}} \Phi_m (\delta_2 - \delta_1) + \Phi_1^0 (\delta_2 - \delta_1)\] (82)

Equation (82) was derived by writing

\[\delta_m = \Phi_1^0 \delta_1 + (1 - \Phi_1^0) \delta_3\]

Similarly the solubility equation for component 2 in a pure solvent 1 is

\[\ln a_2^i = \ln x_2^1 + \frac{V_2}{RT} \Phi_2^1 (\delta_1 - \delta_2)^2\]

or

\[
\left( \ln a_2^i - \ln x_2^1 \right)^{\frac{1}{\phi}} = \left( \frac{V_2}{RT} \right)^{\frac{1}{\phi}} \Phi_2^1 (\delta_1 - \delta_2)^2
\] (83)

Dividing equation (82) by equation (83) we obtain

\[
\frac{\left( \ln a_2^i - \ln x_2^m \right)^{\frac{1}{\phi}}}{\left( \ln a_2^i - \ln x_2^1 \right)^{\frac{1}{\phi}}} = \frac{\Phi_m}{\Phi_1^0} \left[ 1 + \Phi_1^0 \frac{\delta_1 - \delta_3}{\delta_2 - \delta_1} \right]
\] (84)

where \(\Phi_1^0\) in equations (83) and (84) is the same and denotes the volume fraction of component 1 in the saturated solution of solute 2 in pure solvent 1; \(\Phi_1^0\) is a constant in equation (84) because it is the property of the binary system containing components 1 and 2 only.

Equation (84) can be plotted two ways:

(i) If we assume \(\frac{\Phi_m}{\Phi_1^0}\) is constant and \(\Phi_m \approx \Phi_1^0\), then \(\frac{\Phi_m}{\Phi_1^0} \approx 1\) or equation (84) reduces to
Equation (85) is the same as equation (26) in section 1 of this chapter except that in the derivation of equation (26) we assumed \( \phi_2 \to 0 \) and in the case of equation (85) we assumed that \( \frac{\delta}{\delta_1} \approx 1 \).

In Table II.15 we show the ratio \( \frac{\delta_m}{\delta_1} \) for carbon tetrachloride- naphthalene - cyclohexane and CH\(_2\)I\(_2\) - naphthalene - cyclohexane systems. For the CCl\(_4\) - naphthalene - cyclohexane system, \( \frac{\delta_m}{\delta_1} \) is very close to unity and we should expect a straight line for this system when \( (\ln a_2^1 - \ln x_2^m)^{\frac{1}{2}} \) is plotted against either \( \phi_3^0 \) or \( \phi_3^* \) because equations (84) and (85) can be derived in terms of \( \phi_3^* \) by writing \( \delta_m = \phi_3^0 \delta_1 + \phi_3^* \delta_3 \). In Figure II.30 we plotted \( (\ln a_2^1 - \ln x_2^m)^{\frac{1}{2}} \) for the CCl\(_4\) - naphthalene - c-C\(_6\)H\(_{12}\) system against both \( \phi_3^0 \) and \( \phi_3^* \). As is found in the case of dilute solutions, we see that for concentrated solutions, \( (\ln a_2^1 - \ln x_2^m)^{\frac{1}{2}} \) versus \( \phi_3^0 \) plot is far from a straight line, i.e. no linear relationship exists between \( (\ln a_2^1 - \ln x_2^m)^{\frac{1}{2}} \) and \( \phi_3^0 \). But in Figure II.30 there exists a linear relationship of \( (\ln a_2^1 - \ln x_2^m)^{\frac{1}{2}} \) versus \( \phi_3^* \) -- with a slope equal to 0.41, compared to 0.39, the expected value for the slope. The intercept
of \((\ln a_2^1 - \ln x_2^m)^{1/3}\) versus \(\hat{\phi}_3^*\) plots was made equal to the expected value. In Figure II.30 we show a similar plot for \(\text{CH}_2\text{I}_2\)–naphthalene–c-\(\text{C}_6\text{H}_{12}\) system.

For this system, with \(\delta_1 > \delta_2 > \delta_3\), we observe that when \(\delta_m = \delta_2\), \((\ln a_2^1 - \ln x_2^m)^{1/3}\) is zero and we obtain two straight lines— one with the saturation solubility of component 2 in pure solvent 1 as reference state, and the other with the saturation solubility of component 2 in pure solvent 3 as the reference state.

These types of systems, where \(\delta_1 > \delta_2 > \delta_3\), have been discussed earlier in terms of dilute solutions and we find that the same thing can be said about the concentrated solutions. In Figure II.30 we plotted \((\ln a_2^1 - \ln x_2^m)^{1/3}\) against \(\hat{\phi}_3^*\) and found that the slopes of the best line drawn through the experimental points are -1.19 and 1.40 which compare fairly well with the calculated values -1.18 and 1.45 respectively.

The first set of the calculated and experimental values for the slopes are with \(x_2^1\) as the reference state and the second set of values for slopes are with \(x_2^3\) as the reference state. In that part of the plot we assume \(\hat{\phi}_3^*\) is equal to one instead of \(\hat{\phi}_3^*\) equal to one. In Table II.15, we show the ratio of \(\hat{\phi}_3^*\) and \(\hat{\phi}_3^*\) for this system. It is seen that \(\hat{\phi}_3^*\) is very close to unity and so we obtain a straight line up to \(\hat{\phi}_3^* = 0.4\) when \((\ln a_2^1 - \ln x_2^m)^{1/3}\) is plotted against \(\hat{\phi}_3^*\) as in Figure II.31. It can also be seen from Table II.15 that \(\hat{\phi}_3^*\)
is not equal to unity for cases where $\delta_3 < 0.4$ and in Figure II.31 the agreement between the experimental points and the calculated line is not good in the region $\delta_3 < 0.4$. But in general we see that in a fair approximation, $\frac{\delta_3}{\delta_1}$ is equal to unity, and there exists a linear relationship between $(\ln a_2^i - \ln x_2^m)^{\frac{1}{\delta_3}}$ and $\delta^*$ even for the concentrated solution.

(ii) Equation (84) can also be rewritten as

$$
\frac{(\ln a_2^i - \ln x_2^m)^{\frac{1}{\delta_3}}}{\delta_m} = \frac{1}{\delta_1} (\ln a_2^i - \ln x_2^m)^{\frac{1}{\delta_3}}
$$

$$
+ \frac{1}{\delta_1} (\ln a_2^i - \ln x_2^m)^{\frac{1}{\delta_3}} \delta_3^{\psi_0} \frac{\delta_1 - \delta_3}{\delta_2 - \delta_1}
$$

Equation (86), which is written in terms of the same notation as in equation (84), implies a linear relationship exists for a concentrated solution between $(\ln a_2^i - \ln x_2^m)^{\frac{1}{\delta_3}}/\delta_m$ and $\delta^*$ for which the slope should be equal to

$$
\frac{1}{\delta_1} (\ln a_2^i - \ln x_2^m)^{\frac{1}{\delta_3}} \frac{\delta_1 - \delta_3}{\delta_2 - \delta_1}
$$

and the intercept at $\psi^*_3 = 0$ would be equal to

$$
\frac{1}{\delta_1} (\ln a_2^i - \ln x_2^m)^{\frac{1}{\delta_3}} \frac{\delta_1 - \delta_3}{\delta_2 - \delta_1}
$$

Both slopes and intercept can be compared with the experimental values.
Equation (86) is a direct consequence of the Regular Solution theory for a ternary system and so far no additional assumption has been made, even though it is more rigorous than the equation (85). From our earlier experience, we know that $\delta_m$ (expt) is better described by $\delta_m^*$ instead of $\delta_m$. If the solubility equation for component 2 in a mixed solvent is written in terms of $\delta_m^*$ instead of $\delta_m$, equation (86) becomes

$$\frac{\ln a_2^1 - \ln x_2^0}{\delta_m^*} = \frac{1}{\delta_1} (\ln a_2^1 - \ln x_2^0)$$

$$+ \frac{1}{\delta_1} (\ln a_2^1 - \ln x_2^0) \frac{\delta_1 - \delta_3}{\delta_2 - \delta_1}$$

(87)

The only difference between equations (86) and (87) is that equation (87) implied a linear relationship between $(\ln a_2^1 - \ln x_2^0)/\delta_m^*$ and $\delta_3$ (not $\delta_3^0$ as in the case of equation (91)) for which slope and intercepts are the same as for equation (86).

In Figure II.32 we plot $(\ln a_2^1 - \ln x_2^0)/\delta_m^*$ against $\delta_3^0$ and $\delta_3^*$ for the CCl$_4$-naphthalene - c-C$_6$H$_{12}$ system. In Figure II.33 we show the same plot for the Cl$_2$I$_2$ - naphthalene - c-C$_6$H$_{12}$ system.

For the naphthalene in CCl$_4$ - c-C$_6$H$_{12}$ system, we compare the theoretical line against the experimental points and the agreement between the experimental points and the theoretical values is good when plotted against $\delta_3^*$ and not $\delta_3^0$. But the agreement is not so good for
naphthalene in methylene iodide - c-C_{6}H_{12}. This is not surprising because as we said earlier, neither $\xi^0$ nor $\xi^*$ describes the nearest solute environment correctly when $\xi^S_1$ is less than $\xi^S_2$. In Figure II.33 we see that agreement between the expected line and the experimental point is good for the mixed solvents concentrated in methylene iodide and is bad for mixed solvents dilute in methylene iodide -- a situation which concurs with our earlier discussion on $\xi_m'$s for concentrated solutions.

As in the solubility equations, $\xi_1$, $\xi_2$ and $\xi_m'$s are retained and no attempt to calculate excess properties for concentrated solution is made because the equations cannot be derived in terms of the properties of the pure solvent as was done in the case of dilute solutions. So we did not try to plot any excess properties for the concentrated solutions.

**Conclusion**

In general it is seen that the presently available experimental data is well interpreted by this extension of the Regular Solution theory to two component solvent systems. The postulated "preferential solvation" of the solute by one component of the solvent mixture is well borne out for dilute solutions. For the concentrated solutions of a solute in a two component solvent mixture we showed that there exists a minimum value for the
number of molecules of the preferred solvent which must exist in the solution in order to observe the full effect of the "preferential solvation" in the studies of the solubility of solute 2 in the two component solvent systems.

The relationship between \((\ln a_2^1 - \ln x_2^m)^{\frac{1}{3}}\) and \(\xi_1\) or \(\xi^*\) for dilute three component systems, depends only upon the definition of \(\xi_m\). All systems considered as dilute solutions show that the expected linearity is found only if \(\xi^*\), the effective volume fraction term, is used. For the concentrated three component systems, the linear relationship exists between 
\[(\ln a_2^1 - \ln x_2^m)^{\frac{1}{3}}/\xi_m\]
instead of \((\ln a_2^1 - \ln x_2^m)^{\frac{1}{3}}\), and \(\xi_0\) or \(\xi^*\). For concentrated solutions we also show that, in certain cases, a linear relationship can be observed between \((\ln a_2^1 - \ln x_2^m)^{\frac{1}{3}}\) and \(\xi_0\) or \(\xi^*\). However, this linear relationship between \((\ln a_2^1 - \ln x_2^m)^{\frac{1}{3}}\) and \(\xi_0\) or \(\xi^*\) depends upon the validity of the assumption that the volume fraction of the mixed solvent in the saturated solution of the solute 2 in the mixed solvent is equal or approximately equal to the volume fraction of the reference solvent in the saturated solution. We also see that, for a concentrated solution, the above-mentioned linear relationship exists between \(\xi^*\)'s instead of \(\xi^*_0\).

The necessity of using the effective volume fraction, which reflects the interaction of the solute mol-
ecule with its immediate solvent environment, is again shown by the three excess saturation solubility terms for the dilute solution of 2 in two component mixed solvents. (We have not derived any expression for excess saturation solubility terms for concentrated solution of 2 in two component mixed solvent.) If we contrast the $\Delta(\ln x_2^m)$ and the $\Delta(\ln x_{2*}^m)$ terms (i.e. in each the thermodynamic reference state is $\hat{1}$, the bulk solvent volume fraction), we note that the magnitude of the excess term arises mainly from the need to define $\delta_m$ using $\hat{1}^*$. 
Saturation solubility and partial molal volume of iodine in a mixed benzene-cyclohexane solvent:
All data at 25° C.

<table>
<thead>
<tr>
<th>Volume fraction of benzene, $\xi_1$</th>
<th>Saturation Solubility $-R \ln x_2$</th>
<th>Entropy of Solution $R \left( \frac{\partial \ln x_2}{\partial \ln T} \right)_p$</th>
<th>Partial Molal Volume, cc mole$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9.3845</td>
<td>22.201</td>
<td>68.2</td>
</tr>
<tr>
<td>0.2551</td>
<td>7.9884</td>
<td>20.835</td>
<td>65.5</td>
</tr>
<tr>
<td>0.5093</td>
<td>7.1394</td>
<td>18.245</td>
<td>64.4</td>
</tr>
<tr>
<td>0.6927</td>
<td>6.5758</td>
<td>18.000</td>
<td>63.3</td>
</tr>
<tr>
<td>0.7604</td>
<td>6.449</td>
<td>17.710</td>
<td></td>
</tr>
<tr>
<td>0.8657</td>
<td>6.250</td>
<td>16.623</td>
<td>62.9</td>
</tr>
<tr>
<td>1.00</td>
<td>6.0318</td>
<td>16.30</td>
<td>62.4</td>
</tr>
</tbody>
</table>
**Table II.2**

Iodine in benzene-cyclohexane solvent:

All data at 25 °C.

<table>
<thead>
<tr>
<th>Volume fraction of benzene, $\xi_1$</th>
<th>$\delta_m$ (expt)</th>
<th>$\delta_m$ using $\xi_1$</th>
<th>$\delta_m$ using $\xi^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2551</td>
<td>8.92</td>
<td>8.46</td>
<td>8.92</td>
</tr>
<tr>
<td>0.5093</td>
<td>9.36</td>
<td>9.12</td>
<td>9.41</td>
</tr>
<tr>
<td>0.6211</td>
<td>9.56</td>
<td>9.32</td>
<td>9.57</td>
</tr>
<tr>
<td>0.6804</td>
<td>9.62</td>
<td>9.42</td>
<td>9.66</td>
</tr>
<tr>
<td>0.7604</td>
<td>9.74</td>
<td>9.56</td>
<td>9.75</td>
</tr>
<tr>
<td>0.8451</td>
<td>9.85</td>
<td>9.71</td>
<td>9.84</td>
</tr>
<tr>
<td>0.8657</td>
<td>9.86</td>
<td>9.75</td>
<td>9.86</td>
</tr>
</tbody>
</table>

($\delta$ values used in this calculation are:

\[
\begin{align*}
\delta_1 &= \delta_{\text{benzene}} = 9.99 \\
\delta_2 &= \delta_{\text{iodine}} = 14.1 \\
\delta_3 &= \delta_{\text{C}_6\text{H}_{12}} = 8.2
\end{align*}
\]
### Table II.3

Iodine in benzene - carbon tetrachloride solvent:
All data at 25°C.

<table>
<thead>
<tr>
<th>Volume fraction of benzene, ( \phi_1 )</th>
<th>( \delta_m ) (exp)</th>
<th>( \delta_m ) using ( \phi_1 )</th>
<th>( \delta_m ) using ( \phi_1^* )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1219</td>
<td>8.75</td>
<td>8.65</td>
<td>8.78</td>
</tr>
<tr>
<td>0.2068</td>
<td>8.96</td>
<td>8.78</td>
<td>8.96</td>
</tr>
<tr>
<td>0.4456</td>
<td>9.39</td>
<td>9.22</td>
<td>9.45</td>
</tr>
<tr>
<td>0.5210</td>
<td>9.42</td>
<td>9.26</td>
<td>9.49</td>
</tr>
<tr>
<td>0.8157</td>
<td>9.82</td>
<td>9.70</td>
<td>9.81</td>
</tr>
<tr>
<td>0.8858</td>
<td>9.89</td>
<td>9.82</td>
<td>9.88</td>
</tr>
</tbody>
</table>

(\( \delta \) values used in this calculation are:

\[
\begin{align*}
\delta_1 &= \delta_{\text{benzene}} = 9.99 \\
\delta_2 &= \delta_{\text{iodine}} = 14.1 \\
\delta_3 &= \delta_{\text{CCl}_4} = 8.45
\end{align*}
\]
Iodine in benzene-cyclohexane and benzene-carbon tetrachloride solvents:

All data at $25^\circ C$.

$$(\ln x_2^m) = \phi_1 \ln x_2^1 + \phi_3 \ln x_2^3$$

$$(\ln x_2^m)^* = \phi_1^* \ln x_2^1 + \phi_3^* \ln x_2^3$$

<table>
<thead>
<tr>
<th>Benzene-Cyclohexane Solvent</th>
<th>Benzene - Carbon Tetrachloride Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_1$</td>
<td>$\ln x_2^m$</td>
</tr>
<tr>
<td>0.2551</td>
<td>4.0224</td>
</tr>
<tr>
<td>0.5093</td>
<td>3.5944</td>
</tr>
<tr>
<td>0.6211</td>
<td>3.4119</td>
</tr>
<tr>
<td>0.6804</td>
<td>3.3359</td>
</tr>
<tr>
<td>0.7604</td>
<td>3.2475</td>
</tr>
<tr>
<td>0.8451</td>
<td>3.1577</td>
</tr>
<tr>
<td>0.8657</td>
<td>3.1471</td>
</tr>
</tbody>
</table>
Table II.5

SnI₄ in benzene - c-C₆H₁₂ mixture:

\( \alpha_2 \) for SnI₄ = 0.113⁵²⁴; \( \delta_2 \) for SnI₄ = 11.3⁵²⁴

<table>
<thead>
<tr>
<th>Volume fraction of benzene, ( \phi_1 )</th>
<th>Saturation solubility, ( x^m_2 \times 10^{-2} )</th>
<th>(-\ln x^m_2)</th>
<th>((\ln \alpha_2 - \ln x^m_2)^{\frac{1}{2}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7279</td>
<td>4.9236</td>
<td>1.6653</td>
</tr>
<tr>
<td>0.165</td>
<td>0.9896</td>
<td>4.6166</td>
<td>1.5704</td>
</tr>
<tr>
<td>0.26</td>
<td>1.01131</td>
<td>4.4991</td>
<td>1.5325</td>
</tr>
<tr>
<td>0.378</td>
<td>1.3475</td>
<td>4.3078</td>
<td>1.4688</td>
</tr>
<tr>
<td>0.585</td>
<td>1.608</td>
<td>4.1311</td>
<td>1.4074</td>
</tr>
<tr>
<td>0.76</td>
<td>1.8546</td>
<td>3.9873</td>
<td>1.3555</td>
</tr>
<tr>
<td>1</td>
<td>2.181²⁴</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solubility parameters of \( \text{C}_6\text{H}_6 - \text{c-C}_6\text{H}_{12} \) mixed solvents for \( \text{C}_6\text{H}_6 - \text{SnI}_4 - \text{c-C}_6\text{H}_{12} \) systems:

<table>
<thead>
<tr>
<th>Volume fraction of benzene</th>
<th>( \delta_m ) (expt)</th>
<th>( \delta_m = \hat{\delta}_1^O \delta_1 + \hat{\delta}_2^O \delta_3 )</th>
<th>( \delta_m^* = \hat{\delta}_1^O \delta_1 + \hat{\delta}_3^O \delta_3 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9.24</td>
<td>8.620</td>
<td>8.686</td>
</tr>
<tr>
<td>0.165</td>
<td>8.673</td>
<td>8.70</td>
<td>8.772</td>
</tr>
<tr>
<td>0.25</td>
<td>8.755</td>
<td>8.89</td>
<td>8.87</td>
</tr>
<tr>
<td>0.378</td>
<td>8.89</td>
<td>8.93</td>
<td>9.016</td>
</tr>
<tr>
<td>0.5850</td>
<td>9.013</td>
<td>9.05</td>
<td>9.119</td>
</tr>
<tr>
<td>0.76</td>
<td>9.116</td>
<td>9.116</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\( \Delta V^E \) in mixed solvents:

<table>
<thead>
<tr>
<th>Volume fract. benzene</th>
<th>( \Delta V^E ) ( \text{cc mole}^{-1} \text{ (calc'd)} )</th>
<th>( \Delta V^E ) ( \text{cc mole}^{-1} \text{ (expt)} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2551</td>
<td>-1.08</td>
<td>-1.19</td>
</tr>
<tr>
<td>0.5093</td>
<td>-1.34</td>
<td>-1.16</td>
</tr>
<tr>
<td>0.6211</td>
<td>-1.13</td>
<td>-1.18</td>
</tr>
<tr>
<td>0.6804</td>
<td>-1.05</td>
<td>-0.98</td>
</tr>
<tr>
<td>0.6924</td>
<td>-1.00</td>
<td>-0.88</td>
</tr>
<tr>
<td>0.8451</td>
<td>-0.55</td>
<td>-0.38</td>
</tr>
<tr>
<td>0.8654</td>
<td>-0.48</td>
<td>-0.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume fract. CCl(_4)</th>
<th>( \Delta V^E ) ( \text{cc mole}^{-1} \text{ (calc'd)} )</th>
<th>( \Delta V^E ) ( \text{cc mole}^{-1} \text{ (expt)} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0525</td>
<td>-0.98</td>
<td>-1.52</td>
</tr>
<tr>
<td>0.108</td>
<td>-1.18</td>
<td>-1.30</td>
</tr>
<tr>
<td>0.1615</td>
<td>-1.33</td>
<td>-4.06</td>
</tr>
<tr>
<td>0.28</td>
<td>-1.49</td>
<td>-2.18</td>
</tr>
<tr>
<td>0.72</td>
<td>-1.154</td>
<td>-1.46</td>
</tr>
<tr>
<td>0.94</td>
<td>-0.18</td>
<td>-0.46</td>
</tr>
</tbody>
</table>

\( \text{Br}_2 \) in CCl\(_4\) - c-C\(_7\)F\(_{16}\):

<table>
<thead>
<tr>
<th>Volume fract. CCl(_4)</th>
<th>( \Delta V^E ) ( \text{cc mole}^{-1} \text{ (calc'd)} )</th>
<th>( \Delta V^E ) ( \text{cc mole}^{-1} \text{ (expt)} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.031</td>
<td>-5.04</td>
<td>-0.45</td>
</tr>
<tr>
<td>0.063</td>
<td>-5.29</td>
<td>-0.69</td>
</tr>
<tr>
<td>0.122</td>
<td>-6.38</td>
<td>-3.84</td>
</tr>
<tr>
<td>0.175</td>
<td>-9.58</td>
<td>-6.20</td>
</tr>
</tbody>
</table>
Partial molal volume of solute in pure solvents:

<table>
<thead>
<tr>
<th>Solute</th>
<th>Solvent</th>
<th>$\nabla_2^{\text{expt}}$ (cc/mole)</th>
<th>$\nabla_2^{\text{calc'd}}$ (cc/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_2$</td>
<td>c-C$<em>6$H$</em>{12}$</td>
<td>68.2</td>
<td>69.8</td>
</tr>
<tr>
<td>$I_2$</td>
<td>C$_6$H$_6$</td>
<td>62.4</td>
<td>63.3</td>
</tr>
<tr>
<td>Br$_2$</td>
<td>CCl$_4$</td>
<td>54.1$^{[64]}$</td>
<td>53.68</td>
</tr>
<tr>
<td>Br$_2$</td>
<td>c-C$_4$Cl$_2$F$_6$</td>
<td>64.3$^{[64]}$</td>
<td>60.69</td>
</tr>
<tr>
<td>Br$_2$</td>
<td>n-C$_7$F$_2$</td>
<td>71.8$^{[64]}$</td>
<td>77.08</td>
</tr>
</tbody>
</table>

(δ for benzene was assumed to be equal to 9.99)
Table II.9

Saturation solubility of naphthalene in $\text{CCl}_4 - \text{c-C}_6\text{H}_{12}$ mixed solvent at 298 °K.[79]

<table>
<thead>
<tr>
<th>Volume fract. of $\text{CCl}_4$ in solute-free solvent, $\xi_1^0$</th>
<th>Volume fract. of $\text{CCl}_4$ in solution, $\xi_1^s$</th>
<th>Volume fract. of naphthalene in solution, $\xi_2^m$</th>
<th>$\delta_m$ (expt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7085</td>
<td>0.2915</td>
<td>8.45</td>
</tr>
<tr>
<td>0.5518</td>
<td>0.4117</td>
<td>0.2538</td>
<td>8.22</td>
</tr>
<tr>
<td>0.3637</td>
<td>0.2379</td>
<td>0.2413</td>
<td>8.05</td>
</tr>
<tr>
<td>0.1575</td>
<td>0.1271</td>
<td>0.193</td>
<td>7.85</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.1587[80]</td>
<td>7.66</td>
</tr>
</tbody>
</table>
Saturation solubility of naphthalene in CH$_2$I$_2$ - c-C$_6$H$_{12}$ mixed solvent at 25 °C:

<table>
<thead>
<tr>
<th>Mole fraction of methylene iodide in pure mixed solvent, $x_1^0$</th>
<th>Volume fraction of I$_2$ in pure mixed solvent, $\Phi_1^0$</th>
<th>Saturation solubility of naphthalene, $-\ln x_2^m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1.9440</td>
</tr>
<tr>
<td>0.12</td>
<td>0.097</td>
<td>1.5997</td>
</tr>
<tr>
<td>0.185</td>
<td>0.1443</td>
<td>1.4872</td>
</tr>
<tr>
<td>0.25</td>
<td>0.196</td>
<td>1.3509</td>
</tr>
<tr>
<td>0.37</td>
<td>0.301</td>
<td>1.2765</td>
</tr>
<tr>
<td>0.48</td>
<td>0.408</td>
<td>1.2174</td>
</tr>
<tr>
<td>0.541</td>
<td>0.47</td>
<td>1.2063</td>
</tr>
<tr>
<td>0.67</td>
<td>0.604</td>
<td>1.2344</td>
</tr>
<tr>
<td>0.75</td>
<td>0.695</td>
<td>1.2694</td>
</tr>
<tr>
<td>0.85</td>
<td>0.805</td>
<td>1.3168</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.4569</td>
</tr>
</tbody>
</table>
Solubility parameters of mixed solvents in the 
CCl$_4$- naphthalene - c-C$_6$H$_{12}$ system[79]

<table>
<thead>
<tr>
<th>Volume fraction of CCl$_4$, $\xi^0_1$</th>
<th>effective vol. fraction of CCl$_4$, $\xi^*_1$</th>
<th>$\delta^m$ (expt)</th>
<th>$\delta^m = \phi^0_1\delta_1 + \phi^<em>_1\delta_1 + \phi^0_3\delta_3 + \phi^</em>_3\delta_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1575</td>
<td>0.3138</td>
<td>7.85</td>
<td>7.76</td>
</tr>
<tr>
<td>0.3637</td>
<td>0.5831</td>
<td>8.05</td>
<td>7.93</td>
</tr>
<tr>
<td>0.5518</td>
<td>0.7508</td>
<td>8.22</td>
<td>8.08</td>
</tr>
</tbody>
</table>

( $\delta$ values used in this calculation are:

$\delta_1 = \delta_{CCl_4} = 8.45$

$\delta_2 = \delta_{naphthalene} = 9.9$

$\delta_3 = \delta_{c-C_6H_{12}} = 7.66$ )
<table>
<thead>
<tr>
<th>Volume fraction of c-C₆H₁₂ (i.e. ( \phi_3 ))</th>
<th>( \phi_3 )</th>
<th>( \delta_m ) (expt)</th>
<th>( \delta_m = \phi_0 \delta_1 + \phi_1 \delta_4 + \phi_3 \delta_3 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>7.66</td>
<td>-</td>
</tr>
<tr>
<td>0.903</td>
<td>0.8224</td>
<td>8.11</td>
<td>8.03</td>
</tr>
<tr>
<td>0.8557</td>
<td>0.7469</td>
<td>8.33</td>
<td>8.21</td>
</tr>
<tr>
<td>0.8067</td>
<td>0.6749</td>
<td>8.47</td>
<td>8.39</td>
</tr>
<tr>
<td>0.699</td>
<td>0.5361</td>
<td>9.03</td>
<td>8.80</td>
</tr>
<tr>
<td>0.597</td>
<td>0.4243</td>
<td>9.51</td>
<td>9.20</td>
</tr>
<tr>
<td>0.53</td>
<td>0.3594</td>
<td>10.06</td>
<td>9.46</td>
</tr>
<tr>
<td>0.396</td>
<td>0.2460</td>
<td>10.50</td>
<td>9.97</td>
</tr>
<tr>
<td>0.305</td>
<td>0.1792</td>
<td>10.77</td>
<td>10.31</td>
</tr>
<tr>
<td>0.197</td>
<td>0.1088</td>
<td>11.03</td>
<td>10.73</td>
</tr>
<tr>
<td>0.0994</td>
<td>0.052</td>
<td>11.20</td>
<td>11.10</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>11.48</td>
<td>-</td>
</tr>
</tbody>
</table>
\( \delta_m^{(\text{expt})} \) for \( \text{CCl}_4 - \text{c-C}_6\text{H}_{12} \) in \( \text{CCl}_4 - \text{naphthalene} \) \( \text{c-C}_6\text{H}_{12} \) system, along with \( \frac{N_1^S}{N_2^S} \) values:

<table>
<thead>
<tr>
<th>( \bar{\delta}_1 )</th>
<th>( \bar{\delta}_2 )</th>
<th>( \bar{\delta}_2^S )</th>
<th>( \delta_m )</th>
<th>( \delta_m^* )</th>
<th>( \frac{N_1^S}{N_2^S} )</th>
<th>( \left( \frac{\ln n^1_{2} - \ln x^m_{2}}{\bar{\delta}_m} \right)^2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2915</td>
<td>0.7085</td>
<td>8.45</td>
<td>-</td>
<td>2.4305</td>
<td>0.6610</td>
</tr>
<tr>
<td>0.1575</td>
<td>0.193</td>
<td>0.1271</td>
<td>7.85</td>
<td>7.89</td>
<td>0.8350</td>
<td>0.9362</td>
</tr>
<tr>
<td>0.3637</td>
<td>0.2413</td>
<td>0.2379</td>
<td>8.05</td>
<td>8.11</td>
<td>1.2501</td>
<td>0.8463</td>
</tr>
<tr>
<td>0.5518</td>
<td>0.2538</td>
<td>0.4117</td>
<td>8.22</td>
<td>6.245</td>
<td>2.0578</td>
<td>0.7564</td>
</tr>
</tbody>
</table>
Table 11.14

\( \delta_m^{(\text{expt})} \) for \( \text{CH}_2\text{I}_2 - \text{c-C}_6\text{H}_{12} \) in \( \text{CH}_2\text{I}_2 - \text{naphthalene} \)

- \( \text{c-C}_6\text{H}_{12} \) system along with \( \frac{N_1}{N_2} \):

<table>
<thead>
<tr>
<th>1</th>
<th>0.3198</th>
<th>0.6802</th>
<th>11.45</th>
<th>-</th>
<th>3.23</th>
<th>0.7201</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.924</td>
<td>0.3387</td>
<td>0.6116</td>
<td>11.20</td>
<td>11.28</td>
<td>2.7394</td>
<td>0.8144</td>
</tr>
<tr>
<td>0.803</td>
<td>0.3456</td>
<td>0.5255</td>
<td>11.03</td>
<td>11.06</td>
<td>2.3089</td>
<td>0.7174</td>
</tr>
<tr>
<td>0.695</td>
<td>0.3542</td>
<td>0.4488</td>
<td>10.77</td>
<td>10.80</td>
<td>1.9241</td>
<td>0.6561</td>
</tr>
<tr>
<td>0.604</td>
<td>0.3579</td>
<td>0.3878</td>
<td>10.50</td>
<td>10.54</td>
<td>1.6453</td>
<td>0.3988</td>
</tr>
<tr>
<td>0.47</td>
<td>0.3592</td>
<td>0.3012</td>
<td>10.06</td>
<td>10.11</td>
<td>1.2733</td>
<td>0.1784</td>
</tr>
<tr>
<td>0.403</td>
<td>0.3505</td>
<td>0.2617</td>
<td>9.51</td>
<td>9.85</td>
<td>1.1337</td>
<td>0.0752</td>
</tr>
<tr>
<td>0.301</td>
<td>0.3247</td>
<td>0.2033</td>
<td>9.03</td>
<td>9.43</td>
<td>0.9507</td>
<td>0.2718</td>
</tr>
<tr>
<td>0.1933</td>
<td>0.2750</td>
<td>0.1401</td>
<td>8.47</td>
<td>8.90</td>
<td>0.7737</td>
<td>0.3961</td>
</tr>
<tr>
<td>0.1433</td>
<td>0.2571</td>
<td>0.1065</td>
<td>8.33</td>
<td>8.63</td>
<td>0.6290</td>
<td>0.5133</td>
</tr>
<tr>
<td>0.097</td>
<td>0.2275</td>
<td>0.0749</td>
<td>8.11</td>
<td>8.34</td>
<td>0.4999</td>
<td>0.5947</td>
</tr>
<tr>
<td>-</td>
<td>0.1587</td>
<td>-</td>
<td>7.66</td>
<td>-</td>
<td>-</td>
<td>1.0225</td>
</tr>
</tbody>
</table>
Values for $\frac{\phi_m}{\phi_1}$ for CC\textsubscript{4} - naphthalene - c-C\textsubscript{6}H\textsubscript{12} and CH\textsubscript{2}I\textsubscript{2} - naphthalene - c-C\textsubscript{6}H\textsubscript{12} systems:

### CC\textsubscript{4} - naphthalene - c-C\textsubscript{6}H\textsubscript{12}:

<table>
<thead>
<tr>
<th>$\phi$\textsubscript{1}</th>
<th>$\frac{\phi_m}{\phi_1}$ (1,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1575</td>
<td>1.1397</td>
</tr>
<tr>
<td>0.3637</td>
<td>1.0709</td>
</tr>
<tr>
<td>0.5598</td>
<td>1.0532</td>
</tr>
</tbody>
</table>

### CH\textsubscript{2}I\textsubscript{2} - naphthalene - c-C\textsubscript{6}H\textsubscript{12}:

<table>
<thead>
<tr>
<th>$\phi$\textsubscript{1}</th>
<th>$\frac{\phi_m}{\phi_1}$ (1,2)</th>
<th>$\frac{\phi_m}{\phi_3}$ (2,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.097</td>
<td>1.1342</td>
<td>0.9182</td>
</tr>
<tr>
<td>0.1443</td>
<td>1.0907</td>
<td>0.8830</td>
</tr>
<tr>
<td>0.1933</td>
<td>1.0659</td>
<td>0.8618</td>
</tr>
<tr>
<td>0.301</td>
<td>0.9928</td>
<td>0.8027</td>
</tr>
<tr>
<td>0.403</td>
<td>0.9549</td>
<td>0.7720</td>
</tr>
<tr>
<td>0.47</td>
<td>0.9422</td>
<td>0.7617</td>
</tr>
<tr>
<td>0.604</td>
<td>0.9440</td>
<td>0.7632</td>
</tr>
<tr>
<td>0.695</td>
<td>0.9494</td>
<td>0.7676</td>
</tr>
<tr>
<td>0.803</td>
<td>0.9621</td>
<td>0.7778</td>
</tr>
<tr>
<td>0.9006</td>
<td>0.9722</td>
<td>0.7860</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

$\phi_1(1,2)$ is the volume fraction of 1 in the saturated solution of 2 in solvent 1.
Figure II.1. Saturation solubility of iodine plotted as \(-R \ln x_2\), as a function of the volume fraction of benzene in mixed benzene-cyclohexane solvent.

A: 20°C
B: 25°C
C: 30°C
Figure II.2. Excess saturation solubility term $(\Delta \ln x_2^m)$ and excess partial molal volume term $(\Delta V_2^M)$ plotted as a function of benzene volume fraction in the mixed benzene-cyclohexane solvent. Data at 25°C.
Figure II.3. Iodine in benzene - c-C₆H₁₂ mixed solvent. \( \left( \ln \frac{a_2}{x_2} - \ln x_2^m \right)^{1/2} \) against volume fraction (\( \square \)) and against "effective volume fraction" (\( \bigcirc \)) of benzene. Data at 25°C.
Figure II.4. Saturation solubility of iodine in mixed C₆H₆ - c-C₆H₁₂ solvent (plotted as R ln x₂) as a function of the "effective volume fraction" of benzene. Data at 25°C.
Figure II.5. The partial molal volume of iodine in benzene-cyclohexane mixed solvent plotted as a function of benzene volume fraction (□) and as a function of benzene "effective volume fraction" (○). Data at 25°C.
Figure II.6. Iodine in carbon tetrachloride - benzene mixed solvent.

$\ln \left( \frac{a_2}{a_2^*} \right) = \ln \left( \frac{m^*_2}{x_2} \right)$ plotted as a function of "effective volume fraction" of benzene in the solvent mixture. Data at 25°C.
Figure II.7. Saturation solubility of iodine in $\text{C}_6\text{H}_6 - \text{CCl}_4$ mixed solvent (plotted as $-R \ln x_2$) against volume fraction of benzene ($\square$) and against "effective volume fraction" of benzene ($\bigcirc$). Data at 25°C.
Figure II.8. Iodine in mixed carbon tetrachloride perfluoroheptane solvent. Data points plotted against simple volume fraction of carbon tetrachloride in mixed solvent (■) and against "effective volume fraction" of carbon tetrachloride (○). Solid line represents the theoretical \( \frac{1}{2} (ln a_2^{1} - ln x_2^{m}) \) versus \( \xi \) or \( \xi^* \) relationship. Data at 25.0°C.
Figure II.9. Saturation solubility of SnI₄ in mixed benzene-cyclohexane solvent plotted (as $\ln x_2^m$) as a function of volume fraction of benzene. Data at 25°C.
Figure II.10. SnI₄ in benzene-cyclohexane mixed solvent. \( Y \) (i.e. \( \ln \frac{a_2^{1/2}}{a_2} - \ln \frac{m_2^{1/2}}{m_2} \)) plotted as a function of volume fraction of benzene (○) and as a function of effective volume fraction of benzene (□). Data at 25°C.
Figure II.10
Figure II.11. Saturation solubility of SnI₄ in C₆H₆ - c-C₆H₁₂ mixed solvent plotted against the "effective volume fraction" of benzene.
Figure II.12. $\delta_m$ (experimental) for benzene-$c$-$C_6H_{12}$ mixed solvent in benzene-iodine-$c$-$C_6H_{12}$ system plotted as a function of volume fraction of benzene ($\delta$) and as a function of "effective volume fraction" ($\phi$). Data at 25°C.
Figure II.13. $\delta_m$ (experimental) for benzene-cyclohexane in benzene - SnI$_4$ - cyclohexane system. Plotted as a function of volume fraction of benzene (©) and "effective volume fraction" of benzene (©). Solid line represents theoretical $\delta_m$ versus $\phi^0_1$ or $\phi^*_1$. Data at 25°C.
Figure II.14. $\delta_m$ (experimental) for $\text{C}_6\text{H}_6 - \text{c-C}_6\text{H}_{12}$ mixed solvent in $\text{C}_6\text{H}_6 - 3\text{nI}_4 - \text{c-C}_6\text{H}_{12}$ system plotted against volume fraction and "effective volume fraction" of benzene. Data at 25°C.

○ with effective volume fraction
○ with volume fraction.
Figure II.15
Excess saturation solubility terms.
Curve A $= \frac{1}{A}(\Delta \ln x^m_2)$
Curve B $= \frac{1}{A}(\Delta \ln x^m_2)$
Curve C $= \frac{1}{A}(\Delta x \ln x^m_2)$
for solute $\delta_2 (=14)$ in mixed solvent $\delta_1=12$
$\delta_3=6$
Figure II.16. Excess saturation solubility term for iodine in a mixed benzene-cyclohexane solvent.
25°C.

Curve A: $\Delta(\ln x_{2*})$

Curve B: $\Delta(\ln x_2^m)$

Curve C: $\Delta^*(\ln x_2^m)$

Experimental data ○
Figure II.16
Figure II.17. Excess saturation solubility curve for iodine in mixed benzene – carbon tetrachloride solvent. 25°C.

Curve A: \( \Delta(\ln x^m_2) \)

Curve B: \( \Delta(\ln x^m_2) \)

Experimental data points \( \odot \)
Figure II.17
Figure II.18. Excess saturation solubility curve for SnI₄ in benzene-cyclohexane mixed solvent.

Curve A: $\Delta \ln x_{2^*}^m$

Curve B: $\Delta^* \ln x_2^m$

Curve C: $\Delta \ln x_2^m$

* experimental points.

All data at 25° C.
Figure II.18
Figure II.19. Excess saturation solubility term for iodine in a mixed carbon tetrachloride - perfluoroheptane solvent. 25°C.

Curve A: \( \Delta(\ln x_{2*}^m) \)

Curve B: \( \Delta(\ln x_2^m) \)

Experimental data points
Figure II.19
Figure II.20. Saturation solubility of iodine in CCl₄ - n-C₇F₁₆ mixed solvent plotted (as ln x²₄) as a function of the "effective volume fraction" and the volume fraction of CCl₄. Data at 25°C.
Figure II.21. Excess saturation solubility curves, \( \Delta(\ln x^{m}_{2*}) \) for naphthalene\( (\delta_2 = 10) \) in hypothetical mixed solvents.

Curve A: \( \delta_1 = 6; \delta_3 = 14 \)

Curve B: \( \delta_1 = 8; \delta_3 = 12. \)
Figure II.22. \((\ln a_2^1 - \ln x_2^m)^\frac{1}{6}\) plotted against effective volume fraction \(\xi^*_1\) for naphthalene in hypothetical mixed solvents.

Curve A: \(\delta_1 = 6; \delta_3 = 14\).

Curve B: \(\delta_1 = 8; \delta_3 = 12\).

(for this system \(\xi^*_1 = \xi_1\))
Figure II.22
Figure II.23. Excess saturation solubility for SnI$_4$ ($\delta = 11.7$) in hypothetical mixed solvent ($\delta_1 = 5.6$; $\delta_3 = 14.0$).

Curve A: $\Delta(\ln x^{m}_{2*})$; Curve B: $\Delta*(\ln x^{m}_{3})$;
Curve C: $\Delta(\ln x^{m}_{2})$
Figure II.24. \((\ln a_2^1 - \ln x_2^m)^{\frac{1}{2}}\) plotted as a function of \(\delta_1^*(\)linear plot A) and as a function of \(\delta_1 (\)curve B) for stannic iodide (\(\delta_2 = 11.7\)) in hypothetical mixed solvent \(\delta_1 = 5.6; \delta_3 = 14.0\).
Figure II.24
Figure II.25. Partial molal volume ($\bar{V}_2$) of bromine in mixed $CCl_4 - c-C_4Cl_2F_6$ solvent plotted as a function of the effective volume fraction $\phi^*_1$ (of $CCl_4$). 25°C.
Figure II.26. Excess volume of mixing function $-\Delta V^E$ for iodine in a mixed $\text{C}_6\text{H}_6 - \text{c-C}_6\text{H}_{12}$ solvent, as a function of volume fraction $\xi_1$ (assuming effective volume fraction definition for $\xi_m$). Data at 25°C.

Full curve - calculated from equation (65).

Experimental data points (according to equation (66))
Figure II.26
Figure II.27. Excess volume of mixing term $-\Delta V^E$ for bromine in a mixed $\text{CCl}_4 - \text{c-C}_4\text{Cl}_2\text{F}_6$ solvent, 25°C, plotted against volume fraction of $\text{CCl}_4$.

Theoretical curve - full line - assuming effective volume fraction definition of $\delta_m$.

Experimental data points $\circ$
Figure II.27
Figure II.28  Saturation solubility of naphthalene in CCl$_4$ - c-C$_6$H$_{12}$ mixed solvent of different composition, plotted (as $x_m^2$) as a function of temperature.

Curve A: pure CCl$_4$
Curve B: $\delta_1 = \delta$CCl$_4 = 0.5518$
Curve C: $\delta_1 = \delta$CCl$_4 = 0.3637$
Curve D: $\delta_1 = \delta$CCl$_4 = 0.1575$
Curve E: pure c-C$_6$H$_{12}$

(All data taken from the reference-79)
Figure II.28a. Saturation solubility of naphthalene plotted (as $x_2^m$) as a function of mole fraction of methylene iodide. Data at 25°C.
Figure II.29b. Saturation solubility of naphthalene plotted (as $-\ln x^m_2$) as a function of volume fraction of methylene iodide in solute-free methylene iodide - cyclohexane mixed solvent. Data at 25°C.
Figure II.30. Naphthalene in carbon tetrachloride - cyclohexane mixed solvent. Y (i.e. \( \ln a_{2}^{1/3} - \ln x_{2}^{m} \)) plotted as a function of volume fraction of cyclohexane (⊙) and the effective volume fraction of cyclohexane (⊗). In this plotting it has been assumed that \( \frac{g_{m}}{g_{1}(1,2)} \approx 1 \). (see Table II.15 and Table II.9) Data at 25°C.
Figure II.31. Naphthalene in methylene iodide - cyclohexane mixed solvent. Y (i.e. $(\ln a_2^1 - \ln x_2^m)^{1/3}$) plotted as a function of volume fraction of cyclohexane (○) and effective volume fraction of cyclohexane (□). In this plot it has been assumed that $\tilde{\xi}_{1}(1,2)$ and $\tilde{\xi}_{3}(2,3)$ are equal to unity. (see Table II.15 and Table II.10) All data at 25°C.
Figure II.32. Naphthalene in carbon tetrachloride - cyclohexane mixed solvent. $Y/\phi_m$ (i.e. $(\ln a_2^1 - \ln x_2^m)^{1/2}/\phi_m$) plotted as a function of volume fraction of cyclohexane (○) and as a function of "effective volume fraction" (⊙) of cyclohexane. Data at 25°C. (see Table II.13)
Figure II.33. Naphthalene in methylene iodide - cyclohexane mixed solvent. \( Y/x_m \) (i.e. \( \ln a_2^1 - \ln x_2^m \)) plotted as a function of volume fraction of cyclohexane (○) and as a function of effective volume fraction of cyclohexane (⊗). (see Table II.15) All data at 25° C.
Chapter - III

Calculation of Entropy of Solution from Scaled Particle Theory
The scaled particle theory of fluids is essentially an equilibrium theory concerned with the prediction of the bulk thermodynamic properties of fluids over the whole existence region of the fluid. The classical hard sphere consists of "identical" particles or molecules which are rigid spheres of diameter $a$, obeying classical mechanical laws. Two such molecules interact with one another only when they collide elastically. The importance of this model is due to the considerable mathematical simplification in the many-body problem resulting from its use, as well as its usefulness in describing the behaviour of real fluids under extreme conditions. Thus, at very high temperatures, when the average kinetic energy of the gas molecule is much greater than the minimum value of the intermolecular potential energy, the hard core (of diameter $a$) of this potential energy is important in determining the properties of the fluid. At very high density, on the other hand, the attractive part of a more realistic intermolecular potential can be thought of as a smooth average potential not greatly affecting the properties of the fluid.

The scaled particle theory was first developed by Reiss, Frisch and Lebowitz [96] in 1959 and is mainly concerned with hard spheres. Since then a number of papers and a couple of reviews have concerned themselves with various idealised systems such as hard spheres,
hard discs and one dimensional systems, as well as real fluids, particularly with attempts to provide numerical results which can be compared with the experiments.

The scaled particle theory is a formal theory in the same sense as cluster theory, the radial distribution function, and the Percus-Yerick theory. The scaled particle theory has been used to calculate heat of vaporization, surface tension, and heat capacities of real fluids.\cite{124} Scaled particle theory can also be applied to fused salts.\cite{104-106} Besides, scaled particle theory does not need any adjustable parameters if the hard core diameter of the molecule is known. For simple nonpolar liquids, the heat of vaporization can usually be used to calculate the hard sphere diameter. Hard sphere diameters calculated this way can be used to calculate other thermodynamic properties of real liquids and usually the calculated thermodynamic properties agree well with the experimental values when compared.

From the scaled particle theory Reiss et al. obtained an expression for an equation of state for hard sphere fluids as follows:

\begin{equation}
   P = \frac{\rho k T (1 + Y + Y^2)}{(1 - Y)^3}
\end{equation}

where $P$ is pressure, $\rho$ is the number density $\frac{N}{V}$, $T$ is temperature in absolute scale, $k$ is Boltzmann's
constant, and

\[ Y = \frac{\pi a^3 \rho}{b} \]

An exactly similar equation for \( P \) (as in equation (1)) was obtained by E. Thele\textsuperscript{108} and M. S. Wertheim\textsuperscript{107} by simultaneous solution of the Percus-Yerik equation and the Ornstein-Zernike compressibility equation\textsuperscript{119}. Besides, this equation is in remarkable agreement with the machine calculations of W. W. Wood and J. D. Jacobson\textsuperscript{120} and of B. J. Alder and T. E. Wainwright\textsuperscript{126}. The virial development

\[ P = \rho kT (1 + \sum_{n=1}^{\infty} B_n + 1 \rho^n) \quad (2) \]

where the \( B_n \)'s are the virial coefficients of equation (1) yields: (see H. L. Frisch in reference \textsuperscript{100})

\[ \frac{P}{\rho kT} = 1 + 4Y + 10Y^2 + 19Y^3 + 31Y^4 + \ldots \quad (3) \]

Equation (3) compares favourably with the exact virial series

\[ \frac{P}{\rho kT} = 1 + 4Y + 10Y^2 + 18.36Y^3 + (28.3 \pm 1.3)Y^4 + \ldots \quad (4) \]

Comparing equation (3) with equation (4) one sees that the first three coefficients are exact in equation (3)
but the fourth is in error by 3% while the fifth lies within 5% of the uncertainty.[96,97]

Attempts to extend the scaled particle theory to real fluids in an effort to derive their equation of state has not met with the same success and this aspect of the theory is still under development. The most notable contribution in this field is the perturbation theory of Henderson and Barker[122–124,114,125] where they treated the soft part of the intermolecular potential of fluid molecules as a small perturbation to the hard sphere system.

Recently Lebowitz et al.[112,113] obtained an expression for the equation of state for hard sphere mixtures:

\[ \pi_b P = 6 \left\{ \frac{\xi_0}{1 - \xi_3} \right\} + 18 \left\{ \frac{\xi_1 \xi_2}{(1 - \xi_3)^2} \right\} + 18 \left\{ \frac{\xi_2^3}{(1 - \xi_3)^3} \right\} \]  

(5)

\(\xi_l\)'s in equation (5) are defined as

\[ \xi_l = \frac{1}{6} \nu \sum_{i=1}^{m} \rho_i (2R_i)^l \]  

(6)

where \(m\) is the number of components of the mixtures. \(R_i\) is the radius of the fluid particles of \(i\)th component.

The scaled particle theory as developed by Reiss and his coworkers has been used by different authors
to calculate different thermodynamic properties of fluids and fluid mixtures. Pierotti\textsuperscript{[115-6]} used the scaled particle theory for predicting the solubility, the heat of solution and the partial molar volume of simple gases in nonpolar solvents and in water. Yosin used the same theory to calculate the excess entropy of mixing of simple nonpolar liquids. The method used by Yosin\textsuperscript{[103]} to calculate the excess entropy of mixing of two fluids was derived from the entropy of mixing of two rigid sphere fluids, each at the volume of the corresponding liquid component and the resultant mixture of the hard spheres at the volume of the mixture of two real liquids. Snider et al.\textsuperscript{[118]} used Longuet-Higgins' and Widom's\textsuperscript{[117]} model to calculate the excess thermodynamic functions of 10 equimolar mixtures of nonpolar liquids and found that the agreement between the calculated values and the experimental values was generally good. Longuet-Higgins' and Widom's model may be considered as an improvement of the theory developed by Reiss et al.\textsuperscript{[96]} as this model has finite configurational internal energy but the effects of the configurational internal energy on the entropy change are expected to be either cancelled out or to be very small with respect to this assumption. We will use the scaled particle theory to calculate the partial molar entropy change of a solid solute dissolved in nonpolar solvents.
Method of Calculation of Partial Molal Entropy of Solution

As our interest lies in calculating the partial molal entropy change of a solid solute when dissolved in solution, i.e. \((S_2^S - S_2^S)\), we will devise a thermodynamic cycle to dissolve the solid solute in the solution. The thermodynamic cycle we will use in the following discussion consists of six steps. These steps can be described in the following manner:

**Step I.** Pure solid solute at room temperature is converted to supercooled liquid at that temperature. Unfortunately, we cannot use the scaled particle theory in calculating the entropy change involved in this step as it is well known that scaled particle theory cannot be extended to the solid states and it does not describe correctly the melting process of solids (even in a simple case like the melting of solid argon\([107]\)). We decided, therefore, to use the experimental value to calculate the entropy change involved in this step. This can be calculated by the usual thermodynamic procedure. Let the entropy change involved in this step be denoted \(\Delta S_2^I\) where the superscript refers to the step number, in this case because this entropy change refers to the entropy change involved due to Step I. Subscript 2 refers to the solute, our usual notation for solute.
Therefore, we see that $\Delta S^f_2$ is the entropy of fusion of the solute at room temperature. From usual thermodynamic relations we find

$$\Delta S^f_2 = n_2(\Delta S^f_{298})$$

$$= n_2(\Delta S^f_{\text{mpt}} - \Delta C_p^{s-l} \ln \frac{T_{\text{mpt}}}{298})$$

(7)

where $\Delta S^f_{\text{mpt}}$ is the entropy of fusion at the melting point, $T_{\text{mpt}}$; $\Delta S^f_{298}$ is the entropy of fusion at 298° K; $\Delta C_p^{s-l}$ is the difference of the heat capacities between solid and liquid solute; and $n_2$ is the number of moles of solid solute.

Besides the obvious problem of the nonapplicability of the scaled particle theory in describing the process of melting, there is another reason for introducing Step I. In most of the solid solubilities studies, the supercooled liquid of the solid solute extrapolated to the temperature at which the experiment was performed is the standard state for these studies and all the thermodynamic data for the solid solutes were collected with respect to this standard state.

Step II. The liquid solvent and the liquid solute created in Step I are separately "discharged" at constant volume to hard spheres.

Let the entropy change of this step be denoted by $\Delta S^{\text{II}}$. 
\[ \Delta S_{\text{II}} = -(n_1 \Delta S_{\text{charg}(1)} + n_2 \Delta S_{\text{charg}(2)}) \]  

where \( n \)'s are the number of moles, \( \Delta S_{\text{charg}} \) is the entropy change due to charging of the hard spheres to real liquids.

**Step III.** The hard sphere fluids produced in Step II are now vaporized at that temperature. If the vapor of the hard sphere gases at that temperature is assumed to be ideal such that \( P^0 V^0 = RT \), then the entropy change of this step can be calculated from the scaled particle theory. Yosim obtained the entropy of vaporization of hard sphere fluids at the boiling point of the corresponding liquid as

\[ \Delta S_{\text{Vap}} = n_1 R \ln \frac{V^g_{\text{bpt}}}{(V^g_{\text{bpt}} - ca_i^3)} + \frac{3\text{cR}a^3_i(2V^g_{\text{bpt}} - ca_i^3)}{2(V^g_{\text{bpt}} - ca_i^3)} \]

where \( V^g_{\text{bpt}} \) is the volume of the liquid at the boiling point, \( C \) is \( \frac{nN_0}{6} \) where \( N_0 \) is Avogadro's number, \( a \) is the hard sphere diameter of the liquid, and \( V^g_{\text{bpt}} \) is the volume of the substance in the gas phase and the gas obeys the ideal gas law.

From the thermodynamic relationship, the entropy of vaporization at 298°K is given by

\[ \Delta S_{\text{Vap,298}} = nR \ln \frac{V^g_{\text{bpt}(1)}}{(V^g_{\text{bpt}(1)} - ca_1^3)} + \frac{3\text{cR}a^3_1(2V^g_{\text{bpt}(1)} - ca_1^3)}{2(V^g_{\text{bpt}(1)} - ca_1^3)} - \frac{C_{\text{g}}}{P} \ln \frac{T_{\text{Bpt}}}{298} \]
where $T_B$ is the boiling point and $\Delta C_p^t-g$ is the difference of the heat capacities of liquid and vapor phase. In writing equation (10), we assumed that the $\Delta C_p^t-g$ is independent of the temperature.

The $\Delta C_p^t-g$ for liquids can also be calculated from the scaled particle theory of the fluids. The $\Delta C_p^t-g$ is given by [102]

$$\Delta C_p^t-g = -R + RT_0 \frac{1 + Y_1 + Y_1^2}{(1 - Y_1)^3}$$

(11)

where $\alpha_0$ is the coefficient of thermal expansivity of the liquid, and

$$Y_1 = \frac{c_1^3}{v^t}$$

Therefore, combining equations (10) and (11),

$$\Delta S_{III} = n_1 R \ln \frac{V_B^t(1)}{V_B^t(1) - c_1^3} + \frac{3cRn_1a_1^3(2V_B^t(1) - c_1^3)}{2(V_B^t(1) - c_1^3)} - n_1\Delta C_p^t-g \ln \frac{T_B^t(1)}{298K} + n_2 R \ln \frac{V_B^t(2)}{V_B^t(2) - c_2^3} + \frac{3cRn_2a_2^3(2V_B^t(2) - c_2^3)}{2(V_B^t(2) - c_2^3)^2} - n_2\Delta C_p^t-g \ln \frac{T_B^t(2)}{298K}$$

$$- n_2\Delta C_p^t-g \ln \frac{T_B^t(2)}{298K}$$

(12)

The reason we used $\alpha_0$ for the real liquid (i.e. the coefficient of the thermal expansivities of the liquid) and not a hard sphere liquid is due to the fact that
we are calculating the heat of vaporization at the boiling point and as we are using the experimentally determined $V_{Bpt}$, we have to use $\alpha_t$ to be consistent in our calculations.

**Step IV.** The ideal hard sphere gases produced in Step III are mixed at constant pressure. If we assume that the mixing is ideal then the entropy of this step is given by

$$\Delta S^{IV} = -n_1 R \ln x_1 - n_2 R \ln x_2$$  \hspace{1cm} (14)

where $x$'s are the mole fractions.

**Step V.** The mixture of the hard spheres is compressed to the volume of the solution $V_s^t$. The entropy of this step can be derived from Lebowitz's equation of state for a mixture of hard spheres and is given by (see Appendix AIII.1)

$$\Delta S^V = -R(n_1 + n_2) \left\{ \ln \frac{V_s^t}{V_s^{298}} - c(n_1 a_1^3 + n_2 a_2^3) \right\}$$

$$- \frac{1}{n} \left[ c(3x_1^3 a_1^3 + x_1^2 x_2(6a_1^5 a_2 - 3a_1^4 a_2 + 6a_1^3 a_2) \right.$$  

$$+ x_1 x_2(6a_1^3 a_2 - 3a_1^2 a_2 + 6a_1 a_2^2) + 3x_2^3 a_2^3) \right.$$  

$$- 6cV_s^t [x_1 a_1^3 + x_2 x_2(x_1 a_2^2 + a_1 a_2) + x_1 x_2]$$  

$$\left[ V_s^{298} - c(x_1 a_1^3 + x_2 a_2^3) \right]^{-2} \right\} \right\} \right\} \right\} \right\} \right\} \right\}$$  \hspace{1cm} (15)
Step VI. The compressed mixtures of the rigid spheres are "recharged," i.e., the intermolecular attractive potential is brought back and the repulsive potential is changed to that of the solution. Then, the entropy change of this step is

$$\Delta S^{VI} = (n_1 + n_2)\Delta S^{VI}_{\text{chrg}(1,2)}$$

Since we are interested in nonpolar liquids, it is reasonable to assume that the entropy change due to charging and discharging is very small and the difference between charging pure components and solution will be very small, or in other words we can assume

$$\Delta S^{II} - \Delta S^{IV} = -n_1\Delta S^{II}_{\text{chrg}(1)} - n_2\Delta S^{II}_{\text{chrg}(2)} - (n_1 + n_2)\Delta S^{VI}_{\text{chrg}(1,2)} = 0$$

(16)

The excess entropy is defined as

$$\Delta S^E = \Delta S^m + \sum_{i=1}^{2} n_i R \ln x_i$$

where $\Delta S^m$ is the total entropy of mixing. Collecting all the entropy changes involved from Step I to Step VI and subtracting from then the ideal entropy of solution, one obtains the excess entropy of the mixing, $\Delta S^E$, as
If the solution is dilute with respect to component 2, i.e. solute, then any term involving $x_1 x_2$ or any higher power of $x_2$ can be neglected and equation (17) simplifies to

$$
\Delta s^E = n_2 \Delta S^I + n_1 R \ln \frac{v_{1,Bpt}^g}{v_{2,Bpt}^g} + n_2 R \ln \frac{v_{2,Bpt}^g}{v_{1,Bpt}^g}
$$

$$
- n_1 R \ln (v_{1,Bpt}^l - ca_1^3) - n_2 R \ln (v_{2,Bpt}^l - ca_2^3)
$$

$$
+ \frac{3cR_n a_1^3 (2v_{1,Bpt}^l - ca_1^3)}{2(v_{1,Bpt}^l - ca_1^3)^2} - n_1 \Delta c_{p(1)}^l \ln \frac{T_{Bpt(1)}}{298}
$$

$$
+ \frac{3cR_n a_2^3 (2v_{2,Bpt}^l - ca_2^3)}{2(v_{2,Bpt}^l - ca_2^3)^2} - n_2 \Delta c_{p(1)}^l \ln \frac{T_{Bpt(2)}}{298}
$$

$$
- n_1 R \ln \frac{v_{s,298}^g}{v_{s,298}^g} - n_2 R \ln \frac{v_{s,298}^g}{v_{s,298}^g} + n_1 R \ln \frac{v_{s,298}^l}{v_{s,298}^l} - c(n_1 a_1^3 + n_2 a_2^3)
$$

$$
+ n_2 R \ln [v_{s,298}^l - c(n_1 a_1^3 + n_2 a_2^3)]
$$

$$
+ \frac{c}{2} (n_1 + n_2) \left[ 3x_1^3 a_1^3 + x_1^2 x_2 (6a_1 a_2^4 - 3a_1^2 a_2^2 + 6a_1 a_2^3) + x_1 x_2 (6a_2^3 a_2^3 - 3a_2 a_1^4 + 6a_2 a_1^5) - 6c v_{s}^l x_1 a_1^3 + x_2 a_2^3 + x_2 x_1 (a_1 a_2^2 + a_2 a_1^2) \right] v_{s,298}^l - c(x_1 a_1^3 + x_2 a_2^3)^2 (17)
$$
Substituting \( \frac{T_{Bpt}^t}{298} \) where \( B \) are the partial molal volume and then differentiating equation (18) with respect to \( n_2 \) and then converting the equation for 1 mole of mixture, i.e. \( N_1 + N_2 = 1 \), one obtains the excess partial molal entropy of component 2 as

\[
\Delta S^E_2 = R \ln V^g_{Bpt(2)} - R \ln (V^t_{Bpt} - c a^3_2) + \Delta S^I_2
\]

\[
+ \frac{3c a^3_2 (2V^t_{Bpt} - c a^3_2)}{(V^t_{Bpt} - c a^3_2)^2} - \frac{c a^3_2}{c a^3_2}
\]

\[- R \ln V_{298(s)} - x_1 R \frac{V_2 - c a^3_2}{x_1 V_1 + x_2 V_2 - c (x_1 a^3_1 + x_2 a^3_2)}
\]

\[+ x_2 R \frac{V_2 - c a^3_1}{x_1 V_1 + x_2 V_2 - c (x_1 a^3_1 + x_2 a^3_2)}
\]

\[+ R \ln [V^t_s - c (x_1 a^3_1 + x_2 a^3_2)] \]  (19)

Equation (19) is further simplified for a very dilute solution as we are interested in a very dilute solution where \( x_2 \) is of the order of \( 10^{-3} \).

For a very dilute solution, \( V_1 \) or the partial molal volume of solvent in the solution can be taken as equal to \( V_1 \) or the molal volume of pure solvent.
at that temperature, and as dilute solution $x_2$ is very small, equation (19) becomes

$$\Delta S^E_{2} = \Delta S^I + R \ln \frac{V_{B}^g}{V_{B}^t} - R \ln \left( \frac{\nu^t_{B} - ca^3_2}{V_{B}^t - ca^3_2} \right)$$

$$+ 3cRa^3_2 \left( \frac{2\nu^t_{B} - ca^3_2}{(V_{B}^t - ca^3_2)^2} \right)$$

$$- \Delta S^p_{1-2} \ln \frac{T_{B}^p(2)}{298} - R \ln \frac{V^g_{298(s)}}{V^g_{298}}$$

$$+ R \frac{V_2 - ca^3_1}{x_1V_1 + x_2V_2 - c(x_1a^3_1 + x_2a^3_2)}$$

$$+ R \ln \left( \frac{x_1V_1 + x_2V_2 - c(x_1a^3_1 + x_2a^3_2)}{x_1V_1 + x_2V_2 - c(x_1a^3_1 + x_2a^3_2)} \right) \quad (20)$$

As we have assumed before, the vapor behaves as an ideal gas so that $V^g$ or the volume in the gas phase can be calculated from the ideal gas law, i.e. $PV = RT$.

Equation (20) gives the entropy of solution at constant pressure. This equation was applied to calculate $\Delta S^p_2$ or the partial molal entropy of solute at constant pressure for $I_2$, SnI$_4$, Sn(C$_6$H$_5$)$_4$ and Sn(C$_6$F$_5$)$_4$ in the following solvents: (i) CS$_2$, (ii) toluene, (iii) CCl$_2$F.CF$_2$Cl, (iv) CCl$_4$, (v) m-xylene, (vi) iso-octane, (vii) C$_2$H$_4$.Cl$_2$.

For Sn(C$_6$F$_5$)$_4$ no experimental values for $\Delta S^I$ are known. However the difference between the experimental and theoretical $\Delta S^p_2$ values for Sn(C$_6$F$_5$)$_4$ in a range of solvents should be a constant value (i.e. the value of $\Delta S^I$ which is given by

$$(\Delta S^p_2)_{\text{expt}} - (\Delta S^p_2)_{\text{theor}} = \Delta S^I$$
The other solid solute which has been studied is tetra perfluorophenyl tin, and for this compound no literature value for boiling point is available. Also the value for entropy of fusion at room temperature is not known. For this solute we decided to calculate only $\Delta S_{2}^{IV} + \Delta S_{2}^{V}$ and subtract it from the experimental value of $\Delta S_{2}^{P}$. This should give a value for $\Delta S_{2}^{I} + \Delta S_{2}^{III}$, which would be constant for a particular solute.

In Table III.2 all the calculated values for $\Delta S_{2}^{P}$ are compared with the experimental values.

In Table III.1 we give the values of hard sphere diameters used in this calculation.

Discussion

From the data presented in Table III.2, it can be seen that agreement between the calculated values and experimental values for $I_2$ and $SnI_4$ is extremely good. These are the only two solid solutes for which all the necessary data are available -- particularly heat of vaporization, entropy of fusion, $\Delta C_P^{l-s}$, i.e. the difference of heat capacities of solid and liquid state of the solute. For $SnI_4$, the entropy of fusion at 298° K was taken as 9.1 eu as calculated by Hildebrand et al. For iodine this value was calculated from the data given by Hildebrand et al. and found to be 8.4 eu. Hildebrand's Regular Solution theory (see Chapter I)
deals with the entropy of mixing at constant volume which is related to the entropy of mixing at constant pressure (which we are interested in) by the equation

$$\Delta S^V_2 = \Delta S^P_2 - \left( \frac{\partial P}{\partial T} \right)_V \nabla^E_2$$  \hspace{1cm} (21)

where $\Delta S^V_2$ is the partial molal entropy of solution at constant volume, $\Delta S^P_2$ is that at constant pressure, $\left( \frac{\partial P}{\partial T} \right)_V$ is the isochore of the solvent at constant volume, and $\nabla^E_2$ is the excess partial molal volume of the solute in solution.

It is clear that this method can be used to calculate $\Delta S^V_2$ because all other quantities in equation (15) are usually obtained from the experimental results. Or, if the scaled particle theory predicts $\Delta S^P_2$ correctly, then one is assured of obtaining a correct value for $\Delta S^V_2$ as long as equation (21) is valid. In the case of iodine, it has been observed that when $\Delta S^V_2$ is plotted against $-R \ln x_2$ one obtains a straight line whose intercept is equal to 9.1 eu and slope is equal to 1.1 in comparison to the expected values 8.4 and 1.0 respectively. Or in other words, although the $\Delta S^V_2$'s are nearly ideal for iodine as shown by J. Hildebrand et al., the excess entropy even at constant volume is not exactly zero. As mentioned earlier, we are not dealing with $\Delta S^V_2$. In the case of iodine it is shown in Table IV.2 that the agreement between the ex-
mixing can be applied to tetraphenyl tin - organic solvent systems. In Table III.2 we give the value of $\Delta S_2^{I}$ for $\text{Sn}(C_6H_5)_4$ calculated in this fashion in different organic solvents. Except for the toluene $\text{Sn}(C_6H_5)_4$ system, $\Delta S_2^{I}$ values determined in this fashion are reasonably self-consistent even though we assumed in Step IV that the entropy of mixing two ideal hard sphere gases is ideal.

The ability to predict such a large excess entropy in this case is an interesting feature of the entropy cycle we have used to calculate partial molal entropy $S_2^{P}$ of the solute because in this calculation the effect of the volume disparity between the solvent and solute does not need to be considered.

For $\text{Sn}(C_6F_5)_4$, as mentioned earlier, we calculated $\Delta S_2^{I} + \Delta S_2^{II}$ by subtracting $\Delta S_2^{III} + \Delta S_2^{IV} + \Delta S_2^{V} + \Delta S_2^{VI}$ from the experimental $\Delta S_2^{P}$. The calculated values for $\Delta S_2^{I} + \Delta S_2^{II}$ for $\text{Sn}(C_6F_5)_4$ in different solvents are also given in Table III.2. As before, $\Delta S_2^{I} + \Delta S_2^{II}$ for a solute should be constant irrespective of the solvents. This is observed in the case of $\text{Sn}(C_6F_5)_4$ for different organic solvents as shown in Table III.2.

Considering that no allowance for volume difference on the entropy of mixing was made in this calculation, it is interesting to note that the entropy cycle we used here may be applied successfully in cases where the ratio of the solute-solvent molar volume is as large
as five. Considering the success of applying this entropy cycle in predicting such a large excess entropy, it seems that for spherical molecules the large excess entropy of mixing may not be due to molar volume differences alone.

Going back to Table III.2 again, we can see that for tetraphenyl tin the $\Delta S^T_2$ calculated by the procedure described above is reasonably constant except for toluene, where the calculated excess entropy is much larger than the experimental one. We have no definite idea as to why the toluene - SnPh$_4$ system deviates to such a large extent. It has been suggested that SnPh$_4$ forms a complex with benzene, although no such studies have been reported for the toluene - SnPh$_4$ system; it may be that SnPh$_4$ also forms a complex with toluene. In that case these calculations do not have any meaningful significance because they are based on the assumption that molecules interact according to the hard sphere potential and the "charging" and "discharging" processes have almost negligible effect on the entropy of the solution. This is not the case where more specific interactions are present.

For tetra perfluorophenyl tin the situation becomes more complicated. As mentioned earlier the entropy change for $\Delta S^f_{298} + \Delta S^{III}_2$ is not known. So we looked for a constant value of $\Delta S^f_{298} + \Delta S^{III}_2$ for SnPf$_4$ by the method described earlier. The calculated
Experimental $\Delta S_2^P$ and the $\Delta S_2^P$ calculated from the scaled particle theory are in good agreement, it is clear from equation (15) that $\Delta S_2^V$'s have to be in good agreement, provided equation (15) is valid.

The difference between the method described here to calculate the entropy of the mixing and Regular Solution theory is that in this method we assumed that the entropy of mixing is ideal when two ideal hard sphere gases are mixed, whereas in Regular Solution theory it was assumed that the entropy of mixing is ideal when two liquids are mixed. As mentioned earlier, the two solid solutes which have been studied extensively in terms of the Regular Solution theory do seem to have a very small excess entropy.

But for tetraphenyl tin, the excess entropy of mixing is quite large and as shown by Vitoria and Walkley [54], the Regular Solution theory breaks down for tetraphenyl tin - organic solvent systems due to the large excess entropy of mixing. We were unable to calculate the $\Delta S_2^P$ for Sn(C₆H₅)₄ in different solvents due to the unavailability of necessary data to calculate the entropy of fusion for Sn(C₆H₅)₄ at 298° K, i.e. $\Delta S_2^I$. But as $\Delta S_2^I$ is constant for the solute irrespective of the solvents, we shall be able to calculate $\Delta S_2^I$ by subtracting $(\Delta S_2^{II} + \Delta S_2^{III} + \Delta S_2^{IV} + \Delta S_2^{V} + \Delta S_2^{VI})$ from the experimental $\Delta S_2^P$ -- and this value for $\Delta S_2^I$ should be a constant if this method of calculating entropy of
values of \( \Delta S_{298}^f + \Delta S_{2}^{III} \) come to be constant within a few per cent (which can be considered to be good). But as there is an exact method by which \( \Delta S_{298}^f \) can be separated from \( \Delta S_{298}^f + \Delta S_{2}^{III} \), this procedure is not very helpful in calculating the excess partial molal entropy of mixing of \( \text{Sn}(\text{C}_6\text{F}_5)_4 \) in organic solvent.

**Conclusion**

In this chapter we showed that the scaled particle theory can be used in calculating the partial molal entropy of mixing of a solute and we also showed that the calculated values of \( \Delta S_{2}^P \) are in good agreement with the experimental values. But as the major contributions in calculating \( \Delta S_{2}^P \) come from \( \Delta S_{298}^f \) (the entropy of fusion at 289\(^0\)K) and from \( \Delta S_{2}^{IV} \) \((-R \ln x_2)\), a more critical test of the method of calculation will be the comparison of calculated and experimental values of excess partial molal entropies. For solids, we shall compare the calculated and the experimental values of \( [\Delta S_{2}^P]_{\text{excess}} \) where \( [\Delta S_{2}^P]_{\text{excess}} \) is defined as \( \Delta S_{2}^P + R \ln x_2 \). We subtracted \( \Delta S_{298}^f \) from \( [\Delta S_{2}^P]_{\text{excess}} \) because \( \Delta S_{298}^f \) cannot be calculated from the scaled particle theory and moreover its contribution to \( \Delta S_{2}^P \) is quite large (approximately 8 eu.). In table III.3, we give both calculated and
experimental values for \( \bar{S}^{P}_{2}\)excess \(-\bar{S}^{f}_{298} \) for \( I_2 \) and \( SnI_4 \). It can be seen from Table III.3 that the calculated values are not widely different from the experimental values. Within the limits of the assumption of a hard sphere interaction potential and the uncertainty involved in calculating hard sphere diameters[115], the results can be considered to be good. These results could probably be improved by using a more realistic interaction potential. Until a rigorous method is developed using the scaled particle theory approach for a realistic interacting potential allowing the equation state to be formulated, no real improvement is possible.[118] 

After completion of this work, a paper was published by Benson et al[126], where they used the perturbation theory as developed by Barker and Henderson[29] to calculate the heat of mixing and the entropy of mixing for nonelectrolyte solutions. They showed that the perturbation of hard sphere potential does not affect the entropy of mixing, i.e. the entropy of mixing of two nonelectrolyte liquids in absence of any specific interactions is equal to the entropy of two hard sphere fluids -- a conclusion similar to our assumption that the entropy change during the "charging" and "discharging" processes cancel out each other.
Table III.1

Hard sphere diameters of different solvents and solutes:
(see Appendix AIV.1 for the methods of calculation)

<table>
<thead>
<tr>
<th></th>
<th>$a \times 10^{-8}$ values used in this calculation</th>
<th>$a_{\Delta V} \times 10^{-8}$ cm</th>
<th>$a_a \times 10^{-8}$ cm</th>
<th>$a_B \times 10^{-8}$ cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I$_2$</td>
<td>4.61</td>
<td>4.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SnI$_4$</td>
<td>5.34</td>
<td>5.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn(C$_6$H$_5$)$_4$</td>
<td>9.039</td>
<td>-</td>
<td>9.039</td>
<td>-</td>
</tr>
<tr>
<td>Sn(C$_6$F$_5$)$_4$</td>
<td>9.37</td>
<td>-</td>
<td>9.37</td>
<td></td>
</tr>
<tr>
<td>C$_6$H$_6$</td>
<td>5.089</td>
<td>5.089</td>
<td>-</td>
<td>4.99</td>
</tr>
<tr>
<td>c-C$<em>6$H$</em>{12}$</td>
<td>5.45</td>
<td>5.45</td>
<td>-</td>
<td>5.37</td>
</tr>
<tr>
<td>CCl$_4$</td>
<td>5.23</td>
<td>5.23</td>
<td></td>
<td>5.14</td>
</tr>
<tr>
<td>CCl$_2$F.CF$_2$Cl</td>
<td>5.55</td>
<td>5.55</td>
<td></td>
<td>5.47</td>
</tr>
<tr>
<td>C$_2$H$_4$Cl$_2$</td>
<td>4.89</td>
<td>4.89</td>
<td></td>
<td>4.83</td>
</tr>
<tr>
<td>1-C$<em>8$H$</em>{18}$</td>
<td>6.295</td>
<td>6.295</td>
<td></td>
<td>6.23</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>4.48</td>
<td>4.48</td>
<td></td>
<td>4.31</td>
</tr>
<tr>
<td>toluene</td>
<td>5.46</td>
<td>5.46</td>
<td></td>
<td>5.42</td>
</tr>
<tr>
<td>m-xylene</td>
<td>5.77</td>
<td>5.77</td>
<td></td>
<td>5.75</td>
</tr>
<tr>
<td>CS$_2$</td>
<td>4.42</td>
<td>4.42</td>
<td></td>
<td>4.33</td>
</tr>
</tbody>
</table>

($a_{\Delta V}$'s are the hard sphere diameters calculated from the heat of vaporization data by Snider-Harrington's equation; $a_a$'s are the hard sphere diameters calculated from thermal expansivities data; $a_B$'s are the hard sphere diameters calculated from the coefficient of isothermal compressibility data)
Table III.2

$\Delta S^p_2$ for different nonpolar binary mixtures:

<table>
<thead>
<tr>
<th>System</th>
<th>$\Delta S^p_2$ (calc'd)</th>
<th>$\Delta S^p_2$ (exp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-C$<em>6$H$</em>{12}$ - I$_2$</td>
<td>22.28</td>
<td>22.2$^{[110]}$</td>
</tr>
<tr>
<td>CCl$_4$ - I$_2$</td>
<td>21.2</td>
<td>21.9$^{[110]}$</td>
</tr>
<tr>
<td>CCl$_2$F.CF$_2$Cl - I$_2$</td>
<td>24.99</td>
<td>24.4$^{[110]}$</td>
</tr>
<tr>
<td>CS$_2$ - I$_2$</td>
<td>18.09</td>
<td>18.8$^{[110]}$</td>
</tr>
<tr>
<td>i-octane - I$_2$</td>
<td>23.45</td>
<td>23.5$^{[110]}$</td>
</tr>
<tr>
<td>CCl$_4$ - SnI$_4$</td>
<td>18.85</td>
<td>19.17$^{[52]}$</td>
</tr>
<tr>
<td>toluene - SnI$_4$</td>
<td>18.4</td>
<td>17.4$^{[52]}$</td>
</tr>
<tr>
<td>CCl$_2$F.CF$_2$Cl - SnI$_4$</td>
<td>24.77</td>
<td>25.4$^{[52]}$</td>
</tr>
<tr>
<td>c-C$<em>6$H$</em>{12}$ - SnPh$_4$</td>
<td>$\Delta S^p_2$</td>
<td>32.87$^{[54]}$ (i.e. $S^p_2$ = 9.8)</td>
</tr>
<tr>
<td></td>
<td>+ 23.07</td>
<td></td>
</tr>
<tr>
<td>CCl$_4$ - SnPh$_4$</td>
<td>&quot;</td>
<td>26.77$^{[54]}$</td>
</tr>
<tr>
<td></td>
<td>+ 19.59</td>
<td>(s$_{298}^f$ = 7.2 )</td>
</tr>
<tr>
<td>toluene - SnPh$_4$</td>
<td>&quot;</td>
<td>16.48$^{[54]}$</td>
</tr>
<tr>
<td></td>
<td>+ 19.45</td>
<td>(s$_{298}^f$ = 8.2 )</td>
</tr>
<tr>
<td>CCl$_2$F.CF$_2$Cl - SnPh$_4$</td>
<td>&quot;</td>
<td>33.27$^{[54]}$</td>
</tr>
<tr>
<td></td>
<td>+ 25.0</td>
<td>(s$_{298}^f$ = 8.2 )</td>
</tr>
<tr>
<td>CCl$_4$ - SnPf$_4$</td>
<td>$\Delta S^I_{I+III} + 4.04$</td>
<td>23.38$^{[54]}$ (i.e. $S^I_{298} = 4.04$)</td>
</tr>
<tr>
<td>c-C$<em>6$H$</em>{12}$ - SnPf$_4$</td>
<td>&quot;</td>
<td>23.84$^{[54]}$</td>
</tr>
<tr>
<td></td>
<td>+ &quot;</td>
<td>23.38$^{[54]}$ (i.e. $S^I_{298} = 4.04$)</td>
</tr>
<tr>
<td>toluene - SnPf$_4$</td>
<td>&quot;</td>
<td>33.41$^{[54]}$</td>
</tr>
<tr>
<td></td>
<td>+ &quot;</td>
<td>33.41$^{[54]}$ (i.e. $S^I_{298} = 4.04$)</td>
</tr>
<tr>
<td>iso-octane - SnPf$_4$</td>
<td>&quot;</td>
<td>30.22$^{[54]}$</td>
</tr>
<tr>
<td></td>
<td>+ &quot;</td>
<td>30.22$^{[54]}$ (i.e. $S^I_{298} = 4.04$)</td>
</tr>
</tbody>
</table>
A comparison of excess partial molal entropy of solution for solid solute calculated by means of equation (20) of chapter III with those determined experimentally.

<table>
<thead>
<tr>
<th>System</th>
<th>(-R \ln x_2)</th>
<th>[\Delta S^F_{2\text{excess}}]</th>
<th>[\Delta S^F_{2\text{excess}}]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(-\Delta S^F_{298})</td>
<td>(-\Delta S^F_{298})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(calc'd)</td>
<td>(experimental)</td>
</tr>
<tr>
<td>I_2 - CCl_4</td>
<td>8.46[110]</td>
<td>4.34</td>
<td>5.04[110]</td>
</tr>
<tr>
<td>I_2 - c-C_6H_{12}</td>
<td>9.38</td>
<td>4.50</td>
<td>4.42[110]</td>
</tr>
<tr>
<td>I_2 - CCl_2FCClF_2</td>
<td>10.76[110]</td>
<td>5.79</td>
<td>5.24[110]</td>
</tr>
<tr>
<td>I_2 - CS_2</td>
<td>5.74[110]</td>
<td>3.95</td>
<td>4.66[110]</td>
</tr>
<tr>
<td>I_2 - isocctane</td>
<td>10.19[110]</td>
<td>4.71</td>
<td>4.86[110]</td>
</tr>
<tr>
<td>SnI_4 - CCl_4</td>
<td>8.50[52]</td>
<td>1.35</td>
<td>1.67[52]</td>
</tr>
<tr>
<td>SnI_4 - toluene</td>
<td>7.33[52]</td>
<td>1.97</td>
<td>0.97[52]</td>
</tr>
<tr>
<td>SnI_4 - CCl_2FCClF_2</td>
<td>13.25[52]</td>
<td>2.42</td>
<td>3.05[52]</td>
</tr>
</tbody>
</table>
### Table III.4

Saturation solubility of Sn(C₆F₅)₄ at different temperature.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>T°K</th>
<th>$x_2 \times 10^{-4}$</th>
<th>-R ln $x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCl₄</td>
<td>308</td>
<td>66.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>46.63</td>
<td>10.6628</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>39.23</td>
<td></td>
</tr>
<tr>
<td>C₆H₁₂</td>
<td>308</td>
<td>8.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>4.067</td>
<td>15.5082</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>3.22</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>308</td>
<td>81.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>47.57</td>
<td>10.6234</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>40.36</td>
<td></td>
</tr>
<tr>
<td>Isooctane</td>
<td>308</td>
<td>17.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>11.55</td>
<td>13.4348</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>9.322</td>
<td></td>
</tr>
</tbody>
</table>
Table III.5

Values of $V_2$ and $\Delta S_2^P$ for $\text{Sn(C}_6\text{F}_5)_4$ - organic solvent systems:

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$V_2$ in cc.mole$^{-1}$</th>
<th>$\Delta S_2^P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CCl}_4$</td>
<td>-</td>
<td>28.38</td>
</tr>
<tr>
<td>$c-C\text{C}<em>6\text{H}</em>{12}$</td>
<td>408.5</td>
<td>33.41</td>
</tr>
<tr>
<td>toluene</td>
<td></td>
<td>30.22</td>
</tr>
<tr>
<td>isooctane</td>
<td>415.5</td>
<td>29.0</td>
</tr>
</tbody>
</table>
REFERENCES

8. B. Chu, Molecular Forces: Based on the Baker Lectures of Peter Debye (Interscience, N. Y., 1967).


70. H. Benesi and J. H. Hildebrand, Ibid., 71, 2703 (1949).


72. M. Vitoria, Private communication.


80. J. K. Lee, unpublished work.


84. E. A. Guggenheim, "Modern Thermodynamics" (Methuen, 1933) p. 103; see also Trans. Faraday Soc., 33, 151 (1937). 


100. H. Reiss, Ibid., 9, 1 (1965).


Appendix AI.1

Important Thermodynamic Relations

\[ C_V = \text{heat capacity at constant volume} \]

\[ = \left( \frac{\partial E}{\partial T} \right)_V \quad \text{(AI.1.1)} \]

\[ C_p = \text{heat capacity at constant pressure} \]

\[ = \left( \frac{\partial H}{\partial T} \right)_P \quad \text{(AI.1.2)} \]

\[ \alpha = \text{coefficient of thermal expansion} \]

\[ = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_P \quad \text{(AI.1.3)} \]

\[ \beta = \text{coefficient of isothermal compressibility} \]

\[ = - \frac{1}{V} \left( \frac{\partial P}{\partial V} \right)_T \quad \text{(AI.1.4)} \]

\[ \left( \frac{\partial P}{\partial T} \right)_V = - \left( \frac{\partial V}{\partial T} \right)_P \left( \frac{\partial P}{\partial V} \right)_T = \frac{\alpha}{\beta} \quad \text{(AI.1.5)} \]

We also used the term "fugacity" designated by \( f \).

The fugacity in two states \( A \) and \( B \) is related to the molar free energy in these states by the equation

\[ F_B - F_A = RT \ln \frac{f_B}{f_A} \quad \text{(AI.1.6)} \]

A summary of relations between thermodynamic functions is given in Table AI.1.1.
Table AI.1.1
A Summary of Relations between Thermodynamic Functions.

<table>
<thead>
<tr>
<th>X =</th>
<th>F</th>
<th>H</th>
<th>S</th>
<th>E</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \frac{\partial X}{\partial T} )_V</td>
<td>( V(\frac{\partial F}{\partial T})_V ) - S</td>
<td>( C_v + V(\frac{\partial F}{\partial T})_V )</td>
<td>( C_v / T )</td>
<td>( C_v = C_p - T(\frac{\partial V}{\partial T})_p(\frac{\partial F}{\partial T})_V )</td>
<td>( -S = \frac{A - E}{T} )</td>
</tr>
<tr>
<td>( \frac{\partial X}{\partial T} )_P</td>
<td>( -S = \frac{F - H}{T} )</td>
<td>( C_p = C_v + T(\frac{\partial V}{\partial T})_p(\frac{\partial F}{\partial T})_V )</td>
<td>( C_p / T )</td>
<td>( C_p / T(\frac{\partial V}{\partial T})_p )</td>
<td>( -F(\frac{\partial V}{\partial T})_p - S )</td>
</tr>
<tr>
<td>( \frac{\partial X}{\partial V} )_T</td>
<td>( V(\frac{\partial V}{\partial T})_V ) = ( -1 / \beta )</td>
<td>( T(\frac{\partial F}{\partial T})_V + V(\frac{\partial V}{\partial T})_V )</td>
<td>( \frac{\partial F}{\partial T} )_V</td>
<td>( T(\frac{\partial F}{\partial T})_V )</td>
<td>( -P )</td>
</tr>
<tr>
<td>( \frac{\partial X}{\partial P} )_T</td>
<td>V</td>
<td>( V - T(\frac{\partial V}{\partial T})_p )</td>
<td>( \frac{\partial V}{\partial T} )_P</td>
<td>( -T(\frac{\partial V}{\partial T})_p - P(\frac{\partial V}{\partial T})_T )</td>
<td>( -F(\frac{\partial V}{\partial T})_T )</td>
</tr>
<tr>
<td>( \frac{\partial X}{\partial V} )_V</td>
<td>( V - S / \frac{\partial V}{\partial T} )_V</td>
<td>( V + C_v / (\frac{\partial V}{\partial T})_V )</td>
<td>( C_v / T(\frac{\partial V}{\partial T})_V )</td>
<td>( C_v / (\frac{\partial V}{\partial T})_V )</td>
<td>( -S / (\frac{\partial V}{\partial T})_V )</td>
</tr>
<tr>
<td>( \frac{\partial X}{\partial V} )_P</td>
<td>( -S / \frac{\partial V}{\partial T} )_P</td>
<td>( C_p / (\frac{\partial V}{\partial T})_p )</td>
<td>( C_p / T(\frac{\partial V}{\partial T})_p )</td>
<td>( C_p / (\frac{\partial V}{\partial T})_p - P )</td>
<td>( -S / (\frac{\partial V}{\partial T})_p - P )</td>
</tr>
</tbody>
</table>
Activity and Choice of Standard State

The other important thermodynamic quantity we have used is the activity, designated as \( a \). The activity \( a \) of a substance in a particular solution is the ratio of its fugacity in that solution to its fugacity in some arbitrarily chosen standard state which in this theory is always pure liquid. For standard state \( a^0 = 1 \) while in any other state it is given by:

\[
RT \ln a = \mu - \mu^0 = \bar{F} - \bar{F}^0
\]

\[
= RT \ln (f / f^0)
\]

where superscript \( o \) denotes standard state and \( \mu \) is the chemical potential in any given state.

Any state can be chosen as the standard state. Thus for aqueous solution electrolytes the infinite dilute solution of the electrolyte is usually selected as standard state. But in this work, only the pure liquid will be considered as the standard state. For solid, the standard state is the pure hypothetical liquid supercooled below the melting point. This standard state was accepted by Hildebrand\(^ {24} \).

The advantage of this convention is that it yields equations of same form for all components and avoids a distinction between solvent and solute. To distinguish the solute, Hildebrand\(^ {24} \) used subscript \( 2 \). In this
work, some notations will be used to distinguish solute in a solution -- irrespective of whether it is a binary or ternary mixture.

Activity of Solids

As solid solute is used in all experiments mentioned in this work, and as the pure liquid has been taken as the standard state, one needs to know the activity of a solid substance which is given by

$$a^S = \frac{r^S}{r^0}$$  \hspace{1cm} (AI.1.8)

In dealing with the solubility of solids, sometimes it is important to know its activity referred to the hypothetical liquid supercooled below the melting point. The thermodynamic relationship

$$\left( \frac{\partial \ln a^S}{\partial T} \right)_P = \left\{ \frac{\partial (F^S - F^0)}{\partial T} \right\}_P = \frac{H^0 - H^S}{RT^2} = \frac{\Delta H^F}{RT^2}$$  \hspace{1cm} (AI.1.9)

(where $\Delta H^F$ is the heat of fusion at that temperature $T$) can be integrated from temperature $T$ to the melting point $T_m$ under the assumption that the heat of fusion is constant, giving

$$\ln a^S = -\frac{\Delta H^F}{R} \frac{T_m - T}{T T_m}$$  \hspace{1cm} (AI.1.10)
where the difference between the molal heat capacities of liquid and solid are known then

\[ C_p^l - C_p^s = \Delta C_p \quad \text{and} \quad \Delta H_m^F = \Delta H_m^F - \Delta C_p (T_m - T) \quad (AI.1.11) \]

where \( \Delta H_m^F \) is the heat of fusion of the melting point; 
\( C_p^l \) is the heat capacity of liquid; 
\( C_p^s \) is the heat capacity of the solid.

Substitution of equation (AI.1.11) in equation (AI.1.9) and integration of equation (90) yields

\[ \ln a^s = -\frac{\Delta H_m^F}{R} \frac{T_m - T}{T^2} + \frac{\Delta C_p}{R} \frac{T_m - T}{T} - \frac{\Delta C_p}{R} \ln \frac{T_m}{T} \quad (AI.1.12) \]

Equation (AI.1.12) reduces to equation (AI.1.11) when \( \Delta C_p \) is zero, or in other words, the heat of fusion is constant, the assumption which has been invoked in deriving equation (AI.1.10).

Again rewriting equation (AI.1.10), one obtains

\[ \ln a^s = -\frac{\Delta H_m^F}{R} \left\{ \frac{1}{T} - \frac{1}{T_m} \right\} \]

or if \( \Delta C_p \) is zero, then plotting of \( \ln a^s \) versus \( 1/T \) should give a straight line.

However, if \( \Delta C_p \) is not zero and for other purpose which will be explained later, it is advantageous to plot \( \log a^s \) (or \( \log x_2 \)) versus \( \log T \). The linearity of such a curve can be tested in the following manner:
The equation (AI.1.10) is rewritten as

$$
\left( \frac{\partial \ln a^S}{\partial \ln T} \right)_P = \frac{\Delta H^F}{RT} \tag{AI.1.13}
$$

Then taking the second derivative with respect to \( T \)

one obtains

$$
\left\{ \frac{\partial^2 \ln a^S}{(\partial \ln T)^2} \right\}_P = T \left\{ \frac{\partial}{\partial T} \left( \frac{\Delta H^F}{RT} \right) \right\}_P = \frac{\Delta C_P - \Delta H^F}{R} \quad \text{(AI.1.14)}
$$

At the melting point, \( T_m \), \( \Delta H^F_m = T \Delta S^F_m \), so the second
derivative would be zero (and the curve straight, at
least at this point) if \( \Delta S^F_m \) is equal to \( \Delta C_P \). Table
AI.1.2 compares \( \Delta C_P \) and \( \Delta S^F_m \) for a group of solid
solutes. The ratio of \( \Delta C_P \) to \( \Delta S^F_m \) ranges from 0.4
to 2.1, which does not support the assumption \( \Delta C_P = \Delta S^F_m \),
but certainly this assumption is better than assuming
\( \Delta C_P = 0 \). So assuming

$$
\Delta H^F \approx T \Delta S^F_m \approx T \Delta C_P
$$

or

$$
\left( \frac{\partial \ln a^S}{\partial \ln T} \right)_m \approx \frac{\Delta H^F}{RT}_m = \frac{\Delta S^F_m}{R} \quad \text{and} \quad \ln a^S \approx \frac{\Delta S^F_m}{R} \ln \frac{T}{T_m} \quad \text{(AI.1.15)}
$$
Table AI.1.2
Thermodynamic Functions for Fusion[24]

<table>
<thead>
<tr>
<th>Substance</th>
<th>$\Delta S_m^F$ (cal/deg)</th>
<th>$\Delta C_p$ (cal/deg)</th>
<th>$\Delta C_p/\Delta S_m^F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_2$</td>
<td>2.0</td>
<td>1.9</td>
<td>0.95</td>
</tr>
<tr>
<td>A</td>
<td>3.35</td>
<td>2.16</td>
<td>0.65</td>
</tr>
<tr>
<td>I$_2$</td>
<td>9.67</td>
<td>3.9</td>
<td>0.40</td>
</tr>
<tr>
<td>S$_8$</td>
<td>0.75</td>
<td>1.6</td>
<td>2.1</td>
</tr>
<tr>
<td>P$_4$</td>
<td>0.47</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>SnI$_4$</td>
<td>10.73</td>
<td>5.7</td>
<td>0.53</td>
</tr>
<tr>
<td>S$_2$</td>
<td>9.63</td>
<td>5.6</td>
<td>0.59</td>
</tr>
<tr>
<td>CCl$_4$</td>
<td>2.4</td>
<td>1.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Consequently, $\log T$ instead of $\frac{1}{T}$ was used by Hildebrand et al. for graphs but the $a_s$ is corrected if $\Delta C_p$ is known. In this derivation, it has been assumed that $\Delta C_p$ is constant which is not an exact condition and thus even if $\Delta C_p$ is known, the values for $a_s$ are subjected to a certain degree of uncertainty particularly at a temperature far below the melting point. But it has been observed that a plot of $\log x_2$ versus $\log T$ gives straight lines in the region $x_2 < 0.1$ whereas $\log x_2$ versus $\frac{1}{T}$ curved lines throughout.21
Table AI.1.2
Thermodynamic Functions for Fusion [24]

<table>
<thead>
<tr>
<th>Substance</th>
<th>$\Delta S_m^F$ (cal/ deg)</th>
<th>$\Delta C_p$ (cal/ deg)</th>
<th>$\Delta C_p/\Delta S_m^F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$</td>
<td>2.0</td>
<td>1.9</td>
<td>0.95</td>
</tr>
<tr>
<td>A</td>
<td>3.35</td>
<td>2.16</td>
<td>0.65</td>
</tr>
<tr>
<td>I$_2$</td>
<td>9.67</td>
<td>3.9</td>
<td>0.40</td>
</tr>
<tr>
<td>S$_8$</td>
<td>0.75</td>
<td>1.6</td>
<td>2.1</td>
</tr>
<tr>
<td>P$_4$</td>
<td>0.47</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>SnI$_4$</td>
<td>10.73</td>
<td>5.7</td>
<td>0.53</td>
</tr>
<tr>
<td>S$_2$</td>
<td>9.63</td>
<td>5.6</td>
<td>0.59</td>
</tr>
<tr>
<td>CCl$_4$</td>
<td>2.4</td>
<td>1.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Consequently, log $T$ instead of $\frac{1}{T}$ was used by Hildebrand et al. for graphs but the $a_s^g$ is corrected if $\Delta C_p$ is known. In this derivation, it has been assumed that $\Delta C_p$ is constant which is not an exact condition and thus even if $\Delta C_p$ is known, the values for $a_s^g$ are subjected to a certain degree of uncertainty particularly at a temperature far below the melting point. But it has been observed that a plot of log $x_2$ versus log $T$ gives straight lines in the region $x_2 < 0.1$ whereas log $x_2$ versus $\frac{1}{T}$ curved lines throughout [24].
Measures of Composition

The composition of a solution can be expressed in a variety of ways, e.g.

(1) concentration in grams or moles per unit volume;

(2) the ratio of the number of moles of one component of a binary solution to the number of moles of the second component, i.e. $\frac{n_1}{n_2}$;

(3) mole fraction, which is the most extensively used unit of expressing the solubility of nonelectrolytes in solution. The mole fraction $x_i$ of any component $i$ in solution is defined as

$$x_i = \frac{n_i}{n_1 + n_2 + \ldots + n_i} \quad (A1.1.16)$$

evidently

$$x_1 + x_2 + \ldots + x_i = 1 \quad (A1.1.17)$$
or in the case of binary solution,

$$x_1 + x_2 = 1$$

and

$$dx_1 = -dx_2 \quad (A1.1.18)$$

(4) volume fraction $\varphi$. The $\varphi_i$, volume fraction of any component, is given by

$$\varphi_i = \frac{V_i}{V_1 + V_2 + \ldots + V_i} \quad (A1.1.19)$$

As mentioned earlier, the volume of a solution is not equal to the sum of the volumes of its components but
it is the fraction sum of its partial molar volumes. Thus

\[
\xi_1 = \frac{n_1 V_1}{n_1 V_1 + n_2 V_2 + \ldots + n_i V_i} = \frac{x_1 V_1}{x_1 V_1 + x_2 V_2 + \ldots + x_i V_i} \tag{AI.1.20}
\]

If one assumes that volume change due to mixing is small, the volume fraction \(\xi_1\) of the \(i\)th component is given by

\[
\xi_1 = \frac{x_1 V_i^o}{x_1 V_1^o + x_2 V_2^o + \ldots + x_i V_i^o} \tag{AI.1.21}
\]

where \(V_i^o\) is the molar volume of pure liquid components.

Throughout this work volume fraction as defined by equation (AI.1.21) will be used instead of the volume fraction defined in terms of partial molar volumes as in equation (AI.1.20). The advantage of using the volume fraction as the measure of composition of a mixture is that the unit of volume fraction takes care of the difference in molar volumes of different components.

Since the different liquids may have different coefficients of thermal expansion, the volume fraction will be slightly dependent on the temperature, but this dependence will be neglected in this work because the temperature range used in this work is very small.
Appendix A1.2

Repulsive Forces

As mentioned earlier, the intermolecular potential may be written as

\[ U(r) = \frac{j}{r^n} - k/r^6 \]  \hspace{1cm} (A1.2.1)

It is well known that potential energy of a molecular pair passes through a minimum at which \( \frac{dU}{dr} = 0 \).

This condition may be used to define a distance \( r_0 \) and a minimum (negative) energy \( e_0 \). Differentiation of equation (A1.2.1) with respect to \( r \) gives

\[ \frac{dU}{dr} = -\frac{n j}{r^{n+1}} + \frac{6k}{r^7} \]  \hspace{1cm} (A1.2.2)

If one sets the derivative equal to zero, the resulting equations for \( r_0 \) and \( e_0 \) are

\[ r_0^{n-6} = \frac{n j}{6k} \]  \hspace{1cm} (A1.2.3)

\[ e_0 = \frac{j}{r_0^n} - \frac{k}{r_0^6} = (n-6) \left( \frac{6k}{n j^6} \right)^{1/(n-5)} \]  \hspace{1cm} (A1.2.4)

which is the equation used in the text for \( e_0 \).
Appendix AII.1

Derivation of Excess Volume of Mixing, $\Delta V_{E,M}^E$

We defined

$$\Delta V = \frac{V_2^1 - V_2^0}{V_2^0}$$

$$= n_1 \beta_1 (\delta_2 - \delta_1)^2 \quad \text{(AII.1.1)}$$

Similarly,

$$\Delta M = \frac{V_2^m - V_2^0}{V_2^0}$$

$$= n_m \beta_m (\delta_2 - \delta_m)^2 \quad \text{(AII.1.2)}$$

or

$$V_2^0 \Delta V = V_2^0 n_m \beta_m (\delta_2 - \delta_m)^2$$

$$= V_2^0 - V_2^0 \quad \text{(AII.1.3)}$$

or

$$V_2^m = V_2^0 + V_2^0 \Delta V$$

$$= V_2^0 + V_2^0 n_m \beta_m (\delta_2 - \delta_m)^2 \quad \text{(AII.1.4)}$$

Again if we write a term $\nabla^{M,1,3} V_2$ such that

$$\nabla^{M,1,3} V_2 = \nabla_1 V_2^1 + \nabla_3 V_2^3$$

$$= \nabla_1 V_2^1 + \nabla_3 V_2^3 + V_2^0 (n_1 \Delta V + \nabla_3 \Delta V)$$

$$= V_2^0 + V_2^0 (n_1 \Delta V + \nabla_3 \Delta V) \quad \text{(AII.1.5)}$$
Or from (AII.1.5),

\[ \varphi_{2}^{M,1,3} - \varphi_{2}^{0} = \varphi_{2}^{0} (\phi_{1}\Delta_{V}^{1} + \phi_{3}\Delta_{V}^{3}) \]

\[ = \varphi_{2}^{0} [n_{1}\delta_{1}(\delta_{2} - \delta_{1})^{2}\phi_{1} + n_{3}\beta_{3}(\delta_{2} - \delta_{3})^{2}\phi_{3}] \]

\[ = \varphi_{2}^{0} [ (\phi_{1}n_{1}\delta_{1} + \phi_{3}n_{3}\beta_{3})\delta_{2}^{2} \]

\[ - 2\delta_{2}(\phi_{1}n_{1}\delta_{1} + \phi_{3}n_{3}\beta_{3}) \]

\[ + (\phi_{1}n_{1}\delta_{1}^{2} + \phi_{3}n_{3}\beta_{3}^{2}) ] \quad (AII.1.6) \]

Similarly from the equation (AII.1.4),

\[ \varphi_{2}^{M} - \varphi_{2}^{0} = \varphi_{2}^{0} (n_{m}\delta_{m}^{2} - 2\delta_{2}n_{m}\delta_{m} \]

\[ + n_{m}\delta_{m}^{2}) \quad (AII.1.7) \]

Again we define \( \Delta_{V}^{E,M} \) i.e. the excess term in the text as

\[ \varphi_{2}^{E,M} = \varphi_{2}^{M,1,3} - \varphi_{2}^{M} \]

\[ = -\varphi_{2}^{0} (\phi_{1}\Delta_{V}^{1} + \phi_{3}\Delta_{V}^{3}) \quad (AII.1.6) \]

Denoting \( \phi_{1}\Delta_{V}^{1} + \phi_{3}\Delta_{V}^{3} = \Delta_{V}^{M,1,3} \) we obtain equation (56) in the text. Substituting equation (AII.1.6) and (AII.1.7) in equation (AII.1.8) we obtain

\[ \Delta_{V}^{E,M} = \varphi_{2}^{0} (\phi_{1}n_{1}\delta_{1} + \phi_{3}n_{3}\beta_{3})\delta_{2}^{2} \]

\[ - 2\delta_{2}(\phi_{1}n_{1}\delta_{1} + \phi_{3}n_{3}\beta_{3}) - n_{m}\delta_{m}^{2} \]

\[ + (\phi_{1}n_{1}\delta_{1}^{2} + \phi_{3}n_{3}\beta_{3}^{2}) \]

\[ + 2n_{m}\delta_{m}^{2} - n_{m}\delta_{m}^{2} ] \quad (AII.1.9) \]
Writing
\[ n_m^\beta_m = \mathcal{V}_1 n_1^\beta_1 + \mathcal{V}_3 n_3^\beta_3 \] \hspace{1cm} (AII.1.10)
and substituting (AII.1.10) in equation (AII.1.9),
\[
\Delta V_2^{E,M} = \mathcal{V}_2^0 \left[ (\mathcal{V}_1 n_1^\beta_1 + \mathcal{V}_3 n_3^\beta_3) \delta_2^2 
- 2 \delta_2 (\mathcal{V}_1 n_1^\beta_1 \delta_1 + \mathcal{V}_3 n_3^\beta_3 \delta_3)
- (\mathcal{V}_1 n_1^\beta_1 + \mathcal{V}_3 n_3^\beta_3) \delta_2^2 
+ 2 (\mathcal{V}_1 n_1^\beta_1 + \mathcal{V}_3 n_3^\beta_3) \delta_2 \delta_m 
- (\mathcal{V}_1 n_1^\beta_1 + \mathcal{V}_3 n_3^\beta_3) \delta_m^2 
+ (\mathcal{V}_1 n_1^\beta_1 \delta_1^2 + \mathcal{V}_3 n_3^\beta_3 \delta_3^2) \right] 
= \mathcal{V}_2^0 \left\{ 2 \delta_2 \left[ (\mathcal{V}_1 n_1^\beta_1 + \mathcal{V}_3 n_3^\beta_3) \delta_2 
- (\mathcal{V}_1 n_1^\beta_1 \delta_1 + \mathcal{V}_3 n_3^\beta_3 \delta_3) \right] 
+ (\mathcal{V}_1 n_1^\beta_1 \delta_1^2 + \mathcal{V}_3 n_3^\beta_3 \delta_3^2) 
- \delta_m (\mathcal{V}_1 n_1^\beta_1 + \mathcal{V}_3 n_3^\beta_3) \right\} \hspace{1cm} (AII.1.11)

The equation (AII.1.11) is equivalent to equation (65) in the text. Now if we assume that
\[ n_m^\beta_m \delta_m^2 = n_1^\beta_1 \delta_1^2 + n_3^\beta_3 \delta_3^2 \]
then along with the assumption made in equation (AII.1.10), the equation (AII.1.9) reduces to
\[ \Delta V^E_{2, M} = V_2^0 [2 \delta_2 \delta_m (\delta_1 n_{1, 1} \delta_1 + \delta_3 n_{3, 3} \delta_3) - 2 \delta_2 (\delta_1 n_{1, 1} \delta_1 + \delta_3 n_{3, 3} \delta_3)] \]  \hspace{1cm} (AII.1.12)

Again writing,
\[ n_{1, 1} \delta_1^2 = \alpha \delta_1 \]

or
\[ n_{1, 1} \delta_1 = \frac{\alpha_1}{\delta_1} \]  \hspace{1cm} (AII.1.13)

and then substituting equation (AII.1.13) in equation (AII.1.12) we obtain

\[ \Delta V^E_{2, M} = 2V_2^0 \delta_2 T \left\{ \frac{\alpha_m}{\delta_m} - 1 \cdot \frac{\alpha_1}{\delta_1} + 2 \cdot \frac{\alpha_2}{\delta_2} \right\} \]  \hspace{1cm} (AII.1.14)

The equation (AII.1.14) is equivalent to equation (64) in the text.
Appendix AII.2

Derivation of $\hat{\phi}_1(\text{max})$ for $(1/A)\Delta^*(\ln x_2^m)$

\[ \frac{1}{A} \Delta^*(\ln x_2^m) = \hat{\phi}_1(1 - \hat{\phi}_1)(\delta_2 - \delta_3)^2 \]  \hspace{1cm} (AII.2.1)

Again,
\[ \frac{\hat{\phi}_1^*}{\hat{\phi}_1} = \frac{\hat{\phi}_1^o (\delta_2 - \delta_3)^2}{\hat{\phi}_1 (\delta_2 - \delta_1)^2} \]  \hspace{1cm} (AII.2.2)

and
\[ \hat{\phi}_1^* + \hat{\phi}_3^* = 1 \]  \hspace{1cm} (AII.2.3)

or
\[ \frac{\hat{\phi}_1^*}{1 - \hat{\phi}_1^*} = \frac{\hat{\phi}_1^o (\delta_2 - \delta_3)^2}{1 - \hat{\phi}_1^o (\delta_2 - \delta_1)^2} \]  \hspace{1cm} (AII.2.4)

Adding 1 in both the sides of the equation (AII.2.4) we obtain
\[ 1 + \frac{\hat{\phi}_1^*}{1 - \hat{\phi}_1^*} = 1 + \frac{\hat{\phi}_1^o (\delta_2 - \delta_3)^2}{1 - \hat{\phi}_1^o (\delta_2 - \delta_1)^2} \]

or
\[ \frac{1}{1 - \hat{\phi}_1^*} = \frac{(1 - \hat{\phi}_1^o)(\delta_2 - \delta_1)^2 + \hat{\phi}_1^o(\delta_2 - \delta_3)^2}{(1 - \hat{\phi}_1^o)(\delta_2 - \delta_1)^2} \]  \hspace{1cm} (AII.2.5)

Dividing (AII.2.4) by (AII.2.5),
\[ \hat{\phi}_1^* = \frac{\hat{\phi}_1^o(\delta_2 - \delta_3)^2}{(\delta_2 - \delta_1)^2 - \hat{\phi}_1^o[(\delta_2 - \delta_1)^2 - (\delta_2 - \delta_3)^2]} \]  \hspace{1cm} (AII.2.6)

Again by differentiating equation (AII.2.1) with respect to $\hat{\phi}_1^*$, we see that the maximum value for $\frac{1}{A} \Delta^*(\ln x_2^m)$ will occur at
Substituting equation (AII.2.6) in the equation (AII.2.8) we obtain

\[
(\delta_2 - \delta_1)^2 = \Phi_1^o[(\delta_2 - \delta_1)^2 - (\delta_2 - \delta_3)^2]
\]

\[
= 2\Phi_1^o(\delta_2 - \delta_3)^2
\]  

(AII.2.9)

Rearranging the equation (AII.2.9),

\[
\Phi_1^o(\text{max}) = \frac{(\delta_2 - \delta_1)^2}{(\delta_2 - \delta_3)^2 + (\delta_2 - \delta_1)^2}
\]

\[
= \left\{ \frac{(\delta_2 - \delta_3)^2}{(\delta_2 - \delta_1)^2 + 1} \right\}^{-1}
\]  

(AII.2.10)
Appendix AII.3

The solubility equation can be written as

\[ \ln x_2^m = \ln a_2^i - \frac{V_2^0}{RT} (\delta_2 - \delta_3)^2 \]  \hspace{1cm} (AII.3.1)

writing

\[ \delta_m = \phi_1^0 \delta_1 + \phi_3^0 \delta_3 \]  \hspace{1cm} (AII.3.2)

such that

\[ \phi_1^0 + \phi_3^0 = 1 \]

or

\[ \phi_3^0 = 1 - \phi_1^0 \]  \hspace{1cm} (AII.3.3)

Substituting equation (AII.3.3) in the equation (AII.3.2) we obtain

\[ \delta_m = \phi_1^0 (\delta_1 - \delta_3) + \delta_3 \]  \hspace{1cm} (AII.3.4)

Substituting equation (AII.3.4) in equation (AII.3.1),

\[ \ln x_2^m = \ln a_2^i - \frac{V_2^0}{RT} \left\{ (\delta_2 - \delta_3) - \phi_1^0 (\delta_1 - \delta_3) \right\}^2 \]

\[ = \ln a_2^i - \frac{V_2^0}{RT} (\delta_2 - \delta_3)^2 - 2 \phi_1^0 (\delta_1 - \delta_3)(\delta_2 - \delta_3) + \phi_1^0 (\delta_1 - \delta_3)^2 \]  \hspace{1cm} (AII.3.5)

Differentiating \( \ln x_2^m \) with respect to \( \phi_1^0 \) and then writing the condition for maximum, we obtain

\[ \frac{\partial \ln x_2^m}{\partial \phi_1^0} = 0 = \frac{V_2^0}{RT} [2(\delta_1 - \delta_2)(\delta_2 - \delta_3) - 2\phi_1^0 (\delta_1 - \delta_3)^2] \]
Similarly, if one writes \( \delta_m \) in terms of \( \xi^* \), then

\[
\xi^*_{\text{max}} = \frac{\delta_2 - \delta_3}{\delta_1 - \delta_3}
\]  

(AII.3.6)

Recalling the relationship between \( \xi^* \) and \( \xi^o_1 \), i.e.

\[
\xi^* = \frac{\xi^o_1(\delta_2 - \delta_3)^2}{(\delta_2 - \delta_1)^2 - \xi^o_1(\delta_2 - \delta_1)^2 - (\delta_2 - \delta_3)^2}
\]  

(AII.3.8)

we obtain

\[
\xi^*_{\text{max}} = \frac{\xi^o_1(\delta_2 - \delta_3)^2}{(\delta_2 - \delta_1)^2 - \xi^o_1(\delta_2 - \delta_1)^2 - (\delta_2 - \delta_3)^2} = \frac{\delta_2 - \delta_3}{\delta_1 - \delta_3}
\]  

(AII.3.9)

or

\[
\xi^o_1(\delta_2 - \delta_3)(\delta_1 - \delta_3) = (\delta_2 - \delta_1)^2 - \xi^o_1(\delta_2 - \delta_1)^2 - (\delta_2 - \delta_3)^2
\]

or

\[
\xi^o_1 \left[ (\delta_2 - \delta_3)(\delta_1 - \delta_3) + [(\delta_2 - \delta_1)^2 - (\delta_2 - \delta_3)^2] \right] = (\delta_2 - \delta_1)^2
\]

or

\[
\xi^o_1(\delta_1 - \delta_3)(\delta_2 - \delta_1) = (\delta_2 - \delta_1)^2
\]
or

$$\phi_{1,\text{max}} = \frac{\delta_2 - \delta_1}{\delta_1 - \delta_3} \quad \text{(AII.3.10)}$$

$\phi_1^o$'s in equation (AII.3.8) to (AII.3.10) are the corresponding $\phi_1^o$ value of $\phi_{1,\text{max}}^\ast$.
Appendix AIII.1

Entropy of Compressing a Mixture of Rigid Spheres

For a binary mixture of hard spheres Lebowitz, Helfand and Freestraeard derived the following equation of state from the scaled particle theory:

\[
\frac{P}{kT} = \left\{ \left( \rho_1 + \rho_2 \right)(1 + \xi + \delta^2) - \frac{18}{\pi} Y_1 Y_2 (a_2 - a_1)^2 \right\} \cdot \left[ a_1 + a_2 + a_1 a_2 \left( Y_1 a_1^3 + Y_2 a_2^3 \right) \right] (1 - \xi)^{-3} \quad (AIII.1.1)
\]

where

\[
Y_1 = \frac{nN_1}{6V} \quad (AIII.1.2)
\]

and

\[
\xi = \pi (N_1 a_1^3 + N_2 a_2^3) / 6V \quad (AIII.1.3)
\]

In the above equations, \( P \) is the pressure at temperature \( T \) and volume \( V \), \( k \) is Boltzmann's constant, \( \rho_1 \) is the number density \( N_1 / V \) and \( a_1 \) is the hard sphere diameter of \( i \).

If equations AIII.1.2 and AIII.3 are substituted in equation AIII.1.1 and then, multiplying numerator and denominator by \( V^3 \), one obtains

\[
P = kT (BV^2 + CV + D) / (V - A)^3 \quad (AIII.1.4)
\]

where

\[
A = \pi (N_1 a_1^3 + N_2 a_2^3) / 6
\]

\[
B = N_1 + N_2
\]

\[
C = \frac{\pi}{6} \left[ N_1 a_1^3 + N_1 N_2 (-2a_1^3 - 2a_2^3 + 3a_1 a_2^2
\]

\[
+ 3a_1^2 a_2) + N_2 a_2^3 \right]
\]
Thus the entropy of the compression is given by

\[ \Delta S_{\text{comp}} = \int_{V_1}^{V_2} \frac{P}{T} \, dV \quad \text{(A.III.1.5)} \]

Substitution of equation AIII.1.4 in equation AIII.1.5 followed by integration yields

\[ \Delta S_{\text{expan}} = R \left\{ B \ln \frac{V_2}{V_1} - A \right\} + \left[ D - CA - 3BA^2 \right. \]
\[ + (2C + 4BA)V_1 \left/ 2(V_1 - a)^2 \right. \]
\[ - \left[ (D - CA - 3BA^2) + (2C + BA)V_2 \right] \left/ 2(V_2 - a)^2 \right\} \quad \text{(AIII.1.6)} \]

The constants \( D - CA + 3BA^2 \) and \( 2C + 4BA \) are:

\[ D - CA - 3BA^2 = \frac{\pi^2}{36} \left[ -3a_1^6 + N_1 N_2(6a_1^5a_2 \]
\[ - 3a_1^4a_2 + 6a_1^3a_2^3) \]
\[ - N_1 N_2(6a_1^3a_2^3 - 3a_1^2a_2^4 \]
\[ + 6a_1^5a_2) - 3N_2^2a_2^6 \right] \quad \text{(AIII.1.7)} \]

and \( 2C + 4AB = \pi [N_1^2a_1^3 + N_1 N_2(a_1a_2^3 + 2a_1a_2) + N_2^2a_2^3] \quad \text{(AIII.1.8)} \)
The compression is carried out from the volume of the gaseous solution $V_1 = V^g_s$ to the volume of the liquid solution $V_2 = V^l_s$. As $V_1$ is large, the second term in equation AIII.1.6 can be neglected. Further, in the first term $A \ll V^g_s$. Equation AIII.1.6 can be converted to mole quantities if one writes down

$$N_1 = N_0 x_i (n_1 + n_2)$$

where $N_0$ is Avogadro's number, $x$'s are the mole fractions, and $n$'s are the number of moles.
Appendix AIII.2

Calculation of Hard Sphere Diameter

The most important part in any theory on hard sphere fluids is the choice of a meaningful value for hard sphere diameter. In earlier calculations, workers have used the equilibrium distance calculated for Lennard-Jones potential as the hard sphere diameter which is actually a bad choice because of the fact that the repulsive part of Lennard-Jones 6:12 potential is not as steep as the hard sphere potential and the equilibrium distance in that case can not be equated with the hard sphere potential.

Reiss has used hard sphere diameter calculated from surface tension, the coefficient of isothermal compressibility and the coefficient of thermal expansivity of liquids. Pierotti and Snider calculated hard sphere diameter from the heat of vaporization of the liquids.

From scaled particle theory, the coefficient of isothermal compressibility \(\beta_l\) of a liquid is given by

\[
\beta_l = V^\nu (1 - Y)^{\frac{4}{3}} / RT(1 + 2Y)^2
\]  

(AIII.2.1)

Similarly the coefficient of thermal expansivity of a liquid is given by

\[
\alpha_l = (1 - Y^3) / T(1 + 2Y)^2
\]  

(AIII.2.2)
whereas Snider et al. calculated heat of vaporization of normal liquid from Longuet-Higgins' model and derived an expression

\[
\frac{\Delta H_v^0}{NkT} = \frac{1 + Y + Y^2}{(1 - Y)^2} + 1
\]  

(AIII.2.3)

The surface tension \(\sigma\) of a liquid is related to \(Y\) as

\[
\sigma = aRT(2 + Y)/4V^*(1 - Y)^2
\]  

(AIII.2.4)

The hard sphere diameter has also been calculated from the viscosity of the dilute gas, \((\eta_1)_{\text{gas}}\) as

\[
(\eta_1)_{\text{gas}} = 1.0165\frac{5}{16a_{11}^2}\frac{m_1kT}{\pi^{\frac{3}{2}}}
\]  

(AIII.2.5)

where \(a\) is the hard sphere diameter, \(m\) is the mass and \(k\) is Boltzmann's constant.

In this connection it seems that the choice of the coefficient of thermal expansivity of real liquids will be a bad choice because the attractive forces are not considered in the scaled particle theory of Reiss, Frisch and Lebowitz but they enter into the theory in the density and the thermal expansivity of the liquid. This raises a point which was mentioned earlier, that in the scaled particle theory, the equation of state of a real liquid is not known. Hence the coefficient of thermal expansivity and the density of the liquid can not be calculated but have to be measured.
For the remaining three methods, there is no reason for supposing that any particular one gives the best \( a \) value. But if these derivations are correct, then \( a \)'s determined by these three methods should not be very different from each other. Next the problem lies with the nonspherical molecules and the physical meaning of \( a \) in that case. Reiss et al. suggested that if the molecules are not too badly nonspherical, due to the effect of rotational averaging it is possible to have a meaningful value of \( a \).

Another aspect that has to be emphasized is that in the scaled particle theory, \( a \) is treated as constant and does not vary with the temperature. This assumption leads to an incorrect temperature dependence for \( a \). Besides, Stillinger calculated the effective value of \( a \) from the compressibility and densities of the molten salts and observed that \( a \) decreases with temperature. Mayer [128] noted that the surface tension equation derived by Reiss et al. also has an incorrect temperature dependence. He suggested that \( a \) ought to decrease with temperature rather than remain constant. This decrease of \( a \) with temperature originates from the fact that with increasing temperature, the ability of the molecules to penetrate one another's repulsive field is more effectively due to the increase in the average thermal energy. A real molecule has, in fact, a 'soft', not a 'hard' repulsive potential.
But the problem still remains what numerical values can be accepted for \( \alpha \) as a reasonable value.

We chose to calculate \( \alpha \) values from the heat of vaporization at the boiling point where the value for heat of vaporization is known by means of the equation of \[113\] Snider et al. Also we have calculated \( \alpha \) values from \( \beta \).

But as we are interested in those solutes which are solid at room temperature and in most of the cases, \( \beta \) for the molten solids are not known, for the sake of consistency we preferred \( \alpha \) values calculated from the heat of vaporization calculated from equation AIII. 2.3. In the case of solutes, where heat of vaporization data are not known, we are forced to use \( \alpha \) calculated from the \( \alpha \) of the molten solid above melting point.

In the case where \( \alpha \) values are available for both heat of vaporization and the coefficient of isothermal compressibility, it can be seen in the table below that \( \alpha \) values determined by both the methods are comparable. So in all the following calculations we used \( \alpha \) values calculated from the heats of vaporization for both solvent and solute except in such cases as tetraphenyl tin and tetrakis pentfluoro phenyl tin when \( \alpha \) values are calculated from the \( \alpha \). The \( \alpha \) values in these calculations are assumed to be indepen-
dent of the temperature because a 's are involved directly but they are involved as Y and any change in a will have a very small effect on Y.

Also, in this calculation, we used the experimental values for \( V^t \) and \( a_t \) instead of the calculated values due to reasons mentioned earlier.

We have rejected the method of determining a by viscosity due to the fact that the viscosity data gives some very unreasonable values for a.