ACCURATE INCREMENTAL VOXELIZATION IN COMMON SAMPLING LATTICES

by

Haris Widjaya
B.Sc., Simon Fraser University, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School of Computing Science

© Haris Widjaya 2006
SIMON FRASER UNIVERSITY
Summer 2006

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author.
APPROVAL

Name: Haris Widjaya
Degree: Master of Science
Title of thesis: Accurate Incremental Voxelization in Common Sampling Lattices

Examining Committee: Dr. Greg Mori,
Assistant Professor, Computing Science
Simon Fraser University
Chair

Dr. Torsten Möller,
Associate Professor, Computing Science
Simon Fraser University
Senior Supervisor

Dr. Richard Zhang,
Assistant Professor, Computing Science
Simon Fraser University
Supervisor

Dr. Thomas C. Shermer,
Professor, Computing Science
Simon Fraser University
SFU Examiner

Date Approved: Jul. 18, 2006
DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection, and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain shall not be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada
Abstract

Work on binary surface voxelization has previously focused on Cartesian lattices. In this theses I present a generalized voxelization algorithm to any lattice structure in 2D space. In 3D I extend the algorithm to include BCC lattices. Further, I prove the correctness of our algorithm. An efficient implementation of the proposed algorithm has been achieved. Thorough testing of our algorithm gives an experimental validation to our implementation. Our results show that the efficient implementation of the proposed algorithm is (on average) 11% faster than a standard implementation.
I dedicate this work to my parents,
who have supported me from the day I took my first breath
For I know the plans I have for you declares the Lord, plans to prosper you and not to harm you, plans to give you a hope and a future Jeremiah 29:11 (NIV)
Acknowledgments

To Dr Torsten Möller, my supervisor who constantly strives for excellence, and impresses the same values upon me. One who guided me through tough times, and around numerous dead ends that I can not foresee.

To Matt Olson, for all the open and honest discussion about many things related or unrelated to my thesis.

To my friends in GrUVI lab for all the laughters, discussion, and arguments that helps me get through the long days, and nights.

To my family in Jakarta who have always believed in my abilities and supported me through my school years

To my second family at Brentwood Park Alliance Church who have been faithfully praying for me during my time here.
Contents

Approval .. ii
Abstract .. iii
Dedication .. iv
Quotation ... v
Acknowledgments .. vi
Contents ... vii
List of Tables ... ix
List of Figures ... x

1 Introduction ... 1
1.1 Boundary representation 2
1.2 Volumetric representation 4
1.3 Voxelization ... 11
 1.3.1 Binary Voxelization 12
 1.3.2 Multi valued voxelization 13
1.4 Contributions .. 15

2 Background .. 17
2.1 Alternative lattice structure 17
2.2 Notations and Formalisms 28
3 Accurate voxelization
 3.1 2D Lattices .. 34
 3.1.1 Theorem's accuracy proof 35
 3.1.2 Cartesian Lattice 39
 3.2 3D Lattices .. 42
 3.2.1 Cartesian Lattices 44

4 Voxelization algorithms 48
 4.1 Mesh Voxelization .. 48
 4.2 Brute Force Algorithm 51
 4.3 Fast incremental binary voxelization 53
 4.3.1 Region $\Delta(L_p)$ 54
 4.4 Further optimization 62
 4.5 Region $\Delta(L_e)$ and $\Delta(L_v)$ 64
 4.6 Practicalities .. 65

5 Analysis of algorithm ... 67
 5.1 Validation Techniques 67
 5.2 Testing Methodology 72
 5.3 BCC vs Cartesian Lattice 73
 5.4 Results ... 74

6 Conclusions and future work 92
 6.1 Future Work .. 93

Bibliography ... 95
List of Tables

1.1 Comparison between surface representation and volume representation 8

4.1 Valid voxelization matrices M for 2-separating planes in a Cartesian lattice. . 57
4.2 Additional voxelization matrices M for Table 4.1. For a 1-separating planes
 in a Cartesian lattice. ... 58
4.3 Additional voxelization matrices M for Table 4.1 and Table 4.2. For a 0-
 separating planes in a Cartesian lattice. 59
4.4 Voxelization matrix M for 2-separating planes in a BCC lattice. 60
List of Figures

1.1 Grid taxonomy in 2D ... 4
1.2 Direct Volume Rendering of the Industrial CT Images of a Tooth from Transfer Function Bakeoff Panel at IEEE Visualization Conference [43]. The image shows a transparent outer layer of the tooth as well as its inner structure. This image is obtained using vuVolume2 splatter, with custom transfer function. 5
1.3 A slice of MRI data. The data set is obtained from UNC Chapel Hill Volume Rendering test dataset [40] .. 6
1.4 Difference between binary and smooth pixelization 11
2.1 Comb function pairs ... 18
2.2 The effect of sampling a band-limited continuous signal (a) by convolving a comb function with a sampling distance W. When W is large we get aliasing artifact shown in Figure (c). The dashed lines in (c) show the lost part of the input spectrum. As W shrinks the replicated spectra are moving further apart. At some point the replicated spectra will be perfectly separated from each other as shown in Figure (d). .. 19
2.3 Illustration of the reconstruction process. The left figure shows the original continuous signal multiplied with the comb function, the dark dots on the curve represent the sample value at that particular position. In the frequency domain when W is chosen to be the Nyquist rates the spectrum of the sampled signal will look like the figure on the right. To perfectly reconstruct the original signal from the sampled signal, one must construct a box filter with the same support as the signal's frequency spectrum shown as dashed lines. 19
Illustration of sampling in 2D space. Assuming that the sampled continuous data has a frequency support shown in (a). Discrete sampling in 2D Cartesian lattice replicates the primary spectrum over the plane, as shown in (b) 21

(a) Hexagonal lattice in the spatial domain. The shaded area shows the fundamental parallelepiped in this lattice (b) The corresponding reciprocal lattice showing frequency replicas 23

Cartesian and BCC lattice packing, the images show the neighbours of the voxel at the centre of the lattice. (a) The Cartesian lattice, and (b) the BCC lattice with 14 neighbours. Because the packing in BCC lattice is the tightest possible the centre voxel is completely occluded by its neighbour voxels as shown in (b). In BCC there are two kinds of neighbour voxels. Neighbour voxels of the first kind share a hexagonal face as shown in (c). Neighbour voxels of the second kind share a square face as shown in (d). 25

The left picture shows one possible 2D hexagonal indexing scheme. The light shaded dots indicate points that can not be represented because in the scheme they contain negative values. When the negative samples are required a different indexing scheme shown on the right figure must be used with an extra computation, see [51]. 26

Two cases of continuous to discrete topology mapping problem 29

The set of neighboring pixels/voxels in a Cartesian lattice. 30

Neighbouring Voronoi sets of hexagonal lattice (a) and BCC lattice (b)..... 31

The plane L, and two parallel planes \(L_A \) and \(L_B \). Any voxels that lie in between \(L_A \) and \(L_B \) are included in the voxelization of L 33

The two basis vectors \(v_1 \) and \(v_2 \) describe a lattice. (a) shows a regular Cartesian lattice (also called rectilinear grid, since the basis vectors are orthogonal), while (b) shows a general 2D lattice. Note that in this lattice we have six neighbourhood vectors of which half are depicted as \(q_1, q_2, \) and \(q_3 \). The other half can be obtained by rotating the vectors 180 degrees. From the picture it is easy to see that the neighbourhood \(N_0(z) \) and \(N_1(z) \) in the general case are identical 34

One cell of Figure 3.2b .. 36
3.4 \(G \) and \(H \) are the center of adjacent sample points on the lattice, \(F_k \) is the edge/face shared between \(G \) and \(H \). \(\| \overrightarrow{GH} \| = 2d_i \). \(L \) is the continuous line we voxelize.

3.5 Generalized Cartesian lattice case. There are two different neighbourhood vectors available in this lattice. We denote \(c_k \) as the set of neighbourhood vectors with \(d_k = \frac{W}{2} \) for \(k \in 1,2 \). \(c_j \) is the set of neighbourhood vectors with \(d_j = \sqrt{\frac{W}{2}} \) for \(k \in 3,4 \).

3.6 Because line \(L \) intersects pixel \(P \) and \(M \) the proof provided by Huang et al. has shown that there can be no tunnel through \(P \) between pixel \(Q \) and \(R \), and between pixel \(K \) and \(N \) through \(M \). However the proof did not cover a case when the tunnel is composed of \(Q, P, M, \) and \(K \).

3.7 The Voronoi cell of the BCC grid.

3.8 The two types of 2-arcs in a BCC lattice.

3.9 Principal directions in Cartesian lattice.

3.10 Spherical trigonometry.

4.1 This case shows the \(k \)-tunnel induced by the seam between two lines sharing a single vertex. Point \(d \) is excluded because its projection on to line \(A \) or \(B \) is outside of the line's boundary point at \(C \). When \(d \) is not part of the discrete line the resulting line can permit a 0-tunnel.

4.2 Three voxelization regions require careful attention to maintain \(k \)-separating property of \(\Delta(L) \).

4.3 By voxelizing each primitive separately we can construct a \(k \)-separating \(\Delta(A) \cup \Delta(B) \) however \(k \)-minimality can not be guaranteed at the point where \(\Delta(A) \) and \(\Delta(B) \) meet. Pixel \(C, D, \) and \(E \) are all redundant because without them we still have a \(k \)-separating \(\Delta(A) \cup \Delta(B) \).

4.4 Two lines \(M \) and \(L \) meet at point \(p \). The tight bounding box of line \(M \) is marked with dotted fill. When we only use the pixel in the tight bounding box we won't include pixel \(b \) or \(c \) into consideration, which results in a 0-tunnel between \(b \) and \(c \). 2 extra pixels are added in X and Y direction which adds the hatched pixels around the tight bounding box. By including these extra pixels we can now guarantee that pixel \(b \) and \(c \) are considered.

4.5 Worst case running complexity for brute force algorithm \(O(kD^3) \).
4.6 The algorithm's main steps ... 55
4.7 For every point \(P'(i,j,0) \) we would like to compute its intersection \(P(i,j,k) \)
with the plane \(L \). \(M_k \) is the chosen principal direction of \(L \), \(P_0 \) is a point on
\(L \). The unit normal of \(L \) is \(N_L \) .. 60
4.8 Incremental voxelization algorithm 63
4.9 Two infinite lines \(A \) and \(B \) meets at a point in space. Point \(C,D,E, \) and \(F \) are
the nearest pixel around that intersection point. 64
4.10 The effect of snapping triangle vertices to the nearest voxels. When two
triangle vertices snap into one voxel a triangle is transformed into one line
which can not be voxelized by our new algorithm (b). To handle this case
any suitable line voxelizer can be used to close the gap (c). Ant mesh taken
from the library of free meshes at www.3dcafe.com 66

5.1 The tetrahedron used as input to the voxelization algorithm 69
5.2 Each dithered voxel belong in \(\Delta(S) \). For each of the dithered voxels we check
its immediate neighbours along the principal direction shown as double ended
arrows. When the two neighbouring voxels belong in two different spaces we
mark the voxel as minimal. .. 70
5.3 The two boundary cases of minimality testing that need to be excluded from
testing. The two arrows point to the neighbours of the hatched voxel consid-
ered in the test. Case 1 happens at the intersection point of two lines/planes.
Case 2 happens when one of the neighbours of the surface voxel belongs to
another surface. ... 71
5.4 The volume on the right has 2 extra voxels around the original volume. The
origin shifts as a result of the padding. The padding is added to remove
special cases of the minimality testing 71
5.5 Enlarging the bounding box of the triangle ensures that for all rotation angles
tested the tetrahedron will be fully enclosed within the bounding box. The
unit cube dimension is the same as the length of the triangle's hypotenuse
which is of length \(\sqrt{2} \) .. 72
5.6 The left figure shows the standard Cartesian lattice indexing. The right
picture shows the BCC lattice as two inter-penetrating Cartesian lattices. In
the right figure the extra points add to the index length in the \(z \) dimension. 74
5.7 This picture shows the stanford bunny voxelized in a 0-separating Cartesian lattice. The lattice has 256^3 discrete voxels in the lattice. There are 229,328 surface voxels on the bunny.

5.8 This picture shows the stanford bunny voxelized in a 2-separating BCC lattice. The lattice has $180 \times 180 \times 360$ discrete voxels in the lattice. There are 85,699 surface voxels on the bunny.

5.9 This picture shows the stanford bunny voxelized in a Z-separating BCC lattice. The lattice has $203 \times 203 \times 406$ discrete voxels in the lattice. There are 172,223 surface voxels on the bunny.

5.10 Results for the brute force algorithm. The graph shows the average result of the ratio over 72 rotation angle cases. The straight line shows the ideal ratio when we have a unit cube.

5.11 Results for the brute force algorithm. The graph shows the average result of the ratio over 72 rotation angle cases. The straight line shows the ideal ratio when we have a unit cube.

5.12 Results for the incremental algorithm. The graph shows the average result of the ratio over 72 rotation angle cases.

5.13 Results for the incremental algorithm. The graph shows the average result of the ratio over 72 rotation angle cases.

5.14 Results for the optimized incremental algorithm. The graph shows the average result of the ratio over 72 rotation angle cases.

5.15 Results for the optimized incremental algorithm. The graph shows the average result of the ratio over 72 rotation angle cases.

5.16 Timing comparison between three algorithms.

5.17 Timing comparison between three algorithms.

5.18 Time ratio between standard and optimized incremental voxelization algorithm.

5.19 Time ratio between standard and optimized incremental voxelization algorithm.

5.20 Fill rate comparison between three algorithms.

5.21 Fill rate comparison between three algorithms.
6.1 The steps taking in the new integer algorithm. The algorithm starts with a voxel A that intersects the line, then a step in the base-plane direction is taken which leads us to pixel 1. Pixel 1 is chosen because its distance is still less than t. At pixel 2 the algorithm moves along the principal direction because its distance to the line L is bigger than t.
Chapter 1

Introduction

In computer graphics there are two common ways of representing objects. We can describe objects by their surface properties such as geometry, texture, colour, and reflectivity. This surface description of an object is often called boundary representation (b-rep).

B-reps can be found in many computer graphics applications such as computer aided design (CAD), visual effects, and computer games. In these applications the object’s surface properties are the focus of attention, whereas the volumetric material properties such as density and compressibility of the material do not concern the user.

Another way of representing objects in computer graphics is by storing the material’s properties at discrete points in 3D space, an approach called volumetric representation (v-rep). This type of representation uses the same approach as digital pictures, where pixels make up a digital image. Each point in the object’s representation is called a volume element or voxel for short. Just like a pixel holding a vector valued quantity called colour, a voxel can hold a vector valued quantity representing physical measurement of the object.

Volumetric representation can be found in applications where both, surface information and the object’s volumetric properties, are important. It is commonly found in the medical imaging field, computational fluid dynamics, and weather simulations. V-rep is commonly used among scientific communities to perform simulations of atmospheric conditions and fluid flow around objects.

To put the two data representations in proper perspective we will discuss the benefits and disadvantages of both in the next two sections.
1.1 Boundary representation

Boundary representations capture surface properties of opaque objects. Properties such as colour, shape, and texture are object properties that our visual sensory system can acquire upon inspecting an object. Our visual sensory system can adequately recreate an opaque object from B-rep models. This is one reason why b-rep used in computer generated visual effects for motion pictures can convince viewers of the reality shown on the screen. Motion pictures such as the recent trilogies of Star Wars and the Lord of the Rings have succeeded in creating a believable fantasy world on theatre screens. That achievement shows that b-rep models can model realistic worlds.

There are many tools available to support the construction of b-rep models. Modeling objects using b-rep started when computer aided design (CAD) programs were introduced as a way of designing products without the cost of building a scaled down model/prototype. CAD programs use sculpting metaphors to assist users in creating the product. The same metaphors are improved and continually used in later generation modeling tools such as Maya, 3D Studio Max, and XSI. The latest tools allow modelers to assign sophisticated surface details, such as bi-directional reflectance functions, surface bump maps, and fur like properties, to objects.

Computer gaming is another area where computer graphics play a key role. In computer games b-rep is the most popular object representation, due to the availability of affordable graphics hardware for personal computers and game consoles. Current consumer models of graphic processing units (GPU) can display and manipulate points, edges and triangles in the order of hundreds of millions of primitives per second. The availability of GPUs in the hands of consumers makes b-rep a lucrative choice for the gaming industry.

B-rep is also popular in the computer game industry because it is well understood. Over the years artists in the industry have built up expertise in building realistic b-rep models. Along with the expertise of content builders, many improvements have been made to increase the speed of rendering as well as the level of realism that is possible on GPUs. Advanced rendering algorithms that exploit occlusions and level of details of objects enable the creation of rich virtual worlds for gaming purposes. On the other side of the coin the computer game industry is the main driving force behind advancement in affordable graphics hardware. As long as demand for higher realism in computer games is strong, the quality of images produced by graphics hardware will continue to increase.
Despite the popularity of boundary representations they have three major drawbacks:

1. B-reps are floating point representations of objects used in a finite precision environment.

2. B-reps can only express surface properties, not volumetric ones.

3. The storage space requirement depends on the complexity of the object being modeled.

The first weakness of b-rep is due to the finite precision of computers. B-rep is a continuous representation which requires the use of floating point numbers in its representation. The floating point numbers used in b-rep are problematic when they are stored and manipulated in a finite precision computer. Consider computing the distance from a point to a plane. We can easily derive an analytical solution to the problem with an exact answer\(^1\), and determine on which side of the plane the point is positioned. When such a calculation is performed by a computer, the result can be different from the correct analytical result due to numerical inaccuracies. The point to plane distance calculation is the basis for the b-rep collision detection algorithm, which explains why robustness for such an algorithm is difficult to achieve. There are methods to ensure robustness of intersection tests, however such algorithms tend to be expensive.

The second drawback of b-rep models lie in its expressive capacity. B-rep can only represent objects with salient boundaries. Natural phenomena such as fog, fire, smoke, fluid, and clouds are volumetric in nature; they do not possess any clearly delineated surfaces. We can approximate the appearance of such phenomena with b-rep, but the surface representation is insufficient when the phenomena must interact with other objects. This is due to the fact that there is no real well-defined boundary of said phenomena. Information on the boundary as well as within the volume of the phenomena must be available to correctly recreate the interaction between the phenomena and other objects.

The final problem with b-rep is that its storage space requirement depends on the complexity of the object it is representing. This dependence on object complexity is undesirable when the object we are trying to represent has a high degree of complexity such as biological systems. The human body, for example, consists of over 12 major systems\(^2\). The nervous

\(^1\) the same problem is illustrated in Section 4.2

system, for instance, starts from the brain which is connected directly to the spinal cord. The spinal cord then branches off to all parts of the body, eventually connecting hundreds of little nerve endings throughout the body to the brain. It would require an enormous amount of storage space to store all the intricate details of the nervous system as a b-rep model. Trying to represent all the systems that exist in a human body becomes an enormous undertaking.

1.2 Volumetric representation

Volumetric representations (v-rep) are analogous to 2D raster representations of digital images. Each unit volume is called a volume element (voxel). Often a voxel can be associated with a shape which is understood as the Voronoi-cell formed by the underlying grid. Just as grid structure determines the shape of a 2D pixel (see Figure 1.1), the shape of the voxel is determined by the grid structure that we use to represent the data. The voxels can represent a sampling of scalar or vector valued properties that make up the phenomena being studied.

For example in the medical field Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scanners are indispensable tools for non-invasive diagnosis of patients. MRI or CT scanners capture object information in a volumetric fashion. The output of such
CHAPTER 1. INTRODUCTION

Figure 1.2: Direct Volume Rendering of the Industrial CT Images of a Tooth from Transfer Function Bakeoff Panel at IEEE Visualization Conference [43]. The image shows a transparent outer layer of the tooth as well as its inner structure. This image is obtained using \texttt{vuVolume2} splatter, with custom transfer function.

scanners is a collection of structured voxels in 3D space. Each voxel contains information on a particular material's density, which helps physicians to detect structural abnormalities within a patient's body. Another feature of v-rep is its ability to display the outer surface of the data transparently while displaying the internal structure of the object in context (see Figure 1.2). Detail-in-context information helps surgeons to plan a path to the target area. Pre-surgical planning can help to reduce the risk of complications and trauma inflicted upon the patient.

The amount of storage space required for v-rep does not depend on the complexity of the object we are capturing, instead the amount of storage space is solely determined by the resolution of the volume. In Figure 1.3 we can see many complex surface folds that exist in the human brain. Because v-rep model storage requirements only depend on the grid chosen to represent the data, such a complex object can be captured with the same amount of storage as other simpler objects using the same grid resolution.

V-rep is well suited to capture amorphous phenomena such as fog, fire, and cloud. Those amorphous phenomena are volumetric in nature. Therefore, to accurately represent them
CHAPTER 1. INTRODUCTION

Figure 1.3: A slice of MRI data. The data set is obtained from UNC Chapel Hill Volume Rendering test dataset [40]

in the computer one must capture information at the edge as well as inside of such phenomena. When volumetric information of the phenomena is available interactions between the phenomena and other solid objects can be calculated by solving the relevant governing partial differential equations (for example Navier-Stokes equations for fluid flow).

V-rep naturally supports block based operations. Boolean and morphological operators can be easily applied to v-rep. Simple extension to popular 2D image operators can be applied directly to v-rep models without pre-processing. Lossless and lossy data compression, which is available for 2D images is also available for volumetric data [9]. Because v-rep supports block based operators, CSG can be easily implemented. Because CSG is performed at the discrete voxel unit, the error caused by finite precision arithmetic is non-existent.

There are three common drawbacks that v-rep faces:

1. The storage space requirement grows in a cubic fashion as the volume resolution grows.
2. There is limited hardware support for volume rendering.
3. There is a lack of volume modeling tools.

The first is the asymptotic storage space requirement of $O(N^3)$, where N is the resolution
of the volume along one dimension. The requirement for storage space and data transfer bandwidth grows cubically larger for higher resolution volumes.

We shall illustrate the bandwidth problem for a computer system that renders volumetric data. Assuming that we are running an unoptimized rendering algorithm that traverses a volume of 512^3 resolution, every $1/30$th of a second, also assuming 1 byte of information per voxel, this rendering algorithm roughly requires a bandwidth of 3.75 GB/s. This amount of bandwidth is well within the capability of current mainstream computers. However, interactive applications such as computer games use the CPU for other data processing such as AI, sound, etc. With the assumption of 4.2GB front-side bus bandwidth, the 3.75 GB/s requirement represents 89% of the overall system bandwidth, which only leaves 11% of the system bandwidth for the remaining tasks. If v-rep is to be a viable model for future computer games, optimization in terms of data structure and algorithms is still needed to reduce the asymptotic bandwidth requirement.

Specialized volume graphics rendering hardware that supports the high bandwidth requirement of volumetric datasets has been introduced. The only commercially available volume rendering hardware is VolumePro4 [42]. VolumePro uses a specialized processing unit to deliver 30 frames/sec rendering of a 512^3 dataset. This high-end volume rendering board only serves a small niche market, such as medical visualization and geological survey visualization. Wider adoption of volume rendering hardware is still hampered by the cost of the solutions, and the limited number of software that use volume rendering as a mode of display.

There is an encouraging trend to make v-rep more accessible to the general public. By utilizing commodity GPUs some rendering algorithms [21, 58, 8] are able to render v-rep models on a PC. There is still much work required to enable interactive v-rep rendering on a consumer level hardware, however continued advancement in GPU volume rendering algorithms can eventually make v-rep accessible to a wider audience.

Availability of tools to construct v-rep models is still limited to research labs. Volume sculpting [24], Volume ablation [53], and Kizamu [41] are examples of some of the v-rep modeling tools available today. These tools and others in research stages will require further development to bring them to commercial use. When such tools are brought to the market

3The latest memory module can work at 533 Mhz clock speed with a peak transfer rate of 8 bytes per clock cycle

4http://www.terarecon.com/products/volumepro_prod.html
CHAPTER 1. INTRODUCTION

<table>
<thead>
<tr>
<th>Representation Type</th>
<th>b-rep</th>
<th>v-rep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Representation</td>
<td>Continuous</td>
<td>Discrete</td>
</tr>
<tr>
<td>Size of Representation</td>
<td>Depends on complexity of object</td>
<td>Depends on size of volume grid</td>
</tr>
<tr>
<td>Modeling</td>
<td>Tools are available</td>
<td>Not many available</td>
</tr>
<tr>
<td>Dedicated Hardware Support</td>
<td>Consumer level</td>
<td>Specialized system</td>
</tr>
</tbody>
</table>

Table 1.1: Comparison between surface representation and volume representation

adoption of v-rep is still hampered by the learning curve that content creators have to overcome.

We have discussed the benefits and drawbacks of both data representations. Table 1.1 summarizes the points presented so far.

Both v-rep and b-rep are useful in many areas of computer graphics. Some researchers have taken advantage of both data representations to enable them to perform operations that are difficult to do in one representation, in the other representation.

A number of applications fit into this category, one of which is volume visualization. Volume visualization is slow because of the large data that needs to be traversed and displayed. In cases where only surface information is needed from the data, we can speed up the visualization by extracting the relevant surface information and discarding the volume. Because these surfaces usually represent a smaller portion of the overall volumetric data, the end result is a net reduction in bandwidth requirement. In addition to the reduction of bandwidth we can also utilize the power of the GPU in rendering surface polygons at an interactive rate. Another gain in storage space is obtained when b-rep contours are stored in lieu of the actual volumetric data. This example shows that b-rep can help to solve storage and rendering problems found in v-rep.

Large geometric models obtained from remote sensing, laser scanners, and CAD can contain errors such as cracks or holes. Because of the scale of the models, an automatic repair tool is required to correctly repair these models. To perform such operations on the b-rep model directly requires a complicated algorithm and does not scale well to higher resolution b-rep models. The approach proposed in [32, 28] first converts the b-rep models into the corresponding v-rep models. Then morphological operators are applied to the v-rep to construct a closed and continuous surface. In this case v-rep representation provided
morphological operators that are unavailable in b-rep to close cracks or holes in the b-rep model.

There have been many powerful image processing tools developed. Providing these tools for 3D object representation can potentially provide content creators with powerful tools to assist 3D model creation. Generalization of such tools to b-rep are difficult, because these processing tools require spacing regularity of sample points not found in b-rep. The same tools, however, can be applied directly to regularly sampled v-rep with minor changes. Instead of directly applying image processing tools to b-rep, we can convert it into v-rep first where generalization of the tools are straight forward, and then convert the v-rep back to the b-rep domain. One such approach was proposed by Tasdizen et al. [50], where a level set representation of the object’s surface is used to apply smoothing and sharpening operations.

Volumetric display technology is starting to come to fruition. The development of volumetric display devices is similar to the development of early 2D raster displays in the 80’s. Within one decade 2D raster devices completely replaced vector graphic systems common in that era. We can speculate that volumetric display technology has the potential to completely replace our current 2D raster devices within the next two decades. The latest volumetric display device is capable of displaying 100 million voxels [18], which can approximately display a volume with a resolution of 465^3. The cost of such a device is still prohibitively expensive, and the volume resolution of the device needs to increase before it can gain wider acceptance. When such a device becomes affordable to the common consumer, b-rep models that are common now need to be converted to v-rep models before they can be displayed on such a device, which necessitates the mapping between the two models.

Applications that require interactions between b-rep and v-rep models require a bridge between the two representations. One such possible application is in visual effects where weather phenomena such as fog can be simulated volumetrically while the rest of the objects are modeled using b-rep. Another possible application of b-rep and v-rep is in the area of medical training/simulation tools, where real patient data obtained from MRI or CT can be fed into a simulation engine. The simulation engine provides the user with a simulated response from the patient as he/she is performing a surgery on the v-rep models using surgical tools modeled with b-rep (CAD data). Such applications require a bridge between the two data representations to facilitate interaction.

To summarize the mapping between the two data representations is important because
of the following reasons:

- Hybrid algorithms transform a hard problem from one domain to an easier one in the other.

- Volumetric display technology requires a conversion from surface models to volumetric models.

- Applications that use a mixture of volumetric and surface graphics require a bridge to enable interaction between the two representations.

A v-rep to b-rep mapping is important in many algorithms. As noted earlier this mapping is used as the last step of the hybrid mesh repair, the simplification algorithm, as well as the volume rendering method. Because volumetric data can contain an arbitrary number of boundaries between distinct material types, the mapping of v-rep into b-rep requires the user to choose a particular boundary. A boundary is understood as a surface that cuts through voxels with the same voxel value. This type of surface is also called an iso-surface, and the mapping between the two representations is normally called iso-surface extraction. There are several well known methods of constructing an iso-surface [5, 47, 27].

In this thesis we will be focusing our attention on the mapping from b-rep to v-rep which is also called voxelization. The b-rep to v-rep mapping is used in the initial stages of hybrid mesh repair explained above. It also serves as a bridge in applications requiring interactions between b-rep and v-rep models.

We have discussed the benefits and disadvantages of each data representation. We will focus our attention on voxelization in the remainder of the thesis. We will begin with an in depth discussion on voxelization in the next chapter.
1.3 Voxelization

Voxelization can be classified into two major methods based on the resulting surface: binary voxelization and smooth voxelization.

Binary voxelization is a voxelization that marks any voxel intersecting the surface as one, and zero otherwise. Binary voxelization is similar to binary rasterization first applied to 2D primitives. In 2D, Bresenham's line algorithm is a well known binary line rasterization [20]. Bresenham's line algorithm created an aliasing artifact also known as jaggies. This aliasing artifact is visible on non-horizontal or vertical lines. Aliasing artifacts are caused by lines which have an infinitely sharp edge. The infinite sharp edge represents infinite frequency support, which is impossible to capture with finite devices such as a computer. The solution to this is to dampen the high frequency content of the line by making it wider and varying the pixel value smoothly across the wider line cross-section (see Figure 1.4). The pixel value varies according to a smooth function of distance from the actual line. Voxelization that produces smooth boundaries/edges is also called multi-valued voxelization or smooth voxelization.

The same jaggedness can be found in voxelization algorithms in 3D. Binary voxelization creates a clear separation between surface voxels and non surface voxels. However, this type of voxelization suffers from the same aliasing artifacts found in binary rasterized lines. Smooth voxelization can alleviate the problem by introducing multi-valued voxels into the surface to create fuzzy boundaries.
The next two sections will discuss the past advancements and recent discoveries in these two different voxelization approaches.

1.3.1 Binary Voxelization

There have been numerous contributions to the topic of binary voxelization. We will start our discussion on binary voxelization from the pioneering work of Bresenham. Because line tracing is an important element in a fast ray-tracing algorithm, Bresenham's algorithm has been extended and refined for discrete ray traversal in 3D. The early improvements to 3D Bresenham have been published by Amanatides and Woo [1]. Their algorithm constructs discrete lines where adjacent voxels share one face (this neighbourhood is also known as 2-neighbourhood shown in Figure 2.9). The algorithm uses a parametric form of the line equation to compute the next step in the algorithm. Assuming fixed point arithmetic the algorithm uses four additions, two comparison operations, and one decrement operation for every voxel chosen.

Cohen Or et al. presented an optimized algorithm called tripod [12] for a faster line tracing in a 3D Cartesian grid. Their algorithm creates 6-connected lines using errors derived from the projection of the line to three axis planes. The algorithm is faster than the previous algorithm by Amanatides and Woo, because it eliminates the expensive floating point initialization step found in the previous algorithm, and it reduces the number of operations to six compared to seven found in the previous algorithm.

Recently a faster variant of the line tracing algorithm is presented by Liu et al. [35]. This line algorithm maintains 6-connected lines and reduces the number of arithmetic operations by changing the computed error. By calculating the distance of the line to the corner of the voxel, this algorithm can detect whether two or more voxels need to be included in the line with one test. Thus this algorithm is an improvement over the previous algorithms where each individual voxel must be examined.

Ibáñez et al. proposed an extension to the standard Bresenham algorithm to a general lattice structure [26]. The authors generalized the notion of octant, and thus the error computations of a line tracing to any lattice structure. This generalization enables the standard Bresenham algorithm to work in any lattice structure without modification.

Binary surface voxelization started as early as the 80's when the concept of spatial-occupancy enumeration was introduced [20]. Furthermore, in the late 80's Kaufman presented an incremental algorithm to voxelize lines, polygons, polyhedra, parametric curves,
and parametric surface patches [31]. In this work the author is concerned with fidelity, connectivity and efficiency of the algorithm because of the limited amount of processing power available at that time.

The following year, Kaufman presented a general algorithm to discretize continuous analytical surfaces such as cubic parametric curves, bicubic parametric surfaces, and tricubic parametric volumes [30]. The algorithm works by evaluating the analytic surface over a parameter space, and rounding the evaluated result to the nearest grid point.

A novel idea to utilize hardware 2D rasterizers for voxelization was presented by Fang and Chen [17]. The algorithm works by rendering slices of a mesh in z direction; the polygonal silhouette on the screen simply becomes the voxels set in that particular z coordinate in the final volume. Because of the support of hardware rasterization, this algorithm is able to voxelize a filled polyhedron with negligible extra cost. This voxelization algorithm is highly dependent on the fill rate of the GPU used, therefore as the algorithm’s fill rate increases we can see a decrease in voxelization time. The algorithm’s current implementation is limited to Cartesian grids, and the resolution of the generated volume is limited to the resolution of the frame-buffer supported by the card.

In 1998 Huang et al. used the idea of minimal covers from [11]. He proposed a set of prescriptive criteria for separable and minimal cover, as discussed in Section 3.1.2. The paper details a brute force algorithm that uses the criterion he proposed. The proofs provided in the paper are discussed and improved in chapter 3, to cover cases not considered by the authors.

1.3.2 Multi valued voxelization

There are a number of approaches to smooth voxelization. The first smooth voxelization algorithm was proposed by Wang and Kaufman [57]. The algorithm proposed is an extension to the Gupta and Sproull algorithm for anti-aliased lines. This approach is often called pre-filtering, because primitives are smoothed using a filter kernel before the discretization step.

One novel way of doing smooth voxelization proposed by Gibson [22] is called distance map. In a distance map each voxel stores its signed distance to the nearest point on the original surface. The distance map can provide volume renderers with accurate and smooth normals, even at very low volume resolution. Gibson also proposes constrained elastic surface nets as a method of estimating the distance map when a-priori knowledge of the underlying surface is missing.
Šrámek and Kaufman [55] presented quality comparison of different filter kernel uses in smooth voxelization. The authors compared the quality of the reconstructed surface, as well as the resulting normal estimated from the smooth volume.

Dachille and Kaufman [13] proposed a smooth incremental triangle voxelization algorithm. By using a 1D filter oriented along the surface normal, the algorithm visits all the voxels within an axis aligned bounding box around the triangle, and assigns a voxel density value based on a function of its distance to the surface. The algorithm has a run time complexity of $O(N^3)$, where N is the resolution of the volume in one dimension.

Bærentzen and Šrámek [2] proposed smooth voxelization criteria for an accurate representation of the input surface. The first criterion ties the overall curvature of the input mesh to the volume grid resolution. The second criterion helps to find an optimal reconstruction filter kernel size for a given input mesh.
CHAPTER 1. INTRODUCTION

1.4 Contributions

Both binary voxelization and multi-valued voxelization have their respective application areas. Binary voxelization is useful in applications where binary decisions are needed, as well as applications that require an accurate volume estimate of a polyhedron. Multi-valued voxelization is useful in visual arts and illustration applications, where smooth surfaces are preferred.

In this thesis we focus our work on binary voxelization. As noted earlier, for applications requiring binary voxelized surfaces, we must ensure that the discrete surface is the closest approximation possible to the real surface. We will develop some theories in the later chapters that will quantify the closeness of a discrete surface to the original b-rep.

Binary voxelization in the traditional Cartesian grid (see Figure 1.1) has so far been solved. Voxelization algorithms that preserve topological properties of the continuous surface have also been discovered. In this thesis we present our work on voxelization theory for a structured sampling grid called a lattice. A lattice is a special structure that can be defined by a set of n basis vectors, where n is the number of spatial dimensions.

We present a theorem for voxelization in general 2D sampling lattices. Our theorems treat the Cartesian lattice as a special case. In 3D there are exactly five distinct Voronoi regions that a lattice point can generate. We chose to focus our effort on the traditional Cartesian lattice and the Body Centred Cubic (BCC) lattice. The Cartesian lattice generates a cubical Voronoi region, whereas the BCC lattice generates a truncated octahedron as its Voronoi region.

The motivation for moving to a different lattice structure is discussed in Section 2.1. Formal notations and notions necessary for further discussion of the voxelization theory are detailed in Section 2.2.

Using the voxelization theorem we present in Chapter 3, we derive a new incremental surface voxelization algorithm in Chapter 4. The incremental voxelization algorithm is an extension of the algorithm by Kaufman [31] to a general lattice. Kaufman's algorithm has an optimum run-time complexity of $O(N^2)$, where N denotes the number of voxels along one dimension. Issues relating to practical implementation of the algorithm are also discussed in Chapter 4.

The theorems presented are built on the assumption of voxelizing an infinite plane, however a practical implementation of the algorithm must work with a finite planar structure.
such as triangles. To validate our new algorithms several important statistics regarding separability and minimality of the surface are presented in Chapter 5. Timing measurements are taken to show the predicted algorithmic run-time complexity of our new algorithm in Chapter 5.

Lastly, Chapter 6 will summarize the results of this work, and discuss possible extensions for future research.
Chapter 2

Background

2.1 Alternative lattice structure

As we have seen in the previous chapter, voxelization is a mapping from the continuous b-rep to the discrete v-rep. In signal processing theory this mapping is also called discretization or sampling.

A signal is usually represented as a function of time or space. Signals described this way are called time or spatial domain signals. Signals can also be described as a function of frequency and their mapping is known as a spectrum. The Fourier transform provides the mapping between spatial and frequency domain representations.

From signal processing theory, sampling/discretization is viewed as multiplication of a continuous signal with the comb function. The comb function is an infinite series of equidistant Dirac's delta functions described as follows:

\[\text{comb}(Wx) = W \sum_{n=-\infty}^{\infty} \delta(x - Wn) \]

(2.1)

Let \(W \) be the distance between successive Dirac's delta functions. The Fourier transform of a comb function is another scaled comb function (see Figure 2.1) with the distance of \(\frac{2\pi}{W} \) between successive peaks [23].

Because multiplication in the time domain translates to convolution in the frequency domain; a sampling of a continuous input signal replicates the spectrum of the input signal over the frequency domain with a distance of \(\frac{2\pi}{W} \) as shown in Figure 2.2.

In section 1.3 we have discussed aliasing artifacts found on binary discretized lines. We
can explain the aliasing phenomena with sampling theory. Aliasing occurs when the replicas of the sampled signal overlap with one another, thus shadowing/aliasing part of the original input spectrum as shown in Figure 2.2c. Because part of the spectrum is lost we cannot fully reconstruct the original signal. We denote the highest frequency of the spectrum as B. The width of the input spectrum is also known as the bandwidth of the input signal. To avoid aliasing we need to set the distance $\frac{2\pi}{W} \geq 2B$. We can translate the frequency domain distance into an equivalent spatial domain distance of $W \leq \frac{\pi}{B}$. This condition on B is well known as Shannon's theorem, and the critical rate of $W = \frac{\pi}{B}$ is known as the Nyquist rate.

In the frequency domain, to get the original signal back we need to isolate one frequency spectrum from the replicas before we can perform the inverse Fourier transform. We can isolate a particular spectrum by multiplying the spectrum of the sampled signal with a function that has non-zero value within the width of one spectrum and zero otherwise. This function is also known as a reconstruction filter. The perfect reconstruction filter is a box filter, shown as a dashed box in Figure 2.3. With a box filter we can reconstruct the original signal exactly. The width and value of the reconstruction filter affect the quality of the reconstructed signal. A reconstruction filter with bigger support will create aliasing errors because neighbouring frequency spectra will be included in the reconstruction, and a filter with smaller support will remove important detail information from the original signal.

Up to this point we have only discussed 1D signals. In higher dimensional space the position of samples in relation to other adjacent samples can also affect the quality of the
CHAPTER 2. BACKGROUND

(a) Signal's Original Spectrum

(b) Comb function in frequency domain

(c) Overlapping spectrum due to undersampling

(d) Spectrum of well sampled signal

Figure 2.2: The effect of sampling a band-limited continuous signal (a) by convolving a comb function with a sampling distance W. When W is large we get aliasing artifact shown in Figure (c). The dashed lines in (c) show the lost part of the input spectrum. As W shrinks the replicated spectra are moving further apart. At some point the replicated spectra will be perfectly separated from each other as shown in Figure (d).

Figure 2.3: Illustration of the reconstruction process. The left figure shows the original continuous signal multiplied with the comb function, the dark dots on the curve represent the sample value at that particular position. In the frequency domain when W is chosen to be the Nyquist rates the spectrum of the sampled signal will look like the figure on the right. To perfectly reconstruct the original signal from the sampled signal, one must construct a box filter with the same support as the signal's frequency spectrum shown as dashed lines.
CHAPTER 2. BACKGROUND

sampled signal [52]. Before we can discuss the 2D and 3D signals we need to introduce a few definitions.

The set of all sample points in a lattice is denoted by

\[G_V(z) = \{ Vz, z \in \mathbb{Z}^D \}, V \in \mathbb{R}^{D \times D} \]

Equation 2.2

The sample points defined in Equation 2.2 are also known as lattice points.

\[z = V^{-1}G_V(z), z \in \mathbb{Z}^D \]

Equation 2.3

We shall call the set \(z \) integer lattice point and the set \(G_V(z) \) to be real lattice point.

\(V \) is called the sampling matrix and its columns consist of D-dimensional vectors that span \(\mathbb{R}^D \):

\[V = [v_1 \ v_2 \ldots v_D] \]

Equation 2.4

To create a set of unique sample points the columns of matrix \(V \) must be linearly independent which means that matrix \(V \) must be non-singular. The set \(G_V(z) \) is an integer linear combination of the vectors in \(V \).

We can define a set of D-dimensional discrete signals as

\[x(z) = x_a(Vz) \]

Equation 2.5

Equation 2.5 describes our discrete signal as a multiplication of the continuous signal \(x_a \) with our set of sample points \(G_V(z) \) from Equation 2.2. This equation describing our discrete signal is analogous to sampling in 1D as shown earlier.

We shall see the effect of 2D sampling in the frequency domain. Let \(x_a(j\omega) \) be the frequency spectrum of the input signal \(x_a(t) \). The following equation is the generalized Fourier transform of \(x(z) \) [52]:

\[X(\omega) = \frac{1}{|\text{det } V|} \sum_{k \in \mathbb{Z}^D} X_a(j(V^{-1})^T(\omega - 2\pi k)) \]

Equation 2.6

Equation 2.6 is illustrated in Figure 2.4.

In the frequency domain the sampling process replicates the input spectrum on a 2D plane. To sample a 2D signal perfectly we need to place the replicas at a distance from
Figure 2.4: Illustration of sampling in 2D space. Assuming that the sampled continuous data has a frequency support shown in (a). Discrete sampling in 2D Cartesian lattice replicates the primary spectrum over the plane, as shown in (b)

each other such that a 2D reconstruction filter can isolate one spectrum from the rest of the replicas.

From the description we can see that the optimal sampling problem can also be seen as a spectrum packing problem. The parameters of the packing problem are the shape and size of the primary spectrum as well as its position relative to all adjacent spectra. The shape of the input spectrum is determined by the frequency content of the input signal, whereas the position of the replicas is directly determined by the reciprocal lattice described in Equation 2.7.

\[U = 2\pi (V^{-1})^T. \]

(2.7)

Each frequency spectrum can be completely enclosed within a uniform cell shown as rectangles in Figure 2.4b. The value \(\text{det}|V| \) is known as the area of the fundamental parallelepiped (FPD) described by \(V \) (in the case of a Cartesian lattice the parallelepiped is a square). Let us denote:

\[\rho = \frac{1}{|\text{det}V|}. \]

(2.8)

The value \(\rho \) describes the area that the FPD covers in relation to a unit area. The
smaller this value the larger the area that an FPD covers. Smaller \(\rho \) means that sample points are spread further apart from each other, which translates into a denser packing of the spectrum in the frequency domain. We can use \(\rho \) as a measure of our lattice's sampling efficiency. Lower \(\rho \) values denote a more efficient lattice.

In the general case we would assume there is an equal likelihood for any direction around the origin to be occupied by the spectrum. The shape of such spectrum is a disk in 2D or a sphere in 3D.

We can now show that the Cartesian lattice in 2D is less efficient compared to a hexagonal lattice. Let our isotropic input spectra have a radius \(R \). For the Cartesian lattice we have the following sampling lattice:

\[
V = \begin{bmatrix} W & 0 \\ 0 & W \end{bmatrix}
\]

with the corresponding reciprocal lattice points:

\[
U = 2\pi (V^{-1})^T = 2\pi \begin{bmatrix} W^{-1} & 0 \\ 0 & W^{-1} \end{bmatrix}
\]

We can ensure non-overlapping spectrum when we ensure the following relation holds:

\[
\frac{2\pi}{W} \geq 2R
\]

This translates into a time domain sampling distance of \(W \leq \frac{\pi}{R} \). Now we can compute the sampling density of the lattice using Equation 2.8 as follows.

\[
\rho = \frac{1}{|\text{det}V|} = \frac{1}{W^2} = \frac{R^2}{\pi^2}
\]

The computed value is the minimum sampling density in the spatial domain to ensure non-overlapping spectrum in the frequency domain.

The hexagonal lattice is illustrated in Figure 2.5. The shaded area in Figure 2.5a shows the fundamental parallelepiped for this lattice. The hexagonal lattice is the most efficient lattice known in 2D. In the frequency domain the spheres are packed in the reciprocal lattice shown in Figure 2.5b. From the picture we can see that the disks are packed more tightly than the Cartesian lattice packing. We begin with our ideal sampling lattice which is described as follows:
CHAPTER 2. BACKGROUND

(a) Hexagonal Lattice (b) Frequency Support of Hexagonal Lattice Samples

Figure 2.5: (a) Hexagonal lattice in the spatial domain. The shaded area shows the fundamental parallelepiped in this lattice (b) The corresponding reciprocal lattice showing frequency replicas

\[
V = \begin{bmatrix}
W & \frac{W}{2} \\
0 & \frac{\sqrt{3}}{2} W
\end{bmatrix}
\]

(2.13)

\[
U = 2\pi (V^{-1})^T = 2\pi \begin{bmatrix}
\frac{1}{W} & 0 \\
-\frac{\sqrt{3}}{3W} & \frac{2\sqrt{3}}{3W}
\end{bmatrix}
\]

(2.14)

To ensure non overlapping frequency spectrum in the frequency domain we need to ensure that the following relation holds

\[
2\pi \sqrt{\frac{1}{W^2} + \frac{1}{3W^2}} \geq 2R
\]

\[
\frac{2\pi}{W} \sqrt{\frac{4}{3}} \geq 2R
\]

\[
\frac{4\sqrt{3}\pi}{3W} \geq 2R
\]

\[
W \leq \frac{2\sqrt{3}\pi}{3R}
\]

Finally we get the following expression when computing \(|\text{det}V|\)
Which brings us to the following ρ value:

\[
\rho = \frac{1}{\frac{2\sqrt{3}\pi^2}{3R^2}} = \frac{\sqrt{3}R^2}{2\pi^2} = 0.86603 \frac{R^2}{\pi^2}
\]

Considering, that ρ is the size of the fundamental parallelepiped of the lattice in the frequency domain, we conclude that the spectra are packed more closely for hexagonal sampling lattices compared to Cartesian sampling lattices.

The 3D case is analogous to the 2D case presented. The standard Cartesian lattice is shown in Figure 2.6a. An efficient lattice in 3D is called the Body Centred Cubic (BCC) lattice. In the BCC lattice a voxel has a total of 14 neighbours (neighbours are lattice points whose Voronoi cell shares a point, line, or face with the current point’s Voronoi cell. Formal definition of neighbours are discussed in the next section) as shown in Figure 2.6b. There are two kinds of neighbours visible in that figure. There are 6 neighbouring voxels that share square faces as shown in Figure 2.6d. The 8 remaining neighbours share hexagonal faces as shown in Figure 2.6c.

By visual inspection of Figure 2.6 we can see a larger amount of empty space between two adjacent spheres in the Cartesian case compared to BCC lattice packing. As shown by Theufl and Möller [51], a BCC lattice needs approximately 29.3% less samples for the preserving the same spherical frequency spectrum as the Cartesian lattice.

What the extra packing efficiency affords us depends on the input signal. When our input spectrum has a finite radius R (bandwidth limited) a more efficient structure can reduce the number of sample points we need to accurately represent the input signal. This directly translates to reduced storage space for the sampled signal. When the radius of our input signal is infinite (infinite bandwidth), a more efficient structure can capture more
(a) Cartesian lattice packing of spheres
(b) BCC lattice packing of spheres

(c) BCC lattice packing of spheres showing 8 neighbours, each sharing a hexagonal face
(d) BCC lattice packing of spheres showing 6 neighbours, each sharing a quad face

Figure 2.6: Cartesian and BCC lattice packing, the images show the neighbours of the voxel at the centre of the lattice. (a) The Cartesian lattice, and (b) the BCC lattice with 14 neighbours. Because the packing in BCC lattice is the tightest possible the centre voxel is completely occluded by its neighbour voxels as shown in (b). In BCC there are two kinds of neighbour voxels. Neighbour voxels of the first kind share a hexagonal face as shown in (c). Neighbour voxels of the second kind share a square face as shown in (d).
detail information than the equivalent Cartesian lattice. This translates into higher quality sampling at the same storage cost as an equivalent Cartesian lattice. We will see an illustration of the said advantages in Chapter 5.

We have discussed advantages of using non-Cartesian lattices in sampling. Voxelization can also be seen as a sampling process for our input meshes. We can increase storage space efficiency of our voxelization algorithm in the bandwidth limited case or increase the quality of the result by switching to a non-Cartesian lattice.

This simple idea has a few challenges. For instance, storage of data sampled in a different lattice structure is more complex compared to a Cartesian lattice. For example the hexagonal lattice in 2D can be viewed as a sheared Cartesian coordinate system, as shown in Figure 2.7. The main problem with this indexing scheme is that the samples along the Y axis have negative indices. When those samples are necessary, then a more complicated indexing scheme on the right of Figure 2.7 is required.

Even after we manage to store our non-Cartesian lattices data, the visualization of such data is non trivial. Available rendering algorithms assume Cartesian lattice structures, which make data reconstruction/interpolation simpler. There have been many interpolation schemes devised for the Cartesian lattice, however, there are few available for other classes.
of lattices. For BCC lattices some progress has been made in devising a higher order interpolation filter to improve the reconstruction of BCC sampled data [14].

Before we can discuss voxelization in other sampling lattices we need to introduce some notation required to explain our algorithms rigorously.
2.2 Notations and Formalisms

Topological properties of continuous surfaces do not translate well into the discrete domain. For example in Figure 2.8a, when we draw a continuous curve between the black dots it is easy to see that the curve forms a closed continuous surface that partitions space into two parts.

With the absence of a continuous curve between the black dots we are faced with a question of which set of pixels are neighbours of a given pixel. We define the set of neighbour pixels as a **neighbourhood structure**. In a 2D Cartesian lattice there are two different neighbourhood structures. One is the set of neighbours that share an edge, which we shall call 4-neighbourhood because there are 4 such neighbours to a pixel. If we include pixels that share a corner point then we have 8 such pixels. We shall call this second set 8-neighbourhood.

When we assume an 8-neighbourhood structure, we can see that all the white space in Figure 2.8a forms one connected component, but using a 4-neighbourhood structure we can see two separate white regions. Another example of the continuous to discrete mapping problem is illustrated by Figure 2.8b. The continuous line formed by creating line segments between consecutive points intersect each other. However, the discrete version of the two lines do not have a single common pixel.

At the core of these problems is the fact that the Cartesian lattice has two different neighbourhood structures that we can consider. We can not define correspondence between the continuous surface and discrete surface unless we define the neighbourhood structure of the discrete surface. Therefore, any voxelization algorithm must pay attention to the neighbourhood structure of the lattice to ensure correspondence between the discrete and continuous surfaces.

We will start the discussion with some relevant set theory notions of digital surface.

We define distance \(d(p, p')\) as the Euclidean distance between \(p, p' \in \mathbb{R}^D\). We define a **discrete object** \(A\) to be a subset of \(\mathbb{Z}^D\) and the complementary set \(A^c = \mathbb{Z}^D / A\) is called **background**.

We define the notion of Voronoi set \(V(Vz) = V_V(z)\) as

\[
V_V(z) = \{p \in \mathbb{R}^D | d(p, G_V(z)) \leq d(p, G_V(z')), \forall z' \in \mathbb{Z}^D\} \tag{2.15}
\]

The Voronoi sets of 2D and 3D lattice points are known as pixel and voxel, respectively.
CHAPTER 2. BACKGROUND

(a) Does the black curve separate the two white regions?

(b) Two continuous lines that crosses each other, when the discrete form does not.

Figure 2.8: Two cases of continuous to discrete topology mapping problem

Neighbouring D-dimensional Voronoi sets can share a point (0-dimensional), a straight line segment (1-dimensional), and up to a \((D-1)\) dimensional polyhedra.

Two lattice points \(z, z' \in \mathbb{Z}^D\) are **k-neighbours** \((0 \leq k \leq D - 1)\) if their Voronoi sets share a point set of dimension \(k\) or higher, i.e. if \(\dim(\mathbb{V}_V(z) \cap \mathbb{V}_V(z')) \geq k\). \(N_k(z)\) is the set of all the \(k\)-neighbours of the point \(z \in \mathbb{Z}^D\). \(N(z)\) is a shorthand for \(N_0(z)\).

A sequence \((z_0, \cdots, z_j)\) of points of an object \(A \subset \mathbb{Z}^D\) is a **k-arc** from \(z_0\) to \(z_j\) in \(A\), when successive Voronoi sets between \(z_0\) and \(z_j\) are \(k\)-neighbours. \(A \subset \mathbb{Z}^D\) is a **simple closed k-curve** if each point of \(A\) has exactly two \(k\)-neighbours. Straight line segments drawn between consecutive \(z_i\)'s are called the **continuous k-arc**.

An object \(A \subset \mathbb{Z}^D\) is **k-connected** if there exists a k-arc in \(A\) from \(z\) to \(z'\) for all points \(z, z' \in A\). A **k-component** of \(A \subset \mathbb{Z}^D\) is defined as a maximal k-connected non-empty subset of \(A\).

An object \(A \subset \mathbb{Z}^D\) is **k-separating** when the background \(A^c\) consists of exactly two k-components. A k-separating object \(A\) is called **k-minimal** if for any \(z \in A\), \(A - z\) is not k-separating.

The notion of a k-separating surface only applies to surfaces without boundaries, which
includes a closed manifold or an infinite surface. For finite extent surfaces such as triangles, quadrilaterals and polygons the notion of a **k-tunnel free** surface as introduced in [11] is more appropriate.

Let $B_\epsilon(m)$ be a sphere of radius ϵ centered at m. A continuous k-arc C crosses the surface S at $p \in S$ if there exists an $\epsilon_0 > 0$ such that for any $\epsilon < \epsilon_0$ the continuous path C intersects two different components of $B_\epsilon(p) - S$.

A discretization (also known as voxelization or digitization) $\Delta_V(S)$ of a continuous surface S is a subset of $G_V(\mathbb{Z})$ approximating the shape of S. For the sake of a simplified notation, I will use $\Delta(S) \subset \mathbb{Z}^D$ if the underlying lattice V is unambiguous.

A digitization $\Delta(S)$ such that $\Delta(S) \subset \mathbb{Z}^D$ of a continuous surface $S \subset \mathbb{R}^D$ is **k-tunnel-free** if every continuous k-arc connecting points in $(\Delta(S))^C = \mathbb{Z}^D - \Delta(S)$ does not cross S. A continuous k-arc connecting points in $(\Delta(S))^C$ that crosses S is called a **k-tunnel**.

The notion of k-minimal surfaces can be extended to finite extent surfaces using the k-tunnel-free notion as follows: for any point $p \in \Delta(S)$, the digitization $\Delta(S) - p$ admits a k-tunnel through p.

Using the k-neighbourhood notion we can classify connectivity within a lattice structure.
CHAPTER 2. BACKGROUND

For example the Cartesian lattice in 2D permits 0 and 1 neighbourhood. In 3D, the Cartesian lattice permits 0, 1, and 2 neighbourhood (see Figure 2.9). In 2D, the hexagonal lattice's 0 and 1-neighbourhood are identical. In 3D the BCC lattice's 0, 1, and 2-neighbourhood are an identical set as shown in Figure 2.10.

The notations introduced here will be used throughout the rest of the thesis. We can now start the discussion on accurate voxelization. The next chapter will discuss the theorems that allow us to voxelize in general sampling lattices. Chapter 4 will discuss the algorithms we build upon the results of Chapter 3. Chapter 5 will detail the validation technique we employ to verify the correctness of our algorithm's implementation, as well as performance results. Chapter 6 will discuss the advantages and disadvantages of the voxelization algorithm and suggestions for future improvements to the algorithm.

Figure 2.10: Neighbouring Voronoi sets of hexagonal lattice (a) and BCC lattice (b)
Chapter 3

Accurate voxelization

In Section 2.2 we have seen that discretizing a continuous plane requires us to define the
neighbourhood structure of the lattice used. We have introduced the notion of k-separating
and k-minimal discretization of continuous planes. For finite planes the more appropriate
notion of k-tunnel-free discretization is used instead of the k-separating.

We seek a binary voxelization algorithm that creates k-separating and k-minimal planes.
We call such an algorithm an accurate voxelization.

For now we will assume that the plane we are voxelizing is infinite. This relieves us from
thinking about boundary conditions. Implementation issues for finite planes are introduced
in detail in Chapter 4.

The ideas used in our algorithm were introduced by Huang et al. [25]. The proof of
Huang's algorithm contains a flaw that we will correct in this thesis. We will extend their
ideas to the hexagonal lattice in 2D and the BCC lattice in 3D.

Huang et al. [25] noted that the k-separating property of discrete planes is a manifesta-
tion of their thickness. They also showed that an accurate voxelization of a discrete plane
can be obtained by "thickening" an infinitesimal thin plane to a proper thickness. Given
a plane L we can control the thickness of our voxelization by choosing pixels that lie in
between two parallel planes L_A and L_B (see Figure 3.1).

Given an equation of a plane L:

$$Ax + By + Cz + D = 0$$ (3.1)
Figure 3.1: The plane L, and two parallel planes L_A and L_B. Any voxels that lie in between L_A and L_B are included in the voxelization of L

the equation for L_A and L_B is:

$$Ax + By + Cz + D \pm t = 0$$

(3.2)

assuming $\sqrt{A^2 + B^2 + C^2} = 1$

Therefore a pixel centered at grid point (x, y, z) lies between the two planes L_A and L_B when

$$-t \leq Ax + By + Cz + D \leq t$$

(3.3)

Equation 3.3 can be compared to a convolution with a spherical box-filter of radius $t/2$. We need to define some terms before we can launch into the derivation of the algorithm. Let N_L be the unit normal to a line or plane.

Definition 1 For any lattice point $z \in \mathbb{Z}^D, z_i \in N(z)$, we define $d_i = \frac{\|V(z_i - z)\|}{2}$ to be the **interface distance**.
CHAPTER 3. ACCURATE VOXELIZATION

Definition 2 Given a lattice point \(z \in \mathbb{Z}^D \) and an infinite plane given by the unit normal \(N_L \), we define the principal direction \(C = V(z_i - z) \) for that \(z_i \in N(z) \) for which \(V(z_i - z) \cdot N_L \) is a maximum.

Note that \(V(z_i - z) \cdot N_L = 2d_i \cos \alpha_i \), where \(d_i \) is the interface distance and \(\alpha_i \) the angle between \(V(z_i - z) \) and \(N_L \).

3.1 2D Lattices

Optimal algorithms for 2D Cartesian lattices have been studied. However, no generalizations to other sampling lattices are known. In this section we introduce a new set of theorems that extend the standard line scan-conversion algorithm to any sampling lattice in 2D (such as the one depicted in Figure 3.2b).

A lattice can be described by the sampling matrix \(V \) shown in Equation 2.4. The set of lattice points can be obtained using Equation 2.2. In 2 dimensions \(v_1 \) and \(v_2 \) of the sampling matrix forms a pair of basis vector for the lattice, as shown in Figure 3.2.

The general Voronoi diagram of this sampling lattice is shown in Figure 3.2b. It is easy to convince oneself of this fact by starting with an orthogonal set of basis vectors (see...
CHAPTER 3. ACCURATE VOXELIZATION

Figure 3.2a), which form a rectilinear grid. By simply rotating the second basis vector into place, one of the diagonals of the quad shortens while the other becomes longer. Hence two new edges appear on the shortened diagonal, which split the respective vertices. The result is a hexagon with three parallel sets of edges. In the Voronoi cell we can see three different interface distances that we denote \(d_1\), \(d_2\) and \(d_3\) (see Figure 3.3). Further we denote the angle between the unit normal \(N_L\) of the line to be voxelized and the three neighbourhood vectors \(q_1\), \(q_2\), and \(q_3\) as \(\alpha_1\), \(\alpha_2\), and \(\alpha_3\) respectively. By picking these angles such that they are always less than or equal to \(\pi/2\), we can formulate the following generalization to the theorem in [25]:

Theorem 1 Given a 2D lattice \(V = [v_1 \ v_2]\) with interface distances \(d_1, d_2, d_3\) as well as a line \(L = Ax + By + D\) where \(x, y \in \mathbb{R}\) and its unit normal \(N_L\). Let us denote the angles between \(q_1, q_2,\) and \(q_3\) and the unit normal \(N_L\) by \(\alpha_1, \alpha_2,\) and \(\alpha_3\) respectively. Then the set of all pixels \(\Delta L = \{(x, y) | -t < Ax + By + D \leq t\}\) is an accurate (k-separating & k-minimal) voxelization of the line defined by \(A, B,\) and \(D\) when

\[
t = \max_{i \in \{1,2,3\}} (d_i \cos \alpha_i)
\]

Note that we can restate \(t = \max_{i \in \{1,2,3\}} (d_i \cos \alpha_i)\) as:

\[
t = \max_{i \in \{1,2,3\}} \left(\frac{q_i \cdot N_L}{2} \right) = \frac{C \cdot N_L}{2}
\]

Equation 3.5 shows that \(t\) is closely related to the principal direction. This relationship between \(t\) and the principal direction will be used in the development of our algorithm at a later stage. It is clear from Figure 3.2, that picking a particular direction \(q_i\), all pixels can be traversed by a set of parallel lines in direction \(q_i\). This fact is important in our proof. We will now prove that the theorem will create an accurate discrete representation of \(L\).

3.1.1 Theorem’s accuracy proof

Before we go into the proof note that the expression \(Ax + By + D\) from Theorem 1 can be transformed as follows
$$L = Ax + By + D = (x, y) \cdot (A, B)^T + D$$

We know that

$$N_L = (A, B)^T$$

If $P = (x, y)$

We have the following equation

$$L = P \cdot N_L + D$$

Using any point I on line L in the equation we should get

$$I \cdot N_L + D = 0$$

$$D = -I \cdot N_L$$

Therefore we can rewrite the expression

$$Ax + By + D$$

as

$$P \cdot N_L - I \cdot N_L = \overline{IP} \cdot N_L$$
The inequality in Theorem 1 becomes

\[-t < \overrightarrow{IP} \cdot N_L \leq t\]

We will provide the k-separating proof by contradiction. First let us assume that \(\Delta L\) is not k-separating. By our definition we can conclude that a k-tunnel \(T\) exists in \(\Delta L\), as shown in Figure 3.4. Let \(G\), and \(H\) be two neighbouring pixel centers pierced by the tunnel \(T\), and \(N_L\) be the unit normal vector to the line \(L\). Let \(I\) be the intersection point between \(L\) and the tunnel \(T\) in between \(G\) and \(H\) as shown in Figure 3.4.

We have two cases to consider for this proof. The first case is as follows:

On the first case let us assume without restriction of generality that \(\| \overrightarrow{GI} \| < \| \overrightarrow{IH} \|\), we know that \(\| \overrightarrow{GH} \| = 2 \cdot d_i\) for a particular direction \(q_i\). Because of our assumption we know that \(\| \overrightarrow{GI} \| < d_i\). The distance \(d\) from \(G\) to \(L\), can be computed as

\[
\frac{d}{\| \overrightarrow{GI} \|} = \cos \alpha_i
\]

Which means

\[d = \cos \alpha_i \cdot \| \overrightarrow{GI} \| < d_i \cos \alpha_i\]

Because \(t = \max(d_i \cos \alpha_i)\) we know that the following inequality hold

\[-t < \overrightarrow{GI} \cdot N_L \leq t\]

This means that \(G \in \Delta L\) which is a contradiction to our assumption.

For the second case let us assume that

\[
\| \overrightarrow{GI} \| = \| \overrightarrow{IH} \| = d_i
\]

depending on the orientation of \(N_L\), either \(\overrightarrow{IG} \cdot N_L\) or \(\overrightarrow{IH} \cdot N_L\) will be positive. If we assume that \(\overrightarrow{IG} \cdot N_L > 0\) then we have a distance of

\[d = \overrightarrow{GI} \cdot N_L = d_i \cos \alpha_i \leq t = \max(d_i \cos \alpha_i)\]
CHAPTER 3. ACCURATE VOXELIZATION

Figure 3.4: G and H are the center of adjacent sample points on the lattice, F_k is the edge/face shared between G and H. $\|GH\| = 2d_i$. L is the continuous line we voxelize which means that $G \in \Delta L$, which is a contradiction.

We have proved that Theorem 1 produces a k-separating voxelization $\Delta(L)$. Before we can prove k-minimality of the theorem we need to introduce the following observation. For a given line orientation the angles α_i for $i \in \{1, 2, 3\}$ are identical in each Voronoi cell. Hence we can determine t and therefore the principal direction C globally. Hence $d_C \cos(\alpha_C)$ is the largest of all $d_i \cos(\alpha_i)$ for $i \in \{1, 2, 3\}$. Another important observation is that we can construct a k-arc along the principal direction C, which tiles the entire space (see Figure 3.2).

We will prove k-minimality of the theorem by contradiction, let us assume that $\Delta(L)$ is not minimal. Let’s consider a k-tunnel in the principal direction C. Let the k-tunnel intersect L at I. Because $\Delta(L)$ is not k-minimal there exist two or more pixels along T that is part of $\Delta(L)$, we denote such pixel G and H (see Figure 3.4). Since $G \in \Delta(L)$ we have

$$-t < \overrightarrow{IG} \cdot N_L \leq t$$

$$\| \overrightarrow{GI} \| \cdot \cos \alpha_C \leq t = d_c \cdot \cos \alpha_c$$

$$\| \overrightarrow{GI} \| \leq d_c$$

Considering any other pixel H along the k-tunnel through G in it’s principal direction,
we know that \(\| \overrightarrow{HT} \| > d_c \), hence \(H \notin \Delta(L) \). We know from the k-separating proof that either \(G \) or \(H \) will be included in \(\Delta(L) \) when \(\| \overrightarrow{HT} \| = \| \overrightarrow{GT} \| \).

If we remove \(G \) from \(\Delta(L) \) we can construct a continuous 1-arc through \(G \) in its principal direction, which intersects \(L \), but none of its pixels are part of \(\Delta(L) \) hence this would form a 1-tunnel. Therefore we can conclude that \(\Delta(L) \) is minimal. We can conclude, that for every continuous 1-arc along the principal direction of the lattice, there exists exactly one pixel in \(\Delta(L) \).

3.1.2 Cartesian Lattice

The general theorem stated in the previous section will work for general 2D sampling lattices, for which 0 and 1 neighbourhoods are identical. The 2D Cartesian lattice case presents a challenge as its 1-neighbourhood is a non-trivial subset of its 0-neighbourhood. This means that we can find two different types of neighbours at any given integer point \(z \) (see Figure 2.9) Huang et al. [25] have proposed and proved the following two theorems for voxelization in the Cartesian lattice.

Theorem 2 Let \(W \) be the length of the side of the square pixel in Figure 3.5. For a 1-neighbourhood structure, let \(t_1 = \frac{W}{2} \cos \alpha_k \). The set of pixels \(\Delta(L) = \{(x, y) : -t_1 < Ax + By + D \leq t_1 \} \) is a 1-separating and 1-minimal representation of the line defined by \(A \), \(B \), and \(D \).

Theorem 3 Let \(W \) be the length of the side of the square pixel in Figure 3.5. For \(t_0 = \frac{\sqrt{2}}{2} W \cos \alpha_k \) the set of pixels \(\Delta(L) = \{(x, y) : -t_0 \leq Ax + By + D \leq t_0 \} \) is a 0-separating and 0-minimal representation of the line defined by \(A \), \(B \), and \(D \).

Note that Huang et al. uses the term 4-separable, and 8-separable planes which are equivalent to our 1-separating and 0-separating planes defined in Section 2.2. Similarly the symbol \(\alpha_k \) is equivalent to \(\alpha_C \), which represent the angle between the line normal \(N_L \) and the principal direction \(C \).

We note that, using our notation, \(W/2 = d_1 = d_2 \) (see Figure 3.5). The proof given by Huang et al. [25] is incomplete, since they explicitly assume that a k-tunnel must be created between a Voronoi cell that is intersected by the line \(L \) and two neighboring cells that are not intersected by \(L \). The proof fails to account the fact that line \(L \) can intersect more than
 CHAPTER 3. ACCURATE VOXELIZATION

Figure 3.5: Generalized Cartesian lattice case. There are two different neighbourhood vectors available in this lattice. We denote c_k as the set of neighbourhood vectors with $d_k = \frac{W}{2}$ for $k \in 1, 2$. c_j is the set of neighbourhood vectors with $d_j = \frac{\sqrt{2}W}{2}$ for $k \in 3, 4$.

one neighbouring pixel, thus any tunnel of the form inside-L-L-outside is never accounted for in their proof (See Figure 3.6).

In this section we show how our new, more general, theorem covers the case of regular Cartesian lattices as well. We also show that it covers rectilinear lattices which was never considered by Huang et al.

We have already shown that for any general lattice in 2D we can derive a separating and minimal voxelization using Theorem 1 (see Section 3.1.1). The 2D Cartesian lattice case is a special case of our general theorem.

Refer to Figure 3.5 for the following proof.

For the 1-separating case in Cartesian lattices we have two vectors to consider, c_1 and c_2, since these form the only allowable neighborhood structure. By Theorem 1 our line thickness t is defined by $\max(d_1 \cos \alpha_1, d_2 \cos \alpha_2)$, however $d_1 = d_2 = \frac{W}{2}$. Hence, our criteria is reduced to $t = t_1$ of Theorem 2. Hence Theorem 2 is a special case of our general Theorem 1.
Figure 3.6: Because line L intersects pixel P and M the proof provided by Huang et al. has shown that there can be no tunnel through P between pixel Q and R, and between pixel K and N through M. However the proof did not cover a case when the tunnel is composed of Q, P, M, and K.

For 0-separating we consider two extra neighbourhood vectors c_3, and c_4, which add neighbours that only share a vertex of the Voronoi cell. For the sake of the proof these vertices can be seen as special zero-length edges between the appropriate Voronoi cells. By Theorem 1 we can see that our criteria becomes $\max(d_k \cos \alpha_k, d_j \cos \alpha_j)$ for $k \in \{1, 2\}, j \in \{3, 4\}$ We also know that $d_k = W/2$ while $d_j = \frac{W\sqrt{2}}{2}$. Since the angles of the closest neighboring directions c_k and c_j add up to 45 degrees, we can write $\alpha_k = (45 - \alpha_j)$. Now we seek to show that $d_k \cos(\alpha_k) \leq d_j \cos(\alpha_j)$

$$d_k \cos(45 - \alpha_j) \leq d_j \cos(\alpha_j)$$

$$d_k (\cos(45) \cos(\alpha_j) + \sin(45) \sin(\alpha_j)) \leq d_j \cos(\alpha_j)$$

$$d_k \frac{\sqrt{2}}{2} (\cos(\alpha_j) + \sin(\alpha_j)) \leq d_j \cos(\alpha_j)$$

Because $\sin(\alpha_j) \leq \cos(\alpha_j)$ for $\alpha_j \leq 45$ we can see that

$$d_k \frac{\sqrt{2}}{2} (\cos(\alpha_j) + \sin(\alpha_j)) \leq d_k \frac{\sqrt{2}}{2} (\cos(\alpha_j) + \cos(\alpha_j)) = d_k \cos(\alpha_j)$$
We can conclude that $d_k \cos(\alpha_k) \leq d_j \cos(\alpha_j)$, thus our criteria simplifies to $d_j \cos(\alpha_j)$ which is equivalent to Theorem 3.

We have shown that in both the 0, and 1 separating plane cases, our general voxelization algorithm computes the same t parameter as the one that was suggested by Huang et al. Therefore we can conclude that both cases are covered by our general voxelization theorem. Because we have proved in Theorem 1 that $\Delta(L)$ to be both separating and minimal, we can also conclude that Theorem 2 and 3 can both produce separating and minimal lines.

3.2 3D Lattices

The Voronoi cell of the BCC lattice is a truncated octahedron (see Figure 3.7). The truncated octahedron have identical 0,1, and 2 neighbourhoods ($N_0(z) = N_1(z) = N_2(z)$), which means that all neighbouring voxels share a 2D face.

We can extend the idea used in Section 3.1 to the 3D case. The BCC Voronoi cell is bounded by two types of faces as shown in Figure 3.7. There are 6 square faces and 8 hexagonal faces, which translates into 14 neighbourhood vectors. We can group the 14 vectors into two groups. Six neighbourhood vectors that are perpendicular to the square
faces are called \(q_3 \) with interface distance of \(d_3 \). 8 neighbourhood vectors are perpendicular to the hexagonal faces which we denote as \(q_4 \) with interface distance \(d_4 \). We also denote the set of angles between the normal of the plane \(N_L \) and \(q_3 \) to be \(\alpha_3 \), while the angle between \(N_L \) and \(q_4 \) is \(\alpha_4 \). We can construct two different types of 2-arc tilings in this lattice as shown in Figure 3.8. We can now formulate the following theorem:

Theorem 4 Given a 3D lattice \(V = [v_1 v_2 v_3] \) with interface distances \(d_3 \) and \(d_4 \) as well as the plane \(L = Ax + By + Cz + D \) where \(x, y, z \in \mathbb{R} \) and its unit normal \(N_L \). Let us denote the angles between \(q_{3i} \) and \(q_{4j} \) and the unit normal \(N_L \) by \(\alpha_{3i} \) and \(\alpha_{4j} \) respectively for \(i \in \{1, 2, 3\} \) and \(j \in \{1, 2, 3, 4\} \). The set of all voxels \(\Delta(L) = \{(x, y, z) | -t < Ax + By + Cz + D \leq t \} \) is an accurate voxelization of the plane defined by \(A, B, C, \) and \(D \) when

\[
t = \max(d_3 \cos \alpha_{3i}, d_4 \cos \alpha_{4j}) \text{ for } i \in \{1, 2, 3\} \text{ and } j \in \{1, 2, 3, 4\}
\]

The proof is identical to the proof of Theorem 1 and does not need to be repeated here. The only difference is that the dot products in the proof is now in 3D space.
3.2.1 Cartesian Lattices

Following the ideas of Section 3.1.2 we can adapt Theorem 4 to the rectilinear case or the
Cartesian case as in Huang et al [25]. In 3D the Cartesian lattice has three possible k-tunnel
directions denoted by q_{f}, q_{v}, q_{e} as shown in Figure 3.9. We define the corresponding interface
distance as d_{f}, d_{v}, d_{e} and $\alpha_{f}, \alpha_{v}, \alpha_{e}$ denote the corresponding angle to the plane normal N_{L}.
Huang et al. stated the following two theorems for voxelization in a 3D Cartesian Lattice.

Theorem 5 The set of voxels: $\Delta(L) = \{(x, y, z) : -t_{0} < Ax + By + Cz + D \leq t_{0}\}$ is a
0-separating and 0-minimal representation of the plane L defined by $A, B, C, \text{ and } D$. Where $t_{0} = d_{v} \cos(\alpha_{v})$.

Theorem 6 The set of voxels: $\Delta(L) = \{(x, y, z) : -t_{2} < Ax + By + Cz + D \leq t_{2}\}$ is a
2-separating and 2-minimal representation of the plane L defined by $A, B, C, \text{ and } D$. Where $t_{2} = d_{f} \cos(\alpha_{f})$.

Note that Huang et al. uses 26-separable and 6-separable terms to denote 0-separating,
and 2-separating planes respectively.

We can show that for the 2-neighbourhood (see Figure 2.9), we would only have to
consider the 3 principal directions q_{f}. In this case our criteria from Theorem 4 simplifies
to $t = \max_{i \in \{1, 2, 3\}} (d_{f} \cos(\alpha_{f, i}))$. Considering that $d_{f} = W/2$ our criterion simplifies to the
identical criterion for 2-separating planes stated in Theorem 6.

Considering 1-separating planes we have to include edge-connected cells besides all
face-connected cells. This means we have to take into consideration 6 new 1-arc directions q_{e},
which are formed by connecting the centre of the Voronoi cell to one of the 12 edge centres.
We find the distance to the edge centres to be $d_{e} = \frac{\sqrt{3}}{2} W$. We can now easily formulate the
criteria for 1-separating Cartesian plane voxelization - a new result that was not included
in the work by Huang et al [25].

Theorem 7 The set of all voxels $\Delta(L) = \{(x, y, z) : -t_{1} < Ax + By + Cz + D \leq t_{1}\}$ where $t_{1} = \max(d_{f} \cos(\alpha_{f, i}), d_{e} \cos(\alpha_{e, k}))$ for $i \in \{1, 2, 3\}$ and $k \in \{1, 2, \cdots, 6\}$ is a 1-separating and
1-minimal representation of the plane L defined by $A, B, C, \text{ and } D$.

Considering 0-separating planes, we will treat each corner as a special (degenerate)
hexagon and include the principal directions q_{v} (in addition to q_{f}, and q_{e}). Hence our
adapted plane thickness t of theorem 4 is now: $\max(d_f \cos \alpha_{f,i}, d_v \cos \alpha_{v,j}, d_e \cos \alpha_{e,k})$. Since we have $d_v = \frac{\sqrt{3}}{2} W$ and $d_f = W/2$, we need to find under what circumstances $d_v \cos \alpha_{v,j} > d_f \cos \alpha_{f,j}$. This is certainly the case for all $d_v \cos \alpha_{v,j} > d_f$ or $\cos \alpha_{v,j} > \frac{1}{\sqrt{3}}$. However, this holds for all angles since the largest angle away from any direction vector q_v is the direction vector q_f. The cosine of the angle between these two principal directions is exactly $\frac{1}{\sqrt{3}}$ as can be seen in Figure 3.9. Hence we conclude that our plane thickness t of theorem 4 can be simplified to $\max(d_v \cos \alpha_{v,j}, d_e \cos \alpha_{f,k})$.

In order to verify that $d_v \cos \alpha_{v,j} \geq d_e \cos \alpha_{f,k}$ we use cosine rules for sides in spherical trigonometry (see [48]). Let γ be the angle between $q_{v,j}$ and $q_{e,k}$, we can derive the value of γ as follows:

\[
q_{v,j} \cdot q_{e,k} = \|q_{v,j}\| \|q_{e,k}\| \cos(\gamma)
\]

\[
\cos(\gamma) = \frac{q_{v,j} \cdot q_{e,k}}{\|q_{v,j}\| \|q_{e,k}\|}
\]

\[
\cos(\gamma) = \frac{2}{\sqrt{6}}
\]

\[
\cos(\gamma) = \frac{\sqrt{2}}{\sqrt{3}}
\]
CHAPTER 3. ACCURATE VOXELIZATION

Figure 3.10: Spherical trigonometry

See Figure 3.10 for the remainder of this proof.

The cosine rules for sides state:

$$\cos(a) = \cos(b) \cos(c) + \sin(b) \sin(c) \cos(A)$$

where A is the dihedral angle between the plane OAC and plane OAB. In our case we use the following mapping, OC represents the plane normal N_L, OB represents $q_{e,j}$, and OA represents $q_{e,k}$. Therefore when we plug-in the appropriate variables we get the following formula:

$$\cos \alpha_j = \cos \alpha_k \cos \gamma + \sin \alpha_k \sin \gamma \cos A$$

By using our knowledge about $\cos \gamma$ and realizing that the second term of the right hand side is positive we can conclude:

$$\cos \alpha_j \geq \frac{\sqrt{2}}{\sqrt{3}} \cos \alpha_k$$
from which we conclude \(d_e \cos \alpha_{v,j} \geq d_e \cos \alpha_{e,k} \). We conclude that we can simplify our criteria for regular Cartesian grids to \(t = t_0 = \frac{\sqrt{2}}{2} W \cos \alpha_j \). Hence our theorem 4 can be applied to the regular Cartesian case as well.

This general theorem for voxelization is based on maintaining proper thickness of the resulting discrete plane. We have provided prescriptive theorems that gave us the proper thickness parameter \(t \). The simplest algorithm that one can derive from the theorems in this section is a brute-force method shown in the next chapter. A incremental algorithm is also explained in the next chapter.
Chapter 4

Voxelization algorithms

In the previous chapter we discussed necessary and sufficient conditions for a voxelization algorithm to create k-separating and k-minimal planes. The discussion so far has excluded necessary details that enable us to implement the algorithm. One assumption made throughout the last chapter is that the input plane divides the volume into two half-spaces. In practical terms our input is a mesh-model, which is a b-rep model consisting of interconnected polygons.

We will only consider triangles in our voxelization algorithm because we can guarantee planarity of the triangle. Any n-gons found in our input mesh can be tessellated into triangles first before they are voxelized. In the next section we will discuss the extra consideration that we must make to ensure that an input mesh will produce a k-separating output.

We present a brute force algorithm derived directly from the conditions stated in the previous chapter. The algorithm and our implementation details are discussed in Section 4.2. A new incremental algorithm is presented in Section 4.3. The last section in this chapter explains further optimizations we made to the incremental algorithm.

4.1 Mesh Voxelization

Because the input mesh is a set of finite polygons, in addition to the distance threshold discussed in Chapter 3 we must ensure that the voxels chosen are within the bounds of the polygon.

When voxelizing piecewise polygons, we must pay special attention along shared edges and vertices of two adjacent polygons. k-tunnels can be introduced when we only select
Figure 4.1: This case shows the k-tunnel induced by the seam between two lines sharing a single vertex. Point d is excluded because its projection on to line A or B is outside of the line's boundary point at C. When d is not part of the discrete line the resulting line can permit a 0-tunnel.

Voxels that are strictly within the bound of each primitive as illustrated in Figure 4.1.

In 3D the problem is extended to edges where two polygons meet. Therefore, to create a k-separating voxelized piece-wise plane from finite polygons we need to voxelize edges and vertices separately. To this end we introduce three boundary regions that we must consider when voxelizing finite triangles. We define R to be the maximum interface distance for the lattice (see Definition 3 on page 33).

1. The region $\Delta(L_v)$ is a sphere with radius R around a vertex of the polygon. Any voxel whose centre lies within the sphere must be considered $\Delta(L_v)$.

2. The region $\Delta(L_e)$ is a tube around the edge E with radius R. Any voxel whose centre lies within this radius must be considered $\Delta(L_e)$.

3. The region $\Delta(L_p)$ is a bounding volume defined by two planes P_U and P_L. For each edge E_i ($i=1..n$) we define a plane that is perpendicular to P_U, P_L, and P. The plane P_U and P_L are t apart from the plane P. The set of planes form a closed volume as shown in Figure 4.2c. Any voxel whose centre lies within this volume is included in $\Delta(L_p)$.
(a) For vertices, the $\Delta(L_v)$ volume region

(b) For edges, the $\Delta(L_e)$ volume region

(c) For plane P, the $\Delta(L_p)$ volume region

Figure 4.2: Three voxelization regions require careful attention to maintain a k-separating property of $\Delta(L)$
We define our discrete representation of the finite triangle L to be $\Delta(L) = \{\Delta(L_p) \cup \Delta(L_c) \cup \Delta(L_v)\}$. The three cases discussed are graphically described in Figure 4.2. K-minimality of $\Delta(L)$ can not be guaranteed because each triangle is voxelized separately. This problem is demonstrated in Figure 4.3. In this case each triangle maintains a k-separating and k-minimal surfaces by themselves, however the union of the two will create a non minimal seam along shared edges and vertices.

The simplest voxelization algorithm that we can derive from these rules is a brute force algorithm, as explained in the following section.

4.2 Brute Force Algorithm

For region $\Delta(L_p)$ we can construct a simple brute force algorithm using the threshold parameter t discussed in the previous chapter. The algorithm must begin by finding the appropriate t for a given plane orientation. We can compute t for all the lattice neighbourhood vectors, then we can choose the principal direction.
According to Theorem 1 and 4 we can use the computed threshold t against all the voxels in the volume to check whether their distance is within t. This simple algorithm is inefficient for small triangles, because most voxels considered will not lie in $\Delta(L_p)$. A better strategy is to visit only those voxels within close proximity to the triangle, and adapt the region to the size of the triangle. We can do this by creating an axis aligned bounding box around the triangle, and performing the check for voxels within the bounding box.

To account for region $\Delta(L_v)$ and $\Delta(L_e)$ each bounding box constructed must have 2 voxels margin around the edges. This margin will sufficiently cover the required radius of R for the vertex sphere and edge tubes (see Figure 4.4). The voxels that lie within this margin will be checked for their distance to the edge or vertex respectively. If this distance is smaller than R, they will be included in the voxelization.

The adaptive bounding box method has a run-time complexity of $\Omega(kD^2)$, and $O(kD^3)$, where k is the number of input triangles, and D is the number of voxels along one axis. When the input triangle is aligned with the bounding box, we can see that the algorithm visits at most D^2 number of voxels. The algorithm performs poorly when triangles are not aligned with the bounding box as shown in Figure 4.5.
Because of its simplicity the brute force method is the quickest way to implement the theorems presented in the previous chapter, however its performance will exponentially drop as the lattice resolution increases.

4.3 Fast incremental binary voxelization

In deriving the incremental algorithm we view the voxelization in three separate regions as shown in Figure 4.2. For region $\Delta(L_p)$, we can deduce that there exist an optimal algorithm with $O(kD^2)$. It is easy to see that to arrive at this optimal algorithm we need a method to walk along the plane we are voxelizing, and skip the voxels that will never be included in the final representation $\Delta(L_p)$. On top of the asymptotic run-time requirement we also want to ensure that the algorithm produces accurate planes for both BCC and Cartesian lattices.

Our incremental voxelization algorithm is inspired by the paper on line voxelization by Ibáñez et al. [26]. They provided a framework where line voxelization can be done for any lattice structure. By projecting the lines on to the lattice space, Ibáñez et al. defined error measures that adjust to any lattice structure. Using a generalized error measure the original Bresenham algorithm can adapt to any lattice structure. The projection on to the lattice space reduces the dimensionality of the problem. Our algorithm uses the same idea
to simplify our voxelization algorithm.

As we have discussed in section 4.1 we need to pay attention to regions $\Delta(L_v)$ and $\Delta(L_e)$. These regions require special attention to ensure k-separating properties of the resulting plane is still maintained. We devise a new way of ensuring that the correct voxels around the edge and vertex regions of our input mesh are chosen.

4.3.1 Region $\Delta(L_p)$

The new incremental voxelization is derived from the fact that a k-separating plane has no k-tunnels. In the minimality proof of section 3.1.1 we have demonstrated that there must be exactly one surface voxel on each continuous k-arc in the principal direction C, that crosses L. With this knowledge we can construct an incremental algorithm as follows (see Figure 4.6):

- **Step 1:** The plane is projected along the principal direction on to a base plane. The base plane is a 2 dimensional plane formed from 2 vectors of our lattice neighbourhood vectors.

- **Step 2:** The projected plane is voxelized within this base-plane direction.

- **Step 3:** Project each voxel of the voxelized projected plane on to the original plane using the principal direction.

The first two steps reduce our 3D voxelization problem into a 2D discretization. The third step will put the voxels into the appropriate point in 3D space. Each step is discussed in the following sections.

Step 1: Plane projection to intermediate plane

From Chapter 2, we defined a lattice by a set of basis vectors that spans the lattice space. The set of basis vectors can be compactly represented with a sampling matrix V, with the basis vectors arranged in the columns of V. Therefore any point in the lattice space can be found by integer linear combination of the column vectors of V.

Using the same idea as finding an octant for line voxelization described in [26], we want to describe possible directions that the voxelization algorithm can take from one voxel to the next. For this purpose we define a matrix M as our voxelization matrix. This voxelization
CHAPTER 4. VOXELIZATION ALGORITHMS

Step 1

Step 2

Step 3

Figure 4.6: The algorithm's main steps
matrix compactly describes the directions that the voxelization algorithm can take. We restrict directions that the algorithm can take to integer combinations of the columns of M.

The following are the properties of M that we seek.

1. The vectors in M span the same lattice space as the original V

2. The last column of M is aligned with the principal direction

The first requirement translates into choosing a proper tiling of our lattice with a number of k-arcs constructed along the principal direction. The mathematical framework to formulate this problem will be explained after the matrix M is fully explained.

The second required property of M is not readily apparent, because the connection between alignment and thickness of the plane is not easily seen. This point provides the theoretical underpinning of the validity of our algorithm. We defer discussion on the second property until we have fully defined matrix M.

We define the voxelization matrix as follows $M = [M_i M_j M_k]$. M_k is the principal direction that we choose for the plane we’re voxelizing, whereas M_i and M_j are two vectors that describe the base-plane directions.

A direct corollary from the properties of M is non-singularity of M. This property is important because the bijective mapping between integer points $(i,j,k) \in \mathbb{Z}^3$ and real lattice points $(x,y,z) \in \mathbb{R}^3$ defined in Equation 2.2 is only possible with a non-singular M. The following two equations expresses the bijective mapping between the two spaces that directly follows from Equation 2.2.

\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = [M_i M_j M_k] \ast
\begin{pmatrix}
i \\
j \\
k
\end{pmatrix} \tag{4.1}
\]

\[
\begin{pmatrix}
i \\
j \\
k
\end{pmatrix} = [M_i M_j M_k]^{-1} \ast
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \tag{4.2}
\]

Construction of M begins by selecting the principal direction M_k (see Definition 3 on page 34). We can derive an exhaustive algorithm that searches for the principal direction among all lattice neighbourhood vectors.
After the proper M_k is selected we need to choose two vectors as our base-plane vectors M_i and M_j. To choose these vectors we must observe the first requirement for M. Before we can proceed we need to further discuss the properties of the sampling matrices.

For a given lattice structure, the sampling matrix V is not unique, therefore there are many possible matrices that span the same lattice structure. Given a sampling matrix V a well known result in point lattice theory states that for an integer matrix N we can derive the matrix M that spans the same lattice space with the following equation $M = VN$ if and only if $\lvert\text{det}(N)\rvert = 1$ [15].

These constraints on N are not enough to uniquely determine M_i and M_j. Therefore we use a table of precomputed values for M_i and M_j to determine the appropriate basis vectors for a particular principal direction we choose.

We used an exhaustive search method to compute M_i and M_j, with the following criteria on the vectors $\text{det}(V^{-1} \cdot M) = 1$.

For Cartesian lattices the matrix V that describes the lattice is given as follows

$$V = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Table 4.1 lists the principal direction and the corresponding matrix M that we use in the implementation of the algorithm for 2-separating planes for Cartesian lattices. The table only shows valid M's for half of all the possible principal directions, the other half can be easily obtained through symmetry.

<table>
<thead>
<tr>
<th>Principal Direction</th>
<th>Valid Matrix M</th>
<th>Matrix N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0,0)</td>
<td>$\begin{pmatrix} 0 & 0 & 1 \ 0 & -1 & 0 \ 1 & 0 & 0 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 0 & 0 & 1 \ 0 & -1 & 0 \ 1 & 0 & 0 \end{pmatrix}$</td>
</tr>
<tr>
<td>(0,1,0)</td>
<td>$\begin{pmatrix} -1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix}$</td>
<td>$\begin{pmatrix} -1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix}$</td>
</tr>
<tr>
<td>(0,0,1)</td>
<td>$\begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$</td>
</tr>
</tbody>
</table>

Table 4.1: Valid voxelization matrices M for 2-separating planes in a Cartesian lattice.
CHAPTER 4. VOXELIZATION ALGORITHMS

Table 4.2: Additional voxelization matrices \(M \) for Table 4.1. For a 1-separating planes in a Cartesian lattice.

Table 4.2 lists 6 additional principal directions to table 4.1 that we need to consider for 1-separating planes in a Cartesian lattice. The table only lists half of the 12 principal directions. The other half can be obtained through symmetry.

Table 4.3 lists 4 additional principal direction to Table 4.2, and Table 4.1 that we need to consider for 0-separating planes in a Cartesian lattice. Like previous tables the other 4 principal directions can be obtained through symmetry.

For a BCC lattice the sampling matrix \(V \) is as follows.

\[
V = \begin{bmatrix}
2 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
\] \hspace{1cm} (4.3)

In BCC lattice we have 14 principal directions. Half of them are listed on Table 4.4. The other half can be obtained through symmetry.

The matrices shown in Tables 4.1-4.4 span the same space as the original lattice space.
Table 4.3: Additional voxelization matrices M for Table 4.1 and Table 4.2. For a 0-separating planes in a Cartesian lattice.

defined by matrix V. The listed matrices are only one out of many different possibilities.

Step 2: Scan line algorithm

From the previous section we have found our voxelization matrix M. We use this matrix M in Equation 4.2 to find integer lattice points of all the three vertices of the triangle.

The triangle is projected into the new lattice space $(i, j, k) \in \mathbb{Z}^D$. Because of the condition that we impose on M we can ensure that a unidirectional integer step we take in this lattice space will take us from one lattice point to a neighbouring lattice point.

By simply ignoring the k component of the vertices we have reduced the problem of traversing the voxels in 3D down to 2D. Additionally, since our algorithm iterates over integer lattice indices we can use standard 2D rasterization algorithms such as the Active Edge Table algorithm (AET) [20].

Step 3: Project back on to plane

At this step we have voxels $P'(i, j)$ that are still missing the k component. By starting k at 0 we can compute the k value that places the point $P'(i, j, 0)$ to point $P(i, j, k)$ using equation 4.4 (see Figure 4.7)
CHAPTER 4. VOXELIZATION ALGORITHMS

Table 4.4: Voxelization matrix M for 2-separating planes in a BCC lattice.

<table>
<thead>
<tr>
<th>Principal Direction</th>
<th>Valid Matrix M</th>
<th>Matrix N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,0,0)</td>
<td>$\begin{pmatrix} 1 & 0 & 2 \ 1 & -2 & 0 \ 1 & 0 & 0 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 0.5 & 0 & 1.5 \ 0.5 & -1 & 0.5 \ 0.5 & 0 & -0.5 \end{pmatrix}$</td>
</tr>
<tr>
<td>(0,2,0)</td>
<td>$\begin{pmatrix} 1 & 2 & 0 \ 1 & 0 & 2 \ 1 & 0 & 0 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 0.5 & 1.0 & -1.5 \ 0.5 & 0 & 1.5 \ 0.5 & 0 & -0.5 \end{pmatrix}$</td>
</tr>
<tr>
<td>(0,0,2)</td>
<td>$\begin{pmatrix} 1 & -2 & 0 \ 1 & 0 & 0 \ 1 & 0 & 2 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 0.5 & -1.0 & 0.5 \ 0.5 & 0.0 & -0.5 \ 0.5 & 0.0 & 1.5 \end{pmatrix}$</td>
</tr>
<tr>
<td>(1,1,1)</td>
<td>$\begin{pmatrix} 2 & 0 & 1 \ 0 & 2 & 1 \ 0 & 0 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$</td>
</tr>
<tr>
<td>(-1,1,1)</td>
<td>$\begin{pmatrix} 2 & 0 & -1 \ 0 & 2 & 1 \ 0 & 0 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 0 & -2 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$</td>
</tr>
<tr>
<td>(1,-1,1)</td>
<td>$\begin{pmatrix} 2 & 0 & 1 \ 0 & 2 & -1 \ 0 & 0 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & -2 \ 0 & 0 & 1 \end{pmatrix}$</td>
</tr>
<tr>
<td>(1,1,-1)</td>
<td>$\begin{pmatrix} 2 & 0 & 1 \ 0 & -2 & 1 \ 0 & 0 & -1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 2 \ 0 & 0 & -1 \end{pmatrix}$</td>
</tr>
</tbody>
</table>

Figure 4.7: For every point $P'(i,j,0)$ we would like to compute its intersection $P(i,j,k)$ with the plane L. M_k is the chosen principal direction of L, P_0 is a point on L. The unit normal of L is N_L.

CHAPTER 4. VOXELIZATION ALGORITHMS

\[P'(i,j,0) + kM_k = P(i,j,k) \] \hspace{1cm} (4.4)

We need to use the general plane equation in vector form such as follows: Let \(P_0 \) be one of the points on the plane \(L \). Let \(N_L \) the unit plane normal of plane \(L \). Every point \(P \) that belongs to \(L \) must fulfill:

\[P \cdot N_L - P_0 \cdot N_L = 0 \] \hspace{1cm} (4.5)

By plugging in Equation 4.4 into Equation 4.5 we can arrive at the following equation for \(k \)

\[
(P' + kM_k) \cdot N_L - P_0 \cdot N_L = 0 \\
P' \cdot N_L + kM_k \cdot N_L - P_0 \cdot N_L = 0 \\
kM_k \cdot N_L = (P_0 - P') \cdot N_L \\
k = \frac{(P_0 - P') \cdot N_L}{M_k \cdot N_L} \hspace{1cm} (4.6)
\]

To find the actual point \(P(i,j,k) \) we need to plug the \(k \) value from Equation 4.6 into Equation 4.4 to get the following equation

\[P(i,j,k) = M_k \frac{(P_0 - P') \cdot N_L}{M_k \cdot N_L} + P'(i,j,0) \hspace{1cm} (4.7) \]

Using equation 4.7 we can compute the value of \(P \) for every \(P' \) that is generated by the AET algorithm from the previous step.

One problem to note is that the \(k \) value we compute is a floating point quantity. Because the lattice points are only defined as integer linear combination of the basis vectors in \(M \), this floating point quantity means that the intersection point will not lie on a lattice point. An extra rounding step is needed to get the point to the closest integer point. The rounding must take into account the actual voxel center distance to the plane, and select one with the least distance to the plane \(L \).

The algorithm presented thus far already has \(O(D^2) \) run-time complexity. Optimization of the algorithm is still possible. To get the fastest algorithm possible, we can incrementally update the offset \(k \) because we are taking constant steps in the \(i, j \) direction. This optimization is explained in the next section.
4.4 Further optimization

The algorithm presented thus far computes the offset k of each voxel to the target plane, as shown in equation 4.7. We can reduce the number of computations performed per voxel by simply computing the delta value for k when we step in a particular i, or j direction within the space.

The offset k is computed in equation 4.6. Point P' changes by $(1,0,0)$ when we are stepping in the i direction, and by $(0,1,0)$ when we are stepping in the j direction. When we substitute the incremental change to P' into the equation 4.6 we can find the amount k is incremented at each step. Let δk_i be the k-offset increment when we step in the i direction and δk_j the k-offset increment in the j direction. We have the following equation that determines the offset.

$$\delta k_i = \frac{(1,0,0) \cdot N_L}{M_k^T \cdot N_L} \tag{4.8}$$

$$\delta k_j = \frac{(0,1,0) \cdot N_L}{M_k^T \cdot N_L} \tag{4.9}$$

Another simplification arises from the fact that N_L can be transformed into $(i,j,k) \in Z^D$ space which simplifies Equation 4.9 down to the following two equations:

$$\delta k_i = \frac{N_L[1]}{N_L[3]} \tag{4.10}$$

$$\delta k_j = \frac{N_L[2]}{N_L[3]} \tag{4.11}$$

We use δk_i and δk_j as the increment to the offset k when we are traversing each plane. If the algorithm starts from a known point (a vertex of the triangle), we never have to compute the voxel intersection. This incremental method minimizes the amount of floating point operations to a single addition for every voxel visited, compared to 20 floating point operations to evaluate Equation 4.7 for every voxel. The fully optimized version of the algorithm is shown in Figure 4.8.

The discussion thus far has centred around the algorithm, however there are a number of practical details that must be discussed. The next section discusses the fine details of the algorithm that are required for robustness of the algorithm.
CHAPTER 4. VOXELIZATION ALGORITHMS

Input: Triangle vertices $v \in \mathbb{Z}^D$
Result: Voxelized triangle

Construct AET;
currj = minimum j coordinate AET;
$i_{\text{start}} =$ minimum i coordinate for the current scan-line;
$i_{\text{previous}} = i_{\text{start}}$;
k = k coordinate that corresponds to i_{start} and currj;
compute δk_i and δk_j;

while AET not empty do
 $i_{\text{start}} =$ minimum i coordinate from the current scan-line;
 $i_{\text{stop}} =$ maximum i coordinate of from the current scan-line;
 $k += (i_{\text{start}} - i_{\text{previous}}) \delta k_i$;
 $i_{\text{previous}} = i_{\text{start}}$;
 currk = k;
 for $i = i_{\text{start}}$ to i_{stop} do
 set voxel at point $(i, \text{currj}, \text{currk})$;
 currk += δk_i;
 end
 remove edge with j coordinate lower than currj from AET;
 currj++;
 k += δk_j;
end

Figure 4.8: Incremental voxelization algorithm
Chapter 4. Voxelization Algorithms

4.5 Region $\Delta(L_e)$ and $\Delta(L_v)$

To properly satisfy the constraints of region $\Delta(L_e)$ and $\Delta(L_v)$, we propose the following criteria.

Given two semi-infinite lines A and B which have a common vertex P. We extend these lines at P into A' and B' (see Figure 4.9). This creates four half-spaces, which we shall call C, D, E, and F. A separating voxelization of A and B across P can now be formulated as:

$$\Delta(L_{A+B}) = \Delta(L_A) \cup \Delta(L_B) \cup \{\Delta(L_{A+A'}) \cap \Delta(L_{B+B'})\}$$

This criteria can be proved as follows: Let us assume that there is a k-tunnel penetrating $\Delta(L_{A+B})$. There are three tunnel possibilities in this case. One tunnel connects region F to D, another between region F to E, and the last one connects from F to C.

If there were a tunnel from F to D, this tunnel would have to cross A. According to Theorem 1 this is not possible. On the same token a tunnel from region F to region C is also impossible.

That leaves us with a k-tunnel connecting region F to E. We know that a tunnel between F and D as well as F and C is impossible. We also eliminate any tunnels from E to C as well as E to D when we voxelize A' and B'. With the aggregate pixels, there could not exist
a tunnel between E and F because of Theorem 1. When we remove $\Delta(A')$ and $\Delta(B')$ and keep the $\Delta(A') \cap \Delta(B')$ voxels, a tunnel could not form along E and F because it would have been covered by the remaining pixels from $\Delta(A')$ and $\Delta(B')$. This shows a contradiction to our assumption, which means our criteria will create a k-separating arc of $\Delta(A) \cup \Delta(B)$. This same criteria can also be applied to two triangles that share a common edge or vertex.

4.6 Practicalities

The algorithm presented does not assume that the triangle vertices we started with are in \mathbb{Z}^3 space, in practice the algorithm implemented rounds triangle vertices to a nearest integer lattice point, this is done to ensure that the voxelization algorithm starts at an integer lattice point.

The vertex rounding produces one problem. When the voxel size is relatively large compared to the plane area of the triangle, the rounding procedure can turn the triangle vertices into one, two, or three unique vertices. This turns the plane into a point, a line or a plane respectively. Our plane voxelizer cannot handle lines and points, therefore extra processing needs to be done. For the case of one unique vertex we can simply set the voxel that includes the triangle vertex.

For the case of two unique vertices, hence a line, we use the voxelization algorithm presented by Ibáñez et al. [26] to voxelize the line. This case can be clearly seen in Figure 4.10.

The extra line tracing algorithm is required only when the size of the triangles are small compared to the voxel sizes (a good example would be a mesh model with triangles that only cover an area of one voxel).

We have shown that our algorithm will produce k-separating triangles. In section 4.5 we have shown that our algorithm can still guarantee the k-separating property at the seam, which means that we can create k-separating piece-wise discrete surfaces. The implication is that we can voxelize any input mesh given that they are broken into smaller connected triangles. Therefore this opens up an avenue to voxelize any input mesh.

We need a way to verify that our implementation performs as theoretically proved. The next chapter will discuss some validation algorithm that we have developed to help verify the correctness of our implementation.
Figure 4.10: The effect of snapping triangle vertices to the nearest voxels. When two triangle vertices snap into one voxel a triangle is transformed into one line which can not be voxelized by our new algorithm (b). To handle this case any suitable line voxelizer can be used to close the gap (c). Ant mesh taken from the library of free meshes at www.3dcafe.com
Chapter 5

Analysis of algorithm

We have stated the sufficient conditions for any voxelization algorithm to create k-separating and k-minimal planes in Chapter 3. In Chapter 4 we have developed algorithms based on these conditions. Here we verify that the algorithms presented are able to create accurate planes, through a number of experiments. To enable verification of an algorithm's accuracy we need to develop validation algorithms that find k-tunnels and redundant voxels within a voxelized plane.

5.1 Validation Techniques

Our validation algorithms follow from the definition of k-tunnel free and k-minimal in Section 2.2. The condition of k-tunnel free is stated in Section 2.2 as follows: a digitization $\Delta(S) \subset \mathbb{Z}^D$ of a continuous surface $S \subset \mathbb{R}^D$ is k-tunnel free if every continuous k-arc connecting points in $(\Delta(S))^C = \mathbb{Z}^D - \Delta(S)$ does not cross S.

We can perform validation by constructing all possible k-arcs in $(\Delta(S))^C$. However this exhaustive testing method will take too much time to perform over a large set of background voxels. We will approach the problem from the perspective of measuring volumes.

A basic volume measurement technique is to measure the displacement of a liquid in a container when an object that we are measuring is placed inside the liquid. The amount of liquid that an object displaces is proportional to the volume of the empty space inside it. A hollow permeable object would not displace the same volume of water as one that is impermeable, thus the amount of liquid an object displaces also determines the permeability of its surface. When the amount of liquid displaced is equal to the volume of the empty
space we know that the surfaces surrounding the object are impermeable. In the discrete domain impermeable surfaces are called k-tunnel free. To test for k-tunnel free condition of our discrete surface we can apply the same volume test towards the entire surface, given that we define the corresponding properties of discrete water.

Because we are dealing with discrete surfaces, we define discrete water as a special voxel value in the volume. The space filling property of water is simulated with a breadth first search (BFS) algorithm. The BFS algorithm uses the lattice neighbourhood to traverse the empty voxels in space and marks the voxels that it has visited with a special value.

With the property of water defined we can define the following metric to gauge whether the output surface of a voxelization algorithm is k-tunnel free.

Let A be the total number of voxels occupied by the discrete water, and D be the total number of voxels in the volume.

$$
\Delta(V) = \frac{D - \Delta(S) - A}{D}
$$

$\Delta(V)$ is the normalized discrete volume contained by $\Delta(S)$. We expect this value to approach the actual volume of S as the resolution of the lattice increases.

For our test we choose a hollow tetrahedron positioned inside a unit cube as shown in Figure 5.1. The tetrahedron was chosen because the volume of its empty space is known, and it has the minimum number of triangles over all possible input meshes that we can use in the test. If the surface of the tetrahedron is water tight, it will displace 1/6 of the water inside the unit cube when it is immersed in a unit cube filled with water.

We know the amount of water that the input tetrahedron will displace, we can expect the same amount to be displaced in the discrete version of the tetrahedron when it is k-tunnel free. We perform our tests starting with the tetrahedron sitting in an empty cube. Discrete water is then poured into the empty space. If the surface of the discrete tetrahedron is k-tunnel free then the unit cube will have 5/6 of its volume filled with water, if not the entire volume is filled with water.

From that test we can not infer k-minimality of our discrete tetrahedron. We therefore need to devise another validation test for minimality of the surface. If the surface $\Delta(S)$ is k-separating, one way to test for k-minimality is by pouring discrete water into the unit cube with one voxel in $\Delta(S)$ removed. If the cube is not filled with discrete water we know that the voxel we removed from $\Delta(S)$ is redundant. By repeating the test for all voxels in
In this section we can assert the k-minimality of \(\Delta(S) \). This test incurs a cubic run-time complexity as the volume resolution increases. This test becomes infeasible for large volumes. We must find another validation method that will give us the correct answer faster.

From the minimality proof in Section 3.1.1, we can see that a minimal surface only contains one voxel \(p \) along the principal direction \(C \). This fact leads us to the corollary that the k-tunnel along the principal direction that passes through \(p \) is divided into two parts. One part belongs to the inside space \(I \) and the other reside on the outside space \(O \) (see Figure 5.2). From this corollary we can reformulate the minimality criterion such as follows:

Theorem 8 A k-separating discrete surface \(\Delta(S) \) is minimal when \(\forall p \in \Delta(S), \exists \{q, r\} \not\subseteq \Delta(S) \) along the principal direction \(C \) such that \(\{q, r\} \in N(p) \) with \(q \in I \) and \(r \in O \).

Using theorem 8, we can perform the minimality check by iterating through all the surface voxels \(p \in \Delta(S) \) and comparing its two immediate neighbours along the principal direction, as shown in Figure 5.2. When the two immediate neighbours belong to two different spaces then we mark the surface voxel as minimal.

Let \(\Delta(S)' \) be the number of minimal surface voxels. We define ratio \(R \) as follows:
Figure 5.2: Each dithered voxel belong in \(\Delta(S) \). For each of the dithered voxels we check its immediate neighbours along the principal direction shown as double ended arrows. When the two neighbouring voxels belong in two different spaces we mark the voxel as minimal.

The minimality test we described will query regions outside of the volume when the tetrahedron is placed exactly at the edge of the volume. We eliminated this special case at the edges of the volume by padding the test volume with extra 4 voxels in each dimension. The resulting voxelized surface is centred in this padded volume with a margin of 2, as shown in Figure 5.4. We choose the voxel at the origin \(O(0,0,0) \) as the seed point for the \(k \)-separating test.
Figure 5.3: The two boundary cases of minimality testing that need to be excluded from testing. The two arrows point to the neighbours of the hatched voxel considered in the test. Case 1 happens at the intersection point of two lines/planes. Case 2 happens when one of the neighbours of the surface voxel belongs to another surface.

Figure 5.4: The volume on the right has 2 extra voxels around the original volume. The origin shifts as a result of the padding. The padding is added to remove special cases of the minimality testing.
Figure 5.5: Enlarging the bounding box of the triangle ensures that for all rotation angles tested the tetrahedron will be fully enclosed within the bounding box. The unit cube dimension is the same as the length of the triangle’s hypotenuse which is of length $\sqrt{2}$.

5.2 Testing Methodology

We want to verify the correctness of our implemented algorithm as well as evaluate the robustness of the method with regards to different plane orientations. To evaluate robustness we tested the algorithm with rotated versions of input mesh.

The test was performed on the tetrahedron rotated around the X axis. Because of the rotation there are parts of the tetrahedron that extend beyond the unit cube. To avoid chopping the input tetrahedron, we voxelize in a bounding box large enough to enclose the tetrahedron rotated to any angle. To ensure that all possible rotation of the tetrahedron would fit in the bounding box we scaled each dimension of the box to fit the longest edge of the tetrahedron, which is the hypotenuse of right triangle that forms three of the tetrahedron faces (see Figure 5.5).

We rotated the tetrahedron with 5 degree increments, and performed the test from 0 to 355 degree. We introduce a random jitter that adds 0 to 4 degree to the rotational angle. The tests were done in a lattice resolution of 10 to 200, for both BCC and Cartesian lattices. For the Cartesian lattice we tested 0, 1, and 2 separating surfaces.

Due to a difference in structure, the BCC lattice can not be indexed in the same fashion
as Cartesian Lattices. The indexing scheme described in [51] views BCC lattices as two interpenetrating Cartesian lattices, which makes it possible to index BCC lattice as a standard 3D array. Because the BCC lattice packs voxels better, for a Cartesian lattice with D^3 lattice resolution, if we use the same D for each dimension of BCC we will have $2D^3$ voxels (see Figure 5.6). The lattice with more sample points can represent higher frequency spectra than a lattice with less sample points, thus we can not draw a straight comparison between a D^3 Cartesian lattice and a $2D^3$ BCC lattice. To make the comparison across two different lattice structure fair we generalize the notion of lattice resolution as the total number of lattice points in space.

We use the following formula to compute the BCC lattice dimension

$$2D_{BCC}^3 = D_{CC}^3$$
$$D_{BCC} = \sqrt[3]{\frac{D_{CC}^3}{2}}$$

(5.2)

As an example a 100^3 Cartesian lattice resolution by using Equation 5.2 we find that $D_{BCC} \approx 80$ which means the BCC lattice resolution will be $80 \times 80 \times 160$, which is roughly the same number of sample points in space.

In the following section all of the results for BCC lattices will be quoted using D_{CC}. However, the actual tests were performed using a lattice of size $2D_{BCC}^3$.

5.3 BCC vs Cartesian Lattice

As discussed in Section 2.1, the benefits of using a different lattice structure lies in the lattice's information carrying capacity. By using an optimal BCC lattice one can reduce the lattice resolution by 30% compared to a Cartesian lattice to get the same amount of information. Another way of looking at it is that we can capture 30% more information when we use the same lattice resolution for the BCC lattice. This fact is illustrated in Figures 5.7, 5.8, and 5.9.

Between Figure 5.7 and Figure 5.9, we can see the advantage of using a BCC lattice over the corresponding Cartesian lattice. The BCC lattice captures the same surface detail information as the Cartesian lattice with 25% less surface voxels. Between Figure 5.8 and Figure 5.7 we can see that all the surface details visible in the latter can still be seen in
5.4 Results

The tests are performed on an SGI Altix 3000. The machine has 64 1.5 Ghz Intel Itanium II processor, with 64 Gibibyte (64×1024^3) of Global Shared Memory. The operating system is SGI Advanced Linux Environment and ProPack 3/ Service Pack 2.

We perform the tests on three voxelization algorithms. The first algorithm is the brute force algorithm described in Section 4.2, the second algorithm is described in Section 4.3, and lastly the optimized incremental algorithm is described in Section 4.4.

As a result of enlarging the bounding box shown in Figure 5.5, the $\Delta(V)$ defined in equation 5.1 will not converge to $1/6$, as explained above, instead it will approach a volume of $1/(\sqrt{2}^3 \times 6)$. This fact is shown in Figure 5.10, 5.11, 5.12, 5.13, 5.14, and 5.15. The ideal $\Delta(V)$ is shown as a black horizontal line across the graph. We can see that all the k-separating ratios are converging to the ideal value. This tells us that the surfaces constructed...
Figure 5.7: This picture shows the stanford bunny voxelized in a 0-separating Cartesian lattice. The lattice has 256^3 discrete voxels in the lattice. There are 229,328 surface voxels on the bunny.
Figure 5.8: This picture shows the stanford bunny voxelized in a 2-separating BCC lattice. The lattice has 180x180x360 discrete voxels in the lattice. There are 85,699 surface voxels on the bunny.
Figure 5.9: This picture shows the stanford bunny voxelized in a 2-separating BCC lattice. The lattice has $203 \times 203 \times 406$ discrete voxels in the lattice. There are 172,223 surface voxels on the bunny.
are k-separating. The graphs show the average normalized tetrahedron volume ($\Delta(V)$) and the average k-minimality (R) ratios over 72 rotation cases that we tested. We chose to show only the average values because results for the different rotation angles show the same trend. No outliers were found.

It is clear from Figure 5.12, 5.13, 5.14, and 5.15 that the new incremental algorithm produces both k-minimal and k-separating surfaces, as $\Delta(V)$ converges to the ideal ratio shown by the black horizontal line, and R stays at zero.

The incremental method always produces k-minimal planes, whereas the brute force method suffers from numerical precision problems. The condition in Theorem 4 only selects one voxel along the principal direction. Because we are using a finite precision computer the numerical error of a computer can include two adjacent voxel along the principal direction in $\Delta(S)$. Thus adding redundant voxels. These cases are apparent in Figure 5.10 and 5.11.

The timing graphs (see Figure 5.16 and Figure 5.17) show the amount of time required to voxelize the input tetrahedron. As discussed in Section 4.2, the brute-force algorithm's run time performance is dependent on the input triangle's orientation. One of the triangles in this tetrahedron straddles the entire volume forcing the brute-force algorithm to visit all of the voxels in the volume. This explains why there is a large gap between the performance of the brute force algorithm and the incremental algorithm.

The timing graphs for the algorithms are plotted in log scale to see the scaling trend over different lattice resolution. Because the brute-force algorithm's run time efficiency is larger by an order of magnitude, the difference between the two incremental algorithms is difficult to see. To show the difference between the optimized incremental algorithm and the standard incremental algorithm, we plotted the run-time ratio between the two algorithms as shown in Figure 5.18, and 5.19.

From Figure 5.18, and 5.19, it is clear that the new incremental algorithm runs one order of magnitude faster than the brute-force algorithm. The optimized incremental algorithm has a small lead over the standard version. The timing difference between the two incremental algorithms is around 11% which only becomes significant when we move to higher lattice resolutions. It is interesting to note that at low resolution the ratio swings between 0 and 20%. This swing is due to the dominant step 1 of the algorithm at low resolutions (see Section 4.3.1). Because the setup time is the same for both algorithms, we expect the ratio to be near 0 at lower resolution. As the resolution of the lattice increases more time is spent on step 2 and 3 of the algorithm, and the optimization to the algorithm started to
Figure 5.10: Results for the brute force algorithm. The graph shows the average result of the ratio over 72 rotation angle cases. The straight line shows the ideal ratio when we have a unit cube.
CHAPTER 5. ANALYSIS OF ALGORITHM

Average Minimality and Separability Ratio for all angles

![Graph](image)

(a) Cartesian lattice 0-separating and 0-minimal ratio graphs

Average Minimality and Separability Ratio for all angles

![Graph](image)

(b) BCC lattice 0-separating and 0-minimal ratio graphs

Figure 5.11: Results for the brute force algorithm. The graph shows the average result of the ratio over 72 rotation angle cases. The straight line shows the ideal ratio when we have a unit cube.
Figure 5.12: Results for the incremental algorithm. The graph shows the average result of the ratio over 72 rotation angle cases.
Figure 5.13: Results for the incremental algorithm. The graph shows the average result of the ratio over 72 rotation angle cases.
CHAPTER 5. ANALYSIS OF ALGORITHM

Figure 5.14: Results for the optimized incremental algorithm. The graph shows the average result of the ratio over 72 rotation angle cases.
CHAPTER 5. ANALYSIS OF ALGORITHM

Figure 5.15: Results for the optimized incremental algorithm. The graph shows the average result of the ratio over 72 rotation angle cases.
CHAPTER 5. ANALYSIS OF ALGORITHM

Timing comparison in 2-neighbourhood Cartesian lattice

Brute force algorithm
Incremental algorithm
Optimized incremental algorithm

Lattice Resolution

Voxelization time (CPU usage time in seconds)

(a) Timing graph between three algorithm for Cartesian lattice 2-separating surfaces

Timing comparison in 1-neighbourhood Cartesian lattice

Brute force algorithm
Incremental algorithm
Optimized incremental algorithm

Lattice Resolution

Voxelization time (CPU usage time in seconds)

(b) Timing graph between three algorithm for Cartesian lattice 1-separating surfaces

Figure 5.16: Timing comparison between three algorithms.
Figure 5.17: Timing comparison between three algorithms.
CHAPTER 5. ANALYSIS OF ALGORITHM

become noticeable.

From the timing graphs we can see that the new incremental algorithm performs an order of magnitude faster than the traditional brute force method. This result verifies the fact that our new algorithm is asymptotically faster than the brute-force algorithm. This fact is further supported by the fill rate measure of each algorithm.

We define fill rate as the number of surface voxel divided by the total voxelization time. Figure 5.20, 5.21 shows the fill-rate trend over different lattice resolutions.

From the fill-rate graphs we can see more clearly the advantage of the optimized incremental algorithm over the other two algorithms. The low voxel fill-rate at low lattice resolutions for the new algorithm is explained to a constant setup time that needs to be done for each triangle. As the lattice resolution increases this setup time becomes a smaller portion of the overall voxelization time, which explains the quick exponential fill-rate growth at low lattice resolutions.

Another interesting conclusion from the timing graphs is the fact that the incremental algorithm for the BCC performs just as efficiently as the normal Cartesian lattice algorithm. This provides evidence that BCC lattice voxelization can be done as fast as a normal Cartesian lattice, which means the voxelization algorithm is not sensitive to the type of lattice used for voxelization.
CHAPTER 5. ANALYSIS OF ALGORITHM

Figure 5.18: Time ratio between standard and optimized incremental voxelization algorithm.
CHAPTER 5. ANALYSIS OF ALGORITHM

Figure 5.19: Time ratio between standard and optimized incremental voxelization algorithm.
CHAPTER 5. ANALYSIS OF ALGORITHM

Voxel fill rate in 2-neighbourhood Cartesian lattice

(a) 2-neighbourhood Cartesian lattice

Voxel fill rate in 1-neighbourhood Cartesian lattice

(b) 1-neighbourhood Cartesian lattice

Figure 5.20: Fill rate comparison between three algorithms.
CHAPTER 5. ANALYSIS OF ALGORITHM

Voxel fill rate in 0-neighbourhood Cartesian lattice

(a) 0-neighbourhood Cartesian lattice

Voxel fill rate in 2-neighbourhood BCC lattice

(b) BCC lattice

Figure 5.21: Fill rate comparison between three algorithms.
Chapter 6

Conclusions and future work

The conversion from a surface representation to a volumetric model is called voxelization, and there are two types of voxelizations that we can perform on a model. One is called multi-valued voxelization also known as smooth voxelization. This voxelization algorithm constructs surfaces that tend to remove aliasing artifacts introduced by infinitely thin surface boundaries. The surface constructed this way is useful when visual quality is important.

Binary voxelization is another kind of voxelization, where at the surface of the object we turn the voxels either on or off depending on some criteria. Usually the criteria can be as simple as voxels that intersect the boundary. In this thesis we focused our attention on accurate binary voxelization algorithms.

The Cartesian lattice is traditionally used in sampling due to its simplicity. There are efficient binary voxelization algorithms already available for this lattice. From a sampling theory we know that the choice of lattice neighbourhood structure (geometry), can affect the quality of the sampled data, as explained in Section 2.1. We have shown that the Cartesian lattices are not the most efficient lattices available. This fact provides the main motivation behind constructing sampling algorithms in more efficient lattices.

We presented a robust and incremental binary voxelization algorithm in common-sampling lattices. We started with the construction of our incremental algorithm in 2D by proving that our generalized voxelization theorems are both k-separating and k-minimal. From the general case we have shown that any voxelization algorithm in 2D is a special case of the generalized theorem we presented in 3.1.

The construction in 3D is analogous to the theorem presented in 2D. However the generalization to any lattice structure requires more research into possible lattice structures in
CHAPTER 6. CONCLUSIONS AND FUTURE WORK

3D. In this thesis we have chosen to limit the theorems to Cartesian, and BCC lattices. We hypothesize that when the Voronoi cells of the lattice are known we can generalize the theorem to general 3D lattices.

Using the proofs we presented in Chapter 3 we derived an incremental algorithm in Chapter 4. We postulated that the new algorithm is superior in terms of run-time complexity by an order of magnitude compared to the brute force algorithm. The incremental algorithm is further optimized by arithmetic simplification in Section 4.4.

We validated the algorithms presented with validation algorithms that we developed and implemented. The algorithms are explained in Section 5.1. The result of the test clearly shows that our new incremental algorithm creates a \(k \)-separating and \(k \)-minimal planes, over a range of lattice resolutions. The trends shown in Chapter 5 point towards separable surfaces as lattice resolution increases.

The timing graphs showed that the predicted performance of our new algorithm matches with the implementation. We noted that there is a small difference in run time efficiency across different lattice structures. This means that the algorithm’s efficiency is not affected by the lattice structure. We can argue that the traditional speed advantage that Cartesian lattices have over BCC lattices is not justified. This provides a strong argument for using BCC as our sampling lattice for voxelization.

6.1 Future Work

Further speed optimization to the current algorithm is possible, because part of the offset computation is still done using floating point numbers. Further optimization towards integer based offset is possible if we change the algorithm’s paradigm. To construct a fully integer algorithm the first and second step of the algorithm needs to be combined. Voxelization starts from the voxel that intersects the plane as shown in Figure 6.1. As the algorithm moves along the base-plane direction, the decision to move along the principal direction depends on the distance of the voxel center to the line \(L \). When the distance is higher than the threshold \(t \) from Theorem 1 we should move along the principal direction.

This algorithm is the same as Bresenham’s incremental line discretization algorithm. What is not known now is whether we can express \(t \) and the voxel distance to the plane as an integer. This is a future direction that can be taken to speed up the algorithm further.

The algorithm can also be made to perform smooth voxelization over any plane in any
Figure 6.1: The steps taking in the new integer algorithm. The algorithm starts with a voxel \(A \) that intersects the line, then a step in the base-plane direction is taken which leads us to pixel 1. Pixel 1 is chosen because its distance is still less than \(t \). At pixel 2 the algorithm moves along the principal direction because its distance to the line \(L \) is bigger than \(t \).

lattice. By choosing more than one voxel along the principal direction, and weighting their value according to some function of their distance to the plane. The incremental algorithm can perform smooth voxelization in a fast and incremental fashion.

Currently the voxelization algorithm is limited to BCC and Cartesian lattice, a generalization of voxelization algorithm is possible if we know the shape of the Voronoi cell of other sampling lattices. A further research into Voronoi cell structure can reveal a more general voxelization theorem in 3D that can be used to tailor the voxelization scheme to the underlying information content.

GPU based voxelization has also been proposed by Fang and Chen \[17\], their algorithm implementation can run on any GPU that performs standard triangle rasterization. The algorithm proposed however is limited to the Cartesian lattice. Because our algorithm performs the same scan line rasterization found in many GPUs, we can exploit the GPU to rasterize the triangles and perform the simple offset calculation using programmable GPU.
Bibliography

