What Comes First, the Zebra Finch or the Egg?

Resource Allocation During Avian Egg Production

by

Katrina Gotia Salvante
M.Sc. Simon Fraser University

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

In the
Department of
Biological Science

© Katrina G. Salvante 2006
SIMON FRASER UNIVERSITY
Spring 2006

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.
APPROVAL

Name: Katrina Gotia Salvante
Degree: Doctor of Philosophy

Title of Thesis:

What comes first, the Zebra Finch or the egg? Resource allocation during avian egg production

Examining Committee:

Chair: Dr. L.J. Albright, Professor

Dr. T.D. Williams, Professor, Senior Supervisor
Department of Biological Sciences, S.F.U.

Dr. N.H. Haunerland, Professor
Department of Biological Sciences, S.F.U.

Dr. B.D. Roitberg, Professor
Department of Biological Sciences, S.F.U.

Dr. A. Vieira, Assistant Professor
School of Kinesiology, S.F.U.
Public Examiner

Dr. A.J. Zera, Professor
Department of Biological Sciences, University of Nebraska-Lincoln
External Examiner

Mar. 27/06
Date Approved
DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection, and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain shall not be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada
STATEMENT OF ETHICS APPROVAL

The author, whose name appears on the title page of this work, has obtained, for the research described in this work, either:

(a) Human research ethics approval from the Simon Fraser University Office of Research Ethics,

or

(b) Advance approval of the animal care protocol from the University Animal Care Committee of Simon Fraser University;

or has conducted the research

(c) as a co-investigator, in a research project approved in advance,

or

(d) as a member of a course approved in advance for minimal risk human research, by the Office of Research Ethics.

A copy of the approval letter has been filed at the Theses Office of the University Library at the time of submission of this thesis or project.

The original application for approval and letter of approval are filed with the relevant offices. Inquiries may be directed to those authorities.

Bennett Library
Simon Fraser University
Burnaby, BC, Canada
ABSTRACT

Energy is an essential resource that all living organisms must balance. In vertebrates, very-low density lipoprotein (VLDL) particles play a key role in the transport of energy-rich lipids. During avian egg production, small yolk-targeted VLDL (VLDLy) particles are produced that can pass through the various layers of the ovary and are less susceptible to general metabolism, thereby preserving them for use by the developing ovarian follicles. To investigate how reproductive status and environmental conditions influence the differential allocation of energy-rich lipids to self-maintenance versus egg production in passerine birds, changes in VLDL particle diameter were characterized in relation to the reproductive status and output of Zebra Finches (Taeniopygia guttata) exposed to favorable and energetically-challenging conditions. While birds producing eggs in favorable conditions exhibited a higher proportion of circulating VLDLy particles than non-breeding females, variation in VLDLy levels was not related to reproductive performance. When the energetically-demanding processes of thermoregulation and egg production were combined, laying birds consumed more seed and decreased locomotor activity, but took longer to initiate egg laying and laid fewer eggs at a slower rate than under warmer conditions. Cold-acclimated, laying females exhibited a decrease in the proportion of circulating VLDLy particles, but this decrease was not related to changes in reproductive effort. While these results suggest that maintaining a certain proportion of circulating VLDLy may not be an important factor in determining reproductive output in Zebra Finches, they were based on indirect estimates of VLDLy abundance. To develop
an assay to directly quantify circulating VLDL_y in passerine birds, two polyclonal antibodies raised against an apolipoprotein component of chicken VLDL_y (apoVLDL-II) were tested. Putative Zebra Finch apoVLDL-II was expressed at lower levels in laying Zebra Finches and was less-well recognized by the antisera compared to chicken apoVLDL-II from laying hens, suggesting that inter-specific differences in the expression level or the structure of apoVLDL-II may make quantification of Zebra Finch VLDL_y with existing antibodies impossible. Overall, these data suggest that egg-laying birds are able to allocate sufficient energy to fuel self-maintenance and sustain reproduction by increasing energy intake and reallocating energy from other activities.

Keywords

Very-low density lipoprotein (VLDL), egg production, resource allocation, reproduction, life history trade-offs
To my mother,
Cecilia Gotia Salvante,
whose sacrifices and support have always enabled me to reach my goals.

To my Ama,
Victoria Dy Gotia,
for showing me that hard work and perseverance always pay off.

And last, but not least,
to my husband.
Greg Baker,
whose support and encouragement made this dissertation possible.
ACKNOWLEDGEMENTS

First and foremost I'd like to thank Dr. Tony Williams for being an amazing supervisor, mentor, and friend. Tony has taught me so much about how to be a scientist, a teacher, and an administrator (although I hope I never have to do that!), and has also been an exceptional role model for how to be a good person, and for all of that I thank him. I also want to express my gratitude to Tony for supporting myself and my research financially, and for the countless opportunities he has given me to attend international conferences to meet and share my research with leaders in the field.

I would like to thank my collaborator, Dr. Rosemary Walzem, for sharing with me her wealth of knowledge of lipoprotein dynamics in birds and poultry nutrition. I am grateful for her constructive comments on countless manuscript drafts, and for welcoming me into her lab to learn the dynamic laser light scattering technique. I would also like to thank Rosemary for kindly providing all of the chicken data that was included in Chapters 2 and 3, which were collected by Gina Lin, a technician in the Walzem lab. I am also grateful to Kendall Hood who was instrumental in teaching me the dynamic laser light scattering technique, and made me feel at home during my visit to College Station. I would also like to thank Kendall Hood and Wene Yan who were responsible for assaying many of my plasma samples for VLDL particle diameter distribution. Mike Wallowitz also provided help with the dynamic laser light scattering technique in the early stages of my research, and made sure I had a lot of fun during my visit to Texas A&M University.
I am also grateful to my collaborator, Dr. François Vézina, for teaching me about respirometry, energetics, and the metabolic costs of physiological functions. François provided helpful feedback on an earlier draft of Chapter 4, and for that I am thankful.

I would also like to thank Dr. Norbert Haunerland, who has been extremely helpful in broadening my understanding of lipoprotein biology. This work would not have been possible without his guidance and support. I am grateful to Norbert for teaching me the protein purification, SDS-PAGE, and Western blot techniques, and for never getting tired of answering my numerous and sometimes random questions. The Haunerland lab was a great source of support (both technical and emotional) during my many gel and western blot trials. Without them, the months of running of my “last gel/blot” would have been demoralizing. I am eternally indebted to Jutta Haunerland, Phillip Son, Dr. David Qu, Linda Cui, Dipen Thakrar, and Kasia Maryniak for putting up with me sharing their lab space, their never-ending encouragement, and for being a fun group to work with.

I also want to thank Dr. Bernie Roitberg, who provided me with extremely constructive feedback throughout the course of my research, and helped to broadened my knowledge of evolutionary life history theory. Bernie’s comments on an earlier draft of this thesis helped to make it a stronger and more clear and concise dissertation. I would also like to thank my External Examiner, Dr. Tony Zera, and my Public Examiner, Dr. Amandio Vieira, for taking the time out of their busy schedules to go over my dissertation with a fine-toothed comb, asking thought-provoking questions, and providing constructive comments and feedback that truly strengthened this dissertation.
My research benefited tremendously from the help of a myriad of lab assistants that I have had the pleasure of working with over the years. I thank Myriam Ben Hamida, Andrea Senard, Jean-Baptiste Vin, Gina Eom, Edward Chien, Pamela Smith, Ann-Marie Norris, and Mathilde Curnillon for the many hours of Zebra Finch care and lab work that they endured to help me with my research. I specifically want to thank Mathilde Curnillon for translating two very important German manuscripts that were extremely helpful in determining the thermoneutral zone of Zebra Finches. I would also like to thank the staff of the Simon Fraser University Animal Care Facility, specifically Loekie van der Wal, Mary Dearden, Wendy Reeves and all of the technicians, co-op students, and ACF work study students for all of their help in caring for the Zebra Finches, and for making the ACF a fun place to come to work every day. This work also benefited greatly from the work of countless work study students who kept the Zebra Finches well-fed, clean, and healthy. I also want to thank Ray Holland, from the Simon Fraser University electronic shop, who designed and built the micro-switch monitoring system that allowed me to record the locomotor activity of Zebra Finches.

This research was funded by an operating grant to TDW from the Natural Sciences and Engineering Research Council of Canada (NSERC). I also received postgraduate support from NSERC and from Simon Fraser University through Graduate Fellowships and a President’s Research Stipend. This research was also funded by Grants-in-Aid of Research from the Society for Integrative and Comparative Biology, Sigma Xi, and the American Ornithologists’ Union. Travel to various workshops and conferences to present the results of my Ph.D. research was funded by travel grants from the NSERC via the Office of the Dean of Graduate Studies at Simon Fraser University.
the American Ornithologists’ Union, the American Physiological Society, and E-Bird Canada.

There have been so many people in the department who have helped my throughout my time at Simon Fraser University. I’d like to thank everyone involved in CWE, BERG, and the BISC grad caucus for making the department a fun place to be. I am also grateful to Jon Stecyk, Danielle Simonot, Erica Eliason, Linda Hanson, Michelle Morrow, Keith Tierney, and Onkar Bains for the great times down in the lab. I am also thankful to Leslie Dodd and Brian Medford for their help with the environmental chamber. I also want to thank Barbara Sherman, Judy Higham, and Connie Smith for the piles of paperwork they’ve had to do throughout my stay at SFU, and Dave Carmean for sharing his wealth of computer knowledge. I must also thank everyone at Renaissance Coffee for helping me to start every day with a desperately needed cup of coffee.

I would have gone insane on many occasions if it weren’t for the support of the Williams lab. I want to thank Dr. Julian Christians and Dr. Chris Guglielmo for showing me the ropes. Harp Gill, Dana Seaman, Kristen Gorman, and Courtney Albert made going to work enjoyable, and I thank them all for the great times that we’ve had. I thank Will Stein for always being extremely supportive, and for always providing me with insightful feedback whenever I bounced ideas off him. Laura Tranquilla-McFarlane, Louise Blight, and Erinn Birmingham, Lilly Cesh, Caroline Ames, Jan Verspoor, Eloise Rowland, Christine Stables, Jamie Prevolsek also helped to create a fun work environment. I would like to thank Dr. Joel Bety for stimulating conversations about science, moose, and other fun things. I’m grateful to Dr. James Dale for his uncanny ability to edit and clarify manuscripts and talks, the many stimulating discussions we had
about life history theory, immune function, and carotenoids, and his amazing story-telling while attempting to ward off insanity during hours of immune function trials. Last, but certainly not least, I'd like to thank Oliver Love, Christina Semeniuk, Emily Wagner, Dr. Francois Vezina, and Eunice Chin for their friendship and support throughout the years. My thesis benefited tremendously from the innumerable conversations we have had about statistics, methodology, theory, and everything in between, as well as discussions about Gilmore Girls and Buffy. Their comments and ideas have broadened my way of thinking about my own results, science, and life in general. You guys have been like family to me, and I've enjoyed working with all of you. Thank you all for making my stay at SFU some of the best years of my life! Whatever... #*&@!

I'd also like to thank my friends, Suyoko Tsukamoto, Kelly Boyd, and Paul Doerfling, for providing relaxation time away from the crazy world of science. My thesis benefited tremendously from the weekly trips to IKEA, chocolate tastings, and wine and cheese binges.

None of my work would have been possible without the support of my family. Without my mom, Cecilia Gotia Salvante, and her unwavering belief in me, I could not have made it this far. She is, and always will be, a role model for me of an independent, practical and feisty woman. I love you, mom! I would also like to thank my Ama, Victoria Gotia, for making sure I always had food, and for her positive outlook on life. Even through the most difficult of times, she has been a source of strength for me and the rest of the family. Thank you, Ama! I would also like to thank my aunts, uncles and Michelle and Iain for looking out for me, and supporting me throughout my Ph.D. I always know that you guys are there for me when I need you! I specifically want to thank
my cousin, Pamela Smith, for helping me out in the lab and for reminding me of the joys of learning science. I can’t wait until the day that I get to read her thesis. I’m sure it’ll be amazing.

Finally, I am eternally grateful to my husband, Greg Baker, for his never-ending support. Greg has kept me sane throughout my Ph.D. and has made life fun even in the most stressful of times. He has been exceptionally understanding and encouraging, especially throughout the countless procrastination-related writing marathons of the past year. Completing my Ph.D. research and dissertation would have been extremely difficult without his love and support, for all of this I thank him. I love you, Greg!
TABLE OF CONTENTS

Approval.. ii
Abstract ... iii
Dedication ... v
Acknowledgements.. vi
Table of Contents ... x
List of Tables .. xii
List of Figures .. xvii

Chapter 1 General Introduction .. 1
 Introduction ... 2
 Avian Egg Production ... 4
 VLDL Synthesis and Metabolism .. 6
 The Zebra Finch *(Taeniopygia guttata)* ... 7
 Summary of Thesis Chapters .. 9
 Literature Cited .. 12

Chapter 2 Characterization of VLDL Particle Diameter Dynamics in Relation to Egg Production in a Passerine Bird.. 16
 Summary ... 17
 Introduction .. 19
 Materials and Methods .. 22
 Animal Husbandry ... 22
 Zebra Finch Breeding and Blood Sampling ... 23
 Influence of Feeding, Fasting and Egg-Food Supplementation on VLDL Particle Diameter Distribution in Zebra Finches ... 25
 Chicken Blood Sampling .. 26
 Triacylglyceride Assay ... 26
 VLDL Particle Diameter Distribution Assay ... 27
 Data Analysis .. 28
 VLDL Particle Diameter Distribution Measurements 28
 General Statistics ... 31
 Results .. 32
 Influence of Feeding, Fasting and Egg-Food Supplementation on VLDL Particle Diameter Distribution in Zebra Finches ... 32
 Plasma Triacylglyceride and VLDL Particle Diameter Distribution in Non-Laying and Egg-Laying Zebra Finches ... 33
 VLDL Particle Diameter Distribution in Non-Laying and Egg-Laying Chickens 34
Discussion ... 35
Influence of Feeding, Fasting, Egg-Food Supplementation and Estradiol
Treatment on VLDL Particle Diameter Distribution in Zebra Finches .. 35
Estimating VLDL particle diameter range in Zebra Finches ... 35
Metabolic shifts in VLDL particle diameter distribution .. 38
Acknowledgements ... 45
Literature Cited .. 45

Chapter 3 Inter-Individual Variation and Repeatability of VLDL Particle
Diameter Distribution in Egg-Laying Birds: Relationships with Reproductive
Effort .. 56
Summary .. 57
Introduction .. 59
Materials and Methods ... 63
Animal Husbandry .. 63
Reproductive Effort and VLDL Particle Diameter Distribution in Zebra Finches 64
Reproductive Effort and VLDL Particle Diameter Distribution in Chickens 65
Plasma Triglyceride Assay ... 66
VLDL Particle Diameter Distribution Assay .. 66
Plasma VLDL Isolation and Dynamic Laser Light Scattering ... 66
Estimation of VLDLy and Calculation of VLDL Particle Diameter Distribution
Parameters .. 68
Statistical Analysis ... 68
Results ... 70
Individual Variation and Repeatability of VLDL Particle Diameter Distribution
and Reproductive Effort in Laying Zebra Finches ... 70
Comparison of Large-egg and Small-egg Female Zebra Finches ... 71
Individual Variation in VLDL Particle Diameter Distribution and Reproductive
Effort in Laying Chickens ... 72
Comparison of 29-week and 86-week Old Laying Chickens ... 72
Discussion ... 74
Inter-Individual Variation in VLDL Particle Diameter Distribution ... 74
Relationships Between VLDL Particle Diameter Distribution and Reproductive
Effort .. 77
Acknowledgements .. 80
Literature Cited ... 80

Chapter 4 Is avian egg production really costly? Comparison of the metabolic
costs of egg production, cold-acclimation and thermogenesis ... 91
Summary .. 92
Introduction .. 94
Materials and Methods ... 97
Animals and Husbandry ... 97
Acclimation Protocol and Non-Breeding RMR Conditions ... 98
Breeding Protocol and Laying RMR Conditions ... 99
Chapter 5 What Comes First, the Zebra Finch or the Egg? Temperature-Dependent Reproductive, Physiological and Behavioural Plasticity in Egg-Laying Zebra Finches

Summary ... 126
Introduction ... 129
Materials and Methods .. 132
Animals and Husbandry .. 132
Blood Sampling and Plasma Preparation .. 134
Triglyceride Assay .. 135
VLDL Particle Diameter Distribution .. 135
 Plasma VLDL Isolation and Dynamic Laser Light Scattering .. 135
 Estimation of VLDL_y and Calculation of VLDL Particle Diameter Distribution Parameters ... 136
Egg Composition Analysis .. 137
Data Analysis .. 137
Results ... 138
Maternal Condition ... 138
Seed Consumption .. 138
Plasma Triglyceride, VLDL Particle Diameter Distribution, and VLDL_y 139
Reproductive Effort .. 139
Discussion .. 140
Acknowledgements ... 148
Literature Cited .. 148

Chapter 6 Assessment of Antibodies for the Quantification of Apolipoprotein
VLDL-II in Zebra Finches and Chickens

Summary ... 157
Introduction ... 158
Materials and Methods .. 159
ApoVLDL-II Antisera ... 161
Zebra Finch Husbandry and Blood Sample Collection ... 162
ApoVLDL-II Isolation and Purification .. 163
SDS-Polyacrylamide Gel Electrophoresis ... 164
Western Blot ... 165
Results .. 166
Discussion .. 167
Acknowledgements ... 171
Literature Cited .. 172

Chapter 7 General Synthesis and Future Directions ... 180
Synthesis ... 181
Is the pattern of lipid allocation to egg production that is observed in
domesticated avian species common to all birds? ... 181
How does differential resource allocation occur? .. 183
Do allocation decisions vary with prevailing environmental or physiological
conditions, i.e., is there plasticity in decision making, or are they all or nothing
choices? .. 184
How do small, free-living birds that produce eggs early in the spring and have
relatively high metabolic rates meet their own energy demands along with the
energetic costs associated with egg production? .. 184
Future research directions ... 185
Electron Microscopy of Ovaries of Egg-Laying Passerines .. 185
Quantification of Circulating Levels of VLDL via Direct Assay for apoVLDL-II 186
Analysis of the ApoVLDL-II Composition of VLDL Particles of Different
Diameters .. 187
Investigation of Related “Why” Questions .. 187
Literature Cited .. 188
LIST OF TABLES

Table 2.1. Total plasma triacylglyceride and measures of VLDL particle diameter distribution for non-laying and laying female Zebra Finches and chickens. Values are means ± SE, with sample size in parentheses. All percentages are arc-sin transformed. * indicates $P < 0.05$, ** $P < 0.005$, *** $P < 0.0005$, and **** $P < 0.0001$ for intra-specific comparisons...51

Table 3.1. Body mass, reproductive effort, plasma triglyceride and VLDL particle diameter distribution for small-egg and large-egg female Zebra Finches. Values are means ± SE, with sample size in parentheses. Mean egg mass was corrected for female body mass at the 1-egg stage and percentage of particles within the sVLDL range was arc-sin transformed for statistical analyses. ** indicates $P < 0.005$, *** $P < 0.0005$, **** $P < 0.0001$. ..85

Table 3.2. VLDL particle diameter distribution parameters and reproductive effort for laying chickens at Week 29 and Week 86. Values are means ± SE, with sample size in parentheses. The percentage of particles within the sVLDL range was arc-sin transformed for statistical analyses. * indicates $P < 0.05$, *** $P < 0.0005$, **** $P < 0.0001$ for comparisons between weeks 29 and 86, and between ‘good’ and ‘poor’ laying chickens at week 86. ...86

Table 4.1. Resting metabolic rate, seed consumption, locomotor activity and reproductive effort of Zebra Finches in different thermal-reproductive stages. Values are least squares means with sample size in brackets and minimum and maximum values in parentheses. Female body mass at each stage was included as a covariate for statistical analysis of RMR. Seed consumption and locomotor activity were log10 transformed for statistical analyses...122

Table 6.1. Amino acid sequences of apoVLDL-II and apovitellenin I from chicken, duck, emu, quail and turkey. The numbering above the sequences is that of whole chicken apoVLDL-I1 protein (including the signal peptide). Those amino acids which were identical to the first chicken apoVLDL-II sequence have been left blank for clarity. Underlined letters indicate insertions, * indicates deletions, and – indicates no data for that portion of the sequence. ...176
LIST OF FIGURES

Figure 1.1. Avian egg production, including the hormonal cascade responsible for
the up-regulation of reproductive tissues. ..15

Figure 2.1. Histogram plots of correlation coefficients, r, for specific particle
diameter classes of VLDL isolated from the plasma of a) laying
chickens (data source: Walzem 1996b), and b) laying Zebra Finches.
Correlation coefficients were generated from correlations between the
proportion of VLDL particles within each diameter class and
subsequent egg production (i.e., laying rate in chickens and mean egg
mass in Zebra Finches). VLDL particle diameter classes with r > 0
were positively associated with egg production, and were therefore
included in estimates of yolk-targeted VLDL (VLDLy) particle
diameter range. ...52

Figure 2.2. Influence of fasting on a) daily seed consumption of breeding pairs of
Zebra Finches, and on b) body mass, c) plasma triacylglyceride levels,
d) the proportion of VLDL particles available for use by the developing
ovarian follicles as defined by the proposed selective sieving properties
of the ovary, i.e., the proportion of particles that fell within the
sVLDLy diameter range (25 to 44 nm), e) modal VLDL particle
diameter, and f) VLDL particle diameter distribution range of laying
female Zebra Finches..53

Figure 2.3. The effects of egg-food supplementation and reproductive activity on a)
body mass, b) plasma triacylglyceride levels, c) modal VLDL particle
diameter and d) VLDL particle diameter distribution range of male
Zebra Finches ..54

Figure 2.4. VLDL particle diameter distributions of laying and non-laying female
a) Zebra Finches and b) chickens. Gray bars indicate estimates of yolk-
targeted VLDL (VLDLy) particle diameter range based on a) the
proposed sieving properties of the ovary limiting access of VLDL
particles to the developing ovarian follicles (sVLDLy range: 25 – 44
nm) or b) the idea that VLDL particle diameter classes exhibiting
positive relationships with laying rate in chickens are better able to
support continuous egg production (cVLDLy range: 21.5 – 51.1).55
Figure 3.1. Individual variation in VLDL particle diameter distribution in a) laying Zebra Finches and in laying chickens sampled at b) week 29 and c) week 86 with good layers (7 or more eggs in 10 days) indicated by black lines and poor layers (< 7 eggs in 10 days) represented by red lines. Gray bars indicate the sVLDL_y range (25 to 44 nm). VLDL particles of this size have been observed distal to the ovarian granulosa basal lamina, and thus have access to the developing ovarian follicles. 87

Figure 3.2. Intra-individual repeatability between breeding bouts of a) female body mass at the 1-egg stage, b) mean egg mass, c) plasma triglyceride levels, and d) the proportion of VLDL particles available for use by the developing ovarian follicles as defined by the proposed selective sieving properties of the ovary, i.e., the proportion of particles that fell within the sVLDL_y diameter range (25 to 44 nm), in Zebra Finches. Body mass- corrected mean egg mass was used for statistical analyses. 88

Figure 3.3. Reproductive effort (egg mass, clutch size, and laying rate) of Zebra Finches in relation to circulating triglyceride levels (a, c, and e, respectively) and the proportion of VLDL particles available for use by the developing ovarian follicles as defined by the proposed selective sieving properties of the ovary) (b, d, and f, respectively). The relationships between the various measures of reproductive effort and circulating triglyceride and sVLDL_y particles were assessed separately for large-egg females (filled circles) and small-egg females (open circles). The solid regression line represents a significant relationship within large-egg females. 89

Figure 3.4. Relationships between reproductive effort (laying rate and mean egg mass) and VLDL particle diameter distribution range (a and b, respectively), the proportion of VLDL particles available for use by the developing ovarian follicles as defined by the proposed selective sieving properties of the ovary, i.e., the proportion of particles that fell between 25 and 44 nm in diameter (the sVLDL_y diameter range) (c and d, respectively), and median VLDL particle diameter (e and f, respectively). The relationships between the various measures of reproductive effort and VLDL particle diameter distribution were assessed within females sampled at week 29 (filled circles) and within females sampled at week 86 (open circles). The solid and dotted regression lines represent significant relationships within females at week 29 and week 86, respectively. 90

Figure 4.1. Study groups and the selected metabolic cost comparisons that were made between them for a) analysis of resting metabolic rate and b) analysis of locomotor activity and seed consumption. Horizontal lines connect thermal-reproductive stages for paired contrasts. 123
Figure 4.2. Resting metabolic rate (RMR) for warm- and cold-acclimated females as non-breeders and during egg production. RMR measured at 7°C represent values for actively thermoregulating birds. Sequential Bonferroni-correction for multiple comparisons and least squares means of RMR correcting for female body mass at each stage were used for statistical analyses. Lines join values for individual females, and gray circles represent means for each stage. Horizontal lines underneath P-values connect thermal-reproductive stages for paired contrasts.

Figure 4.3. a) Locomotor activity and b) seed consumption by warm- and cold-acclimated females as non-breeders and during egg production. Sequential Bonferroni-correction for multiple comparisons was used for statistical analyses. Lines join values for individual females, and gray circles represent means for each stage. Horizontal lines underneath P-values connect thermal-reproductive stages for paired contrasts.

Figure 5.1. Comparisons of a) changes in female body mass, b) changes in female fat score, and c) changes in female muscle score from pairing to clutch completion, d) daily seed consumption of breeding pairs throughout laying, e) modal VLDL particle diameter, and f) the proportion of VLDL particles that fell within the sVLDLy range in females producing eggs at 7°C and 21°C. Lines join values for individual females.

Figure 5.2. Relationships between female body mass at the 1-egg stage and the mean egg mass of subsequently laid eggs at 7°C and 21°C.

Figure 5.3. Temperature-induced changes in a) clutch size, b) laying interval, c) laying rate, and d) the fresh egg mass, e) yolk lipid content, and f) yolk protein content of the second egg of females producing eggs at 7°C and 21°C. Lines join values for individual females.

Figure 6.1. SDS-polyacrylamide gel electrophoresis of non-breeding and laying Zebra Finch plasma, purified putative Zebra Finch apoVLDL-II, and chicken plasma. Lane A: non-breeding Zebra Finch plasma pool (1:6; sample:ddH2O and sample buffer, v:v), Lane B: laying Zebra Finch plasma pool (1:25), Lane C: molecular weight markers, Lane D: putative apoVLDL-II purified from VLDL portion of the plasma of estrogen-treated male Zebra Finches (1 mg:100 μl), and Lane E: chicken plasma pool (1:25).
Figure 6.2. Western blot of Zebra Finch and chicken plasma and putative Zebra Finch apoVLDL-II using anti-chicken apoVLDL-II as the primary antibody (1:5000). Lane A: laying Zebra Finch plasma pool (1:25; sample:ddH₂O and sample buffer, v:v) spiked with the synthetic peptide (1 mg:100 µl), Lane B: laying Zebra Finch plasma pool (1:25), Lane C: molecular weight markers, Lane D: putative apoVLDL-II purified from VLDL portion of the plasma of estrogen-treated Zebra Finches (1 mg:100 µl), and Lane E: chicken plasma pool (1:25).

Figure 6.3. Western blot of Zebra Finch and chicken plasma and putative Zebra Finch apoVLDL-II using anti-peptide as the primary antibody (1:10000). Lane A: laying Zebra Finch plasma pool (1:25; sample:ddH₂O and sample buffer, v:v) spiked with the synthetic peptide (1 mg:100 µl), Lane B: laying Zebra Finch plasma pool (1:25), Lane C: molecular weight markers, Lane D: putative apoVLDL-II purified from VLDL portion of the plasma of estrogen-treated Zebra Finches (1 mg:100 µl), and Lane E: chicken plasma pool (1:25).
CHAPTER 1

GENERAL INTRODUCTION
INTRODUCTION

Energy fuels all aspects of life. However, when energy is limited, trade-offs arise between energetically-demanding activities, such as thermoregulation, reproduction, locomotion, and general somatic maintenance (Stearns, 1992; Bernardo, 1996; Zera and Harshman, 2001; Ricklefs and Wikelski, 2002). How do animals determine how much energy to allocate to one activity over another? How does differential allocation occur? Is there one pool of resources, and therefore energy, that different physiological systems have access to? Alternatively, are there resources that only some systems can access while others cannot? Do allocation decisions depend on prevailing environmental or physiological conditions, i.e., is there plasticity in decision making, or are they all-or-nothing choices? These were some of the questions that came to mind when I started my Ph.D. research. Answering these questions involves knowing something about the physiological basis of energy allocation to different activities.

One of the most important choices animals face is the decision to allocate limited resources between reproduction and self-maintenance, i.e., the trade-off between current reproduction and survival (Stearns, 1992; Bernardo, 1996; Zera and Harshman, 2001). Allocating too much to reproduction could lead to an increased risk of mortality, while allocating too little can lead to unsuccessful reproduction, which is a waste of precious energy. The main goal of my research was to explore the physiological mechanisms underlying this trade-off in an attempt to answer some of the questions mentioned above. I chose to investigate the differential allocation of energy-rich lipids during avian egg production based on interesting data from domesticated species. In non-laying birds the
function of very-low density lipoprotein (VLDL) particles is to transport lipids throughout the body, where they are either metabolized by tissues to fuel metabolic process or stored in adipose tissue. However, during egg production estrogens stimulate the production of another form of VLDL particle that differs from the generic, non-breeding form in its structure, composition, and function. These estrogen-dependent VLDL particles are "destined" for incorporation into egg yolk, and so have been termed yolk-targeted VLDL, or VLDLy. They are structurally smaller, and can fit into the pores in the ovary, therefore gaining access to the developing ovarian follicles, and are more resistant to lipoprotein lipase (LPL)-dependent metabolism by extra-ovarian tissues, and are thereby preserved for use in egg formation (Chan et al., 1976; Kudzma et al., 1979; Perry and Gilbert, 1979; Griffin, 1981; Dashti et al., 1983; Griffin and Perry, 1985; Lin et al., 1986; Schneider et al., 1990; Walzem et al., 1994; Walzem, 1996; Speake et al., 1998; Walzem et al., 1999; Boyle-Roden and Walzem, 2005). Consequently, examining the changes in generic VLDL-VLDLy dynamics during avian egg production should shed light on the physiological mechanisms underlying the decision to allocate energy to reproduction versus self-maintenance.

Data on changes in VLDL particle diameter distribution in domesticated avian species that have been selected for maximum egg production revealed a near-complete shift in circulating VLDL particles from generic form to the smaller, yolk-targeted VLDL particles (Walzem, 1996). Griffin and Hermier (1988) reported that only about 10% of the lipid associated with VLDLy can be hydrolyzed by LPL. Given this increased resistance of VLDLy to metabolism by maternal tissues for her own energetic needs, I wondered whether this dramatic shift in lipid allocation towards reproduction was
common among all birds. If so, how would small, free-living birds, which often produce eggs early in the spring when environmental conditions are less-than favorable (e.g., spring storm, low ambient temperatures, low food availability) and have relatively high mass-specific metabolic rates, meet their energy demands with so little lipid available for self-maintenance? Surely such a complete shift to VLDL\textsubscript{y} particles during avian egg production could not be ubiquitous! So, we set out to 1) characterize generic VLDL-VLDL\textsubscript{y} dynamics in a small, passerine songbird, the Zebra Finch, in order to a) compare its pattern of lipid allocation during egg production with that of domesticated species and b) determine whether variation in VLDL dynamics was related to variation in subsequent reproductive effort; 2) determine how the metabolic costs of egg production compared to the costs of other physiological processes; and 3) increase the energetic demands on laying female Zebra Finches by manipulating the laying environment to see whether energy allocation decisions could be manipulated by changing the energetic requirements of laying females.

AVIAN EGG PRODUCTION

Before we can investigate energy allocation to reproduction in birds, it is important to have a general understanding of the physiological processes involved in avian egg production. Avian egg formation is made up of a series of complex physiological processes that are controlled by the hormones of the hypothalamic-pituitary-gonadal axis (Carey, 1996; Johnson, 1998; Williams, 1998; Figure 1.1). In response to environmental and social cues, including photostimulation resulting from the
seasonal change in photoperiod, increasing temperature, and availability of potential mates, neurosecretory cells of the hypothalamus secrete gonadotropin-releasing hormone (GnRH) at the median eminence, into the hypophyseal portal blood system, through which GnRH travels to the anterior pituitary and stimulates production of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) (Williams, 1998; Scanes, 2000). In females the gonadotropins are then secreted into the bloodstream, and progress to the ovary, where they stimulate the synthesis and secretion of estrogens into the general circulation (Williams, 1998). Estrogens stimulate the hepatic production of the egg-yolk precursors, vitellogenin (VTG) and yolk-targeted, very-low density lipoprotein (VLDL_y) (Bergink et al., 1974; Deeley et al., 1975; Wallace, 1985; Walzem, 1996; Williams, 1998). Following their synthesis, VTG and VLDL_y are secreted into the blood. FSH and various intra-ovarian growth factors also regulate the recruitment and hierarchical development of ovarian follicles (Adashi et al., 1988; Palmer and Bahr, 1992; Adashi, 1994; Onagbesan and Peddie, 1995). Once recruited, the follicles undergo rapid yolk development, during which plasma VTG and VLDL_y are taken up by the oocyte through receptor-mediated endocytosis, and are processed within the follicles into yolk, the nutrient and energy source for the developing avian embryo (Bernardi and Cook, 1960; Stifani et al., 1988; Wallace, 1985). In Zebra Finches (Taeniopygia guttata), as in other passerine songbirds, rapid yolk development takes three days per follicle, and so is assumed to begin about 4 days prior to the laying of the egg and continue until ovulation of the fully developed follicle, 24 hours prior to oviposition (Haywood, 1993; Williams and Ternan, 1999). Surges in plasma LH induce ovulation of the fully developed follicles into the oviduct (Scanes, 2000), where estrogens
and progesterone regulate the synthesis and deposition of egg albumen and shell (Yu et al., 1971; Burley and Vadehra, 1989). The eggs are then laid approximately 24 hours after ovulation.

VLDL SYNTHESIS AND METABOLISM

Furthermore, to examine the differential allocation of energy-rich lipids to activities such as reproduction and somatic maintenance, it is also important to have a general understanding of the processes involved in VLDL production and metabolism (reviewed in more detail in Walzem, 1996). Dietary lipids travel from the intestine to the liver via the portal vein in the form of portomicrons. Once in the liver, the lipid is incorporated into newly formed VLDL particles. VLDL particle formation begins with the hepatic synthesis of apolipoproteins, amphipathic proteins with a lipophilic, non-polar region that interacts with the lipid within the lipoproteins, and a polar, hydrophilic region that interacts with the aqueous environment of general circulation, which are responsible for aiding in the transport of and metabolism of lipid-rich triglycerides throughout the body. The various apolipoproteins of VLDL have different roles; apolipoprotein B acts as the receptor ligand for metabolism of VLDL by LPL (Nimpf et al., 1988), while apolipoprotein C is an activator of LPL (Breckenridge et al., 1978), and apolipoprotein VLDL-II is believed to be responsible for preserving VLDL for use in egg production by decreasing its diameter and increasing its resistance to LPL-metabolism (Schneider et al., 1990; Walzem, 1996; Walzem et al., 1999; Boyle-Roden and Walzem, 2005). Synthesis of the apolipoproteins occurs on the rough endoplasmic reticulum (ER) within
hepatocytes, and their combination with lipid-rich triglycerides, cholesterol, and cholesterol esters to form VLDL particles occurs where the rough and smooth ER meet. The assembled VLDL particles then move to the Golgi apparatus where they are packaged into exocytotic vesicles for transport to general circulation (reviewed in Walzem, 1996). Once in the blood, VLDL particles are available for metabolism by tissues that require triglycerides for energy. These tissues synthesize LPL, which then migrates to the capillary endothelium where it has access to free-flowing VLDL particles. VLDL metabolism occurs when apolipoprotein C on the surface of the VLDL particles activates LPL, which then removes and hydrolyses the triglycerides at the core of the VLDL particles, reducing their core size and increasing the abundance of surplus surface lipids and proteins (for reviews see Eisenberg, 1986; Walzem, 1996). The surplus surface lipids (e.g., cholesterol, phospholipids) and proteins (e.g., excess apolipoproteins) are transferred to other lipoprotein particles (i.e., high-density lipoproteins, HDL), further decreasing the size and increasing the density of VLDL particles, transforming them into intermediate-density lipoproteins (IDL), and eventually into low-density lipoproteins (LDL) (for reviews see Eisenberg, 1986; Walzem, 1996).

THE ZEBRA FINCH (TAENIOPYGIA GUTTATA)

The Zebra Finch is an ideal model species in which to study the physiological mechanisms underlying the trade-off between current reproduction and survival in passerine songbirds. They breed well in captivity, are amenable to handling and experimental manipulation during breeding, and have a short generation time, as they
reach sexual maturity at only three months of age. There has also been a great deal of research on the breeding biology of both free-living and captive Zebra Finches (see Zann, 1996). They exhibit marked inter-individual variation in egg mass (0.75 – 1.25 g), clutch size (2 to 7 eggs), and initiation of laying (first clutch laid in same season as hatch: 62-162 days after hatching) (Zann, 1996). These birds also display large inter-individual variation in circulating levels of the yolk precursors, VTG and triglyceride, which had been used an index of VLDL when measured during egg production (Williams, 1996; Williams and Christians, 1997; Salvante and Williams, 2003). Examination of the relationships between variation in VLDL dynamics and reproductive effort in Zebra Finches can be used as a first step in determining the role that differential allocation of lipid resources to reproduction plays in the regulation of reproductive effort in passerine songbirds.

There are limitations of using captive Zebra Finches or other captive species as models for free-living birds. Selective pressures on captive species can differ dramatically from those acting on free-living species, and these differences can influence the decision to allocate resources to self-maintenance or current reproduction. For example, predation risk for the captive Zebra Finches used in this research was non-existent, and therefore the birds' perceptions of life expectancy were likely to be much longer than those of free-living passerine songbirds that face much higher predation risk. Longer perceived life expectancies could potentially shifting resource allocation towards self-maintenance (i.e., survival and potentially future reproduction) and away from current reproduction because individuals are likely to survive to reproduce again. Alternatively, because resources, such as food and water, and environmental conditions,
such as temperature, are generally less variable in captivity, the need for maintaining body reserves to cope with more variable conditions (e.g., decreases in food availability or ambient temperature) may be less important in captive species. Therefore, resource allocation in captive birds may be shifted more towards reproduction and away from self-maintenance. Furthermore, the costs and benefits associated with maintaining immune function may potentially differ between captive and free-living species, as the risk of exposure to diseases or parasites likely differs with environment. If captivity is associated with a lower risk of disease, due to antiseptic husbandry practices, then immune function may require fewer resources, which could then be allocated towards reproduction. However, if captivity is associated with higher risks of infection, due to increased density of conspecifics, then immune function may require more resources, which would limit those available for reproduction. These examples serve to illustrate the complex relationships between varying selective pressures and resource allocation decisions, and should serve as caveats to directly extrapolating findings based on studies on captive species to free-living populations.

SUMMARY OF THESIS CHAPTERS

This thesis consists of five research chapters, each presented in manuscript form with its own summary, discussion and literature cited sections, as well as a list of figures. I have chosen to use the term “we” instead of “I” in these chapters to reflect the important contributions of my collaborators to these studies. The names of the collaborator/co-authors for each study are listed on the first page of each chapter.
The study presented in chapter two describes the validation of an established
dynamic laser-light scattering technique to characterize VLDL particle diameter
distribution in individual Zebra Finches in relation to reproductive status. We tested the
hypothesis that Zebra Finches, and non-domesticated avian species in general, would
exhibit less dramatic shifts in VLDL dynamics towards VLDLy particles during egg
production than domesticated species that have been selected for maximized egg
production. In collaboration with Rosemary Walzem at Texas A&M University, I
compared the VLDL particle diameter distributions of laying and non-laying Zebra
Finches with previously collected distribution data from laying and non-laying chickens.
While we confirmed the previously reported pattern of VLDL dynamics in chickens, a
new and unexpected pattern emerged for Zebra Finches.

Chapter three characterizes the magnitude of variation in measures of VLDL
particle diameter distribution in laying Zebra Finches and chickens to determine whether
variation in lipid allocation to reproduction is related to variation in reproductive effort.
This includes comparing the extent of intra-individual repeatability of VLDL particle
diameter distribution with repeatability estimates for morphological and reproductive
traits (in Zebra Finches), and contrasting the relationships between variation in VLDL
particle diameter distribution and measures of reproductive performance (e.g., egg mass,
laying rate) in the two species.

In chapter four I examine the metabolic cost of egg production in relation to the
cost of another energetically-demanding process, thermoregulation. We measured the
metabolic rate of Zebra Finches in a variety of thermal and reproductive states using
respirometry to determine how the metabolic costs of egg production, cold-acclimation
and active thermogenesis compared to each other as well as to basal metabolic rate. We also investigated whether the costs associated with these activities were additive when the activities occurred simultaneously.

In chapter five, to determine the influence that decreasing ambient temperature, and therefore increasing the energetic requirements of the laying females, had on lipid allocation to reproduction and self-maintenance, I increased the energetic demands of laying Zebra Finches by exposing them to a low ambient temperature (7°C) prior to and during egg production to determine whether lipid allocation decisions would change based on changes in environmental conditions and the energetic needs of the laying females. Each female Zebra Finch was paired at both 21°C and 7°C, and their VLDL particle diameter distributions under each temperature regime were compared. Furthermore the temperature-dependent changes in reproductive effort and VLDL particle diameter distribution were compared to identify any existing correlations that may suggest that variation in lipid allocation to reproduction, as estimated by VLDL particle diameter, plays a role in regulating variation in reproductive performance in Zebra Finches, and passerines in general.

In chapter six I describe the attempted development of a direct assay for apoVLDL-II for the quantification of circulating levels of VLDL, including the isolation and purification of apolipoprotein VLDL-II (apoVLDL-II) for the first time from a passerine bird. ApoVLDL-II is an apolipoprotein that is associated with VLDL, but not with generic VLDL (cf. apoB which is present on both generic VLDL and VLDL). I then assessed whether two antisera that were raised against chicken apoVLDL-II recognized putative Zebra Finch apoVLDL-II.
LITERATURE CITED

Figure 1.1. Avian egg production, including the hormonal cascade responsible for the up-regulation of reproductive tissues.
CHAPTER 2

CHARACTERIZATION OF VLDL PARTICLE DIAMETER DYNAMICS IN RELATION TO EGG PRODUCTION IN A PASSERINE BIRD

Katrina G. Salvante¹, Rosemary L. Walzem², and Tony D. Williams¹

¹ Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
² Poultry Science Department, Texas A&M University, College Station, TX 77843
SUMMARY

During avian egg production, estrogen mediates marked increases in hepatic lipid production and changes in the diameter of assembled very-low density lipoprotein (VLDL). A nearly complete shift from generic VLDL (~70 nm in diameter), which transports lipids to peripheral tissues, to yolk-targeted VLDL (VLDLy) (~30 nm), which supplies the yolk with energy-rich lipid, has been observed in the plasma of laying domestic fowl. We validated an established dynamic laser scattering technique for a passerine songbird Taeniopygia guttata, the Zebra Finch, to characterize the dynamics of VLDL particle diameter distribution in relation to egg production. We predicted that non-gallinaceous avian species that have not been selected for maximum egg production would exhibit less dramatic shifts in lipid metabolism during egg production. As predicted, there was considerable overlap between the VLDL particle diameter distributions of laying and non-laying Zebra Finches. But unexpectedly, non-laying Zebra Finches had diameter distributions that peaked at small particles and had relatively few large VLDL particles. As a result, laying Zebra Finches, in comparison, had diameter distributions that were shifted towards larger VLDL particles. Nevertheless, laying Zebra Finches, like laying chickens, had larger proportions of particles within proposed VLDLy particle diameter ranges than non-laying Zebra Finches (e.g., sVLDLy: 50% vs. 37%). Furthermore, Zebra Finches and chickens had similar modal (29.7 nm in both species) and median (32.7 nm vs. 29.6 nm) VLDL particle diameters during egg production. Therefore, although Zebra Finches and chickens exhibited opposing directional shifts in
VLDL particle diameter distribution during egg production, the modifications to VLDL particle structure in both species resulted in the realization of a common goal, i.e., to produce and maintain a large proportion of small VLDL particles of specific diameters that are capable of being incorporated into newly forming egg yolks.
INTRODUCTION

During avian egg production estrogens stimulate the liver to produce the egg-yolk precursors, yolk-targeted, very-low density lipoprotein (VLDLy) and vitellogenin (VTG), which provide embryos with the energy and nutrients required for growth and development (Gruber, 1972; Bergink et al., 1974; Deeley et al., 1975; Neilson and Simpson, 1973; Chan et al., 1976; Wallace, 1985; Walzem, 1996a; Williams, 1998). As a result, total hepatic lipid production increases markedly during this time, from about 3 mg neutral lipid/ml plasma in non-laying turkeys (Meleagris gallopavo) to 21 mg in laying turkeys (Bacon et al., 1974) and from 0.5 - 1.5 μmole triacylglycerides/ml plasma in non-laying chickens (Gallus gallus domesticus) to 20 - 50 μmole in laying chickens (Griffin and Hermier, 1988). Furthermore, data for egg-laying chickens, turkeys, and quail (Coturnix coturnix) show that there is an estrogen-dependent shift in VLDL synthesis from the production of generic VLDL, which ranges in size from 30 to >200 nm, to smaller, yolk-targeted VLDL, which ranges in diameter from 15 to 55 nm in domestic fowl (Griffin, 1981; Walzem et al., 1994; Walzem, 1996a; Speake et al., 1998; Walzem et al., 1999). Furthermore, while generic VLDL has at least six associated apolipoproteins (including apoA-I, apoB and apoC), VLDLy has only two associated apolipoproteins, apoB and apoVLDL-II, the latter of which is thought to be responsible for the decrease in VLDLy diameter (Chan et al., 1976; Kudzma et al., 1979; Griffin, 1981; Dashti et al., 1983; Lin et al., 1986; Schneider et al., 1990; Walzem, 1996a; Speake et al., 1998; Walzem et al., 1999). Consequently, the presence of circulating
VLDL\(y\) in egg-producing females represents a dramatic shift in lipid metabolism associated with changes in the composition and structure of VLDL.

The structural changes to circulating VLDL particles directly influence their \textit{in vivo} function during egg production (Walzem, 1996a). While the role of generic VLDL is to transport triacylglycerides throughout the body for tissue utilization or storage in adipose tissue, the function of VLDL\(y\) is to deliver triacylglycerides to the oocyte, where they will be used as the energy source for the developing embryo (Walzem, 1996a). The smaller diameter of VLDL\(y\) is thought to be critical for enabling the particles to pass through the pores in the granulosa basal lamina of the ovary, allowing them access to the developing ovarian follicles (Griffin and Perry, 1985). In addition, apoVLDL-II also acts as an inhibitor of lipoprotein lipase (LPL), likely by limiting access to the water needed for triacylglycerol hydrolysis (Boyle-Roden and Walzem, 2005). The resistance of VLDL\(y\) particles to hydrolysis by extra-ovarian tissues preserves the triacylglycerol-rich VLDL\(y\) for uptake by the developing ovarian follicles (Walzem, 1996a). Cross-injection studies on turkeys and chickens using labeled generic VLDL isolated from immature turkeys and labeled VLDL\(y\) from laying turkeys and chickens confirm that immature and laying birds utilize generic VLDL and VLDL\(y\) differently; a greater proportion of generic VLDL was deposited into tissues, whereas more VLDL\(y\) was incorporated into ovarian follicles (Bacon \textit{et al.}, 1978; Bacon, 1981). \textit{In vivo} studies in laying domestic fowl have detected only low circulating levels of intermediate-density and low-density lipoproteins, both by-products of the hydrolysis of VLDL by LPL (Hermier \textit{et al.}, 1989; Walzem \textit{et al.}, 1994; Walzem, 1996a), providing further evidence for the increased \textit{in vivo} resistance of VLDL\(y\) to LPL hydrolysis.
Despite the LPL-resistance of VLDL\textsubscript{y}, chickens and turkeys are able to incorporate radiolabelled VLDL\textsubscript{y} preparations from laying females into non-ovarian tissues, presumably to metabolize them to meet their energetic needs (Bacon \textit{et al.}, 1978; Bacon, 1981). Griffin and Hermier (1988) noted that some 10\% of VLDL\textsubscript{y} triacylglycerol can be hydrolyzed by LPL; given the high plasma concentrations of VLDL\textsubscript{y} in laying domestic fowl, this partial hydrolysis may be sufficient to meet the female's own energetic requirements during laying. Others (Chen \textit{et al.}, 1999; Walzem \textit{et al.}, 1999) have proposed that laying domestic fowl could also potentially meet their energetic requirements by metabolizing small amounts of generic VLDL that are synthesized by the avian kidney (Blue \textit{et al.}, 1980; Tarugi \textit{et al.}, 1998).

Chickens have been the target of strong artificial selection for prolonged and consistent egg production, and can maintain high rates of egg production for over a year (Etches, 1996). It is not known whether non-domesticated, non-gallinaceous avian species, which have not been selected for maximum egg production, exhibit such dramatic shifts in lipid metabolism during egg production. Passerine birds have been shown to experience marked increases in the concentration of circulating triacylglycerol during egg production (Christians and Williams, 1999; Challenger \textit{et al.}, 2001). However, the assay used in these studies measured triacylglycerides associated with both generic and yolk-targeted VLDL and was not able to distinguish between the two forms of the lipoprotein. Walzem \textit{et al.} (1994; 1999) used a dynamic laser scattering technique to assess VLDL particle diameter distribution in domestic fowl. This method provides a frequency distribution of VLDL particle diameters (in nm), which has been shown to vary in relation to egg production (Walzem \textit{et al.}, 1994; Walzem, 1996a; Walzem \textit{et al.},
1999; Peebles et al., 2004). At present there is a paucity of data on VLDL particle diameter distributions for non-domesticated species. In this paper we describe a modification of the dynamic laser scattering technique for use in a passerine songbird, the Zebra Finch (Taeniopygia guttata). We used this technique to 1) characterize VLDL particle diameter distributions in non-laying and egg-producing female Zebra Finches, 2) estimate the diameter range of VLDL particles that are available for deposition into the developing eggs of laying Zebra Finches, and 3) compare VLDL dynamics during egg production in Zebra Finches and chickens. Non-domesticated birds have not been strongly selected for egg production and generally experience much more variable environmental conditions during egg production, including fluctuations in food availability and low ambient temperature. We therefore predicted that laying female passerines should experience greater selection pressures to be able to maintain production of larger, potentially generic, VLDL during egg production in order to meet their unpredictable energetic needs.

MATERIALS AND METHODS

Animal Husbandry

Zebra Finches were housed in the Simon Fraser University Animal Care Facility under controlled environmental conditions (temperature 19-23°C, humidity 35-55%, constant light schedule of 14L: 10D, lights on at 07:00). All birds received a mixed seed diet (Panicum and white millet, 50:50; approximately 12.0% protein, 4.7% lipid; Jameson’s Pet Food, Vancouver and Just for Birds, Surrey), water, grit, and cuttlefish
bone (calcium) ad libitum. Birds also received a multivitamin supplement in the drinking water once per week. When not paired for breeding, the birds were housed in same-sex cages, but were not visually or acoustically isolated from the opposite sex. Artificial selection for specific traits has never been performed on this breeding colony. However, inadvertent selection on reproductive performance may have occurred over the many generations these birds have spent in captivity. All experiments and animal husbandry were carried out under a Simon Fraser University Animal Care Committee permit (no. 692B-94) following the guidelines of the Canadian Committee on Animal Care.

Single comb White leghorn chickens of the W-36 strain (Hy-Line International) were individually housed in light-supplemented, fan-ventilated, open-sided houses at Texas A&M University. Chickens were given ad libitum access to water and a corn-soy diet formulated to meet the National Research Council for Poultry’s (NRC) requirements for laying hens (15% protein, < 5% lipid, 2900 Kcal/kg; NRC Subcommittee on Poultry Nutrition, 1994), and were provided with 15 hours of light per day. Ambient house temperature varied from 45°F to 85°F. All animal husbandry and experimental procedures were conducted by technicians from the Walzem laboratory in accordance with a protocol approved by the Animal Use and Care Committee of Texas A&M University.

Zebra Finch Breeding and Blood Sampling

Male (n = 36) and female (n = 36) Zebra Finches were weighed (± 0.1 g) at the time of pairing, and tarsus and bill measurements (± 0.1 mm) were taken. Breeding pairs were housed individually in cages (61 x 46 x 41 cm) equipped with an external nest box (15 x 14.5 x 20 cm) and were provided with an egg-food supplement (6 g of a mixture of 62-65 g hard-boiled egg, 13 g cornmeal, 13 g bread crumbs; 30.2% protein and 13.0%
lipid by dry mass) daily between pairing and clutch completion in addition to the normal seed diet (see Williams, 1996). Data on laying interval (days from pairing to initiation of laying) and egg and clutch size were obtained by checking the nest boxes daily between 09:00 and 11:00. All new eggs were weighed (± 0.001 g) and numbered on the day they were laid. Clutches were considered complete if no new eggs were laid over two days. At this time the female was weighed, and the pair was returned to same-sex, non-breeding cages.

Laying females were weighed and blood sampled (200 μl from the brachial vein) on the day their first eggs were laid (laying sample). Randomly chosen female Zebra Finches (n = 27) from the same-sex cages were also weighed and blood sampled (non-laying sample). All blood samples were collected between 09:00 and 11:30 into heparinized capillary tubes, and then expelled into EDTA-coated microcentrifuge tubes containing 0.5 M disodium-EDTA (3 μl; Sigma-Aldrich Canada, Oakville) and centrifuged at 2200 g for 10 minutes in a Baxter Canlab Biofuge 13. A sub-sample (5 μl) of each plasma sample was frozen (-20°C) for triacylglyceride analysis, while the remainder of each plasma sample was placed into an EDTA-coated microcentrifuge tube containing 0.5 M disodium-EDTA (5 μl) for VLDL particle diameter distribution analysis. Sodium azide (1% w:v; Sigma-Aldrich Canada, Oakville) was added to each EDTA-coated tube to prevent mold formation (0.01 μl / μl plasma), and the plasma samples were refrigerated (4°C) pending analysis of VLDL particle diameter distribution.
Influence of Feeding, Fasting and Egg-Food Supplementation on VLDL Particle Diameter Distribution in Zebra Finches

Two preliminary studies were performed to assess the potentially confounding effects of feeding versus fasting and diet supplementation (i.e., the egg-food supplement given to breeding pairs) on various measures of VLDL particle diameter distribution and circulating triglyceride levels. For the fasting experiment randomly-selected laying female Zebra Finches were blood sampled twice; once while in the ‘fed’ state, i.e., ad libitum access to seed and egg-food supplement and again while in the ‘fasted’ state, i.e., 15 to 16 hours without access to food. For the ‘fasted’ sample, the seed and egg-food supplement containers were removed at 19:00 on the night before blood sample collection. Female Zebra Finches were weighed and blood sampled between 10:00 and 11:00 on the days that their second and third eggs were laid (2-egg and 3-egg stages, respectively). The order in which females were in the fed and fasted states was randomized such that half of the females were in the fasted state at the 2-egg and in the fed state at the 3-egg stage, while the reverse was true for the other half of the females. Previous studies on vitellogenin (VTG), the other estrogen-dependent yolk precursor, have reported comparable levels of plasma VTG levels at the 2- and 3-egg stages (Challenger et al., 2001; Salvante and Williams, 2002). Seed consumption during the 24-hours prior to each blood sample was measured by providing each breeding pair with 30.0 grams of seed on the days the females laid their first and second eggs. Seed was weighed (to the nearest 0.1 g) 24 hours later at the 2- and 3-egg stages.

To examine the influence of the high-fat egg-food supplement given to breeding pairs on changes in plasma triglyceride levels and VLDL particle diameter distribution during egg production, randomly-chosen male Zebra Finches were weighed and blood
sampled between 09:00 and 11:30 on two separate occasions: as non-breeding individuals on the seed-only diet (seed sample), and during breeding on the egg-food supplemented seed diet (supplemented sample) on the day that their female breeding partners laid their first eggs.

Chicken Blood Sampling

Blood samples for VLDL particle diameter distribution analysis were collected from two groups of chickens: immature, non-laying females at 17 weeks of age (n = 10) and actively laying females at 29 weeks of age (n = 37). Sampling of the 29-week old layers coincided with the peak of laying for the population (i.e., all females were actively laying eggs and the laying rate for the population was at its peak: 0.9 eggs laid per day). Blood samples were taken from the brachial vein between 09:00 and 11:00 into EDTA-coated Vacutainer tubes (BD Diagnostics, Franklin Lakes). Plasma samples were isolated by centrifugation and refrigerated (4°C) pending VLDL particle diameter distribution analysis.

Triacylglyceride Assay

Circulating concentrations of triacylglyceride in Zebra Finches were measured enzymatically as an index of total plasma VLDL (i.e., generic VLDL and VLDL_y) (Triglyceride E kit – Wako Chemicals, Richmond; Serum Triglyceride Determination Kit, Sigma-Aldrich Canada, Oakville) using the method developed for domestic fowl (Mitchell and Carlisle, 1991) and validated for passerines (Williams and Christians, 1997; Williams and Martiniuk, 2000; Challenger et al., 2001). This assay cleaves the fatty-acid chains off of the triglyceride molecules, resulting in unbound glycerol
molecules. The concentration of glycerol in each sample is measured before (free glycerol) and after the cleavage reaction (total glycerol). The difference between total and free glycerol is proportional to the plasma concentration of triglyceride. Intra- and inter-assay coefficients of variation were 1.85% (n = 6 replicates) and 4.79% (n = 13 assay plates), respectively, using a 19-week hen plasma pool. All assays were run using 96-well microplates and were measured at 540 nm using a Biotek 340i microplate reader.

VLDL Particle Diameter Distribution Assay

Whole plasma contains a variety of different lipoprotein classes, e.g., VLDL, low density lipoprotein (LDL), high density lipoprotein (HDL). Therefore, plasma VLDL was isolated as the $d < 1.020$ g/mL fraction of plasma from Zebra finches and chickens. The volume of each Zebra Finch plasma sample (approximately 100 μl) was measured and transferred into Beckman Ultra-Clear ultracentrifuge tubes (13 x 64 mm, #344088; Beckman Coulter, Fullerton), and NaCl density solution ($d = 1.0063$; equivalent salt density of undiluted plasma) was added until a final volume of 1 ml was reached. Alternatively, a sub-sample (1 ml) from each chicken plasma sample was transferred into ultracentrifuge tubes. NaCl-NaBr density solution (5 ml; $d = 1.0255$) was then added to each tube. A blank sample was prepared by combining NaCl density solution (1 ml; $d = 1.0063$) with NaCl-NaBr density solution (5 ml; $d = 1.0255$) in an ultracentrifuge tube. The samples were loaded into a Beckman 50.4 fixed-angle rotor and centrifuged at 148600 g for 18 hours at 14°C in a Beckman L8-70M ultracentrifuge (Beckman Coulter, Fullerton). Following centrifugation, the supernatant containing the VLDL portion of the plasma was isolated from each tube by aspiration with a narrow-bore pipet and refrigerated (at 4°C) until analysis for VLDL particle diameter distribution. VLDL
particle diameter distribution was measured by dynamic laser light scattering using a UPA 250 and 7.02 analysis software (Microtrac, Clearwater) (Walzem et al., 1994; Veniant et al., 2000). This technique utilized the Doppler effect as the basis for diameter distribution determinations by recording light scattering from a directed laser diode as it passed through the lipoprotein particles. The magnitude of Doppler-shifting of light scatter that occurs due to the Brownian motion of the particles was measured as it is proportional to particle velocity, which is in turn a function of particle diameter, fluid temperature, and fluid viscosity. As both temperature and viscosity were kept constant, the difference in particle velocity was solely dependent on particle diameter. Sample measurements were made by placement of the flexible probe-tip into the sample and activation of the laser diode ($\lambda = 780$ mm laser beam). Light scattering from the lipoprotein particles was recorded for 3 minutes for the blank solution, and 5 minutes in triplicate for each VLDL sample. The probe was washed with distilled water and dried between samples.

Data Analysis

VLDL Particle Diameter Distribution Measurements

To characterize changes in VLDL particle diameter distribution in the Zebra Finch in comparison to chicken data, the proportion of VLDL particles within three potential VLDLy particle diameter ranges were calculated: 1) a range based on chicken values (hereafter referred to as the cVLDLy range). 2) a range based on the proposed sieving properties of the avian ovary (hereafter referred to as the sVLDLy range), and 3) a range based on Zebra Finch values (hereafter referred to as the mVLDLy range).
Walzem (1996) calculated VLDL\(^{y}\) particle diameter range for laying chickens, the cVLDL\(^{y}\) range, using the regression of the percentage of VLDL particles within each VLDL particle diameter class against subsequent laying rate, the most common measure of reproductive effort used for domestic fowl. Chickens lay continuously for extended periods. Therefore, laying females were repeatedly sampled at various times throughout the laying period, and these repeated measures were incorporated into the VLDL\(^{y}\) calculations (Walzem, 1996a). Each of the resulting correlation coefficients (r) was presented graphically as y-values for each particle diameter class. The different VLDL particle diameter classes vary in their ability to support continuous egg production, and the diameter classes exhibiting positive relationships (i.e., positive correlation coefficients) with laying rate were assumed to have a better ability to support egg production and were therefore selected make up the cVLDL\(^{y}\) particle diameter range (21.5 to 51.1 nm for laying chickens; Figure 2.1a; Walzem, 1996b). In contrast, the sVLDL\(^{y}\) range was based on the observation in domestic fowl that the only VLDL particles observed distal to the granulosa basal lamina of the ovary during yolk formation, and thus able to reach the plasma membrane of the developing ovarian follicles, ranged from 25 to 44 nm in diameter (Perry and Gilbert, 1979; Griffin and Perry, 1985; Griffin and Hermier, 1988). These studies suggested that pores in the granulosa basal lamina act as selective sieves, allowing only VLDL particles of certain diameters to filter into the ovary (Perry and Gilbert, 1979; Griffin and Perry, 1985; Griffin and Hermier, 1988). Finally, the mVLDL\(^{y}\) range (10.7 to 30.4 nm) was calculated similarly to the cVLDL\(^{y}\) range described above with the following exceptions. Firstly, because Zebra Finches lay discrete clutches (5 to 7 eggs), laying females were only blood sampled once, on the day
their first eggs were laid. Therefore, only one set of VLDL particle diameter and reproductive output data was used per bird (c.f. the repeated measures of VLDL particle diameter and reproductive performance incorporated into the chicken VLDLyl analysis due to their continuous laying). Secondly, because laying rate is not generally informative in Zebra Finches (i.e., there is virtually no variation in laying rate because the majority of females lay one egg per day without skipping a day until the clutch is complete), we used body mass-corrected mean egg mass as a measure of reproductive performance in Zebra Finches (Figure 2.1b). Mean egg mass varies markedly between individual female Zebra Finches (Williams, 1996; Salvante and Williams, 2002), but is highly repeatable within individual females between laying bouts (Williams, 1996), suggesting that mean egg mass is a distinct phenotypic trait of laying Zebra Finches. There is also evidence that egg size reflects a female’s “egg laying ability” or “performance”; large-egg females are more capable of laying extended clutches in response to egg removal than small-egg females (Williams and Miller, 2003). VLDLyl particle diameter ranges based on other measures of reproductive performance in Zebra Finches (e.g., clutch size, clutch mass) were also determined but were not used because they encompassed a majority of the VLDL particle diameter classes (i.e., 30 to > 200 nm), making them inconsistent with other potential VLDLyl diameter range estimates. Finally, the modal and median particle diameter and the range (i.e., width) of each distribution, in nanometers, and the proportion of very small (< 30 nm) and large (> 51 nm) VLDL particles were also determined.
General Statistics

All statistical analyses were performed using SAS (SAS Institute, 1999). All percentage data (e.g., percentage of VLDL particles within the various VLDL diameter ranges) were arc-sin transformed prior to analysis, however non-transformed percentages were used for graphical purposes. Non-normal variables, as assessed by the Shapiro-Wilk test for normality (Zar, 1996), were normalized through log10 transformation (although some non-transformed values were used for graphical purposes). T-tests were used for intra-specific comparisons of the VLDL particle diameter distributions of laying and non-laying females. When the analyses included variables that were still not normally distributed after log-transformation (e.g., plasma triacylglyceride and VLDL particle diameter distribution range of Zebra Finches, and modal and median VLDL particle diameter and VLDL particle diameter distribution range of chickens), non-parametric Wilcoxon rank-sum tests were performed. The influence of fasting and egg-food supplementation on VLDL particle diameter distribution was assessed using repeated measures ANOVA or ANCOVA (with female body mass as a covariate). If normality of distribution was achieved following data transformation, then the data were analyzed using a mixed model, repeated measures ANOVA or ANCOVA with fed-fasted state for the fasting study or diet for the egg-food supplementation study as a fixed, repeated factor, and individual bird as a random factor (PROC MIXED; SAS Institute, 1999). In contrast, variables that were still not normally distributed following data transformation were analyzed using the non-parametric Friedman’s test for treatment differences in a randomized complete block design with individual birds as blocks that received both treatments (i.e., fed and fasted states or seed and egg-food supplemented seed diets) in a
randomized order (PROC FREQ; SAS Institute, 1999). All values are given as means ± standard error, all tests are two-tailed, and the overall significance level is P < 0.05 unless otherwise stated.

RESULTS

Influence of Feeding, Fasting and Egg-Food Supplementation on VLDL Particle Diameter Distribution in Zebra Finches

Breeding pairs consumed an average of 37% less seed while being fasted for part of the day than while having ad libitum access to seed throughout the day (F₁,₁₃ = 119.66, p < 0.0001; Figure 2.2a). This decrease in daily seed intake resulted in significant declines in female body mass (by an average of 0.44 g; F₁,₁₃ = 7.21, p < 0.025; Figure 2.2b) and circulating triglyceride levels (by an average of 1.6 mg/ml plasma, i.e., 14%; F₁,₁₃ = 7.26, p < 0.025; Figure 2.2c) following fasting. In contrast, fasting for 15-16 hours had no effect on the proportion of VLDL particles within the cVLDL, sVLDL (Figure 2.2d), or mVLDL ranges, modal (Figure 2.2e) and median VLDL particle diameter, VLDL particle diameter distribution range (Figure 2.2f) or the proportion of very small (< 30 nm) or large (> 51 nm) VLDL particles in circulation (p > 0.1 in all cases).

When provided with the egg-food supplemented seed diet during breeding, male Zebra Finches actually lost an average of 13% of their body mass compared to when they were maintained on the seed-only diet as non-breeders (F₁,₁₆ = 37.24, p < 0.0001; Figure 2.3a). In contrast, egg-food supplementation during egg production did not influence the circulating triglyceride levels (Figure 2.3b), modal (Figure 2.3c) or median VLDL.
particle diameter, VLDL particle diameter distribution range (Figure 2.3d), or the proportion of very small (< 30 nm) or large (> 51 nm) VLDL particles in circulation in breeding males (p > 0.05 in all cases).

Plasma Triacylglyceride and VLDL Particle Diameter Distribution in Non-Laying and Egg-Laying Zebra Finches

While laying and non-laying female Zebra Finches did not differ in body mass at the time of blood sampling (p > 0.2; Table 2.1), laying Zebra Finches had higher plasma triacylglyceride levels than non-laying females (Wilcoxon rank-sum test: Z = -4.008, p < 0.0005; Table 2.1). In contrast to the results from laying chickens (see Introduction), non-laying Zebra Finches had VLDL particle diameter distributions (Figure 2.4a) that were narrow (177 nm wide, cf. 233 nm in laying Zebra Finches; Z = -1.980, p < 0.05; Table 2.1) and peaked at very small particle diameters (over 55% of particles had diameters smaller than 30 nm, cf. less than 30% in laying Zebra Finches; t = 5.867, df = 61.0, p > 0.0001; Table 2.1) and contained few large particles (less than 10% of particles had diameters larger than 51 nm, cf., almost 20% in laying Zebra Finches; t = 3.947, df = 59.2, p < 0.0005; Table 2.1). Furthermore, non-laying Zebra Finches also had smaller modal (t = 4.405, df = 61.0, p < 0.0001) and median (t = 5.332, df = 61.0, p < 0.0001) VLDL particle diameters than laying females (Table 2.1). Therefore, in comparison, laying Zebra Finches had VLDL particle diameter distributions that were shifted towards larger VLDL particle diameters compared to non-laying females (Figure 2.4a). While there was considerable overlap between the diameter distributions of laying and non-laying Zebra Finches, laying females still had greater proportions of VLDL particles within the cVLDL_y (t = 2.866, df = 30.2, p < 0.05) and sVLDL_y ranges (t = 3.058, df =
laying Zebra Finches had fewer VLDL particles within the mVLDLy range than non-laying birds ($t = 4.581$, df = 61.0, $p < 0.0001$; Table 2.1).

VLDL Particle Diameter Distribution in Non-Laying and Egg-Laying Chickens

Non-laying chickens were consistently different from laying chickens in all measures of VLDL particle diameter distribution. On average, VLDL particle diameter distributions of laying chickens at 29-weeks of age were narrow and peaked at small particle diameters (Figure 2.4b), while non-laying chickens possessed wider, less peaked distributions (Figure 2.4b) (range: $Z = 4.816$, $p < 0.0001$; Table 1). Laying chickens had a larger proportion of VLDL particles that fell within the cVLDLy ($t = 9.542$, df = 10.3, $p < 0.0001$; gray bar in Figure 2.4b) and sVLDLy ranges ($t = 8.909$, df = 10.3, $p < 0.0001$) than non-laying chickens (Table 2.1). Unlike in Zebra Finches, non-laying chickens had and larger modal ($Z = 3.818$, $p < 0.0001$) and median ($Z = 4.797$, $p < 0.0001$) particle diameters, fewer smaller VLDL particles (< 30 nm in diameter; $t = 25.990$, df = 43.2, $p < 0.0001$) and more large VLDL particles (> 51 nm in diameter; $t = 11.314$, df = 9.1, $p < 0.0001$) than laying chickens (Table 2.1).
DISCUSSION

Influence of Feeding, Fasting, Egg-Food Supplementation and Estradiol Treatment on VLDL Particle Diameter Distribution in Zebra Finches

While all of the chickens and Zebra Finches used in this study had *ad libitum* access to high quality food, the diet that laying Zebra Finches were provided with had a higher lipid content (4.7% lipid from seed and 13% from egg-food supplement) than the non-laying Zebra Finch (4.7% lipid from seed only diet) and the laying chicken diets (< 5% from corn-soy diet). To confirm that any differences observed in VLDL particle diameter distribution parameters between species and between reproductive stages in Zebra Finches were independent of differences in lipid intake or diet quality, we examined the influence of fasting and egg-food supplementation on various measures of VLDL particle diameter distribution in Zebra Finches. The various measures of VLDL particle diameter distribution did not differ with respect to the fed-fasted status of laying Zebra Finches. Likewise, male Zebra Finches exhibited comparable VLDL particle diameter distributions when maintained on the seed-only diet as non-breeders and when actively breeding on the egg-food supplemented seed diet. These findings suggest that these factors did not influence the VLDL particle diameter distribution parameters measured in this study.

Estimating VLDL\textsubscript{y} particle diameter range in Zebra Finches

Previous studies on egg production in domestic fowl have found that VLDL particles of different diameters vary in the extent to which they contribute to yolk formation, and consequently in their ability to support egg production (Perry and Gilbert,
To determine the range of VLDL particle diameters involved in egg production in passerine songbirds, we calculated three potential VLDL_y particle diameter ranges based on previously reported positive relationships between VLDL particles of particular diameters and parameters associated with egg production in chickens and turkeys (Perry and Gilbert, 1979; Griffin and Perry, 1985; Griffin and Hermier, 1988; Walzem, 1994; Walzem, 1996a; Walzem, 1999). Determined the proportion of VLDL particles that fell within each of the potential VLDL_y diameter ranges in laying and non-laying Zebra Finches, and then compared these values to similar data from laying and non-laying chickens.

Basing VLDL_y particle diameter range on the proposed "sieving" properties of the ovarian granulosa basal laminae of laying chickens and turkeys (Perry and Gilbert, 1979; Griffin and Perry, 1985; Griffin and Hermier, 1988; Walzem et al., 1999) provided a comparable estimate of VLDL_y particle diameter for Zebra Finches and chickens, as the proportion of VLDL particles from non-laying females that fell within this range was minimal in both species (only 38% within the sVLDL_y range compared to 51% and 59% within the cVLDL_y and mVLDL_y ranges, respectively, for Zebra Finches, and 19% within the sVLDL_y range versus 25% within the cVLDL_y range for chickens). The majority of VLDL particles of laying chickens (61%) and half of the particles of laying Zebra Finches fell within the sVLDL_y range. This suggests that similarities exist in the suggested sieving properties of the ovaries of different species of birds. The basal lamina of laying chicken follicles has been shown to be approximately 1 μm thick and contain type IV collagen, laminin, and the glycoprotein fibronectin (Griffin and Hermier, 1988;
Conkright and Asem, 1995; Rodgers et al., 1999). Future studies are required to examine the composition, structure and sieving properties of the ovarian granulosa basal laminae of non-domesticated birds to determine whether ovarian sieving of VLDL particles plays a role in selection acting on VLDL particle diameter.

Basing the VLDL_y range on Walzem’s (1996) original correlation method (i.e., using VLDL particle diameter data from laying chickens and laying rate as the index of reproductive performance) also resulted in a comparable estimate of VLDL_y particle diameter for Zebra Finches and chickens, as the majority of VLDL particles from laying females fell within the cVLDL_y range (63% in Zebra Finches; 70% in chickens). The difference between laying and non-laying females in the proportion of VLDL particles that fell within a potential VLDL_y range was maximized using this range (13% vs. -20% and 12% for the mVLDL_y and sVLDL_y ranges, respectively in Zebra Finches; 45% vs. 42% for the sVLDL_y range in chickens). However, the majority of VLDL particles of non-laying Zebra Finches also fell within this range (51%, cf. only 25% of VLDL particles of non-laying chickens). Our modified version of Walzem’s (1996) correlation method to detect associations between selected particle diameter classes and an index of reproductive performance using Zebra Finch particle diameter data and residual mean egg mass resulted in a VLDL_y particle diameter range that encompassed a majority of VLDL particles from non-laying Zebra Finches (59% within the mVLDL_y range, cf. 25% of VLDL particles from non-laying chickens within the cVLDL_y range). Moreover, the mVLDL_y range encompassed only 40% of VLDL particles from laying females (cf. 70% of VLDL particles of laying chickens within the cVLDL_y range). The discrepancies between the proportion of VLDL particles that fell within the cVLDL_y in chickens and
the mVLDL in Zebra Finches may be due to differences in the way the cVLDL and mVLDL ranges were calculated. Many of the VLDL particle diameter classes that were positively associated with laying rate in chickens, and therefore made up the cVLDL range, had statistically significant correlation coefficients (p < 0.05 for r-values greater than 0.444; Walzem, 1996a). In contrast, all of the VLDL particle diameter classes that were positively associated with residual mean egg mass in Zebra Finches, and therefore made up the mVLDL range, lacked statistically significant correlation coefficients (p > 0.1 in all cases). Consequently, the mVLDL range appears to be the least reliable estimate of VLDL particle diameter range in Zebra Finches.

Metabolic shifts in VLDL particle diameter distribution

Previous studies on domestic chickens and turkeys have reported dramatic, near total shifts in VLDL particle diameter distribution during egg production from large particles (30 to >200 nm) in non-laying females to small particles (15 to 55 nm) in laying females (Walzem et al., 1994; Walzem, 1996a; Speake et al., 1998; Walzem et al., 1999), resulting in very little overlap between the VLDL particle diameter distributions of non-laying and laying birds. Our study confirmed these differences in VLDL particle diameter distribution between non-laying and laying chickens, with less than 10% of the VLDL particles of chickens at the peak of egg laying having diameters larger than 51 nm (cf. nearly 60% of particles in non-laying chickens).

As predicted, female Zebra Finches exhibited less dramatic shifts in lipid metabolism during egg production. However, this was mainly due to the unexpected finding that the majority of VLDL particles of non-laying Zebra Finches were very small in diameter (57% of particles had diameters less than 30 nm). Consequently, the diameter
distributions of laying Zebra Finches actually shifted towards larger VLDL particles compared to the distributions of non-laying females. However, the diameter distributions of both laying and non-laying Zebra Finches peaked at small VLDL particles, and therefore overlapped considerably. Similar results have been reported for comparisons between growing (i.e., immature) and egg-producing Tsaiya ducks, Anas platyrhynchos domestica (Lien et al., 2005). When provided with ad libitum access to food, domesticated Tsaiya ducks had VLDL particle diameter distributions, as assessed by transmission electron microscopy, that included more larger particles (range: 50 to 75 nm) and exhibited larger mean VLDL particle diameters during egg-production at 30 weeks of age (61.57 ± 1.98 nm) than while actively growing at 12 weeks of age (range: 35 to 60 nm; mean diameter: 47.67 ± 2.37 nm) (Lien et al., 2005). Furthermore, similar patterns of VLDL particle diameter distribution have been found in free-living Greater Scaup (Aythya marila), wherein egg-laying birds sampled on the breeding grounds in Alaska exhibited larger modal VLDL particle diameters than pre-breeding birds sampled earlier in the breeding season, as assess by dynamic laser light scattering (K. Gorman, D. Esler, R.L. Walzem and T.D. Williams, unpublished data).

Laying Zebra Finches, like laying chickens, had higher circulating triacylglyceride levels and more particles within the sVLDL and cVLDL ranges than non-laying females, despite the fact that laying Zebra Finches had fewer very small VLDL particles, more large VLDL particles, and wider diameter distributions than non-laying females. Furthermore, the VLDL particle diameter distributions of Zebra Finches and chickens shifted towards similar modal and median VLDL particle diameters during egg production. These results suggest that, regardless of the direction that VLDL particle
diameter distributions have to shift, specific changes in lipid metabolism (e.g., increased lipid production and maintenance of a large proportion of small VLDL particles of specific diameters) may be essential for egg production in both domesticated and non-domesticated birds. However, data on reproductive status and VLDL particle diameter distribution from more domesticated and free-living avian species are required to confirm the relationship between changes in lipid metabolism and avian egg production.

The differences in VLDL particle diameter distribution between non-laying chickens and Zebra Finches observed in this study may be due to differences in rates of lipid turnover due to variation in metabolic rate. Based on allometric scaling of metabolic rate (for reviews see Calder, 1981; Taylor, 1987), smaller passerine songbirds have higher mass-specific metabolic rates than larger chickens (Lasiewski and Dawson, 1967; Reynolds and Lee, 1996; McKechnie and Wolf, 2004). Consequently, passerine songbirds also have higher rates of lipid turnover. When VLDL particles undergo lipoprotein lipase-mediated metabolism, triacylglycerol is removed by hydrolysis, and surface lipids and apolipoproteins (e.g., apo-A, apo-C, and in mammals, apo-E) are transferred to other lipoprotein particles (e.g., high density lipoproteins, HDL) (for reviews see Eisenberg, 1986; Walzem, 1996a). As their core triacylglyceride and surface lipid and protein content decreases, the proportional weight of other lipids (e.g., cholesterol esters) increases, and VLDL particles decrease in size and increase in density, and are eventually converted to intermediate density lipoproteins (IDL) and then low density lipoproteins (LDL) (for reviews see Eisenberg, 1986; Walzem, 1996a). Therefore, the abundance of very small VLDL particles in non-laying Zebra Finches (57% under 30 nm in diameter, cf. less than 1% in non-laying chickens) may be due to the more rapid
metabolism of larger VLDL particles. Mermier et al. (1985) reported that IDL particles from immature chickens had an average diameter of 20.0 nm, as assessed by gradient gel electrophoresis. Therefore, the very small VLDL particles from the non-laying Zebra Finches in this study may have been IDL particles resulting from the metabolism of generic VLDL particles.

Differences in the selective pressures acting on different avian species may contribute to the inter-specific differences in the presence of large VLDL particles in circulation during egg production observed between chickens in this study (less than 10% of particles were > 51 nm in diameter) and both the Zebra Finches in this study (19%), and domesticated Tsaiya ducks (~100%) (Lien et al., 2005). Domesticated fowl, specifically egg-type chickens, have been under heavy artificial selection for continuous and consistent egg production, resulting in birds that can maintain egg production for over a year (Etches, 1996); the laying chickens sampled at week 29 in this study laid continuously until week 86, and in some cases even beyond (cf., ~1 week of laying in Zebra Finches). Walzem (1996) found that laying rate in Single Comb White Leghorn chickens and Nicholas White turkeys was related to the presence of large VLDL particles in circulation during egg production. Laying females of both species that had low rates of laying (i.e., < 7 eggs laid within a 10-day period) had a larger proportion of VLDL particles with diameters greater than 51 nm than laying females with high rates of egg production (i.e., 7 or more eggs laid within 10 days) (Walzem, 1996a). These results suggest that limiting the proportion of larger VLDL particles in circulation during egg production, or maybe more importantly, tightly regulating VLDL particle diameter such
that the majority of particles fall within the cVLDLy or sVLDLy diameter ranges, is critical for continuous egg production in chickens.

Additionally, differences in the environmental conditions that chickens and Zebra Finches are exposed to during egg production may also have an influence on the proportion of large VLDL particles in circulation. Domestic chickens are generally housed under conditions that promote optimal egg production, e.g., light-controlled facilities, a diet regime tailored for egg production, vaccinations against disease, and husbandry practices that eliminate parasites (Etches, 1996). Consequently, they are capable of meeting their own metabolic needs via hydrolysis of the small VLDLy particles (Bacon and Musser, 1977; Bacon et al., 1978; Bacon, 1981) and possibly renal generic VLDL (Walzem et al., 1999) despite the increased resistance of VLDLy to hydrolysis by lipoprotein lipase (Bacon et al., 1978; Bacon, 1981; Griffin et al., 1982; Hermier et al., 1989; Schneider et al., 1990; Walzem et al., 1994; Walzem, 1996a). The extent to which hepatic VLDLy and renal generic VLDL contribute to the levels of utilizable VLDL present in laying, non-gallinaceous birds, such as Zebra Finches, and in particular, in free-living birds faced with far less predictable breeding conditions, remains unknown. Alternatively, previous studies on laying chickens have suggested that individual hepatocytes may vary in their functional capacity to initiate apoVLDL-II, and thus VLDLy, synthesis in response to elevated levels of estrogen (Lin and Chan, 1981; Lin et al., 1986). Concentrations of specific lipoprotein species present in plasma are a function of both secretion and utilization. Therefore, it is possible that the livers of laying chickens continue to make small amounts of larger, generic VLDL in sufficient quantities to meet the laying females' energetic requirements. Rapid and continuous metabolism of
such generic VLDL by highly productive layers would leave minimal concentrations in circulation relative to VLDLy, making their ready detection in laying domestic fowl challenging. Future studies are needed to assess whether the larger VLDL particles observed in laying Zebra Finches contain apoVLDL-I1 in order to determine whether these particles are generic or yolk-targeted VLDL. Regardless of the source of energy for the laying chickens (i.e., generic vs. yolk-targeted VLDL), dramatically shifting VLDL particle diameter distribution towards smaller particles that are capable of entering the developing ovarian follicles enables chickens to allocate the majority of their lipid resources to egg production and maintain egg production for prolonged periods of time without compromising their own energetic needs.

In contrast to domesticated birds that have undergone directional selection for specific traits, such as continuous egg production or rapid growth, the selective pressures on laying Zebra Finches, and on non-domesticated birds in general, are generally focused on maintaining traits that maximize the trade-off between current reproductive effort and future fecundity and survival (Williams, 1966; Stearns, 1992; Bernardo, 1996). Reproduction in free-living, non-domesticated birds is generally timed to ensure that the period of chick-rearing coincides with the period of peak food abundance (Perrins, 1970), and egg production often occurs during a period of lower food availability and unpredictable environmental conditions earlier in the breeding season (Williams, 1998). Therefore, the increased LPL-resistance of VLDLy may result in selection for the maintenance of larger, potentially generic, VLDL particles in non-domesticated birds, as observed in laying Zebra Finches in this study and Tsaiya ducks (Lien et al., 2005), to ensure that females have an ample supply of VLDL that can be metabolized in case their
own energetic demands increase during egg production due to rapid onset of inclement weather, declines in food availability, disease, infestation by parasites, or other energetically-costly phenomena. Data on VLDL particle diameter distribution during egg production in many more free-living avian species, including other gallinaceous and passerine birds, are needed to determine whether the differences between chickens and Zebra Finches observed in this study are, in fact, due to differences in selective pressures on these birds, or to phylogenetic differences that are unrelated to inter-specific differences in adaptations to egg production.

Reproduction in non-domesticated species generally involves broody behaviour, i.e., incubation and post-hatching parental care (e.g., provisioning and brooding of young), in addition to egg production. This is in contrast to many breeds of domesticated chickens, whose reproductive activity is limited to egg production as a result of commercial practices (e.g., photoperiod manipulation, egg removal) and a decrease in broodiness, hatchability and fertility as an indirect consequence of selection for increased egg production or, in the case of decreased broodiness, as a result of direct selection for reducing broodiness; Emmerson et al., 1991; Nestor et al., 1996; Sewalem et al., 1998; reviewed in Romanov, 2001). Therefore, given that non-domesticated, laying females must ensure that they have adequate resources to perform post-laying parental behaviors, they may limit lipid allocation to current egg production in exchange for allocating more energy towards self-maintenance (i.e., maintaining larger VLDL particles) to ensure their developing offspring have adequate resources, while also enhancing their chances for survival through the current reproductive period and beyond, thus maximizing current and potentially future reproductive effort. Future studies are needed that assess the
relationships between variation in VLDL particle diameter distribution during egg production in free-living avian species and both current and future reproductive success, and maternal survival and longevity.

ACKNOWLEDGEMENTS

This study was funded by a Natural Sciences and Engineering Research Council of Canada Operating Grant to TDW, a Natural Sciences and Engineering Research Council of Canada Post-Graduate Scholarship to KGS, and project 8736 of the Texas Agricultural Experiment Station to RLW. We would like to thank Gina Lin, Kendall Hood, Mikhael Wallowitz, and Wene Yan for their assistance with chicken data collection and the VLDL particle diameter assay, and Miriam Ben Hamida, Mathilde Curnillon, Gina Eom, and Pamela Smith for their help with the triacylglyceride assay and seed consumption data collection.

LITERATURE CITED

Walzem, R.L. (1996b). Data files provided by Dr. Walzem, Poultry Science Department, Texas A&M University.

Table 2.1. Total plasma triacylglyceride and measures of VLDL particle diameter distribution for non-laying and laying female Zebra Finches and chickens. Values are means ± SE, with sample size in parentheses. All percentages are arc-sin transformed. * indicates P < 0.05, ** P < 0.005, *** P < 0.0005, and **** P < 0.0001 for intra-specific comparisons.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Non-laying Zebra Finches</th>
<th>Laying Zebra Finches</th>
<th>Non-laying chickens</th>
<th>Laying chickens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass at blood sampling (g)</td>
<td>12.83 ± 0.31 (27)</td>
<td>16.11 ± 0.21 (36)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total plasma triacylglyceride (mg/ml plasma)</td>
<td>7.22 ± 1.12 (27)</td>
<td>18.05 ± 3.87 (33) ***</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Percentage of particles within the mVLDL range (10.7 - 30.4 nm)</td>
<td>59.33 ± 3.48 (27)</td>
<td>39.57 ± 2.67 (36) ****</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Percentage of particles within the cVLDL range (21.5 - 51.1 nm)</td>
<td>50.77 ± 4.27 (27)</td>
<td>63.47 ± 1.20 (36) *</td>
<td>25.14 ± 4.51 (10) 69.66 ± 1.21 (37) ****</td>
<td></td>
</tr>
<tr>
<td>Percentage of particles within the sVLDL range (25 - 44 nm)</td>
<td>37.96 ± 3.74 (27)</td>
<td>49.95 ± 1.16 (36) **</td>
<td>18.89 ± 4.54 (10) 60.77 ± 1.23 (37) ****</td>
<td></td>
</tr>
<tr>
<td>Modal VLDL particle diameter (nm)</td>
<td>22.0 ± 1.4 (27)</td>
<td>29.7 ± 1.1 (36) ****</td>
<td>55.6 ± 9.0 (10) 29.7 ± 9.0 (37) ****</td>
<td></td>
</tr>
<tr>
<td>Median VLDL particle diameter (nm)</td>
<td>22.9 ± 1.5 (27)</td>
<td>32.7 ± 1.1 (36) ****</td>
<td>68.0 ± 5.1 (10) 29.6 ± 0.4 (37) ****</td>
<td></td>
</tr>
<tr>
<td>VLDL particle diameter distribution range (nm)</td>
<td>177.1 ± 17.0 (27)</td>
<td>223.9 ± 19.0 (36) *</td>
<td>329.5 ± 15.4 (10) 76.1 ± 6.7 (37) ****</td>
<td></td>
</tr>
<tr>
<td>Percentage of particles with diameters smaller than 30 nm</td>
<td>57.20 ± 4.17 (27)</td>
<td>27.81 ± 3.01 (36) ****</td>
<td>0.51 ± 0.51 (10) 38.64 ± 1.38 (37) ****</td>
<td></td>
</tr>
<tr>
<td>Percentage of particles with diameters larger than 51 nm</td>
<td>9.65 ± 1.33 (27)</td>
<td>18.64 ± 1.85 (38) ****</td>
<td>59.09 ± 4.39 (10) 9.19 ± 0.34 (37) ****</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2.1. Histogram plots of correlation coefficients, r, for specific particle diameter classes of VLDL isolated from the plasma of a) laying chickens (data source: Walzem 1996b), and b) laying Zebra Finches. Correlation coefficients were generated from correlations between the proportion of VLDL particles within each diameter class and subsequent egg production (i.e., laying rate in chickens and mean egg mass in Zebra Finches). VLDL particle diameter classes with $r > 0$ were positively associated with egg production, and were therefore included in estimates of yolk-targeted VLDL (VLDL_y) particle diameter range.

Data source: Walzem 1996b, research data files
Figure 2.2. Influence of fasting on a) daily seed consumption of breeding pairs of Zebra Finches, and on b) body mass, c) plasma triacylglyceride levels, d) the proportion of VLDL particles available for use by the developing ovarian follicles as defined by the proposed selective sieving properties of the ovary, i.e., the proportion of particles that fell within the sVLDL diameter range (25 to 44 nm), e) modal VLDL particle diameter, and f) VLDL particle diameter distribution range of laying female Zebra Finches.
Figure 2.3. The effects of egg-food supplementation and reproductive activity on a) body mass, b) plasma triacylglyceride levels, c) modal VLDL particle diameter and d) VLDL particle diameter distribution range of male Zebra Finches.
Figure 2.4. VLDL particle diameter distributions of laying and non-laying female a) Zebra Finches and b) chickens. Gray bars indicate estimates of yolk-targeted VLDL (VLDLy) particle diameter range based on a) the proposed sieving properties of the ovary limiting access of VLDL particles to the developing ovarian follicles (sVLDLy range: 25 – 44 nm) or b) the idea that VLDL particle diameter classes exhibiting positive relationships with laying rate in chickens are better able to support continuous egg production (cVLDLy range: 21.5 – 51.1).
CHAPTER 3

INTER-INDIVIDUAL VARIATION
AND REPEATABILITY OF
VLDL PARTICLE DIAMETER
DISTRIBUTION IN EGG-LAYING BIRDS:
RELATIONSHIPS WITH REPRODUCTIVE EFFORT

Katrina G. Salvante¹, Rosemary L. Walzem², and Tony D. Williams¹

¹ Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
² Poultry Science Department, Texas A&M University, College Station, TX 77843
SUMMARY

Relationships between inter-individual variation in VLDL particle diameter distribution parameters and subsequent reproductive performance were evaluated using the Zebra Finch (Taeniopygia guttata), and these findings were compared to those for laying chickens (Gallus gallus domesticus). Despite the marked inter-individual variation observed in circulating triglyceride levels in laying Zebra Finches (35-fold), and the less-marked variation in the measures of reproductive effort (ranging from 1.7-fold variation in mean egg mass and laying rate to 4.9-fold variation in total clutch mass) and VLDL particle diameter distribution (ranging from 2-fold variation in the percentage of VLDL particles available for use by the developing ovarian follicles for egg yolk formation as defined by the proposed selective sieving properties of the ovary (i.e., the proportion of particles that fall between 25 and 44 nm in diameter, the sVLDL_y diameter range) to 15-fold variation in VLDL particle diameter distribution range), reproductive performance in Zebra Finches was not related to any measure of VLDL, with the exception of the positive relationship between clutch size and circulating triglyceride levels in females that consistently laid large eggs. Laying chickens generally exhibited comparable inter-individual variation in reproductive traits (1.5-fold variation in mean egg mass and 2.5-fold variation in laying rate) and measures of VLDL diameter distribution to laying Zebra Finches (ranging from 1.4-fold variation in the proportion of particles that fell within the sVLDL_y range to 10-fold variation in VLDL particle diameter distribution range). However, in contrast to Zebra Finches, variation in reproductive performance in chickens...
was related to the proportion of VLDL particles available for use in egg yolk formation. ‘Good’ layers that laid 7 or more eggs within a 10-day period had a significantly larger proportion of circulating sVLDL particles than ‘poor’ layers that laid fewer than 7 eggs in the same time period. Furthermore laying rate, the primary measure of reproductive performance in chickens, was positively related to the proportion of sVLDL particles in circulation at week 86, when chickens exhibited over 2-fold variation in laying rate. This suggests that the production and maintenance of many circulating small VLDL particles that are capable of being incorporated into developing egg yolks may be important for sustaining continuous laying over prolonged periods in domestic fowl, but may not be important factors in determining reproductive performance in passerine songbirds that lay discreet clutches of eggs like the Zebra Finch.
INTRODUCTION

Marked intra-specific variation in reproductive effort had been widely observed in all vertebrate taxa (e.g., variation in egg and clutch size in oviparous species and litter size and birth weight in mammals). In birds, differences between individuals in laying date, clutch size and egg size have been shown to be related to variation in components of fitness such as survival of parents and offspring and fecundity (laying date: Boyce and Perrins, 1987; clutch size: Rowe et al., 1994; egg size: Williams, 1994). While some of the variation in reproductive effort can be attributed to differential responses of individuals to exogenous factors, like territory quality, temperature, food availability, and social cues (Goodburn, 1991; Yom-Tov and Wright, 1993; Giuliano et al., 1996; Lessells et al., 2002), it is likely that variation in physiological factors, such as the structure and functional capacity of the reproductive system itself, also contribute to inter-individual variation in reproductive effort in addition to providing the mechanism through which exogenous factors influence the reproductive system.

During avian egg production, increasing levels of endogenous estrogen induce the hepatic synthesis of two egg yolk precursors, vitellogenin (VTG) and yolk-targeted, very-low density lipoprotein (VLDL_y) (Gruber, 1972; Bergink et al., 1974; Deeley et al., 1975; Neilson and Simpson, 1973; Chan et al., 1976; Wallace, 1985; Walzem, 1996; Williams, 1998). These protein- and lipid-rich compounds provide the nutrients and energy for developing avian embryos. The presence of circulating VLDL_y represents a functional shift in lipid dynamics from the allocation of energy-rich lipids towards self-
maintenance to the lipid allocation to reproduction. This occurs through changes in
VLDL structure and function from generic very-low density lipoprotein (VLDL), which
transports lipids to various tissues (e.g., muscle, adipose) for utilization or storage, to
VLDLy, which is chemically and structurally altered to increase its resistance to
utilization by peripheral tissues and facilitate its incorporation into egg yolk (Chan et al.,
1976; Kudzma et al., 1979; Griffin, 1981; Dashti et al., 1983; Griffin and Perry, 1985;
Lin et al., 1986; Schneider et al., 1990; Walzem et al., 1994; Walzem, 1996; Speake et
al., 1998; Walzem et al., 1999).

Variation in reproductive performance in domestic fowl has been linked to
differences in circulating levels of the yolk precursors. Redshaw and Follett (1976) found
that laying chickens (Gallus gallus domesticus) with irregular laying patterns had higher
and more varied concentrations of plasma VTG than chickens that laid regularly (i.e., one
egg per day). The elevated VTG levels observed in these irregular layers on the days
when laying was skipped may have been due to slow rates of precursor uptake by the
developing follicles since uptake is proportional to follicle size (Christians and Williams,
2001a), resulting in follicles that needed more time (i.e., an extra day) to develop and a
larger plasma pool of VTG. In contrast, circulating VTG levels were only weakly,
negatively associated with measures of reproductive output in free-living European
Starlings (Sturnus vulgaris) (Christians and Williams, 1997; Challenger et al., 2001;
Christians and Williams, 2001b), and were either not related to reproductive effort in
captive Zebra Finches (Taeniopygia guttata) or exhibited a weak, diet-dependent
relationship with egg size (Christians and Williams, 1997; Salvante and Williams, 2002).
These findings suggest that while circulating VTG levels play a role in the regulation of
egg production in passerine songbirds, other physiological factors are still needed to
explain the marked inter-individual variation observed in the various measures of
reproductive effort. Inter-individual variation in laying rate in chickens and domestic
turkeys (*Meleagris gallopavo*) has also been associated with variation in VLDL particle
diameter distribution, specifically in the proportion of VLDL particles that are associated
with lipid deposition into developing eggs (see Figure 5 in Walzem, 1996). Comparable
studies have not been conducted on non-domesticated species, so it is unclear whether the
relationship between variation in VLDL particle diameter distribution and reproductive
performance is common across avian species. The robust relationships between
circulating levels of the yolk precursors and subsequent reproductive performance in
domestic fowl are the result of artificial selection on these birds for prolonged,
maximized egg production. Therefore, it is possible that species that have not been the
targets of such focused selection do not exhibit such clear relationships between
reproductive effort and yolk precursors. Consequently, while maintaining a particular
proportion of VLDL particles associated with lipid deposition into developing eggs plays
a critical role in the ability to maintain continuous egg production in domesticated avian
species, it may be of less importance in the regulation of reproduction in non-
domesticated species that exhibit marked inter-individual variation in egg size, but little
variation in laying rate, and produce discreet clutches of eggs.

Here we assessed the extent of inter-individual variation in VLDL particle
diameter distribution in laying Zebra Finches and chickens using a dynamic laser
scattering technique that provides a frequency distribution of VLDL particle diameters
We then determined whether the variation observed in VLDL particle diameter distribution was related to reproductive performance by comparing the VLDL particle diameter distributions of "good" and "poor" layers. For the Zebra Finches we compared females that consistently laid large eggs ("good") to females that consistently laid small eggs ("poor"), and for the chickens we compared females that exhibited high laying rates (i.e., 7+ eggs in 10 days; "good") to females that exhibited lower rates of egg laying (i.e., < 7 egg in 10 days; "poor"). Chickens have been the target of strong artificial selection for consistent and continuous egg production over prolonged periods of time (Etches, 1996), and since selection for maximum egg production in domestic fowl has also reduced phenotypic variance in reproductive traits (Williams, 1998; Fulton and Delaney, 2003), we predicted that there would be greater inter-individual variation in the VLDL particle diameter distributions of non-domesticated, egg-laying birds compared to laying chickens. Furthermore, because the reproductive physiology of the domestic chicken has been fine-tuned by generations of selection to maximize egg production, we also predicted chickens would exhibit more robust relationships between reproductive performance and VLDL particle diameter distribution during egg production than non-domesticated birds. In order for a trait to respond to selection it must be repeatable within an individual, have a heritable basis, and exhibit fitness-related variation (Bennett, 1987; Stearns, 1992; Garland and Carter, 1994). Therefore, to investigate whether VLDL particle diameter distribution parameters and circulating triglyceride levels are characteristics of individual females that may be able to respond to selection, we assessed the extent of repeatability (i.e. intra-individual variation between breeding attempts) of these traits.
MATERIALS AND METHODS

Animal Husbandry

Zebra Finches were housed in the Simon Fraser University Animal Care Facility under controlled environmental conditions (temperature 19-23°C, humidity 35-55%, constant light schedule of 14L: 10D, lights on at 07:00). All birds received a mixed seed diet (Panicum and white millet, 50:50; approximately 12.0% protein, 4.7% lipid; Jameson’s Pet Food, Vancouver, and Just for Birds, Surrey), water, grit, and cuttlefish bone (calcium) ad libitum. Birds also received a multivitamin supplement in the drinking water once per week. When not paired for breeding, the birds were housed in same-sex cages, but were not visually or acoustically isolated from the opposite sex. Artificial selection for specific traits has never been performed on this breeding colony. However, inadvertent selection on reproductive performance may have occurred over the many generations these birds have spent in captivity. All experiments and animal husbandry were carried out under a Simon Fraser University Animal Care Committee permit (no. 558B) following the guidelines of the Canadian Committee on Animal Care.

Single comb White leghorn chickens of the W-36 strain (Hy-Line International) were individually housed in light-supplemented, fan-ventilated, open-sided houses at Texas A&M University. Chickens were given ad libitum access to water and a corn-soy diet formulated to meet the National Research Council for Poultry’s (NRC) requirements for laying hens (15% protein, < 5% lipid, 2900 Kcal/kg; NRC Subcommittee on Poultry Nutrition, 1994), and were provided with 15 hours of light per day. Ambient house temperature varied from 45°F to 85°F. All animal husbandry and experimental procedures
were conducted by technicians from the Walzem laboratory in accordance with a protocol approved by the Animal Use and Care Committee of Texas A&M University.

Reproductive Effort and VLDL Particle Diameter Distribution in Zebra Finches

Six years of breeding data from our captive population of Zebra Finches were used to determine the range of mean egg masses that fell within the first (0.815 g to 1.020 g) and fourth (1.161 g to 1.511 g) quartiles for the population. Small-egg females (mean egg mass < 1.020 g; n = 16) and large-egg females (mean egg mass > 1.161 g; n = 16) were randomly paired twice with an experienced male with at least 28 days between each breeding attempt. Males and females were weighed (± 0.1 g) at the time of pairing. Breeding pairs were housed individually in cages (61 x 46 x 41 cm) equipped with an external nest box (15 x 14.5 x 20 cm) and were provided with an egg-food supplement (6 g of a mixture of 62-65 g hard-boiled egg, 13 g cornmeal, 13 g bread crumbs; 30.2% protein and 13.0% lipid by dry mass) daily between pairing and clutch completion in addition to the normal seed diet (see Williams, 1996a). Data on laying interval (days from pairing to initiation of laying) and egg and clutch size were obtained by checking the nest boxes daily between 09:00 and 11:00. All new eggs were weighed (to 0.001 g) and numbered on the day they were laid. Clutches were considered complete if no new eggs were laid over two days. At this time the female was weighed (± 0.1 g), and the pair was returned to non-breeding cages. Laying rate was calculated as the number of eggs laid divided by the total number of days it took to lay the entire clutch.

Female Zebra Finches were weighed and blood sampled (200 μl from the brachial vein) between 09:30 and 11:30 on the day their first eggs were laid (1-egg stage). All
blood samples were collected into heparinized capillary tubes, expelled into EDTA-coated microcentrifuge tubes containing 0.5 M disodium-EDTA (3 µl; Sigma-Aldrich Canada, Oakville), and centrifuged at 2200 g for 10 minutes in a Baxter Canlab Biofuge 13. A sub-sample (5 µl) of each resulting plasma sample was frozen (-20° C) for plasma triglyceride analysis, while the remainder of each plasma sample was placed into an EDTA-coated microcentrifuge tube containing 0.5 M disodium-EDTA (5 µl) for VLDL particle diameter distribution analysis. Sodium azide (1% w:v; Sigma-Aldrich Canada, Oakville) was added to each EDTA-coated tube to prevent mold formation (0.01 µl/plasma), and the plasma samples were refrigerated (4° C) pending analysis of VLDL particle diameter distribution.

Reproductive Effort and VLDL Particle Diameter Distribution in Chickens

Laying chickens were checked daily between 09:00 and 11:00, and all new eggs were weighed (to 0.01 g) on the day they were laid. Laying rate was calculated as the number of eggs laid per day during the 10-day period following blood sampling. Two groups of egg-laying chickens were blood sampled: actively laying females at 29 weeks of age (n = 16) and 86 weeks of age (n = 21). Sampling of the 29-week old layers coincided with the peak of laying for the population (i.e., all females were actively laying eggs and the laying rate for the population was at its peak: 0.9 eggs laid per day). In contrast, the blood sample taken at week 86 coincided with a significant decrease in the population’s laying rate (0.6 eggs laid per day; Wilcoxon signed rank test comparing population laying rate between weeks 29 and 86: S = 1899.0, n = 87, p < 0.0001). Blood samples were taken from the brachial vein between 09:00 and 11:00 into EDTA-coated Vacutainer tubes (BD Diagnostics, Franklin Lakes). Plasma samples were isolated.
following the method described above and refrigerated (4°C) pending analysis of VLDL particle diameter distribution.

Plasma Triglyceride Assay

Circulating concentrations of triacylglyceride were measured enzymatically as an index of total plasma VLDL (i.e., generic VLDL and VLDLy) (Triglyceride E kit – Wako Chemicals, Richmond; Serum Triglyceride Determination Kit, Sigma-Aldrich Canada, Oakville) using the method developed for domestic fowl (Mitchell and Carlisle, 1991) and validated for passerines (Williams and Christians, 1997; Williams and Martiniuk, 2000; Challenger et al., 2001). Intra- and inter-assay coefficients of variation were 1.85% (n = 6 replicates) and 4.98% (n = 8 assays), respectively, using a 19-week chicken plasma pool. All assays were run using 96-well microplates and were measured at 540 nm using a Biotek 340i microplate reader.

VLDL Particle Diameter Distribution Assay

Plasma VLDL Isolation and Dynamic Laser Light Scattering

Plasma VLDL was isolated as the \(d < 1.020 \text{ g/mL} \) fraction of plasma. The volume of each Zebra Finch plasma sample (approximately 100 μl) was measured and transferred into Beckman Ultra-Clear ultracentrifuge tubes (13 x 64 mm, #344088; Beckman Coulter, Fullerton), and NaCl density solution (\(d = 1.0063 \); equivalent salt density of undiluted plasma) was added to each tube until a final volume of 1 ml was reached. Alternatively, a sub-sample (1 ml) from each chicken plasma sample was transferred into ultracentrifuge tubes. NaCl-NaBr density solution (5 ml; \(d = 1.0255 \)) was then added to each tube. A blank sample was prepared by combining NaCl density solution (1 ml; \(d = \)
1.0063) with NaCl-NaBr density solution (5 ml; \(d = 1.0255 \)) in an ultracentrifuge tube. The samples were loaded into a Beckman 50.4 fixed-angle rotor and centrifuged at 148600 g for 18 hours at 14°C in a Beckman L8-70M ultracentrifuge (Beckman Coulter, Fullerton). Following centrifugation, the supernatant containing the VLDL portion of the plasma was isolated from each tube by aspiration with a narrow-bore pipet and refrigerated (at 4°C) until analysis for VLDL particle diameter distribution.

VLDL particle diameter distribution was measured by dynamic laser light scattering using a UPA 250 and 7.02 analysis software (Microtrac, Clearwater) (Walzem et al., 1994; Veniant et al., 2000). This technique utilized the Doppler effect as the basis for diameter distribution determinations by recording light scattering from a directed laser diode as it passed through the lipoprotein particles. The magnitude of Doppler-shifting of light scatter that occurs due to the Brownian motion of the particles was measured as it is proportional to particle velocity, which is in turn a function of particle diameter, fluid temperature, and fluid viscosity. As both temperature and viscosity were kept constant, the difference in particle velocity was solely dependent on particle diameter. Sample measurements were made by placement of the flexible probe-tip into the sample and activation of the laser diode (\(\lambda = 780 \) mm laser beam). Light scattering from the lipoprotein particles was recorded for 3 minutes for the blank solution, and 5 minutes in triplicate for each VLDL sample. The probe was washed with distilled water and dried between samples.
Estimation of VLDL\text{y} and Calculation of VLDL Particle Diameter Distribution Parameters

The proportion of VLDL particles that were available for incorporation into developing eggs, i.e., yolk-targeted VLDL, was determined by calculating the percentage of particles that fell within the small particle VLDL (sVLDL\text{y}) range (25 to 44 nm in diameter), which was based on the proposed sieving properties of the ovarian granulosa basal lamina of domestic fowl. To reach the plasma membranes of the developing ovarian follicles, VLDL particles must pass from capillaries within the ovary through pores in the ovarian granulosa basal lamina (Perry and Gilbert, 1979; Griffin and Perry, 1985). Only particles ranging from 25 to 44 nm in diameter have been observed distal to the basal lamina of domesticated fowl (Perry and Gilbert, 1979; Griffin and Perry, 1985; Griffin and Hermier, 1988; Walzem et al., 1999). Egg-laying Zebra Finches and chickens have been found to maintain a larger proportion of circulating VLDL particles within this diameter range than non-laying females (see Chapter 2; K.G. Salvante, unpublished data). Additionally, the modal and median particle diameter and the range (i.e., width) of each distribution, in nanometers, were also determined.

Statistical Analysis

All statistical analyses were performed using SAS (SAS Institute, 1999). All data were tested for normality of distribution (Shapiro-Wilk test; Zar, 1996), and non-normal variables were log10 or arc-sin transformed prior to analysis. All values are given as means ± standard error, all tests are two-tailed, and the overall significance level is $P < 0.05$.
Nested ANOVA was used to determine the repeatability of measures of circulating VLDL and reproductive effort of laying Zebra Finches following Lessells and Boag (1987). In these analyses the two values corresponding to the repeated trait of interest during the two breeding bouts were nested within individual female. Repeatability is reported as the proportion of the variation in the trait of interest that is explained by variation between individual females.

The influence of female body mass on various measures of circulating VLDL (plasma triglyceride levels, percentage of VLDL particles within the sVLDL_y range, modal and median VLDL particle diameter, etc.) and reproductive traits (egg mass, clutch size, total clutch mass, etc.) were examined in Zebra Finches by regression of the trait values against female body mass at the 1-egg stage. If normality of distribution was achieved following data transformation, then the data were analyzed using t-tests to compare large-egg with small-egg female Zebra Finches, and laying chickens at week 29 with laying chickens sampled at week 86, and ANOVA to assess the relationships between the various measures of VLDL and reproductive performance. In contrast, non-parametric tests (Spearman rank correlation, Wilcoxon rank-sum test, and Kruskal-Wallis test) were performed when the analyses included variables that were still not normally distributed following data transformation. Laying chickens sampled at week 86 were divided into two groups based on their laying rate: ‘good’ layers (n = 14), which laid 7 or more eggs in the 10-day period following bloos sampling (i.e., laying rate ≥ 0.7 eggs per day), and ‘poor’ layers (n = 7), which laid fewer than 7 eggs in the same 10-day period.
RESULTS

Individual Variation and Repeatability of VLDL Particle Diameter Distribution and Reproductive Effort in Laying Zebra Finches

Circulating levels of plasma triglyceride varied 35-fold from 3.215 to 112.000 mg triglyceride/ml plasma in laying female Zebra Finches at the 1-egg stage. The VLDL particle diameter distributions of individual laying Zebra Finches ranged from very narrow distributions (minimum range = 26.3 nm) to very broad distributions (maximum range = 389.1 nm), a 15-fold difference in particle diameter range (Figure 3.1a). In contrast, other measures of VLDL particle diameter distribution exhibited less marked variation; modal and median VLDL particle diameter varied 2.4-fold from 18 to 43 nm and 22 to 52 nm, respectively, while the proportion of VLDL particles within the sVLDL range exhibited 2-fold variation among individuals (32.7% to 66.5%). Similarly, laying Zebra Finches varied 1.7-fold in mean egg mass (0.778 to 1.351 g), 4.5-fold in clutch size (2 to 9 eggs), 4.9-fold in total clutch mass (1.9 to 9.4 g) and 1.7-fold in laying rate (0.6 to 1 egg per day).

Female body masses at pairing ($F_{19.20} = 11.01, p < 0.0001$) and at the 1-egg stage ($F_{19.20} = 12.47, p < 0.0001$; Figure 3.2a) and body-mass corrected mean egg mass ($F_{19.20} = 4.45, p < 0.001$; Figure 3.2b) were repeatable, with individual female explaining 83.4%, 85.2% and 63.3% of the total variation in the respective variables. Similarly, plasma triglyceride was marginally repeatable, with individual female explaining 39.8% of the total variation in circulating triglyceride at the 1st-egg stage ($F_{14.15} = 2.32, p < 0.06$; Figure 3.2c). In contrast, the proportion of VLDL particles within the sVLDL range
(Figure 3.2d), modal and median particle diameter, and VLDL particle diameter distribution range were not repeatable between laying bouts (p > 0.4 in all cases).

Comparison of Large-egg and Small-egg Female Zebra Finches

Small-egg females had significantly lower body mass than large-egg females at pairing (t = 3.8807, df = 30.0, p < 0.0005) and at the 1-egg stage (t = 4.6816, df = 30.0, p < 0.0001; Table 3.1). Mean egg mass was the only trait that was positively associated with female body mass at the 1-egg stage (F_{1,30} = 21.53, p < 0.0001, r^2 = 0.4178). Body-mass corrected mean egg mass was therefore calculated by taking the residual values from the regression of mean egg mass against female body mass at the 1-egg stage, and was smaller in small-egg females than large-egg females (t = 3.7478, df = 30.0, p < 0.001; Table 3.1). However, the two groups of females did not differ in any of the other measures of reproductive effort, plasma triglyceride levels, VLDL particle diameter distribution range, the percentage of particles within the sVLDL_y range, or modal or median particle diameter (p > 0.05 in all cases; Table 3.1). Furthermore, the variation observed in all of the measures of reproductive effort in this species was independent of variation in VLDL particle diameter distribution range, modal and median VLDL particle diameter, proportion of VLDL particles within the sVLDL_y range, and plasma triglyceride levels regardless of large- or small-egg status (p > 0.05 in all cases; Figure 3.3), with one exception. Clutch size was positively related to circulating triglyceride levels in large-egg females (F_{1,13} = 4.56, p < 0.05; Figure 3.3c).
Individual Variation in VLDL Particle Diameter Distribution and Reproductive Effort in Laying Chickens

The VLDL particle diameter distributions of laying chickens sampled at weeks 29 and 86 ranged from narrow distributions (minimum range = 32.9 nm) to broad distributions (maximum range = 324 nm) (Figure 3.1b and c), a 10-fold difference in particle diameter range. The proportion of VLDL particles within the sVLDL range exhibited 1.4-fold variation among individual laying chickens (50.1% to 71.0%), while modal and median VLDL particle diameter varied 1.5-fold (25.5 to 39.4 nm and 26.4 to 39.3 nm, respectively). Individual laying chickens also varied 1.5-fold in mean egg mass (58.4 to 79.4 g) and 2.5-fold in laying rate (0.4 to 1 egg per day). The extent of inter-individual variation observed between laying chickens in these traits was comparable to the variation observed between laying Zebra Finches (p > 0.05), with the exception of modal and mean VLDL particle diameter, wherein laying Zebra Finches were 1.6 times more variable than laying chickens (modal diameter: $F_{31,36} = 2.79, p < 0.005$; median diameter: $F_{31,36} = 3.65, p < 0.0005$).

Comparison of 29-week and 86-week Old Laying Chickens

While 86-week old laying chickens laid fewer eggs per day than 29-week old laying females (0.7 eggs per day compared to 0.9 eggs per day; $Z = 4.032, P < 0.0001$), the eggs that they did lay were significantly heavier than those laid by 29-week old layers (68.77 ± 0.94 g compared to 55.77 ± 2.07 g; $Z = -3.584, p < 0.0005$; Table 3.2). Laying chickens at week 29 also had smaller modal and median VLDL particle diameters than chickens sampled at week 86 ($t = 8.855, df = 35.0, p < 0.0001$ and $t = 7.085, df = 35.0, p < 0.0001$, respectively; Table 3.2). In contrast, 29- and 86-week old layers did not differ...
in the proportion of VLDL particles within the sVLDL_y range or VLDL particle diameter distribution range (p > 0.1 in both cases; Table 3.2).

At week 29, when all females were considered ‘good’ layers (i.e., they laid at least 7 eggs within the 10-day period), there was no relationship between laying rate and any measure of VLDL (P > 0.4 in all cases; filled circles in Figure 3.4a, c, and e).

Similarly, mean egg mass was not related to VLDL particle diameter distribution range (filled circles in Figure 3.4b), the proportion of VLDL particles within the sVLDL_y range (filled circles in Figure 3.4d), or modal VLDL particle diameter (p > 0.05 in all cases). However, mean egg mass was positively correlated to median VLDL particle diameter at week 29 (r_s = 0.714, p < 0.05; filled circles in Figure 3.4f).

At week 86, 14 of the 21 laying females were considered ‘good’ layers, and the remaining 7 were considered ‘poor’ layers (i.e., they laid fewer than 7 eggs within the 10-day period). While ‘good’ layers laid at a higher rate than ‘poor’ layers (Z = -3.790, p < 0.0005), these two groups of chickens did not differ in mean egg mass (p > 0.9; Table 3.2). Furthermore, mean egg mass at week 86 was not related to any measure of VLDL (p > 0.5 in all cases; open circles in Figure 3.4b, d, and f). However, even though the majority of VLDL particles (over 55%) of all of the laying chickens sampled at week 86 fell within the sVLDL_y range, ‘good’ layers (black lines in Figure 3.1c) still had a significantly larger proportion of VLDL particles within the sVLDL_y range than ‘poor’ layers (red lines in Figure 3.1c) (t = 2.5921, df = 19.0, p < 0.025; Table 3.2).

Furthermore, variation in laying rate during week 86 was positively related to the variation in the proportion of particles in the sVLDL_y range (r_21 = 0.452, p < 0.05; open circles in Figure 3.4c). In contrast, ‘good’ and ‘poor’ layers did not differ in modal or
median VLDL particle diameter or VLDI, particle diameter distribution range (p > 0.05 in all cases; Table 3.2), and there was also no relationship between laying rate at week 86 and any of these measures of VLDL (P > 0.1 in all cases; open circles in Figure 3.4a and e).

DISCUSSION

Inter-Individual Variation in VLDL Particle Diameter Distribution

Contrary to our prediction, the extent of inter-individual variation in measures of reproductive effort and VLDL particle diameter distribution was comparable between laying Zebra Finches and chickens, with the exception of laying Zebra Finches exhibiting 1.6 times more inter-individual variability in modal and median VLDL particle diameters than laying chickens (2.4-fold variation compared to 1.5-fold variation). Laying Zebra Finches varied also markedly (35-fold) in circulating triglyceride levels, a measure which had been used previously as an index of circulating VLDL levels in this (Williams and Christians, 1997; Salvante and Williams, 2003) and other species which also show marked inter-individual variation in this trait (e.g., 15-fold variation in Cassin’s Auklets, Ptychoramphus aleuticus, and 6-fold variation in Marbled Murrelets, Brachyramphus marmoratus: Vanderkist et al., 2000; 5-fold variation in European starlings, Sturnus vulgaris: Williams and Christians, 1997; Challenger et al., 2001; Christians and Williams, 2001c). In contrast, Griffin and Hermier (1988) reported only 2.5-fold variation (20 to 50 μmoles triglyceride/ml plasma) in circulating triglycerides levels in laying chickens. The inter-specific differences in the extent of variation in modal and
median VLDL particle diameter and circulating triglyceride levels during egg production were consistent with previous findings for circulating levels of VTG. Serum concentrations of VTG varied less than 2-fold in laying chickens (Redshaw and Follett, 1976). In contrast, plasma VTG levels varied 6-fold in egg-producing, free-living Cassin’s Auklets and 5- to 10-fold in captive Zebra Finches and free-living European Starlings (Williams and Christians, 1997; Vanderkist et al., 2000; Challenger et al., 2001; Christians and Williams, 2001c; Salvante and Williams, 2002). The differences between laying chickens and non-domesticated avian species in the extent of individual variation in modal and median VLDL particle diameter and circulating VTG and triglyceride levels are consistent with a decrease in phenotypic variance in heavily-selected, domestic fowl species (Williams, 1998; Fulton and Delaney, 2003). However, the similarity between laying chickens and Zebra Finches in the extent of inter-individual variation in reproductive effort and the other measures of VLDL particle diameter distribution implies that this phenomenon is not ubiquitous across reproductive or physiological traits.

The proportion of particles within the sVLDLy range was not repeatable in Zebra Finches, and there was only marginal evidence for low intra-individual repeatability of circulating triglyceride levels between laying bouts, with ‘individual’ explaining only 40% of the variation in plasma triglyceride. Similarly, a lack of repeatability of plasma triglyceride between successive breeding attempts was reported for free-living European Starlings (Challenger et al., 2001). The marked increase in circulating lipids during egg production is generally attributed to increases in VLDL(y) (Bacon and Musser, 1977; Bacon et al., 1978; Bacon, 1981). Therefore, these findings suggest that circulating levels of triglyceride, and potentially circulating VLDL(y), are not distinct phenotypic traits of
laying Zebra Finches. This is in contrast to the high intra-individual repeatability of other reproductive traits. For example, our study confirmed previous findings that egg size was highly repeatable within individual female birds (van Noordwijk et al., 1980; Williams, 1996b; Zann, 1996). Similarly, circulating levels of vitellogenin are highly repeatable in laying free-living European Starlings (‘individual’ explained over 70% of the total variation in plasma vitellogenin, Challenger et al., 2001) and captive Zebra Finches (‘individual’ explained 85% of the total variation, Salvante and Williams, 2002). To be able to respond to selection, a trait must exhibit heritable inter-individual variation that is related to fitness, and be a repeatable characteristic of an individual (Bennett, 1987; Stearns, 1992; Garland and Carter, 1994). Therefore, the lack of intra-individual repeatability in circulating amounts of sVLDL suggests that this trait will not respond to selection. However, it is possible that because the laying Zebra Finches in this study were held under constant, favorable conditions with ad libitum access to food, they had ample resources to meet their own energetic demands for self-maintenance as well as those associated with egg production. In this situation, production of VLDL could exceed follicular demand for the lipoprotein, and the lack of repeatability of circulating sVLDL particles calculated in this study may actually reflect the lack of repeatability of overproduction of VLDL. Therefore, it is possible that repeatability of the levels of circulating VLDL required to sustain egg production can only be assessed under more energetically-challenging conditions, such as lower ambient temperatures or limited food availability. Under these conditions VLDL dynamics may shift towards increased production of VLDL particles that are more easily metabolized by laying females to meet their own energetic needs, while potentially limiting lipid allocation to egg production to
the minimum required for successful reproduction. Alternatively, since the sVLDLy diameter range was based on the proposed sieving properties of the ovary limiting the access of VLDL particles to the developing ovarian follicles (Perry and Gilbert, 1979; Griffin and Perry, 1985; Griffin and Hermier, 1988; Walzem et al., 1999), classification of VLDL particles as ‘yolk-targeted’ was based solely on particle diameter. By not taking into account apolipoprotein composition of the VLDL particles, this estimate may include particles that are not destined for lipid deposition into developing eggs or exclude particles that actually contribute to egg formation. Determination of the apolipoprotein composition of VLDL particles of various diameters is needed to directly quantify circulating VLDLy levels.

Relationships Between VLDL Particle Diameter Distribution and Reproductive Effort

Our study confirmed previous reports of consistent differences in VLDL particle diameter distribution in relation to reproductive ‘performance’ in laying chickens (Walzem, 1996). Laying chickens sampled at week 29 laid at a higher rate than 86-week old chickens, and also had smaller modal and median VLDL particle diameters. Furthermore the variation in median VLDL particle diameter was also positively related to variability in mean egg mass at week 29. However, it is unclear whether the differences observed in modal and median particle diameters are biologically significant, as all of the modal and median diameters in this study fell within the sVLDL range, and the average difference between chickens sampled at week 29 and week 86 was only 5 nm for both measures (cf. 26 nm difference in modal diameter and 38 nm difference in median diameter between laying and non-laying chickens, see Chapter 2). We also found
that variation in laying rate at week 86 was positively related to the proportion of sVLDL particles in circulation: ‘good’ layers sampled at week 86 had a higher proportion of sVLDL particles (4%) than ‘poor’ layers sampled at the same time.

Walzem (1996) found a similar, but more striking pattern in laying Single Comb White Leghorn chickens and Nicholas White turkeys. ‘Good’ layers of both species exhibited peaked VLDL particle diameter distributions within the sVLDL range (Walzem, 1996). However, Walzem’s (1996) ‘poor’ layers had a greater proportion of VLDL particles with diameters larger than 50 nm and broader particle distributions that bore a greater resemblance to distributions from non-laying chickens (see average non-laying chicken distribution, solid circles, in Figure 2.4b of Chapter 2) than to any of the laying chicken particle distributions in our study.

In contrast to laying chickens, the inter-individual variation in VLDL particle diameter distribution parameters in laying Zebra Finches was not related to differences in the mass of the eggs a female laid or any other measure of reproductive performance, and circulating triglyceride levels were only related to clutch size in large-egg females.

Previous studies on non-domesticated birds found more complex relationships between circulating yolk precursor levels and reproductive effort. In free-living European Starlings (*Sturnus vulgaris*), plasma vitellogenin was negatively correlated with yolky follicle mass (Challenger *et al.*, 2001), yolk protein and yolk lipid composition (Christians and Williams, 2001b), and an index of reproductive effort that combined ovary mass, oviduct mass, and the mass of the first egg using Principal Components Analysis (Williams and Christians, 1997). In contrast, the same index of reproductive effort was independent of circulating levels of vitellogenin in captive Zebra Finches.
Williams and Christians, 1997). Furthermore, Salvante and Williams (2003) reported a complex diet-dependent relationship between plasma vitellogenin and mean egg mass in Zebra Finches, and no relationship between these traits when the analysis was limited to the wide range of egg sizes (0.913 to 1.154 g) common to both diet groups.

The differences between chickens and Zebra Finches in the relationships between VLDL particle diameter distribution and reproductive performance reported in this paper suggest that the production and maintenance of a large number of small yolk-targeted VLDL particles of specific diameters may be important for sustaining continuous laying over prolonged periods in domestic fowl, but may not be important factors in determining the reproductive performance of Zebra Finches, i.e., there may be greater phenotypic plasticity or flexibility in the VLDL y component of the reproductive system in non-selected, non-domesticated species. In order to test this hypothesis, data on VLDL particle diameter distribution during egg production and subsequent reproductive performance from many more avian species, specifically free-living birds and other domesticated fowl and waterfowl, are needed. Subsequently, analyses that control for phylogenetic relationships can be conducted to determine whether the relationships between VLDL particle diameter distribution and reproductive performance reported in this paper persist.

It is also possible that under more energetically-challenging conditions, variation in the ability to maintain a certain proportion of VLDL y particles in circulation during egg production may be related to reproductive performance in non-domesticated birds. Future studies are needed to assess changes in circulating levels of VLDL y with respect to different environmental conditions to determine whether increasing the energetic
demands of laying females influences the variation and repeatability of VLDL_y and its relationships with reproductive performance.

ACKNOWLEDGEMENTS

This study was funded by a Natural Sciences and Engineering Research Council of Canada Operating Grant to TDW, a Natural Sciences and Engineering Research Council of Canada Post-Graduate Scholarship to KGS, and project 8736 of the Texas Agricultural Experiment Station to RLW. We would like to thank Gina Lin, Kendall Hood, Mikhael Wallowitz, and Wene Yan for their assistance with chicken data collections and the VLDL particle diameter assay, and Gina Eom and Pamela Smith for her help with the triglyceride assay.

LITERATURE CITED

Table 3.1. Body mass, reproductive effort, plasma triglyceride and VLDL particle diameter distribution for small-egg and large-egg female Zebra Finches. Values are means ± SE, with sample size in parentheses. Mean egg mass was corrected for female body mass at the 1-egg stage and percentage of particles within the sVLDL_y range was arc-sin transformed for statistical analyses. ** indicates P < 0.005, *** P < 0.0005, **** P < 0.0001.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Small-egg females</th>
<th>Large-egg females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass at pairing (g)</td>
<td>14.27 ± 0.29 (16)</td>
<td>16.34 ± 0.45 (16) ***</td>
</tr>
<tr>
<td>Mass at 1-egg stage (g)</td>
<td>15.36 ± 0.20 (16)</td>
<td>16.87 ± 0.26 (16) ****</td>
</tr>
<tr>
<td>Mean egg mass (g)</td>
<td>0.987 ± 0.027 (16)</td>
<td>1.228 ± 0.017 (16) **</td>
</tr>
<tr>
<td>Clutch size (number of eggs)</td>
<td>5.6 ± 0.4 (16)</td>
<td>5.3 ± 0.4 (16)</td>
</tr>
<tr>
<td>Total clutch mass (g)</td>
<td>5.5 ± 0.5 (16)</td>
<td>6.4 ± 0.5 (16)</td>
</tr>
<tr>
<td>Laying rate (eggs laid per day)</td>
<td>0.91 ± 0.04 (16)</td>
<td>0.84 ± 0.04 (16)</td>
</tr>
<tr>
<td>Laying interval (days)</td>
<td>7.3 ± 0.6 (16)</td>
<td>6.4 ± 0.5 (16)</td>
</tr>
<tr>
<td>Total plasma triglyceride (mg/ml plasma)</td>
<td>11.06 ± 0.96 (15)</td>
<td>21.60 ± 6.8 (15)</td>
</tr>
<tr>
<td>Percentage in sVLDL_y range (25 - 44 nm)</td>
<td>51.22 ± 1.32 (16)</td>
<td>49.23 ± 2.18 (16)</td>
</tr>
<tr>
<td>Modal VLDL particle diameter (nm)</td>
<td>29.4 ± 1.5 (16)</td>
<td>29.1 ± 1.6 (16)</td>
</tr>
<tr>
<td>Median VLDL particle diameter (nm)</td>
<td>32.3 ± 1.3 (16)</td>
<td>32.3 ± 1.9 (16)</td>
</tr>
<tr>
<td>VLDL particle diameter distribution range (nm)</td>
<td>223.4 ± 28.3 (16)</td>
<td>218.8 ± 29.5 (16)</td>
</tr>
</tbody>
</table>
Table 3.2. VLDL particle diameter distribution parameters and reproductive effort for laying chickens at Week 29 and Week 86. Values are means ± SE, with sample size in parentheses. The percentage of particles within the sVLDL range was arc-sin transformed for statistical analyses. * indicates P < 0.05, *** P < 0.0005, **** P < 0.0001 for comparisons between weeks 29 and 86, and between ‘good’ and ‘poor’ laying chickens at week 86.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Laying chickens at Week 29</th>
<th>Laying chickens at Week 86</th>
<th>'Good' layers at Week 86</th>
<th>'Poor' layers at Week 86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage in sVLDLy range (25 - 44 nm)</td>
<td>59.91 ± 1.78 (16)</td>
<td>62.66 ± 0.83 (21)</td>
<td>63.99 ± 0.87 (14)</td>
<td>59.99 ± 1.32 (7) *</td>
</tr>
<tr>
<td>Modal VLDL particle diameter (nm)</td>
<td>29.6 ± 0.7 (16)</td>
<td>34.3 ± 0.6 (21) ****</td>
<td>34.9 ± 0.6 (14)</td>
<td>32.4 ± 1.0 (7)</td>
</tr>
<tr>
<td>Median VLDL particle diameter (nm)</td>
<td>29.0 ± 0.5 (16)</td>
<td>34.2 ± 0.5 (21) ****</td>
<td>34.9 ± 0.5 (14)</td>
<td>32.9 ± 0.9 (7)</td>
</tr>
<tr>
<td>VLDL particle diameter distribution range (nm)</td>
<td>72.7 ± 8.3 (16)</td>
<td>124.4 ± 22.7 (21)</td>
<td>116.3 ± 0.5 (14)</td>
<td>140.6 ± 40.7 (7)</td>
</tr>
<tr>
<td>Mean egg mass (g)</td>
<td>55.77 ± 2.07 (5)</td>
<td>68.77 ± 0.94 (20) ***</td>
<td>68.66 ± 1.13 (14)</td>
<td>69.03 ± 1.82 (6)</td>
</tr>
<tr>
<td>Laying rate (eggs laid / day)</td>
<td>0.9 ± 0.0 (16)</td>
<td>0.7 ± 0.0 (21) ****</td>
<td>0.7 ± 0.0 (14)</td>
<td>0.5 ± 0.0 (7) ***</td>
</tr>
</tbody>
</table>
Figure 3.1 Individual variation in VLDL particle diameter distribution in a) laying Zebra Finches and in laying chickens sampled at b) week 29 and c) week 86 with good layers (7 or more eggs in 10 days) indicated by black lines and poor layers (<7 eggs in 10 days) represented by red lines. Gray bars indicate the sVLDL range (25 to 44 nm). VLDL particles of this size have been observed distal to the ovarian granulosa basal lamina, and thus have access to the developing ovarian follicles.
Figure 3.2. Intra-individual repeatability between breeding bouts of a) female body mass at the 1-egg stage, b) mean egg mass, c) plasma triglyceride levels, and d) the proportion of VLDL particles available for use by the developing ovarian follicles as defined by the proposed selective sieving properties of the ovary, i.e., the proportion of particles that fell within the sVLDL range (25 to 44 nm), in Zebra Finches. Body mass-corrected mean egg mass was used for statistical analyses.
Figure 3.3. Reproductive effort (egg mass, clutch size, and laying rate) of Zebra Finches in relation to circulating triglyceride levels (a, c, and e, respectively) and the proportion of VLDL particles within the sVLDL range (25 to 44 nm, i.e., particles available for use by the developing ovarian follicles as defined by the proposed selective sieving properties of the ovary) (b, d, and f, respectively). The relationships between the various measures of reproductive effort and circulating triglyceride and sVLDL particles were assessed separately for large-egg females (filled circles) and small-egg females (open circles). The solid regression line represents a significant relationship within large-egg females.
Figure 3.4. Relationships between reproductive effort (laying rate and mean egg mass) and VLDL particle diameter distribution range (a and b, respectively), the proportion of VLDL particles available for use by the developing ovarian follicles as defined by the proposed selective sieving properties of the ovary, i.e., the proportion of particles that fell between 25 and 44 nm in diameter (the sVLDL y diameter range) (c and d, respectively), and median VLDL particle diameter (e and f, respectively). The relationships between the various measures of reproductive effort and VLDL particle diameter distribution were assessed within females sampled at week 29 (filled circles) and within females sampled at week 86 (open circles). The solid and dotted regression lines represent significant relationships within females at week 29 and week 86, respectively.
CHAPTER 4

IS AVIAN EGG PRODUCTION *REALLY* COSTLY? COMPARISON OF THE METABOLIC COSTS OF EGG PRODUCTION, COLD-ACCLIMATION AND THERMOGENESIS

Katrina G. Salvante¹, François Vézina¹,² and Tony D. Williams¹

¹Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.

²Currently at: Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ ‘t Horntje (Texel), The Netherlands
SUMMARY

Recent studies have shown that the metabolic cost of avian egg production involves a 16-27% increase in basal or resting metabolic rate (BMR and RMR, respectively) above non-reproductive values. To determine how the metabolic cost of egg production compared with the costs of other essential processes (such as cold-acclimation and thermogenesis) and whether these costs were additive, we measured RMR of non-breeding and egg-producing Zebra Finches (*Taeniopygia guttata*) while a) warm-acclimated (to 19-23°C) and measured within their thermoneutral zone (at 35°C), b) cold-acclimated (to 7°C) and measured at thermoneutrality (i.e., not actively producing heat), and c) cold-acclimated and measured below thermoneutrality (at 7°C) (i.e., during active thermogenesis). The metabolic cost of egg production was relatively small (24% above BMR, i.e., 1.2 x BMR) compared to the additive costs of cold-acclimation (82% above BMR; 1.8 x BMR) and thermogenesis (124% over BMR; 2.2 x BMR). Exposure to low ambient temperatures was accompanied by an increase in seed consumption (by 72%) and a decrease in locomotor activity (by 72%) compared to warm-acclimated, non-breeding values, resulting in an increase in the energy available to fuel thermoregulation. In contrast, egg production in thermoregulating females was associated with an 11% decrease in RMR and a 22% decrease in seed consumption compared to non-breeding, thermoregulating values. These data suggest that while the increase in RMR associated with egg production is small in relation to the birds’ metabolic capacity to increase RMR in response to other energetically-demanding processes, the addition of egg production to
these metabolically costly activities may be enough to necessitate the use of energy-saving strategies, such as internal energy reallocation and controlled hypothermia, to cope with the additional energetic demands.
INTRODUCTION

Egg production in birds is a complex process that involves up-regulation of a cascade of hormones that initiates the recrudescence and maintenance of reproductive tissues, stimulates the production and mobilization of large amounts of protein and lipid that fuel the reproductive machinery and are incorporated into the developing eggs, and regulates the formation and oviposition of eggs (for reviews see Williams, 1998; Johnson, 2000). The physiological changes associated with egg production in passerine birds have been shown to involve a 16-27% increase in metabolic rate above that of non-breeding females (House Sparrows, *Passer domesticus*, 16% above non-breeding basal metabolic rate (BMR), Chappell *et al.*, 1999; Great Tits, *Parus major*, 27% over wintering BMR, Nilsson and Raberg, 2001; European Starlings, *Sturnus vulgaris*, 22% over pre-reproductive resting metabolic rate (RMR), Vézina and Williams, 2002, 2003; Zebra Finches, *Taeniopygia guttata*, 22% above non-breeding RMR, Vézina and Williams, 2005). The metabolic cost of egg production is comparable to the changes in metabolic rate associated with other reproductive activities: Zebra Finches that were incubating eggs exhibited a 20% increase in RMR above non-breeding values (Vleck, 1981), while chick-rearing Zebra Finches exhibited a 13% increase in RMR (Vézina and Williams, 2005). However, it is unclear whether the changes in RMR associated with reproduction are substantial in the context of the birds’ ability and capacity to up-regulate RMR, i.e., how the metabolic costs of reproduction (egg production, incubation, and chick rearing)
compare with those of other, potentially energetically demanding, physiological processes that occur throughout a bird’s lifetime.

The main goal of this study was therefore to determine how the metabolic cost of egg production compared to the metabolic costs of other essential and metabolically demanding activities, specifically thermoregulation. In cold-acclimated birds, the energetic cost of thermoregulation can be divided into two components: a) the costs associated with cold-acclimation itself, i.e., changes in thermoregulatory physiology and maintenance of tissues involved in heat production or fueling heat production, and b) the cost of thermogenesis, i.e., active heat production (Williams and Tieleman, 2000; Vézina, personal communication). In other avian and mammalian species, cold-acclimation is associated with comparable increases in resting metabolic rate (15 to 21%) to avian egg production (Kristan and Hammond, 2000; O’Connor et al., 2000). However, thermogenesis involves even more substantial increases in metabolic rate (50 to 100% increase in RMR above cold-acclimated values; Broggi et al., 2004; Carleton and Martinez del Rio, 2005). Therefore, to compare the metabolic costs of egg production with those of cold-acclimation, thermogenesis, and thermoregulation (i.e., cold-acclimation and heat production combined), we measured and compared the resting metabolic rates of female Zebra Finches (*Taeniopygia guttata*) at a variety of thermal and reproductive stages:

1. To compare the energetics of egg production and cold-acclimation, the resting metabolic rates of non-breeding, warm-acclimated females were compared to the metabolic rates of the same females during egg production, and to the metabolic rates
of non-breeding, cold-acclimated females ('Egg production' and 'Cold-acclimation', respectively, in Figure 4.1a).

2. The RMR of cold-acclimated, non-breeding females measured at thermoneutrality were compared to the metabolic rates of the same females measured below thermoneutrality to determine the metabolic cost of thermogenesis ('Heat production' in Figure 4.1a). The metabolic rates of cold-acclimated, laying females measured at and below thermoneutrality were also compared as a second measure of the metabolic cost of thermogenesis ('Heat production while producing eggs' in Figure 4.1a).

3. To determine the metabolic cost of thermoregulation (the combined costs of cold-acclimation and thermogenesis), the RMR of non-breeding, warm-acclimated birds measured at thermoneutrality were compared to the RMR of non-breeding, cold-acclimated birds measured below thermoneutrality ('Cold-acclimation AND heat production' in Figure 4.1a).

Because daily energy budgets are dependent on the amount of energy taken in and expended, similar comparisons were made to determine how daily seed consumption and locomotor activity were affected by egg production and thermoregulation (Figure 4.1b).

Reproduction in seasonally-breeding birds is generally timed such that the period of chick-rearing coincides with favorable environmental conditions (i.e., warmer weather, increased food availability and quality). Consequently, free-living birds are often faced with the energetically-demanding task of producing and laying eggs while being simultaneously exposed to cold temperatures and unstable weather conditions (Perrins, 1970). Therefore, the second aim of this study was to determine whether the energetic costs of cold-acclimation, thermogenesis, and egg production were additive when these
activities occurred simultaneously. The combined metabolic costs of egg production, cold-acclimation and thermogenesis were assessed and compared to the total cost of these activities when measured separately.

4. To determine the metabolic cost of concurrent egg production and thermogenesis, the RMR of cold-acclimated, non-breeding females measured below thermoneutrality were compared to the RMR of cold-acclimated, laying females, also measured below thermoneutrality (‘Egg production while producing heat’ in Figure 4.1a).

5. The RMR of warm-acclimated, nonbreeding females measured at thermoneutrality were compared to the metabolic rates of cold-acclimated, laying females measured below thermoneutrality to determine the metabolic cost of simultaneous egg production, cold-acclimation and thermogenesis. (‘Egg production, cold-acclimation AND heat production’ in Figure 4.1a).

The combined effect of egg production, cold-acclimation, and thermogenesis on daily seed consumption and locomotor activity was also investigated (Figure 4.1b).

MATERIALS AND METHODS

Animals and Husbandry

Zebra Finches with previous breeding experience (i.e., produced at least one previous clutch) were randomly chosen from our breeding colony housed in the Simon Fraser University Animal Care Facility. All birds were housed in cages (61 x 46 x 41 cm), exposed to a constant light schedule of 14L: 10D (lights on at 09:00) and ambient
temperatures between 19 and 21°C, and provided with a mixed seed diet (Panicum and white millet, 50:50; approximately 12.0% protein, 4.7% lipid; Just for Birds, Surrey), water, grit, and cuttlefish bone (calcium) *ad libitum*. All experiments and animal husbandry were carried out under a Simon Fraser University Animal Care Committee permit (no. 692B-94) following guidelines of the Canadian Committee on Animal Care.

Acclimation Protocol and Non-Breeding RMR Conditions

The male and female Zebra Finches that were chosen for this study were divided into two study groups: a warm-acclimated (to 19-21°C) group and a cold-acclimated (to 7°C) group. Females in the warm-acclimated group (*n* = 9) were weighed (± 0.1 g) and randomly assigned to same-sex pairs in ‘warm’ ambient conditions (i.e., temperature 19-23°C) for at least 7 days. Males in the warm-acclimated group (*n* = 9) were group housed in same-sex cages (*n* = 4 or 5 birds per cage) under the same environmental conditions as the warm-acclimated females. In contrast, birds in the cold-acclimated group (*n* = 12 females and 12 males) were weighed (± 0.1 g) and transferred to same-sex group cages (*n* = 6 birds per cage) within a Conviron E15 plant growth chamber (Controlled Environments, Winnipeg). The temperature within the chamber at the beginning of the acclimation period was 14°C, and was decreased slowly over 4 weeks (i.e., one week at 14°C, one week at 10°C, then two weeks at 7°C). The acclimation period was based on the time it took for all birds to return to and maintain their pre-acclimation body mass at each temperature. Following the 4-week acclimation period, cold-acclimated females were randomly assigned to same-sex pairs for at least 7 days. Cold-acclimated, same-sex pairs were provided with 30 g of the mixed seed diet daily, and seed was weighed (± 0.1 g) and replaced daily to determine daily seed consumption of cold-acclimated, non-
breeding pairs. All same-sex, female pairs were visually, but not acoustically isolated from the opposite sex. The metabolic rate of each female was measured twice, once while the females were in same-sex, non-breeding pairs (NBr sample), and again while the females were paired with males and actively laying eggs (LAY sample) following the protocol described below. The non-breeding metabolic rate measurements (i.e., 'Warm-acclimated NBr-35', 'Cold-acclimated NBr-35' and 'Cold-acclimated NBr-7' in Figure 4.1a) began on the seventh night following same-sex pairing, and continued nightly until all females were measured.

Breeding Protocol and Laying RMR Conditions

Following measurement of non-breeding metabolic rate measurement (protocol described below), all females were randomly paired with similarly thermally acclimated males. Males and females were weighed (± 0.1 g) at the time of pairing, and housed in cages equipped with an external nest box (15 x 14.5 x 20 cm). Breeding pairs were provided with 6 g of an egg-food supplement (20.3% protein: 6.6% lipid; see Williams, 1996) daily between pairing and clutch completion. Data on laying interval, egg mass and clutch size were obtained by checking the nest boxes daily between 09:00 and 11:00. All new eggs were weighed (± 0.001 g) and numbered on the day they were laid. Clutches were considered complete if no new eggs were laid over three days. At this time each female was weighed (± 0.1 g), and each pair was returned to same-sex cages in the Animal Care Facility. The metabolic rate of each female during egg production (i.e., 'Warm-acclimated LAY-35', 'Cold-acclimated LAY-35' and 'Cold-acclimated-7' in Figure 4.1a) was measured during the night following the laying of the second egg.
Energy Intake and Locomotor Activity

To obtain a gross estimate of energy intake by cold-acclimated birds, seed consumption was measured by providing all cold-acclimated pairs with 30.0 g of the mixed seed diet daily in open 946 ml Ziploc™ containers placed on the cage floor. This method avoided any spillage and allowed for the measurement of daily seed consumption by same-sex and breeding pairs by weighing the remaining seeds in the container after 24 hours (± 0.1 g). Birds were still able to feed ad libitum as 30.0 grams of seed was always in excess of their daily intake. Williams and Ternan (1999) showed that females ate slightly more food (4.5%) than males, regardless of their breeding status, and that this effect did not change throughout the laying sequence. Therefore, measuring food intake per pair is a good indicator of female food intake as the proportion of seeds consumed by both sexes remains unchanged throughout the experimental protocol. The seed consumption data for cold-acclimated same-sex and breeding pairs were compared to previously collected data for warm-acclimated pairs that were maintained in comparable conditions as the warm-acclimated pairs in this study (Vézina, Speakman and Williams, unpublished data).

The locomotor activity of all same-sex and breeding pairs was monitored using a micro-switch system connected to a cage perch as described by Williams and Ternan (1999). This system does not discriminate potential differences between sexes in locomotor activity, but previous work by Williams and Ternan (1999) involving direct observations of activity showed that activity does not differ between sexes throughout the experimental protocol.
Measurement of Resting Metabolic Rate

Basal metabolic rate (BMR) is defined as the energy consumed by a resting, post-absorptive bird during the inactive phase of the circadian cycle at a temperature within the thermoneutral range for the animal (Blem, 2000; Commission for thermal physiology of the International Union of Physiological Sciences, 2001), and can be applied to the metabolic rate of the warm-acclimated, non-breeding females in this study. However, because laying and thermoregulating birds in this study were producing eggs and heat, respectively, we considered them to be in an “active physiological state.” Furthermore, the metabolic rate of thermoregulating birds was measured at 7°C, which is well below the thermoneutral range for Zebra Finches (lower critical temperature = 33°C; Marschall and Prinzinger, 1991; Meijer et al., 1996). We therefore consider the term resting metabolic rate (RMR) more appropriate in the present study, but refer to the metabolic rate of the warm-acclimated, non-breeding females in this study as BMR.

All RMR measurements were completed using a flow-through respirometry system (Sable Systems International) as follows. At 21:00, three hours prior to the beginning of RMR measurement, the food was removed from the cages of females undergoing RMR measurement that night. Warm-acclimated females were taken from their cages, their body masses were measured (± 0.1 g), and they were placed randomly in one of four metabolic chambers (1.5L) for one hour prior to the beginning of RMR measurements (at 23:00). All chambers continuously received approximately 500 ml/min of dry CO₂-free air (using Dryrite® and ascarite® as scrubbers), were kept in the dark, and were maintained at 35°C, which is within the thermoneutral zone for this species (lower critical temperature = 33°C; Marschall and Prinzinger, 1991; Meijer et al., 1996). Our
setup consisted of four metabolic chambers connected to a divided air line with a valve multiplexer which allowed us to sample air coming from either ambient baseline air (scrubbed for water and CO₂) or from one metabolic chamber at a time. The air then passed through a mass flow valve (Sierra Instruments) for proper air flow reading (STP corrected) and through CO₂ and oxygen analyzers (model CA-1 and FC-1 Sable systems, respectively; air was scrubbed to remove water before entering the CO₂ analyzer and scrubbed to remove water and CO₂ before entering the O₂ analyzer). RMR measurements were always started at 00:00 hours. The measurement sequence was as follows: baseline air was recorded for 10 minutes, then the out-flowing air from the first chamber and then the second chamber, then baseline air again, followed by the out-flowing air from the third chamber and then the fourth chamber, and finally ending with baseline air. This sequence was repeated three times overnight giving 99 minutes of recording per chamber spanning 8 hours. After RMR measurement the birds were weighed for a second time and released back into their cages (approximately 30 minutes to an hour before the lights were turned on), and their food was returned. The average of first and second body masses was used in subsequent analyses. The oxygen consumption (VO₂) of each bird was computed using Equation 4b of Withers (1977). To calculate RMR, VO₂ was computed using a running mean representing ten minutes of recording that was passed through the data for each bird, with the lowest average taken as RMR. The lowest value for RMR was always found during the second or third rounds of RMR measurement (i.e., during the last 5 hours of the night). Preliminary analysis showed that measuring RMR using this protocol did not generate a time effect (sensu Hayes et al., 1992).
The resting metabolic rates of cold-acclimated females were measured using the same protocol as described above for warm-acclimated birds with the following exceptions. Firstly, females were placed randomly in one of two metabolic chambers (1.5L) for one hour prior to the beginning of RMR measurements. The temperature was maintained at 7°C for the first part of the night, and then increased to and maintained at 35°C for the remainder of the measurement period. This measurement protocol was designed such that the air recordings from the test chambers occurred during the last 5.5 hours of the night (cf. the second and third rounds of RMR measurement for the warm-acclimated females). The measurement sequence was as follows: starting at 02:00, baseline air was recorded for 40 minutes, then the out-flowing air from the first chamber for 45 minutes, baseline air again for 15 minutes, and then the out-flowing air from the second chamber for 45 minutes, all at 7°C. Following the first set of measurements, the temperature was increased to 35°C, which took approximately 40 minutes. Once 35°C was maintained, birds were allowed to adjust to the new temperature for approximately 55 minutes. Baseline air was recorded while the temperature was increased to 35°C, and during the adjustment period. The measurement sequence was then repeated (i.e., baseline, chamber 1, baseline, chamber 2), and finally, baseline air was recorded for the last 15 minutes. The RMR at each temperature (i.e., 7°C and 35°C) was calculated using the same protocol described above.

Data Analysis

All statistical analyses were performed using SAS (SAS Institute, 1999). All data were tested for normality of distribution (Shapiro-Wilk test; Zarr, 1996), and all variables with non-normal distributions were log10 transformed prior to analysis (although some
non-transformed values were used for graphical purposes). Comparisons of RMR, locomotor activity, and seed consumption within the acclimation groups, between different reproductive stages (e.g., non-breeding vs. laying) or within the cold-acclimation group, between different reproductive stages measured at different temperatures (e.g., non-breeding RMR measured at 35°C vs. laying RMR measured at 7°C) were assessed using mixed model, repeated measures ANOVA or ANCOVA (with female body mass as a covariate) with stage (i.e., reproductive stage or ‘reproductive stage - measurement temperature’) as a fixed, repeated factor, and individual female as a random factor (PROC MIXED; SAS Institute. 1989). Comparisons between acclimation groups (i.e., warm vs. cold) were examined using t-tests or ANCOVA (with female body mass as a covariate). Sequential Bonferroni-correction for multiple comparisons, as introduced by Holm (1979) (also described in Rice, 1989), was applied to post-hoc paired contrasts within and between acclimation groups. Briefly, the P-values for each pair-wise comparison were ranked from smallest (P₁) to largest (Pₖ), and an overall significance level (α) was chosen. The smallest P-value (P₁) was then judged against α / k. If P₁ > α / k, then the corresponding test and all other tests with larger P-values (P₂ through Pₖ) were not significant at the overall significance level of α, taking into account all of the pair-wise comparisons. If P₁ ≤ α / k, then the pair-wise comparison was significant at an overall significance level of α, taking into account all of the paired contrasts, and the second smallest P-value (P₂) was then judged against α / (k − 1). This continued until Pᵢ > α / (1 + k − i). For example, for comparisons of RMR between acclimation groups, 7 comparisons were made and α = 0.05 was chosen. Therefore, an initial P-value of 0.0071, i.e., 0.05 / 7, was used to judge the smallest P-value, followed by 0.0083, i.e., 0.05 / 6, for
the next smallest P-value, and so on until $P > 0.05 / (1 + 7 - i)$. All tests were two-tailed, and the overall significance level was $p < 0.05$. ANOVA were used to examine the relationships between reproductive effort (e.g., mean egg mass, laying interval, clutch size) and RMR, seed consumption and locomotor activity within warm-acclimated females and within cold-acclimated females. All data are presented as values at particular stages with a line connecting values for individual females and a gray circle representing the mean at each stage.

RESULTS

Resting Metabolic Rate

RMR varied significantly between the six different thermal-reproductive stages ($F_{5,47.9} = 86.53$, $p < 0.0001$; Table 4.1; Figure 4.2) and was positively related to body mass ($F_{1,22.5} = 23.54$, $p < 0.0001$). Therefore, female body mass was included as a covariate in all RMR analyses, and the percent change in RMR between comparison groups were calculated using least squares mean RMR controlling for body mass at the stages being compared. Egg production involved a 24% increase in RMR of warm-acclimated females above non-breeding values ($1.2 \times BMR$, $t = 2.90$, df = 4.92, $p < 0.04$; Table 4.1; Figure 4.2). Cold-acclimation resulted in an 82% increase in mass-corrected RMR above non-breeding, warm-acclimated values ($1.8 \times BMR$, $F_{1.18} = 26.28$, $p < 0.0001$; Table 4.1; Figure 4.2), while heat production alone induced a 65% increase in mass-corrected RMR over cold-acclimated, non-breeding values ($t = 9.66$, df = 32.9, $p < 0.0001$; Table 4.1; Figure 4.2), the equivalent of a 124% increase above non-breeding.
warm-acclimated values (2.2 x BMR). Similarly, thermogenesis by egg-producing, cold-acclimated females was associated with a 68% increase in RMR over cold-acclimated, egg-laying values \(t = 8.81, \text{df} = 32.9, p < 0.0001; \text{Table 4.1; Figure 4.2} \), the equivalent of a 113% increase in RMR above non-breeding, warm-acclimated values (2.1 x BMR). The increase in metabolic rate due to egg production alone was still significant in the broader context of comparing the metabolic cost of egg production to the costs of cold-acclimation and thermoregulation, as the sequential Bonferroni-adjusted P-value for this pair-wise comparison was 0.05, i.e., \(0.05 / (1 + 7 - 7) \).

When combined, cold-acclimation and heat production resulted in a 204% increase in mass-corrected RMR of non-breeding birds above non-breeding, warm-acclimated values (over 3 x BMR, \(F_{1,18} = 234.50, p < 0.0001; \text{Table 4.1; Figure 4.2} \)). This was equal to the predicted increase in RMR of 195% to 206% (based on laying and non-breeding females, respectively) if the metabolic costs of cold-acclimation and heat production were additive. Interestingly, cold-acclimated females that were actively thermoregulating actually exhibited lower mass-corrected RMR during egg production than as non-breeders (11% decrease; \(t = 2.56, \text{df} = 35.3, p < 0.015; \text{Table 4.1; Figure 4.2} \), and this difference was significant when taking into account the other comparisons between groups as the sequential Bonferroni-adjusted P-value for this pair-wise comparison was 0.025, i.e., \(0.05 / (1 + 7 - 6) \). As a result, the combination of cold-acclimation, heat production and egg formation only induced a 165% increase in mass-corrected RMR above non-breeding, warm-acclimated values (2.6 x BMR, \(F_{1,18} = 312.42, p < 0.0001; \text{Figure 4.2} \)), well below the 230% increase (3.2 x BMR) predicted if the metabolic costs of all three activities were additive.
Locomotor Activity

Locomotor activity was not related to female body mass \((p > 0.05) \), but did differ between stages \((F_{3,6.2} = 14.32, p < 0.005) \). Because four paired contrasts were made to assess the effects of decreased ambient temperature and egg production on locomotor activity, the sequential Bonferroni-corrected \(p \)-values for stages comparisons were 0.0125, 0.018, 0.025 and 0.05. The locomotor activity of warm-acclimated birds decreased from an average of 1852 ± 1418 perch hops per day by non-breeding, same-sex pairs to an average of 662 ± 270 hops by breeding pairs, a 64% decrease \((F_{1.45.5} = 34.07, p < 0.005; \text{Table 4.1}; \text{Figure 4.3a}). A similar decrease in hopping was observed in cold-acclimated, non-breeding, same-sex pairs, which exhibited an average of 520 ± 264 perch hots per day, a 72% decrease in locomotor activity compared to the warm-acclimated, non-breeding pairs \((t = 3.52, df = 12.1, p < 0.005; \text{Table 4.1}; \text{Figure 4.3a}). In contrast to the warm-acclimated birds, the locomotor activity of cold-acclimated birds was not related to reproductive stage \((F_{1.11} = 3.06, p > 0.1; \text{Figure 4.3a}; \text{Table 4.1}). However, cold-acclimated, laying pairs hopped an average of 81% less than warm-acclimated, non-breeding pairs \((t = 4.79, df = 12, p < 0.0005; \text{Table 4.1}; \text{Figure 4.3a}).

Seed Consumption

Seed consumption was also not related to female body mass at the various stages \((p > 0.05) \), but did differ between stages \((F_{3,18.3} = 64.01, p < 0.0001) \). As in the locomotor activity analyses, four pair-wise comparisons were made to assess the effects of cold ambient temperature and egg production on daily seed consumption. Gross energy intake of warm-acclimated birds was not affected by reproductive stage \((p > 0.5; \text{Table 4.1}; \text{Figure 4.3b}). In contrast, cold-acclimation and thermogenesis induced a 72% increase in
seed consumption in non-breeding birds (t = 12.63, df = 35.8, p < 0.0001; Table 4.1; Figure 4.3b). Interestingly, thermoregulating birds consumed 22% less seed while producing eggs than as non-breeders in same-sex pairs (F1,11 = 8.73, p < 0.013; Table 4.1; Figure 4.3b). As a result, egg production, cold-acclimation and thermogenesis combined did not induce a significant increase in seed intake above warm-acclimated, non-breeding values (t = 2.49, df = 13.5, p < 0.03, which was greater than the sequential Bonferroni-adjusted P-value of 0.025 for this pairwise comparison; Table 4.1; Figure 4.3b).

However, post-hoc power analysis (G-Power, University of Trier, Germany; Erdfelder et al. 1996; Buchner et al. 1997) revealed that the power to detect a significant difference at p < 0.025 given the variance observed in seed consumption and the sample size used in this study (n = 12 at each reproductive-thermal stage) was only 0.64, i.e., there was a 36% chance of committing type II error.

Reproductive Effort

Warm- and cold-acclimated Zebra Finches did not differ in laying interval, i.e., days from pairing until initiation of egg laying (5.4 ± 0.4 vs. 5.3 ± 0.5 day, respectively; p > 0.8), mean egg mass (1.048 ± 0.033 vs. 1.068 ± 0.024 g; p > 0.6), or clutch size (4.9 ± 0.4 vs. 4.6 ± 0.4 eggs; p > 0.7) (Table 4.1). Regardless of acclimation temperature, variation in reproductive effort was not related to variation in RMR as non-breeders, RMR during egg production, locomotor activity or seed consumption (p > 0.1 in all cases).
DISCUSSION

Resting metabolic rate of female Zebra Finches increased by 24% above non-breeding values when the birds were acclimated to favorable conditions, i.e., warm ambient temperatures of 19°C to 23°C. Our measure of the metabolic cost of egg production was comparable to previous studies on free-living and captive passerine birds which reported 16-27% increases in metabolic rate above values for non-breeding females (Chappell et al., 1999; Nilsson and Raberg, 2001; Vézina and Williams, 2002, 2003, 2005). However, the metabolic cost of egg production (1.2 x BMR) was small when compared to the additive metabolic costs of cold-acclimation (1.8 x BMR) and active thermogenesis (2.1 to 2.2 x BMR), two very energetically-demanding activities. In contrast, the cost of egg production was comparable to, and sometimes greater than, the metabolic costs of other essential physiological processes. The metabolic cost of mounting a cell-mediated immune response was 4.2 kJ per day, the equivalent of 29% of RMR of House Sparrows (Martin et al., 2002), while mounting a humoral immune response varied between having no effect on the metabolic rates of Blue Tits, Parus caeruleus, and Greenfinches, Carduelis chloris (Svensson et al., 1998; Hörak et al., 2003), to inducing 8.5% and 8.6% increases above BMR of Great Tits and Collared Doves, Streptopelia decaocto, respectively (Ots et al., 2001; Eraud et al., 2005). The metabolic cost of digestion and assimilation of seed in female Zebra Finches that were not fasted prior to metabolic rate measurement represented a 14% increase in RMR above fasted values (Vézina and Salvante, unpublished data).

There is marked variation across mammalian and avian species in the previously reported metabolic costs associated with exposure to cold ambient temperatures. Cold-
acclimation (to 5°C) was associated with a 21% increase in the metabolic rate of virgin, Swiss-Webster laboratory mice, *Mus musculus* (Kristan and Hammond, 2000) and a 15% increase in House Finches, *Carpodacus mexicanus*, above warm-acclimated values (O’Connor *et al.*, 2000). However, there was no measurable metabolic cost of cold-acclimation in House Sparrows, *Passer domesticus*, as warm-acclimated (to 22°C) and cold-acclimated (to 5°C) birds had comparable metabolic rates (Carleton and Martinez del Rio, 2005). In contrast, cold-acclimation (to 15°C) was associated with a 42% increase in the metabolic rate of Hoopoe Larks, *Alaemon alaudipes*, above values for birds maintained at a thermally neutral temperature (36°C) (Williams and Tieleman, 2000). Therefore, the 82% increase in RMR associated with cold-acclimation in this study was much higher than previously reported metabolic costs of cold-acclimation. This may be due to variation in the thermoneutral zones of the different species. The thermoneutral zones of House Sparrows and House Finches range from a lower critical temperature of 20-22°C to an upper critical temperature of 37-38°C (Hudson and Kimsey, 1966; Weathers, 1981; Dawson *et al.*, 1985). In contrast, the lower limit of the Zebra Finch’s thermoneutral zone is 33°C (Marschall and Prinzinger, 1991). Attempts to determine the upper limit were unsuccessful as the birds were still at thermoneutrality at 38°C (Marschall and Prinzinger, 1991). The thermoneural zone of Hoopoe Larks is similarly high, ranging from 32.7°C to 37.5°C (Tieleman *et al.*, 2002). Therefore, the larger increase in RMR associated with cold-acclimation in Zebra Finches may be due to the larger difference between the acclimation temperature and the lower limit of the thermoneutral zone (i.e., 26°C in Zebra Finches vs. 15-18°C in House Sparrows, House Finches and Hoopoe Larks). Thermogenesis has been found to induce much larger
increases in metabolic rate in a wide range of species. For example, in two different free-
living populations of wintering Great Tits (Parus major) thermogenesis represented a
50% increase in metabolic rate over cold-acclimated values (Broggi et al., 2004).
Furthermore, heat production (measured at 5°C) by cold-acclimated captive House
Sparrows increased resting metabolic rate by approximately 100% above values
measured at thermoneutrality (Carleton and Martinez del Rio, 2005). Therefore, the
metabolic cost of thermogenesis found in this study (i.e., 65-68% increase in RMR over
cold-acclimated values) was comparable to values for other passerine species.

Locomotor activity of warm-acclimated Zebra Finches decreased by 64% from
the non-breeding to egg producing stage, but daily seed consumption remained
unchanged, confirming a previous study which found that laying Zebra Finches decrease
activity by 57% with no associated change in food intake (Vézina, Speakman and
Williams, unpublished data). Vézina and colleagues also found that the daily energy
expenditure of warm-acclimated Zebra Finches did not change between the non-breeding
and egg-producing stages (unpublished data). Taken together, these findings suggest that
the 57-64% decrease in locomotor activity of warm-acclimated, egg-producing birds,
along with other potential physiological or behavioural energy reallocation strategies,
may conserve sufficient energy to meet the energy demands of egg production.
Consequently, it seems as though egg-laying Zebra Finches do not need to increase
energy intake under favorable environmental conditions.

Cold-acclimated, non-breeding Zebra Finches also decreased locomotor activity
(by 72% of warm-acclimated values), suggesting that Zebra Finches employ a common
energy-saving behavioural modification to reallocate energy to fuel the metabolic costs of
reproduction and thermoregulation. These birds also increased energy intake by consuming 72% more seed than their warm-acclimated counterparts, an average of an additional 1.8 grams of seed per female per day, which is the equivalent of an additional 29 kJ per day that likely also goes towards fueling thermoregulation. Similarly, cold-acclimated (15°C) Hoopoe Larks consumed more food than larks maintained at a thermally neutral temperature (36°C) (Williams and Tieleman, 2000). Therefore, while Zebra Finches are capable of increasing food intake above levels generally observed in favorable conditions, they only do so in certain circumstances. Future studies that examine changes in daily energy expenditure due to exposure to cold ambient temperatures are needed to investigate whether the increase in energy intake by cold-acclimated Zebra Finches corresponds to an increase in daily energy expenditure due to exposure to cold ambient temperatures. Furthermore, future studies could also investigate the physiological mechanisms underlying variation in the occurrence of hyperphagia between different environmental conditions.

Interestingly, the RMR of thermoregulating females decreased by 11% with the addition of egg production. Consequently, while the metabolic costs of cold-acclimation and active thermogenesis were additive (over 3 x BMR), the combined metabolic costs of thermoregulation and egg production were not (2.6 x BMR, cf. 3.2 x BMR if the individual costs were additive). The decrease in RMR associated with egg production at low ambient temperatures may be due to the partial substitution of the heat increment of egg production, i.e., the heat produced as a by-product of the metabolic processes involved in egg formation, for thermostatic heat production, i.e., the production of heat to maintain body temperature. It has been shown that the heat increment of feeding, i.e., the
increase in metabolic rate following consumption of a meal (also referred to as specific
dynamic action or diet-induced thermogenesis; Ricklefs, 1974; reviewed in Jobling,
1983; Aoyagi et al. 1990), can be used to substitute for thermostatic heat production in
birds exposed to low ambient temperatures (Biebach, 1984; Meienberger and
Dauberschmidt, 1992; Chappell et al., 1997). While the mechanical and biochemical
aspects of digestion, such as peristalsis and synthesis of digestive enzymes, are likely
contributors to the heat increment of feeding (Carefoot, 1990), previous studies have
reported that a large proportion of the increase in metabolic rate following ingestion of a
meal is due to the assimilation of food, primarily accelerated rates of protein synthesis
(Aoyagi et al., 1990; Brown and Cameron, 1991a, b). Therefore, it is possible that the
marked increase in protein synthesis associated with egg production, including the
hepatic production of the egg yolk precursors, vitellogenin and yolk-targeted very-low
density lipoprotein, and the oviducal production of egg albumen (Yu et al., 1971; Yu and
Marquardt, 1973; Gruber, 1972; Bergink, et al., 1974; Deeley, et al., 1975; Chan, 1983;
Wallace, 1985; Burley and Vadehra, 1989; Walzem, 1996; Williams, 1998), as well as
the additional protein required for the recrudescence and maintenance of reproductive
tissues like the ovary and oviduct (Yu and Marquardt, 1973; Williams, 1998), could
result in egg production-induced thermogenesis. Just as postprandial birds can partially
substitute the heat increment of feeding for thermoregulation (Biebach, 1984;
Meienberger and Dauberschmidt, 1992; Chappell et al., 1997), laying females may be
able to exploit this metabolic by-product of egg yolk precursor and albumen production
to offset the costs of thermogenesis at low temperatures. This could therefore result in a
decrease in heat production by cold-acclimated, egg-laying birds, which in turn could
lead to the observed decreases in energy intake (as less nutrients are required to fuel the cost of thermoregulation) and RMR of female Zebra Finches producing eggs at 7°C. However, it is not known whether the energy saved by the substitution of the heat increment of egg production for thermoregulation would be sufficient enough to allow these birds to decrease body energy intake, which itself generates heat through the heat increment of feeding, and metabolic rate while still maintaining egg production and body temperature at such a low ambient temperature.

Another, potentially more plausible, explanation for the decrease in RMR associated with egg production at low ambient temperatures is that the cold-acclimated, egg-producing Zebra Finches in this study were unable to maintain RMR above 3 × BMR. Drent and Daan (1980) suggested that the potential maximum sustainable metabolic rate in breeding birds was 4 × BMR. However, studies that have calculated the sustained metabolic scopes (maximum sustained metabolic rate / BMR) of different species of birds and mammals involved in a variety of activities have found marked interspecific variation ranging from 1.3 to 6.7, with ‘metabolic ceilings’ that vary between different activities (Peterson et al., 1990; Hammond and Dietsch, 1997). Consequently, the addition of the energetically-demanding process of egg production may limit the energy available for thermoregulation and other concurrent physiological processes (e.g., digestion, immune function), leading to energy reallocation within an individual away from somatic maintenance to save energy (Deerenberg et al., 1997, 1998; Weissing and Verhulst, 2005). Evidence for this was the 22% decrease in seed consumption by cold-acclimated, laying birds compared to their non-breeding levels. This would suggest that the 11% decrease in RMR observed in thermoregulating, laying birds (cf. their non-
laying RMR measured during thermogenesis) was the result of reduced digestive activity and potentially concurrent decreases in other processes like thermogenesis and maintenance of immune function (Deerenberg et al., 1997). A decrease in thermogenesis by females producing eggs at low ambient temperatures may result in use of facultative, rest-phase hypothermia, the regulated and reversible decrease in metabolic rate and body temperature below normothermic levels, which could potentially result in even more energy savings due to down-regulation of temperature-dependent enzymatic processes in addition to the energy saved by decreasing active heat production (reviewed in Reinertsen, 1996; McKechnie and Lovegrove, 2002). Unfortunately, examination of the differential use of hypothermia by non-breeding and egg-laying birds at low ambient temperatures could not be performed because body temperature was not measured in this study.

The cold-acclimated females in this study were able to maintain egg production at a level comparable to warm-acclimated females based on the reproductive variables measured. However, because of the small sample size used in this study with respect to breeding data (only 9 warm-acclimated and 12 cold-acclimated breeding pairs) and the high degree of inter-individual variation often observed in reproductive traits (e.g. egg size: Manning, 1978; Swennen and Van der Meer, 1992; Williams, 1994, 1996; Christians, 2002; egg composition: Arnold et al., 1991; Williams, 1994; clutch size: Boyce and Perrins, 1987), it remains unclear whether prolonged exposure to cold ambient temperatures during egg production negatively influences reproductive effort in this species. A more in depth breeding study which utilizes a repeated-measures design to control for inter-individual variation and measures a variety of reproductive variables in
addition to those measured in this study, including egg quality (i.e., lipid, protein, and hormone composition) and egg and chick viability, is required to more thoroughly investigate the influence of exposure to cold ambient temperatures on reproductive effort in these birds.

ACKNOWLEDGEMENTS

This study was funded by a Natural Sciences and Engineering Research Council of Canada Operating Grant to TDW, a Post-Graduate Scholarship from the Fonds pour la Formation de Chercheurs et l’Aide à la Recherche to FV, Natural Sciences and Engineering Research Council of Canada Post-Graduate Scholarships to FV and KGS, and Grants-in-Aid of Research from the American Ornithologists’ Union, the Society for Integrative and Comparative Biology, and Sigma Xi to KGS. We would like to thank Miriam Ben Hamida, Mathilde Curnillon, Gina Eom and Pamela Smith for their help with seed consumption data collection and Mathilde Curnillon for her help with article translation. This manuscript benefited greatly from discussions with Joe Williams, David Swanson, Oliver Love, Christina Semeniuk, and Emily Wagner.

LITERATURE CITED

Table 4.1. Resting metabolic rate, seed consumption, locomotor activity and reproductive effort of Zebra Finches in different thermal-reproductive stages. Values are least squares means with sample size in brackets and minimum and maximum values in parentheses. Female body mass at each stage was included as a covariate for statistical analysis of RMR. Seed consumption and locomotor activity were log10 transformed for statistical analyses.

<table>
<thead>
<tr>
<th></th>
<th>Warm-acclimated</th>
<th>Cold-acclimated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NBr-35</td>
<td>LAY-35</td>
</tr>
<tr>
<td>VO₂ (ml O₂ / hour)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(40.64 - 58.59)</td>
<td>44.59 [9]</td>
<td>61.72 [12]</td>
</tr>
<tr>
<td>Seed consumption (g / pair / day)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2.9 - 7.4)</td>
<td>5.1 [23]</td>
<td>5.2 [23]</td>
</tr>
<tr>
<td>(2.5 - 7.2)</td>
<td>(2.5 - 7.2)</td>
<td>(8.0 - 9.8)</td>
</tr>
<tr>
<td>Locomotor activity (hops / pair / day)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(144 - 945)</td>
<td>(144 - 945)</td>
<td>(266 - 975)</td>
</tr>
<tr>
<td>Laying interval (days from pairing to egg laying)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>5.4 [9]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4 - 7)</td>
</tr>
<tr>
<td>Mean egg mass (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.950 - 1.219)</td>
</tr>
<tr>
<td>Clutch size</td>
<td>--</td>
<td>4.9 [9]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3 - 6)</td>
</tr>
</tbody>
</table>
Figure 4.1. Study groups and the selected metabolic cost comparisons that were made between them for a) analysis of resting metabolic rate and b) analysis of locomotor activity and seed consumption. Horizontal lines connect thermal-reproductive stages for paired contrasts.
Figure 4.2. Resting metabolic rate (RMR) for warm- and cold-acclimated females as non-breeders and during egg production. RMR measured at 7°C represent values for actively thermoregulating birds. Sequential Bonferroni-correction for multiple comparisons and least squares means of RMR correcting for female body mass at each stage were used for statistical analyses. Lines join values for individual females, and gray circles represent means for each stage. Horizontal lines underneath P-values connect thermal-reproductive stages for paired contrasts.
Figure 4.3. a) Locomotor activity and b) seed consumption by warm- and cold-acclimated females as non-breeders and during egg production. Sequential Bonferroni-correction for multiple comparisons was used for statistical analyses. Lines join values for individual females, and gray circles represent means for each stage. Horizontal lines underneath P-values connect thermal-reproductive stages for paired contrasts.
CHAPTER 5

WHAT COMES FIRST, THE ZEBRA FINCH OR THE EGG?
TEMPERATURE-DEPENDENT REPRODUCTIVE, PHYSIOLOGICAL AND BEHAVIOURAL PLASTICITY IN EGG-LAYING ZEBRA FINCHES

Katrina G. Salvante¹, Rosemary L. Walzem² and Tony D. Williams¹

¹ Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
² Poultry Science Department, Texas A&M University, College Station, TX 77843
SUMMARY

Avian reproduction is generally timed to synchronize chick-rearing with periods of increased food abundance. Consequently, the energetically-demanding period of egg production may coincide with periods of lower food availability, fluctuating temperature, and more unstable weather. Little is known about the physiological mechanisms underlying temperature-induced variation in egg production. We therefore examined the influence of low ambient temperature (7°C vs. 21°C) on reproductive output (e.g., egg mass, clutch size, laying interval, laying rate), daily food consumption and lipid dynamics in Zebra Finches (Taeniopygia guttata), and investigated the relationships between temperature-induced variation in these traits. When faced with egg production at 7°C, laying Zebra Finches increasing energy intake by 15.85 kJ per day, and were thus able to maintain body condition (e.g., body mass, fat and muscle score) and circulating triglyceride at levels comparable to those at 21°C. However, when producing eggs at 7°C, females took longer to initiate egg laying (6.5 vs. 6.1 days at 21°C), and ultimately laid fewer eggs (5.5 vs. 6.0 eggs) at a slower rate (0.90 eggs/day vs. 0.95 eggs/day). These temperature-related declines in reproductive effort were accompanied by decreases in modal (from 36.6 at 21°C to 24.3 nm at 7°C) and median VLDL particle diameter (from 29.6 to 26.4 nm) and in the proportion of VLDL particles that were capable of passing through the pores in the ovary to access the developing ovarian follicles (i.e., particles with diameters between 25 and 44 nm: from 45.90% to 32.55%). However, variation in reproductive effort was not related to any measure of VLDL particle diameter distribution.
or circulating triglyceride levels. Therefore, other physiological traits that vary with temperature must be involved in the physiological mechanisms underlying regulation of reproductive effort of passerine birds producing eggs at low ambient temperatures.
INTRODUCTION

Animals require energy to fuel all aspects of life, including digestion, locomotion, thermoregulation, reproduction, and general maintenance. Trade-offs arise between these activities when resources, and therefore energy, are limited (Williams, 1966; Stearns, 1992; Bernardo, 1996; Zera and Harshman, 2001; Ricklefs and Wikelski, 2002). Bernardo (1996) recognizes three such trade-offs during reproduction: 1) the parental decision to allocate resources to offspring versus their own energetic needs, 2) the decision to allocate resources to many small or fewer large offspring, and 3) parent-offspring conflict over per-offspring investment. The first of these conflicts has implications for maternal survival and future reproduction, and may be of great consequence when periods of reproductive activity coincide with periods of energetic stress, e.g., increased energy demand or decreased energy availability brought about by fluctuations in environmental factors, such as exposure to inclement weather or extreme temperatures, decline in food availability, or human disturbance.

Reproduction in seasonally-breeding animals is generally timed such that the period of offspring care coincides with seasonal peaks in food availability and quality (Perrins, 1970). However, the seasonal recrudescence of the reproductive axis and early offspring development (i.e., egg production in oviparous animals and gestation in mammals) often occurs well in advance of the period of offspring care. Therefore, these energetically-demanding processes (Vézina and Williams, 2002; Zenuto et al., 2002; Korine et al., 2004) often occur prior to the seasonal peak in food availability, at a time
when environmental conditions may be sub-optimal. During this time, breeding females must ensure that they can find enough energy and nutrients to produce their offspring while still meeting their own energetic requirements (Perrins, 1970; Scott, 1973).

Examination of the differential allocation of energy-rich lipids during avian egg production may give insight into the physiological basis of the trade-off between current reproduction and maternal survival, as mediated through female body condition. The estrogen-dependent increase in circulating levels of the egg yolk lipid precursor, yolk-targeted very-low density lipoprotein (VLDLy) (Neilson and Simpson, 1973; Chan et al., 1976; Walzem, 1996; Walzem et al., 1999; Williams, 1998), represents a dramatic shift in lipid metabolism as the primary function of plasma VLDL particles changes from general lipid transport to tissues (e.g., muscle, adipose) for utilization or storage (involving generic VLDL), to supplying the developing egg yolks with energy-rich lipid for use by the growing avian embryo (involving VLDLy) (Walzem, 1996). Given that generic VLDL fuels maintenance activities, including thermoregulation and digestion, the shift to predominantly circulating VLDLy, as seen in egg-laying domestic fowl (Hermier et al., 1989; Walzem et al., 1994; Walzem, 1996), may compromise the condition of laying females during periods of high energetic demand. Consequently, modulation of the trade-off between reproductive effort and maternal survival may be achieved by altering maternal VLDL-VLDLy metabolism, e.g., modulation of plasma concentrations of generic and yolk-targeted VLDL, VLDL particle diameter distribution, efficiency of generic VLDL and VLDLy utilization for maternal energetic needs (cf. the energy requirements of their developing offspring), or efficiency of switching from the exclusive synthesis of non-laying, generic VLDL to an increased synthesis of VLDLy (Lin and
The goals of this study were to 1) accentuate the potential trade-off between survival and current reproduction by increasing the energetic demands of egg-laying Zebra Finches (*Taeniopygia guttata*) by exposing them to different ambient temperatures, 2) determine the effects of exposure to low ambient temperatures on maternal body condition and reproductive effort (e.g., egg mass, clutch size, egg composition, laying rate) and 3) examine the physiological mechanisms underlying the temperature-dependent changes in maternal body condition and reproductive effort by investigating how low ambient temperatures influence lipid allocation to egg production and self-maintenance in egg-laying birds. We predicted that increasing the energy demands of laying females would result in either a) a shift in VLDL particle diameter distribution away from smaller VLDL particles (i.e., VLDLy) in favor of more larger, potentially generic, VLDL particles to fuel the added metabolic cost of thermoregulation, thereby potentially compromising current reproduction while maintaining female body condition, or b) maintenance of the production of VLDLy particles to sustain reproductive effort, resulting in other energetic compensation strategies by laying females, e.g., increasing energy intake (see Chapter 4) or reallocating energy away from behavioural activities like locomotor activity (see Chapter 4) or from other physiological processes like immune function (*Deerenberg et al.*, 1997) to fuel the energetic demands of thermoregulation, thus maintaining current reproduction while potentially compromising female survival by increasing the risk of depredation as females increase foraging activity to enhance energy
intake, or compromising female body condition or other aspects of non-reproductive physiology.

MATERIALS AND METHODS

Animals and Husbandry

Zebra Finches (Taeniopygia guttata) with previous breeding experience (i.e., produced at least one previous clutch; \(n = 30 \) males and 30 females) were randomly chosen from our breeding colony housed in the Simon Fraser University Animal Care Facility. All birds were weighed (\(\pm 0.1 \) g), and tarsus and bill measurements (\(\pm 0.1 \) mm) were taken. The birds were then transferred to same-sex cages that were visually isolated from the opposite sex within a Conviron E15 plant growth chamber (Controlled Environments, Winnipeg), and maintained in controlled environmental conditions (humidity 75%, constant light schedule of 14L: 10D, lights on at 09:00, temperature described below) for at least one week in order to acclimate to the new environmental conditions. All birds received a mixed seed diet (Panicum and white millet, 50:50; approximately 12.0% protein, 4.7% lipid; Just for Birds, Surrey), water, grit, and cuttlefish bone (calcium) \textit{ad lib}. All experiments and animal husbandry were carried out under a Simon Fraser University Animal Care Committee permit (no. 692B-94) following guidelines of the Canadian Committee on Animal Care.

A repeated measured design was used; each female Zebra Finch was acclimated to and paired for breeding at both experimental temperatures (7°C and 21°C). The order
in which birds were exposed to the two experimental temperatures was randomized. Birds were rested in same-sex cages at 21°C for at least 45 days between the two acclimation-breeding trials. The pre-pairing acclimation period lasted one week during the 21°C trial and three to four weeks during the 7°C trial (one week at 14°C, one week at 10°C, then one to two weeks at 7°C). Acclimation periods were based on the time it took for all birds to return to and maintain their pre-acclimation body mass.

Following each acclimation period females were randomly paired with males. Breeding pairs were housed individually in cages (61 x 46 x 41 cm) equipped with an external nest box (15 x 14.5 x 20 cm). Males and females were weighed (± 0.1 g) at the time of pairing, and a subset of birds was inspected for abundance of pectoral muscle and fat stores. We scored pectoral muscle on an arbitrary scale ranging from 0, representing concave pectoral muscles with a prominent keel, to 3, indicating convex pectoral muscles that protruded above the keel (adapted from the 0 to 2 scale: Gosler, 1991). Fat deposits in the furcular fossa and in the abdominal cavity were scored on an arbitrary scale ranging from 0, representing no visible fat, to 5, indicating bulging fat deposits (Wingfield and Farner, 1978). Daily seed consumption of breeding pairs was measured as described in Chapter 4. Briefly, pairs were provided with 30.0 g of the mixed seed diet, which was weighed (± 0.1 g) and replaced daily between pairing and clutch completion. Pairs were also provided with 6 g of an egg-food supplement (20.3% protein; 6.6% lipid; see Williams 1996) daily between pairing and clutch completion, and water, grit, and cuttlefish bone (calcium) ad lib. Data on laying interval, egg mass and clutch size were obtained by checking the nest boxes daily between 09:00 and 11:00. All new eggs were weighed (± 0.001 g) and numbered on the day they were laid. The second eggs of each
clutch were collected for egg composition analysis on the day they were laid and substituted with replacement eggs to maintain original clutch size. Clutches were considered complete if no new eggs were laid over three days. At this time each female was weighed (± 0.1 g), and each pair was returned to same-sex cages in the Animal Care Facility. Females that failed to lay eggs within 15 days were classified as non-breeders and were returned to same-sex cages in the Animal Care Facility.

Blood Sampling and Plasma Preparation

During the breeding trials at both experimental temperatures, all females that initiated egg laying were blood sampled (200 µl from the brachial vein) on the day their first eggs were laid (1-egg stage). All blood samples were collected between 09:00 and 11:30 into heparinized capillary tubes. The blood samples were then expelled into EDTA-coated microcentrifuge tubes containing 0.5 M disodium-EDTA (3 µl; Sigma-Aldrich Canada, Oakville), and the tubes were centrifuged at 2200 g for 10 minutes in a Baxter Canlab Biofuge 13. The plasma from each sample was removed and placed into uncoated microcentrifuge tubes. The new tubes were centrifuged at 2200 g for 5 minutes. Sub-samples of each plasma sample were frozen for total triglyceride analysis (5 µl) and corticosterone (10 µl) analysis for another study, while the remainder of each plasma sample was placed into an EDTA-coated microcentrifuge tube containing 0.5 M disodium-EDTA (5 µl) for VLDL particle diameter distribution analysis. Sodium azide (1% w:v; Sigma-Aldrich Canada, Oakville) was added to each EDTA-coated tube to prevent mold formation (0.01 µl/µl plasma), and the plasma samples were refrigerated (4°C) pending analysis of VLDL particle diameter distribution.
Triglyceride Assay

Circulating concentrations of triglyceride were measured enzymatically as an index of total plasma VLDL (i.e., generic VLDL and VLDLy) (Serum Triglyceride Determination Kit, Sigma-Aldrich Canada, Oakville) using the method developed for domestic fowl (Mitchell & Carlisle 1991) and validated for passerines (Williams & Christians 1997; Williams & Martiniuk 2000; Challenger et al. 2001). Intra-assay and inter-assay coefficients of variation were 1.85% (n = 6 replicates) and 2.13% (n = 7 assays), respectively, using a 19-week hen plasma pool. All assays were run using 96-well microplates, and measured using a Biotek 340i microplate reader.

VLDL Particle Diameter Distribution

Plasma VLDL Isolation and Dynamic Laser Light Scattering

Plasma VLDL was isolated as the d < 1.020 g/mL fraction of plasma following the method described in Chapters 2 and 3. Briefly, the plasma samples and a blank control sample (NaCl density solution, d = 1.0063; equivalent salt density of undiluted plasma) were combined with NaCl-NaBr density solution (d = 1.0255) and centrifuged at 148600 g for 18 hours at 14°C in a Beckman L8-70M ultracentrifuge (Beckman Coulter, Fullerton). Following centrifugation, the supernatant containing the VLDL portion of the plasma was isolated from each tube by aspiration with a narrow-bore pipet and refrigerated (at 4°C) until analysis for VLDL particle diameter distribution.

VLDL particle diameter distribution was measured by dynamic laser light scattering using a UPA 250 and 7.02 analysis software (Microtrac, Clearwater) (described in Chapters 2 and 3; Veniant et al., 2000). Sample measurements were made
by placement of the flexible probe-tip into the sample and activation of the laser diode ($\lambda = 780$ mm laser beam). Light scattering from the lipoprotein particles was recorded for 3 minutes for the blank solution, and 5 minutes in triplicate for each of the VLDL samples. The probe was washed with distilled water and dried between samples.

Estimation of VLDL_y and Calculation of VLDL Particle Diameter Distribution Parameters

The proportion of VLDL particles that were available for incorporation into developing eggs, i.e., yolk-targeted VLDL, was determined by calculating the percentage of particles that fell within the small particle VLDL (sVLDL_y) range (25 to 44 nm in diameter), which was based on the proposed sieving properties of the ovarian granulosa basal lamina of domestic fowl. To reach the plasma membranes of the developing ovarian follicles, VLDL particles must pass from capillaries within the ovary through pores in the ovarian granulosa basal lamina (Perry and Gilbert 1979; Griffin and Perry 1985). Only particles ranging from 25 to 44 nm in diameter have been observed distal to the basal lamina of domesticated fowl (Perry and Gilbert 1979; Griffin and Perry 1985; Griffin and Hermier 1988; Walzem et al. 1999). Egg-laying Zebra Finches and chickens have been found to maintain a larger proportion of circulating VLDL particles within this diameter range than non-laying females (see Chapter 2). Additionally, the modal and median particle diameter and the range (i.e., width) of each distribution, in nanometers, were also determined.
Egg Composition Analysis

The second egg of each clutch was subjected to protein and lipid composition analysis following the method of Balzer and Williams (1998). Briefly, eggs were collected within 6 hours of being laid, boiled for 3 minutes, and frozen (at −20°C) until further analysis. Frozen eggs were thawed and separated into shell, albumen, and yolk, which were dried to constant weight in a 50°C drying oven, and then weighed to the nearest 0.0001 g (dry mass). Lipid was removed from the dry yolks by soxhlet extraction for 8 hours with petroleum ether as the solvent (Dobush et al., 1985). Lipid-free yolks were then weighed to the nearest 0.0001 g (lean dry mass). Lipid composition of the yolks was determined by subtracting lean dry yolk mass from dry yolk mass. Dry albumen mass and lean dry yolk mass were assumed to be approximately 88% protein (Burley and Vadehra, 1989). The yolk lipid, yolk protein, and albumen protein content of each egg was calculated as the percentage of each component in relation to the fresh mass of the egg without the component of interest to control for part-whole correlations (e.g., percent yolk lipid = [yolk lipid, g / (fresh egg mass, g – yolk lipid, g)] *100; Christians, 1999).

Data Analysis

All statistical analyses were performed using SAS (SAS Institute, 1999). All data were tested for normality of distribution (Shapiro-Wilk test; Zarr, 1996). All non-normal variables were log10 or arc-sin transformed prior to analysis. If normality of distribution was achieved following data transformation, then the data were analyzed using a mixed model, repeated measures ANOVA or ANCOVA (with female body mass as a covariate) with temperature as a fixed, repeated factor, and individual female as a random factor.
(PROC MIXED; SAS Institute, 1989). In contrast, variables that were still not normally distributed following data transformation were analyzed using the non-parametric Friedman’s test for treatment differences in a randomized complete block design with individual females as blocks that received both treatments (i.e., experimental temperatures) in a randomized order (PROC FREQ; SAS Institute, 1999). All data are presented as values at 7°C and at 21°C with a line connecting values for individual females. All tests are two-tailed, and the overall significance level is P < 0.05.

RESULTS

Maternal Condition

Female body mass at pairing and at the 1-egg stage did not differ between breeding bouts at 7°C and 21°C (F_{1,274} = 0.92, p > 0.3 and F_{1,25} = 2.02, p > 0.1, respectively). Similarly, the changes in female body mass (temperature with body mass at pairing as a covariate: F_{1,231} = 3.23, p > 0.05; Figure 5.1a), fat score (temperature with body mass at pairing as a covariate: F_{1,22} = 0.20, p > 0.6; Figure 5.1b), and muscle score (temperature: F_{1,15.8} = 0.89, p > 0.3; Figure 5.1c) from pairing to clutch completion were independent of the temperature at which females were producing eggs.

Seed Consumption

On average, breeding pairs consumed 45% more seed at 7°C than at 21°C (F_{1,13.2} = 13.83, p < 0.0025; Figure 5.1d). The additional 1.9 grams of seed per day corresponded to an additional 0.21 g protein, 0.08 g lipid, and 1.44 g carbohydrate, the equivalent of an
additional 31 kJ per day for breeding pairs at 7°C. Therefore, based on the observation by Williams and Ternan (1999) that females ate slightly more seed (4.5%) than males throughout the laying sequence, laying females consumed an additional 15.85 kJ per day at 7°C.

Plasma Triglyceride, VLDL Particle Diameter Distribution, and VLDLp

Circulating triglyceride levels ($F_{1,20.3} = 0.78, p > 0.3$) and VLDL particle diameter distribution range ($Q = 0.111, p > 0.7$) were independent of ambient temperature. In contrast, laying females had smaller modal ($F_{1,12.9} = 9.50, p < 0.01$; Figure 5.1e) and median VLDL particle diameters ($F_{1,8.96} = 6.23, p < 0.05$) and a smaller proportion of VLDL particles that fell within the sVLDLp range at 7°C than at 21°C ($F_{1,16.6} = 8.01, p < 0.025$; Figure 5.1f).

Reproductive Effort

Decreasing ambient temperature changed the relationship between female body mass at the 1-egg stage and the average mass of subsequently laid eggs (temperature x female body mass at the 1-egg stage interaction: $F_{1,25.4} = 5.56, p < 0.05$); mean egg mass was positively related to female body mass at 21°C ($F_{1,27} = 16.40, r^2 = 0.3779, p < 0.0005$), but was not related to body mass at 7°C ($F_{1,25} = 1.41, p > 0.2$) (Figure 5.2). Temperature also influenced other measures of reproductive effort; when producing eggs at 7°C, females laid an average of 0.4 fewer eggs ($Q = 4.765, p < 0.05$; Figure 5.3a), took approximately 0.5 days longer to produce the first egg of the clutch ($Q = 5.000, P < 0.025$; Figure 5.3b), decreased laying rate by 5% (i.e., laid 0.90 eggs/day vs. 0.95
eggs/day at 21°C; \(Q = 4.571, p < 0.05 \); Figure 5.3c), and skipped laying an egg on more
days during the laying of the clutch (0.7 days vs. 0.5 days; \(Q = 4.571, p < 0.05 \)).

Decreasing ambient temperature had little effect on the composition of the second
egg of each clutch: fresh egg mass (Figure 5.3d), water content, dry albumen and yolk
mass, yolk lipid content (Figure 5.3e), and albumen protein content were all independent
of the ambient temperature in which the females were producing eggs (\(p > 0.2 \) in all
cases). However, females laid eggs with more yolk protein (an average of 4.3 mg) at 7°C
than at 21°C (i.e., a 5% increase in yolk protein content above eggs laid at 21°C; \(F_{1,23,1} = 4.79, p < 0.05 \); Figure 5.3f).

The inter-individual variation in clutch size, mean egg mass, laying interval and
laying rate was not related to variation in circulating triglyceride levels, VLDL particle
diameter distribution range, modal and median VLDL particle diameter or the proportion
of VLDL particles within the sVLDL:y range, regardless of ambient temperature during
egg production (\(p > 0.09 \) in all cases).

DISCUSSION

By consuming 45% more seed per day when paired at 7°C, the equivalent of an
additional 15.85 kJ of energy per day, laying females were able to maintain body
condition throughout egg production. However, despite the increase in energy intake,
they did not maintain reproductive effort; females took longer to initiate egg laying and
ultimately laid fewer eggs at a slower rate at 7°C. The captive Zebra Finches in this study
were able to increase seed consumption with relatively few additional costs, such as the energetic costs related to digesting more food (e.g., increasing the size or activity of digestive tissues; Williams and Tieleman, 2000; Nilsson, 2002; Peirsma, 2002). This is in contrast to free-living birds, which would face a variety of additional costs associated with increasing the number or duration of foraging bouts in order to increase food intake, including the metabolic costs associated with searching for food and flight (Nudds and Bryant, 2000; Jodice et al., 2003; Wiersma et al., 2005) and the fitness costs associated with longer and/or more foraging bouts, such as the increased risk of depredation (Krebs and Davies, 1987). Therefore, maintaining body condition and sustaining egg production at low ambient temperatures would be even more difficult for free-living birds, and it is likely that these birds would exhibit even more dramatic declines in reproductive effort than those found in this study or deterioration of maternal body condition, or a combination of both.

Interestingly, while decreasing ambient temperature had no effect on the lipid composition of the eggs, it did result in an increase in yolk protein content. This may be due to the differential influence of low ambient temperature on lipid and protein utilization. While the extra lipid consumed by laying females likely goes towards fueling the combined energetic costs of thermoregulation and egg production, the extra protein may still be allocated to reproduction. Therefore, while the proportion of VLDL particles that have access to the developing ovarian follicles based on particle size was found to decrease with decreasing ambient temperature, it is possible that circulating levels of vitellogenin were independent of or even increased with decreasing ambient temperature. If either scenario is true, the pool of vitellogenin available for uptake during egg
formation would actually increase with decreasing ambient temperature because laying females produce fewer eggs over a longer period of time at lower ambient temperatures. Similarly, egg-laying chickens (*Gallus gallus domesticus*) that exhibited lower rates of egg production due to irregular patterns of laying were shown to have higher and more variables levels of plasma vitellogenin than chickens that laid more regularly, and therefore had higher laying rates (Redshaw and Follett, 1976). The potential increase in vitellogenin availability and longer egg formation times, as assumed by the decrease in laying rate of cold-acclimated laying females, may result in eggs with higher yolk protein content. Furthermore, increased vitellogenin availability could also have implication for lipid deposition into egg yolk, as vitellogenin and VLDL_y use the same oocyte receptor for uptake into the developing ovarian follicles (George *et al.*, 1987; Stifani *et al.*, 1988; Barber *et al.*, 1991). Future studies that assess circulating levels of vitellogenin in laying females acclimated to different temperatures are required to determine whether this proposed mechanism explains the cold-induced increase in yolk protein content.

Female Zebra Finches producing eggs at 7°C exhibited concurrent declines in clutch size and laying rate, and an increase in laying interval, but no change in mean egg mass compared to when they were maintained at a warmer and less energetically-demanding temperature. To our knowledge, this is the first study to experimentally manipulate the ambient temperature in which female birds were maintained throughout the process of eggs production (cf. studies that experimentally manipulated only nighttime nest box temperature; Nager and van Noordwijk, 1992; Yom-Tov and Wright, 1993). Correlational and experimental studies relating ambient or nest box temperatures to egg production in free-living birds have found similar, but somewhat inconsistent,
results. Low ambient temperatures were associated with declines in laying rate (i.e., increases in the number of “skipped” days when no egg was laid) in free-living Great Tits (Lessells et al., 2002). Similarly, Blue Tits (Parus caeruleus) laying in experimentally-warmed nest boxed had fewer interruptions in laying (i.e., laid at a higher rate) than those in colder control boxes (Yom-Tov and Wright, 1993). Inconsistent relationships have been found between temperature and both clutch size and laying date (the free-living equivalent to laying interval). While low ambient temperature was associated with decreased clutch size in this study, ambient temperature was not correlated to variation in clutch size in Great Tits (Pendlebury and Bryant, 2005), and nest box temperature was not related to clutch size in Blue Tits (Yom-Tov and Wright, 1993). Furthermore, while laying dates of Great Tits were not related to experimentally-manipulated nest box temperature (Nager and van Noordwijk, 1992), ambient temperature was negatively correlated with laying date of European Swifts (Apus apus) (O’Connor, 1979), and laying interval in this study. Furthermore, while we found no relationships between the mean egg mass or the masses of the egg components (yolk protein, yolk lipid, albumen protein) and ambient temperature during egg formation, ambient temperature was positively correlated with egg mass in many free-living passerine species (e.g., European Starlings, Sturnus vulgaris: Ojanen et al., 1981; Great Tits: Ojanen et al., 1981; Pendlebury and Byant. 2005; Pied Flycatchers, Ficedula hypoleuca: Ojanen, 1983; Blackbirds, Turdis merula: Magrath, 1992; Collared Flycatcher, Ficedula albicollis: Hargitai et al., 2005) and with the energetic content of the egg components of Great Tits and Pied Flycatchers (Ojanen, 1983). Similarly, egg volumes of Great Tits laying in heated nest boxes were greater than those of females laying in experimentally cooled nest boxes (Nager and van
Noordwijk, 1992). However, most of these studies did not control for laying date, which could potentially confound the relationship between ambient temperature and egg size through correlations with both variables (Magrath, 1992; Lessells et al., 2002). In contrast to these studies, mean egg mass of Blue Tits was not related to experimentally-manipulated nest box temperatures (Yom-Tov and Wright, 1993). As in this study, the masses of the egg components of free-living Great Tits were not related to ambient temperature when other factors, such as total egg mass, were controlled for. These results demonstrate the variety of ways in which females producing eggs in sub-optimal conditions can modulate reproductive effort in order to decrease the energetic demands associated with egg production and increase the energy available for fueling maternal self-maintenance and survival, while still producing offspring that can be raised given the current and predicted environmental conditions.

The declines in reproductive effort of Zebra Finches maintained at 7°C were accompanied by a decrease in the proportion of sVLDL particles in circulation, which resulted from the increase in circulating levels of very small VLDL particles (i.e., the decrease in modal and median particle diameter at 7°C). During lipoprotein-lipase metabolism of VLDL, particle diameter decreases as the triglycerides from the particle’s core are removed, and the lipids and proteins from the particle’s surface are transferred to other lipoproteins (for reviews see Eisenberg, 1986; Walzem, 1996). Therefore, the increase in the proportion of very small VLDL particles in laying Zebra Finches at 7°C was likely the result of an increase in the metabolism of larger VLDL particles by non-ovarian tissues to fuel the cold-acclimated females’ own energetic demands. These results suggest that the observed declines in the reproductive effort of laying Zebra Finches
exposed to low ambient temperatures may have been due to a limited supply of VLDL particles that were capable of being utilized in egg formation. However, there was no relationship between the observed inter-individual variation in the different measures of reproductive effort and the proportion of sVLDL particles in circulation. Although, the analysis of the apolipoprotein composition of the VLDL particles within the sVLDL range is required to clarify whether all of the VLDL particles within this diameter range were actually yolk-targeted VLDL, i.e., contained apolipoprotein VLDL-II, which increases the lipoprotein lipase-resistance of VLDL, thereby protecting it for use in egg production (reviewed in Walzem 1996). The lack of relationship between circulating sVLDL particles and reproductive effort of females laying at 7°C suggests that other physiological factors, which also differ with temperature, are involved in the mechanisms underlying temperature-dependent variation in the reproductive effort of Zebra Finches.

A possible explanation for the observed decline in the reproductive effort of Zebra Finches exposed to low ambient temperatures is the potential reallocation of energy away from other energetically-expensive activities in order to save energy, which could then have an indirect effect on reproductive output. The addition of egg production to the already energetically-demanding process of thermoregulation actually resulted in an 11% decrease in RMR compared to the non-laying, actively thermoregulating values of Zebra Finches (see Chapter 4). A proposed explanation for the decrease in metabolic rate of laying Zebra Finches maintained at 7°C was the reallocation of energy within individuals away from the energetically-demanding process of thermoregulation, which would likely necessitate the use of facultative rest-phase hypothermia, the regulated and reversible decrease in body temperature below normothermic levels, by cold, laying birds (reviewed
in Reinertsen, 1996; McKechnie and Lovegrove, 2002). If any of the processes involved in egg production, such as hormone synthesis or action on target tissues, yolk precursor production or uptake, or albumen or shell deposition, are sensitive to changes in body temperature, then the use of hypothermia could result in slower egg formation, which would explain the longer laying intervals and decrease in laying rate observed in this study.

In addition to potentially limiting the resources available for egg production, experiencing low ambient temperatures during egg production may provide laying females with predictive information about the future environmental conditions in which their young will be raised. Evidence for basing reproductive decisions on "expected" future conditions that are predicted from current environmental conditions is widespread. For example, parasitic wasps (*Leptopilina heterotoma*) have been shown to increase reproductive effort (e.g., prolonged searching for oviposition sites, oviposition on already parasitized hosts, i.e., superparasitism) if their perceived risk of mortality increased due to changes in barometric pressure or photoperiod (Roitberg et al., 1992; Roitberg et al., 1993). Furthermore, reproduction in most seasonally-breeding animals is scheduled such that the period of offspring care coincides with seasonal peaks in food availability and quality (Perrins, 1970). In birds, the annual recrudescence, i.e., regrowth, of the reproductive axis occurs well in advance of the period of offspring care. However, because many conditions that are favorable for reproduction vary predictably with season every year (Wingfield et al., 1992), birds can use a variety of environmental cues (e.g., photoperiod, early food availability, rainfall, temperature) that occur early in the breeding season to predict when the peak in essential resources for their offspring will become

146
available later in the season, and thus determine when to initiate the recrudescence of the reproductive axis and subsequent egg production (reviewed in Immelmann, 1971, 1973). Therefore, if laying females use environmental conditions during egg production such as ambient temperature as cues to predict the quality of environmental conditions during later stages of reproduction, the decline in clutch size observed at 7°C in this study may actually result from a facultative decrease in the number of eggs laid by cold Zebra Finches to match current and future reproductive effort (i.e., incubation activity and brooding and provisioning of chicks) with the sub-optimal conditions predicted during the incubation and chick-rearing stages, based on exposure to low ambient temperatures during egg production. However, it is difficult to determine whether the temperature-related decline in clutch size was due to energy-limitation during egg production or the facultative down-regulation of early reproductive effort. Data on energy budgets of individual females producing eggs at different temperatures are needed to determine whether the observed changes in reproductive performance were due to limited energy availability. If the decrease in clutch size resulted from resource limitation, then attempts to induce females to lay more eggs without increasing resource availability (i.e., food supplementation) would likely fail. However, if decreasing clutch size was a facultative "decision" by the laying female, then future studies may be able to induce Zebra Finches producing eggs at low ambient temperatures to lay more eggs without increasing resource availability (e.g., through egg removal; Williams and Miller, 2003), and then examine whether experimentally increasing clutch size has a detrimental effect on offspring growth and survival in sub-optimal (i.e., cold) conditions.
ACKNOWLEDGEMENTS

This study was funded by a Natural Sciences and Engineering Research Council of Canada Operating Grant to TDW, Project 8736 of the Texas Agricultural Experiment Station to RLW, and a Natural Sciences and Engineering Research Council of Canada Post-Graduate Scholarship and Grants-in-Aid of Research from the American Ornithologists’ Union, the Society for Integrative and Comparative Biology, and Sigma Xi to KGS. We would like to thank Kendall Hood and Wene Yan for their assistance with the VLDL particle diameter assay and Miriam Ben Hamida, Mathilde Curnillon, Gina Eom and Pamela Smith for their help with seed consumption data collection and the triglyceride assay. This manuscript benefited greatly from discussions with François Vézina, Oliver Love, Christina Semeniuk and Emily Wagner.

LITERATURE CITED

Figure 5.1. Comparisons of a) changes in female body mass, b) changes in female fat score, and c) changes in female muscle score from pairing to clutch completion, d) daily seed consumption of breeding pairs throughout laying, e) modal VLDL particle diameter, and f) the proportion of VLDL particles that fell within the sVLDL range in females producing eggs at 7°C and 21°C. Lines join values for individual females.
Figure 5.2. Relationships between female body mass at the 1-egg stage and the mean egg mass of subsequently laid eggs at 7\(^{\circ}\)C and 21\(^{\circ}\)C.

- **7\(^{\circ}\)C:** NS; \(p > 0.2 \)
- **21\(^{\circ}\)C:** \(F_{1,27} = 16.40 \)
 \[r^2 = 0.378, \; p < 0.0005 \]
Figure 5.3. Temperature-induced changes in a) clutch size, b) laying interval, c) laying rate, and d) the fresh egg mass. e) yolk lipid content, and f) yolk protein content of the second egg of females producing eggs at 7°C and 21°C. Lines join values for individual females.
CHAPTER 6

ASSESSMENT OF ANTIBODIES FOR THE QUANTIFICATION OF APOLIPROTEIN VLDL-II IN ZEBRA FINCHES AND CHICKENS

Katrina G. Salvante, Norbert H. Haunerland and Tony D. Williams

Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
SUMMARY

During avian egg production estrogen induces changes in lipoprotein metabolism, including stimulating the production of the egg yolk precursor, yolk-targeted very-low density lipoprotein (VLDLy). This involves the up-regulation of the synthesis of the two apolipoproteins associated with VLDLy, apolipoprotein B (apoB), which acts as the ligand for the oocyte VLDL receptor, and apolipoprotein VLDL-II (apoVLDL-II), which helps preserve VLDLy for incorporation into the developing ovarian follicles by increasing the resistance of VLDLy to hydrolysis by extra-ovarian tissues. The apoVLDL-II content of VLDL particles is required to quantify changes in circulating VLDLy due to changes in reproductive status or environmental conditions. Therefore, the aim of this study was to test polyclonal antibodies raised against chicken apoVLDL-II to determine whether they could be used to quantify apoVLDL-II in passerine birds. Expression of chicken apoVLDL-II in laying hens was higher than the expression of proteins of similar electrophoretic mobility from laying Zebra Finches, i.e., putative Zebra Finch apoVLDL-II. The two antisera tested in this study recognized chicken apoVLDL-II, but cross-reacted less strongly with putative Zebra Finch apoVLDL-II, suggesting that there was either very little apoVLDL-II for the antisera to react with, or the structure of Zebra Finch apoVLDL-II may differ from that of chicken apoVLDL-II, or a combination of these two factors. We discuss the implications of the potentially non-conserved nature of apoVLDL-II in the context of avian egg production.
INTRODUCTION

Avian reproduction is regulated by a cascade of neuroendocrine and systemic hormones that up-regulate reproductive physiology, including the recrudescence of reproductive organs and tissues and the production of large amounts of protein and lipid in the form of albumin and the yolk precursors, vitellogenin (VTG) and yolk-targeted, very-low density lipoprotein (VLDLy), which will provide the nutrients and energy required by the developing avian embryos (Gruber, 1972; Bacon et al., 1974; Bergink et al., 1974; Deeley et al., 1975; Neilson and Simpson, 1973; Chan et al., 1976; Wallace, 1985; Griffin and Hermier, 1988; Walzem, 1996; Williams, 1998). With respect to VLDLy, specific changes to the composition and structure of VLDL particles are stimulated by elevated levels of endogenous estrogens. Specifically, estrogen up-regulates the production of the two apolipoproteins that are associated with VLDLy, apolipoprotein B (apoB) and apolipoprotein VLDL-II (apoVLDL-II) (Chan et al., 1976; Kudzma et al., 1979; Capony and Williams, 1980; Lin and Chan, 1981; Dashti et al., 1983; Lin et al., 1986). While apoB acts as the ligand for the oocyte receptor (Nimpf et al., 1988), apoVLDL-II is believed to be responsible for the decrease in VLDLy diameter observed in domestic fowl (Schneider et al., 1990; Walzem, 1996; Walzem et al., 1999), although the mechanism for this is unknown. This change in VLDLy size allows these lipid-rich particles to access the developing ovarian follicles by enabling them to fit through pores in the ovarian granulosa basal lamina that separates the follicles from capillaries within the ovary (Perry and Gilbert, 1979; Griffin and Perry, 1985).
Furthermore, the presence of apoVLDL-II on VLDL_y increases the resistance of the lipoprotein to hydrolysis by lipoprotein lipase (LPL) in extra-ovarian tissues (Schneider et al., 1990), likely by limiting access to the water needed for triacylglycerol hydrolysis (Boyle-Roden and Walzem, 2005), thereby preserving VLDL_y for incorporation into developing ovarian follicles.

Previous studies have reported positive relationships between both reproductive status (i.e., non-breeding vs. laying) and reproductive output (e.g., laying rate) in birds and estimated VLDL_y abundance based on the proportion of VLDL particles within a particular diameter range indicative of small particles that have access to the developing ovarian follicles (reproductive status of chickens, Gallus gallus domesticus: Walzem, 1996; Walzem et al., 1999; Chapter 2; reproductive status of Zebra Finches, Taeniopygia guttata: Chapter 2; reproductive effort of laying chickens: Walzem, 1996; Chapter 3). However, VLDL particle diameter alone is not sufficient to distinguish between circulating VLDL_y and generic VLDL particles. To truly quantify circulating concentrations of VLDL_y and to assess the validity of previous estimates of VLDL_y abundance, determination of the apoVLDL-II content of VLDL particles of different diameters is required. Therefore, the goal of this study was to test new and existing polyclonal antibodies for the quantification of apoVLDL-II in passerine birds, using the Zebra Finch as a model species.
MATERIALS AND METHODS

ApoVLDL-II Antisera

Two different antisera were used in this study. Rabbit anti-chicken apoVLDL-II was kindly donated by Dr. Wolfgang Schneider (Vienna, Austria) (Nimpf et al., 1988), and will hereafter be referred to as anti-apoVLDL-II. Additionally, polyclonal antibodies were generated against a synthetic composite peptide that was based on a relatively highly conserved 17-amino acid portion of the apoVLDL-II (and apovitellenin I, see below) sequences of chicken (Gallus gallus domesticus; National Center for Biotechnology Information (NCBI) accession numbers: AAA48596, P02659, NP_990814, P02659), turkey (Meleagris gallopavo; P02660), duck (Anas platyrhynchos; AAV65597), common quail (Coturnix coturnix; AAB37468), and emu (Dromaius novaehollandiae; P02657) that were identified and compared using the algorithm BLASTP (a Basic Local Alignment Search Tool - Peptide) operated by the NCBI (Altschul et al., 1997; Schäffer et al., 2001) (Table 6.1). Dugaiczyk et al. (1981) determined that the amino acid sequences of apoVLDL-II from laying hen blood and apovitellenin I from chicken egg yolks were identical, suggesting that a some proportion of circulating apoVLDL-II may be transported intact from the blood to the yolk. Peptide synthesis and antibody production and purification was carried out by ABR Affinity Bioreagents (Golden, CO). The most common amino acids at each of the 17 positions within the most conserved sequence range were chosen to make up the sequence of the synthesized peptide with two exceptions: the leucine at position 11 and the serine at position 13 were selected instead of the more common alanine due to the difficulty in synthesizing peptides with consecutive alanine residues (ABr Affinity Bioreagents...
Technical Services, personal communication: Table 6.1). The polyclonal antibodies to the synthetic peptide (hereafter referred to as anti-peptide) were raised in two New Zealand White rabbits by subcutaneous injection of the synthesized peptide conjugated to glutaraldehyde and attached to keyhole limpet hemocyanin as the carrier protein/antigen. For the first injection the antigen was mixed with Freund's complete adjuvant, and for successive booster injections, with Freund's incomplete adjuvant (days 21, 35, and 49). Serum was collected on days 59 and 63, and the antibodies (IgGs) were isolated and purified peptide affinity purification, yielding IgGs specific for the peptide antigen (i.e., anti-peptide).

Zebra Finch Husbandry and Blood Sample Collection

Zebra Finches (Taeniopygia guttata) were housed in same-sex cages (122 x 46 x 41 cm) in the Simon Fraser University Animal Care Facility under controlled environmental conditions (temperature 19-23°C, humidity 35-55%, constant light schedule of 14L: 10D, lights on at 07:00). All birds received a mixed seed diet (Panicum and white millet 50:50: approximately 12.0% protein, 4.7% lipid; Just for Birds, Surrey), water, grit, and cuttlefish bone (calcium) ad libitum, a multivitamin supplement in the drinking water once per week. All experiments and animal husbandry were carried out under a Simon Fraser University Animal Care Committee permit (no. 692B-94) following the guidelines of the Canadian Committee on Animal Care.

Randomly chosen non-breeding males (n = 75) were given four daily IM injections (30 µl each) of 17β-estradiol (E2) in 1,2-propanediol (2830 µg/ml; equivalent to 5 mg E2 / kg bird, assuming an average mass of 17 g for all birds; Sigma-Aldrich Canada, Oakville). This dose has been shown to significantly elevate plasma yolk.
precursor levels in Zebra Finches (Williams and Martyniuk, 2000). E2-treated birds were anesthetized 24 hours after the last injection via an IM injection of 50µl ketalean and xylazine solution (50:50 by volume; Associated Veterinary Products, Abbotsford). Blood samples were collected between 10:30 and 13:00 by exsanguination through the jugular vein. All blood samples were expelled into heparin-coated microcentrifuge tubes (1000 U/ml: Sigma-Aldrich Canada, Oakville) and centrifuged at 2200 g for 10 minutes in a Baxter Canlab Biofuge 13. The individual plasma samples were then combined into one plasma pool (E2-treated plasma pool) and refrigerated overnight (at 4°C) pending isolation of apoVLDL-II.

Randomly chosen non-breeding (n = 10) and egg-producing (n = 20) females were blood sampled (200 µl from the brachial vein). All blood samples were collected between 09:00 and 11:30 into heparinized capillary tubes, expelled into heparin-coated microcentrifuge tubes, and centrifuged at 2200 g for 10 minutes in a Baxter Canlab Biofuge 13. The individual plasma samples were combined into the appropriate plasma pools, i.e., non-breeding (NBr) and egg-producing (LAY), in microcentrifuge tubes and frozen (at -20°C) pending electrophoresis and Western blot analysis.

ApoVLDL-II Isolation and Purification

Plasma VLDL was isolated as the d < 1.020 g/ml fraction of plasma from E2-treated males. The E2-treated plasma pool (24 ml) was mixed with NaCl-NaBr density solution (93 ml, d = 1.0255), and transferred into Quick-Seal Ultra-Clear tubes (25 x 89 mm, Part #344326; Beckman Coulter, Fullerton). The samples were loaded into a Beckman VTi50 rotor and centrifuged at 109000 g for 18 hours at 14°C in a Beckman L 8-70 ultracentrifuge (Beckman Coulter, Fullerton). Following centrifugation, the
supernatant containing the VLDL portion of the plasma was isolated from the tube using a syringe.

ApoVLDL-II was isolated and purified following the method described by Nimpf et al. (1988). Briefly, the VLDL sample was dialyzed against deionized, distilled water (at 4°C) and lyophilized. The remaining dry residue was delipidated by consecutive extractions with ice-cold chloroform-methanol (2:1, v/v), diethylether-ethanol (3:1, v/v), and diethylether alone. The residue was dried under nitrogen, and then lyophilized overnight. Freeze-dried apoVLDL-II was reconstituted by dissolving it in buffer (75 mM NaCl, 50 mM Tris-HCl, and 60 mM N-octylglucoside, pH 7.4) for a final concentration of 2 mg/ml. The solution was refrigerated (at 4°C) for 16 hours, and then centrifuged at 5000 g for 5 minutes. The resulting supernatant was dialyzed against deionized, distilled water overnight at 4°C, and then lyophilized. The reconstitution, centrifugation, dialysis, and lyophilization steps were repeated on the resulting apoVLDL-II residue.

SDS-Polyacrylamide Gel Electrophoresis

SDS-polyacrylamide gel electrophoresis was carried out under reducing conditions in duplicate 1 mm thick gels (15% T, 2.6% C) in a Bio-Rad Mini Protean II unit (Life Sciences Bio-Rad Canada, Mississauga, ON) at 50 mA constant current for 50-55 minutes (Laemmli, 1970). Sample buffer (60 mM Tris-HCl, 25% glycerol, 2% SDS, 14.4 mM M 2-mercaptoethanol, 1% bromophenol blue) was used to dilute the freeze-dried apoVLDL-II, laying and non-breeding Zebra Finch plasma, synthetic peptide-spiked laying Zebra Finch plasma and chicken plasma pools (positive controls), and the sample solutions were boiled for 10 minutes. One gel from each pair was stained with Coomassie brilliant blue R 250 and destained with acetic acid: methanol: water
Molecular weights were determined using full-range molecular weight markers (10000 to 250000 Da; RPN800 Full-range Rainbow molecular weight markers; Amersham Biosciences, GE Healthcare). The second gel from each pair was used for Western blot analysis.

Western Blot

Western blotting was performed to test the specificity of the antisera for Zebra Finch apoVLDL-II. Proteins were transferred onto PVDF membrane using a semi-dry electroblotting unit (LKB Novablot, Bjerrum-Shafer-Nielson buffer: 48 mM Tris, 29 mM glycine, 20% methanol, 0.0375 % SDS) at 30 mA constant current for 6 hours. Detection was carried out at room temperature. Blots were washed with PBS-T (phosphate-buffered saline, 0.1% Tween 20), and blocked for 40 minutes in 5% skim milk powder (Carnation) in PBS-T. The blots were incubated for 40 minutes in either anti-apoVLDL-II:PBS-T (1:5000) or anti-peptide:PBS-T (1:10000) and then washed extensively with PBS-T. The blots were then incubated for 40 minutes with a donkey anti-rabbit IgG secondary antibody conjugated to horse radish peroxidase (Amersham Biosciences, GE Healthcare; 1:5000 in PBS-T for blots previously incubated with anti-apoVLDL-II and 1:10000 in PBS-T for blots previously incubated with anti-peptide) and washed four times with PBS-T. Membranes were developed with ECL Western blotting detection reagents (minimum 0.125 ml / cm2 membrane; Amersham Biosciences, GE Healthcare) and Kodak BioMax Light-2 film (Amersham Biosciences, GE Healthcare).
RESULTS

The putative Zebra Finch apoVLDL-II was associated with the VLDL fraction of Zebra Finch plasma following ultracentrifugation, and had similar electrophoretic mobility to chicken apoVLDL-II under reducing conditions (large band at ~10 kDa in Lane D in Figure 6.1, cf. chicken apoVLDL-II: dark bands at ~10-11 and 14-15 kDa, Figure 6.1 Lane E). When laying Zebra Finch plasma was analyzed under reducing conditions, two faint bands were detected (~14 kDa and ~10 kDa: Lane B in Figure 6.1), while no comparable bands were observed in plasma from non-breeding Zebra Finches (Lane A in Figure 6.1). The faintness of these bands compared to the corresponding darker bands in the laying chicken samples (Lane E in Figure 6.1) suggest that apoVLDL-II expression is lower in laying Zebra Finches than in laying chickens. Many higher molecular weight protein bands, which probably corresponded to apoB-100, its degradation products, and potentially other VLDL apolipoproteins, were apparent in all of the plasma samples (Lanes A, B, D, and E in Figure 6.1).

The anti-apoVLDL-II antiserum clearly recognized two bands (at ~10 and ~15 kDa) corresponding to apoVLDL-II from chicken plasma (Lane E in Figure 6.2), but only cross-reacted weakly with proteins of similar molecular weight from laying Zebra Finch plasma (at ~10 kDa in Lanes A and B in Figure 6.2) and purified Zebra Finch apoVLDL-II (at ~10 kDa in Lane D in Figure 6.2). Furthermore anti-apoVLDL-II also recognized and bound to many of the high molecular weight proteins from the VLDL portion of the plasma (Lanes A, B, D, and E in Figure 6.2).
The anti-peptide antiserum weakly cross-reacted with the apoVLDL-II of laying chickens (at ~10 kDa in Lane E in Figure 6.3). However, it did not seem to recognize either the purified Zebra Finch apoVLDL-II (no band at ~10 kDa in Lane D in Figure 6.3) or proteins of similar molecular weight from laying Zebra Finch plasma (no band at ~10 kDa in Lane A or B in Figure 6.3). Like anti-apoVLDL-II, anti-peptide also recognized and bound to some of the high molecular weight proteins from the VLDL portion of the plasma (Lanes A, B, D, and E in Figure 6.3). Interestingly, the anti-peptide antiserum also recognized a protein band in the peptide-spiked Zebra Finch plasma sample (at ~5 kDa in Lane A in Figure 6.3), which did not seem to cross-react with the anti-apoVLDL-II antiserum (no band at ~5 kDa in Lane A in Figure 6.2). The synthetic peptide that was used to spike this sample was only 17 amino acids long, and was therefore much smaller than 5 kDa. Given the strong reaction between the ~5 kDa protein and the anti-peptide antiserum, the “protein” may be an aggregation of many of the small synthetic peptides.

DISCUSSION

ApoVLDL-II from Zebra Finches exhibited similar electrophoretic mobility as apoVLDL-II from chickens, but was expressed at lower levels. However, Western blot analysis revealed that polyclonal antibodies raised against either chicken apoVLDL-II or a peptide sequence closely resembling a relatively highly conserved portion of the chicken apoVLDL-II sequence (88% identity; 94% similarity, where identity indicates the same amino acid in a particular position, and similarity indicates the same amino acid
or an amino acid substitution that is believed to carry out similar functions and occurs more often as an alternative in related sequences than in random sequences; Dayhoff et al., 1978) recognized chicken apoVLDL-II, cross-reacted strongly with higher molecular weight proteins associated with the VLDL portion of plasma, and either did not recognize or only weakly recognized putative apoVLDL-II from Zebra Finches. These results suggest that there may have been too little circulating apoVLDL-II in laying Zebra Finches to elicit binding with the antibodies used in the Western blot analyses (cf. high circulating levels of apoVLDL-II in laying chickens), the structure of Zebra Finch apoVLDL-II may differ sufficiently from that of chickens, or a combination of these factors may be occurring.

Differences in the sequence of apoVLDL-II between chickens and Zebra Finches would not be surprising as the structure of apoVLDL-II differs substantially between the five species of birds for which the sequence is known. For the most conserved region, the 17 amino acid sequence that was chosen for the synthetic peptide, the four non-chicken species varied between 76% (13 out of 17) and 94% (16 out of 17) identity with the chicken sequence (between 88% to 94% similarity) (see Table 6.1 for sequences and literature references). Furthermore, when comparing the mature protein (82 amino acids), chicken apoVLDL-II exhibited 95% identity (78/82 amino acids) with chicken egg (98% similarity), 85% identity (70/82) with turkey (91% similarity), 76% identity (63/82) with duck (84% similarity), 67% identity (55/82) with quail (80% similarity), and only 65% identity (65/82) with emu apoVLDL-II (79% similarity) (see Table 6.1 for sequences and literature references). Despite only 67% identity of the primary structure between chicken and quail apoVLDL-II and differences in protein conformation, i.e., chicken apoVLDL-II
exists as a homodimer while quail apoVLDL-II is incorporated into VLDL as a monomer. Polyclonal antibodies raised against chicken apoVLDL-II cross-reacted with quail apoVLDL-II, and both proteins fulfilled their function of inhibiting lipoprotein lipase (MacLachlan et al., 1996). It is unknown to what extent Zebra Finch apoVLDL-II differs in identity or similarity to apoVLDL-II of other avian species, however an attempt to sequence Zebra Finch apoVLDL-II is currently in progress.

The extent of homology of the structure of apoVLDL-II in birds is similar to that of other apolipoproteins. Collet et al. (1997) compared the primary structure and antigenicity of apoA-I in humans, which is believed to be involved in cholesterol transport and activation of lecithin:cholesterol acyltransferase (LCAT) (Fielding et al., 1972; Miller et al., 1985; Fielding and Fielding, 1995), to the sequence in a variety of other mammalian species including cynomolgus monkeys, dogs, pigs, cows, rabbits, and rats. Human apoA-I ranged from being 95% identical (99% similar) to monkey apoA-I to 63% identical (85% similar) to rat apoA-I (Collet et al., 1997). While the antigenicity of some regions of apoA-I was conserved, single amino acid substitutions were enough to prevent some of the monoclonal antibodies from cross-reacting with apoA-I from specific species (Collet et al., 1997). However, in spite of the changes in antigenicity of some regions of this protein, the protein’s secondary structure, and therefore likely its functional properties, remained more conserved (Collet et al., 1997). Furthermore, Law and Scott (1990) compared the LDL receptor binding domain of apoB in humans, pigs, rabbits, hamsters, rats, mice and chickens. Homology between mammalian species ranged from 57% between mice and hamsters to 81% between rats and hamsters. The human sequence exhibited 64% to 69% homology with the other species, while the
chicken sequence exhibited the least amount of homology with each of the mammalian
species compared to between-mammal comparisons, ranging from 55% with the hamster
sequence to 62% with the human structure (Law and Scott, 1990). Despite the inter-
specific variation in the primary structure of the LDL receptor binding domain of apoB,
the secondary structure of this region was conserved, thereby maintaining its function as
a receptor ligand (Law and Scott, 1990).

In general, apolipoproteins are amphipathic components of lipoproteins, meaning
they have a lipophilic, non-polar region that interacts with the lipid within the
lipoproteins, and a polar, hydrophilic region that interacts with the aqueous environment
of general circulation. They play a variety of roles in lipoprotein transport and
metabolism including acting as activator or inhibitor proteins and receptor ligands
(Breckenridge et al., 1978; Nimpf et al., 1988; Schneider et al., 1990; Boyle-Roden and
Walzem, 2005). It has been suggested that homology of the primary structure of
apolipoproteins is not of great importance as long as the functional properties of the
apolipoproteins, such as their amphipathic nature, as well as their activating or inhibiting
properties or ligand conformation, are maintained (Duggan and Callard, 2001).
Therefore, if selection only acts on the functional aspects of these proteins, then changes
to their primary structure that do not influence overall function will not be the focus of
selection. For example, while the amphipathic phospholipid binding region of apoVLDL-
II (residues 59 to 75; Chan et al., 1980; Chan, 1983) exhibits less homology than the
entire mature protein, ranging from 94% identity between chicken and turkey to a mere
44% identity between chicken and quail, the inter-specific similarity in the sequence of
this region is comparatively high, ranging from 94% between chicken and turkey to 83%
between chicken and quail, thereby conserving the functional properties of this critical region. In this study, the female Zebra Finches that were sampled for the laying plasma pool were actively producing and laying viable eggs. Consequently, it is likely that Zebra Finch apoVLDL-II has maintained its ability to transport energy-rich lipoproteins to developing ovarian follicles. Therefore, it is possible that changes to the structure of apoVLDL-II will only be of consequence when it compromises egg production.

The potential lack of homology of apoVLDL-11, combined with the lower expression levels in laying Zebra Finches, and potentially other avian species, compared to laying chickens, and the affinity of the antibodies used in this study for the high molecular weight proteins (> 30 kDa) associated with the VLDL portion of Zebra Finch plasma pose problems for the quantification of VLDL in the Zebra Finch, and possibly other non-chicken avian species, using antibodies that were raised against chicken apoVLDL-II. Therefore, the development of new antibodies that are raised against apoVLDL-II from species of interest, such as the Zebra Finch, is needed to be able to quantify circulating levels of VLDL in these species.

ACKNOWLEDGEMENTS

This study was funded by a Natural Sciences and Engineering Research Council of Canada Operating Grant to TDW and a Natural Sciences and Engineering Research Council of Canada Post-Graduate Scholarship to KGS. We would like to thank Wolfgang
Schneider for supplying us with anti-apoVLDL-II, and Jutta Haunerland and Phillip Son for their assistance with Western blotting.

LITERATURE CITED

Table 6.1. Amino acid sequences of apoVLDL-II and apovitellenin I from chicken, duck, emu, quail and turkey. The numbering above the sequences is that of whole chicken apoVLDL-II protein (including the signal peptide). Those amino acids which were identical to the first chicken apoVLDL-II sequence have been left blank for clarity. Underlined letters indicate insertions, * indicates deletions, and - indicates no data for that portion of the sequence.

<table>
<thead>
<tr>
<th>apoVLDL-II signal peptide</th>
<th>mature apoVLDL-II / apovitellenin I protein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CHICKEN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DUCK</td>
<td></td>
</tr>
<tr>
<td>DUCK egg</td>
<td></td>
</tr>
<tr>
<td>EMU egg</td>
<td></td>
</tr>
<tr>
<td>QUAIL</td>
<td></td>
</tr>
<tr>
<td>TURKEY egg</td>
<td></td>
</tr>
<tr>
<td>SYNTHESIZED PEPTIDE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mature apoVLDL-II / apovitellenin I protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>CHICKEN</td>
</tr>
<tr>
<td>CHICKEN egg</td>
</tr>
<tr>
<td>DUCK</td>
</tr>
<tr>
<td>DUCK egg</td>
</tr>
<tr>
<td>EMU egg</td>
</tr>
<tr>
<td>QUAIL</td>
</tr>
<tr>
<td>TURKEY egg</td>
</tr>
<tr>
<td>SYNTHESIZED PEPTIDE</td>
</tr>
</tbody>
</table>

a Dugaiczyk *et al.* 1981; *b* Chan 1983; *c* Dolpheide and Inglis 1976; *d* Yen *et al.* 2005; *e* Inglis and Burley 1977; *f* Dolpheide and Inglis 1974; *g* MacLachlan *et al.* 1996; *h* Inglis *et al.* 1979
Figure 6.1. SDS-polyacrylamide gel electrophoresis of non-breeding and laying Zebra Finch plasma, purified putative Zebra Finch apoVLDL-II, and chicken plasma. Lane A: non-breeding Zebra Finch plasma pool (1:6; sample:ddH₂O and sample buffer, v:v), Lane B: laying Zebra Finch plasma pool (1:25), Lane C: molecular weight markers, Lane D: putative apoVLDL-II purified from VLDL portion of the plasma of estrogen-treated male Zebra Finches (1 mg/100 μl), and Lane E: chicken plasma pool (1:25).
Figure 6.2. Western blot of Zebra Finch and chicken plasma and putative Zebra Finch apoVLDL-II using anti-chicken apoVLDL-II as the primary antibody (c:5000). Lane A: laying Zebra Finch plasma pool (1:25; sample:dH$_2$O and sample buffer, v:v) spiked with the synthetic peptide (1 mg:100 µl), Lane B: laying Zebra Finch plasma pool (1:25), Lane C: molecular weight markers, Lane D: putative apoVLDL-II purified from VLDL portion of the plasma of estrogen-treated Zebra Finches (1 mg:100 µl), and Lane E: chicken plasma pool (1:25).
Figure 6.3. Western blot of Zebra Finch and chicken plasma and putative Zebra Finch apoVLDL-II using anti-peptide as the primary antibody (1:10000). Lane A: laying Zebra Finch plasma pool (1:25; sample:ddH₂O and sample buffer, v:v) spiked with the synthetic peptide (1 mg:100 µl), Lane B: laying Zebra Finch plasma pool (1:25), Lane C: molecular weight markers, Lane D: putative apoVLDL-II purified from VLDL portion of the plasma of estrogen-treated Zebra Finches (1 mg:100 µl), and Lane E: chicken plasma pool (1:25).
CHAPTER 7

GENERAL SYNTHESIS
AND FUTURE DIRECTIONS
SYNTHESIS

The primary goal of the research described in this thesis was to gain insight into the physiological mechanisms underlying the allocation of energy-rich lipid between egg production in birds and maternal self-maintenance, i.e., the trade-off between current reproduction and survival, as mediated through maternal body condition (Stearns, 1992; Bernardo, 1996). While the results of the individual studies have been discussed in detail in the preceding chapters, in this final chapter they will be synthesized and discussed in terms of some of the questions posed in the beginning of the General Introduction (chapter one).

Is the pattern of lipid allocation to egg production that is observed in domesticated avian species common to all birds?

During egg production, egg-laying females of domesticated and non-domesticated avian species have two very different goals. In domesticated species that have been selected for maximizing egg production, the goal of laying females is to lay constantly and consistently over a prolonged period of time, i.e., to produce one egg a day for months to over a year. Therefore, it is not surprising that in chickens and turkeys, the allocation of a majority of energy-rich lipids to reproduction, based on changes in VLDL particle diameter distribution during egg production, is related to high laying performance, and any reallocation of lipid resources away from reproduction is associated with declines in laying rate (Walzem 1994; Chapter 3). In contrast, the aim of egg production in birds that have not been selected for continuous and consistent egg production is to maximize the number of offspring that can be raised given the current
condition of the laying female and the prevailing environmental conditions (Drent and Daan, 1980). Given the disparity in these goals, it is not surprising to see that lipid allocation to egg production in Zebra Finches (Chapters 2 and 3), Tsaiya ducks (*Anas platyrhynchos domestica*; Lien *et al.*, 2005), and Greater Scaup (*Aythya marila*; K. Gorman *et al.*, unpublished data), and likely in other birds that have not undergone directional selection for maximizing egg production and often face highly variable environmental conditions, is not as dramatic as in heavily selected, domesticated species that generally do not have to deal with the additional energetic costs associated with incubating the eggs and raising the chicks that subsequently hatch from those eggs (Emmerson *et al.*, 1991; Nestor *et al.*, 1996; reviewed in Romanov, 2001), or with variable environmental conditions (Etches, 1996).

Furthermore, differences between chickens and Zebra Finches in the level of expression of apoVLDL-II during egg production suggest that laying Zebra Finches, which have less circulating apoVLDL-II, may not need to rely on VLDL for lipid deposition into developing ovarian follicles. As non-breeders, Zebra Finches exhibited large amounts of small lipoprotein particles which we suggested could be the metabolic products, i.e., IDL or very small VLDL particles, of the hydrolysis of larger, generic VLDL particles (see chapter two). During egg production, Zebra Finches also exhibited many larger VLDL particles (> 50 nm in diameter), which may be generic VLDL (see chapters two and three). If this is the case, then the metabolism of these generic VLDL particles by the laying females could generate small VLDL or IDL particles, as in non-breeding females. These small VLDL or IDL particles could easily pass through the pores in the avian ovary and contribute to lipid deposition into the developing egg yolks.
Therefore, while egg-laying Zebra Finches do produce apoVLDL-II (see chapter six), and therefore VLDM, they may require less of this specialized lipoprotein to maintain adequate lipid allocation to reproduction. This theory emphasizes the need to assess VLDM particle diameter distribution and apolipoprotein composition of circulating VLDM particles of different sizes during egg production in different avian species to determine 1) whether the large VLDM particles observed in laying Zebra Finches are common in other birds during egg production, and 2) whether the large VLDM particles are generic VLDM, VLDM (i.e., contain apoVLDM-II), or a combination of both types of VLDM.

How does differential resource allocation occur?

Is there one pool of resources, and therefore energy, that different physiological systems have access to? Alternatively, are there resources that only some systems can access while others cannot? In the context of lipid allocation to reproduction in birds, there are potentially two pools of energy, i.e., lipids, available for metabolism: generic VLDM and yolk-targeted VLDM. The structural and functional changes to VLDM that preserve it for use in egg production (e.g., presence of apoVLDM-II which decreases its size and increases its resistance to LPL metabolism) also make it more difficult to use by the laying female for her own energetic needs (Chan et al., 1976; Kudzma et al., 1979; Griffin, 1981; Dashti et al., 1983; Griffin and Perry, 1985; Lin et al., 1986; Schneider et al., 1990; Walzem, 1996; Speake et al., 1998; Walzem et al., 1999; Boyle-Roden and Walzem, 2005). Based on VLDM particle diameters found in laying Zebra Finches, it seems as though both the generic and yolk-targeted forms of VLDM may be produced during egg production (cf. only the yolk-targeted form in highly productive laying
chickens). However, to determine what these VLDL particles were "destined" for when they were produced, i.e., egg production of self-maintenance, future analysis of the apolipoprotein composition of the VLDL particles of various diameters observed in laying Zebra Finches is required.

Do allocation decisions vary with prevailing environmental or physiological conditions, i.e., is there plasticity in decision making, or are they all or nothing choices?

There is definitely plasticity in the decision to allocate lipid resources to reproduction versus self-maintenance. In chapter 5, birds exposed to low ambient temperatures during egg production exhibited a decline in reproductive effort (laying rate, clutch size and laying interval), and also seemed to decrease their allocation to egg production (fewer particles within the sVLDL_y range while still maintaining comparable circulating triglyceride levels as to when they were maintained at 21°C). Therefore, in this case, laying birds are able to use cues regarding environmental conditions or their own energetic state to determine the best activity towards which energetic resources should be allocated.

How do small, free-living birds that produce eggs early in the spring and have relatively high metabolic rates meet their own energy demands along with the energetic costs associated with egg production?

While the dramatic shift in VLDL dynamics that is commonly observed in laying domestic fowl is not apparent in Zebra Finches, small birds with high mass-specific metabolic rates could still have difficulty meeting their energy demands if egg production coincides with other energetically challenging conditions. The experimental temperature manipulations of chapters four and five help to illustrate the costs that are commonly
associated with egg production by free-living birds living in the temperate-zone during the early spring: laying females are cold-acclimated, producing heat to maintain body temperature at normothermic levels, and simultaneously forming eggs. Given the large metabolic costs of thermoregulation and the additional energetic cost of egg production, some egg-producing birds have no choice but to use energy-saving strategies like increasing energy intake and internal reallocation of energy away from other activities (e.g., locomotor activity, other physiological processes) to sustain egg production while still maintaining body temperature at levels close to normothermy.

FUTURE RESEARCH DIRECTIONS

Electron Microscopy of Ovaries of Egg-Laying Passerines

The estimate of the proportion of circulating VLDL particles that was used throughout this thesis was based on the proposed sieving properties of laying domestic fowl (Perry and Gilbert, 1979; Griffin and Perry, 1985). While we assumed that there would be little inter-specific variation in the size of the pores in the ovarian granulosa basal lamina of birds, this is still unclear. Therefore, differences in the proposed sieving properties of the ovaries of different bird species should be examined by electron microscopy, specifically pore diameter and the diameters of VLDL particles observed distal to the granulosa basal lamina (i.e., having already passed through the pores in the ovary).
Quantification of Circulating Levels of VLDL\textsubscript{y} via Direct Assay for apoVLDL-II

In the studies described in this thesis, the proportion of VLDL\textsubscript{y} particles in circulation was estimated based on proportion of VLDL particles within a certain diameter range (sVLDL\textsubscript{y} range: 25-44 nm). However, it is possible that in laying females, some of the VLDL particles that fell within this range were not VLDL\textsubscript{y}, i.e., there may have been small generic particles that were being metabolized by the laying female. Therefore a direct assay for VLDL\textsubscript{y} is needed to quantify circulating levels of the yolk precursor. Two such assays exist which quantify circulating levels of apolipoprotein VLDL-II (apoVLDL-II), the apolipoprotein found on yolk-targeted VLDL, but not generic VLDL, using antibodies raised against chicken apoVLDL-II (apoVLDL-II ELISAs) (Pinchasov \textit{et al.}, 1994; Pool \textit{et al.}, 2002). However, attempts to find the developer of one of the assays was unsuccessful, and the other lab in South Africa did not have time to run any validation samples to see whether their assay could be used to quantify apoVLDL-II, and thus VLDL\textsubscript{y}, in samples from Zebra Finches. Therefore, we attempted to develop our own assay, and in doing so found that apoVLDL-II expression was lower in laying Zebra Finches than in laying chicken hens, and the sequence of apoVLDL-II may not be conserved between avian species. Attempts to isolate and purify Zebra Finch apoVLDL-II resulted in protein samples containing putative Zebra Finch apoVLDL-II, but also what we believe to be other apolipoproteins, including apoB-100. Determination of the primary sequence of Zebra Finch apoVLDL-II is currently underway, and this information will make it possible to synthesize and raise an antibody against apoVLDL-II from a passerine bird in the near future. This antibody could then be used to directly quantify circulating levels of the yolk lipid precursor and investigate the
homologous (or non-homologous) nature of the primary sequence of apoVLDL-II in another family of birds.

Analysis of the ApoVLDL-II Composition of VLDL Particles of Different Diameters

An important question that remains unanswered is whether laying birds can maintain concurrent production of generic and yolk-targeted VLDL particles. Attempts have been made to measure the apoVLDL-II content of VLDL particles of different diameters from laying and non-laying chickens. However, due to contamination of all of the VLDL sub-fractions by small VLDL particles, this work has not yielded useful information. Once an antibody to Zebra Finch apoVLDL-II is produced, future studies could once again attempt to determine whether all of the VLDL particles in laying birds are yolk-targeted, or whether some generic VLDL is produced, but this time in an avian species that maintains some large, potentially generic, VLDL particles in circulation during egg production.

Investigation of Related “Why” Questions

The main questions that were asked when performing the research described in this thesis were “how” questions – questions about the physiological mechanisms underlying differential allocation of energy to reproduction or self-maintenance. However, many “why” questions regarding the differential allocation of energy to reproduction versus self-maintenance also exist. Why did Zebra Finches decrease clutch size in low ambient temperatures? Why does the decision to allocate resources to different activities exhibit plasticity in different environments? Is there variation in the magnitude of plasticity in resource allocation, and does this variation relate to overall
fitness? If so, why does it relate? Why don't energy-limited birds continue to increase seed consumption? The list goes on. The purpose of my thesis was to investigate the mechanisms underlying resource allocation to the competing energy demands of various physiological and behavioural activities an animal must face throughout its lifetime. To be able to answer these “why” questions, we must be able to properly answer the “how” questions. Hopefully the results presented in this thesis will contribute to the answering of some of these “why” questions in the near future.

LITERATURE CITED

