THE IMPACT OF THE PRICE OF OIL ON CHINA’S ECONOMY

by

Na Rong
Bachelor of Economics, Renmin University of China, Beijing, 2004

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS

In the Department of Economics

© Na Rong 2006

SIMON FRASER UNIVERSITY

Spring 2006

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.
APPROVAL

Name: Na Rong
Degree: M. A. (Economics)
Title of Project: The Impact Of The Price Of Oil On China's Economy

Examining Committee:

Chair: David Andolfatto

Steve Easton
Senior Supervisor

Alex Karaivanov
Supervisor

Fernando Martin
Internal Examiner

Date Approved: Monday, April 3, 2006
DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesis/project or extended essays, if technically possible,
to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada
ABSTRACT

At the start of the 21st century, China’s oil consumption rose rapidly. The negative impact of the high price of oil on China’s economy is becoming more and more apparent. This paper describes the effect of high oil prices on the Chinese economy, and it examines the impact of fluctuations of oil prices on China’s Gross Industrial Product per capita through regression analysis. The results show that there are asymmetric effects of oil price changes. Symmetric analysis suggests that every 10% increase (decrease) of oil price leads to approximate 0.4% decrease (increase) of Gross Industrial Product per capita (GIPC). If asymmetric outcomes are permitted, then a 10% increase in the price of oil leads to a 0.69% decrease in Gross Industrial Product per capita of China, but a 10% decrease in the price of oil leads to only a 0.15% increase in GIPC.

Keywords:

oil, price, China, economy
ACKNOWLEDGEMENTS

I offer my enduring gratitude to my supervisors Professor Stephen Easton and Professor Alex Karaivanov for the tremendous support and valuable advice they have given me in this project. They always provide guidance and help to me that carried me through all the difficulties. I also want to thank all my colleagues for their immense help in my research.

Thank all my friends, who support me always. I love you all.
TABLE OF CONTENTS

Approval .. ii
Abstract .. iii
Acknowledgements .. iv
Table of Contents .. v
List of Figures .. vi
List of Tables .. vi
1 Introduction ... 1
2 Literature Review ... 4
 2.1 Real Balance Effect .. 4
 2.2 Supply Shock Effect ... 5
 2.3 Income Transferring Effect .. 5
 2.4 Sectoral Shifts Effects .. 6
 2.5 Microeffect ... 7
3 Methods .. 11
 3.1 Variables and Data ... 11
 3.2 Stationarity Test ... 12
 3.3 Cointegration Test .. 12
 3.4 Regression ... 13
4 Conclusion ... 16
5 Appendices ... 17
 5.1 Data .. 17
 5.2 ADF Test ... 18
 5.3 Johansen Cointegration Test .. 22
 5.4 Regression ... 23
6 Bibliography ... 25
LIST OF FIGURES

Figure 1.1. The Cushing West Texas Intermediate (WTI) spot price (RMB) (1986-2002) ..2

Figure 1.2. Leading oil consumers ...2

Figure 1.3. China’s consumption, import and dependency on imported oil. (1993-2005)3

Figure 2.1. The WTI Price and Household consumption expenditure of China (1986-2002)8

LIST OF TABLES

Table 3.1. Augmented Dickey-Fuller (ADF) stationarity test ..12

Table 3.2. Johansen Cointegration Test ..13

Table 3.3. Regression results for symmetric model ...14

Table 3.4. Regression results for asymmetric model ...15
1 INTRODUCTION

Since 2004, the international price of oil has been increasing. The futures price of West Texas Intermediate oil once broke $70 per barrel. The economic issue suggested by the recent oil price increase raises public concern again. During the past two decades, there has been a positive trend in oil prices. For China, a rapidly developing country, the demand for oil is increasing quickly, therefore, the impact of high oil prices on China’s economy is getting more and more dramatic.

The Figure 1 plots the annual Cushing West Texas Intermediate real spot price from year 1986 to 2002. The rising price of oil is apparent, especially the increase at the turn of the year 2000. During this period, the Chinese oil consumption increased as well (Figure 2). China turned from an oil-exporting country to an oil-importing country in 1993. Importing oil and the subsequent move toward dependency, by which we mean the ratio of oil imports to consumption, follows a trend. In 2004, the quantity of China’s imported oil was 120,000 thousand tons, and the dependency ratio, \(^1\) is 42% (Figure 3).

\(^1\) The dependency is the amount of oil imports divided by the amount of oil consumption.
Figure 1.1. The Cushing West Texas Intermediate (WTI) spot price (RMB) (1986-2002)

Source: U.S. Energy Information Administration (EIA)

Figure 1.2. Leading oil consumers.

In the figure 3, solid columns are the Chinese oil consumption from 1993, and the lighter columns show oil consumption. The trend of both consumption and imports of oil is positive. The dots connected by a line are the ratio of imports to consumption, indicating how reliant China’s oil consumption is on imports. The import of the above graphics is to show that China’s economy is more and more dependent on the price of oil. This paper will analyze the increasingly conspicuous impact of oil fluctuations of the past two decades on China’s economy.
2 LITERATURE REVIEW

In the past two decades, the price of oil has fluctuated substantially. These fluctuations had a considerable impact on the Chinese economy. Economists have examined the impact by analyzing different mechanisms. Several approaches found in the literature are discussed below.

2.1 Real Balance Effect

One way in which the rising price of oil can have a negative impact on the economy is through the Real balance effect. Pierce and Enzler (1974) suggest that the increase in price of oil would drive the prices of other products up as well. For an unchanged supply of money, real balances will fall, raising interest rates and causing a recession.

The real balance effect can be offset by the proper adjustment of monetary policy. Only when monetary policy cannot adjust to the price shock in a timely fashion, will the real balance effect have an effect. For example, in the early 1990s China was undergoing a period of high inflation rate. During that time, it was very hard to increase the rate of increase of the supply of currency. Consequently, higher prices reduced the supply of real balances which raised interest rates and had an unfavourable impact on China’s economy.
2.2 Supply Shock Effect

"Supply shock effect" explains the impact of oil price fluctuations on the economy from an aggregate supply perspective. Barro (1984) argued that oil is the basic factor in producing investment. The rise in the price of oil means that oil is more expensive relative to other investment inputs. Therefore, the amount of oil used in production will fall, leading to a decline of labour productivity as producers substitute labour for oil. Falling productivity implies a corresponding fall in the wage rate. Because of an assumed downward rigidity of nominal wages, manufacturers are unable to hire additional workers that they need. This induces a further decrease of total output.

Today, China is in a period of heavy-industrialization. Oil is unavoidably a fundamental input. The increase in oil prices undoubtedly aggravates the difficulty in generating jobs as overall output does not increase as much as it might were oil prices stable. For China, a country with the largest population in the world, employment is a big issue. Many jobs vanish as a result of the increase in the price of oil, producing an adverse impact on the economy (each additional 10dollars/Barrel in the price of oil reduces the growth rate of employment decreases by 0.4 %(Yuan Jia, 2004). Following the recent run-up in prices, the "Supply shock effect" will have an influence on China’s economy.

2.3 Income Transferring Effect

Fried & Schulze (1975) emphasized the "Income transferring effect". They indicated that rise in oil price leads to purchasing power transfers from in oil-importing
countries to oil-exporting countries. Because of the decline of purchasing power, oil-importing countries’ consumption demand shrinks and induces a recession in their countries’ economy.

From 1993, China turned from an oil-exporting country to oil-importing country and the quantity of imported oil has been getting larger and larger (Figure 3). That means, China needs to pay more for the increased imports. Since China is a relative cheap producer of goods, it is an exporter. Exports have been the one of the engines that impels China’s economy. With higher oil prices, China’s products cost more, and possibly relatively more. Therefore, if the price of oil remains high, China’s economy may be influenced negatively.

2.4 Sectoral Shifts Effects

Lilien(1982) and Hamilton(1988) used “Sectoral Shifts Effect” to explain the impact of changing oil prices on economy. In their papers, they used a multi-sector model of an economy to explain the sectoral shifts. Due to imperfect labour mobility and training costs, it is costly to shift labour and capital inputs from one sector to another. Therefore, when there is a price shock, aggregate employment falls in the adversely affected sectors. Workers in such sectors are inclined to remain unemployed while they wait for better labour conditions rather than moving to another sector.

Therefore, for an economy that has several sectors, oil price fluctuations have different influences on different sectors. When oil prices are rising, the labour and capital demand in energy-intensive sectors, will fall while labour and capital demand in some
other sectors, like energy-developing sectors, will increase. However, because the transferring cost of specialized labour is very high when it transfers from one sector to another, it is costly to relocate the resources among the different sectors in a short time. The bad consequence is elevated unemployment and the inefficient usage of resources. That leads to recession.

As for China, the oil-exploiting industry is monopolistic, so labour and capital are even harder to transfer between oil-exploiting sector and other sectors than they would be had they been competitive. That means, the unemployment in oil-consuming sectors will decline and because they are large, they influence the overall level of employment.

2.5 Microeffect

The jolt of oil price shocks not only has a direct effect on the macro-economy, but also indirectly influences the economy through the decisions made by individuals. Atkeson and Kehoe (1999) argued that when the price of oil is increasing, a profit-maximizing company should reduce the consumption of energy. However, the capital stock is fixed in the short term. In the short run, it cannot adjust to fully reflect the cost of higher energy leading to an upward sloping short run cost schedule. In addition, higher transition cost may shift the short run cost schedule upward in response to higher oil prices. This reduces the quantity of output and leads to recession. Moreover, rise in the current price of oil also increases the uncertainty of its future price. The uncertainty of future prices usually will delay the individual investment or consumption. Uncertainty about future oil prices reduces the demand for investment and accordingly has a negative
impact on economy. Hamilton (1988) suggests that, uncertainty about oil prices will postpone the consumption of durables, such as cars, and start the downturn shift in demand and economy.

Figure 2.1. The WTI Price and Household consumption expenditure of China (1986-2002)

Figure 4 shows the total household consumption expenditure of China from 1986 to 2002. Comparing the trend in the price of oil with the consumption, we can find when there is an increase in oil price, a decreasing rate of growth in consumption occurs. The consumption level is related to the fluctuations of oil prices.

Thus far, we have looked from the perspective of several different economists. If we consider the effect of each of the mechanisms above individually, the fluctuations of oil prices have little effect on economy, however if we combine all the mechanisms
together, then the overall effect will be notable (Liu, 2005). Therefore, this paper will only analyze the overall effect, and will not consider the empirical consequences of each individually.

After asking what the effects are of an oil jolt to the economy, we can also wonder if the effects are symmetric: are they the same when the price goes up as when it goes down. Much empirical research has indicated that the impact of oil fluctuations are asymmetric. The asymmetry means that depending on the direction of price waves, rising and falling, the impact on economy is different. The two effects are asymmetric: rising oil prices have a larger effect than decreasing prices (Mork, 1989). In Mork’s paper, the results strongly confirm a large negative effect of an oil price increase on GDP. Mork (1993) divided oil fluctuations into periods of increasing prices and of decreasing prices. He found that the oil price increases were the main reason for the recession in United States, however, the negative price changes were not the key factor for increased economic growth. Research done by Mork showed that, the rise in the price of oil in 1970’s did have a large negative impact on America’s economy, whereas the fall in the price of oil in 1980’s had negligible effect. Juncal Cunado and Fernando Perez de (2003) found the same result for some European countries. A rise in the oil price has a notably negative effect on Gross Industrial Production. A fall in price however does not have the some quantitative effect.

We should also notice that the above-mentioned research is primarily based on developed countries. GDP per capita was often used in the models to be the dependent variable that symbolized the output of the whole economy. For developed countries, such
as United States, there is no distinct gap between industry and agriculture, so GDP is a reasonable indicator of economy’s state. However, for China, a developing country with a binary economy structure, energy consumption is low in villages while it is high in cities leaving a big gap between the two. GDP which draws on both the cities and the countryside does not reflect the development model of China with respect to oil consumption. Oil use is primarily based in the cities. Consequently, this paper will use China’s Gross Industrial Product (GIP) as the indicator of the economy.\footnote{Gross Industrial Product includes mining, manufacturing and the production of electronic power, gas and water.}
3 METHODS

3.1 Variables and Data

This paper uses China’s Gross Industrial Product (GIP) as the dependent variable, representing the economic developing level of China. Because population is an important factor in the economy of China, we use GIP per capita (GIPC) measured in renminbi(RMB).

\[\text{GIPC} = \frac{\text{GIP}}{\text{Population}} \]

Where Gross Industrial Product, Population and Exchange Rate (Renminbi to US Dollars) are from the China’s Yearbook.

I chose Cushing West Texas Intermediate (WTI) spot price as the price independent variable P (changed to RMB), representing the international oil prices. The Data of WTI comes from U.S. Energy Information Administration (EIA). These data are annual data from 1986 to 2002.

Because taking the logarithm does not change the cointegration between variables, in order to linearize data, eliminate the heteroskedasticity in the series, I took the natural logarithm of GIPC and P, using Ln representing natural logarithm, that is: LnGIPC and LnP.
3.2 Stationarity Test

For time series, before running a regression, we need to discover if the series are stationary. Based on the cointegration test method, we apply Eviews software, taking variables LnGIPC and LnP as the test variables, and use the Augmented Dickey-Fuller (ADF) stationarity test. The results are shown in Table 1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>ADF Test Statistics</th>
<th>5% Critical Value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LnGIPC</td>
<td>-2.652350</td>
<td>-3.7611</td>
<td>Non-stationary</td>
</tr>
<tr>
<td>D(LnGIPC)</td>
<td>-3.868207</td>
<td>-3.7921</td>
<td>Stationary</td>
</tr>
<tr>
<td>LnP</td>
<td>-2.833410</td>
<td>-3.7611</td>
<td>Non-stationary</td>
</tr>
<tr>
<td>D(LnP)</td>
<td>-4.485039</td>
<td>-3.7921</td>
<td>Stationary</td>
</tr>
</tbody>
</table>

From Table 1, we can see the level of both variables are non-stationary, but their first differences are stationary, namely, they are both I(1) series.

3.3 Cointegration Test

Now that LnGIPC and LnP are non-stationary, and their first differences are stationary, therefore, they may be cointegrated. We conduct the Johansen Cointegration Test on these two variables. The result is shown in Table 2.
Table 3.2. Johansen Cointegration Test

<table>
<thead>
<tr>
<th>Eigen value</th>
<th>5 Percent Critical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.583703</td>
<td>25.32</td>
</tr>
<tr>
<td>0.348074</td>
<td>12.25</td>
</tr>
</tbody>
</table>

The result in Table 2 shows that LnGIPC and LnP are not cointegrated, so we cannot directly use LnGIPC and LnP—the level variables, to run the regression. What we can do is to use the first differences of these variables instead of the level of the variables to run the regression, as their first differences are stationary.

3.4 Regression

Considering the asymmetry of effects of oil price fluctuations on the economy, this paper establishes two models: the Symmetric Effect Model and the Asymmetric Effect Model.

(1) Symmetric Effect Model

Symmetric Effect Model neglects the asymmetric effects of oil price change, the regression equation is

\[\Delta LnGIPC = C + \alpha \Delta LnGIPC_{-1} + \beta \Delta LnP_{-1} + \varepsilon \]

Where LnGIPC_{-1} is the Gross Industrial Product per Capita of the previous period, LnP_{-1} is the logarithmic price of previous period, C is constant, and \(\varepsilon \) is the error term. The regression result is shown in Table 3.
Table 3.3. Regression results for symmetric model

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>Adjusted R-squared</th>
<th>Durbin-Watson stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.126595 (0.028948)*</td>
<td>-0.040380 (0.017452)*</td>
<td>0.402441</td>
<td>1.869792</td>
</tr>
</tbody>
</table>

Note: "*" indicate the coefficient is significant at 5% level.

From table 3, the symmetric model indicates that when the international oil price increases 10%, the gross industrial product per capita decreases 0.4%. The adjusted R-squared is 0.402, saying that this symmetric model can explain 40% of the gross industrial product per capita.

(2) Asymmetric Effect Model

Asymmetric Effect Model, which can also called price-decomposed model, considers the asymmetric effects of oil price change, partitioning the price change to positive change and negative change, that is:

$$\Delta LnP = PLnP + NlnP$$

If the oil price increases, PLnP is the logarithmic current oil price minus the logarithmic price oil of one period earlier, otherwise, PLnP=0; if the oil price decreases, then NlnP is logarithmic price oil of the previous period less the logarithmic price of oil in the current time period, otherwise NlnP=0.

Now the regression equation for the asymmetric model is

$$\Delta LnGIPC = C + \alpha LnGIPC_{-1} + \beta_1 P \ln P - \beta_2 N \ln P + \epsilon$$

Running the regression, the result is shown in Table 4.
Table 3.4. Regression results for asymmetric model

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta_1)</th>
<th>(\beta_2)</th>
<th>Adjusted R-squared</th>
<th>Durbin-Watson stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.209512</td>
<td>-0.069321</td>
<td>0.014859</td>
<td>0.574749</td>
<td>1.942224</td>
</tr>
<tr>
<td>(0.046891)*</td>
<td>(0.021643)*</td>
<td>(0.033998)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: "*" indicate the coefficient is significant at 5% level.

From table 4, in the price-decomposed model, when the international price of oil increases 10%, the Gross Industrial Product decreases by 0.69%; in contrast, when the price falls by 10%, then the Gross Industrial Product per Capita will rise only 0.14%, furthermore, not significant under 5% significance level. This result also supports the viewpoint that oil fluctuations have asymmetric effects on economy.

Comparing these two models, we can see that after we decompose the oil price change to positive change and negative change, the price's increase has a larger impact on economy than the unpartitioned price. Moreover, the asymmetric does a better job in explaining the variables, for the adjusted R-squared go up from 0.402 to 0.574.
4 CONCLUSION

From the regressions discussed above, international oil prices have a substantial effect on China’s economy. On average, the elasticity of gross industrial production per capita to the international oil price approximately is -0.04. However, if considering the asymmetric influences of oil price waves, by distinguishing the positive oil price shocks from the negative oil price shocks, the elasticity of China’s gross industrial product per capita to the positive changes in the price of oil becomes to -0.069 or so. Furthermore, the negative effect of increased oil price far outweighs the positive effect of decreased oil price. The asymmetric model better explains the story.

As the structure of China’s energy becomes more complex, China’s demand for oil will increase continuously. China has to overcome the uncertainty caused by the oil fluctuations and improve its ability to cope with price increases. It may consider the policy to control the risk of high oil prices and to enhance energy conservation.
APPENDICES

5.1 Data

<table>
<thead>
<tr>
<th>Year</th>
<th>GIP (100 million yuan)</th>
<th>Consumption (100 million yuan)</th>
<th>WTI Price (yuan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>3967</td>
<td>5175</td>
<td>51.96464</td>
</tr>
<tr>
<td>1987</td>
<td>4585.8</td>
<td>5961</td>
<td>71.46432</td>
</tr>
<tr>
<td>1988</td>
<td>5777.2</td>
<td>7633</td>
<td>59.441937</td>
</tr>
<tr>
<td>1989</td>
<td>6484</td>
<td>8523</td>
<td>73.946564</td>
</tr>
<tr>
<td>1990</td>
<td>6858</td>
<td>9113</td>
<td>117.231896</td>
</tr>
<tr>
<td>1991</td>
<td>8087.1</td>
<td>10316</td>
<td>114.663882</td>
</tr>
<tr>
<td>1992</td>
<td>10284.5</td>
<td>12000</td>
<td>113.435322</td>
</tr>
<tr>
<td>1993</td>
<td>14143.8</td>
<td>15300</td>
<td>106.19366</td>
</tr>
<tr>
<td>1994</td>
<td>19359.6</td>
<td>19800</td>
<td>148.24164</td>
</tr>
<tr>
<td>1995</td>
<td>24718.3</td>
<td>26944</td>
<td>153.90893</td>
</tr>
<tr>
<td>1996</td>
<td>29082.6</td>
<td>32031</td>
<td>183.910104</td>
</tr>
<tr>
<td>1997</td>
<td>32412.1</td>
<td>36046</td>
<td>170.852778</td>
</tr>
<tr>
<td>1998</td>
<td>33387.9</td>
<td>37707</td>
<td>182.072305</td>
</tr>
<tr>
<td>1999</td>
<td>35087.2</td>
<td>42102</td>
<td>196.30164</td>
</tr>
<tr>
<td>2000</td>
<td>39047.3</td>
<td>44003</td>
<td>251.497792</td>
</tr>
<tr>
<td>2001</td>
<td>42374.6</td>
<td>44971</td>
<td>215.03646</td>
</tr>
<tr>
<td>2002</td>
<td>46535.7</td>
<td>47404</td>
<td>216.69186</td>
</tr>
</tbody>
</table>
5.2 ADF Test

5.2.1 Augmented Dickey-Fuller Unit Root Test on LNGIPC.

<table>
<thead>
<tr>
<th>ADF Test Statistic</th>
<th>1% Critical Value*</th>
<th>5% Critical Value</th>
<th>10% Critical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.652350</td>
<td>-4.7315</td>
<td>-3.7611</td>
<td>-3.3228</td>
</tr>
</tbody>
</table>

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LNGIPC)
Method: Least Squares
Date: 02/17/06 Time: 20:47
Sample(adjusted): 1988 2002
Included observations: 15 after adjusting endpoints

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNGIPC(-1)</td>
<td>-0.873297</td>
<td>0.329254</td>
<td>-2.652350</td>
<td>0.0225</td>
</tr>
<tr>
<td>D(LNGIPC(-1))</td>
<td>0.320197</td>
<td>0.285590</td>
<td>1.121179</td>
<td>0.2861</td>
</tr>
<tr>
<td>C</td>
<td>4.010741</td>
<td>1.474603</td>
<td>2.719878</td>
<td>0.0199</td>
</tr>
<tr>
<td>@TREND(1986)</td>
<td>0.081831</td>
<td>0.031684</td>
<td>2.582696</td>
<td>0.0255</td>
</tr>
</tbody>
</table>

R-squared 0.398298 Mean dependent var 0.090426
Adjusted R-squared 0.234197 S.D. dependent var 0.126592
S.E. of regression 0.110781 Akaike info criterion -1.339352
Sum squared resid 0.134996 Schwarz criterion -1.150539
Log likelihood 14.04514 F-statistic 2.427155
Durbin-Watson stat 1.844006 Prob(F-statistic) 0.120596
5.2.2 Augmented Dickey-Fuller Unit Root Test on D(LNGIPC)

ADF Test Statistic
-3.868207
1% Critical Value*
-4.8025
5% Critical Value
-3.7921
10% Critical Value
-3.3393

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LNGIPC,2)
Method: Least Squares

Date: 02/17/06 Time: 20:58

Sample(adjusted): 1989 2002

Included observations: 14 after adjusting endpoints

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(LNGIPC(-1))</td>
<td>-1.530578</td>
<td>0.406708</td>
<td>-3.763335</td>
<td>0.0037</td>
</tr>
<tr>
<td>D(LNGIPC(-1),2)</td>
<td>0.385073</td>
<td>0.272265</td>
<td>1.414334</td>
<td>0.1876</td>
</tr>
<tr>
<td>C</td>
<td>0.086506</td>
<td>0.094795</td>
<td>0.912561</td>
<td>0.3829</td>
</tr>
<tr>
<td>@TREND(1986)</td>
<td>0.004404</td>
<td>0.008496</td>
<td>0.518367</td>
<td>0.6155</td>
</tr>
</tbody>
</table>

R-squared 0.653410 Mean dependent var -0.010267

Adjusted R-squared 0.549433 S.D. dependent var 0.190858

S.E. of regression 0.128112 Akaike info criterion -1.036871

Sum squared resid 0.164126 Schwarz criterion -0.854283

Log likelihood 11.25809 F-statistic 6.284179

Durbin-Watson stat 2.310529 Prob(F-statistic) 0.011411
5.2.3 Augmented Dickey-Fuller Unit Root Test on LNP

ADF Test Statistic -2.83341 1% Critical Value* -4.7315
Ch
5% Critical Value -3.7611
10% Critical Value -3.3228

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LNP)
Method: Least Squares
Date: 02/17/06 Time: 21:00
Sample(adjusted): 1988 2002
Included observations: 15 after adjusting endpoints

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNP(-1)</td>
<td>-0.977002</td>
<td>0.344815</td>
<td>-2.833410</td>
<td>0.0163</td>
</tr>
<tr>
<td>D(LNP(-1))</td>
<td>0.367013</td>
<td>0.277969</td>
<td>1.320339</td>
<td>0.2135</td>
</tr>
<tr>
<td>C</td>
<td>2.779868</td>
<td>0.994006</td>
<td>2.796631</td>
<td>0.0174</td>
</tr>
<tr>
<td>@TREND(1986)</td>
<td>0.018285</td>
<td>0.011798</td>
<td>1.549869</td>
<td>0.1494</td>
</tr>
</tbody>
</table>

R-squared 0.437101 Mean dependent var 0.020672
Adjusted R-squared 0.283583 S.D. dependent var 0.213960
S.E. of regression 0.181099 Akaike info criterion -0.356373
Sum squared resid 0.360763 Schwarz criterion -0.167559
Log likelihood 6.672796 F-statistic 2.847230
Durbin-Watson stat 1.627627 Prob(F-statistic) 0.086389
5.2.4 Augmented dickey-Fuller Unit Root Test on D(LNP)

ADF Test Statistic -4.485039 1% Critical Value* -4.8025
5% Critical Value -3.7921
10% Critical Value -3.3393

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LNP,2)

Method: Least Squares

Date: 02/17/06 Time: 21:00

Sample(adjusted): 1989 2002

Included observations: 14 after adjusting endpoints

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(LNP(-1))</td>
<td>-1.709807</td>
<td>0.381224</td>
<td>-4.485039</td>
<td>0.0012</td>
</tr>
<tr>
<td>D(LNP(-1),2)</td>
<td>0.567713</td>
<td>0.250782</td>
<td>2.263775</td>
<td>0.0471</td>
</tr>
<tr>
<td>C</td>
<td>0.030684</td>
<td>0.135997</td>
<td>0.225624</td>
<td>0.8260</td>
</tr>
<tr>
<td>@TREND(1986)</td>
<td>0.003808</td>
<td>0.013358</td>
<td>0.285061</td>
<td>0.7814</td>
</tr>
</tbody>
</table>

R-squared 0.700458 Mean dependent var 0.013705
Adjusted R-squared 0.610596 S.D. dependent var 0.317520
S.E. of regression 0.198140 Akaike info criterion -0.164732
Sum squared resid 0.392594 Schwarz criterion 0.017856
Log likelihood 5.153124 F-statistic 7.794782
Durbin-Watson stat 1.390554 Prob(F-statistic) 0.005653
5.3 Johansen Cointegration Test

Date: 02/17/06 Time: 21:01
Sample: 1986 2002
Included observations: 15

Test assumption:
Linear
deterministic trend
in the data

Series: LNGIPC LNP
Lags interval: 1 to 1

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Likelihood Ratio</th>
<th>5 Percent Critical Value</th>
<th>1 Percent Critical Value</th>
<th>Hypothesized No. of CE(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.583703</td>
<td>19.56272</td>
<td>25.32</td>
<td>30.45</td>
<td>None</td>
</tr>
<tr>
<td>0.348074</td>
<td>6.417368</td>
<td>12.25</td>
<td>16.26</td>
<td>At most 1</td>
</tr>
</tbody>
</table>

(denotes rejection of the hypothesis at 5%(1%) significance level

L.R. rejects any cointegration at 5% significance level

Unnormalized Cointegrating Coefficients:

<table>
<thead>
<tr>
<th>LNGIPC</th>
<th>LNP</th>
<th>@TREND(87)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.575419</td>
<td>-1.863328</td>
<td>0.273178</td>
</tr>
<tr>
<td>2.040544</td>
<td>-0.937105</td>
<td>-0.171220</td>
</tr>
</tbody>
</table>

Normalized Cointegrating Coefficients: 1 Cointegrating Equation(s)

<table>
<thead>
<tr>
<th>LNGIPC</th>
<th>LNP</th>
<th>@TREND(87)</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000</td>
<td>0.723505</td>
<td>-0.106071</td>
<td>-6.585566</td>
</tr>
</tbody>
</table>

(0.20622) (0.00599)

Log likelihood 19.62339
5.4 Regression

5.4.1 Symmetric Price Change Model

\[\Delta \ln GIPC = C + \alpha \Delta \ln GIPC_{-1} + \beta \Delta \ln P_{-1} + \epsilon \]

Dependent Variable: D(LNGIPC)

Method: Least Squares

Date: 02/17/06 Time: 21:05

Sample(adjusted): 1988-2002

Included observations: 15 after adjusting endpoints

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.103197</td>
<td>0.044469</td>
<td>2.320643</td>
<td>0.0314</td>
</tr>
<tr>
<td>D(LNGIPC(-1))</td>
<td>0.126595</td>
<td>0.028948</td>
<td>4.373186</td>
<td>0.0107</td>
</tr>
<tr>
<td>D(LNP(-1))</td>
<td>-0.040380</td>
<td>0.017452</td>
<td>-2.313774</td>
<td>0.0365</td>
</tr>
</tbody>
</table>

R-squared 0.445193 Mean dependent var 0.090426
Adjusted R-squared 0.402441 S.D. dependent var 0.126592
S.E. of regression 0.135485 Akaike info criterion -0.983054
Sum squared resid 0.220274 Schwarz criterion -0.841444
Log likelihood 10.37291 F-statistic 2.980183
Durbin-Watson stat 1.869792 Prob(F-statistic) 0.025686
5.4.2 Asymmetric Price Change Model

\[\Delta \ln GIPC = C + \alpha \ln GIPC_{-1} + \beta_1 \ln P_{-1} + \beta_2 N \ln P_{-1} + \varepsilon \]

Dependent Variable: D(LNGIPC)

Method: Least Squares

Date: 02/17/06 Time: 21:07

Sample(adjusted): 1989 2002

Included observations: 14 after adjusting endpoints

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.088315</td>
<td>0.044958</td>
<td>1.964386</td>
<td>0.0779</td>
</tr>
<tr>
<td>D(PLNP(-1))</td>
<td>-0.069321</td>
<td>0.021643</td>
<td>-3.202929</td>
<td>0.0126</td>
</tr>
<tr>
<td>D(NLNP(-1))</td>
<td>0.014859</td>
<td>0.033998</td>
<td>0.437286</td>
<td>0.6273</td>
</tr>
<tr>
<td>D(LNGIPC(-1))</td>
<td>0.209512</td>
<td>0.046891</td>
<td>4.468064</td>
<td>0.0102</td>
</tr>
</tbody>
</table>

R-squared 0.613962 **Mean dependent var** 0.080389

Adjusted R-squared 0.574749 **S.D. dependent var** 0.125022

S.E. of regression 0.136655 **Akaike info criterion** -0.907757

Sum squared resid 0.186746 **Schwarz criterion** -0.725169

Log likelihood 10.35430 **F-statistic** 2.029364

Durbin-Watson stat 1.942224 **Prob(F-statistic)** 0.048916
6 BIBIOGRAPHY

