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Abstract

A circadian clock (sometimes called a circadian oscillator or rhythm) oscillates roughly once
every 24 hours, enabling us to organize our physical and mental activities at the time that
is most optimal. The Nobel Prize in physiology or medicine in 2017 was awarded to the sci-
entists who discovered the molecular mechanisms controlling the circadian clock.[1] In this
thesis, we study the circadian clock in a physical and mathematical setting. The modified
Kuramoto model which describes the synchronization between coupled oscillators is chosen
as the equation of motion to study the circadian clock of living organisms. More specifically,
we picture our physical system as two individual oscillators, one the solar-cycle oscillator
and the other an internal-clock oscillator of a living organism. As in the real world, there is
always random noise that prevents living organisms from having perfect knowledge of the
outside world. Noise can either come from the environmental background or uncertainty in
the internal processing of the organism. The deterministic and stochastic versions of the
modified Kuramoto model are separately analyzed. The cost analysis based on the phase
synchronization between the two oscillators in both deterministic and stochastic environ-
ments can reflect the optimization problem of an organism’s circadian clock. Our approach
of analyzing the circadian clock can provide us an insight to regulate the operation of a
circadian clock within a noisy environment and with internal noise.
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Chapter 1

Introduction

The 24-hour sleep-wake cycle is de�nitely not an exclusively human trait. In fact, this is a

common physiological process called the circadian clock (or circadian rhythm) that can be

found among mammals, plants and even cyanobacteria.[2][3][4] Moreover, the de�nition of

the circadian clock is far more than just a sleep-wake 24 hour cycle that tracks the solar

time. Much research has shown that the circadian clock is linked to our optimal feeding

pattern, hormone production, cognitive ability and beyond. Recent research suggested that

obesity and metabolic syndrome were observed in mutant mice with no circadian clock

gene.[5]

The possession of the clock gene in our DNA is bene�cial to us in terms of health and

capitalizing on environmental resources. However, there are other so-called free-running

organisms that are not entrained to the 24-hour solar time when they are in an environment

without external stimulus. Their sleep-wake cycle is out of phase with other circadian clocks

in their gene.[6] Therefore, it is not hard to imagine that there are cost-driven optimal

responses for a living organism to decide whether they should stay synchronized with the

external stimulus such as the sun. In this thesis, we will provide a general framework to

interpret the level of optimization of an organism's circadian oscillator by performing cost

analysis, based on the phase mismatch between the solar cycle oscillator and an organism's

own circadian oscillator.

In fact, there are many mathematical models that biologists currently use to model

the mammalian circadian clocks. One type of model relies on the mutual coupling between

multiple oscillators, similar to the Kuramoto model.[7] The other type of model relies on

computational biological simulations of interactions between di�erent cells and genes. The

latter model type has its own disadvantage: computational inconvenience. In order to sim-

ulate a biological event, a large numbers of variables need to be introduced within a set of

equations to describe all the biological interactions.[8] As a result, they are computationally

heavy and overly complicated matters, unlike the one that we are proposing.

Actually, it is quite fascinating that a mammalian circadian clock is synchronized with

solar time so naturally. But such a phenomenon is not unique, as there are many similar ex-
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amples of stable phase synchronization in nature, like the synchronization of metronomes,

birds �ying in a group, and �ashing of �re�ies.[9] These common phenomena of collec-

tive synchronization motivated the search for mathematical equations to describe them.

The most popular current model that describes these phenomena is called the Kuramoto

model.[9] This new mathematical approach was formulated by Winfree based on limit-cycle

oscillators with a shared coupling function. Kuramoto expanded upon Winfree's work and

solved the model with the perturbation method and equally weighted sinusoidal coupling.[9]

The entrainability of a circadian clock suggests that it can be modeled by the Kuramoto

model. In other words, this property of circadian rhythm indicates that an organism's

internal clock oscillator can be coupled to an external stimulus such as the sun. The value of

the coupling constant is directly proportional to the strength of in�uence. Another property

of a circadian oscillator is a particular organism can have a di�erent preferred frequency of

oscillation. One example is the trashline orbweaver, which has a circadian clock of 18.5 hour

cycle, but can be entrained to a 24 hour solar cycle. [10] This implies di�erent organisms can

have their own circadian oscillator with distinctive intrinsic frequency, but still be coupled

to the same solar-cycle oscillator.

Beyond the solar-cycle oscillator, numerous environmental factors can keep the sleep-

wake cycle of the organism out of phase with other circadian clocks embedded in other

biological constituents. The absence of accurately measured external cues can a�ect the

sleep-wake cycle of organisms. This leads to the use of a stochastic Kuramoto model. Noise

in the model can either come from the environment, uncertainty in the internal processing

of the organism, or both. An organism can be free-running when their access to the external

environment is partially or totally shielded.

To explore the optimal regulation of the circadian clock, we chose the deterministic

and stochastic versions of the modi�ed Kuramoto model as equations of motion for an

organism's circadian clock. To simplify the problem, we assume an organism just has one

circadian clock, even though that is generally not true: there are di�erent circadian clocks

within an organism, responsible for the sleep-wake cycle, cell reproduction and brain-wave

activities, etc. However, these di�erent circadian clocks have their own internal and external

cues of operations, and thus can be treated as totally independent oscillators.

In this thesis, we exclusively focus on the circadian clock that is tracking the solar

time cycle. By assuming that the circadian clock oscillator is operating in its most optimal

setting when its phase is perfectly in sync with the solar cycle oscillator, we can model that

the cost of operating a circadian clock is proportional to the phase mismatch between the

two oscillators. In addition, either an organism is within a noisy environment or has noisy

internal biological mechanisms, giving the organism a harder time to couple with the other

oscillator, hence we expect these conditions will increase the cost of operating the circadian

clock. In this thesis, we will explore the behavior of such a system under separate analysis

of these various cases.
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Chapter 2

Theoretical Background

2.1 Models of Synchronization of Circadian Clocks

The classical Kuramoto model describes frequency synchronization among a network of

limit-cycle oscillators.[9] By assuming each individual oscillatori has internal frequency! i ,

and a network of such oscillators are mutually coupled to a nearby oscillatorj , the model

can be written as:

_� i = ! i +
NX

j =1

K i;j sin(� j � � i ); i = 1 ; :::; N; K i;j > 0: (2.1)

where � is the phase of each oscillator,N is the number of oscillators within the network,

and K i;j is the mutual coupling constant shared among each pair of coupled oscillatorsi and

j .[9] For a large network of oscillators, the mutual couplings produce a many-body problem,

that can be reduced to a single-body problem using the mean-�eld approximation.[9] Hence,

the model of Eq. 2.1 can be rewritten as:

_� i = ! i +
K
N

NX

j =1

sin(� j � � i ); i = 1 ; :::; N; K > 0: (2.2)

We modify the classical Kuramoto model to have a solar-cycle oscillator with dynamics

given by:

� s(t) = ! s � t; _� s = ! s; (2.3)

where � s is the phase of the solar-cycle oscillator with natural internal frequency of! s.

The solar cycle oscillator is not entrained by any external source, therefore no coupling is

present in the equation. By contrast, the other oscillator in our model (which represents an

organism's circadian clock) is coupled to the solar-cycle oscillator according to:

_� m = ! m + K sin(� s � � m); K > 0; (2.4)
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where� m is the phase of the circadian-clock oscillator of an organism with internal frequency

! m and coupled to the solar-cycle oscillator� s via external entrainment. The time-courses

As and Am of the level of each oscillator are given by

As = Bs sin(� s); Am = Bm sin(� m); (2.5)

where Bs and Bm are the factors scalingAs and Am to appropriate units.

In the real world, there is always random noise that can a�ect an organism's response

to internal and external entrainment. For the case of internal noise, an additive noise is

introduced to Eq. 2.2. The stochastic modi�ed Kuramoto model can be rewritten as a

Langevin equation if the noise is a Gaussian white noise:

_� �
m;int = ! m + K sin(� s � � m) + cint � int ; (2.6)

where cint is a scaling factor of the internal noise level, and� in _� �
m;int indicates that the

di�erential equation is stochastic with additive noise � int that in�uences the organism's

perception of internal frequency! m . The additive noise � int has zero expectation value:

h� int (t)i = 0 : (2.7)

For noise from the external environment, we introduce it inside the sinusoidal coupling

function of Eq. 2.2, with the second subscript s in indicating that the noise a�ects the

organism's measurement of external stimulus� s:

_� �
m;ext = ! m + K sin(� s � � m + cext � ext ); (2.8)

where cext is a scaling factor of the external noise level, and� ext is the noise a�ecting the

external entrainment of the circadian oscillator with zero expectation value

h� ext (t)i = 0 : (2.9)

It is useful to inspect Eq. 2.8 in more detail since the external noise is embedded inside

the coupling function. We can group cext � ext together with � s:

� �
s = � s + cext � ext = ! s � t + cext � ext = ! s � (t +

cext � ext

! s
) (2.10)

where � indicates that the current � �
s is stochastic. Moreover, after some algebraic manip-

ulations as shown in Eq. 2.10, we can rede�ne the stochastic version of� s that has the

time-delay property:

� � =
cext � ext

! s
; � �

s = ! s � (t + � � ) = � s(t + � � ); (2.11)
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where � � denotes the time-delay stochastic constant. It is interesting to see that Eq. 2.8

also has time-delay property which can be overlooked at �rst. By combining Eq. 2.10 and

2.11, we can rewrite Eq. 2.8 as:

_� �
m;ext = ! m + K sin(� s(t + � � ) � � m): (2.12)

This is di�cult to solve, since the noise can turn out to be a multiplicative noise, and

the time-delayed Kuramoto model is relatively unexplored. The stochastic version of our

modi�ed Kuramoto model with both external and internal noise can be written as:

_� ��
m = ! m + K sin(� s � � m + cext � ext ) + cint � int (2.13a)

_� ��
m = ! m + K sin(� s(t + � � ) � � m) + cint � int (2.13b)

where �� in _� ��
m indicates that the equation of motion includes two stochastic processes.

2.2 Methods of ODE and SDE Integrations

The most common numerical integration methods for the Kuramoto model is the fourth-

order Runge-Kutta method for the deterministic case, and the Euler-Maruyama method

for the stochastic case.[11] [12] However, these two commonly used methods are not time-

reversible, hence we develop our own integration methods. The deterministic and stochas-

tic version of our modi�ed Kuramoto model can be numerically integrated by the time-

reversible deterministic and stochastic leapfrog integrator.

2.2.1 Deterministic Leapfrog Integrator

For our deterministic model, one iteration of numerical integration can be split into two frac-

tional steps, with each fractional step updating � m over half of a full time step. Such integra-

tion method is discussed in Sivak et. al.'s "Time Step Rescaling Recovers Continuous-Time

Dynamical Properties for Discrete-Time Langevin Integration of Nonequilibrium Systems".[13]

Following their integration method, we develop a new integration algorithm for our modi�ed

Kuramoto model:

� m;n+ 1
2

= � m;n +
1
2

d� m;n

dt
� t (2.14a)

= � m;n +
1
2

[! m + K sin(� s;n � � m;n)]� t; (2.14b)

� m;n+1 = � m;n+ 1
2

+
1
2

d� m;n+ 1
2

dt
� t (2.14c)

= � m;n+ 1
2

+
1
2

[! m + K sin(� s;n+ 1
2

� � m;n+ 1
2
)]� t (2.14d)

where � t is the step-size in time andn denotes the current step.
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2.2.2 Stochastic Leapfrog Integrator - Wiener Process

For the stochastic version of our modi�ed Kuramoto model, we have to de�ne the stochastic

process used in our modeling. The Wiener process is the most commonly applied stochastic

process in modeling of the stochastic Kuramoto model. [12] However, it is mathematically

challenging to solve its probability density function. Instead, we primarily use a di�eren-

tiable Gaussian process in our analysis. But we can still construct our numerical integration

method using a Wiener process, because it is a topic that may reward further study.

By de�nition, each increment of a Wiener process is independent and has a normal

distribution, N (0; � t). The Wiener process can be de�ned by:

Wt+�t � Wt = � Wt � N (0; � t) ; (2.15)

where Wt is the Wiener process at timet and � Wt is an independent increment of the

Wiener process. A Gaussian white noise� int in Eq. 2.6 can be replaced as an increment of

the Wiener process:

� Wt � N (0; � t) = � int (t); � 2
int = h�� 2

int (t)i = � t: (2.16)

Then the leapfrog integrator of Eq. 2.14 needs to take the new stochastic component into

consideration. From the above mentioned paper: "Time Step Rescaling Recovers Continuous-

Time Dynamical Properties for Discrete-Time Langevin Integration of Nonequilibrium Sys-

tems", the stochastic leapfrog integrator can be implemented with the stochastic and deter-

ministic component integrated separately.[13] Hence, we develop a new stochastic leapfrog

integrator for our model, according to the algorithm:

� m;n+ 1
4

= � m;n +
1
2

c� Wn; (2.17a)

� m;n+ 1
2

= � m;n+ 1
4

+
1
2

d� m;n+ 1
4

dt
� t (2.17b)

= � m;n+ 1
4

+
1
2

[! m + K sin(� s;n+ 1
4

� � m;n+ 1
4
)]� t; (2.17c)

� m;n+ 3
4

= � m;n+ 1
2

+
1
2

d� m;n+ 1
2

dt
� t (2.17d)

= � m;n+ 1
2

+
1
2

[! m + K sin(� s;n+ 1
2

� � m;n+ 1
2
)]� t; (2.17e)

� m;n+1 = � m;n+ 3
4

+
1
2

c� Wn+1 : (2.17f)

The same stochastic process can be used to model the other Gaussian white noise we

introduced in Eq. 2.8, the noise� ext from the external environment:

� Wt � N (0; � t) = � ext (t); � 2
ext = h�� 2

ext (t)i = � t: (2.18)
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Similar to Eq. 2.17, the stochastic leapfrog integrator for the SDE with Gaussian white

noise within the sinusoidal coupling function can be implemented as:

� �
s;n = � s;n +

1
2

b� Wn; (2.19a)

� m;n+ 1
2

= � m;n +
1
2

d� m;n

dt
� t (2.19b)

= � m;n +
1
2

[! m + K sin(� �
s;n � � m;n)]� t; (2.19c)

� �
s;n+ 1

2
= � s;n+ 1

2
+

1
2

b� Wn+1 ; (2.19d)

� m;n+1 = � m;n+ 1
2

+
1
2

d� m;n+ 1
2

dt
� t (2.19e)

= � m;n+ 1
2

+
1
2

[! m + K sin(� �
s;n+ 1

2
� � m;n+ 1

2
)]� t; (2.19f)

Note that the integration step of the stochastic component in Eq. 2.19 is di�erent compare to

Eq. 2.17 because the external noise� ext a�ects the value of � s inside the sinusoidal function

for each fractional step of integration. By combining Eq. 2.17 and 2.19, we develop a

stochastic leapfrog integrator for Eq. 2.13:

� m;n+ 1
4

= � m;n +
1
2

c� Wm;n; (2.20a)

� �
s;n+ 1

4
= � s;n+ 1

4
+

1
2

b� Ws;n; (2.20b)

� m;n+ 1
2

= � m;n+ 1
4

+
1
2

d� m;n+ 1
4

dt
� t (2.20c)

= � m;n+ 1
4

+
1
2

[! m + K sin(� �
s;n+ 1

4
� � m;n+ 1

4
)]� t; (2.20d)

� �
s;n+ 1

2
= � s;n+ 1

2
+

1
2

b� Ws;n+1 ; (2.20e)

� m;n+ 3
4

= � m;n+ 1
2

+
1
2

d� m;n+ 1
2

dt
� t (2.20f)

= � m;n+ 1
2

+
1
2

[! m + K sin(� �
s;n+ 1

2
� � m;n+ 1

2
)]� t; (2.20g)

� m;n+1 = � m;n+ 3
4

+
1
2

c� Wm;n+1 : (2.20h)

In the next section, we will begin to explore the stochastic Kuramoto model under the

noise driven by a di�erentiable Gaussian process.

2.2.3 Stochastic Di�erential Equation Integrator - Gaussian Process

To de�ne a di�erentiable Gaussian process [14], we �rst prede�ne a normal distribution of

a set of random variables from time0 �! t as:

G(0) = 0 ; G(t) � N (0; � t); (2.21)

7



where G represents the Gaussian process, with normal distributionN (0; � t).[14] An incre-

ment � Gt of the Gaussian process is the di�erence between subsequent random variables

in time Gt+� t � Gt , such that

� Gt = Gt+� t � Gt ; Cov [� Gt ; � Gt+� t ] = �j � t j; (2.22)

whereCov is the covariance of a random dataset. The noise in Eq. 2.6 can be implemented

as an increment of the Gaussian process in the same way as the Wiener process in Eq. 2.15:

� Gt = � int (t); Cov [� int (t); � int (t + � t)] = �j � t j: (2.23)

The stochastic leapfrog integrator in this case is still similar to Eq. 2.17, but the Wiener

processW is replaced with the Gaussian processG, giving the new algorithm

� m;n+ 1
4

= � m;n +
1
2

c� Gn; (2.24a)

� m;n+ 1
2

= � m;n+ 1
4

+
1
2

d� m;n+ 1
4

dt
� t (2.24b)

= � m;n+ 1
4

+
1
2

[! m + K sin(� s;n+ 1
4

� � m;n+ 1
4
)]� t; (2.24c)

� m;n+ 3
4

= � m;n+ 1
2

+
1
2

d� m;n+ 1
2

dt
� t (2.24d)

= � m;n+ 1
2

+
1
2

[! m + K sin(� s;n+ 1
2

� � m;n+ 1
2
)]� t; (2.24e)

� m;n+1 = � m;n+ 3
4

+
1
2

c� Gn+1 : (2.24f)

Also Eq. 2.19 can be rewritten as:

� �
s;n+ 1

4
= � s;n+ 1

4
+

1
2

b� Gs;n; (2.25a)

� m;n+ 1
2

= � m;n+ 1
4

+
1
2

d� m;n+ 1
4

dt
� t (2.25b)

= � m;n+ 1
4

+
1
2

[! m + K sin(� �
s;n+ 1

4
� � m;n+ 1

4
)]� t; (2.25c)

� �
s;n+ 1

2
= � s;n+ 1

2
+

1
2

b� Gs;n+1 ; (2.25d)

� m;n+ 3
4

= � m;n+ 1
2

+
1
2

d� m;n+ 1
2

dt
� t (2.25e)

= � m;n+ 1
2

+
1
2

[! m + K sin(� �
s;n+ 1

2
� � m;n+ 1

2
)]� t: (2.25f)

8



Finally, the complete algorithm of Eq. 2.20 becomes:

� m;n+ 1
4

= � m;n +
1
2

c� Gm;n; (2.26a)

� �
s;n+ 1

4
= � s;n+ 1

4
+

1
2

b� Gs;n; (2.26b)

� m;n+ 1
2

= � m;n+ 1
4

+
1
2

d� m;n+ 1
4

dt
� t (2.26c)

= � m;n+ 1
4

+
1
2

[! m + K sin(� �
s;n+ 1

4
� � m;n+ 1

4
)]� t; (2.26d)

� �
s;n+ 1

2
= � s;n+ 1

2
+

1
2

b� Gs;n+1 ; (2.26e)

� m;n+ 3
4

= � m;n+ 1
2

+
1
2

d� m;n+ 1
2

dt
� t (2.26f)

= � m;n+ 1
2

+
1
2

[! m + K sin(� �
s;n+ 1

2
� � m;n+ 1

2
)]� t; (2.26g)

� m;n+1 = � m;n+ 3
4

+
1
2

c� Gm;n+1 : (2.26h)

2.3 Critical Coupling

The frequency of a circadian clock oscillator _� m is expected to be synchronized with the

solar-cycle frequency! s if the coupling constant K between oscillators is above a threshold

value, known as the critical coupling constantK c.

2.3.1 Deterministic Model

For the deterministic version of our modi�ed Kuramoto model Eq. 2.4, a circadian oscillator

is synchronized with the solar cycle oscillator when:

! s = ! m + K sin(� s � � m); K � K c: (2.27)

The critical coupling constant K c is the smallest value ofK which can achieve the above

steady state condition Eq. 2.27. We minimizeK c in Eq. 2.27 by maximizing the sinusoidal

coupling function,

sin(� s � � m) = 1 ; � s � � m =
�
2

: (2.28)

Substituting Eq.2.28 into 2.27, we obtain:

j! s � ! m j = K c; � ! = ! s � ! m ; K c = j� ! j; (2.29)

where the absolute value of� ! emphasizes the coupling constantK is always positive as

de�ne in Eq.2.4.
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2.3.2 Stochastic Model with Wiener Process

For any stochastic di�erential equation in the form of:

d� t = � (� t ; t)dt + � (� t ; t)dWt ; (2.30)

where dWt is an increment of the Wiener process, one can always write the Fokker-Planck

equation [15] with probability density function � (�; t ) of the random variables � as follow:

@
@t

� (�; t ) = �
@
@�

[� (�; t )� (�; t )] +
@2

@�2
[D (�; t )� (�; t )]; (2.31)

where the di�usion coe�cient D (�; t ) = � 2(� t ; t)=2.[15] In our case, it is not di�cult to

realize that Eq.2.6 is precisely in the form of Eq.2.30, so we substitute Eq.2.6 into 2.31,

giving

@
@t

� (� m ; t) = �
@

@�m
[(! m + K sin(� s � � m)) � (� m ; t)] +

@2

@�2m
[D� (� m ; t)]; (2.32)

whereD = c2
int � t=2 de�ne by Eq. 2.15 and 2.6.[9] After some simpli�cations, we can rewrite

the above partial di�erential equation as:

@�
@t

= K cos(� s � � m)� � [! m + K sin(� s � � m)]
@�

@�m
+ D

@2�
@�2m

: (2.33)

To obtain the critical coupling constant K c for the stochastic Kuramoto model with the

Wiener process, we have to solve� (� m ; t) from the above Fokker Planck equation Eq. 2.33.

However, the exact analytic form of � (� m ; t) is yet to be found. The current approach to

analyze such stochastic model is by using Fourier series to approximate� (� m ; t) and the

mathematics involved in deriving K c with approximated form of � (� m ; t) is still under active

investigation by mathematicians and physicists.[9] It is beyond the scope of this thesis to

solveK c from the stochastic model with the Wiener process. But this is not the case when

we de�ne the stochastic process in our modi�ed model by a di�erentiable Gaussian process,

since we have previously de�ned the probability distribution of the random variables in

Eq. 2.21, therefore we can calculate the expected value of the di�erential equation at steady

state to derive K c.

2.3.3 Stochastic Model with Gaussian Process (Internal Noise)

A circadian clock can synchronize with the solar-cycle oscillator even when there is internal

noise inside the organism. We can rewrite Eq. 2.6 with the assumption that above statement

Eq. 2.27 holds, with K � K �
c;int :

! s = ! m + K �
c;int sin(� s � � m) + cint � int ; � ! = K �

c;int sin(� s � � m) + cint � int ; (2.34)

10



whereK �
c;int is the critical coupling constant for the case of an organism experiencing internal

noise. As discussed in the previous section, the bene�t of working with the Gaussian process

is that the distribution of the random variable is known, and we can get the expected value

of Eq. 2.34 to derive the equation forK �
c;int . In other words, we can always calculate Eq. 2.6

in terms of the Itô integral:

Z � (t )

� (0)
d� =

Z t

0
[! m + K sin(� s � � m)]dt + cint

Z t

0
dGt (2.35a)

� m(t) = � m(0) +
Z t

0
[! m + K sin(� s � � m)]dt + cint [G(t) � G(0)] (2.35b)

� m(t) = � m(0) +
Z t

0
[! m + K sin(� s � � m)]dt + cint G(t); (2.35c)

where we know precisely howG(t) a�ects � m . For this reason, we take the expectation

value of Eq. 2.34 in this way:

E[� ! ] = E[K �
c;int sin(� s � � m)] + E[cint � int ]; h� int (t)i = 0 ; E[cint � int ] = 0 ; (2.36)

whereE denotes the expectation value. We can simplify the above operation by noting that

� ! is a constant:

E[� ! ] = � !; � ! = K �
c;int E[sin(� s � � �

m)]; (2.37)

where � indicates that the variable is stochastic. Therefore by applying the de�nition of

expected value, we are left with:

E[sin(� s � � �
m)] =

Z 1

�1
d� �

mP(� �
m) sin(� s � � �

m); (2.38)

whereP(� �
m) is the normal distribution that we de�ned for the Gaussian process for random

variables � �
m . And cint in Eq. 2.6 scales the standard deviation of the normally distributed

random variable � �
m , and � �

m has standard deviation of
p

� t, as given by Eq. 2.21. The mean

value of � �
m can be obtained from the deterministic case where� s � � m = �

2 , and then P(� �
m)

is a normal distribution given by:

P(� �
m) =

1
p

2� (cint � int )2
exp

�
� (� �

m � � s + �
2 )2

2(cint � int )2

�
; � int =

p
� t; (2.39)

We change variables, settings = [2( cint � int )2]� 1 and x = � �
m � � s+ �

2 which Eq. 2.39 becomes:

P(x) =
r

s
�

exp[� sx2]; (2.40)
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then, we substitute the above equation back to the integral, so that Eq. 2.38 becomes:

E[sin(� s � � �
m)] =

Z 1

�1
dxP (x) sin

�
�
2

� x
�

(2.41a)

=
Z 1

�1
dx

r
s
�

exp[� sx2] sin
�

�
2

� x
�

: (2.41b)

Using the trigonometric identity,

sin
�

�
2

� x
�

= sin
�

�
2

�
cos(x) � sin(x) cos

�
�
2

�
= cos(x); (2.42)

simpli�es the integral to:

E[sin(� s � � �
m)] =

Z 1

�1
dx

r
s
�

exp[� sx2] cos(x); (2.43a)

=
1
2

hZ 1

�1
dx

r
s
�

exp[� sx2 + ix ] +
Z 1

�1
dx

r
s
�

exp[� sx2 � ix ]
i

(2.43b)

=
1
2

[f (x) + g(x)]; (2.43c)

f (x) =
Z 1

�1
dx

r
s
�

exp[� sx2 + ix ]; g(x) =
Z 1

�1
dx

r
s
�

exp[� sx2 � ix ]; (2.44)

The equations of Eq. 2.44 are in the form of Fourier transforms, with general solution:

Z 1

�1
dx exp

�
�

1
2

ax2 + iJx
�

=

r
2�
a

exp
�

�
J 2

2a

�
; (2.45)

Therefore, the solutions off (x) and g(x) are:

f (x) = exp
�

�
1
4s

�
; g(x) = exp

�
�

1
4s

�
: (2.46)

Finally, substituting Eq. 2.46 into 2.43 gives

E[sin(� s � � �
m)] = exp

�
�

1
4s

�
(2.47a)

= exp
�

� (cint � int )2

2

�
: (2.47b)

After substituting Eq. 2.47 into 2.37, the expression of the critical coupling constantK �
c;int ,

re�ecting the change in K c for the stochastic case, is proportional to the standard deviation

of the noise� int and the scaling factor cint :

j� ! j = K �
c;int exp

�
� (cint � int )2

2

�
; K �

c;int = j� ! j exp
�

(cint � int )2

2

�
: (2.48)
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2.3.4 Stochastic Model with Gaussian Process (External Noise)

As previously discussed, the stochastic Kuramoto model with noise inside the sinusoidal

coupling function of Eq. 2.8 is in fact a time-delay stochastic di�erential equation and it

can be challenging to solve. For our modi�ed Kuramoto model with external noise, we can

still assume that the circadian clock can be synchronized with the solar cycle oscillator if

Eq. 2.8 reaches the following steady state:

! s = ! m + K sin(� s � � m + cext � ext ); K � K �
c;ext (2.49)

where K �
c;ext is the critical coupling constant when an organism experiences external noise.

We can apply the same analysis from the previous subsection to Eq.2.49, namely taking the

expectation value of Eq. 2.49:

E[� ! ] = E[K �
c;ext sin(� s � � m + cext � ext )]; (2.50)

with knowing that � ! is a constant, the above equation can be written as:

E[� ! ] = � !; � ! = K �
c;ext E[sin(� s � � m + cext � ext )] : (2.51)

Using the trigonometric identity

sin
�
� s � � m + cext � ext

�
= sin

�
� s � � m

�
cos(cext � ext ) + cos

�
� s � � m

�
sin(cext � ext ); (2.52)

and applying the de�nition of expected value, the integral form of Eq.2.49 reduces to

E[sin(� s � � m + cext � ext )] = sin( � s � � m)
Z 1

�1
d� ext P(� ext ) cos(cext � ext ) (2.53a)

+ cos(� s � � m)
Z 1

�1
d� ext P(� ext ) sin(cext � ext ): (2.53b)

Note that the prior distribution P(� ext ) is an even Gaussian function withh� ext (t)i = 0 ,

whereassin(cext � ext ) is an odd function, hence their integral from �1 to 1 is zero:

Z 1

�1
d� ext P(� ext ) sin(cext � ext ) = 0 : (2.54)

The prede�ned distribution of � ext is

P(� ext ) =
1

q
2�� 2

ext

exp
�

� (� ext )2

2� 2
ext

�
; � ext =

p
� t : (2.55)
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Changing variables viay = � ext and u = [2 � 2
ext ]

� 1, simpli�es Eq. 2.55 to:

P(y) =
r

u
�

exp[� uy2]; (2.56)

and the integral of Eq. 2.53 becomes:

E[sin(� s � � m + cext � ext )] = sin( � s � � m) b
Z 1

�1
dyP(y) cos

�
y

�
(2.57a)

= sin( � s � � m) b
Z 1

�1
dy

r
u
�

exp[� uy2] cos
�
y

�
: (2.57b)

The integral on the right hand side of Eq. 2.57 is in the same form as Eq. 2.43, so that it

evaluates to

E[sin(� s � � m + cext � ext )] = cext exp
�

�
(cext � ext )2

2

�
: (2.58)

Substituting Eq. 2.58 into 2.49 gives an expression forK �
c;ext :

K �
c;ext =

j� ! j
cext

exp
�

(cext � ext )2

2

�
: (2.59)

In contrast to Eq. 2.48, K �
c;ext is also inversely proportional to the scaling factorcext .

2.3.5 Stochastic Model with Gaussian Process (Internal and External
Noise)

We now follow the same analysis from the previous subsections, so that circadian oscillator

in Eq. 2.13 is critically coupled to the solar-cycle oscillator when

! s = ! m + K sin(� s � � m + cext � ext ) + cint � int ; K � K ��
c : (2.60)

Here K ��
c is the critical coupling constant of the system with both external and internal

noise. We take the expectation value of Eq. 2.60:

E[� ! ] = K ��
c E[sin(� s � � m + cext � ext )] + E[cint � int ]: (2.61)

We know that E[cint � int ] = 0 from Eq. 2.36. To show that � m is randomly distributed, we

change its notation to � �
m . Also, we know that � ! is a constant, so Eq. 2.60 becomes:

� ! = K ��
c E[sin(� s � � �

m + cext � ext )] : (2.62)
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Applying the de�nition of expected value, Eq. 2.61 has an integral form of:

E[sin(� s � � �
m + cext � ext )] (2.63a)

=
Z 1

�1
d� �

mP(� �
m) sin(� s � � �

m) (2.63b)

�
Z 1

�1
d� ext P(� ext ) cos(cext � ext ) (2.63c)

+
Z 1

�1
d� �

mP(� �
m) cos(� s � � �

m) (2.63d)

�
Z 1

�1
d� ext P(� ext ) sin(cext � ext ): (2.63e)

Following the derivation of similar integrals in Eq. 2.47 and 2.53, the above equation

Eq. 2.63 becomes:

E[sin(� s � � �
m + cext � ext )] (2.64a)

=
Z 1

�1
d� �

mP(� �
m) sin(� s � � �

m) (2.64b)

�
Z 1

�1
d� ext P(� ext ) cos(cext � ext ) (2.64c)

= E[sin(� s � � �
m)] � E[sin(� s � � m + cext � ext )] (2.64d)

= cext exp

"

�
(cext � ext )2 + ( cint � int )2

2

#

: (2.64e)

Finally, we substitute Eq. 2.64 into 2.62, to �nd the critical coupling constant K ��
c with

both external and internal noise:

K ��
c =

j� ! j
cext

exp

"
(cext � ext )2 + ( cint � int )2

2

#

: (2.65)

2.4 Cost Analysis

We assume that the cost of operating a circadian clock results from the (absolute) phase

mismatch between the circadian oscillator and the solar cycle oscillator. We de�ne the cost

function as 1 � cosine of the phase mismatch, averaged over all integration steps:

C =
1

N i

N iX

i

[1 � cos (� s;i � � m;i)] ; (2.66)

where N i is the total number of integration steps. For a strongly coupled system (largeK ),

the phase mismatch between the two oscillators can become very small, and as a result, we
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can expand thesine function in Eq. 2.4:

sin(� s � � m) � � s � � m = � �; � � � 1 : (2.67)

Similarly, a strongly coupled system is synchronized in frequency as well, so Eq. 2.4 becomes:

! s = ! m + K sin(� s � � m) � ! m + K � �; � ! = ! s � ! m ; � � =
� !
K

: (2.68)

Thus the cost function Eq.2.66 can be written as:

Capprox �
1

N i

N iX

i

[1 � cos (� !=K )] ; K � K c: (2.69)

If the model is stochastic, each computation will produce a di�erent trajectory of the

circadian oscillator. We take the expectation value of the1 � cosine of phase mismatch

for multiple phase trajectories at each time step, which ish(1 � cos (� s;i � � m;i)i . Then we

calculate the cost in terms of the expectation value:

C� =
1

N i

N iX

i

h(1 � cos (� s;i � � m;i)i : (2.70)

Finally, we also want to know the cost of an organism having no circadian clock as well,

which can be de�ned by:

C0 =
1

N i

N iX

i

[1 � cos(� s;i)]: (2.71)
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Chapter 3

Result and Discussion

Throughout this entire chapter, we will perform all of our analysis with the intrinsic fre-

quency of the solar-cycle oscillator set at! s = 2�
24

rad
hours . This setting guarantees the solar-

cycle oscillator makes 1 complete revolution for every 24 hours. Any integration of an

ordinary di�erential equation or stochastic di�erential equation is discretized with a time

step of � t = 0 :01 hour.

3.1 Deterministic Model

3.1.1 Deterministic Time-courses

We compute the phase of the solar-cycle oscillator in Eq. 2.3 and the phase of the circadian

clock in Eq. 2.4 under three di�erent coupling conditions. This computation is done by using

the deterministic leapfrog integrator in Eq. 2.14. Later we take the result of integration to

compute the time-courses of each oscillator in Eq. 2.5. The time-courses of deterministic

circadian clocks as a result of the computation are shown in Fig. 3.1.

We categorize the sample circadian clocks shown in Fig. 3.1 into three groups based on

their time-courses. Firstly, we categorize the circadian clock in Fig. 3.1a as a `bad' circadian

clock because its oscillation frequency is not synchronized with the solar-cycle oscillator.

Research has shown that a human with 24-hour circadian clock experiences deepest sleep

from 2:00am to 4:00am [16]. We can imagine if a person has a similar high-frequency cir-

cadian clock as shown in Fig. 3.1a, his time frame to achieve deep sleep will be shortened

and this might a�ect his health. Hence, we will expect that the operational cost of a `bad'

circadian clock is higher than the other examples in Fig. 3.1.

The other two circadian clocks in Fig. 3.1 are frequency synchronized with the solar-

cycle oscillator; one is shown in Fig. 3.1b withK = 1 :0 � ! and the other one is shown

in Fig. 3.1c with K = 3 :0 � ! . The circadian clock from Fig. 3.1b is categorized as a

`good' circadian clock because its frequency is synchronized with the solar-cycle oscillator.

An organism with possession of such internal circadian clock can fully utilize the 24-hour

solar cycle to organize its physiological and mental activities. However, this clock has larger
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(a) Bad Circadian Clock

(b) Good Circadian Clock

(c) Great Circadian Clock

Figure 3.1: Time-courses of deterministic circadian clock computed via Eq. 2.4 and 2.5 with
coupling constants: a)K = 0 :5 � ! , b) K = 1 :0 � ! and c) K = 3 :0 � ! . We set parameters
to ! s = 2�

24 , ! m = � 3:0 ! s, Bm = 1 and Bs = 1 .
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phase mismatch compares to the 'great' clock in Fig. 3.1c. The `great' circadian clock in

Fig. 3.1c closely tracks the solar-cycle oscillator. An organism with such circadian clock not

only can utilize the 24-hour solar time but also can capitalize environmental resource such

as sunlight. We expect that the operating cost of the 'great' clock will be lower than the

'good' clock.

3.1.2 Critical Coupling

We derive the critical coupling constant K c in Eq. 2.29 as the coupling constant beyond

which (K � K c) a circadian clock achieves frequency synchronization with the solar-cycle

oscillator, as de�ned in Eq. 2.27. This can be tested by simulating multiple circadian clocks

with di�erent intrinsic frequencies ! m and subsequently increasing coupling constantK to

observe whether the oscillation frequency _� m of a circadian clock reaches steady state after

K surpasses a threshold value. The result of this computation is shown in Fig. 3.2. Five

Figure 3.2: Oscillating frequencies_� m of circadian clocks with di�erent intrinsic frequency
! m as a function of coupling constantK . The oscillation frequency _� m of circadian clock is
calculated with Eq. 2.4. N marks the value of K when _� m reaches steady state.

circadian clocks are simulated and their oscillation frequency reaches steady state afterK

surpassesK c, which K c is marked on the plot with N. We can simulate more circadian

clocks in this way to extract data of K c as a function of ! m to test the validity of Eq. 2.29.

The critical coupling constants K c are extracted based on the above method. Figure 3.3

showsK c as a function of intrinsic frequency! m . The data in Fig. 3.3 is �tted to Eq. 2.29 and

the �tting shows agreement between extracted data and theoretical prediction in Eq. 2.29.

We observe there is a proportionality between intrinsic frequency! m and critical coupling

constant K c. Intuitively, we can understand that if a circadian clock has an intrinsic fre-
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Figure 3.3: Critical coupling constant K c as a function of intrinsic frequency of circadian
clock ! m . The computation result is �tted to K c = j! s� ! m j (Eq. 2.29) with �tting coe�cient
! s = 0 :2618� 2�

24 (rad/hour).

quency ! m further apart from the solar cycle frequency ! s, such circadian clock requires

larger coupling constant to reach frequency synchronization with the solar-cycle oscillator.

3.1.3 Cost Analysis

Figure 3.4 shows the operational cost of a circadian clock (2.66) as a function of coupling

constant K . The operational costs of the three circadian clocks in Fig. 3.1 are labeled with

their name in Fig. 3.4. As expected, the bad clock has highest cost of operation among the

three and the great clock has the least operational cost.

The colored dashed lines signify the start of signi�cant drop in the operational cost

of the circadian clock with the corresponding color. Coincidentally, each dashed line also

marks the location of theoretical critical coupling constant K c calculated using Eq. 2.29

for each circadian clock. As the circadian clock shifts to achieve phase synchronization, its

operational cost is signi�cantly reduced. The signi�cant drop in cost is more evident on the

log-scale plot in Fig. 3.4b, where the cost of operation decreases in a straight line, showing

an exponential drop in cost.

The cost of operating no circadian clock (2.71) (an organism performs tasks whenever

it likes) is the horizontal black line in Fig.3.4. The cost of operating no circadian clock is

maximal, but also equal to the cost of operating a clock that cannot frequency-synchronize

with the solar-cycle oscillator. Fig. 2.66 shows that the cost of operating no circadian clock

is about the same as operating a bad clock. The operational cost of a circadian clock is
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(a) Linear Scale

(b) Log Scale

Figure 3.4: Operational cost (2.66) as a function of coupling constant for circadian clocks
with various intrinsic frequencies ! m . a) linear scale; b) log scale.N mark the cost of oper-
ating circadian clocks shown in Fig. 3.1.
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low only when the clock is able to reach frequency synchronization, otherwise it is just as

optimal as operating no circadian clock.

We can compare the cost of operating circadian clock with! m = 6 :0 ! s (purple line)

and ! m = � 3:0 ! s (green line) in Fig. 3.4. A circadian clock with intrinsic frequency

closer to the solar cycle frequency (green line in this case) will have lower operating cost

when it is frequency-synchronized with the solar cycle oscillator under the same coupling

constant. That shows the operational cost of a circadian clock is also proportional to its

intrinsic frequency ! m . However this is only true when the circadian clock is at frequency

synchronization with the solar-cycle oscillator and only valid when we perform comparison

under the same coupling constant. If a circadian clock is already frequency-synchronized,

its cost of operation is lower if its intrinsic frequency is closer to the solar cycle frequency.

There are some small oscillations in the cost of operation when the circadian clock is

not frequency synchronized, stemming from thecosine function in Eq. 2.66. Further study

is needed to understand the physical reason for these.

3.2 Stochastic Model with Internal Noise

3.2.1 Stochastic Time-courses

The phase of a circadian clock with internal noise can be obtained by integrating the

stochastic di�erential equation in Eq. 2.6 with stochastic leapfrog integrator in Eq. 2.24.

The time-courses of a circadian clock with internal noise is computed by Eq. 2.5. Four

circadian clocks are shown in Fig. 3.5, each clock with a di�erent coupling condition. Even

though the time-courses of each clock are noisy, their periodic motion is still intelligible.

Similar to the last subsection, we categorize the circadian clocks in Fig. 3.5 accord-

ing to their frequency synchronization with the solar-cycle oscillator. The circadian clock

Fig. 3.5a is a `bad' circadian clock as previously discussed in Ÿ 3.1.1. In Fig. 3.5b, the cir-

cadian clock hasK = 1 :0 � ! equal to the critical coupling constant for the deterministic

model. However, such a clock is not synchronized with the solar-cycle oscillator due to in-

ternal noise. This circadian clock neared synchronization in the �rst 24 hours but failed

immediately afterward (Fig. 3.5b). We categorize this circadian clock as `good' because it

has the same coupling constant as the good circadian clock in Fig. 3.1b. A `better' circadian

clock (Fig. 3.5c) is frequency synchronized with the solar-cycle oscillator, but without phase

synchronization. Then we have a `great' circadian clock (Fig. 3.5d) tracks the solar-cycle

oscillator closely. Comparing Fig. 3.5b with 3.1b, it is intuitive to expect that operating

a stochastic circadian clock will yield higher operational cost compared to a deterministic

clock if the circadian clock is frequency-synchronized with the solar cycle oscillator in a

deterministic environment.
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(a) Bad Circadian Clock

(b) Good Circadian Clock

(c) Better Circadian Clock

(d) Great Circadian Clock

Figure 3.5: Time-courses of stochastic circadian clock with internal noise computed via
Eq. 2.5 and 2.6 with coupling constants: a)K = 0 :5 � ! , b) K = 1 :0 � ! , c) K = 1 :0202 � !
and d) K = 3 :0 � ! . In all panels, ! s = 2�

24 , cint = 2 :0, ! m = � 3:0 ! s, Bm = 1 and Bs = 1 .
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3.2.2 Critical Coupling

The oscillation frequency of a circadian clock with internal noise is described by Eq. 2.6.

We assume that the oscillation frequency of a circadian clock with internal noise will reach

steady state whenK � K �
c;int . Based on this assumption we derive the equation of critical

coupling constant for the stochastic model with internal noise. Figure 3.6 shows tests of

multiple circadian clocks under di�erent noise strengths cint with progressively increasing

coupling constants to determine when the clock's oscillation frequency reaches steady state.

Figure 3.6: Oscillating frequencies _� m of stochastic circadian clocks with internal noise
as a function of coupling constant K . The intrinsic frequency of the circadian clock is
! m = � 3:0 ! s. The oscillation frequency _� m of the circadian clock is calculated with Eq. 2.6.
N marks the critical K where _� m reaches steady state.

Figure 3.6 shows that the oscillation frequency of a circadian clock with internal noise

indeed reaches steady state after surpassing a threshold coupling constantK �
c;int .

The critical coupling constant increases with the noise strengthcint . N mark the crit-

ical coupling constants K �
c;int of circadian clocks with internal noise of varying strengths.

Figure 3.7 shows empiricalK �
c;int as a function of noise strengthcint , �tted to Eq. 2.48,

with strong agreement between data and our theoretical prediction. We have setj� ! j =

j 2�
24 � � 6�

24 j = �
3 (rad/hours) and � int =

p
� t =

p
0:01 in our calculations. The �t pa-

rameters are j� ! j = 1 :047 and � int = 0 :1005. The �t parameters agree with our theory,

where j� ! j = 1 :047 � �
3 and � int = 0 :1005�

p
0:01. The critical coupling constant grows

exponentially with the noise strength, con�rming that frequency synchronization is more

di�cult when the system is more noisy.
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Figure 3.7: Critical coupling constant K �
c;int as a function of internal noise strengthcint . The

numerical result (purple open circles) is �tted to Eq. 2.48 (teal curve). The �t parameters
are j� ! j = 1 :047 (rad/hour) and � int = 0 :1005(rad/hour).

3.2.3 Cost Analysis

Figure 3.8 shows the operational cost of a circadian clock with internal noise (Eq. 2.70),

averaged over many trajectories, as a function of the coupling constant. A major distinction

between stochastic and deterministic models is the increase in operational cost for circadian

clocks that reach frequency synchronization. The cost of operating no circadian clock is the

same for both models. From the deterministic model, the good circadian clock has the cost

of operation below the cost of operating no circadian clock. However, the good clock is not

frequency synchronized with the solar-cycle oscillator under the stochastic model, and its

cost of operation is about the same as operating a bad clock or no clock. Nevertheless, if a

deterministic circadian clock is not frequency synchronized with the solar-cycle oscillator,

there is no noticeable cost increase when the same clock is operated within stochastic

environment (Fig. 3.8a and 3.4a). By contrast, the operational cost of a circadian clock

increases with the internal noise strength when the clock is frequency synchronized. Fig. 3.5

shows some large-magnitude random jumps in the time-courses of a circadian clock with

internal noise. We also observe that as increasing noise strength, these jumps are larger

in magnitude and occur more often. From our observation based on the time course, we

believe these jumps are the source of high operational cost in a stochastic circadian clock

with internal noise.

Comparing Fig. 3.8b with 3.4b reveals another distinction between stochastic and de-

terministic models. For the stochastic model with internal noise, the drop in cost when a
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(a) Linear Scale

(b) Log Scale

Figure 3.8: Operational cost (2.70) as a function of coupling constant for stochastic circadian
clocks with internal noise � int and di�erent intrinsic frequency ! m , averaged over 10 trials.
a) linear scale and b) log scale.N mark the cost of operating circadian clocks shown in
Fig. 3.5.
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circadian clock shifts from frequency synchronization to phase synchronization is not ex-

ponential (a straight line on log scale). Moreover, the rate of cost decrease slows as the

coupling constant increases (e.g., orange line in Fig. 3.8b). This slow-down occurs when

the phase mismatch between the two oscillators is dominated by the added noise. We note

that as the coupling constant increases, the periodic motion of the circadian clock more

closely tracks the solar-cycle oscillator, but the noise strength remains the same. Thus the

operational cost of a circadian clock reaches an asymptotic value at high coupling constant,

as the result of internal noise.

Unlike in the deterministic model, the operational cost of a circadian clock with internal

noise depends on its intrinsic frequency, noise strength, and coupling constant. Fig. 3.8a

shows that the operational cost of a noisy oscillator can be higher than that of a noise-

less circadian clock with greater intrinsic frequency mismatch. (orange line and green line

crossing at high coupling constant). The presence of internal noise (in orange line) leads

to non-zero limiting asymptotic operational cost. This is not observed in the determinis-

tic model, where the operating cost is always higher for the circadian clock with greater

intrinsic frequency mismatch.

3.3 Stochastic Model with External Noise

3.3.1 Stochastic Time-courses

The phase of a stochastic circadian clock with external noise can be obtained by integrating

the SDE in Eq. 2.8 with stochastic integrator in Eq. 2.25. Figure 3.9 shows time-courses

of four circadian clocks, each with a di�erent coupling constant. At �rst glance, the time-

courses of circadian clock with external noise look more similar to the deterministic model

than the stochastic model with internal noise.

The bad circadian clock (Fig. 3.9a) closely resembles the bad circadian clock from the

deterministic model in Fig. 3.1a. The good circadian clock (Fig. 3.9b) appears di�erent

from the deterministic model due to external noise. The better circadian clock (Fig. 3.9c)

is frequency synchronized with the solar-cycle oscillator, similar to the good circadian clock

from the deterministic model but with a larger coupling constant. The great circadian clock

(Fig. 3.9c) appears similar to the great clock from the deterministic model.

The biggest di�erence between the circadian clock with internal noise and external

noise is the time-courses of circadian clock with external noise are not noisy. The external

noise is added inside the coupling function, a�ecting the circadian clock's tracking ability

to the solar-cycle oscillator. The dynamics of the stochastic time-delay model in Eq. 2.12

requires further study to explain the smoothness of the time-courses even though noise is

implemented.
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