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Abstract

Dependency parsing is an important task in NLP, and it is used in many downstream tasks
for analyzing the semantic structure of sentences. Analyzing very large corpora in a reason-
able amount of time, however, requires a fast parser. In this thesis we develop a transition-
based dependency parser with a neural-network decision function which outperforms spaCy,
Stanford CoreNLP, and MALTParser in terms of speed while having a comparable, and in
some cases better, accuracy. We also develop several variations of our model to investigate
the trade-off between accuracy and speed. This leads to a model with a greatly reduced
feature set which is much faster but less accurate, as well as a more complex model involv-
ing a BiLSTM simultaneously trained to produce POS tags which is more accurate, but
much slower. We compare the accuracy and speed of our different parser models against
the three mentioned parsers on the Penn Treebank, Universal Dependencies English, and
Ontonotes datasets using two different dependency tree representations to show how our
parser competes on data from very different domains. Our experimental results reveal that
our main model is much faster than the 3 external parsers while also being more accurate in
some cases; our reduced feature set model is significantly faster while remaining competitive
in terms of accuracy; and our BiLSTM-using model is somewhat faster than CoreNLP and
is significantly more accurate.

Keywords: natural language processing, dependency parsing, transition parsing system,
neural network
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Chapter 1

Introduction

In many natural language processing tasks, it is useful, or even necessary, to know the
semantic relations between certain words in a sentence. In the task of dependency parsing,
these relations are known as dependencies. For example, in the phrase “a red car”, “a” and
“red” both depend on the word “car”; “a” being a determiner, and “red” being an adjective.
If we are interested in determining the colour of the car in the phrase, for example, it is
sufficient to find all adjectives depending on the word “car” and picking out the one which
is a colour.

Another, more interesting example occurs when the main word is a verb: “John kicked
the ball.” In this case, we are interested in word “kicked”, which has two dependents: “John”
and “ball” which are subject and object of the word “kicked”, respectively. These dependents
help us understand the action being performed in this sentence. To complete the example,
the word “the” is the dependent of the word “ball” (as a determiner).

One thing to note in the examples above is that each word depends on at most one
other word, but can be be depended on by any number of words. Although this property
is controversial [23], it is widely accepted within dependency parsing literature and all
commonly available dependency parsers make this assumption. Therefore, we also assume
that each word in a sentence can only depend on one other word.

In most dependency parsing literature, the dependency relation is a binary relation with
the word on which the dependent depends being referred to as the head, regent, or governor.
In this thesis, we will use the head and dependent terminology.

The task of determining the head word for each word of a sentence is called dependency
parsing, and the output produced by a dependency parser is a dependency graph.

Figure 1.1 shows an example of a dependency graph for a sample sentence from one
of our training sets, Universal Dependencies English: “This chef knows what he is doing.”
The ROOT token is an artificial token which simply allows us to have an arc to the word
‘knows’ to indicate that it is the root of the sentence and it has no head word.

Going from the beginning of the example sentence, we see that ‘this’ has one head
word ‘chef’ and the arc is labeled with ‘det’, indicating that ‘this’ acts as a determiner for
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the word ‘chef’. The word ‘chef’ itself has the head word ‘knows’, with the label ‘nsubj’,
meaning that it is the nominal subject and the agent of the clause headed by ‘knows’; more
simply, it is the subject of the verb ‘knows’ and is the one who does the knowing. The other
argument to ‘knows’ is the thing the chef knows, which is the clause “what he is doing”.
This is encoded as an arc from ‘knows’ to the head of the clause, the word ‘doing’, with
the ‘clausal component’ label (meaning it is a dependent clause which is a core argument);
this indicates that the clause functions as the object of the verb. In the remaining clause,
we again have a verb, ‘doing’, with two arguments: ‘he’ which is the nominal subject (the
do-er), and ‘what’, labeled with ‘dobj’, which is the direct object (the thing being done).
The word ‘is’ is a dependent of ‘doing’ with the label ‘aux’ (meaning auxiliary), indicating
that it is a function word and may express the tense of the phrase (in this case, present
tense). Finally, the punctuation is added to the root of the sentence, ‘knows’, with a label
‘punct’.

ROOT This chef knows what he is doing .
det nsubj

root
dobj

nsubj
aux

ccomp
punct

Figure 1.1: A dependency parse of the sentence “This chef knows what he is doing.” which
was extracted from the UD English dataset [43] (described in Section 6.1).

In the rest of this chapter, we will explore some applications of dependency parsing,
followed by an explanation of the sort of dependents that may exist, and finally we will
formally describe a dependency graph.

In Chapter 2 we will discuss the major classes of parsing algorithms, with a focus on the
Arc-Standard algorithm we used in our parser. In Chapter 3 we will provide an overview
of different neural network structures and how they are trained, to lay the foundation for
the subsequent chapters. In Chapter 4 we will describe some prior work in terms of high
performance parsing tools. In Chapter 5 we will describe our parsing algorithm, as well
as our implementation of the algorithm. In Chapter 6 we describe the experiments we ran
in terms of accuracy and speed, and present our results. And finally in Chapter 7 we will
conclude.

1.1 Applications

Dependency parsing can have many applications, both for providing features of a word, as
well as being used directly to extract information out of a sentence. Although similar infor-
mation can be provided by constituency parsers—with a conversion to a dependency graph
afterward [10, 40]—Cer, et al. [5] showed that dependency parsers are typically significantly
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faster than constituency parsers (to parse the Penn Treebank development set the fastest
constituency parser they tested took 10:14 minutes, whereas the fastest dependency parser
took 15 seconds).

Dependency parsing can be used in tasks such as

• semantic role labelling [16];

• question answering [9, 41];

• translation [35]; and

• relationship extraction [17].

Semantic role labelling is the task of assigning semantic roles to words of a sentence.
Question answering is the task of providing an answer given a question. In translation,
dependency parsing can be used to help provide the correct forms of words which change
based on the word on which they depend. For example, if translating “beautiful <noun>” to
French, the translation system can pick ‘beau/bel’ or ‘belle’ as the translation of ‘beautiful’
depending on the gender of ‘<noun>’; however, this is only possible if the translation system
is aware that ‘beautiful’ is an adjective which modifies ‘<noun>’.

Relationship extraction is the task of finding relations between entities in documents.
For example, given a phrase such as “Jack is married to Jill”, a relationship extraction
system needs to determine that the entities ‘Jack’ and ‘Jill’ are related by ‘marriage’. A
dependency graph will mark both ‘Jack’ and ‘Jill’ as dependents of the word ‘married’,
and the arcs will be labeled such that it is easy to determine the relation between the two
entities.

1.1.1 LensingWikipedia

LensingWikipedia is a search and summarization interface for Wikipedia [50, 42]. It provides
tools and visualizations for filtering and exploring connections between people, organiza-
tions, and locations. It is currently focused on only history-related articles, and parses the
content of the articles themselves to piece together what occurred, where it occurred, and
who was involved. Processing this data is a slow process and takes several hours.

An interesting extension to LensingWikipedia would be to have it analyze all of Wikipedia’s
data, not just the history-related articles. EnglishWikipedia has almost 5.5MM articles1 [52],
however, and it is not very feasible to currently do this in a reasonable amount of time.
Given a fast parser, though, would help speed up the process as dependency parses are cru-
cial to understanding what occurs in articles and the parser must be run on a large number
of sentences.

1Specifically, as of October 1, 2017 it contains 5,486,551 articles.
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1.2 Dependency graphs

Dependency graphs are the objects produced by dependency parsers. They encode the head-
dependency relation between words in the sentence. A word is said to be a dependent of
another word (also known as its head word) if it semantically depends on its head word.
As this relation clearly makes a distinction between head word and dependent, dependency
graphs are directed graphs.

In this section we formally define dependency graph and describe some constraints on it.
We define a sentence S of length n as a sequence of words [w1, w2, . . . , wn]. Since de-

pendency graphs encode relations between words, each word wi corresponds to a node vi in
the dependency graph. For each word wi, we add an arc from vi to vj such that wj is the
head word of wi.

Note that the direction of the arcs in dependency graphs is not consistent in the liter-
ature. Some authors [13] direct arcs from dependents to head words, while others [30, 54]
direct arcs from head word to dependents. Here we will follow the latter convention and
add arcs from head words to dependents.

As we wish our dependency graphs to encode syntactic dependency information for
sentences, we need to add some restrictions on them to model grammatical restrictions in
natural languages.

The first such restriction is that dependency graphs must be acyclic. This is clear from
how grammatical sentences are structured.

Another restriction is that these graphs must be connected. This constraint arises from
the definition of a sentence. Suppose we have a disconnected dependency graph. In this case,
the graph represents two sets of words, possibly with one subgraph’s words appearing in
between some of another subgraph’s words. There is no relation between any of the words in
one subgraph form any other, meaning the words which form each subgraph are completely
independent of the words which form the other subgraphs, but this does not constitute a
valid sentence; at most, it is constitutes several independent phrases which may have been
mistakenly placed in the same sentence.

Given our description of a dependency graph, it is clear that dependency graphs are
rooted trees (which is why they are also sometimes called parse trees). The root of the
tree is the word which has no head word. To simplify our algorithms and to make it easier
to work with dependency graphs, we follow the convention of adding an artificial ROOT
token so that every token in the sentence has a head token, with exactly one token having
the ROOT token as the head word. This also means that the ROOT token may only have
one dependent, which we’ll call the head of the sentence. In the final output produced by
parsers, the ROOT token is usually omitted, but the head of the sentence is still labeled
with an arc to the root.
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An optional restriction that can be placed on dependency graphs is that of projectivity.
The formal definition of projectivity is given by Nivre [31], and we repeat it here: A depen-
dency graph is projective iff every dependent node is graph adjacent to its head. Two nodes
n and n′ are graph adjacent iff every node n′′ occurring between n and n′ in the surface
string is dominated by n or n′ in the graph.

Put more simply, if one fixes the position of the nodes in the graph such that they form
a line in the same order as the sentence they represent, then none of the dependency arcs
cross. Figure 1.2 shows examples of a projective and a non-projective dependency graph.

ROOT John hit the ball with the bat

(a) Projective

ROOT John saw a dog yesterday which was a Yorkshire Terrier

(b) Non-projective

Figure 1.2: Examples of dependency graphs from McDonald et al. [30].

The restriction of projectivity is controversial as it does not reflect a grammatical re-
striction, as can be seen in Figure 1.2b. Thus, if we add this restriction, then we will not
be able to produce correct parse trees for some sentences. For example, Figure 1.3 shows
how Stanford CoreNLP (which only produces projective dependency graphs) parses the
sentence from Figure 1.2b. One significant problem with this parse is that it is impossible
to determine from it that the dog John saw was a terrier.

ROOT John saw a dog yesterday which was a Yorkshire Terrier

dep

Figure 1.3: Stanford CoreNLP produces a projective dependency graph for a sentence which
is non-projective. The ‘dep’ label represents an unspecified dependency, and is present be-
cause the parser is not sure how to connect the two subgraphs in a projective manner.
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Although parsers which only produce projective dependency graphs are not able to parse
all English sentences, assuming all sentences are projective is still a reasonable approxima-
tion in practice [31], since in English there are few sentences which are non-projective, as
shown in Table 1.1.

Dataset Sentences Projective
Penn Treebank 43,947 99.70%
Universal Dependencies English 16,621 95.05%
Ontonotes 5 143,707 92.04%

Table 1.1: Projectivity statistics for the datasets used in this thesis; these include training,
development, and testing sets. More details about these datasets can be found in Section 6.1.

There are parsers which can produce non-projective dependency graphs by moving some
words in the sentence while parsing. For example, in Figure 1.2b, if the word “yesterday”
were moved after “saw”, this would lead to a projective dependency parse. As dependency
graphs are trees, there always exists an ordering of the words such that the graph is pro-
jective.

1.3 Evaluating a dependency graph

Given a gold dependency graph for a sentence (gold tree), there are two metrics commonly
used in literature to evaluate the dependency graph produced by a parser (system tree).
They are known as the unlabeled attachment score (UAS) and the labeled attachment score
(LAS). A third metric which is sometimes produced by evaluation tools but not commonly
reported in literature is the label accuracy score.

To compute the unlabeled attachment score, we compute

UAS = number of correct unlabeled arcs in system tree
number of arcs in gold tree

where the correct arcs are those which are also present gold tree. These must have the same
head and dependents, but the label is omitted in the computation.

Similarly, the labeled attachment score is computed as

LAS = number of correct arcs in system tree
number of arcs in gold tree

where the correct arcs are those which are present in the gold tree, and have the same label.
As this is necessarily a subset of the correct unlabeled arcs, the LAS is always smaller than
UAS.

The label accuracy score can be used to evaluate how good the system is at labeling the
type of dependent a token is, even though it may have been attached to an incorrect head
word. Note that as each token has exactly one head word, we can treat the label as being
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either attached to the token or to the arc. The label accuracy score is then computed as

label accuracy score = number of correct labels for tokens in system tree
number of tokens in gold tree

The number of arcs in the gold tree is equal to the number of tokens in the gold tree
(as the ROOT token is commonly omitted from the list of tokens in the final tree), so the
label accuracy score and LAS are comparable, and so the LAS will always be smaller than
the label accuracy score.

Computing UAS and LAS on a complete dataset is done by summing up all correct arcs
across the entire dataset and dividing by the total number of arcs in the dataset.

1.4 Annotation scheme for encoding dependency graphs

For different parsers to be trained and evaluated on standard datasets, there must be a
standardized annotation scheme for the datasets. There are two commonly used schemes
known as Stanford Dependencies (SD) [12, 11] and Universal Dependencies (UD)2. The UD
scheme is the most recent one and is designed to encode the dependency structures of all
the world’s languages (hence being “universal”). The two schemes not only define different
ways for storing arcs and labels, but also have different hierarchies of labels and POS tags
for the tokens within them.

Here we will only describe the UD version 2 annotation scheme. In Section 6.1.1 we
will describe how to convert from the more commonly provided treebank format (used for
phrase structure information) into the UD scheme.

The UD annotation scheme is designed to provide a generic scheme for annotating de-
pendencies in all languages, such that there is consistency across languages, with language-
specific extensions where necessary. It provides both morphological and syntactical infor-
mation about words in a sentence.

The file format for storing UD annotations is known as CoNLL-U [49], named after the
SIGNLL Conference on Computational Natural Language Learning. It is a plaintext format,
where each line can be any of the following types:

• Word lines containing annotations for a token.

• Blank line delimiting sentences

• Comment lines (prepended by a #).

Sentences are split in tokens (which may contain one or more words), with a token per
line. Each token line provides morphological and syntactical information about the given

2http://universaldependencies.org
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token, as well as its position in the sentence. Figure 1.4 shows the fields provided in each
token line.

ID Word index, integer starting at 1 for each new sentence; may be a range
for multiword tokens; may be a decimal number for empty nodes.

FORM Word form or punctuation symbol.

LEMMA Lemma or stem of word form.

UPOSTAG Universal part-of-speech tag.

XPOSTAG Language-specific part-of-speech tag; underscore if not available.

FEATS List of morphological features from the universal feature inventory or
from a defined language-specific extension; underscore if not available.

HEAD Head of the current word, which is either a value of ID or zero (0).

DEPREL Universal dependency relation to the HEAD (root iff HEAD = 0) or a
defined language-specific subtype of one.

DEPS Enhanced dependency graph in the form of a list of head-deprel pairs.

MISC Any other annotation.

Figure 1.4: Fields in each token line of a CoNLL-U file (extracted from [49])

For this thesis we only looked at the ID, FORM, UPOSTAG, HEAD, and DEPREL
fields, as they are the only fields guaranteed to be available.
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Chapter 2

Transition-based parsing
algorithms

Dependency parsing algorithms can be split into two main categories: graph-based and
transition-based. Graph-based algorithms aim to build up the complete parse tree from
smaller subgraphs (either spans of the sentence or subtrees covering a span of the sentence);
common examples of this are the Eisner algorithm [13], and Easy-First algorithm [18].
Transition-based algorithms, on the other hand, build the parse tree by modeling the build-
ing of the tree as a sequence of actions which can be chosen greedily to move the parser
from one state to another.

In general, graph-based parsing algorithms are slower than their transition-based equiv-
alents due to their global nature. The most commonly used style (Eisner) has O(n3) com-
plexity, while modifications of it (to include more context) can have higher complexity.

On the other hand, transition-based parsers are able to run in linear time because the
number of transitions they make is constant in the number of tokens they’re parsing, and
they make relatively greedy decisions. In the next section, we will describe some of the
basics of transition parsing systems, including a specific algorithm which is used in the
experiments of this thesis.

Transition parsing systems are related to shift-reduce parsers and so have two main
components: a parsing state, and a set of transitions. Transitions cause the system to go
from one parsing state to another. Parsing happens by initializing the parsing state, and
then repeatedly applying a transition until the system arrives in an end-state.

Transition systems differ both in how they define their state (i.e. what they store in
their states), and in the set of transitions they use. In this thesis, we use the arc-standard
system defined by Nivre [32] which we describe in Section 2.2, however the arc-eager and
the arc-hybrid systems are also very commonly used; we will briefly mention their sets of
transitions in the same section.
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2.1 Common data structures

Almost all transition-based parsers share three key data structures: a stack Σ, a buffer β,
and a set of arcs A. All three structures are stored in a configuration C = (Σ, β, A). We will
use ‘configuration’ and ‘parser state’ interchangeably.

The buffer β stores all tokens which have not been processed yet. At any point in time,
the buffer’s elements are denoted as [b1, b2, b3, . . . ] where b1 is the first element in the buffer,
b2 the second, and so on. The tokens are stored in the same order that they appear in the
sentence.

The stack Σ contains all tokens which have been shifted from the buffer, and which have
no head word yet. Some of these may have gathered dependents already, but some have no
dependents. The stack also contains a special ROOT token which is at the bottom of the
stack, and which remains there for the entire parsing process. The elements of the stack
are denoted as [ROOT, . . . , s2, s1], where s1 is at the top of the stack, s2 is the second item
on the stack, and so on, with the ROOT token being at the bottom. This notation for the
stack differs from the more standard notation where the order of the items in the stack is
reversed (i.e. [s1, s2, . . . ]), however the standard notation makes it more difficult to visualize
the direction of arcs as left-arcs (which go from s1 → s2) would appear to point towards
the right if drawn out.

For simplicity in notation, the tokens in the sentence are 1-indexed, however, we say
that the ROOT token has index 0.

The last data structure is the set of arcs A. This is simply an unordered set of arcs;
it has no special properties other than as a place to store the arcs as the dependency tree
is getting built. Arcs within it need to be queried (e.g. to find all dependents of a certain
token), but otherwise it may be any data structure which is convenient.

The similarity between most transition-based parsers continues into how they are initial-
ized. The stack Σ is initialized to Σ = [ROOT ], the buffer is initialized to β = [w1, w2, . . . , wn],
and A = ∅. Some transition systems do not require the ROOT token, however.

2.2 Arc-Standard transition algorithm

One of the most common transition parsing systems is arc-standard [32]. The arc-standard
system uses the data structures described in Section 2.1, so it is only necessary to describe
the transitions available for moving from one configuration to another.

2.2.1 Transitions

Where the transition-based parsing algorithms differ is in the sets of transitions which move
the parsing state from one configuration to another. Naturally, each transition must modify
at least one of Σ, β, and A in some way.
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The arc-standard algorithm provides three transitions which may be applied to a given
configuration:

LEFT-ARC(`) Add an arc s1 → s2 to A with label ` and remove s2 from the stack.

RIGHT-ARC(`) Add an arc s2 → s1 to A with label ` and remove s1 from the stack.

SHIFT Pop b1 from the buffer and push it onto the stack.

The paper which introduced this algorithm [32] used the names LEFT-REDUCE and
RIGHT-REDUCE instead of LEFT-ARC and RIGHT-ARC, however the latter terminology
is more common now.

In terms of notation, it is important to note with the above transitions that when a
certain item si, or bi is removed from the stack, or buffer, respectively, all other items in
that data structure is relabeled, such that if (e.g.) b1 is popped from β, there is still an item
known as b1 in β (the first item in the buffer).

Given the initialization of C = ([ROOT ], [w1, . . . , wn], ∅), then repeated applications of
the above transitions can produce any non-projective dependency tree. Thus it is possible
with only these three transitions to produce the correct dependency parse of any sentence.
Most importantly, there are at most 2n transitions necessary to go from initialization state
to the end-state.

The LEFT-ARC and RIGHT-ARC transitions remove the dependents from the stack.
Dependents of arcs must be removed from the stack at some point to avoid cycles. For
example, if the two *-ARC transitions above did not remove the dependent of the created
arc, and there was a separate REMOVE transition which removed tokens, then a cycle may
be created using a sequence of transitions such as the one in algorithm 1.

Algorithm 1 Causing a cycle in an augmented Arc-Standard system
SHIFT
SHIFT
RIGHT-ARC
SHIFT
RIGHT-ARC
REMOVE s2
LEFT-ARC

Thus in this situation, extra checks would be necessary to avoid creating the cycle with
the LEFT-ARC, and these extra checks would slow down the parser.

From the definition of the transitions in the arc-standard system it is clear that there
are situations where certain transitions are invalid. The preconditions for the transitions
are shown in table 2.1.

The precondition on LEFT-ARC and RIGHT-ARC ensure that the ROOT token can
not be a dependent, and the ROOT token can only be added as a head to an arc when it
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Transition Precondition
LEFT-ARC(`) |Σ| > 2
RIGHT-ARC(`) |Σ| > 2 or (|Σ| = 2 and |β| = 0)
SHIFT |β| > 0

Table 2.1: The preconditions for the transitions in an Arc-Standard system.

is the last transition to be performed; they also ensure that there are enough tokens in the
stack to add an arc between two of them. The precondition on the SHIFT is self-evident: if
there is no item in the buffer, there is no item which can be removed from the buffer.

The parsing process ends when we have β = ∅ and Σ = [ROOT ].
Figure 2.1 summarizes the states and transitions of the arc-standard system.

Initialization C = ([ROOT ], [w1, . . . , wn], ∅)
End state C = ([ROOT ], [], A)
LEFT-ARC (Σ|s2s1, β, A)→ (Σ|s1, β, A ∪ (s1, s2))
RIGHT-ARC (Σ|s2s1, β, A)→ (Σ|s2, β, A ∪ (s2, s1))
SHIFT (Σ, b1|β,A)→ (Σ|b1, β, A)

Figure 2.1: Summary of the arc-standard system.

Figure 2.2 shows an example of an arc-standard system parsing the sentence “The cat
hid in the box.”, and Figure 2.3 shows the final dependency tree that is built.

Transition Stack Buffer A

[ROOT] [the cat hid in the box .] ∅
SHIFT [ROOT the] [cat hid in the box .]
SHIFT [ROOT the cat] [hid in the box .]
LEFT-ARC(det) [ROOT cat] [hid in the box .] A∪ det(cat, the)
SHIFT [ROOT cat hid] [in the box .]
LEFT-ARC(nsubj) [ROOT hid] [in the box .] A∪ nsubj(hid, cat)
SHIFT [ROOT hid in] [the box .]
SHIFT [ROOT hid in the] [box .]
SHIFT [ROOT hid in the box] [.]
LEFT-ARC(det) [ROOT hid in box] [.] A∪ det(box, the)
LEFT-ARC(case) [ROOT hid box] [.] A∪ case(box, in)
RIGHT-ARC(nmod) [ROOT hid] [.] A∪ nmod(hid, box)
SHIFT [ROOT hid .] []
RIGHT-ARC(punct) [ROOT hid] [] A∪ punct(hid, .)
RIGHT-ARC(root) [ROOT] [] A∪ root(ROOT, hid)

Figure 2.2: An example of an arc-standard system parsing a sentence. The format of the
arcs is label(head, dependent).
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ROOT The cat hid in the box .
DT NN VB IN DT NN .

root

det nsubj

punct
nmod

case

det

Figure 2.3: A gold dependency tree of the sentence, with the POS tags underneath each
token.

2.2.2 Related parsing systems

There are two parsing systems which are closely related to the arc-standard system: arc-
eager and arc-hybrid.

Arc-eager The arc-eager system was introduced by Nivre [32] with the aim of increasing
incrementality in dependency parsing. He defines incrementality to mean that “at any point
during the parsing process, there is a single connected structure representing the analysis
of the input consumed so far.” To do this, the arc-eager system processes left-dependents
bottom-up and right-dependents top-down. It provides the following 4 transitions:

LEFT-ARC(`) Add an arc b1 → s1 with label `, and remove s1.

RIGHT-ARC(`) Add an arc s1 → b1 with label ` and push b1 onto the stack.

REDUCE Pop s1 from stack.

SHIFT Push b1 onto the stack.

We say that the left-dependents are processed bottom-up because adding a left-arc
removes the dependent s1, implicitly assuming that s1 has already collected all of its de-
pendents. The right-dependents are said to be processed top-down because adding a right
arc does not remove the dependent, so the parser can later move down to that dependent
and attach more dependents.

Arc-hybrid The arc-hybrid system was introduced by Kuhlmann et al. [27]. They de-
velop a framework for developing dynamic programming algorithms for transition-based
dependency parsing, and in the context of their framework, they create a novel transition
system with the following three transitions:

SHIFT Move b1 from the buffer onto the stack

RIGHT-ARC(`) Add an arc s2 → s1 with label ` and remove s1 from the stack.

LEFT-ARC(`) Add an arc b1 → s1 with label ` and remove s1 from the stack.
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This model combines the LEFT-ARC action from the arc-eager model, and the RIGHT-
ARC action from the arc-standard model.

2.3 Making decisions

The Arc-Standard parsing algorithm has O(n) complexity as long as choosing which tran-
sition to take is done in constant time. This is due to the fact that there can be at most
n SHIFT transitions, and there are exactly n *-ARC transitions as each such transition
removes an item from the stack.

To make transition decisions in constant time, it is necessary to consider at most a
constant number of features—and to ensure that each feature computation takes constant
time. Note that it is possible to analyze the entire sentence a constant number of times
while still maintaining the same O(n) bound, as long as this analysis is not performed by
the decision function for every decision it makes; for example, it can be performed instead
as a pre-processing step. We describe the decision function we used in Chapter 5.

2.4 Training

As the vanilla arc-standard system makes a decision on which transition to apply given
the current state, to train it, it requires examples of (state, best transition) tuples. Our
training data is in the form of complete dependency graphs, however, so we need a method
for generating a sequence of transitions which create a given graph.

The algorithms which create the training examples given a gold dependency graph are
known as oracles. There are two types of oracles: static and dynamic [19].

Static oracles are ones which, given a gold dependency graph, produce a deterministic
sequence of transitions which produce the graph. They are known as static because they
are only able to produce a single sequence of transitions even though in some transition
systems there can be multiple sequences which produce the same graph. Despite this, the
static oracle is used to generate (state, best transition) tuples which are used for training.
This becomes an issue at test time because the parser may make a mistake, and then arrive
in a state that was not seen during training. This restricts the parser’s ability to make the
best of the situation and still produce a good dependency graph.

Dynamic oracles, on the other hand, are given a state and a gold dependency graph
and asked to produce the optimal transition for reaching the gold dependency graph. This
means that any state can be given, and so training examples can be generated which allow
the parser to minimize its number of mistakes.

Despite these benefits, however, we used a “shortest stack” static oracle as described by
Chen and Manning [6] simply because we wished to compare our performance against their
work.

14



The shortest stack oracle prefers to keep a short stack, and so will prefer to produce a
LEFT-ARC, RIGHT-ARC, SHIFT in that order. It picks the next transition in such a way
that words are removed from the stack (using an arc transition) only when they no longer
need to gather dependents.

The algorithm for producing a transition given a state is described in Algorithm 2
(it is based on the description in [6] and the implementation of the oracle in Stanford
CoreNLP). The entire sequence of transitions is produced by starting with the initial state
and repeatedly applying the transitions produced by the oracle until the end state is reached.

Assuming each function called by the oracle algorithm runs in constant time, each call
to the oracle runs in O(1). Since the oracle is effectively used as a decision function (which
produces the gold transitions as a side effect), the time complexity of using it to produce
training examples is the same as the time complexity of the parsing system itself (which is
O(n) in the case of arc-standard [32], where n is the sentence length).

Algorithm 2 Shortest Stack Oracle algorithm for producing the best transition given the
current state C.
function oracle(C = (Σ, β, A))

if |Σ| ≥ 2 then
i← s2
j ← s1

else
i← 0
j ← s1

end if
if i > 0 and head-of(i) is j then

`← label-of(i)
return (LEFT-ARC, `)

else if i ≥ 0 and head-of(j) is i and has-all-dependents(j) then
`← label-of(j)
return (RIGHT-ARC, `)

else
return (SHIFT, nil)

end if
end function
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Chapter 3

Neural networks

In this chapter, we explain some of the basics of neural networks, focusing mainly on the
concepts necessary to understand the models presented in this thesis. These include feed-
forward networks, recurrent networks, and embedding matrices. We finish with some notes
on training these sorts of networks.

Neural networks are simply functions with many parameters which take one or more
inputs and produce one or more outputs. They are inspired by the structure of neural con-
nections in human brains, however mathematically they are computation graphs involving
matrices and vectors, with various functions applied to them. The relation to the brain
is most evident when the term ‘neurons’ is used to describe the dimensionality of certain
vectors, although the term ‘hidden units’ is more prevalent.

3.1 The basics

To more easily understand the neural network components in this chapter it helps to under-
stand some basics. We will start with a very simple type of neural network and explain how
it works and how to train it. We place the training section here because it helps explain
why some neural network components such as the long short-term memory (LSTM) are
necessary.

3.1.1 Feed-forward network

The simplest neural networks are known as “feed-forward networks”, as they simply take a
fixed input and feed it forward through the network to produce an output. Figure 3.1 shows
a very simple example of a feed-forward neural network. For this simple example, consider
that each hidden unit, and each output unit computes the following:

h = σ

 ∑
input xi

wixi


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Figure 3.1: A diagram showing a simple feed-forward neural network with 4 input units, 5
hidden units, and 1 output unit. These units may also be called ‘neurons’, and the connec-
tions between them ‘synapses’.

where each input to each unit has an associated weight (this is usually drawn on the synapse
connecting the two units). Thus, each unit computes the weighted sum of all its inputs, and
applies the sigmoid function to it. The function applied is known as the activation function.

When each unit in a certain layer is connected to every unit in the previous layer, this
is known as a fully connected layer. In this case, the network in the figure can be described
using the following mathematical notation:

h = σ(Whx)

o = σ(Woh)

where x is a vector of dimension 4 containing the 4 inputs, Wh is a weight matrix of
dimension 4× 5, and Wo is a weight matrix of dimension 5× 1. Thus, o is a scalar.

In these networks, it is common to use a bias term. Graphically, these may be denoted
as an extra neuron in a layer which always produces value 1; thus, for example in the figure,
there may be a fifth input (x5) that always has value 1 such that in the hidden layer, each
hidden unit computes

hi = σ

 5∑
j=1

wjxj


hi = σ

w5 +
4∑
j=1

wjxj)


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where w5 is known as the bias term, and usually denoted as b. In a fully-connected layer,
this bias term can be considered a vector, and so it is usually written as:

h = σ(Whx + bh)

o = σ(Woh + bo)

3.1.2 Training

Training a neural network means learning the parameters (or weights) within it so that
given an input, it produces the output we desire (or something close to it). When we design
a neural network, we only design its structure; we then use the training data to compute
good parameters. For simplicity, we will denote by θ all parameters in the network.

For our training data, we need examples of inputs and desired outputs. We will say that
example i is composed of input x(i) and output y(i). If we denote our neural network by the
function NN(·), we will say that its predicted output is ŷ(i) = NN(x(i)).

To train our network, we need to update the parameters such that ŷ is similar to y
(for some definition of similarity). To do this, we first need to determine how incorrect the
produced output is; we will define a function E(y, ŷ; NN, θ, x) which we will call the error
function. This function computes the error (also known as loss or cost).

To decrease the error, we want to change the parameters θ, and to do this, we can
compute how a change to θ affects the error. This computation can be done by computing
the derivative of E(·) with respect to θ. The derivative then tells us how a change in θ

affects E(·); if the derivative is positive in a certain direction, it means that moving θ in
that direction will increase the error, so we must change θ in the opposite direction. This
is known as gradient descent.

Thus, for each parameter w, we compute ∂E(·)/∂w, and then change the value of w a
little bit in the opposite direction of the gradient:

w := w − ε ∂
∂w

E(·)

where ε is known as the learning rate and is used to (attempt to) keep the descent update
from overshooting the minimum.

Notationally, we can denote the update across all parameters by

θ := θ − ε∇θE(·)

So for gradient descent, θ needs to be initialized to some value, and then small steps
are taken to minimize the error. However, this method will only lead to a local minimum,
which is not necessarily the global minimum. There are various techniques for combatting
this problem, but they are out of the scope of this quick summary.
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In practice, the derivative of the error with respect to each of the parameters is computed
when the graph is built and is done automatically. This is possible because the chain rule
from calculus allows us to write the derivative of the error as a product of the derivatives
of the errors of each of the functions in the graph.

For a simple example, let x ∈ R be a scalar, and f, g : R → R be functions. We define
our computation graph as

z = f(y)

y = g(x)

Then, using the chain rule, we compute the derivative of z with respect to x as

∂z

∂x
= ∂z

∂y

∂y

∂x

or, in different notation

∂z

∂x
= f ′(y) · g′(x)

= f ′(g(x)) · g′(x)

Thus, to compute the gradient of z with respect to x, we need to (i) define the derivative
of each of the functions in the computation graph; and (ii) compute the outputs of each of
the functions. The first step is usually done when building the computation graph. Most
neural network toolkits will have derivatives defined for each of the functions you use in the
graph. The second step, however, is performed for each example you feed into the network.
The error is often computed as just another function in the graph, and so the expected
value is also considered an input to the graph. Feeding inputs to the graph, and computing
the values in the graph is known as forward propagation; it is often useful to cache the
computed values along the way (such as the g(x) in the example above) for efficiency.

Suppose in the example above that our error is z, and the parameter we’re allowed to
modify is x (example input values are fixed and so are considered constants; the parameters
are the ‘variables’). To use gradient descent, we do forward propagation, computing y and
z. Then we compute f ′(y) and g′(x). And finally we update the value of x by

x := x− ε
(
f ′(y) · g′(x)

)
Computing the gradients by going backwards through the computation graph is known as
back-propagation or backprop.

19



To make the need for back-propagation more obvious, a more complex example is needed.
Suppose we have three variables a, b, c ∈ R, and we want to minimize

` = σ(ab+ c)

To help describe the gradients, we will split up our function in the following way:

` = σ(y)

y = x+ z

x = ab

z = c

To minimize `, we need to compute ∂`
∂a ,

∂`
∂b , and

∂`
∂c ; then we will apply the gradient

descent update rule:

a := a− ε ∂`
∂a

b := b− ε∂`
∂b

c := c− ε∂`
∂c

Using the chain rule, we compute the gradients as

∂`

∂a
= ∂`

∂y

∂y

∂x

∂x

∂a

∂`

∂b
= ∂`

∂y

∂y

∂x

∂x

∂b

∂`

∂c
= ∂`

∂y

∂y

∂z

∂z

∂c
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Noting the repetition, we cache the values of gradients such as ∂y
∂x across the different

update rules. The partial gradients are then

∂`

∂y
= σ(y)(1− σ(y))

∂y

∂x
= 1

∂y

∂z
= 1

∂x

∂a
= b

∂x

∂b
= a

∂z

∂c
= 1

Thus, we have that

∂`

∂a
= σ(y)(1− σ(y)) · 1 · b

∂`

∂b
= σ(y)(1− σ(y)) · 1 · a

∂`

∂c
= σ(y)(1− σ(y)) · 1 · 1

y = ab+ c

where the value of y is computed as part of the forward propagation, and the values of a,
b, and c depend on their current values (when the computation graph is first constructed
they must be initialized to some value).

Again, to avoid repetition, we compute the partial derivatives starting from the end of
the computation graph (or left-most partial derivative in the expressions above), and back-
propagate the gradients backwards toward the beginning. This means we first compute
σ(y)(1− σ(y)), and then using that value, we move back one layer through the graph, and
multiply that value to the local gradients at that point, repeat this process until reaching
the parameters. Each node in the computation graph is aware of the values of its inputs and
the value of its output, and during back-propagation will only need to receive the gradient
of the global error with respect to its output, and then multiply it with the local gradients
of its output with respect to each of its inputs; the back-propagation algorithm will then
take these values and continue to the next nodes. If a node’s output is used multiple times,
then it will simply sum up their corresponding gradients before multiplying the sum by the
local gradients.

An important problem caused by the multiplicative nature of the chain rule is that if
the gradients are all smaller than 1, or all greater than 1, and there are many of them being
multiplied together, the overall gradient of the error with respect to each of the parameters
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tends towards 0 or towards infinity, respectively. This is known as either vanishing gradient
in the case of tendency towards 0, and exploding gradient in the case of tendency towards
infinity.

3.2 Recurrent neural networks

Not all tasks are easily modeled using a feed-forward network as these networks require an
input of fixed dimensionality. Some tasks, however, have inputs which can vary in size. For
example, tasks involving sentences have inputs whose dimensionality depends on the length
of the sentence; one can, of course, set a maximum sentence length to consider, or only look
at a fixed number of words in the sentence, but this is not always ideal.

In tasks dealing with sequences where it is required to inspect every element of the
sequence, and the sequence can be of any length, it is more useful to use a recurrent neural
network or RNN.

An RNN is often built dynamically, by reading each element of the input sequence, and
building a neural network whose depth depends on the sequence length.

RNNs read a sequence of inputs by

1. starting in an initial state;

2. reading an input;

3. computing a function given the input and the state;

4. producing a new state from the output of the function; then

5. if more inputs are available, repeating from step 2

The recurring sequence of steps for reading and processing each input is where the RNN
gets its name. Each time the sequence of steps occurs is known as a time step.

The function being applied at each time step is undefined above because it may be
anything, and may produce any number of outputs, given any number of inputs; however,
for the RNN to function, it must produce some output which can be fed back into the
function at the next step and this is known as the ‘hidden state’; it must also allow the
input at the time step to be fed in. This function is known as the RNN cell, and its structure
is usually fixed (although its parameters may change).

The most basic RNN cell is the following:

at = Wh(t−1) + Uxt + b

ht = tanh(at)

ot = Vht
ŷt = softmax(ot)
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where the hidden state at time step t is ht, and the cell also produces at output ŷt. It is
often the case that the last hidden state is used to represent an ‘encoding’ of the sequence.

To train an RNN, we first unroll it: we build a graph where we repeat the RNN cell as
many times as needed and feed in each xi to each copy i of the cell. However, we want the
parameters to be shared among all the copies (since it’s really only one RNN cell), and so
after computing the gradients on the unrolled graph, we take the average of all the gradients
and use this average to update the parameters.

An issue with the basic RNN cell is that for longer sequences, it is not able to ‘remember’
what it has read in the past, and thus not able to model long-term dependencies between
elements in the sequence. This issue is caused by the fact that the derivative of the tanh
function is smaller than 1, and so if the sequence is long, the gradient vanishes.

A commonly used RNN cell which was designed to deal with the vanishing gradient
problem and to learn long-term dependencies between elements of a sequence is long short-
term memory (LSTM), introduced by Hochreiter and Schmidhuber [21].

LSTM uses the concept of gates, which are values that determine how much another
value should be reduced or emphasized; for example in an equation such as y = f � x, f
determines how much of x remains in the output y, and so is called a ‘gate’. Thus, using
gates, an LSTM is designed to remember part of the history of its input sequence, while
also deciding how much of the new input it will insert into its history.

Formally, the LSTM cell is defined using the following equations:

ft = σ(Wfxt + Wfht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc)

ht = ot � tanh(ct)

where xt is the input vector; ht is the output vector; ct is the cell state vector; W, U and b
are parameters; and ft, it, and ot are gate vectors: ft is the forget gate for remembering old
information, it is the input gate for acquiring new information, and ot is the output gate.

In the equations above, the cell state vector ct contains the long-term history of the
RNN; the previous output vector and current input are used to determine how much of the
old cell state to forget (using element-wise multiplication), and then a new potential cell
state is computed and it is used to determine how much of it should be added to the cell
state. Finally, to produce an output, another gate ot is used to determine how much of the
current cell state should be output (with the tanh being used to keep the value between −1
and 1).
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3.3 Bidirectional RNN

As a regular RNN reads sequences in only one direction, it is good at encoding a complete
sequence, but if one is interested in using the hidden states at each time step as a way of
representing sequence elements, then the representation will only represent the token and
the previous tokens. However, if one wants a representation of a token in context, it is useful
to also include the subsequent tokens.

To accomplish this, a bidirectional RNN (BiRNN) can be used. A BiRNN actually
consists of two RNNs: one that is run over the sequence in the forward direction, and one
that is run in the backward direction. Then for each time step, the hidden states from the
forward and backward RNNs are concatenated together to produce a single vector. This
vector then contains information about the tokens preceding the specific time step, as well
as the tokens following it.

3.4 Embedding matrices

When processing text, we receive the input as a sequence of characters or words. However,
neural networks require numbers. Thus, we need a way of converting characters or words
(henceforth called ‘tokens’) to numbers. The way to do this is to have a fixed mapping
from tokens to consecutive numbers (also known as IDs). For certain types of tokens such
as characters, or POS tags this is simple because the total number of tokens can be known
ahead of time, but for tokens such as words it is infeasible to have an exhaustive list; for
these, we need to determine a fixed-size subset we will be able to handle.

Given a mapping from tokens to numbers, we can transform a sequence of tokens into a
sequence of numbers, and given the new sequence we can apply neural networks. However,
it is much more useful to represent the tokens as vectors of numbers, rather than as scalars,
since this would allow our model to learn useful representations of them.

To do this, we use special matrices known as embedding matrices. These matrices have
dimension N × d where N is the number of tokens for which we need vectors, and d is the
dimension of the vectors. Given the consecutive IDs we have assigned our tokens, we can
extract the corresponding vectors by using the IDs to index into the matrix.

3.5 Training

When training a neural network, we usually have a set of training examples, and when we
feed in an example to our neural network, it produces a value for the error. If we have labeled
data, we still feed in the label as an input to the network, since it’s needed to compute the
loss; at test time, we don’t compute a loss, so we only need to compute the part of the
neural network which produces the output we’re interested in.
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To train a neural network, there are three main stages: 1. running forward-propaga-
tion, 2. computing gradients using back-propagations, and 3. applying the gradients to the
variables. The first two parts were described in Section 3.1.2, and despite differences in
implementations which aim to provide efficiency and computational accuracy, they are rel-
atively standard. However, there is much work in terms of how to apply the gradients to
the variables.
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Chapter 4

Other parsers

There are currently several popular parsing tools available, with spaCy1 [22] being advertised
as the “fastest in the world” [14]. The Stanford CoreNLP parser2 [28], and MALTParser [33,
34] are another two commonly used parsers. In this thesis, we compare our performance and
accuracy against these three parsers. Since our model is a derivative of Chen and Manning’s
model, we will describe that model in more detail than the other parsers.

In this chapter will describe spaCy’s parsing model, along with CoreNLP’s neural net-
work based dependency parsing model, and MALTParser’s nivrestandard model. Although
CoreNLP contains two dependency parsers — a traditional one, and a neural network based
one — we will focus on the neural network based one due to it being an implementation
of Chen and Manning’s [6] parsing system which reported a very high number of sentences
parsed per second.

4.1 spaCy

According to its documentation3, spaCy implements an arc-eager transition system [32],
with feature values generated using a convolutional neural network which is shared by the
parser, POS tagger, and named entity recognizer. The features used by spaCy are

1. s0, s1, s2,

2. b0, b1,

3. lc1(x) and lc2(x) for x ∈ {b0, b1, s0, s1, s2}

4. rc1(x) and rc2(x) for x ∈ {b0, b1, s0, s1, s2}

1https://spacy.io

2https://stanfordnlp.github.io/CoreNLP/index.html

3https://spacy.io/api/#nn-model
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where lci(x) is the i-th leftmost child of x and rci(x) is the i-th rightmost child of x.
SpaCy is implemented in Cython [3] using Thinc4.

4.2 Stanford CoreNLP

In this section we describe the neural-network based decision function introduced by Chen
and Manning [6], and look at the Stanford CoreNLP implementation of this algorithm.

Chen and Manning use a regular arc-standard system as described in Section 2.2, with
their main contribution being their decision function. For the decision function, they use a
simple feed-forward neural network that takes vectors of features of the current state and
produces a probability distribution over all transitions.

Chen and Manning used the shortest stack oracle to generate training examples.

4.2.1 Features used

As mentioned in Section 2.3, it is necessary for the decision function to be constant-time to
maintain the O(n) bound on the overall parsing algorithm. It is also important for speed
that we consider a small number of features, and do not analyze the entire sentence at any
point in time.

Chen and Manning define the following features (where si refer to items in the stack,
and bi refer to items in the buffer).

1. word form and POS tag for each of [s1, s2, s3, b1, b2, b3];

2. word form, POS tag, and label for each of [lc1(si), rc1(si), lc2(si), rc2(si)] for i = 1, 2;
and

3. word form, POS tag, and label for each of [lc1(lc1(si)), rc1(rc1(si))] for i = 1, 2.

In the above description, lc1(si) and lc2(si) is the left-most and second left-most depen-
dent of si; the case is symmetric for rc1(si) and rc2(si) but for right dependents. Label of
si is the label of the arc in which si is a dependent.

Chen and Manning group these features in three sets: Sw is the set of all word form
features, St is the set of all POS tag features, and S` is the set of all label features. The
sizes of these sets are denoted as

nw = |Sw|

nt =
∣∣∣St∣∣∣

n` =
∣∣∣S`∣∣∣

4https://github.com/explosion/thinc
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4.2.2 Representing features

Chen and Manning use three embedding matrices: one for word vectors, one for part-of-
speech (POS) tags, and one for arc labels. The dimension of each of these is fixed, as the
vocabulary size is fixed, and the complete list of available POS tags and arc labels is known
ahead of time. We denote the embedding dimension as d, and it is the same for all embedding
matrices.

We denote the vocabulary size as Nw, the number of POS tags as Nt, and the number
of arc labels as N`. Thus, the dimension of the word embedding matrix Ew is d×Nw, the
dimension of the POS tag embedding matrix Et is d × Nt, and the dimension of the arc
label embedding matrix E` is d×N`.

To represent the features, Chen and Manning extract the word, tag, or label embeddings
required, and define

xw = [Ew[w1]; Ew[w2]; . . . ; Ew[wnw ]]

xt = [Et[t1]; Et[t2]; . . . ; Et[tnt ]]

x` = [E`[l1]; E`[l2]; . . . ; E`[ln`
]]

where wi, ti, and li are the ith elements in sets Sw, St, and S`, respectively.

4.2.3 Architecture

Chen and Manning use a simple feed-forward neural network architecture, with the inputs
being xw, xt, and x` and the output being a vector representing the probability distribution
over all transitions.

Given the inputs, they compute the hidden layer of dimension dh using a cube activation
function:

h = (Ww
1 xw + Wt

1xt + W`
1x` + b1)3

where Ww
1 ∈ Rdh×(d·nw), Wt

1 ∈ Rdh×(d·nt), W`
1 ∈ Rdh×(d·n`), and b1 ∈ Rdh.

A softmax layer is added on top to compute the probabilities:

p = softmax(W2h)

where W2 ∈ R|T |×dh , where T is the set of transitions. As the set of transitions includes all
arc labels for left arcs and for right arcs, |T | = 2N` + 1.

4.2.4 Decision function

The decision function used by Chen and Manning simply extracts the sets of features Sw,
St, and S`, executes the feed forward network, and returns the best valid transition. The
best valid transition is not always the best transition as predicted by the neural network
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since the neural network may predict a transition which may not be applicable; for example,
it may predict a SHIFT as the most likely transition when the buffer is empty.

Thus, the decision function must sort the transitions by likelihood and then find the
first one which is applicable to the current parser state. There are several things that need
to be checked:

• If the transition is an arc, it is necessary that there are at least two items in the stack.

• If the transition is a shift, it is necessary that the buffer is not empty.

• A left arc with connecting any work to the ROOT token is invalid as the ROOT token
cannot be a dependent.

• A right arc which adds a dependent to the ROOT token is only valid if the label of
the arc is ‘root’.

4.2.5 Cube activation function

Chen and Manning introduced a novel activation function in their neural network: the cube
activation function g(x) = x3. The sigmoid and tanh functions are more commonly used in
neural networks, however, they do not model feature combinations.

The intuition for the cube activation function is that the hidden layer can model products
of three elements from anywhere in the input layer, thus capturing the interaction between
three elements from three different embeddings, thus effectively modeling combinations of
three features. This can be seen in the following equation:

g(w1x1 + · · ·+ wmxm + b) =
∑
i,j,k

(wiwjwk)xixjxk

+
∑
i,j

b(wiwj)xixj +
∑
j,k

b(wjwk)xjxk +
∑
i,k

b(wiwk)xixk

+
∑
i

b2wixi +
∑
j

b2wjxj +
∑
k

b2wkxk

+ b3

To see what is happening more concretely, let us take a very simple example, where we
have one feature for two tokens, and we have already retrieved the relevant two-dimensional
embeddings and concatenated them. Thus, our feature vector is

v = [v(1)
1 , v

(1)
2 , v

(2)
1 , v

(2)
2 ]

where the superscript refers to the token. Then our hidden layer is computed as

h = (Wvv + b)3
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where Wv,Wu ∈ R2×4 and b ∈ R2, meaning that h is a two-dimensional vector. However,
for simplicity, let us omit the bias term and define our hidden layer as

h = (Wvv)3

Now let us show the matrix multiplication element by element:

w11 w12 w13 w14

w21 w22 w23 w24

 ·

v

(1)
1
v

(1)
2
v

(2)
1
v

(2)
2

 =

w11v
(1)
1 + w12v

(1)
2 + w13v

(2)
1 + w14v

(2)
2

w21v
(1)
1 + w22v

(1)
2 + w23v

(2)
1 + w24v

(2)
2



Since the cubing is element-wise, we’ll only look at the top element of the resulting
vector, and to make the equation more clear, we will replace the weights by a, b, c, d, and
the feature elements by w, x, y, z. Thus, we have

(aw + bx+ cy + dz)3 =6abcwxy + 6abdwxz + 6acdwyz + 6bcdxyz+

3a2bw2x+ 3a2cw2y + 3a2dw2z + 3ab2wx2 + 3ac2wy2 + 3ad2wz2+

3b2cx2y + 3b2dx2z + 3bc2xy2 + 3bd2xz2 + 3c2dy2z + 3cd2yz2+

a3w3 + b3x3 + c3y3 + d3z3

and it is clear that we have interactions between all elements of the feature vector for token
1 with all the elements of the feature vector for token 2. And if we added more features,
we would have new elements added to the same sum we have above, so there would be
interactions between different elements between different features of different tokens. This
effectively models the interaction between any three features among the set of features of
the tokens we are considering.

4.3 MALTParser

MALTParser using the LIBLINEAR [15] learner fits a linear classifier to predict the best
transition given features of the current configuration. The ‘nivrestandard’ model implements
the arc-standard algorithm. Figure 4.2 shows the features used by this model. Figure 4.1
describes the notation used.
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pos(x) POS tag of x
deprel(x) Dependency relation of x with its head
head(x) The head word of x
w(x) Word form of x
ldep(x) left-most dependent of x
rdep(x) right-most dependent of x

Figure 4.1: Explanation of functions used in Figure 4.2. This notation is dissimilar to the
other notation used in this thesis (e.g. ldep(x) is lc1(x) elsewhere), but it is much closer to
MALTParser’s documentation.

Independent features

pos(x) for x in {s1, s1, b1, b2, b3, b4}
deprel(ldep(s1))
deprel(rdep(s1))
deprel(ldep(b1)
deprel(rdep(b1)
w(x) for x in {s1, b1, b2}
w(head(s1))

Combined features

pos(s1) and pos(b1)
pos(b1) and pos(b2) and pos(b3)
pos(b1) and deprel(ldep(b1)) and deprel(rdep(b1))
pos(b2) and pos(b3) and pos(b4)
pos(s1) and pos(b1) and pos(b2)
pos(s1) and deprel(ldep(s1)) and deprel(rdep(s1))
pos(s2) and pos(s1) and pos(b1)

Figure 4.2: Features used for ‘nivrestandard’ model.
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Chapter 5

Our approach

Our model is similar to the Chen and Manning model [6] described in Section 4.2. To
improve speed, though, we made modifications in terms of features used, and the neural
network architecture. However, we continued using the arc-standard system since it will
only use at most 2n transitions to parse a sentence of length n [32].

In this thesis we aim to improve parsing speed while minimizing accuracy loss relative
to other parsers, as opposed to increasing both parsing speed and accuracy. However, as
some techniques used to improve speed do cause a reduction in parsing accuracy, we also
investigate methods for increasing accuracy within the neural network component which
don’t cause a decrease in speed.

As mentioned in Chapter 2, once we’ve picked the parsing system, one of the most
important components to design is the decision function which outputs a transition given a
configuration and transition history. For speed, however, we do not consider the transition
history and only take into account the current configuration.

In this chapter we will describe the decision function we used, as well as how we imple-
mented the entire parser. As the decision function takes certain inputs and produces certain
outputs, we will first describe the features we extract from the current configuration, then
how we represent them, followed by how we compute the transition probabilities, and finish
with how we apply the transitions to the configurations.

5.1 Features used

Initially, we used the same features from [6], however when we profiled our code, it appeared
the lc1(lc1(si)) and rc1(rc1(si)) features were the slowest features to compute as they re-
quired extracting all the dependents for 8 nodes in our tree, only to read the features of 4 of
them. When we removed them, we noticed no decrease in accuracy, while gaining a speed
increase. The comparison is shown in our results.

Thus, our final set of features is

1. word form and POS tag for each of [s1, s2, s3, b1, b2, b3]; and
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2. word form, POS tag, and label for each of [lc1(si), rc1(si), lc2(si), rc2(si)] for i = 1, 2.

Similarly to [6], we define 3 sets of features: Sw denotes the set of word features, St

denotes the set of POS tag features, and S` denotes the set of arc label features. The POS
tag features are optional in our parser, allowing the user to increase parsing speed at the
expense of a drop in accuracy.

The sizes of the sets of features are denoted as

nw = |Sw|

nt =
∣∣∣St∣∣∣

n` =
∣∣∣S`∣∣∣

The features we extract are simply integers which can later be mapped to descriptive
strings. To produce useful inputs to the neural network, we use dense vector representations
of each of the features. As this requires matrices of fixed sizes to store the representations,
we use a fixed size vocabulary which we learn when training. The POS tag set and arc label
set are both known in their entirety ahead of time as they are both fully defined in the
Universal Dependencies specification.

Thus, we have three embedding matrices (where d is the dimension of the embeddings):

1. Ew is the word embedding matrix of dimension Nw × d where Nw is the vocabulary
size.

2. Et is the POS tag embedding matrix of dimension Nt × d where Nt is the size of the
POS tag set.

3. E` is the arc label embedding matrix of dimension N` × d where N` is the size of the
arc label set.

To produce feature values which can be fed into the neural network, we use the integers
representing the features as indices into the corresponding embedding matrices; thus, if a
feature has value j, we extract row j of the corresponding matrix and use that in the neural
network.

In Section 5.6, we discuss how we compute features, and the optimizations we perform.

5.2 Architecture

We use a similar architecture to Chen and Manning [6], with the most significant difference
being that we predict the transition and arc labels separately, and we use a different ac-
tivation function. The separated prediction allows us to perform argsort1 on the resulting

1The argsort function returns “the indices that would sort an array” [46].
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vectors much more quickly as there are almost half the number of values in the two smaller
vectors than in the single large vector (the combined vector would have size 2|T |+ 1, while
the split vectors have a total of |T |+ 3 elements, where T is the set of labels).

Once we’ve extracted our sets Sw, St, and S` of features, we define the inputs to our
neural network as

xw = [Ew[w1]; Ew[w2]; . . . ; Ew[wnw ]]

xt = [Et[t1]; Et[t2]; . . . ; Et[tnt ]]

x` = [E`[l1]; E`[l2]; . . . ; E`[ln`
]]

where wi, ti, and li are the ith elements in sets Sw, St, and S`, respectively, and Ew[wi],
Et[ti], and E`[li] are their respective embeddings.

As our hidden layer, we use a very similar one to [6], except we use the quartic activation
function instead of the cube activation. We compared different activation functions and
found that the quartic performed a little bit better than the cube activation, with no
decrease in speed (see Table 6.9 for the comparison of different activation functions).

h = (Ww
1 xw + Wt

1xt + W`
1x` + b1)4

Then to produce our outputs we define

pa = softmax(Wa
2h)

p` = softmax(W`
2h)

where pa is the probability distribution over transitions, and p` is the probability distribu-
tion over arc labels. Thus, the dimension of pa is 3, and the dimension of p` is |T | where T
is the set of all labels.

In our parser, we retained the ability to use either two output vectors, or a single one.
This allows us test all possible combinations of features and architectures.

We also use the GloVe [37] pretrained word embeddings trained on Wikipedia and
Gigaword 5 with 6 billion tokens and 300 dimensions2. Since inside our model we may use a
different dimensionality for the word embeddings, we apply a linear layer to map the word
embeddings extracted from the pretrained matrix into the new vector space; thus if we need
the vector for word wi, instead of using Ew[wi], we instead compute

WG ·G[wi]

2https://nlp.stanford.edu/projects/glove/

34

https://nlp.stanford.edu/projects/glove/


where G is the GloVe embedding matrix, and WG is a matrix of dimension d× 300 where
d is the word embedding dimension we use elsewhere in the network.

5.3 Training

To generate training examples, we used the shortest stack oracle (as described in Section 2.4)
on each sentence in our training set to generate example tuples of the form (configuration
features, best action). We then collected all such examples into one large list L, and shuffled
it. We then split this list into batches of size k (with a possibly smaller final batch), and
feed these into our neural network one by one. After all batches have been consumed,
we re-shuffle the list of examples, and repeat the process. Each batch being fed into the
neural network counts as one step, and going through all the examples counts as one epoch.
However, we only explicitly count the number of steps.

The training objective is to minimize the cross-entropy loss:

L(θ) = −
∑
i

log pti + λ

2 ‖θ‖
2

where pti is the predicted probability of the correct transition ti ∈ T for training example
i, and θ is the set of all parameters in the network.

To train our network, we used the Adadelta optimizer [53] implementation in Tensor-
Flow, with the initial learning rate set to 1.0.

For initialization of the parameters, we used uniformly random initialization within
(−0.1, 0.1) for Ew, Et and E`. During training, we also applied a dropout [20, 45] with a
0.5 rate on each of the hidden layers h and hi. Although Chen and Manning used uniformly
random initialization within (−0.01, 0.01), we found that training loss did not decrease when
using these values.

We used the following hyper-parameters: embedding size d = 50; hidden layer size 200;
regularization parameter λ = 0.0001 for our model, and λ = 10−8 for Chen and Manning
model; and learning rate for Adadelta of 1.0 (ρ and ε were left at their defaults of 0.95 and
10−8).

5.4 Extensions to the architecture

In addition to our basic architecture, we also experimented with some extensions in an
attempt to improve accuracy without hurting parsing speed. The attempts were in using
recurrent neural networks to encode word vectors in context, as well as using different
number of hidden layers.
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5.4.1 Recurrent neural network

In a simple attempt to retain the small number of features, while also viewing them in
a larger context, we experimented with using a bidirectional recurrent neural network
(BiRNN) based on an LSTM cell to encode the words of the sentence in context. We
fed the word embeddings into the BiRNN, and produced a new sequence of vectors (one for
each token in the sentence). We then used these new vectors in place of each Ew[wi] in xw.

We experimented with two methods of training this BiRNN. In the first version, we
simply used its outputs in the rest of the network, as described above. In the second method,
however, we used POS tagging as a scaffold task. Thus, while using the BiRNN as before,
we also added a linear layer on top of each of the outputs of the BiRNN to predict the POS
tags of each token. We added the loss of the POS tag prediction to our total loss at training
time, while at test time we left out the extra linear layer and used the BiRNN as before.

More formally, given a sentence S = [w1, . . . , wn], we produce

[h1, . . . , hn] = BiRNN([Ew[w1], . . . ,Ew[wn]])

where hi is the hidden state of the BiRNN at time step i. Then instead of Ew[wj ] in xw as
defined previously, we replace each such element with the respective BiRNN output

xw = [hw1 ;hw2 ; . . . ;hwnw
]

where the subscripts refer to the word indices in Sw (not in S).

BiRNN with POS tagging as scaffold task

As the simple usage of the BiRNN did not lead to much improvement in accuracy, we
decided to also train the BiRNN to produce POS tags. As we already have POS tags for all
tokens in our training data, we were able to easily add this new task.

At each time step i, we take hi and multiply it by a projection matrix Wp such that
the output is a vector with the same number of elements as the total number of POS tags
available. Then we computed the average cross-entropy loss across all time steps. We then
added this loss to our overall loss.

This is similar to stack-propagation [55], and the low-level task supervision of Søgaard
and Goldberg [44].

We call this model “Main + POS-BiLSTM”.

5.4.2 Different activation functions

Although Chen and Manning showed that the cube activation function is a good activation
function for this structure of neural network, we decided to also experiment with more
activation functions to see if there is any benefit in increasing the exponent past 3. As the

36



cube activation function considers combinations of three elements from all the input vectors,
using a quartic function would consider combinations of four elements. Thus, we decided to
check the limits of this approach by also using the quadratic, quartic, quintic, and sextic
activation functions.

Thus, our full list of activation functions is

a(x) = x

a(x) = x2

a(x) = x3

a(x) = x4

a(x) = x5

a(x) = x6

a(x) = relu(x) = max(0, x)

a(x) = tanh(x)

a(x) = σ(x)

a(x) = tanh(x3 + x)

where tanh(x3+x) is known as the tanh-cube function and was introduced by Pei, et al. [36].

5.4.3 Different hidden layers

In our parser there is at least one hidden layer (as defined previously), but the activation
function may be changed to any of the ones defined in Section 5.4.2.

Our parser also allows extra hidden layers. Each layer i (greater than 1) is defined as

hi = a(W(i)hi−1 + b(i))

where a(·) is any of the activation functions mentioned above. This activation function may
be different than the first hidden layer, but must be the same for all the extra layers. Each
W(i) is a square matrix to keep the dimension of all the hidden layers the same.

The reasoning is that each entry in the first hidden layer contains all combinations of
3 elements from all feature vectors, but with its own set of weights (as each element i
corresponds to row i of each of the weight matrices). However, it may be beneficial to have
a linear combination between the rows. As we want the network to only include other rows
if it deems it beneficial, we initialize each W(i) to the identity matrix.

5.4.4 Scaling labels based on arc direction

Since the probability of a left-arc, right-arc, and shift is computed separately than the label
probabilities of the potential arc, we considered allowing the transition prediction to affect
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the label probabilities, such that for certain arc directions, some of the label probabilities
may increase or decrease.

We decided to either scale the label predictions by a value between 0 and 1, or to shift
the predictions by adding a vector.

The “scale” version is defined as follows:

ain = Wa
2h

pa = softmax(Wa
2h)

p` = softmax(W`
2h� σ(Ws

2ain))

And the “shift” version is defined as follows:

ain = Wa
2h

pa = softmax(Wa
2h)

p` = softmax(W`
2h + Wb

2ain)

5.5 Decision function

Given that not all transitions are valid, we need to find the most highest-scoring valid
transition to apply. To do this, we use two nested loops: we first iterate over pa in decreasing
order, and then over p` also in decreasing order. For each possible transition we find, we
check that

• the preconditions are met;

• the ROOT token is not added as a dependent; and

• the ROOT token is only added as a head at the end.

Once we find a transition that is valid, we apply it, computing the features for the new
configuration as described in Section 5.6.2.

5.6 Implementation

We implemented our parser in Cython, with only the main callable being in pure Python.
The neural network component was implemented using TensorFlow. To take advantage of
TensorFlow and the GPU, we used mini-batches to compute the predicted transitions for
multiple configurations at once. This component, however, was the only one which runs in
parallel. The rest of the parsing process is sequential. In this section we explain our (pseudo)
mini-batching technique, along with optimizations we perform in computing features.

38



5.6.1 Parsing using mini-batches

To take full advantage of TensorFlow and the GPU, we used mini-batches of configurations.
The mini-batch is represented as a list of size k of configurations not in their terminal state.
We initialize this list with the initial configurations of the first k sentences to be parsed.
Then, for each configuration in the mini-batch, we read the features, and feed them into the
neural network as a mini-batch, which then produces two matrices representing pa and p`
for all the configurations in the batch. We then run argsort3 on these matrices to produce
a sorted list of transitions and labels for all configurations in the mini-batch.

We then iterate over the list of configurations, finding the best valid transition, and
applying it. The configurations that are in their terminal state after the transition remain
in the list, while the terminal configurations are added to a new “finished” list. The arcs in
the finished list are then printed out, and new initial configurations of new sentences are
added to the mini-batch to fill out all k entries.

As some sentences require fewer transitions than others to parse, the configurations
which are ready to be printed out are usually out of order. Thus, we store the sentence
number along with the configuration, and only print out a configuration when all previous
sentences’ configurations have been printed. To do this efficiently, we maintain a priority
queue of terminal configurations, and when a new configuration is added to the queue, we
check whether the head of the queue should be printed, and if so, we print out all consecutive
configurations starting with the head.

5.6.2 Computing features

As feature computation is performed before choosing a transition to apply, and there are
most 2n transitions that can be applied per sentence before parsing is completed, it is crucial
to have a fast feature computation. Even though we have a small number of features, the
large number of times they must be computed ensures that they can still become a bottleneck
if not optimized.

For each sentence, we create one configuration object which fully defines its current
parsing state. In this configuration object, we also store three arrays, one for each set of
features. At any point in time, the arrays store the correct values for the features defined,
thus when retrieving the features to feed into the neural network, it is sufficient to simply
read these arrays; no extra computation is necessary.

Feature values clearly need to change as the configuration changes, though, but as they
only change when a transition is applied, that is when we re-compute the values in the three
arrays. Knowing the transition being applied allows us to perform extra optimizations which
would not be possible had we computed the features later.

3The argsort function returns “the indices that would sort an array” [46].
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Optimizations

The optimizations that are possible are due to the fact that transitions do not cause all
features to change. Thus, when applying a transition, we only need to re-compute a subset
of features, and of that subset some computations become much simpler. More specifically,
we note the following properties of the transitions which allow for optimization:

• When a shift occurs, the old s1 moves into the position of the old s2, and the old b1

moves into position s1. Thus, for a shift, it is not necessary to re-compute the features
of the dependents of the new s2; it is sufficient to copy them from the old s1. The
only new features to be computed are the ones for the new s1 and the top 3 words
in the buffer. Some copying can be done for the buffer features as well, but the code
computing these features is fast enough that it is not necessary.

• When a left-arc transition is applied, the right-dependents of s1 do not change, but as
it now has a new left-dependent, its left-dependent features need to be re-computed,
as well as the features for the new s2.

• When a right-arc transition is applied, the left-dependents of the new s1 do not
change; only the right-dependents change. Thus, it is sufficient to re-compute the new
right-dependent features, as well as the ones for the new s2. The other features only
need to be copied to their new positions in the arrays.

It is important to note that in this case, when we are “computing” features, we are
simply looking them up in the current parse tree, or in the objects representing the words.
Thus, no speedup would occur if we considered an optimization where the features for s3

would be stored somewhere to be copied in when a left-arc transition causes s3 to become
the new s2. The optimizations are only beneficial when the copying occurs within the arrays
representing the features for the current configuration as no extra Python function calls are
necessary; the Cython (and thus C) compiler is then able to generate fast memory-copying
code.
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Chapter 6

Experiments

All experiments were performed on a single machine with an Intel i7-5820K processor and
an NVIDIA GeForce GTX 1080; this processor has 6 physical cores, and 12 logical cores. We
used the latest versions of all libraries and compilers, except for cuDNN for which we used
the latest version supported by the TensorFlow 1.3. The relevant details for the hardware
and software versions are listed in Table 6.1.

Hardware component Details
CPU Intel i7-5820K (6 cores / 12 logical cores)
CPU Frequency 3.30GHz
GPU NVIDIA GeForce GTX 1080
GPU Memory 8105MiB
Main memory 8 × 8192MB / DDR4 / 2133 MHz
Software component Version
Ubuntu 16.04.3
Python 3.6.2
Cython 0.26
Nvidia driver 367.57
CUDA 8.0.61
cuDNN 6.0.21
Numpy 1.11
TensorFlow 1.3

Table 6.1: Hardware and software versions on our machine.

We experimented with different sets of features, and with several model structures.
To effectively test for speed, we used compile-time flags to include or exclude code rather
than runtime conditional statements. Table 6.2 contains the general hyper-parameters used
throughout the network unless specified differently in the description of the model.
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Parameter Value
Word-dropout α 0.25
Adadelta learning rate 1.0
Embedding dimension d 50
Hidden layer size 200
LSTM encoder dimension 300
Pretrained GloVe embedding dimension 300

Table 6.2: Hyper-parameters used in the models.

6.1 Datasets

We experimented with three datasets. The first was the Universal Dependencies UD English
dataset which is based on the English Web Treebank1 [43]. This contains sentences from
weblogs, newsgroups, emails, reviews, and Yahoo! answers. This dataset will be referred to
as UD English.

The second dataset was constructed from the Penn Treebank dataset [29] by converting it
to Universal Dependencies version 2 format using the Stanford CoreNLP tool. The sentences
in this dataset are from the Wall Street Journal, and we used the standard split of sections
2–21 for training, section 22 for development and section 23 for testing. This dataset will
be referred to as PTB.

The third dataset is Ontonotes 5.0. Similarly to the Penn Treebank dataset, this one
does not contain dependency information but does contain constituency parses which were
converted using the NLP4j DDR2 tool to CoNLL-U format. This tool does not use the
universal dependencies labels for relations, however; it instead uses a deep dependency
representation3 which contains both primary and secondary dependencies. Secondary de-
pendencies are used to encode one word referring to another. As these were not relevant
for us, we removed secondary dependencies from the converted dataset. This format and
conversion algorithm is further described in [8, 7].

As the Ontonotes 5.0 dataset is not split into training, development, and testing sets, we
used the same split of the data as the CoNLL-Formatted Ontonotes 5.0 repository4 which
contains the skeleton files used in the CoNLL 2012 Shared Task [38]; the repository does
not contain parse information, so we instead used the file names to map the split back to
the original data files.

1https://catalog.ldc.upenn.edu/LDC2012T13

2https://github.com/emorynlp/ddr

3https://emorynlp.github.io/ddr/pages/overview.html

4https://github.com/ontonotes/conll-formatted-ontonotes-5.0
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Table 6.3 shows the statistics for these three datasets. As can be seen, the Ontonotes
dataset is by far the largest of the three in terms of number of sentences, significantly more
distinct tokens than the other two.

Dataset Sentences Avg. length Distinct tokens
PTB 39,831 / 1,699 / 2,415 24 39,547 / 6,264 / 7,726
UD 12,542 / 2,001 / 2,076 15 16,632 / 4,809 / 4946
Ontonotes 115,803 / 15,679 / 12,216 19 54,476 / 20,651 / 16,506

Table 6.3: Dataset statistics, split into training/development/test sets. Distinct tokens are
defined as the set of lower-cased word forms present in the FORM column of the CoNLL-U
format.

To handle unknown words in the testing data, we preprocessed the training data using
a variant of word-dropout [24], as proposed by Kiperwasser and Goldberg [25]: we replace
each word with the unknown-word token with a probability inversely proportional to the
word’s frequency in the dataset. We define the probability of a replacement of word w as

punk(w) = α

count(w) + α

Unlike Kiperwasser and Goldberg, we do not apply this variant of word-dropout for
each training example independently while training the network; we instead apply it on the
training dataset as a pre-processing step to produce a new dataset with some words dropped
out. This allows us to create dense mini-batches of training examples (i.e. large matrices of
inputs and outputs to our neural network) ahead of time, and thus speed up training time
significantly. Table 6.4 shows some statistics of performing this form of dropout.

Dataset Num. sentences ≥ 1 UNK
PTB 39,831 8,279 (20.79%)
UD 12,542 3,308 (26.38%)
Ontonotes 115,803 12,040 (10.40%)

Table 6.4: Statistics of the word dropout performed on each training dataset.

We re-tagged our testing sets using the Stanford CoreNLP POS Tagger [48, 47], using
the pretrained ‘english-bidirectional-distsim’ model; we chose this model because the docu-
mentation stated that it is the most accurate one. Accuracies of the re-tagged test sets are
shown in Table 6.5.
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Dataset UPOSTAG (%) XPOSTAG (%)
PTB 89.35 97.25
UD 82.11 87.60
Ontonotes 88.65 87.11

Table 6.5: Accuracies of re-tagging the test sets. UPOSTAG and XPOSTAG are referring
to the field names of the CoNLL-U format, where XPOSTAGs are more fine-grained than
UPOSTAGs.

6.1.1 Converting treebanks to Universal Dependencies

To convert the Penn Treebank dataset into Universal Dependencies, we used the Stanford
CoreNLP tools5, whose method for converting treebanks to Universal Dependencies is de-
scribed in [40]. The converter uses a set of rules to determine the head of each constituent,
and in a depth-first manner builds a dependency graph; afterwards, regular expressions on
the tree are defined which are used for labeling the arcs.

6.2 Other parsers

We compared the accuracy and speed of our parser against three other commonly-available
parsers: Stanford CoreNLP, MALTParser, and spaCy (versions listed in Table 6.6). We
retrained the parsers on each dataset, using the same CoNLL-U formatted files for each.

Parser Version
spaCy 2.0.2
Stanford CoreNLP 3.8.0 (2017-06-09)
MALTParser 1.9.1

Table 6.6: Version numbers of the parsers we compared against.

We trained CoreNLP’s nndep.DependencyParser tool using the default parameters, and
only specified that it must use the coarse-grained UPOSTAG field instead of the default
fine-grained XPOSTAG. We will call this model “CoreNLP”.

We trained MALTParser using the ‘nivrestandard’ model using the LIBLINEAR learner,
with default parameters. When given a CoNLL-U format file, it will use UPOSTAG field
by default for the POS features. We call this model “MALT:ns”.

The spaCy parser was trained using its built-in ‘train’ command using the default pa-
rameters; it also uses the Universal Dependencies UPOSTAGs as its POS tag set.

5Instructions for converting Penn Treebank to UD are found here: https://nlp.stanford.edu/
software/stanford-dependencies.shtml
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6.3 Results

From our experiments we found that the lc1(lc1(si)) and rc1(rc1(si)) features used by Chen
and Manning were of negligible importance to the overall performance of the parser, and
due to the complexity of querying the set of arcs, they were among the slowest features to
compute; thus, we eliminated these from our parser.

We also found that part-of-speech tags were very important, and accuracy dropped
significantly when they were omitted. Interestingly, the accuracy drop was smaller on the
UD English dataset than the PTB dataset. We suspect this is due to the lack of professional
editing of online content, which may lead to more ambiguous statements, and the increased
importance of POS tags to disambiguate meaning.

In the following results, the ‘Main’ model refers to our model which we described in
Section 5.2, without any extensions.

6.3.1 Reduced feature sets

The fewer number of features which must be computed, the faster the parser is, at the
expense of accuracy. Some features, however, do not appear important: the accuracy remains
the same with or without the grandchild features. However, other features related to existing
arcs do seem to be important. These remain much slower to compute than the simple
unigram features, so they slow down the parser. They are slower to compute because they
require queries to the object storing arcs to return two new lists of (at most) two items for
each of s1 and s2, whereas the s1 and s2 objects store the word and tag features directly
as integers (since they do not change during the parsing process). Results for the different
feature sets are shown in Table 6.7.

Model UAS LAS Speed (w/s)
Main 80.69 74.25 44,864 (1,912)
Main + grandchildren 80.80 73.99 43,834 (1,545)
Main − arc features 74.89 64.79 60,760 (3,976)

Table 6.7: Results on PTB comparing the main model to the same model including grand-
children features (i.e. lc1(lc1(si)) and rc1(rc1(si)), and to the same model excluding the
arc-related features (i.e. lc1(si), lc2(si), rc1(si), rc2(si).). Speed reported is average of 10
runs with standard deviation in brackets.

6.3.2 Scaling labels based on arc direction

We attempted to adjust the label prediction using the transition prediction, such that the
probabilities of certain labels change based on the arc direction. However, given the results in
Table 6.8, we found no benefit to doing this, as the differences between the different scaling
methods are negligible. To simplify the network, it seems best to produce independent
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output vectors. This result may be due to the fact that all information necessary to predict
transition and labels is already present in the hidden layer h, and so there is no benefit
to including transition information in the label prediction. This is likely related to the
polynomial activation function which already combines many disparate elements in the
input vectors in such a way that another linear layer adds no extra information.

Model UAS LAS Speed (w/s)
Main (no scaling) 80.57 73.80 44,294 (2,403)
Main + multiplicative 80.54 73.95 43,665 (1,086)
Main + additive 80.51 73.95 43,757 (1,615)
Main + combined output 80.41 74.67 39,190 (1,670)

Table 6.8: Results on PTB comparing the main model with the extensions which modify
the label prediction based on the transition prediction using � or +, respectively, as well
as the extension with a combined output vector. Speed reported is average of 10 runs with
standard deviation in brackets.

6.3.3 Different activation functions

To confirm Chen and Manning’s findings of the cube activation function being better than
tanh or sigmoid, we ran experiments with many activation functions, including many dif-
ferent exponents; the results are presented in Table 6.9. We found that the tanh function
performs worst, while the quartic function performs best in terms of LAS, although not by
much, compared to the other polynomial functions. The quintic function performs better
in terms of UAS than quartic (0.34 percentage points better), but it also does worse on
LAS by 0.38 percentage points. This leads us to speculate that although combinations of
elements from the input vectors are beneficial, there is a limited number of combinations
which are useful. This may simply be due to the limited number of features, or due to the
size of the model.

6.3.4 Number of hidden layers

Despite numerous experiments with different number of extra hidden layers, and different
activation functions, we found no benefit to having more than one hidden layer. Indeed, we
found cases in which increased number of hidden layers decrease accuracy. Mathematically,
adding an extra hidden layer

h2 = Wh+ b

computes a linear combination between the elements of h, which, as can be seen from the
equations in Section 4.2.5, already contains many combinations of elements from different
parts of the input vectors. Thus, it appears that extra combinations of elements of h do not
add any extra value. Table 6.10 shows there results of having multiple hidden layers using
the sigmoid activation function.

46



Activation function UAS LAS
identity (x) 73.99 65.51
quadratic (x2) 79.70 72.75
cubic (x3) 80.26 72.80
quartic (x4) 80.34 73.40
quintic (x5) 80.71 73.02
sextic (x6) 80.55 72.57
relu (max(0, x)) 80.00 71.96
tanh 77.19 69.76
sigmoid 76.88 68.03
tanh-cube (tanh(x3 + x)) 77.80 70.06

Table 6.9: Accuracy results for the different activation functions as evaluated on the PTB
dataset. Different activation functions do not affect parsing speed, thus it is not reported
here.

Model hidden layers UAS LAS Speed (w/s)
Main 80.55 73.99 42,961 (1,146)
Main + 1 80.73 73.23 43,450 (1,276)
Main + 2 80.71 73.18 43,314 (761)
Main + 3 80.69 73.31 42,787 (1,043)

Table 6.10: Results on PTB of using multiple hidden layers with all hidden layers after
the first using a sigmoid activation. Speeds reported is average of 10 runs with standard
deviation in brackets.

6.3.5 Pretrained word embeddings

Model UAS LAS Speed (w/s)
Learned 80.41 73.70 44,102 (1,275)
Pretrained 80.32 73.90 43,911 (1,852)

Table 6.11: Results on PTB of learning the word embeddings directly, versus using pre-
trained GloVe word embeddings and only learning the dimensionality reduction matrix
from GloVe vectors to d dimensional vectors. Speed reported is average of 10 runs with
standard deviation in brackets.

Table 6.11 shows the results of learning word embeddings, compared to using the pre-
trained GloVe word embeddings and only learning a linear map into a lower dimension
vector space. Despite having a significantly larger vocabulary when using pretrained em-
beddings, it appears that this does not lead to a significant improvement in accuracy. Neither
does it lead to a significant decline in accuracy, so for real-world data where there will be
significantly more unknown words, it would be a good idea to use the pretrained word em-
beddings. The decrease in parsing speed caused by the pretrained embeddings is likely due
to the fact that at parsing time, we continue using the original 300-dimensional vectors,
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and applying the linear map to reduce them to 50 dimensions. Applying the map ahead of
time, and storing only the new smaller vectors should close the gap.

6.3.6 Use of BiLSTMs to encode sentence

Model UAS LAS Speed (w/s)
Main 80.41 73.70 44,102 (1,275)
Main + BiLSTM 82.85 76.23 18,515 (195)
Main + POS-BiLSTM 85.53 80.91 18,493 (241)

Table 6.12: Results on PTB for using an BiLSTM, along with having the BiLSTM be
simultaneously trained to produce POS tags. Speed reported is average of 10 runs with
standard deviation in brackets.

As can be seen from the results in Table 6.12, using a BiLSTM improves accuracy in
terms of both UAS and LAS, however it leads to a significantly reduced parsing speed.
Using POS tag prediction as a scaffold task during training leads to a significant accuracy
improvement; the decrease in parsing speed is most likely a measurement error as the parsing
code is identical to the regular Main + BiLSTM model. This accuracy improvement exists
despite the fact that the POS tagging extension was fairly naive (in terms of the loss function
used and the use of a simple linear layer to predict tags); a more carefully designed scaffold
task may amplify these results. Although at test time the POS tags in the dataset were
used for the POS features, the BiLSTM component was trained to produce POS tags and
so the embeddings used for the word features include POS information. The network thus
has the opportunity to learn which POS tags are more useful.

6.3.7 Compared to other parsers

In Table 6.13 we see a comparison of our best models with spaCy, CoreNLP, and MALT-
Parser. Our main model has a somewhat higher UAS than CoreNLP, but it also has a
lower LAS by 1.6 percentage points. It is, however, about 4 times faster than CoreNLP,
and our more complex model (with BiLSTM and POS tag prediction) has higher UAS and
LAS while having a somewhat faster speed. MALTParser is more than three times faster
than spaCy, but is less accurate, and our models are several times faster than spaCy but
only more accurate than it on PTB. As spaCy’s model effectively contains a POS tagging
component within it, it performs equally well regardless of the given POS tags in the test
set, while the other parsers’ parsing accuracies decrease as POS tag accuracy decreases.

As a comparison to more complex and more accurate models, Table 6.14 shows the
results of the SyntaxNet [2] and DRAGNN [26] models with on the PTB and UD datasets.
The results are extracted from the papers cited in the table, and as the POS tagger, POS
tag set, and label set differs from the ones used in this thesis, the results are not directly
comparable.
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Dataset Parser UAS LAS Speed (w/s) Scale
Retag Gold Retag Gold

PTB

Main 80.41 90.58 73.70 88.48 44,294 (2,403) ×1
Main +
POS-BiLSTM

85.53 91.67 80.91 89.79 18,493 (241) ×2.40

spaCy 2 84.68 84.68 80.04 80.04 11,446 (189) ×3.87
CoreNLP
nndep

69.68 78.56 63.20 75.84 11,246 (153) ×3.94

MALT:ns 74.04 86.25 67.35 82.78 36,433 (639) ×1.22

UD

Main 72.21 87.01 62.92 84.04 39,584 (1,410) ×1
Main +
POS-BiLSTM

77.46 85.85 69.45 82.43 16,375 (3,058) ×2.42

spaCy 2 85.67 85.67 80.96 80.96 7,312 (82) ×5.41
CoreNLP
nndep

66.89 81.42 58.54 78.51 11,242 (181) ×3.52

MALT:ns 68.03 85.64 59.94 81.64 31,713 (392) ×1.25

Onto-
notes

Main 78.73 81.39 73.63 79.40 44,283 (1,074) ×1
Main +
POS-BiLSTM

81.23 82.93 76.99 81.31 16,385 (539) ×2.70

spaCy 2 89.34 89.34 87.39 87.39 10,012 (83) ×4.42
CoreNLP
nndep

76.36 79.61 72.42 78.28 14,683 (71) ×3.02

MALT:ns 76.24 86.28 71.53 84.34 31,312 (370) ×1.41

Table 6.13: Comparison of our main model, our most accurate model, and the other parsers.
Results are reported on both the re-tagged test sets and the original test sets with the gold
POS tags. Speed reported is average of 10 runs with standard deviation in brackets.

As spaCy 1.9.0 uses the fine-grained POS tags (XPOSTAG) in the CoNLL-U files, it
is not directly comparable to the other parsers which all use coarse-grained POS tags.
However, we trained and tested this version of spaCy against 2.0.2 and present the results
in Table 6.15. The newer version of spaCy is much more accurate, but also significantly
slower than the previous version.

To better visualize the trade-off between accuracy and speed, Figure 6.1 shows the
results from Table 6.13 and Table 6.7 on the PTB dataset. The line connecting our fastest
model and our most accurate one illustrates a linear interpolation between these two points;
from this it clear that our main feed-forward model performs better than a direct linear
interpolation of the other two would.

6.3.8 Training times

Table 6.16 shows approximate training times for the models presented above, and only
includes time spent training the neural network, and not any time spent generating training
examples (which may be done once as a pre-processing step). The feed-forward models all
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Model Dataset UAS LAS
SyntaxNet [2] PTB 94.61 92.79
Arc-Swift [39] PTB 94.3 92.2
SyntaxNet6 [39] UD English 84.79 80.38
DRAGNN [1] UD English 87.86 84.45
Arc-Swift [39] UD English 86.1 82.2

Table 6.14: Results of SyntaxNet, DRAGNN and a newer transition-based system Arc-Swift.
All the PTB results used Stanford dependencies, and the UD English results used Universal
Dependencies. Results are extracted from the cited papers.

Dataset Parser UAS LAS Speed (w/s)
Retag Gold Retag Gold

PTB

spaCy 1 73.77 74.57 69.57 70.87 32,945 (673)
spaCy 2 84.68 – 80.04 80.04 11,446 (189)
Main 80.41 90.58 73.70 88.48 44,294 (2,403)
Main + POS-BiLSTM 85.53 91.67 80.91 89.79 18,493 (241)

UD

spaCy 1 73.03 77.13 67.58 73.15 25,484 (396)
spaCy 2 85.67 – 80.96 80.96 7,312 (82)
Main 72.21 87.01 62.92 84.04 39,584 (1,410)
Main + POS-BiLSTM 77.46 85.85 69.45 82.43 16,375 (3,058)

Ontonotes

spaCy 1 74.14 77.08 71.64 75.11 22,318 (436)
spaCy 2 89.34 – 87.39 87.39 10,012 (83)
Main 78.73 81.39 73.63 79.40 44,283 (1,074)
Main + POS-BiLSTM 81.23 82.93 76.99 81.31 16,385 (539)

Table 6.15: Comparison of spaCy 1.9.0 and spaCy 2.0.2 against our results from Table 6.13.
The accuracy numbers are not directly comparable since spaCy 1 used the fine-grained
XPOSTAG features, while spaCy 2 uses the coarse-grained UPOSTAG features. The number
in parentheses after the speed is the standard deviation across 10 runs.

took roughly 30 minutes to train on PTB, but the BiLSTM models took over 3 hours. This
is due to the fact that the BiLSTM is run for each training example. As the focus of this
thesis was on parsing speed, no attempt was made to optimize the training times.
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Figure 6.1: A plot combining the results of our main model, our fastest model, our most
accurate model, as well as the three other parsers we tested against. These results are on
the re-tagged PTB test set.

Model PTB training time
Main 27 mins
Main + grandchildren 33 mins
Main − arc features 33 mins
Main + combined output 37 mins
Main + 1 hidden layer 31 mins
Main + 2 hidden layers 32 mins
Main + 3 hidden layers 32 mins
Main + pretrained embeddings 20 mins
Main + BiLSTM 3 hours 14 mins
Main + POS-BiLSTM 3 hours 16 mins

Table 6.16: Approximate training times of each neural network model on PTB. The training
time is defined as the time it took to reach the training step which maximized accuracy on
the development set.
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Chapter 7

Conclusion

This thesis presents a model and implementation of a dependency parser, along with several
extensions which show a trade-off between accuracy and speed. The results show that our
main model is significantly faster than other parsers which are advertised as being fast,
while having no decrease in accuracy on the Penn Treebank dataset when gold POS tags
are provided. Our more complex model which includes a BiLSTM trained to also produce
POS tags is more accurate than spaCy on PTB and UD with gold POS tags and much
more accurate than the other parsers on the retagged test sets; however, it is much slower
than MALTParser. However, across all datasets, it is faster than CoreNLP’s nndep parser
while simultaneously being more accurate.

We used a profiling-driven approach to investigate and improve bottlenecks in the parser,
leading to findings that removing arc-related features would lead to a significant improve-
ment in speed, as would splitting the transition and label predictions into two separate
output vectors.

We also showed that the quartic and quintic activation functions perform a little bit
better than the cube activation function used by Chen and Manning [6], although all poly-
nomial functions of degree greater than 2 perform similarly well.

In finding a small set of features which are fast to compute, we discovered that the
lc1(lc1(w)) and rc1(rc1(w)) features included in [6] are unnecessary, but the other dependent-
related features are very important and their removal results in an approximately 6% and
10% absolute drop in UAS and LAS, respectively. However, the arc features are relatively
slow to compute, and their removal leads to a 33% increase in parsing speed, and the UAS
is competitive to spaCy and MALTParser, while being 89% and 68% faster than them,
respectively.

Although our main model with a combined output has a very similar structure to
CoreNLP’s nndep model and has a similar accuracy, our parser is still three times faster,
and more importantly, we showed that predicting the next transition and label separately
results in a 25% increase in parsing speed while retaining a very similar accuracy.
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In terms of using a BiLSTM, it is clear that it is beneficial for accuracy as it is effectively
providing a much larger set of features, although its use does lead to a significant decrease
in speed. In our experiments, we showed that using POS tagging as a scaffold task when
training the BiLSTM results in a significant improvement in accuracy, and this is a task
which can be easily implemented in other models which employ a BiLSTM.

In terms of what this means for parsing English Wikipedia (3.35B words [51]), Table 7.1,
shows the expected parsing times of 3.35B tokens based on parsing speeds from Table 6.7
and Table 6.13.

Model Speed (w/s) Time to parse
Main 44,294 21 hrs
Main − Arc features 60,760 15 hrs
Main + POS-BiLSTM 18,493 50 hrs

Table 7.1: Expected parsing times for 3.35B words using 3 of the models presented in this
thesis. Calculation of the expected time to parse was done by dividing 3.35B by the speed.

7.1 Future work

An area of future work we would like to explore is different methods for training our model
to be more resilient to tagging errors and colloquial grammar. This includes performing
word-frequency sensitive word-dropout (the same method we used in this thesis) on a per-
training-example basis instead of performing it as a pre-processing step. This would lead to
a better distribution of dropped words, as well as a higher number of examples with missing
words.

To make the model more resilient to incorrect POS tags, we would like to explore
introducing errors into the training data, potentially similar to word-dropout. These can be
either replacing tags with an UNK tag or random other tag, or based on tags that the POS
tagger used would produce. Ideally, we would re-tag the training dataset with the intended
POS tagger and then with a certain probability either pick the gold POS tag, or the tagger’s
POS tag for each token for each training example independently.

As our model (as well as all parsers tested) rely on POS tags as features, they naturally
require that the input data is tagged before it is parsed; this simply shifts the bottleneck
from the parser to the tagger, and so there is no benefit to making the parser faster than
the tagger unless the tagger can also be sped up or removed entirely. Bohnet and Nivre [4]
extended the arc-standard set of actions to do joint parsing and tagging by predicting a POS
tag as part of the shift action. Our model can be extended with that method by producing
a third output vector which generates POS tags, and this should lead to a minimal decrease
in speed (as only shift actions would be slightly slowed down) but the complete system
would not require a dedicated POS tagger.
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Implementation-wise, we would like to allow our parser to use multiple threads to pro-
cess the outputs of the decision function, thus allowing our parser to truly parse multiple
sentences in parallel. Currently, when the single thread is applying the outputs of the neu-
ral network to the configuration objects, it does so sequentially, leading to very low GPU
utilization. With multiple threads, the parser can apply the decisions to the sentences more
quickly and thus lower the percentage of time that the GPU sits unused. An extension of
this would be to have a much larger number of sentences on which decisions are applied
than the mini-batch size k sent to the neural network; this would mean that when k config-
uration objects’ features are sent to the neural network, other threads are getting another
mini-batch of size k ready, and will be able to send the new mini-batch as soon as the neural
network produces results for the previous one. This would greatly increase GPU utilization
and would allow for more complex neural network models which are slower to compute, as
the whole pipeline would spend less time waiting for other components to finish.

An alternative method for parallelizing the application of transitions may be to use dif-
ferent data structures such that SIMD (single instruction, multiple data) or SIMT (single
instruction, multiple threads) may be used; currently, it is impossible to apply the same
instructions across all the configurations in a mini-batch since different configurations have
different best transitions, and so different code executes for each configuration. If the con-
figurations are implemented such that the same transition can be applied across multiple
configurations at once, this may allow for the use of SIMD instructions.

54



Bibliography

[1] Chris Alberti, Daniel Andor, Ivan Bogatyy, Michael Collins, Dan Gillick, Lingpeng
Kong, Terry Koo, Ji Ma, Mark Omernick, Slav Petrov, et al. SyntaxNet models for
the CoNLL 2017 shared task. arXiv preprint arXiv:1703.04929, 2017.

[2] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuz-
man Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-based
neural networks. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, pages 2442–2452. Association for Computational Linguis-
tics, 2016.

[3] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith. Cython:
The best of both worlds. Computing in Science Engineering, 13(2):31 –39, 2011.

[4] Bernd Bohnet and Joakim Nivre. A transition-based system for joint part-of-speech
tagging and labeled non-projective dependency parsing. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing and Compu-
tational Natural Language Learning, pages 1455–1465. Association for Computational
Linguistics, 2012.

[5] Daniel Cer, Marie-Catherine de Marneffe, Dan Jurafsky, and Chris Manning. Parsing
to stanford dependencies: Trade-offs between speed and accuracy. In Nicoletta Calzo-
lari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk,
Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors, Proceedings of the Seventh
International Conference on Language Resources and Evaluation (LREC’10), Valletta,
Malta, may 2010. European Language Resources Association (ELRA).

[6] Danqi Chen and Christopher D Manning. A fast and accurate dependency parser using
neural networks. In EMNLP, pages 740–750, 2014.

[7] Jinho Choi. Deep dependency graph conversion in english. In TLT, pages 35–62, 2017.

[8] Jinho D Choi and Martha Palmer. Guidelines for the clear style constituent to depen-
dency conversion. Technical Report 01–12, 2012.

[9] Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. Question answering
passage retrieval using dependency relations. In Proceedings of the 28th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval,
pages 400–407. ACM, 2005.

[10] Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al. Gener-
ating typed dependency parses from phrase structure parses. In Proceedings of LREC,
volume 6, pages 449–454. Genoa Italy, 2006.

55



[11] Marie-Catherine De Marneffe and Christopher D Manning. Stanford typed dependen-
cies manual. Technical report, Technical report, Stanford University, 2008.

[12] Marie-Catherine De Marneffe and Christopher D Manning. The stanford typed depen-
dencies representation. In Coling 2008: proceedings of the workshop on cross-framework
and cross-domain parser evaluation, pages 1–8. Association for Computational Linguis-
tics, 2008.

[13] Jason M Eisner. Three new probabilistic models for dependency parsing: An explo-
ration. In Proceedings of the 16th conference on Computational linguistics-Volume 1,
pages 340–345. Association for Computational Linguistics, 1996.

[14] Explosion AI. Facts & figures | spaCy usage documentation. https://spacy.io/
usage/facts-figures#benchmarks. Accessed: 2017-09-27.

[15] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
LIBLINEAR: A library for large linear classification. Journal of machine learning
research, 9(Aug):1871–1874, 2008.

[16] William Foland and James H Martin. Dependency-based semantic role labeling using
convolutional neural networks. In * SEM@ NAACL-HLT, pages 279–288, 2015.

[17] Katrin Fundel, Robert Küffner, and Ralf Zimmer. RelEx — relation extraction using
dependency parse trees. Bioinformatics, 23(3):365–371, 2006.

[18] Yoav Goldberg and Michael Elhadad. An efficient algorithm for easy-first non-
directional dependency parsing. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational Lin-
guistics, pages 742–750. Association for Computational Linguistics, 2010.

[19] Yoav Goldberg and Joakim Nivre. A dynamic oracle for arc-eager dependency parsing.
In COLING, pages 959–976, 2012.

[20] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature de-
tectors. arXiv preprint arXiv:1207.0580, 2012.

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[22] Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing. To appear,
2017.

[23] Richard A Hudson. English word grammar. B. Blackwell, 1991.

[24] Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep
unordered composition rivals syntactic methods for text classification. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), volume 1, pages 1681–1691, 2015.

56

https://spacy.io/usage/facts-figures#benchmarks
https://spacy.io/usage/facts-figures#benchmarks


[25] Eliyahu Kiperwasser and Yoav Goldberg. Easy-first dependency parsing with hierar-
chical tree lstms. TACL, 4:445–461, 2016.

[26] Lingpeng Kong, Chris Alberti, Daniel Andor, Ivan Bogatyy, and David Weiss.
DRAGNN: A transition-based framework for dynamically connected neural networks.
arXiv preprint arXiv:1703.04474, 2017.

[27] Marco Kuhlmann, Carlos Gómez-Rodríguez, and Giorgio Satta. Dynamic program-
ming algorithms for transition-based dependency parsers. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 673–682. Association for Computational Linguistics,
2011.

[28] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The Stanford CoreNLP natural language processing
toolkit. In Association for Computational Linguistics (ACL) System Demonstrations,
pages 55–60, 2014.

[29] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large
annotated corpus of english: The Penn Treebank. Computational linguistics, 19(2):313–
330, 1993.

[30] Ryan McDonald, Koby Crammer, and Fernando Pereira. Online large-margin train-
ing of dependency parsers. In Proceedings of the 43rd annual meeting on association
for computational linguistics, pages 91–98. Association for Computational Linguistics,
2005.

[31] Joakim Nivre. An efficient algorithm for projective dependency parsing. In Proceedings
of the 8th International Workshop on Parsing Technologies (IWPT). Citeseer, 2003.

[32] Joakim Nivre. Incrementality in deterministic dependency parsing. In Proceedings of
the Workshop on Incremental Parsing: Bringing Engineering and Cognition Together,
pages 50–57. Association for Computational Linguistics, 2004.

[33] Joakim Nivre, Johan Hall, and Jens Nilsson. MaltParser: A data-driven parser-
generator for dependency parsing. In Proceedings of LREC, volume 6, pages 2216–2219,
2006.

[34] Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülşen Eryigit, Sandra
Kübler, Svetoslav Marinov, and Erwin Marsi. MaltParser: A language-independent
system for data-driven dependency parsing. Natural Language Engineering, 13(2):95–
135, 2007.

[35] Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur, Anoop Sarkar, Kenji Yamada,
Alex Fraser, Shankar Kumar, Libin Shen, David Smith, Katherine Eng, et al. A smor-
gasbord of features for statistical machine translation. In Proceedings of the Human
Language Technology Conference of the North American Chapter of the Association for
Computational Linguistics: HLT-NAACL 2004, 2004.

[36] Wenzhe Pei, Tao Ge, and Baobao Chang. An effective neural network model for graph-
based dependency parsing. In ACL (1), pages 313–322, 2015.

57



[37] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global vec-
tors for word representation. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, 2014.

[38] Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga Uryupina, and Yuchen
Zhang. CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in
OntoNotes. In Proceedings of the Sixteenth Conference on Computational Natural Lan-
guage Learning (CoNLL 2012), Jeju, Korea, 2012.

[39] Peng Qi and Christopher D Manning. Arc-swift: A novel transition system for depen-
dency parsing. arXiv preprint arXiv:1705.04434, 2017.

[40] Sebastian Schuster and Christopher D Manning. Enhanced English Universal Depen-
dencies: An improved representation for natural language understanding tasks. In
LREC, 2016.

[41] Dan Shen and Mirella Lapata. Using semantic roles to improve question answering. In
Emnlp-conll, pages 12–21, 2007.

[42] Maryam Siahbani, Ravikiran Vadlapudi, Max Whitney, and Anoop Sarkar. Knowledge
base population and visualization using an ontology based on semantic roles. In Pro-
ceedings of the 2013 workshop on Automated knowledge base construction, pages 85–90.
ACM, 2013.

[43] Natalia Silveira, Timothy Dozat, Marie-Catherine de Marneffe, Samuel Bowman,
Miriam Connor, John Bauer, and Christopher D. Manning. A gold standard depen-
dency corpus for English. In Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC-2014), 2014.

[44] Anders Søgaard and Yoav Goldberg. Deep multi-task learning with low level tasks
supervised at lower layers. In ACL, 2016.

[45] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of machine learning research, 15(1):1929–1958, 2014.

[46] The Scipy community. numpy.argsort — NumPy v1.13 Manual. https://docs.scipy.
org/doc/numpy/reference/generated/numpy.argsort.html.

[47] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-
rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the
2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1, pages 173–180. Association for
Computational Linguistics, 2003.

[48] Kristina Toutanova and Christopher D Manning. Enriching the knowledge sources used
in a maximum entropy part-of-speech tagger. In Proceedings of the 2000 Joint SIGDAT
conference on Empirical methods in natural language processing and very large corpora:
held in conjunction with the 38th Annual Meeting of the Association for Computational
Linguistics-Volume 13, pages 63–70. Association for Computational Linguistics, 2000.

58

https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html


[49] Universal Dependencies contributors. Universal Dependencies - CoNLL-U Format.
http://universaldependencies.org/format.html.

[50] Ravikiran Vadlapudi, Maryam Siahbani, Anoop Sarkar, and John Dill. Lensing-
wikipedia: Parsing text for the interactive visualization of human history. In Visual
Analytics Science and Technology (VAST), 2012 IEEE Conference on, pages 247–248.
IEEE, 2012.

[51] Wikipedia. Wikipedia:size comparisons — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Wikipedia:Size_comparisons&
oldid=806014528, 2017. [Online; accessed 20-Oct-2017].

[52] Wikipedia. Wikipedia:size of wikipedia — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Wikipedia:Size_of_Wikipedia&
oldid=803182643, 2017. [Online; accessed 02-Oct-2017].

[53] Matthew D Zeiler. ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[54] Hao Zhang and Ryan McDonald. Generalized higher-order dependency parsing with
cube pruning. In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, pages
320–331. Association for Computational Linguistics, 2012.

[55] Yuan Zhang and David Weiss. Stack-propagation: Improved representation learning
for syntax. CoRR, abs/1603.06598, 2016.

59

http://universaldependencies.org/format.html
https://en.wikipedia.org/w/index.php?title=Wikipedia:Size_comparisons&oldid=806014528
https://en.wikipedia.org/w/index.php?title=Wikipedia:Size_comparisons&oldid=806014528
https://en.wikipedia.org/w/index.php?title=Wikipedia:Size_of_Wikipedia&oldid=803182643
https://en.wikipedia.org/w/index.php?title=Wikipedia:Size_of_Wikipedia&oldid=803182643

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Applications
	LensingWikipedia

	Dependency graphs
	Evaluating a dependency graph
	Annotation scheme for encoding dependency graphs

	Transition-based parsing algorithms
	Common data structures
	Arc-Standard transition algorithm
	Transitions
	Related parsing systems

	Making decisions
	Training

	Neural networks
	The basics
	Feed-forward network
	Training

	Recurrent neural networks
	Bidirectional RNN
	Embedding matrices
	Training

	Other parsers
	spaCy
	Stanford CoreNLP
	Features used
	Representing features
	Architecture
	Decision function
	Cube activation function

	MALTParser

	Our approach
	Features used
	Architecture
	Training
	Extensions to the architecture
	Recurrent neural network
	Different activation functions
	Different hidden layers
	Scaling labels based on arc direction

	Decision function
	Implementation
	Parsing using mini-batches
	Computing features


	Experiments
	Datasets
	Converting treebanks to Universal Dependencies

	Other parsers
	Results
	Reduced feature sets
	Scaling labels based on arc direction
	Different activation functions
	Number of hidden layers
	Pretrained word embeddings
	Use of BiLSTMs to encode sentence
	Compared to other parsers
	Training times


	Conclusion
	Future work

	Bibliography

