Synthesis of Heterobenzylic Fluorides

Michael Meanwell∗
Robert Britton**

∗Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6
rbritton@sfu.ca

Abstract Fluorination at heterobenzylic positions can have a significant impact on basicity, lipophilicity, and metabolism of drug leads. As a consequence, the development of new methods to access heterobenzylic fluorides has particular relevance to medicinal chemistry. This Short Review provides a survey of common methods used to synthesize heterobenzylic fluorides and includes fluoride displacement reactions of previously functionalized molecules (e.g., deoxyfluorination and halide exchange) and electrophilic fluorination of resonance stabilized heterobenzylic anions. In addition, recent advances in the direct fluorination of heterocyclic C(sp²)-H bonds and monofluoromethylation of heterocyclic C(sp²)-H bonds are presented.

1. Introduction
2. Heterobenzylic Fluorides
 2.1 Deoxyfluorination
 2.2 Halide Exchange
 2.3 Electrophilic Fluorination of Heterobenzylic Anions
 2.4 Late Stage C-H Bond Fluorination
 2.5 Monofluoromethylation of C(sp²)-H bonds
3. Conclusions

Key words heterocycles, fluorination, medicinal chemistry, C-H functionalization, heterobenzylic fluoride

1. Introduction

Nitrogen-containing heteroaromatics are privileged scaffolds in both pharmaceutical and agrochemical research.1 In fact, roughly 60% of FDA approved drugs incorporate a nitrogen-containing heterocycle, of which pyridines, thiazoles, and imidazoles are among the most common.1c The prevalence of these heterocycles in approved pharmaceuticals has inspired significant advances in both their synthesis2 and functionalization3 that enable the fine-tuning of potency and physicochemical properties of drug leads. Thus, through the careful choice and positioning of substituents, features such as basicity (Figure 1; 1), inter- and intramolecular hydrogen bonding (Figure 1; 2), and π-stacking interactions (Figure 1; 2) can be optimized for ligand-target binding.5c

Notably, owing to the small size of fluorine atoms, the polarized nature of carbon-fluorine bonds and consequent impact on compound lipophilicity, hydrofluorocarbon substituents (e.g., CF₃ and CH₂F) can have profound effects on biological activity.3-6 In addition, fluorine is also an isostere for both hydrogen and hydroxyl groups,4-6 and strategic fluorination at metabolically labile sites is a common tactic employed to mediate enzymatic degradation and adjust pharmacokinetic properties.6 For example, installation of the aryl fluoride in the anti-cancer drug gefitinib (4) markedly prevents metabolism at this position, resulting in an increased in vivo half-life (Figure 1).10 Owing to their relatively weak C-H bond strength, heterobenzylic C-H bonds are also prone to metabolism (see 1 and 3; Figure 1). Thus, strategic fluorination at these centers provides unique opportunities to modulate basicity and metabolism. However, heterobenzylic fluorination, especially at a late-stage in a synthesis or on structurally complex and functional group-rich drug leads, remains a significant synthetic challenge.6

Figure 1. Primary sites of metabolism in omeprazole (1) and pioglitazone (3) and the effects of heterocycles and fluorine on physicochemical properties in omaglilin (2) and gefitinib (4)
2. Heterobenzylic fluorides

Over the past decade several late-stage C-H fluorination strategies have been reported that enable the direct fluorination of benzylic C(sp³)-H bonds. These strategies are particularly useful tools for lead optimization and also present opportunities for the ¹⁹F-labelling of ligands for positron-emission tomography (PET) imaging. In contrast, however, there are very few examples of heterobenzylic fluorination. In fact, rarely have C(sp³)-H fluorination reactions been demonstrated on molecules that include a heterocycle. While this may relate to fundamental incompatibilities between electrophilic fluorinating agents and nucleophilic heteroaromatics, there is a clear need for robust reactions that engender the synthesis of heterobenzylic fluorides. Previous reviews on late-stage C-H fluorination have included examples of heterobenzylic monofluorination, however, there is no focused review on the topic. Here, we will provide a survey of methods available for the synthesis of heterobenzylic fluorides, summarize recent advances in this area and identify limitations that we hope will inspire further investigation.

2.1 Deoxyfluorination

The most common strategy to access heterobenzylic fluorides is through deoxyfluorination. While these processes are not late-stage transformations and require prior synthesis of a heterobenzylic alcohol, they have proven to be a valuable resource for medicinal chemists. Here, reagents such as DAST, Deoxofluor, and Xtalfluor (Figure 2), have enabled transformation of a broad range of heterobenzylic alcohols into the corresponding heterobenzylic fluorides. Mechanistically, these reagents function by activation of the hydroxyl group followed by nucleophilic displacement by fluoride.

Deoxofluorination is broadly applicable for the synthesis of heterobenzylic fluorides at the heterobenzylic position in quinoline-, pyrazole-, pyrimidine-, thiophene-, imidazole-, thiazole-, oxazole-, pyridine-, and purine-containing heterocycles, among others, have been described (for examples, see compounds 5–10, Figure 3). Though deoxyfluorination is a robust and widely used transformation, it is fundamentally limited by a reliance on the prior formation of a heterobenzylic alcohol and can be complicated by the formation of by-products derived from elimination or isomerization processes.

As illustrated in Scheme 1, Matsuda and co-workers were able to access the imidazolyl fluoride 14 using DAST in their synthesis of 3-deaza-3-fluoropurine ribonucleosides. However, in the case of the methylpropenol, the corresponding fluoride 15 was not produced, and the formation of both 14 and 15 were complicated by the formation of isomeric allylic fluorides 17 and 18.

In 2009, Gilmour and colleagues reported the deoxyfluorination of quinine alkaloids using DAST in THF at -20 °C as part of a broader medicinal chemistry campaign (Scheme 2). Here, products derived from both stereochemical inversion and retention were produced in low to modest yield. In addition, the ring-expanded azepane 21 was produced via formation of an aziridinium intermediate.

A recent and particularly interesting example of this transformation was reported by Huisman and co-workers, who introduced a heterobenzylic alcohol via the selective late-stage oxidation of 22 with microsomal P₄₅₀ monoxygenase followed by deoxyfluorination, which provided access to the fluoromethyl imidazole 23 (Scheme 3).
2.2 Halide exchange

Halide exchange reactions have also proven useful for the synthesis of heterobenzylic fluorides, and have been described for purines,24 imidazoles,26 oxazoles,27 pyridines,28 quinolines,29 pyrimidines,30 indoles,31 benzofurans,32 thiazoles,33 triazoles,34 and other heterocycles.35 However, as with deoxygenation, the requirement for prior installation of a heterobenzylic halide limits the utility of these processes and their suitability as late-stage modifications for lead optimization.

Scheme 4. Halide-exchange reaction with silver fluoride

An excellent example of halide exchange was reported as part of an investigation into the cytostatic activity of 6-(fluoromethyl)purine nucleoside analogues. Here, Hoeck and co-workers converted the protected 6-(iodomethyl)purine nucleoside 24 into its fluoromethyl derivative 25 using silver fluoride in THF (Scheme 4).24

Silver fluoride, tetrabutylammonium fluoride (TBAF), potassium fluoride, cesium fluoride, and hydrogen pyridinium fluoride (Olah reagent) are common fluoride sources used in halide exchange reactions, and their efficient preparation as 18F isotopes has provided opportunities for the synthesis of 18F-labelled radiotracers for PET imaging.28,33,35 For example, Sutherland and colleagues have reported a radiotracer for imaging of the translocator protein. Here, K[18F]F in MeCN under moderate heating rapidly converted 26 into its 18F-fluorinated derivative 27 in 38% radiochemical yield (Scheme 5).29b

Recently, Yan and co-workers reported a late-stage iodination of 2-alkyl quinolines with iodine and triphenylphosphine in the presence of sodium bicarbonate. Coupling this process with a subsequent halide exchange reaction using silver(II) fluoride provided a means to access 2-fluoroalkyl quinolines in excellent yield (Scheme 6).29c

2.3 Electrophilic fluorination of heterobenzylic anions

The deprotonation of a heterobenzylic methyl or methylene by strong base, followed by reaction with an electrophilic fluorinating agent (e.g., Figure 4) has also provided access to heterobenzylic fluorides. Here, however, the substrate scope is often limited to molecules with little additional functionality or relatively acidic heterobenzylic protons. Thus, to facilitate deprotonation, the heterobenzylic position is often adjacent to a carbonyl,36 nitro,37 or sulfonate group.38 Notably, this strategy can also provide access to difluorinated adducts by simply employing an excess of base and fluorinating reagent.39 While much less common, fluorination of unfunctionalized alkyl heterocycles have also been reported. For example, in 1991, Anders and co-workers investigated the deprotonation of 4-alkyl pyridines using LDA followed by reaction with various electrophiles, including NFSI, a process that delivered the corresponding pyridyl fluoride in modest yield.40

As a notable additional example, Varchi and co-workers utilized this sequence in their fluorination of the TES-protected natural product camptothecin (Scheme 7).41 Here, deprotonation with LiHMDS at -78 °C in THF, and subsequent addition of NFSI, afforded 28 in excellent yield.

Controlling the absolute stereochemistry at the resulting heterobenzylic fluoromethine center remains a significant challenge.42 A straightforward solution to this problem has been developed that involves use of chiral auxiliaries and provides heterobenzylic fluorides with good levels of diastereoselectivity.43 For example, Zakarian and co-workers have described the diastereoselective fluorination of N-acylxazolidinones with Ti[1Pr]Cl₂ and NFSI (Scheme 8). Among the reported examples were the heterocycles 29–31.43a
2.4 Late-stage C-H bond fluorination

Following Groves and co-workers pioneering report on the fluorination of unactivated C(sp³)-H bonds in 2012, several complimentary C-H fluorination strategies have been developed that provide access to aliphatic, allyl, or benzylfluorides. Many of these processes take advantage of the observation made by Sammis and Paquin that electrophilic fluorinating agents such as NFSI and Selectfluor are capable of transferring a fluorine atom to an intermediate carbon-centered radical owing to their low N-F bond dissociation energies (Selectfluor BDE_NF = 62.2 kcal/mole in H2O; NFSI BDE_NF = 63.5 kcal/mole in H2O). Unfortunately, as pointed out earlier by Crugeras, these reagents are often incompatible with basic amines. For example, the sulfonyl group in NFSI is readily attacked by pyridine, liberating an N-fluorosulfonamide. Thus, the preponderance of reports on C-H fluorination that employ electrophilic fluorinating reagents lack examples of nitrogen-containing heterocycles. Uniquely, the C(sp³)-H fluorination reaction described by Groves relies instead on the in situ formation of a Mn(IV) species that is a competent fluorine transfer agent. It has also been demonstrated that this process is amenable to 18F-fluorination of benzyl C-H bonds including the two heterobenzylic C-H 18F-fluorination reactions depicted in Scheme 9 (i.e., 32 and 33). Mechanistically, it is proposed that Mn(salen)OTs undergoes ligand exchange with fluoride to afford the active catalyst Mn(salen)F, which is subsequently oxidized by iodosobenzene to the Mn(IV) intermediate 34. This later species functions as a hydrogen atom abstracting agent, generating a heterobenzylic radical and Mn(IV) species 35. Fluorine atom transfer from 35 to the intermediate carbon centered radical affords the fluorinated product.

Transition metal catalyzed stereocontrolled fluorinations have also been employed for the synthesis of enantiopure heterobenzylic fluorides. The Pd-catalyzed β-C(sp³)-H directed fluorination reported by Yu and co-workers for the synthesis of enantiopure anti-β-fluoro-α-amino acids provided 38 in 43% yield and excellent diastereoselectivity (Scheme 11). Here, it was proposed that the active catalyst (Pd=η-L) is formed in situ from the quinoline ligand coordinating to Pd(TFA). A trans-substituted 5-membered palladacycle 39 derived from C(sp³)-H activation undergoes oxidative addition with Selectfluor to generate a Pd(IV) fluoride intermediate 40. Reductive elimination then affords the pyridyl fluoride 38.

In 2015, Yi and co-workers described a transition metal-free radical benzyl fluorination using potassium persulfate in combination with Selectfluor. It was also demonstrated that 8-(fluoromethyl)quinoline (37) could be produced in 80% yield using this process (Scheme 10). The authors proposed that thermal decomposition of persulfate generates a sulfate radical that abstracts a benzyl hydrogen atom. Subsequent fluorine atom transfer from Selectfluor provides the fluorinated adduct. Interestingly, an additional 1.5 equiv. of both potassium persulfate and Selectfluor led to selective fluorination. The authors also noted a competitive benzyl oxidation reaction that predominated at lower temperatures.
and co-workers and represents the first example of metal-catalyzed heterobenzylic fluorination (Scheme 12).51 Here, following generation of an intermediate 5-membered palladacycle, oxidation by N-fluoropyridinium triflate to Pd(IV) and a subsequent reductive elimination generates a new C-F bond. In 2012, Sanford and co-workers described an important advance by demonstrating that the palladium-catalyzed C-H fluorination could also be effected using nucleophilic fluoride (Scheme 12).52 Here, a hypervalent iodine source is responsible for oxidation of Pd(II) to Pd(IV), which upon ligand exchange with silver fluoride and subsequent reductive elimination generates alkylpyridine derivatives.

Recent advances in palladium- and iron-catalyzed C-H fluorination have led to the development of new methods for the selective fluorination of alkanes and alkenes. In 2008, Sanford and co-workers reported the first example of a palladium-catalyzed C-H fluorination using electrophilic and nucleophilic fluoride sources (Scheme 12). In this reaction, a palladium(II) complex is used to activate the C-H bond, and subsequent fluorination occurs through a nucleophilic carbon addition to the palladacycle. This method has been used to prepare a variety of fluorinated compounds, including pharmaceuticals and agrochemicals.

While directed C-H fluorination methods have generally relied on palladium catalysis, Cook and co-workers have recently reported an iron-catalyzed fluoroamide-directed fluorination of benzylic, allylic, and unactivated C-H bonds.44 This study included the fluorination of thiophene 41. Interestingly, mechanistic studies suggested that iron-mediated homolytic cleavage of the N-F bond generates a nitrogen-centered radical that engages in hydrogen abstraction to afford the corresponding (hetero)benzyl radical. C-F bond formation then involves either a free radical process whereby intermolecular fluorine atom transfer from a second molecule of fluoroamide occurs, or an FeIII fluorine intermediate. Crossover experiments using the corresponding chloroamide as well as DFT calculations supported the latter organometallic pathway.

Recently, we reported a late-stage fluorination of 2- and 4-alkyl pyridines with N-fluorobenzenesulfonimide (NFSI),46 a reaction that was discovered serendipitously while examining the utility of our decatungstate-catalyzed C-H fluorination reaction on nitrogen heterocycle-containing molecules. Notably, this work builds on an earlier report by DesMarteau and co-workers who noted that 2- and 4-picolines reacted with (CF3SO2)2NF (a more reactive fluorination reagent than NFSI) to produce mixtures of mono/difluorinated picolines.56 We demonstrated that simply heating mixtures of 2- or 4-alkylpyridines with NFSI and Li2CO3 in MeCN resulted in good to excellent yield of pyridyl fluorination products (see Scheme 14; 43-47, 50, 51). Importantly, this reaction proved remarkably tolerant to functional groups and pyridyl fluorination occurs exclusively even in the presence of enolizable carbonyls (e.g., 45). This operationally straightforward reaction was also exploited in the late-stage fluorination of the annulated pyridines 50 and 51, both of which are aldosterone synthase inhibitors and potential leads for the treatment of hypertension.57 A particularly appealing feature of this reaction is its complementarity to our previously reported decatungstate-catalyzed C-H fluorination reaction. For example, it was demonstrated that selective fluorination at benzylic or branched positions in 52 and 53 could be accomplished using our photocatalyzed decatungstate fluorination reaction on the corresponding TFA salts,54 while pyridyl fluorination could be readily effected by simply heating either substrate with NFSI and Li2CO3 in MeCN (Figure 5).
Mechanistically, they proposed that initial formation of an N-sulfonylpyridinium salt serves to increase the acidity of the pyridyl proton (Scheme 15). Following deprotonation, the resonance-stabilized extended enamine reacts with the electrophilic fluorinating reagent NFSI to provide adduct. This mechanism is consistent with the observation that 3-alkyl pyridines (e.g., 59–62) do not undergo fluorination. Given the relatively low BDE of pyridyl C-H bonds we also considered a radical process, however, fluorination of the cyclopropymethyl pyridine gave only the pyridyllic fluoride in good yield.

In the same year, Freeze and colleagues described the heterobenzylic fluorination of quinazoline with Selectfluor in their synthesis of nicotinamide phosphoribosyltransferase inhibitors (Scheme 16). Given these mild conditions, this simple reaction may well prove useful for the late-stage fluorination of other heterobenzylic C-H bonds.

Scheme 15. Mechanistic proposal and the fluorination of 4-methyl(cyclopropyl)pyridine and 3-alkylpyridines

2.5 Monofluoromethylation of C(sp²)-H bonds

In 2012, Baran and co-workers reported an efficient and complementary synthesis of heterobenzylic fluorides by demonstrating that these compounds could be accessed through the direct functionalization of heteroaromatic C(sp²)-H bonds (Scheme 17). Here, it was shown that a zinc monofluoromethane sulphinate, in the presence of an oxidant, effected the direct monofluoromethylation of xanthines, pyridines, quinolines, and pyrroles. Notably, in cases such as 67 and 69 where multiple monofluoromethylation events are possible, single products were observed with excellent regioselectivity. Mechanistically, it was proposed that the reaction involves a Minisci-like radical process, whereby a zinc monofluoromethane sulphinate generates a nucleophilic CH₂F radical. Through the use of alternative zinc sulphinate salts it was also shown that heterocycles could be readily modified by addition of CF₃, CF₂H, and CH₃CF₂.

Scheme 17: Monofluoromethylation of xanthines, pyridines, quinolines, and pyrroles.

3. Conclusions

In summary, several strategies have been developed for the synthesis of heterobenzylic fluorides. Deoxofluorination and halide exchange reactions have been broadly utilized and applied to both lead optimization in medicinal chemistry and radiotracer development. However, these reactions require prior synthesis of a heterobenzylic alcohol or halide and thus there has been considerable recent attention focused on the direct fluorination of heterobenzylic C(sp²)-H bonds. While these processes can suffer from substrate/reagent incompatibilities, several advances have demonstrated that heterobenzylic fluorination can indeed serve as an enabling tool for medicinal chemists and provide unique opportunities for late-stage optimization of drug leads. Given that only a limited number of aromatic heterocycles are represented in these examples (i.e., pyridine, quinolone, quinazoline, pyrimidine) we expect that this area of research will continue to flourish and that new strategies and tactics will extend the utility of this approach to other heteroaromatics that are particularly important in medicinal chemistry (e.g., thiazole, imidazole, oxazole, indoles).

Acknowledgment

R.B. acknowledges support from an NSERC Discovery Grant and a MSFHR Career Investigator Award. M.M. is supported by an NSERC Postgraduate Scholarship and a Simon Fraser University Fellowship.

References

Professor Robert Britton obtained his B. Sc. from the University of Waterloo in 1996 working with Professor Victor Snieckus, and his Ph. D. in natural product isolation, structural elucidation, and total synthesis from the University of British Columbia under the supervision of Professors Edward Piers and Raymond Anderson. He spent two years at the University of Cambridge with Professor Ian Paterson as an NSERC PDF then joined the Process Research Group at Merck as a Senior Scientist before starting an independent career at Syneos Health. He is a Merck Foundation for Health Research Career Scholar and his research program focuses on the concise synthesis of structurally and stereochemically complex natural products and the discovery of new synthetic methods to support drug discovery and development.

Michael completed his B.Sc. in chemistry under the supervision of Dr. Mark Thachuk at the University of British Columbia in 2014. He continued his studies at the University of Victoria where he completed his M.Sc. with Dr. Tom Fyles working on lipid nanoparticle drug delivery. He began his PhD studies with the Britton group in 2015 where his work focuses on developing late-stage and asymmetric fluorination methods.