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Abstract

The odd edge-connectivity between two vertices in a graph is the maximum number λo(u, v)
of edge-disjoint (u, v)-trails of odd length. In this thesis, we define the perimeter of a vertex-
set, a natural upper bound for the odd edge-connectivity between some of its constituent
pairs. Our central result is an approximate characterization of odd edge-connectivity: λo(u, v)
is bounded above and below by constant factors of the usual edge-connectivity λ(u, v) and/or
the minimum perimeter among vertex-sets containing u and v.

The relationship between odd edge-connectivity and perimeter has many implications, most
notably a loose packing–covering duality for odd trails. (In contrast, odd paths do not
obey any such duality.) For Eulerian graphs, we obtain a second, independent proof of the
packing–covering duality with a significantly better constant factor. Both proofs can be
implemented as polynomial-time approximation algorithms for λo(u, v). After observing
that perimeter satisfies a submodular inequality, we are able to prove an analogue of the
Gomory–Hu Theorem for sets of minimum perimeter and, consequently, to construct an
efficient data structure for storing approximate odd edge-connectivities for all vertex pairs
in a graph.

The last part of the thesis studies more complicated systems of odd trails. A totally odd
immersion of a graph H in another graph G is a representation in which vertices in H

correspond to vertices in G and edges in H correspond to edge-disjoint odd trails in G.
Using our perimeter version of the Gomory–Hu Theorem, we describe the rough structure
of graphs with no totally odd immersion of the complete graph Kt. Finally, we suggest a
totally odd immersion variant of Hadwiger’s Conjecture and show that it is true for almost
all graphs.

Keywords: covering and packing (05C70); paths and cycles (05C38); graph algorithms
(05C85); connectivity (05C40); signed graphs (05C22); Eulerian graphs (05C45)
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Glossary

almost all graphs

Any family of graphs F for which limn→∞P(F) = 1 under a specified sequence of
probability measures, e.g. Gn,p.

bipartite graph

A graph whose vertices can be divided into disjoint sets A,B such that every edge of
G has one end in A and one end in B. The pair (A,B) is called a bipartition.

A graph is bipartite if and only if it contains no odd cycles. Consequently, for any pair
of vertices u and v in a bipartite graph, every (u, v)-trail has the same parity.

edge-connectivity

Written λ(u, v), the maximum number of edge-disjoint trails between u and v.

According to Menger’s Theorem, the edge-connectivity between u and v is equal to
the minimum number of edges in a cut separating them.

Erdős–Pósa property

The existence of a function f : Z+ → Z+ such that every graph contains either k
vertex-disjoint (or edge-disjoint) subgraphs in a family G or a set of at most f(k)
vertices (respectively, edges) intersecting all such subgraphs.

Erdős and Pósa originally proved this property for vertex-disjoint cycles [31].

Eulerian graph

A graph whose vertices all have even degree. A connected graph is Eulerian if and only
if it has an Euler tour, i.e., a closed trail using all of its edges [33].

flow

A function f : E(D)→ R defined for a directed graph D, source and sink vertices s
and t, and capacity function c : E(D)→ R, satisfying the following two conditions.

Capacity for all e ∈ E(D), 0 ≤ f(e) ≤ c(e).

xii



Conservation for all x ∈ V (D) other than s and t, the total flow
∑
f(e) on arcs e

entering x is equal to the total flow leaving x.

The value of f is the total flow on arcs leaving s minus the total flow entering it.

The Max-Flow Min-Cut Theorem says that the value of the maximum (s, t)-flow is equal
to the minimum net capacity of an (s, t)-cut. Finding a maximum flow is a fundamental
problem of combinatorial optimization, first solved by Ford and Fulkerson [38] in the
1950s and now known to be computable in O(nm)-time [91].

immersion of H in G

A set of vertices R ⊆ V (G) in one-to-one correspondence with V (H), together with a
collection T of edge-disjoint trails in G in correspondence with E(H), where each trail
of T connects the vertices of R that represent the ends of its corresponding edge.

G admits an immersion of H if and only if a graph isomorphic to H can be obtained
from G by splitting off pairs of edges and deleting isolated vertices.

internally k-edge-connected graph

A (k − 1)-edge-connected graph G such that, if X ⊆ V (G) with |δ(X)| = k − 1, either
|X| = 1 or |V (G) \X| = 1.

laminar family of sets

A family of sets F in which every pair of sets X,Y ∈ F satisfies either X ⊆ Y , Y ⊆ X,
or X ∩ Y = ∅.

maximum bipartite subgraph

A bipartite subgraph of a graph G with at least as many edges as any other bipartite
subgraph. A bipartite subgraph of G is maximum if and only if it contains at least
half the edges of δ(X) for every X ⊆ V (G).

Finding a maximum bipartite subgraph is NP-hard [60], although it is easy to find a
bipartite subgraph of G with at least |E(G)|/2 edges.

odd edge-connectivity

The maximum number λo(u, v) of edge-disjoint odd trails between vertices u and v.

odd trail covering number

The minimum size τo(u, v) of an edge-set intersecting every odd (u, v)-trail in a graph.
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perimeter

For a vertex-set X and subgraph H of G, the quantity

p(X,H) = |E(X) \ E(H)|+ 1
2 |δ(X)|.

If H is bipartite and u, v ∈ X are on the same side of the bipartition of H, then
p(X,H) is an upper bound for the number of edge-disjoint odd (u, v)-trails in G.

quasi-random graph sequence

A sequence of graphs (Gn) = (G1, G2, . . . ) such that |V (Gn)| ∈ Θ(n) and, for some
constant p ∈ (0, 1), every vertex-set U ⊆ V (Gn) has |E(U)| = p

2 |U |
2 + o

(
n2).

There are many other equivalent definitions of quasi-random graphs; see [18, 74, 108]

random graph

A graph sampled from the probability space Gn,p of simple graphs on n vertices,
in which every labelled graph with m edges has probability pm(1− p)(

n
2)−m. The

parameter p ∈ (0, 1) can be constant or a function of n which tends to zero as n→∞.

Graphs can be sampled from Gn,p by adding edges at random; each possible edge is
included with probability p independently from the others. This model was introduced
independently by Erdős and Rényi [32] and by Gilbert [46].

root vertices

The vertices in G corresponding to those of H in an immersion of H in G. Some
authors instead use the terms “branch vertices”, “basic vertices”, or “corners”.

splitting off edges

Deleting two adjacent edges xy and yz and replace them with a new edge xz. This is
also called “lifting” in the literature.

Splitting off edges may create or remove loops and parallel edges.

strong immersion

An immersion whose trails do not use the root vertices internally.

submodular function

A function of sets f : 2X → R satisfying the inequality

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).
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totally odd immersion

An immersion whose constituent trails all have odd length.

trail

A walk with no repeated edge, or the subgraph induced by the edges of such a walk.
The length of a trail is the number of edges. An odd trail is one with odd length.

A (u, v)-trail is one between the vertices u and v. A {u, v}-trail is one whose ends lie
in the set {u, v}; i.e., a (u, v)-trail, a closed (u, u)-trail, or a closed (v, v)-trail.

(u, v)-cut

An edge-set δ(X) consisting of all edges with one end in X and the other not in X,
where u ∈ X and v 6∈ X.

wall

A subcubic planar graph obtained by subdividing some edges of a finite hexagonal
tiling. The cycles corresponding to the hexagonal tiles are called bricks.

To be precise, a k × k wall is any graph obtained by the following procedure: starting
with the vertices (i, j) for i ∈ {0, . . . , k}, j ∈ {0, 2k + 1}, add edges between (i, j) and
(i′, j′) whenever i = i′ and whenever j = j′ and i = i′+ (−1)i+j ; then delete all vertices
of degree one and replace some of the edges with internally vertex-disjoint paths.
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Chapter 1

Introduction

The study of path systems has long been a central area of graph theory. For the last century,
researchers have studied flows, linkages, subdivisions, immersions, and other structures
involving disjoint paths and connectivity. It is typically much harder to characterize the
existence of these structures when constraints are added to the paths: for example, Menger’s
Theorem describes the optimal packing of disjoint paths between two vertices, but there is
no similar duality theorem when we restrict the paths to have odd length.

This thesis studies edge-disjoint systems of odd trails. (Recall that a trail is a walk with
no repeated edge; a path is a trail with no repeated vertex. An odd trail is one with an odd
number of edges.) Although researchers traditionally state their results in terms of paths
whenever possible, trails are often more natural for understanding their proofs. Trails are
produced, for instance, when edge-disjoint paths are concatenated, when split off edges are
restored, and when flows of unit value are discretized. The distinction between paths and
trails becomes important under parity restrictions, as Figure 1.1 shows.

u v

Figure 1.1: There is an odd trail between u and v, but no odd path.

The first half of this thesis shows that packings and coverings of odd trails are closely
related; in this regard, odd trails are better behaved than odd paths. We establish an
approximate packing–covering duality theorem for general graphs and an improved version
for Eulerian graphs. The second half of the thesis studies totally odd graph immersions—
collections of odd trails mimicking the structure of a given “template” graph—and finds
sufficient conditions for their existence. Our work raises several interesting yet realistic open
questions that hint at fruitful new areas to be explored.

1



This thesis uses the standard terminology of graph theory, for which we refer the reader
to [9, 25, 116]. Unless otherwise specified, graphs are allowed to have loops and parallel
edges.

1.1 Paths, parity, and packing–covering dualities

Path systems are ubiquitous in graph theory as tools and as important objects of study.
Notable examples include disjoint paths [83, 86], network flows [2, 102], graph linkages [64,
107, 109], and others [3, 102]. It is natural to study the existence of these structures under
parity constraints: characterizing, for instance, when a graph has vertex- or edge-disjoint odd
cycles [62, 65], parity linkages [59, 68, 110], odd minors [44, 69, 72], or odd subdivisions [61].
Several far-reaching theorems have also been discovered for packing vertex-disjoint paths or
cycles of non-unit weight in group-labelled graphs [15, 16, 55, 71].

In the late 1920s, Menger proved his now-famous duality theorem: the maximum number
of internally disjoint paths between two vertices is equal to the minimum number of vertices
separating them [86, 103]. Since then, “min–max” theorems have become a common staple in
graph theory, from Kőnig’s Theorem about matchings in bipartite graphs (see [9]) to Mader’s
S-Paths Theorem on paths with ends in a specified vertex-set [83]. The concept of duality
applies more generally in the study of network flows—for instance, the Max-Flow Min-Cut
Theorem [29, 38], Hu’s 2-Commodity Flow Theorem [54, 99], and the Okamura–Seymour
Theorem [89]—as well as in linear programming; see [4, 21, 102].

In the 1960s, Erdős and Pósa published a seminal paper relating the maximum number
of vertex-disjoint cycles in a graph to the minimum size of a vertex-set intersecting all
cycles [31]. Although not a perfect duality in the above sense, their approximate duality
opened the door for many more deep and fascinating results. The so-called Erdős–Pósa
property has been proved for various families of graphs [94], including long cycles [5, 35], odd
cycles in well-connected graphs [93, 112], and families that consist of all graphs having a fixed
planar graph as a minor [97]. The generalization of the S-Paths Theorem to group-labelled
graphs by Chudnovsky et al. [16] implies the Erdős–Pósa property for many other objects,
and a number of similarly flexible theorems have built on their work (e.g. [55, 71]).

Despite their long history, we are only beginning to understand how edge-disjoint packings
differ from their vertex-disjoint counterparts. Although Menger’s Theorem and the Erdős–
Pósa Theorem both have edge versions (see [3, 25]), other packing-covering dualities are
not so easily translated to the edge-disjoint setting. Some progress has been made on the
edge-disjoint packing of long cycles [11], of odd cycles [62], and of graphs containing a fixed
graph as an immersion [78]. It is common to find a closer relationship between edge-disjoint
packings and coverings among Eulerian graphs, e.g. [37, 43, 63, 99].

2



1.2 Odd paths and their challenges

Collections of (u, v)-paths of odd length are natural and important examples of parity-
constrained path systems. As with any type of graph structure, a key question to ask is
whether the Erdős–Pósa property holds: is there a function f such that every graph has
either k vertex-disjoint (or edge-disjoint) instances of the structure or a set of f(k) vertices
(or edges) intersecting all such instances? While odd paths satisfy the vertex-disjoint version
of the Erdős–Pósa property [16], odd (u, v)-paths to not satisfy the edge-disjoint version. As
is often the case (e.g. [95]), topological obstructions provide a reason why the Erdős–Pósa
property fails.

u v

Figure 1.2: A graph W8 constructed by connecting u and v to opposite sides of a large wall
whose “odd bricks” are all in the top layer. This graph does not have two edge-disjoint odd
(u, v)-paths, but covering all odd (u, v)-paths requires an edge-set whose size is proportional
to the width of the wall.

Fact 1.1. A graph without two edge-disjoint odd (u, v)-trail may still need arbitrarily many
edges to cover all such trails.

Proof. We describe a family of graphs Wk, of which a typical example is shown in Figure 1.2.
Begin with a wall consisting of k rows of k cycles—called bricks—where only the bricks in
the top row have odd length. Then, add two new vertices u and v joined by vertex-disjoint
paths to the left and right sides of the wall, respectively. This can be done in such a way
that the resulting graph Wk is planar, has no vertices of degree ≥ 4 other than u and v, and
every odd (u, v)-path in Wk uses an edge from the top row of bricks.

Omitting some topological details of the proof, any odd (u, v)-path P defines a curve
that divides G−E(P ) into two subgraphs: a bipartite subgraph below P and a disconnected
subgraph above it. Neither subgraph contains an odd (u, v)-path; furthermore, no (u, v)-
path of G − E(P ) passes through both, as this would require an internal vertex of P to
have degree ≥ 4 in G. Consequently, Wk does not have two edge-disjoint odd (u, v)-paths
regardless of the value of k.

3



On the other hand, the size of any edge-set covering all odd (u, v)-paths in Wk is
proportional to k. For if F is a set of fewer than k/4 edges in Wk, it is easy to see that
Wk−F contains two consecutive rows of bricks in Wk as well as a “stack” of bricks extending
from the bottom to the top of the wall. An odd (u, v)-path in Wk − F can be routed from u

through the first row of bricks, up the stack and around the odd brick at the top of the wall,
down the other side of the stack, and along the second row to v. Hence F fails to cover all
odd (u, v)-paths in Wk.

Although edge-disjoint paths can share vertices, a path is not allowed to have any vertex
intersections with itself. This inconsistency provides some explanation to why edge-disjoint
odd paths are so difficult: because they combine two different concepts of disjointness, they
cannot be easily concatenated or otherwise combined. A similar challenge was identified by
Bruhn, Heinlein, and Joos [11] in their work on packing long cycles.

The fractional version of odd path packing has been studied with some success [104], but
little else is known about this problem. In this thesis, we sidestep the difficulties inherent
to odd paths by considering the relaxed problem of packing odd trails. Our main result in
Chapter 2 establishes the Erdős–Pósa property for odd (u, v)-trails, suggesting that odd
trails are better behaved than odd paths.

1.3 Graph immersions

Our original motivation for studying edge-disjoint (odd) trails comes from the world of graph
immersions. An immersion of a graph H in another graph G consists of

• a set R ⊆ V (G);

• a collection T of edge-disjoint trails in G; and

• bijections φ : V (H)→ R and φ′ : E(H)→ T where the trail φ′(e) ∈ T corresponding
to an edge e = uv ∈ E(H) connects φ(u) with φ(v).

We refer to R as the root vertices of the immersion. An immersion is strong if its trails
do not use the root vertices internally.

In the literature, the equivalent definition with “paths” in the place of “trails” is
more common. However, the trail version is arguably more natural due to the following
characterization of the existence of immersions. To split off a pair of adjacent edges e1 = xy

and e2 = yz in a graph means to delete e1 and e2 and add a new edge e3 = xz. Splitting off
edges may introduce or remove parallel edges and loops. When the operation is reversed,
paths in the split off graph correspond to trails in the original graph.

Fact 1.2. A graph G admits an immersion of H if and only if a graph isomorphic to H
can be obtained from a subgraph of G by repeatedly splitting off pairs of edges and deleting
isolated vertices.
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Immersions have been popular objects of study since Nash-Williams [88] conjectured
that in any infinite family of graphs, one admits an immersion of another. This property,
referred to as the well-quasi-ordering of the immersion order, was eventually proved by
Robertson and Seymour [98] using parts of the graph minors project [96]. As a result, every
immersion-closed graph class has a recognition algorithm that runs in polynomial time [34],
although the enormous constant factors involved may make such algorithms infeasible. A
practical algorithm for finding immersions of the complete graph K4 is implemented in [10].

On the structural side, many questions about immersions arise from analogies to graph
subdivisions and minors. (A subdivision is an immersion whose edge-disjoint trails are
internally vertex-disjoint paths; a graph is a minor of another if it can be obtained by edge
deletions and contractions.) In the 1940s, Hajós [unpublished] and Hadwiger [51] respectively
conjectured that every graph with chromatic number t has a subdivision or a minor of
the complete graph on t vertices. Hajós’ conjecture turns out to be false [12, 30, 111], but
Hadwiger’s conjecture lives on as one of the most notorious open questions of graph theory.

Immersions are less intimately related to surface embeddings than subdivisions and
minors are: any complete graph can be immersed in a planar graph, for instance, and one can
compare Kuratowski’s Theorem (see [9]) with the characterization of {K5,K3,3}-immersion-
free graphs given in [45]. Nevertheless, other similarities between immersions, minors, and
subdivisions makes the following conjecture irresistible.

Conjecture 1.3 (Lescure and Meyniel [77], Abu-Khzam and Langston [1]). Every graph
with chromatic number t admits a (strong)1 immersion of Kt.

Progress on this conjecture has been surprisingly rapid; in fact, it seems that the existence
of clique immersions may have more to do with the minimum degree than with the chromatic
number. Lescure and Meyniel [77] showed that every simple graph with minimum degree 4
or 5 admits a strong immersion of K5 or K6, respectively, and DeVos et al. [23] proved that
minimum degree 6 guarantees a (not necessarily strong) immersion of K7. Although this
pattern does not continue—when t ≥ 8, there are examples with minimum degree t− 1 and
no Kt-immersion [20, 22]—every simple graph admits a clique immersion whose order is
within a constant factor of the minimum degree of the graph [22]. Building on the proof
in [22], Dvořák and Yepremyan [27] showed that a minimum degree of 11t+ 7 is enough to
force an immersion of Kt, while Le and Wollan [76] recently announced an improved bound
of 7t+ 7. It is an open question to see how much further the minimum degree bound can be
decreased.

Question 1.4. Does every graph with minimum degree ≥ t admit an immersion of Kt?

1Lescure and Meyniel [77] originally published the conjecture in 1988, using the term “immersion” to
mean strong immersion. Abu-Khzam and Langston [1] amended it in 2003—dropping the requirement that
the immersion be strong—in light of results on the “weak” immersion order.
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It is worth noting that an affirmative answer to Question 1.4 would imply Conjecture 1.3 [1].
Motivated by recent directions in the graph minors literature, Vergara [114, 115] studied

clique immersions in certain classes of dense graphs and showed that every n-vertex graph
with independence number two has an immersion of Kn/3. Gauthier and Wollan [42] report
that every such graph actually admits an immersion of K2n/5; this result is notable in light
of the continuing work on the Duchet–Meyniel Theorem for graph minors [17, 26, 66], where
it appears difficult to substantially improve on a Kn/3-minor without the help of additional
hypotheses.

An obvious necessary condition for the existence of a Kt-immersion is the presence
of a set of t vertices R such that λ(S,R \ S) ≥ s(t − s) for every s-vertex subset S ⊆ R.
It is natural to wonder whether a condition of this form might also be sufficient. The
rough structure theorem for graphs without Kt-immersions, discovered independently in [24]
and [117], points in this direction.

Our contributions can be viewed in the context of totally odd immersions—that is,
immersions whose trails each have odd length. The first half of this thesis studies collections
of edge-disjoint odd (u, v)-trails, which are equivalent to a totally odd immersions of a
two-vertex graph consisting of multiple parallel edges. In the second half, we investigate
totally odd immersions of complete graphs. We first extend the characterizations of [24]
and [117] and describe the rough structure of graphs with no totally odd immersion of a large
complete graph (see Section 4.3.2). Then, in Chapter 5, we suggest a totally odd immersion
version of Hadwiger’s conjecture and show it is true for almost all graphs.
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Chapter 2

Packing edge-disjoint odd
(u, v)-trails

The main topic of this thesis is the edge-disjoint packing of odd trails in a graph. We define
the odd edge-connectivity between two vertices u and v, written λo(u, v), to be the
maximum number of edge-disjoint (u, v)-trails of odd length. Clearly, λo(u, v) is bounded
by the odd trail covering number τo(u, v), which is the minimum size of an edge-set
intersecting every odd (u, v)-trail in the graph. In this first chapter, we prove an approximate
duality between λo(u, v) and τo(u, v)—a result which is not possible if “trails” are replaced
with “paths”.

Theorem 2.1. If G is a graph, u and v are vertices, and k ∈ N, then G has either k
edge-disjoint odd (u, v)-trails or a set of at most 6k − 2 edges intersecting all such trails. In
other words,

λo(u, v) ≤ τo(u, v) ≤ 6λo(u, v) + 4.

In fact, this statement is more coarse than necessary. To explain what we mean by this, we
need a new definition.

Definition. Let G be a graph, X a vertex-set, and H a subgraph of G. The perimeter of
X with respect to H is

p(X,H) = |E(X) \ E(H)|+ 1
2 |δ(X)|,

where E(X) denotes the set of edges with both ends in X, and δ(X) is the set of edges of G
with one end in X and the other end not in X.

Let G, H, and X be as above. If u, v ∈ X, then every (u, v)-trail that leaves H must
“cross the perimeter” using either two edges of δ(X) or one edge of E(X) \E(H). Therefore,
p(X,Y ) is an upper bound on the maximum number of such edge-disjoint trails. Our main
theorem gives a lower bound for the number of edge-disjoint (u, v)-trails each using exactly
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one edge outside H, expressed in terms of the usual edge-connectivity λ(u, v) and a minimum
perimeter.

Theorem 2.2. Let G be a graph, u, v ∈ V (G), and H a spanning subgraph of G such that
H + uv is 2-edge-connected. Then for all k ∈ N, at least one of the following holds:

(i) G has k edge-disjoint (u, v)-trails each using exactly one edge of G− E(H);

(ii) H has a (u, v)-cut with at most 3k − 1 edges; or

(iii) G has a vertex-set R containing u and v with perimeter

p(R,H) ≤
(

1 + max
T⊆V (G)\R

|δG(T )|
|δH(T )|

)
(k − 1). (2.1)

In inequality (2.1), T could be the empty set; if so, we define |δG(T )|
|δH(T )| = 1. By H + uv we

mean the graph obtained from H by adding a new edge uv. We require H to be a spanning
subgraph to avoid the outcome when δH(T ) = ∅, in which case G would be disconnected or
inequality (2.1) would be trivial.

WhenH is bipartite, Theorem 2.2 has significant implications for the odd edge-connectivity
between u and v. Specifically, p(X,H) is an upper bound for λo(u, v) whenever u, v ∈ X
are on the same side of the bipartition of H, as any odd (u, v)-trail must leave H. If H is a
maximal1 bipartite subgraph, any (u, v)-trail that uses exactly one edge of E(G) \E(H) has
the same parity. We can therefore use Theorem 2.2 to approximate the odd edge-connectivity
λo(u, v).

Theorem 2.3. Let G be a graph, u, v ∈ V (G), and H a maximal bipartite subgraph of G
such that H + uv is 2-edge-connected. Then for all k ∈ N, at least one of the following holds:

(i) G has k edge-disjoint odd (u, v)-trails;

(ii) H has a (u, v)-cut with at most 3k − 1 edges; or

(iii) u and v are on the same side of the bipartition of H, and G has a vertex-set R
containing u and v with perimeter

p(R,H) ≤
(

1 + max
T⊆V (G)\R

|δG(T )|
|δH(T )|

)
(k − 1).

If we demand that H is maximum—meaning that it has the most edges of any bipartite
subgraph of G—we can replace the edge-connectivity condition on H and the bounds in (ii)
and (iii) with more natural conditions.

1A bipartite subgraph H of G is maximal if adding any edge of E(G) \ E(H) gives rise to an odd cycle
in H. Provided G has no isolated vertices, a maximal bipartite subgraph of G is necessarily spanning.
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Theorem 2.4. Let G be a graph, u, v ∈ V (G), and H a maximum bipartite subgraph of G.
If G+ uv is 2-edge-connected, then for all k ∈ N, at least one of the following holds:

(i) G has k edge-disjoint odd (u, v)-trails;

(ii) G has a (u, v)-cut with at most 6k − 2 edges; or

(iii) u and v are on the same side of the bipartition of H, and G has a vertex-set R
containing u and v with perimeter p(R,H) ≤ 3(k − 1).

Our main result, Theorem 2.2, is proved in Section 2.1 and applied in Section 2.2, yielding
Theorems 2.1, 2.3, and 2.4. All of our arguments can be implemented as polynomial-time
algorithms (notwithstanding our statement of Theorem 2.4 in terms of a maximum bipartite
subgraph, which is NP-hard to find). We discuss these algorithms in Section 2.3. Section 2.4
concludes the chapter with a family of examples that show Theorem 2.1 cannot be improved
to a perfect packing–covering duality for odd (u, v)-trails.

2.1 Proof of Theorem 2.2

The goal of this section is to establish Theorem 2.2, which relates the maximum number of
edge-disjoint (u, v)-trails, each using exactly one edge from outside a given subgraph H, to
the edge-connectivity λH(u, v) and the minimum perimeter p(X,H) among vertex-sets X
containing u and v.

The proof comes in four parts. First, in Section 2.1.1, we prove a secondary lemma
describing the structure of small edge-cuts in a graph. Then, in Section 2.1.2, we prove
Theorem 2.2 for the special case where u = v. Section 2.1.3 presents another lemma which
allows us to set aside many (u, v)-paths in H without “using up” too much edge-connectivity.
Finally, we combine the lemma of Section 2.1.3 with the special case of Section 2.1.2 to
prove the general case of Theorem 2.2.

2.1.1 On the structure of small edge-cuts in a graph

Call a vertex-set X (t, r)-separating if t ∈ X and r 6∈ X. It is tight if |δ(X)| is equal to the
edge-connectivity λ(t, r), and nearly tight if |δ(X)| ≤ λ(t, r) + 1. When we say a vertex-set
is maximal, we refer to the inclusion order on subsets of V (G). Figure 2.1 illustrates the
structure of nearly-tight sets, which we formally describe in Lemma 2.5.

Lemma 2.5. Let r, t be distinct vertices of a graph G.

(a) There is a unique maximal tight (t, r)-separating set T .

(b) If S is a maximal nearly-tight (t, r)-separating set, then T ⊆ S.
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S1 \ T S2 \ T · · · S` \ T

t

r

T

Figure 2.1: Lemma 2.5 describes the structure of (t, r)-cuts of size ≤ λ(t, r) + 1. There is a
unique maximal tight (t, r)-separating set T , which is the intersection of any two maximal
nearly-tight sets Si, Sj .

(c) If S1, S2 are distinct maximal nearly-tight (t, r)-separating sets, then S1 \ T and S2 \ T
are vertex-disjoint.

(d) If S1, . . . , S` are maximal nearly-tight (t, r)-separating sets, then |δ(
⋃
Si)| ≤ λ(t, r) + `.

(e) If G is 2-edge-connected, then there are at most λ(t, r) distinct maximal nearly-tight
(t, r)-separating sets.

Proof. All five statements are consequences of the well-known submodular inequality for
edge-cuts (see [9, 39, 79]):

|δ(A ∪B)|+ |δ(A ∩B)| ≤ |δ(A)|+ |δ(B)|. (2.2)

If A and B are (t, r)-separating sets, then all four terms in the inequality are greater than
or equal to λ(t, r).

(a) If A and B are tight (t, r)-separating sets, inequality (2.2) yields |δ(A ∪B)| = λ(t, r),
implying A ∪B is also tight. At least one tight set exists by Menger’s Theorem; the
unique maximal choice for T is the union of all such sets.

(b) Inequality (2.2) for S and T gives |δ(S ∪ T )| ≤ λ(t, r) + 1. The maximality of S means
it cannot be a proper subset of the nearly-tight set S ∪ T ; hence T ⊆ S.

(c) When applied to S1 and S2, inequality (2.2) gives us |δ(S1 ∪ S2)| ≤ λ(t, r) + 2, and the
maximality of S1 rules out the possibility that |δ(S1 ∪ S2)| ≤ λ(t, r) + 1. So it must
be the case that |δ(S1 ∪ S2)| = λ(t, r) + 2 and |δ(S1 ∩ S2)| = λ(t, r). By part (a), the
latter implies that S1 ∩ S2 ⊆ T , but we know from part (b) that T ⊆ S1, S2. So in fact
S1 ∩ S2 = T .

10



(d) Let S be a (t, r)-separating set. Using inequality (2.2), we find δ(S ∪ Si) ≤ δ(S) + 1
for every i ∈ {1, . . . , `}. By induction, it follows that |δ(S1 ∪ · · · ∪ S`)| ≤ λ(t, r) + `.

(e) Let S1, . . . , S` be distinct maximal nearly-tight (t, r)-separating sets. By counting
edges, we find, for every i ∈ {1, . . . , `}, that

|δ(Si \ T )|+ |δ(Si ∩ T )| − |δ(Si)| = 2|δ(Si \ T ) ∩ δ(T )|.

Assuming G is 2-edge-connected, |δ(Si \ T )| ≥ 2. Since |δ(Si)| ≤ λ(t, r) + 1 and
|δ(Si ∩ T )| = |δ(T )| = λ(t, r), the left-hand side is at least one. In particular, the
right-hand side is positive, so at least one of the λ(t, r) edges in δ(T ) is used by
δ(Si \ T ). By part (c), the vertex-sets Si \ T and Sj \ T are disjoint when i 6= j, so
the edges of δ(T ) used by δ(Si \ T ) are different from the edges used by δ(Sj \ T ). It
follows that there are at most |δ(T )| = λ(t, r) distinct Si.

2.1.2 A special case of Theorem 2.2

In this section, we prove Theorem 2.2 in the special case where u and v are equal. Let G be
a graph, H a subgraph of G, and k ∈ N, and let r ∈ V (G) be the specified vertex r = u = v.
In this restricted case, the condition that H + uv is 2-edge-connected just means that H is
2-edge-connected.

The following construction lets us answer questions about the desired trails in G by
computing edge-connectivities in an auxiliary graph. The complement of H in G is denoted
H = G− E(H).

Definition. For any F ⊆ E(H), let H ⊕ F be the graph obtained from H by adding a new
vertex t+ and, for each e = xy ∈ F , adding the new edges xt+ and yt+. (This may produce
parallel edges incident with t+.)

The crucial property of H ⊕ F is that λH⊕F
(
t+, r

)
= degH⊕F

(
t+
)

= 2|F | if and only if G
has a collection of edge-disjoint closed trails through r, each using exactly one edge of F
and no other edge of H. Let us call an edge-set F ⊆ E(H) inhibited if λH⊕F

(
t+, r

)
< 2|F |

and uninhibited if λH⊕F
(
t+, r

)
= 2|F |.

Claim 2.1.1. Let F ⊆ E(H) be an uninhibited set. Let T+ be the unique maximal tight
(t+, r)-separating set in H ⊕ F and let S+

1 , . . . , S
+
` be the maximal nearly-tight (t+, r)-

separating sets. If e ∈ E(H) \F and Fe = F ∪ {e} is inhibited, then e either has at least one
end in T+ or has both ends in some S+

i \ T+.

Proof of the claim. By definition, Fe is inhibited by a (t+, r)-separating set S+ in H ⊕ Fe
with |δH⊕Fe

(
S+)| ≤ 2k − 1. Consider the quantity

s =
∣∣∣δH⊕Fe

(
S+
)∣∣∣− ∣∣∣δH⊕F(S+

)∣∣∣ .
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The number s counts how many ends of e lie outside S+; to see this, observe that the only
differences between H ⊕ Fe and H ⊕ F are the two edges between t+ and the ends of e. The
fact that F is uninhibited means |δH⊕F

(
S+)| ≥ 2(k − 1) and hence s ≤ 1. Therefore, S+

contains one or both ends of e.
Since |δH⊕F

(
S+)| ≤ |δH⊕Fe

(
S+)| ≤ 2k − 1, we know S+ is a nearly-tight (t+, r)-

separating set in H ⊕ F and hence is contained in some S+
i . The claim follows immediately

if S+ contains both ends of e. On the other hand, if e has one end in S+ and the other
outside S+, then |δH⊕F

(
S+)| = |δH⊕Fe

(
S+)| − 1 = 2(k − 1); that is, S+ is tight in H ⊕ F .

By Lemma 2.5 (a), S+ ⊆ T+, so one end of e is in T+.

Suppose now that F ⊆ E(H) is a maximal uninhibited edge-set. Then Claim 2.1.1 applies
to every e ∈ E(H) \ F . Let T+, S+

1 , . . . , S
+
` be the vertex-sets in the above claim, and let

T = T+ \ {t+} and Si = S+ \ {t+} be their restriction to the vertices of G (i = 1, . . . , `).
We set out to show that the vertex-set R = V (G) \

⋃
Si satisfies the third outcome of

Theorem 2.2. Claim 2.1.1 tells us that no edge of E(H) \ F has both ends in R, and that
the only edges of E(H) \ F in δG(R) are also in δG(T )—in other words, that every edge of
δG(R) is in exactly one of F , H, or δG(T ) ∩ (E(H) \ F ). Hence

p(R,H) = |E(R) ∩ F |+ 1
2 |δG(R)|

= |E(R) ∩ F |+ 1
2 |δG(R) ∩ F |+ 1

2 |δG(R) ∩ E(H)|

+ 1
2 |δG(R) ∩ δG(T ) ∩ (E(H) \ F )| (2.3)

By the construction of H ⊕ F , the first three terms in the right-hand side of Equation (2.3)
sum to 1

2 |δH⊕F (R)| = 1
2 |δH⊕F (

⋃
Si)|. Observe that

∣∣∣∣∣δH⊕F
(⋃̀
i=1

Si

)∣∣∣∣∣ ≤ λH⊕F(t+, r)+ ` ≤ 4(k − 1),

where the first inequality holds by Lemma 2.5 (d) and the second by Lemma 2.5 (e) using
our assumption that H, and therefore also H ⊕ F , is 2-edge-connected. Moreover, since T is
tight, the remaining term in Equation (2.3) satisfies

|δG(R) ∩ δG(T ) ∩ (E(H) \ F )| ≤ |δG(T ) ∩ E(H)|

= |δG(T )| − |δH(T )|

= (|δG(T )| − |δH(T )|) · 2(k − 1)
|δH⊕F (T )|

≤ (|δG(T )| − |δH(T )|) · 2(k − 1)
|δH(T )|

=
( |δG(T )|
|δH(T )| − 1

)
· 2(k − 1).
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Note that the above edge-set is empty when T = ∅ (i.e. when T+ = {t+}), which is why we
can define |δG(∅)|

|δH(∅)| = 1 in the statement of our theorem. Combining the above calculations,
we have

p(R,H) ≤ |E(R) ∩ F |+ 1
2 |δG(R) ∩ F + 1

2 |δG(R) ∩ E(H) + 1
2 |δG(R) ∩ δG(T ) ∩ (E(H) \ F )

= 1
2 |δH⊕F (R) + 1

2 |δG(R) ∩ δG(T ) ∩ (E(H) \ F )

≤ 2(k − 1) +
( |δG(T )|
|δH(T )| − 1

)
(k − 1)

=
(

1 + |δG(T )|
|δH(T )|

)
(k − 1).

This completes the proof of Theorem 2.2 in the special case where u = v = r.

2.1.3 Paths whose deletion reduces λ(u, v) by at most one

The following lemma is a cousin to a result of Mader [82], who proved that every connected
graph has, between any given pair of vertices u, v, a path whose deletion reduces λ(u, v) by
one and the local edge-connectivity for every other pair by at most two.

Lemma 2.6. If t, u, v are vertices in a connected graph, there is a path between t and one
of u and v whose deletion reduces λ(u, v) and λ(t, {u, v}) each by at most one.

Proof. The proof is by induction on the number of edges of G. Suppose G has an edge e
that is not incident with t, u, or v. There are three possibilities. First, if e is part of neither
a tight (u, v)-cut nor a tight (t, {u, v})-cut, we can simply delete e and apply induction.

Next suppose e is in a tight (u, v)-cut δ(S) where (say) u ∈ S and v, t 6∈ S. By Menger’s
Theorem, there are λ(u, v) edge-disjoint paths each passing through u and an edge of δ(S).
Moreover, the length of the path from u to v through e is at least two, since e is not incident
with u. If xw and wy = e are the last two consecutive edges on this path, deleting xw and
wy and adding a new edge xy preserves the edge-connectivities λ(u, v) and λ(t, {u, v}). To
see the latter fact, observe that any maximal collection of (t, {u, v})-paths can be replaced
with one which uses the segments of the (u, v)-paths once they cross the cut δ(S). As the
resulting graph G′ has fewer edges than G, by induction it contains a path P ′ from t to
{u, v} satisfying λG′−E(P ′)(u, v) ≥ λG′(u, v)− 1 = λG(u, v)− 1 and similarly for λ(t′, {u, v}).
The conclusion of the lemma is therefore fulfilled by the path in G obtained from P ′ by
replacing xy with xwy (if necessary) and removing any resulting cycles.

The third case, where e is in a tight (t, {u, v})-cut, is similar to the second. We may
henceforth assume that every edge is incident with t, u, or v.

Consider a largest collection of edge-disjoint (u, v)-paths in G. If there is a (u, v)-path
in the collection through t, let P be a (u, t)- or (t, v)-subpath. If not, let P be any path of
the form ut, tv, uxt, or tyv. In either case, the edges of P intersect at most one path in the
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collection, so deleting P decreases λ(u, v) by at most one. It is also easy to see that deleting
P decreases λ(t, {u, v}) by exactly one. This completes the proof of Lemma 2.6.

2.1.4 The general case of Theorem 2.2

In this section, we combine the results of Sections 2.1.2 and 2.1.3 to complete the proof of
Theorem 2.2. Let G be a graph, u, v vertices, H a maximal bipartite subgraph, and k ∈ N.
Suppose H + uv is 2-edge-connected.

Let G′ and H ′ be obtained from G and H respectively by identifying u and v to a single
vertex, which we denote by r. (By doing this, each edge joining u and v becomes a loop
at r.) The new graph H ′ is 2-edge-connected because H + uv is. Apply the special case of
Theorem 2.2, proved in Section 2.1.2, to G′ and H ′ with the specified vertex u = v = r. If
we fail to find k edge-disjoint closed (r, r)-trails in G′ with the desired properties, we get a
vertex-set R′ such that r ∈ R′ and

pG′
(
R′, H ′

)
≤
(

1 + max
T⊆V (G′)\R′

|δG′(T )|
|δH′(T )|

)
(k − 1).

Let R = (R′ \ {r}) ∪ {u, v}. For all vertex-sets T ⊆ V (G′) \ R′ = V (G) \ R, we have
|δG′(T )| = |δG(T )| and |δH′(T )| = |δH(T )|. Furthermore, pG(R,H) = pG′(R′, H ′). Therefore,
the third outcome of Theorem 2.2 holds for G, H, u, v.

On the other hand, suppose we succeed in finding k edge-disjoint closed trails in G′

through r, each using exactly one edge outside of H ′. Construct another auxiliary graph H+

from H by adding a new vertex t+ and edges xt+, yt+ for every edge xy ∈ E(G) \ E(H)
used by a trail in such a collection. The disjoint (r, r)-trails in G′ correspond in H+ to trails
passing through t+ each having both ends in the set {u, v}, so λH+

(
t+, {u, v}

)
= 2k. We

may also assume that λH+(u, v) ≥ λH(u, v) ≥ 3k; otherwise, if H has a (u, v)-cut with fewer
than 3k edges, the second outcome of Theorem 2.2 is satisfied.

Lemma 2.6, repeatedly applied to H+, t+, u, v, gives us 2k edge-disjoint paths between
t+ and the set {u, v}, after whose deletion u and v remain k-edge-connected. For each edge
xiyi outside H ′ used in obtaining H+ as above (i = 1, . . . , k), consider the trails Xi, Yi using
the edges xit+, yit+ in H+, respectively. Let Z1, . . . , Zk be edge-disjoint (u, v)-paths in the
remaining graph. Construct k edge-disjoint (u, v)-trails as follows: for each i, follow Xi to
xi, take the edge xiyi, return to {u, v} along the route of Yi, and append Zi if necessary to
connect u and v. These trails each contain exactly one edge of E(G) \ E(H), establishing
the first outcome of the theorem.

2.2 Packing and covering odd trails

When H is bipartite, Theorem 2.2 can be used to obtain lower bounds on the odd edge-
connectivity between u and v, where the precision of the bound depends on how well
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edge-cuts in H approximate edge-cuts in G. In this section, we prove two results of this
form—Theorem 2.3 and Theorem 2.4—as well as the approximate packing–covering duality
for odd (u, v)-trails stated in Theorem 2.1.

2.2.1 Proof of Theorem 2.3

Let G be a graph, u, v ∈ V (G), and H a maximal bipartite subgraph of G such that H + uv

is 2-edge-connected. Let k ∈ N.
If u and v are on opposite sides of the bipartition of H, then any (u, v)-path in H has

odd length. By Menger’s Theorem, either G has k edge-disjoint odd (u, v)-paths, or H has a
(u, v)-cut with fewer than k edges. Either result satisfies Theorem 2.3. Suppose, then, that u
and v are on the same side of the bipartition of H. Because H is maximal, every (u, v)-trail
using exactly one edge outside of H has odd length. The statement then follows immediately
from Theorem 2.2.

2.2.2 Proof of Theorem 2.4

Let G be a graph, u, v ∈ V (G), H a maximum bipartite subgraph of G, and k ∈ N. Suppose
G+ uv is 2-edge-connected. The key element of the following proof is that, as a maximum
bipartite subgraph, H contains at least half of the edges of any cut in G.

As in the proof of Theorem 2.3, if u and v are on opposite sides of the bipartition of H,
one of the first two desired outcomes falls out of Menger’s Theorem. That is, if H does not
have k edge-disjoint odd (u, v)-paths, then the minimum (u, v)-cut in H corresponds in G
to a cut with at most 2(k − 1) edges. We may assume, then, that u and v are on the same
side of the bipartition of H. This time, we cannot appeal directly to Theorem 2.2 as H + uv

is not necessarily 2-edge-connected. However, we can still reduce to Theorem 2.2 using the
following argument.

Let X be a vertex-set such that u, v 6∈ X, |δH(X)| = 1, and the induced subgraph H[X]
is connected. Because G + uv is 2-edge-connected, |δG(X)| ≥ 2; since H is maximum, in
fact |δG(X)| = 2. Let δG(X) = {e, e}, where e = xy ∈ E(H); e = xy 6∈ E(H); x, x ∈ X; and
y, y 6∈ X. Let G′ be obtained from G by deleting the vertices of X and adding a new edge
e′ = yy. Let H ′ = H −X.

Suppose G′ and H ′ satisfy one of the conclusions (if not the hypotheses) of Theorem 2.2.

(i) If G′ has k edge-disjoint (u, v)-trails, each using exactly one edge outside H ′, then at
most one trail in such a collection uses e′. Since H[X] is connected, this trail can be
extended to a trail in G using exactly one edge outside H (namely e). Therefore, G
has k edge-disjoint (u, v)-trails, each using exactly one edge outside H.
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(ii) If H ′ has a (u, v)-cut δ(T ′) with at most 3k − 1 edges, let

T =

T
′ ∪X y ∈ T ′

T ′ y 6∈ T ′.

Then δ(T ) is a (u, v)-cut in H with at most |δH(T )| = |δH′(T ′)| ≤ 3k − 1 edges.

(iii) If G′ has disjoint vertex-sets R′ and T ′ such that R′ contains u and v and has perimeter

pG′
(
R′, H ′

)
≤
(

1 + |δG
′(T ′)|

|δH′(T ′)|

)
(k − 1),

let R = R′ and let T be defined as in the previous case. Observe that |δG′(T ′)| = |δG(T )|,
|δH′(T ′)| = |δH(T )|, and pG′(R′, H ′) = pG(R,H), so R fulfills the third conclusion of
Theorem 2.2 for G and H.

According to the above discussion, if G′ and H ′ satisfy the conclusions of Theorem 2.2,
then so do G and H. Repeating the same argument, each time eliminating a vertex-set X
for which u, v 6∈ X and |δH(X)| = 1, we eventually arrive at graphs G′ and H ′ for which
G′ + uv and H ′ + uv are 2-edge-connected. Since Theorem 2.2 applies to G′ and H ′, we can
infer that the conclusion of Theorem 2.2 also holds for G and H.

In the first outcome of Theorem 2.2, G has k edge-disjoint odd (u, v)-trails as we saw
in the previous section. In the second outcome, H has a (u, v)-cut of fewer than 3k edges,
which corresponds to a (u, v)-cut of at most 6k− 2 edges in G. Finally, in the third outcome,
G has a vertex-set R containing u and v with perimeter

p(R,H) ≤
(

1 + max
T⊆V (G)\R

|δG(T )|
|δH(T )|

)
(k − 1) ≤ 3(k − 1),

using the fact that the maximum bipartite subgraph H satisfies |δG(T )|
|δH(T )| ≤ 2 for all T ⊆ V (G).

This completes the proof of Theorem 2.4.

2.2.3 Proof of Theorem 2.1

Let G be a graph and u, v ∈ V (G). We may delete any components of G which do not
contain u and v, as these components are irrelevant to the problem. We may also delete any
cut-edge which does not separate u and v: no (u, v)-trail in G uses such an edge, and neither
does a minimum cover of the odd (u, v)-trails in G.

We may assume G is a connected graph in which every cut-edge separates u and v; in
other words, G + uv is 2-edge-connected. Let H be a maximum bipartite subgraph of G.
Apply Theorem 2.4 with k = λo(u, v) + 1. As the first outcome of the theorem cannot hold,
either G has a (u, v)-cut with fewer than 6(λo(u, v) + 1)− 2 edges or G has a vertex-set R
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containing u and v for which p(R,H) ≤ 3λo(u, v). In the latter case, the perimeter edges
(E(R)\E(H))∪δ(R) intersect all odd (u, v)-trails and consist of at most 2p(R,H) ≤ 6λo(u, v)
edges. Either way, we obtain an odd trail cover that certifies τo(u, v) ≤ 6λo(u, v) + 4.

2.3 Algorithms

The arguments used in this chapter can be implemented as constructive algorithms, which,
with a few tweaks, can be made to run in polynomial time. In this section, we describe
the algorithms related to each of our main results. All runtimes are expressed in terms of
n = |V (G)| and m = |E(G)|.

As our proofs make liberal use of edge-connectivity assumptions and tight cuts, it
comes as no surprise that the corresponding algorithms rely heavily on subroutines for the
maximum flow problem. The most efficient solution we are aware of uses an algorithm by
Orlin for sparse graphs and an algorithm by King, Rao, and Tarjan for sufficiently dense
graphs. (There are simpler, equally efficient algorithms for finding the maximum number
of edge-disjoint (u, v)-paths and a minimum unweighted (u, v)-cut—see [102]—but their
suitability depends on the encoding of parallel edges in the input graph.)

Theorem 2.7 (Orlin [91]). A maximum collection of edge-disjoint paths between two vertices
in a graph can be found in O(nm)-time.

If a maximum flow has been found, a minimum cut can be easily obtained through a
breadth- or depth-first search of the residual graph.

Corollary 2.8. A (vertex-minimal) tight set T ⊆ V (G) separating two given vertices can
be found in O(nm) time.

2.3.1 Algorithm for Theorem 2.2

Theorem 2.9. There is an O
(
nm2)-time algorithm which takes as input a graph G, vertices

u, v ∈ V (G), and a spanning subgraph H of G such that H + uv is 2-edge-connected, and
outputs an integer k together with the following:

(1) a collection of k edge-disjoint (u, v)-trails each using exactly one edge of G− E(H),
and either

(2a) a (u, v)-cut in H with at most 3k + 2 edges, or

(2b) a vertex-set R containing u and v with perimeter

p(R,H) ≤
(

1 + max
T⊆V (G)\R

|δG(T )|
|δH(T )|

)
k.
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Proof. The algorithm begins by replacing G and H with the graphs G′ and H ′ obtained
by identifying the vertices u and v to a new vertex r. We enqueue the edges E(H ′) =
E(G′) \E(H ′) and initialize an edge-set F = ∅. This can all be done in linear time or faster,
depending on the encoding of the input graphs.

For each edge e ∈ E(H ′) \ F , let Fe = F ∪ {e}. We compute the edge-connectivity
between r and t in the auxiliary graphs H ′ ⊕ Fe; if it is at least 2(|F |+ 1), we add e to F
and restart the process until we exhaust the queue of the edges. Constructing H ′ ⊕ F ∪ {e}
takes linear time, while computing λ(u, v) can be done in O(nm)-time. Note that once an
edge e is refuted, it will not have sufficient connectivity in any of the later steps, so each
edge is processed only once. Therefore, this procedure takes O

(
nm2)-time in total.

When no more edges can be added to F , we provisionally set k = |F |. Next, we construct
the unique maximal tight (t+, r)-separating set T (see Corollary 2.8) and nearly-tight (t+, r)-
separating sets S1, . . . , S` in H ′ ⊕ F (note that ` ≤ 2k). Each nearly-tight set can be found
by contracting the maximal tight set, duplicating one of the edges leaving it, and finding a
maximal tight set in the resulting better-connected graph. After O(m) applications of the
O(nm)-time minimum cut algorithm, we obtain a set R′ of perimeter

p
(
R′, H ′′

)
≤
(

1 + max
T⊆V (G′)\R′

|δG′(T )|
|δH′(T )|

)
k.

The above procedure also gives us a collection T of k edge-disjoint trails through r in G′,
each using exactly one edge of F and no other edge of H ′. Given a maximum (t+, r)-flow in
H ′ ⊕ F—which is found when computing the edge-connectivity in the above loop—such a
collection is obtained in linear time.

Next, we run an (O(nm)-time) maximum flow algorithm to determine λH(u, v) and
compute a minimum cut. Suppose first that λH(u, v) ≥ 3k. The last paragraph of Section 2.1.4
describes how to extend the trails in T to a collection of k edge-disjoint (u, v)-trails satisfying
outcome (1) of Theorem 2.9. Using a straightforward implementation for the recursive
algorithm outlined in the proof of Lemma 2.6, this procedure takes O(nm2) time. Moreover,
the set R′ in G′ corresponds to a vertex-set R in G containing u and v satisfying outcome
(2b) of the theorem.

It remains to discuss what to do if λH(u, v) < 3k. In this case, we discard some edges
from F , and the respective trails from T, until the reduced set of edges (which we still
denote by F and set k = |F |) satisfies 3k ≤ λH(u, v) ≤ 3k + 2. Once again, we are in the
same situation as the last paragraph of Section 2.1.4 and we can find in O(nm2) time k
edge-disjoint trails yielding outcome (1) of the theorem. The minimum (u, v)-cut in H gives
outcome (2a) as well.
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2.3.2 Algorithms for Theorems 2.1, 2.3, and 2.4

Theorem 2.3 boils down to computing λH(u, v) or applying Theorem 2.2, depending on
whether u and v are on the same or opposite sides of the bipartition of H. By Theorem 2.7
and Theorem 2.9, these take O

(
nm2) time. Essentially the same strategy can be used to put

Theorem 2.4 into practice, but only if a maximum bipartite subgraph H is already known
for G. Unfortunately, such an H is NP-hard to find [60]. However, it is still feasible to find a
(not necessarily maximum) bipartite subgraph H for which the conclusions of Theorem 2.4
hold.

Theorem 2.10. There is an O
(
nm3)-time algorithm which takes as input a graph G and

vertices u, v ∈ V (G) such that G+uv is 2-edge-connected, and outputs an integer k, together
with the following:

(1) a collection of k edge-disjoint odd (u, v)-trails, and either

(2a) a (u, v)-cut in G with at most 6k + 4 edges, or

(2b) a bipartite subgraph H with u and v on the same side of its bipartition and a vertex-set
R containing u and v with perimeter p(R,H) ≤ 3k.

Proof. Let H be an arbitrary maximal bipartite subgraph of G. In linear time, we can
decide whether u, v are on the same or opposite sides of the bipartition of H. If they are
on opposite sides, compute a minimum (u, v)-cut δH(X) in H. If |δG(X)| > 2|δH(X)|, we
find a bipartite subgraph with more edges than H by swapping the H and non-H edges of
δG(X). Otherwise, we output the k = λH(u, v) edge-disjoint odd (u, v)-paths in H and the
(u, v)-cut δG(X), which has at most 2k edges.

Suppose now that u and v are on the same side of the bipartition of H. Compute the
2-edge-connected components of H in linear time [106]. If we find a vertex-set X for which
|δH(X)| = 1 but |δG(X)| > 2, swap the H and non-H edges of δG(X) to get a bipartite
subgraph with more edges. If we find a vertex-set X for which u, v 6∈ X, |δH(X)| = 1 and
|δG(X)| = 2, apply the (linear-time) reduction described in Theorem 2.4. Otherwise, H + uv

is 2-edge-connected, so we can apply the O
(
nm2)-time algorithm of Theorem 2.9 to G, H,

u, v. We obtain a collection of k edge-disjoint odd (u, v)-trails and either a small (u, v)-cut
in H or a vertex-set of small perimeter. If the latter certificates are not precise enough to
satisfy (ii) or (iii), respectively, we again get a bipartite subgraph with more edges than H.

The above algorithm takes O
(
nm2) time to either satisfy the theorem or find a bipartite

subgraph with more edges than H, in which case we can repeat the algorithm from the
beginning with the improved subgraph. After O(m) possible restarts, we obtain suitable
outputs for the theorem.

The algorithm corresponding to Theorem 2.1 simply deletes irrelevant components and
cut-edges and applies Theorem 2.10.
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Theorem 2.11. There is a O
(
nm3)-time 6-approximation algorithm for λo(u, v).

2.4 Concluding remarks

In this chapter, we proved the approximate packing–covering duality for odd (u, v)-trails

λo(u, v) ≤ τo(u, v) ≤ 6λo(u, v) + 4

The following examples show that a perfect duality is too much to hope for.

u v

x1 y1 z1

x2 y2 z2

Figure 2.2: A graph with λo(u, v) = 1 and τo(u, v) = 2.

Fact 2.12. Let Gk be the graph obtained from 2k + 1 internally vertex-disjoint (u, v)-paths
uxiyiziv, i = 1, . . . , 2k, by adding the edges xj−1xj and zj−1zj, j = 2, 4, . . . , 2k.

(i) Gk has exactly λo(u, v) = k edge-disjoint odd (u, v)-trails; but

(ii) Gk has no (u, v)-cut with fewer than λ(u, v) = 2k + 1 edges; and

(iii) Gk does not have a bipartite subgraph H with u and v on the same side of the bipartition
and a vertex-set X containing u and v with perimeter p(X,H) < 2k.

Proof. Observe that each odd (u, v)-trail uses at least one of the “extra” edges xj−1xj or
zj−1zj . Suppose that an odd (u, v)-trail P contains xj−1xj . If P also contains zj−1 or zj ,
then every odd (u, v)-trail that passes through any of the vertices xj−1, xj , zj−1, zj has at
least one edge in common with P . On the other hand, if P passes through neither zj−1

nor zj , then it must contain two other vertices xi, zi for some i ∈ {1, . . . , 2k + 1}, and any
odd (u, v)-trail passing through any of the vertices xj−1, xj , xi, zi has at least one edge in
common with P . In either case, P prevents four out of the 4k + 2 such vertices from being
in a disjoint odd (u, v)-trail. Thus Gk has at most k edge-disjoint odd (u, v)-trails. On the
other hand, it is easy to construct a collection of exactly k such trails.

It is obvious from the construction that λ(u, v) = 2k + 1. For the third statement, note
that p(X,H) is an upper bound for the number of edge-disjoint odd closed trails through u
and/or v, and Gk has 2k such triangles: uxj−1xj and vzj−1zj for j = 2, 4, . . . , 2k.

It remains to be seen how far our bounds for the ratio between odd edge-connectivity
and odd trail covering number can be improved.
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Question 2.13. What is the smallest constant c such that λo(u, v) ≤ τo(u, v) ≤ cλo(u, v) +
O(1) for all graphs G and vertices u, v?

In this chapter, we used a “greedy” approach to show that c ≤ 6; the examples described
above demonstrate that c ≥ 2. The recent master’s thesis of Ibrahimpur [56] built on our
methods in [19] to show c ≤ 5.
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Chapter 3

Packing edge-disjoint odd
(u, v)-trails in Eulerian graphs

In the last chapter, we showed that λo(u, v) ≤ τo(u, v) ≤ 6λo(u, v), where λo(u, v) is the
odd edge-connectivity and τo(u, v) is the odd trail covering number. Vertices of degree three
are a limiting factor in our proof (see Lemma 2.6) as well as our most extreme examples
(see Section 2.4). It is natural to wonder what happens if degree-three vertices are forbidden,
but the answer is unsatisfying: one can “artificially” increase the minimum degree of a graph
without changing the odd edge-connectivities (see Figure 3.1). With this in mind, another
obvious question arises: is it easier to pack odd (u, v)-trails if we exclude all vertices of odd
degree?

→

Figure 3.1: Attaching a bipartite graph at each vertex can increase the minimum degree of
a graph without affecting the odd edge-connectivities. However, it does not decrease the
number of vertices of odd degree.

In this chapter, we investigate odd trail packings in Eulerian graphs and answer this
question in the affirmative.

Theorem 3.1. An Eulerian graph has either k edge-disjoint odd (u, v)-trails or a set of
fewer than 5

2k edges intersecting all such trails. In other words,

λo(u, v) ≤ τo(u, v) ≤ 5
2λo(u, v).

As was the case in Chapter 2, the approximate packing–covering duality comes from a
family of bounds for λo(u, v) involving the perimeter and edge-connectivity.
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Theorem 3.2. Let α ∈ (0, 1]; G an Eulerian graph; u, v ∈ V (G); and k ∈ N. Then either:

(i) G has k edge-disjoint odd (u, v)-trails;

(ii) G has a (u, v)-cut with fewer than (3− 2α)k edges; or

(iii) G has a bipartite subgraph H with u, and v on the same side of the bipartition and a
vertex-set X containing u and v with perimeter p(X,H) < (1 + α)k.

In cases (ii) and (iii), Theorem 3.2 certifies that G does not have too many odd trails.
(The duality is not perfect; as we discuss in Section 3.4, a perfect duality of this form is
impossible even for Eulerian graphs.) The parameter α gives us flexibility to choose which
outcome produces a more precise certificate. For a packing–covering duality, this trade-off is
balanced when α = 1

4 , yielding Theorem 3.1.
The proof of Theorem 3.2 begins with perfect duality for edge-disjoint odd closed trails

through a given vertex, which follows from a result of Chudnovsky et al. [16].

Lemma 3.3. The maximum number of edge-disjoint odd (r, r)-trails in an Eulerian graph
G is equal to the minimum value of p(R,H) among all bipartite subgraphs H of G and
vertex-sets R containing r.

More generally, we can characterize the maximum number of edge-disjoint odd trails having
ends in a specified vertex-set. To complete the proof of Theorem 3.2, we show that a
sufficiently large collection of odd trails with ends in {u, v} can be modified to produce the
desired odd (u, v)-trails.

The two halves of our proof of Theorem 3.2 are given in Section 3.1 and Section 3.2,
respectively. Section 3.3 discusses the algorithmic implications of our arguments, while
Section 3.4 compares the Eulerian and general cases and explores the limits of Theorem 3.2.

3.1 Packing odd closed trails

In this section, we prove Lemma 3.3, which characterizes the maximum number of edge-
disjoint odd trails through a given vertex.

Let H be a graph whose edges are labelled by the elements of a group Γ and let A ⊆ V (H).
A non-zero A-path is a path whose ends are both in A and for which, roughly speaking,
the product of the edge labels along the path is not the identity of the group Γ. Similarly, a
non-zero cycle is a cycle in H for which the product of the edge labels is not the identity.
(We are mostly interested in the case where Γ = Z2, where these rough definitions will suffice;
in the more general case, some care must be taken with the order of multiplication and the
orientations of the edges along the path.1)

1In the more general setting, H is a symmetric simple digraph with a labelling γ : E(H) → Γ in which
γ(uv) = γ(vu)−1 for all uv ∈ E(H). The weight of an (oriented) path P : v0e1v1e2v2 . . . ekvk is

∏k

i=1 γ(ei).
A non-zero A-path is a path whose ends are both in A and whose weight is not the identity of Γ.
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Chudnovsky et al. [16] proved the following characterization of optimal vertex-disjoint
packings of non-zero A-paths in group-labelled graphs.

Theorem 3.4 (Chudnovsky et al. [16]). Let H be a graph whose edges are labelled by the
elements of a group Γ and let A ⊆ V (H). The maximum number of vertex-disjoint non-zero
A-paths in H is equal to the minimum value of

π(S,D) = |S|+
∑

components K
of H−S−D

⌊ |(A ∪ V (D)) ∩ V (K)|
2

⌋

where the minimum is taken over all vertex-sets S ⊆ V (H) and all edge-sets D containing
no non-zero cycles and no non-zero A-paths.

The proof of Lemma 3.3 applies Theorem 3.4 to an auxiliary graph L̃(G) obtained from
G by subdividing each edge once and taking the line graph of the result. To be precise, the
vertices of L̃(G) are the pairs (x, e) ∈ V (G)× E(G) such that x and e are incident in G. (If
G has a loop e at x, the graph has two copies of the vertex (x, e).) The edges of L̃(G) join
(x, e) to (y, f) whenever x = y or e = f . For notational convenience, let L̃(x) denote the
vertex-set {(x, e) : e is incident with x} of L̃(G) whenever x ∈ V (G).

We are interested in edge-disjoint odd closed trails through a specified vertex r in G.
These are equivalent to vertex-disjoint non-zero L̃(r)-paths in L̃(G) under the following
Z2-labelling of the edges: each edge of the form (x, e)(y, e) has label 1, while every other
edge, which has the form (x, e)(x, f), has label 0. According to Theorem 3.4 L̃(G) has a
vertex-set S and an edge-set D with no non-zero cycles and no non-zero A-paths, such that
π(S,D) is equal to the maximum number of odd closed trails through r in G. Suppose such
a pair (S,D) is chosen according to the following criteria in decreasing order of priority:

1. S has as few vertices as possible.

2. V (D) has as few vertices as possible.

3. D has as many edges as possible.

Claim 3.1.1. If x ∈ V (G), then V (D) uses all or none of the vertices in L̃(x) \ S.

Proof of the claim. Consider the effect of removing a vertex x̃ ∈ V (D) ∩ (L̃(x) \ S) and all
incident edges from the subgraph D. Because L̃(x) contains a vertex which is in neither
S nor V (D), all the vertices of L̃(x) \ S are in the same component of L̃(G) − S − D.
Observe that x̃ has at most one neighbour outside of L̃(x). Therefore, if the components of
L̃(G)−S−D and of L̃(G)−S−(D− x̃) do not induce the same partition on the vertices, the
only difference is that one component of the latter contains two components of the former.
If the partitions are the same, then π(S,D − x̃) ≤ π(S,D) follows immediately from the
definition; otherwise, it is a consequence of the inequality of floors

⌊
k1+k2−1

2

⌋
≤
⌊
k1
2

⌋
+
⌊
k2
2

⌋
.

This contradicts the assumption that D has as few vertices as possible.
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Claim 3.1.2. If x ∈ V (G), then D either contains or is disjoint from the subgraph of L̃(G)
induced by L̃(x) \ S.

Proof of the claim. The proof of the previous claim actually proves a slightly stronger
statement: the subgraph of L̃(G) induced by L̃(x) is disconnected after the edges of D are
deleted. In particular, if (x, e), (x, f) are vertices in V (D)∩ (L̃(x) \S), there is a zero-weight
path in D connecting them. Any zero-weight edge (x, e)(x, f) can therefore be added to D
without creating a non-zero cycle or non-zero L̃(r)-path. The edge-maximality of D means
it contains all such edges.

Claim 3.1.3. S = ∅.

Proof of the claim. Let x̃ = (x, e) ∈ S. If D does not intersect L̃(x), then removing x̃ from
S merges at most two components of L̃(G)− S −D. As we saw in the proof of Claim 3.1.1,
this implies π(S \ {x̃}, D) ≤ π(S,D) and contradicts the minimality of S. On the other
hand, if D intersects L̃(x), we could improve our choice by taking

(
S \ L̃(x), D ∪ E(L̃(x))

)
instead of (S,D): because the increase of |N(D)| in each component is offset by an equivalent
decrease in |S|, this would not increase π. In either case, we can safely remove x̃ from S;
since we chose S to be minimal, S = ∅.

Let R be the set of all vertices x ∈ V (G) such that V (D) intersects L̃(x). As L̃(G) −
S −D = L̃(G)−D contains no non-zero cycles, it corresponds to a subgraph in G whose
restriction to R is bipartite. Let H be the corresponding bipartite subgraph of G[R]. The
above claims allow us to classify each nontrivial component of L̃(G)−D into two types. The
first type of component is a single edge of the form ẽ = (x, e)(y, e) with both ends in V (D);
the corresponding edge e has both ends in R and is therefore contained in E(R) \E(H). The
second type of component is a subgraph induced by a union of vertex-sets of the form L̃(x)
together with the edges connecting them to the rest of L̃(G). To be precise, the vertices in such
a component are formed from the union of

⋃
x∈V (K) L̃(x) with {(x, e) ∈ V (D) : e ∈ δ(V (K))}

for some component K of G−R. We now compute

π(S,D) = |S|+
∑

components K
of L̃(G)−S−D

⌊ |(A ∪ V (D)) ∩ V (K)|
2

⌋

= 0 +
∑

ẽ∈E(L̃(G)−S−D)
with ends in V (D)

⌊2
2

⌋
+

∑
components K̃
of L̃(G)−S−D

of the second type

⌊
|V (D) ∩ V (K̃)|

2

⌋

= |E(R) \ E(H)|+
∑

components K
of G−R

⌊ |δ(V (K))|
2

⌋
.
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When G is Eulerian, |δ(V (K))| is always even, so

π(S,D) = |E(R) \ E(H)|+ 1
2 |δ(R)|

= p(R,H).

This completes the proof of Lemma 3.3. It is worth noting that we have actually shown
a more general lemma which may be useful for approximating the odd edge-connectivity in
graphs which have no small cuts consisting of an odd number of edges.

Lemma 3.5. The maximum number of edge-disjoint odd (r, r)-trails in a graph G is equal
to the minimum value of

|E(R) \ E(H)|+
∑

components K
of G−R

⌊ |δ(V (K))|
2

⌋
.

among all vertex-sets R containing r and bipartite subgraphs H of G.

The above argument can be implemented in polynomial time using an algorithm due to
Chudnovsky, Cunningham, and Geelen [15]. We discuss this procedure in Section 3.3.

3.2 Proof of Theorem 3.2

Let G be an Eulerian graph, u, v ∈ V (G), and α ∈ (0, 1]; after discarding any irrelevant
components, we may assume G is connected.

As in the proof of Theorem 2.2, construct an auxiliary graph G′ by identifying u and
v to a single vertex, which we call r. Lemma 3.3 counts the number of edge-disjoint odd
closed trails through r that can be packed in G′. By construction, these are equivalent to
edge-disjoint odd {u, v}-trails in G—i.e., trails whose ends lie in the set {u, v}. If there are
fewer than (1 + α)k such trails, then Lemma 3.3 guarantees the existence of a vertex-set
R and bipartite subgraph H ′ in G′ such that r ∈ R and p(R,H ′) < (1 + α)k. In this case,
the third outcome of Theorem 3.2 is satisfied by the vertex-set (R \ {r}) ∪ {u, v} and the
bipartite subgraph H obtained from H ′ by reversing the identification of u and v.

Suppose, then, that G has at least d(1 + α)ke odd {u, v}-trails. Let S be a collection
of such trails and write Su, Suv, and Sv for the closed (u, u)-trails, (u, v)-trails, and closed
(v, v)-trails in S, respectively. We declare victory if |Suv| ≥ k, since a collection of k odd
(u, v)-trails satisfies Theorem 3.2. Therefore, we may assume that Su ∪ Sv is nonempty for
the remainder of the proof.

3.2.1 Absorbing components of G− E(S)

We now investigate some simple local modifications that enlarge the edge-set of S without
decreasing the number of trails.
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Claim 3.2.1. If G−E(S) is not Eulerian, there is a collection T of odd {u, v}-trails with
|T| ≥ |S| and E(T) ) E(S).

Proof of the claim. The only vertices that possibly have odd degree in G− E(S) are u and
v, and if they do, they are connected by a (u, v)-trail T in G− E(S). If T has odd length,
we immediately obtain a better collection T = S ∪ {T}. Otherwise, if T is even and (say)
Su is nonempty, we can form an odd (u, v)-trail by concatenating T with an odd closed
trail Tu ∈ Su. A larger collection T is then obtained from S by replacing Tu with the new
trail.

For the following claims, a component of G− E(S) is considered nontrivial if it has at
least one edge.

Claim 3.2.2. If G− E(S) has a nontrivial component with an even number of edges, there
is a collection T of odd {u, v}-trails with |T| ≥ |S| and E(T) ) E(S).

Proof of the claim. Let K be such a component. Since G is connected, K shares a vertex x
with some trail T ∈ S. We may assume K is Eulerian by Claim 3.2.1. Let T ′ be the trail
obtained by following T to x, detouring along an Euler tour of K, then resuming the route
of T from x to its other end. (See Figure 3.2.) As T ′ has odd length, replacing T with T ′

produces a collection of odd trails T as desired.

→ u vu v

even

Figure 3.2: In Claim 3.2.2, a component of G− E(S) disappears after its even Euler tour is
added to the route of a trail in S.

Claim 3.2.3. If G− E(S) has distinct nontrivial components touching the same trail of S,
there is a collection T of odd {u, v}-trails with |T| ≥ |S| and E(T) ) E(S).

Proof of the claim. Suppose K1,K2 are distinct components of G− E(S) touching T ∈ S;
that is, they contain vertices x1, x2 on T , respectively. By the above claims, we may assume
K1 and K2 are Eulerian and each have an odd number of edges. Let T ′ be the odd trail
obtained by following T to x1, taking an Euler tour of K1, following T from x1 to x2, taking
an Euler tour of K2, and finally following T from k2 to its other end. (See Figure 3.3.)
Replacing T with T ′ yields the better collection T.

If K is a nontrivial component of G − E(S), let K(0) = V (K). Then, for each i ≥ 1,
let K(i) be the union of K(i−1) and every vertex appearing between two (not necessarily
distinct) vertices x, y ∈ K(i−1) on trails T ∈ S. The set 〈K〉 = K(|V (G)|) obtained at the
end of this process has two important properties. First, δ(〈K〉) contains at most two edges
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→ u vu v

odd

odd

Figure 3.3: In Claim 3.2.3, two (Eulerian) components of G− E(S) are absorbed if each has
an odd number of edges.

of any trail of S. Second, as the next claim shows, if any trail passes through two distinct
“extended components”, the trails S can be rerouted in order for Claim 3.2.3 to be applied
to their respective components.

Claim 3.2.4. If G−E(S) has distinct nontrivial components K1 and K2 for which some
trail in S passes through 〈K1〉 and 〈K2〉, there is a collection T of odd {u, v}-trails with
|T| ≥ |S| and E(T) ) E(S).

Proof of the claim. Let j be the smallest integer such that a trail T ∈ S touches both K1
(j)

and 〈K2〉, where K1
(j) is defined as in the construction of 〈K1〉. Similarly, let j′ be the

smallest integer for which T contains a vertex in K2
(j′). Let x(j)

1 and x(j′)
2 be vertices on T

that lie in K1
(j) and K2

(j′), respectively.

↗

↘

u v
x

xi−1 yi−1

u v

yi−1

u v

xi−1

Figure 3.4: A trail through 〈K1〉 can be rerouted to pass through a vertex added earlier to
〈K〉.

We first reroute the trails of S so that one of them passes through x(j′)
2 and a vertex of

K1. Let xj = x
(j)
1 and Tj = T . Then, for i = j, . . . , 1, execute the following loop. Suppose xi

appears between the vertices xi−1, yi−1 ∈ K(i−1) on a trail Xi ∈ S. If Xi = Ti, let Ti−1 = Ti

and continue the loop. Otherwise, if Xi 6= Ti, observe that (any occurrence of) the vertex x(i)
1

splits Xi into two subtrails of opposite parity. By swapping the subtrails of the same parity
between Xi and Ti we obtain two new odd {u, v}-trails Ti−1, Xi−1. (See Figure 3.4.) Since
xi−1 and yi−1 appear on different sides of xi on Xi, the new trails Ti−1, Xi−1 each contain
one of them. Moreover, either Ti−1 or Xi−1 passes through x(j′)

2 . Without loss of generality,
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u v

〈K1〉

〈K2〉

→

↙

〈K2〉

→ u v

u v

K1

u v

K1

K2

Figure 3.5: The proof of Claim 3.2.4 goes through two rounds of rerouting to sculpt a trail
that can absorb the components K1 and K2.

say Ti−1 contains xi−1 and x(j′)
2 . We modify S by replacing {T,X} with {Ti−1, Xi−1} and

continue the loop. At the end of the loop, the resulting collection T′ has a trail T0 passing
through x(j′)

2 and a vertex x0 of K1
(0) = V (K1)

The choice of j and j′ imply that no trail modified in the above procedure is involved
in the construction of K2

(j′). (The modifications affect T and some trails through K1
(j−1),

while the construction of K2
(j′) depends only on trails that share at least two vertices with

K2
(j′−1). The choice of j′ implies T does not touch K2

(j′−1), and the choice of j ensures
that none of the other affected trails do either.) Therefore, we are justified in saying that
x

(j′)
2 ∈ K2

(j′) even after we replace S with the collection T′ of {u, v}-trails obtained at the
end of the above process. Observe that |T′| = |S|, E(T′) = E(S).

The above argument can be applied a second time to reroute the trails of T′ so that one
passes through vertices of K1 and K2. Claim 3.2.3 then yields the desired collection T.

3.2.2 Simplifying nontrivial 2-edge-cuts

In the next section, it is convenient to consider a simplified version of the graph. To be
precise, if X is a vertex-set in G with u, v 6∈ X, |δ(X)| ≤ 2, and such that G[X] is connected,
let us modify G as follows. If |δ(X)| ≤ 1, we can delete it as no (u, v)-trail passes through
X. Otherwise, suppose |δ(X)| = 2. If G[X] is not bipartite, we contract X to a single vertex
with a loop. If G[X] is bipartite, then every path in G[X] between the ends of the two edges
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in δ(X) has the same parity. If the parity is even, contract X to a single vertex without
a loop; if it is odd, delete X entirely and replace δ(X) with an edge. (See Figure 3.6.) It
is easy to see that these operations preserve the number of trails in S. From now on, we
assume that G+ uv is internally 3-edge-connected.

→ →

non-
bipartite

→

Figure 3.6: If G has a nontrivial 2-edge-cut that does not separate u and v, we can contract
it away without affecting the number of odd {u, v}-trails.

3.2.3 Bounding the remaining components

After repeatedly applying the above claims, we can assume a number of useful properties.
For instance, every nontrivial component of G−E(S) can now be assumed to be an Eulerian
subgraph with an odd number of edges. Each such component K shares a vertex with at
least one trail of S, but no two lie on the same trail. More generally, the vertex-sets 〈K〉
constructed from these components are pairwise disjoint and no two interact with the same
trail in S.

Let K1, . . . , K` be those nontrivial components of G − E(S) whose extension 〈Ki〉
(i = 1, . . . , `) is not just a vertex (with loops).

Claim 3.2.5. Let S and K1, . . . ,K` be as above. If u ∈ 〈Ki〉 and v ∈ 〈Kj〉 where i, j ∈
{1, . . . , `}, then i = j = ` = 1.

Proof of the claim. If i = j, the construction adds all of V (S) to 〈Ki〉 since u, v ∈ 〈Ki〉. By
Claim 3.2.4 and the assumption that G is connected, G − E(S) has no other nontrivial
components, so ` = 1.

On the other hand, suppose i 6= j. Because 〈Ki〉 contains u, it contains all of V (Su)
by construction. Likewise, 〈Kj〉 contains V (Sv). Note that v 6∈ 〈Ki〉, so the fact that G is
connected means 〈Ki〉 has at least one edge leaving it. This edge cannot be in any component
K1, . . .K`, so it is either on a (u, v)-trail in S or a (v, v)-trail in S. Either way, there is a
trail in S containing vertices of both 〈Ki〉 and 〈Kj〉. This contradicts Claim 3.2.4.

Claim 3.2.6. Let S and K1, . . . ,K` be as above. Then at least two trails of S pass through
〈Ki〉 for each i ∈ {1, . . . , `}.

Proof of the claim. Each T ∈ S contains at most two edges of δ(〈Ki〉)—after all, the con-
struction adds to 〈Ki〉 any subtrail of T that leaves and re-enters it. If 〈Ki〉 touches only
one trail, this implies |δ(〈Ki〉)| ≤ 2. But we assumed in Section 3.2.2 that G is internally
3-edge-connected; this contradicts the assumption that 〈Ki〉 has more than one vertex.
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Let S and K1, . . . ,K` be as above. By Claim 3.2.5, we may assume that 〈K2〉, . . . , 〈K`〉
are disjoint from {u, v}. If |S| − k + 1 ≤ `, define

K =
⋃̀

i=|S|−k+1
〈Ki〉.

Otherwise, let K = ∅.

Claim 3.2.7. |δ(K)| ≤ (2− 2α)k.

Proof of the claim. The statement is obvious if K = ∅. Suppose, then, that ` ≥ |S|−k+1 ≥ 2.
By Claim 3.2.5, no Ki contains both u and v for i = 1, . . . , `.

According to Claim 3.2.3, each trail T ∈ S passes through at most one 〈Ki〉, and by
construction, |E(T ) ∩ δ(〈Ki〉)| ≤ 2. Moreover, Claim 3.2.6 states that 〈Ki〉 is visited by at
least two trails of S. Therefore, |δ(〈Ki〉)| ≥ 4 for each extended component 〈Ki〉 disjoint
from {u, v}. If this applies to every 〈Ki〉, we may compute

|δ(K)| ≤
∑̀

i=|S|−k+1
|δ(〈Ki〉)|

=
∑̀
i=1
|δ(〈Ki〉)| −

|S|−k∑
i=1
|δ(〈Ki〉)|

≤
∑̀
i=1

∑
T∈S
|E(T ) ∩ δ(〈Ki〉)| −

|S|−k∑
i=1
|δ(〈Ki〉)|

≤ 2|S| − 4(|S| − k)

≤ (2− 2α)k.

If not, suppose without loss of generality that 〈K1〉 contains u but not v. By Claim 3.2.5,
〈Ki〉 does not contain u or v for i = 2, . . . , `. If we remove the terms involving 〈K1〉 from
the above computation, we find

|δ(K)| ≤
∑̀
i=2

∑
T∈S
|E(T ) ∩ δ(〈Ki〉)| −

|S|−k∑
i=2
|δ(〈Ki〉)|

≤ 2 |{T ∈ S not touching 〈K1〉}| − 4(|S| − k − 1)

≤ 2(|S| − 2)− 4(|S| − k − 1)

≤ (2− 2α)k.

In both cases we establish the desired bound.

Notice that S comprises at least d(1 + α)ke odd trails with ends in {u, v}, even though
the lemma only requires k odd trails (albeit ones with prescribed ends). We now spend the
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“extra” αk trails in S to eliminate the nontrivial components K1, . . . ,K|S|−k of G−E(S)−K
whose extensions contain more than one vertex.

Let i ∈ {1, . . . ,min{`, |S|−k}}, and let Ti ∈ S share a vertex x with Ki. Such a trail exists
because G is connected. Moreover, provided |S| ≥ 2, there exists another T ′i ∈ S such that
E(Ti)∪E(T ′i )∪E(Ki) induces a connected subgraph. Since every vertex other than u and v
in this subgraph has even degree, there is a trail T ′′ for which E(T ′′) = E(Ti)∪E(T ′i )∪E(Ki).
Note that T ′′ has an odd number of edges. Replacing Ti, T ′i with T ′′ thus absorbs the edges of
Ki into E(S) at the expense of reducing |S| by one. Let T be the collection of odd {u, v}-trails
obtained after repeating the above process min{`, |S| − k} times.

Claim 3.2.8. |T| ≥ k. Moreover, every (non-loop) edge of G− E(T) is contained in G[K].

Proof of the claim. The size of |T| is |S|−min{`, |S|−k} ≥ k. By definition, each component
of G − E(T) is either a single vertex or equal to some component Ki in G − E(S) where
|S| − k < i ≤ `.

3.2.4 Turning {u, v}-trails into (u, v)-trails

In the final portion of the proof, we rearrange the edges of T to maximize the number of
trails having both u and v as ends. As we did with S, let Tu, Tuv, and Tv denote the closed
(u, u)-trails, (u, v)-trails, and closed (v, v)-trails in T, respectively.

Claim 3.2.9. If Tu and Tv are not vertex-disjoint, there is a collection of odd {u, v}-trails
T′ with |T′| = |T|, E(T′) = E(T), and |T′uv| > |Tuv|.

Proof of the claim. Suppose to the contrary that Tu ∈ Tu and Tv ∈ Tv share a vertex
x ∈ V (Tu) ∩ V (Tv). The edges of Tu can be partitioned into two (u, x)-trails of opposite
parity; similarly, Tv splits into two (x, v)-trails of opposite parity. By concatenating the
appropriate subtrails, we obtain two odd (u, v)-trails T1, T2 using only the edges of Tu and
Tv. The desired collection T′ is obtained by replacing Tu and Tv with T1 and T2.

→u vx u vx

Figure 3.7: In Claim 3.2.9, intersecting odd closed trails can be replaced with odd (u, v)-trails.

Claim 3.2.9 also applies if we can rearrange the trails of T to satisfy its hypothesis. To
this end, we define the closure 〈Tu〉 to be the vertex-set obtained from V (Tu) by repeatedly
applying a similar rule to the one we used above to construct the “extended components”
〈K〉: whenever T ∈ Tuv passes through a vertex y that has already been added to 〈Tu〉, add
each (u, y)-subtrail of T to 〈Tu〉.
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Claim 3.2.10. If 〈Tu〉 and V (Tv) intersect, there is a collection of odd {u, v}-trails T′ with
|T′| = |T|, E(T′) = E(T), and |T′uv| > |Tuv|.

Proof of the claim. Let x ∈ 〈Tu〉 ∩ Tv. It suffices to show that we can modify the trails of T
so that one of the closed (u, u)-trails uses x; the desired collection T′ can then be obtained
using Claim 3.2.9. Let Tu

(i) denote the partially-constructed vertex set after i steps; the
proof is by induction on the step in which x is added to 〈Tu〉.

If x ∈ V (Tu), there is nothing to prove. Let i ≥ 1 and suppose x appears on a trail
Ti ∈ T between u and some t ∈ Tu

(i−1). By induction, there is an odd closed (u, u)-trail
Ci ∈ Tu which uses t. This trail can be divided into edge-disjoint trails of opposite parity
between u and t, and one of these subtrails has the same parity as the (u, t)-subtrail of Ti.
Construct an odd closed (u, u)-trail Ci−1 through x by taking Ti from u to t and returning
to u via the appropriate subtrail of Ci−1. The edges left over form a trail Ti−1 from u to
t to v; because |E(Ci)|+ |E(Ti)| is even, this trail is also odd. We modify T by replacing
{Ci, Ti} with {Ci−1, Ti−1}.

↔u vt
x

u vt
x

Figure 3.8: Claim 3.2.10 rearranges T so that x ∈ 〈Tu〉 is on an odd closed trail in Tu.

The above modifications do not change the size, edge-set, and number of (u, v)-trails in
T. They also do not affect the trails Tv, so after their application, the vertex x is on a closed
(u, u)-trail as well as a closed (v, v)-trail. We may therefore obtain T′ using Claim 3.2.9.

3.2.5 Completing the proof

Suppose Tu is nonempty. (If not, apply the following argument with Tv in place of Tu; if
both are empty, then |Tuv| ≥ k and we are already done.) By construction of the closure,
δ(〈Tu〉) contains no edges of Tu and exactly one edge from each trail in Tuv. After locally
modifying T by repeatedly applying Claim 3.2.10, we ensure that 〈Tu〉 and V (Tv) are disjoint,
so δ(〈Tu〉) also contains no edge of Tv. The only remaining edges that might be in δ(〈Tu〉)
are in G− E(T); by Claim 3.2.8, G[K] contains all of these. Therefore, if U = 〈Tu〉 ∪K, we
have

|δ(U)| ≤ |δ(〈Tu〉) ∩ E(T)|+ |δ(K)| ≤ |Tuv|+ (2− 2α)k.

Because v 6∈ 〈Tu〉 and K is disjoint from {u, v}, the vertex-set U separates u and v. Therefore,
we either have Tuv ≥ k or G has a cut of fewer than (3− 2α)k edges. This completes the
proof of Theorem 3.2.
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3.3 Algorithm for packing odd (u, v)-trails in Eulerian graphs

The arguments used in this chapter imply a polynomial-time algorithm for approximating
the odd edge-connectivity between two vertices in an Eulerian graph. In this section, we
establish the runtime of this algorithm.

Theorem 3.6. For Eulerian graphs, there is a 2.5-approximation algorithm for λo(u, v)
that runs in time O

(
nm2 +m2+ω), where n = |V (G)|, m = |E(G)|, and ω is the matrix

multiplication exponent.

The first half of the algorithm implements Lemma 3.3. After constructing an auxiliary
Z2-labelled graph L̃(G) in O

(
m2) time, the lemma boils down to finding an optimal packing

of non-zero A-paths in L̃(G). There are several algorithms that can do this [15, 92, 119]. The
method of Yamaguchi [119] is (apparently) asymptotically fastest; its runtime when applied
to L̃(G) is O

(
|E(L̃(G))| · |V (L̃(G))|ω

)
= O

(
m2+ω), where ω < 2.373 [75] is the exponent

for fast matrix multiplication.
Once an optimal vertex-disjoint packing for non-zero A-paths in L̃(G) is known, it takes

linear time to transform it into a collection of edge-disjoint odd trails in G with ends in
{u, v}. The second half of the algorithm takes this collection of odd trails S and follows
the operations described in the proof of Theorem 3.2. Here, we discuss the runtime of the
procedures used.

Claim 3.2.1 takes O(n+m) time to compute the components of G− E(S) and examine
the degrees of u and v. It is applied only once.

Claim 3.2.2 counts the number of edges in each component of G−E(S). All components
with an even number of edges are absorbed into S in time O(n+m), after which the
claim does not have to be applied again.

Claim 3.2.4 requires the computation of some extended components 〈K〉. At each of the
n steps in the construction, we check in time O(m) if any trail touches two of the
partially-constructed 〈K〉. If so, it only takes linear time to rearrange the edges of S
and absorb two components according to Claim 3.2.3, provided we store in memory the
details of the extended components’ construction. Otherwise, we add the appropriate
subtrails to their extended components and repeat this process until the construction
is finished. Therefore, Claim 3.2.4 can be implemented in O(nm) time per application.
The proof of Theorem 3.2 asks us to repeat this claim whenever possible; since doing so
reduces the number of edges of G− E(S) by at least one, Claim 3.2.4 is applied O(m)
times, for a total runtime of O

(
nm2). This estimate of the runtime may be improved

with more detailed analysis.

Claim 3.2.7 and Claim 3.2.8 require us to construct the vertex-set K and collection of
odd trails T, respectively. The former can be done in O(n+m) time by listing the
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components of G−E(S), while the latter involves up to |S| − k < m trail replacements,
each taking O(n+m) time. This step is finished within O

(
nm+m2) time.

Claim 3.2.10 makes us construct 〈Tu〉 (or 〈Tv〉, if Tu is empty). Like Claim 3.2.4, this can
be implemented in O(nm) time. If 〈Tu〉 and Tv are not vertex-disjoint, the algorithm
rearranges the edges of the trails in linear time and we have to recompute 〈Tu〉. However,
this happens at most k < m times before 〈Tu〉 and Tv are disjoint. Therefore, this
phase of the algorithm takes O

(
nm2) time.

At the end of this process, which takes O
(
nm2) time in total, we obtain a collection

of edge-disjoint odd (u, v)-trails whose size is bounded below by λ(u,v)
3−2α and p(X,H)

1+α , where
X and H are obtained from L̃(G) as in the proof of Lemma 3.3. If we set α = 1

4 , we have
2
5τo(u, v) ≤ λo(u, v) ≤ τo(u, v), meaning we have approximated λo(u, v) to within a factor
of 5

2 . This completes the proof of Theorem 3.6.

3.4 Concluding remarks

We have shown that an Eulerian graph with no k edge-disjoint odd (u, v)-trails has either
a (u, v)-cut of size (3 − 2α)k or a certificate that there are no more than (1 + α)k edge-
disjoint odd trails with ends in {u, v}. In contrast, the (non-Eulerian) extreme examples in
Section 2.4 satisfy λ(u, v) = 2k+ 1 and have no fewer than 2k edge-disjoint odd {u, v}-trails,
but only admit k edge-disjoint odd (u, v)-trails. Consequently, those graphs do not satisfy
Theorem 3.2 for any choice of α, demonstrating a fundamental difference between the
Eulerian and non-Eulerian cases.

Theorem 3.2 is not necessary tight; we have not found an Eulerian example that achieves
both the edge-connectivity and perimeter bounds for any particular α. However, the following
family puts nontrivial lower bounds on what we might hope to achieve. The “double-bowtie”
graph consists of three triangles uxw, yvw′, and xyz. Let G` be the graph obtained by
“gluing together” ` disjoint copies of the double-bowtie as illustrated in Figure 3.9 for ` = 3.

Fact 3.7. Let k = b4`/3c. Then

(i) G` has λo(u, v) = k edge-disjoint odd (u, v)-trails; but

(ii) G has no (u, v)-cut with fewer than λ(u, v) = 2` ≥ 3
2b4`/3c = 3

2k edges; and

(iii) G does not have a bipartite subgraph and vertex-set X such that u, v ∈ X are on the
same side of the bipartition of H and p(X,H) < 3

2k.

Proof. A simple induction argument proves the first statement, and the second statement is
clear. For the third statement, observe that G` has 2` ≥ 3

2k edge-disjoint odd {u, v}-trails:
namely, the triangles through u and v.
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u v

Figure 3.9: The graph H3 obtained by gluing together three double-bowties.

It follows that Theorem 3.2 cannot be refined to a perfect duality theorem. This matter
is discussed further in Chapter 6.
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Chapter 4

Perimeter and submodularity

In Chapter 2, we showed that the odd edge-connectivity between two vertices is related to a
measure called the perimeter of a vertex-set:

p(X,H) = |E(X) \ E(H)|+ 1
2 |δ(X)|.

The results in this chapter suggest that perimeter plays an even more fundamental role. To
be precise, we prove that for every subgraph H of G, the perimeter with respect to H is a
submodular function.

Theorem 4.1. Let X,Y be vertex-sets and H a subgraph of G. Then

p(X,H) + p(Y,H) ≥ p(X ∪ Y,H) + p(X ∩ Y,H).

Submodular functions are a central concept in the field of combinatorial optimization;
see [41, 85, 102] and the references therein. Polynomial-time algorithms are known for mini-
mizing submodular functions in general [57, 90, 101], implying polynomial-time algorithms
for finding sets of minimum perimeter. In fact, the simple definition of perimeter allows us
to use considerably more efficient cut-based methods [73] for this task (see Section 4.1).

Theorem 4.2. There is an O(nm)-time algorithm which, given a graph G, subgraph H,
and vertex x, outputs a vertex-set X containing x that minimizes the perimeter p(X,H)
over all such sets.

Submodular functions also find widespread use in structural graph theory [39]. For
instance, the submodular inequality for edge-cuts is at the heart of many important edge-
connectivity results including Mader’s Splitting Theorem [81] and the Gomory–Hu Theo-
rem [48], which constructs a tree representation for a special collection of minimum cuts in
a graph. The Gomory–Hu tree can be used as an efficient data structure to store the local
edge-connectivity between all pairs of vertices, to describe the global connectivity structure
of a graph [24], or as a practical strategy for graph clustering [36, 100, 118].
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A family of sets F is laminar if, for all X,Y ∈ F, either X ⊆ Y , Y ⊆ X, or X ∩ Y = ∅.

Theorem 4.3 (Gomory and Hu [48]). Let G be a graph.

1. There exists a laminar family C of |V (G)| − 1 distinct vertex-sets such that, for any
two vertices x 6= y, some U ∈ C induces a minimum (x, y)-cut δ(U) in G.

2. There exists a tree T on the same vertices as G (though not necessarily a subgraph) in
which the sets of C are represented as fundamental cuts: for each edge e = xy ∈ E(T ),
C contains the set of vertices of one of the two components of T − e.

3. There exists a function c : E(T ) → R such that for every u, v ∈ V (G), the edge-
connectivity λG(u, v) is the minimum value of c(e) among edges e on the unique
(u, v)-path in T .

One important consequence of the submodularity of perimeter is a new version of the
Gomory–Hu Theorem: there is a laminar family containing, for each vertex x, a set of
minimum perimeter (with respect to a given subgraph H) among all sets containing x.

Theorem 4.4. Let G be a graph and H a subgraph of G.

1. There exists a laminar family of vertex-sets LH such that, for all vertices x ∈ V (G),
some Vx ∈ LH minimizes the perimeter p(X,H) over all vertex-sets X containing x.

2. There exists a vertex-disjoint collection of rooted trees FH on the same vertices as G
(though not necessarily a subgraph) in which the sets of LH are represented as follows:
for every Vx ∈ LH , there is an ancestor y of x in FH whose descendants (including y)
make up Vx.

3. There exists a function fH : V (FH)→ N such that every x ∈ V (G) has an ancestor y
in FH (possibly y = x) such that fH(y) = min

x∈X
p(X,H).

We present an O
(
n2m

)
-time algorithm to construct the laminar family LH and the corre-

sponding data structure.
The remainder of this chapter presents two important applications. In Section 4.3.1, we

combine Theorem 2.2 with Theorem 4.4 to construct, in polynomial time, a data structure
caching approximate odd edge-connectivities for all vertex pairs in a graph. Finally, in
Section 4.3.2, we extend the result of [24] to describe the rough structure of graphs with no
totally odd immersion of Kt.

Theorem 4.5. If a graph G has no totally odd immersion of Kt, then its vertices can be
partitioned into V (G) = V1 . . . , V` such that, for all i = 1, . . . , `,

• λ(u, v) < 6t(t− 1) for all u ∈ Vi and v 6∈ Vi; and
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• either |Vi| < t or p(Vi, H) < 3
2 t(t− 1).

This approximately characterizes graphs with no totally odd immersion of a large complete
graph: if G has no totally odd immersion of Kt, the vertex-partition in Theorem 4.5 certifies
that G has no totally odd immersion of K6t2 .

4.1 Proofs of Theorem 4.1 and 4.2

In this section, we furnish two different proofs that imply Theorem 4.1. The first proof directly
establishes the submodular inequality directly for perimeter. The second proof follows a
general construction from [73] to show how perimeter can be represented as the capacity of
edge-cuts in a weighted digraph. This property is stronger than submodularity and can be
used algorithmically to quickly find sets of minimum perimeter, yielding Theorem 4.2.

4.1.1 Direct proof of the submodular inequality

The submodular inequality for edge-cuts follows from the edge-counting |δ(X)|+ |δ(Y )| =
|δ(X ∪ Y )|+ |δ(X ∩ Y )|+ 2|E(X \ Y, Y \X)|; see [9, 39, 79]. Using the same identity, we
compute

p(X,H) + p(Y,H) = |E(X) \ E(H)|+ |E(Y ) \ E(H)|+ 1
2 |δ(X)|+ 1

2 |δ(Y )|

= |E(X) \ E(H)|+ |E(Y ) \ E(H)|+ |E(X \ Y, Y \X)|

+ 1
2 |δ(X ∪ Y )|+ 1

2 |δ(X ∩ Y )|

≥ |E(X) \ E(H)|+ |E(Y ) \ E(H)|+ |E(X \ Y, Y \X) \ E(H)|

+ 1
2 |δ(X ∪ Y )|+ 1

2 |δ(X ∩ Y )|

Because E(X) ∪ E(Y ) ∪ E(X \ Y, Y \X) = E(X ∪ Y ), we obtain from the principle of
inclusion and exclusion that

p(X,H) + p(Y,H) ≥ |E(X ∪ Y ) \ E(H)|+ |E(X ∩ Y ) \ E(H)|+ 1
2 |δ(X ∪ Y )|+ 1

2 |δ(X ∩ Y )|

= p(X ∪ Y,H) + p(X ∩ Y,H).

Therefore, the perimeter measure is submodular.

4.1.2 A representation of perimeter by directed edge-cuts

Let G be a graph and H a subgraph. We construct a digraph D on the vertices V (G)∪{s, t}
and define edge capacities c : E(D)→ R such that, for every X ⊆ V (G),

c(δD(X ∪ {s}))− |E(G)| − |E(H)|
2 = p(X,H).
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In other words, the perimeter of a vertex-set X is, up to an additive constant, equal to the
capacity of a corresponding edge-cut δ(X ∪ {s}) in D.

The construction is as follows. Let V (D) = V (G)∪{s, t}. For every edge e = xy ∈ E(H),
add to D two new arcs sx and sy each with capacity 1

2 . Then, for every edge e = xy ∈
E(G) \ E(H), add to D an arc sx with capacity 1

2 , an arc xy with capacity 1, and an arc
yt with capacity 1

2 . These cases are illustrated in Figure 4.1.

s

x y

t

1
2

1

1
2

e = xy ∈ E(G) \ E(H)

s

x y

t

1
2

1
2

e = xy ∈ E(H)

Figure 4.1: For every edge e = xy in a graph G, we add arcs to the digraph D depending on
whether e ∈ E(H) or e 6∈ E(H).

Let X ⊆ V (G). By considering the contribution of each type of edge to the capacity of
δ(X ∪ {s}), we calculate

c(δ(X ∪ {s})) =
(

1
2 + 1

2

)
|E(X) ∩ E(H)|+ 1

2 |δG(X) ∩ E(H)|

+ 1
2 |E(X) \ E(H)|+ 1

2 |E(V (G) \X) \ E(H)|+ |δG(X) \ E(H)|

= |E(X) ∩ E(H)|+ 1
2 |δ(X) ∩ E(H)|+ 1

2 |δ(X) \ E(H)|+ 1
2 |E(G) \ E(H)|

= |E(X) ∩ E(H)|+ 1
2 |δ(X)|+ 1

2 |E(G) \ E(H)|

= p(X,H) + 1
2 |E(G) \ E(H)|

Because the capacity of edge-cuts in a weighted digraph is a submodular function and
1
2 |E(G) \ E(H)| is a constant, it follows that perimeter is submodular.

Given a graph G and subgraph H, the weighted digraph D used in the above proof
can be constructed in linear time. Let x ∈ V (G) and consider adding an arc of infinite
capacity from s to x in D. In the resulting digraph Dx, a vertex-set X ⊆ V (G) gives rise to
a minimum capacity edge-cut δ(X ∪ {s}) if and only if it minimizes the perimeter p(X,H)
over all sets containing x in G. Therefore, we can find sets of minimum perimeter in G

by constructing Dx and using an O(nm)-time algorithm for finding a minimum-capacity
cut [91, 102]. This gives Theorem 4.2.

4.2 Proof of Theorem 4.4

In this section, we prove Theorem 4.4 and discuss its corresponding algorithm. The proof
comes in three parts.
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4.2.1 The laminar family LH

Let G be a graph and H a fixed subgraph. For each x ∈ V (G), choose a minimal vertex-set
Vx containing x such that

p(Vx, H) = min
x∈X⊆V (G)

p(X,H).

Define LH = {Vx : x ∈ V (G)}. We claim that LH is laminar; that is, for Vx, Vy ∈ LH , either
Vx ⊆ Vy, Vy ⊆ Vx, or Vx ∩ Vy = ∅.

Suppose x ∈ Vy. As Vx has minimum perimeter among sets containing x, we have
p(Vx, H) ≤ p(Vy, H). Likewise, p(Vx, H) ≤ p(Vx ∪ Vy, H). Substituting these into the sub-
modular inequality of Theorem 4.1, we obtain p(Vx ∩ Vy, H) ≤ p(Vx, H). The minimality of
Vx means that every proper subset has greater perimeter, so Vx ⊆ Vy. Similarly, if y ∈ Vx
we obtain Vy ⊆ Vx.

On the other hand, suppose y 6∈ Vx and x 6∈ Vy. An edge-counting argument yields

p(Vx \ Vy, H) = |E(Vx \ Vy) \ E(H)|+ 1
2 |δ(Vx \ Vy)|

≤ |E(Vx) \ E(H)|+ 1
2 |δ(Vx \ Vy)|

≤ |E(Vx) \ E(H)|+ 1
2 |δ(Vx)|+ 1

2 |E(Vx \ Vy, Vx ∩ Vy)| − 1
2 |E(Vy \ Vx, Vx ∩ Vy)|

= p(Vx, H) + 1
2 |E(Vx \ Vy, Vx ∩ Vy)| − 1

2 |E(Vy \ Vx, Vx ∩ Vy)|.

The same inequality is true with the roles of Vx and Vy reversed. Without loss of generality,
assume |E(Vx \ Vy, Vx ∩ Vy) ≤ |E(Vy \ Vx, Vx ∩ Vy)|; then the above calculation reduces to
p(Vx \ Vy, H) ≤ p(Vx, H). But Vx was assumed to be a vertex-minimal set of minimum
perimeter, so Vx \ Vy cannot be a proper subset of Vx. In other words, Vx ∩ Vy = ∅.

4.2.2 The rooted forest FH

It is well-known that laminar families can be represented by disjoint rooted trees [28, 102], but
we provide a proof for the sake of completeness. Recursively construct FH as follows. Begin
with V (F0) = ∅. Then, for each i = 1, . . . , |V (G)|, choose a minimal vertex-set Vx ∈ LH for
which x 6∈ V (Fi−1). Let Fi be obtained from Fi−1 by adding x as a parent to each rooted
tree in Fi−1 that intersects Vx. If Vx contains the entirety of each such tree, then the set of
descendants of x in Fi is equal to Vx ∩ Fi. This is clearly true when i = 1. The addition of
x maintains this property: because Vx is minimal and LH is laminar, every Vy ∈ LH not
already contained in V (Fi−1) is either disjoint from or a superset of Vx. Consequently, such
a Vy contains all or none of the vertices of each tree Fi. Let FH = Fn. By induction on i, the
set of descendants in FH of a vertex x is of the form Vx ∩ Fi where Vx ∈ LH was chosen in
step i of the above construction. It remains to show that each set of LH can be represented
this way.
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Let Vy ∈ LH . Observe that y 6∈ Vx for any Vx ∈ LH that is a proper subset of Vy;
otherwise, we would have a contradiction either to the vertex-minimality of Vy or the
perimeter minimality of Vx. Consider the last step i in which a vertex x ∈ Vy is added to
Fi. Because x ∈ Vx ∩ Vy and LH is laminar, we must have Vx ⊆ Vy; on the other hand, the
choice of x and the laminarity of LH means y ∈ Vx. We conclude that Vx = Vy, so Vy is
represented in FH as the set of descendants of x (which is an ancestor of y).

4.2.3 The data structure fH

For each x ∈ V (FH), define fH = p(X,H), where X is the set of x and all its descendants
in FH . The third statement of Theorem 4.4 then follows from parts (1) and (2), above.

4.2.4 Algorithm

To construct LH , the above proofs tell us that we need only find, for each x ∈ V (G), the
(unique) vertex-minimal set containing x of minimum perimeter. In Section 4.1, we showed
that sets of minimum perimeter correspond to minimum cuts in an auxiliary digraph. After
finding a maximum flow in the digraph, a breadth- or depth-first search in the residual
graph allows us to find not just a minimum cut but one whose associated vertex-set is
minimal. Therefore, the laminar family LH can be constructed in O

(
n2m

)
-time by applying

the algorithm of Theorem 4.2 to each of the n vertices in G.
Once LH is found, FH can be constructed in O(n logn) time by sorting the sets Vx in

non-decreasing order and applying the recursive construction described in the second part
of the above proof. Finally, fH is generated by recording the perimeter of each set Vx, which
can be done without penalty during the construction of LH . In total, the implementation of
Theorem 4.4 runs in O

(
n2m

)
time.

4.3 Applications

In this section, we give two applications of our perimeter version of the Gomory–Hu
Theorem. First, we describe a space-efficient data structure that holds approximate odd
edge-connectivities for every pair of vertices in a graph. Then, we turn our attention to
totally odd immersions and prove Theorem 4.5, a rough structure theorem for graphs with
no totally odd immersion of a large complete graph.

4.3.1 A data structure approximating odd edge-connectivity for all pairs

Theorem 2.2 relates the odd edge-connectivity between two vertices u and v to the usual
edge-connectivity λ(u, v) and the perimeter of vertex-sets containing both vertices. Using
Theorem 4.4, we can efficiently store all the perimeter values necessary to approximate the
odd edge-connectivity between any two vertices in a graph.
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Theorem 4.6. Let G be a 2-edge-connected graph, H a maximum bipartite subgraph, and
LH = {Vx : x ∈ V (G)} the laminar family defined by Theorem 4.4. For all u, v ∈ V (G) on
opposite sides of H, we have

1
2λ(u, v) ≤ λo(u, v) ≤ λ(u, v).

For all u, v ∈ V (G) on the same side of H such that v ∈ Vu,

min
{
λ(u, v)− 4

6 ,
p(Vu, H)

3

}
≤ λo(u, v) ≤ min{λ(u, v), p(Vu, H)}.

For all u, v ∈ V (G) on the same side of H such that v 6∈ Vu and u 6∈ Vv,

λ(u, v)− 4
6 ≤ λo(u, v) ≤ λ(u, v).

Proof. Clearly, λ(u, v) is always an upper bound for λo(u, v). If u and v are on opposite
sides of the bipartition of H, then λo(u, v) ≥ λH(u, v) ≥ λG(u,v)

2 because the maximum
bipartite subgraph H contains a majority of the edges of every minimum (u, v)-cut. If u
and v are on the same side of the bipartition, we apply Theorem 2.4 with k = λo(u, v) + 1.
If we obtain a (u, v)-cut with fewer than 6(λo(u, v) + 1)− 2 edges, it immediately follows
that λo(u, v) ≥ λ(u,v)−4

6 . Otherwise, Theorem 2.4 guarantees the existence of a vertex-set X
containing u and v with perimeter p(X,H) ≤ 3λo(u, v). If v 6∈ Vu then

λo(u, v) ≥ p(X,H)
3 ≥ p(Vu, H)

3 ≥ |δ(Vu)|
6 >

λ(u, v)− 4
6 .

On the other hand, if u, v ∈ Vu, then p(Vu, H) is an upper bound for λo(u, v), while
λo(u, v) ≥ p(X,H)

3 ≥ p(Vu,H)
3 as before. This completes the proof.

In Section 4.2 we described how to obtain the laminar family LH used in Theorem 4.6
assuming H is already known. Unfortunately, it is NP-hard to find a maximum bipartite
subgraph [60]. However, a version of Theorem 4.6 still holds (with different approximation
factors) when H is replaced with an arbitrary maximal bipartite subgraph and Theorem 2.4
is replaced with Theorem 2.2 in the proof. In particular, the conclusion of Theorem 4.6 is
true when H is a bipartite graph satisfying the following conditions:

(i) For every u, v ∈ V (G) and every minimum (u, v)-cut δ(X) in G, H contains at least
half of the edges in δ(X).

(ii) For every u, v ∈ V (G) that are in the same part of the bipartition of H and have
λ(u, v) > 6λo(u, v) + 4, there is a set X containing u, v with perimeter p(X,H) ≤
3λo(u, v).
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Only a maximum bipartite subgraph satisfies condition (i) for all vertex-sets in G. But
since (i) is only required to hold for minimum (u, v)-cuts, it is possible to find a satisfactory
H in polynomial time. As for (ii), the strategy used in Section 2.3 shows how to efficiently
achieve this property: when finding a collection of edge-disjoint odd (u, v)-trails, we either
find a set X satisfying (ii) for u and v, or we find a bipartite subgraph H with more edges—in
which case we can repeat the algorithm from the beginning with the improved subgraph.

Theorem 4.7. There is a polynomial-time algorithm which, given a 2-edge-connected graph
G, constructs a bipartite subgraph H, a rooted forest FH and a function fH satisfying the
conclusion of Theorem 4.6. Given FH , fH , the usual Gomory–Hu tree T , and associated
cut-weight function c—which collectively take up O(n)-space—there is an O(n)-time 6-
approximation algorithm to compute λo(u, v) for any u, v ∈ V (G).

The construction of H discussed above runs the O
(
nm3)-time algorithm described

in Theorem 2.10 for each of the O
(
n2) pairs of vertices in G (persisting with the same

bipartite subgraph H for each pair). In other words, constructing the space-efficient data
structure (FH , fH)has the same O

(
n3m3) time complexity as computing approximate odd

edge-connectivities for all pairs of vertices in the graph. If, however, a bipartite subgraph
satisfying the properties listed above could be quickly precomputed, Theorem 4.6 has the
potential to provide significant efficiency gains: given the correct bipartite subgraph H, the
theorem can be implemented in just O

(
n2m

)
time (see Section 4.2).

By carefully keeping track of the minimum cuts and minimum-perimeter sets considered
during the execution of our H-improving strategy of Section 2.3, we may achieve some
speedup in estimating the time complexity of the above methods. There may be other
strategies for precomputing a suitable bipartite subgraph H; this question is discussed
further in Chapter 6.

4.3.2 The rough structure of graphs with no totally odd Kt-immersion

In this section, we extend the argument used by DeVos et al. [24] to describe the rough
structure theorem of graphs without an immersion of the complete graph Kt. Our extension
describes the structure when we exclude totally odd Kt-immersions.

If C is a laminar family of subsets of a set V , we say that C induces a partition of V
such that x, y ∈ V are in the same part if and only if for every C ∈ C, either {x, y} ⊆ C or
{x, y} ∩ C = ∅.

Theorem 4.8. Let G be a graph and let H be a maximum bipartite subgraph of G. There
exists a laminar family of vertex-sets C′ and a disjoint family of vertex-sets L′H such that

• |δ(X)| < 6t(t− 1) for all X ∈ C′;

• p(Y,H) < 3
2 t(t− 1) for all Y ∈ L′H ; and
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• if a set Z in the partition of V (G) induced by C′ has at least t vertices and is not a
subset of any Y ∈ L′H , then G contains a totally odd immersion of Kt with all of its
root vertices in Z.

It is not hard to see that this statement implies Theorem 4.5. To prove Theorem 4.8, we
first observe the following sufficient conditions for a graph to have a totally odd immersion
of Kt.

Claim 4.3.1. Suppose G is the graph obtained from a star K1,t−1 by replacing each edge
with t− 1 paths of any parity (where all (t− 1)2 of these paths are edge-disjoint) and adding(t

2
)
loops on the center vertex of the star. Then G admits a totally odd immersion of Kt.

Proof of the claim. Let v0 be the center vertex and v1, . . . , vt−1 the remaining vertices of the
original star. Denote by Pi,1, . . . , Pi,t−1 the t− 1 edge-disjoint paths between v0 and vi for
i = 1, . . . , t− 1, and let the

(t
2
)
loops on v0 be labelled `i,j for 0 ≤ i < j < t. A totally odd

immersion of Kt is constructed as follows. The root vertices of the immersion are v0, . . . , vt−1.
When 1 ≤ i < j < t, the (vi, vj)-trail of the immersion is obtained by concatenating Pi,j and
Pj,i, including the loop `i,j if necessary to fix the parity. Similarly, the (v0, vi)-trail of the
immersion uses the path Pi,i together with the loop `0,i if necessary to fix the parity.

Claim 4.3.2. Suppose G is a graph with a vertex-set Z = {v0, . . . , vt−1} such that v0 has(t
2
)
loops and λ(vi, vj) ≥ (t− 1)2 for all i, j ∈ {0, . . . , t− 1}. Then G admits a totally odd

immersion of Kt.

Proof of the claim. G contains a subgraph of the type described in Claim 4.3.1. To see this,
add a vertex x to G having t− 1 parallel edges between x and each vi for i = 1, . . . , t− 1.
Applying Menger’s Theorem to the resulting graph, we obtain (t− 1)2 edge-disjoint paths
from v0 to x, and therefore t − 1 paths from v0 to each other vi. Otherwise, some cut
of size < (t− 1)2 would separate some vertices of Z, in contradiction to their pairwise
edge-connectivity.

Claim 4.3.3. Suppose G is a graph, H is a maximum bipartite subgraph of G, and Z =
{v0, . . . , vt−1} is a vertex-set such that λ(vi, vj) ≥ 6t(t − 1) for all i, j ∈ {0, . . . , t − 1}
and p(X,H) ≥ 3

2 t(t− 1) for all vertex-sets X containing v0. Then G admits a totally odd
immersion of Kt.

Proof of the claim. Apply Theorem 2.4 with u = v = v0 to find t(t−1)
2 =

(t
2
)
edge-disjoint

closed trails through v0, each using exactly one edge of E(G) \E(H). Let F ⊆ E(G) \E(H)
be the edges used by such a collection of trails, and let H+ be the graph obtained from H by
first adding a new vertex z+ and then adding edges xz+, yz+ for each xy ∈ F . A theorem of
Mader [82, Corollary 1] shows us how to find a (v0, z

+)-path in H+ whose deletion decreases
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λ
(
v0, z

+) by at most one and λ(u, v) by at most two for all other u, v ∈ V (H+). Repeating
this process, we obtain t(t− 1) edge-disjoint (v0, z

+)-paths P in H+ such that, for all i, j,

λH−E(P)(vi, vj) = λH+−E(P)(vi, vj)

≥ λH+(vi, vj)− 2t(t− 1)

≥ λH(vi, vj)− 2t(t− 1)

≥ λG(vi, vj)
2 − 2t(t− 1)

≥ (t− 1)2

In G, the paths P can be combined with the edges of F to create
(t

2
)
edge-disjoint odd closed

(v0, v0)-trails. If we replace the edges of these trails with loops on v0, the resulting graph
satisfies the hypothesis of Claim 4.3.2 and therefore admits a totally odd immersion of Kt.
A totally odd immersion in G is obtained by restoring the loops to the corresponding odd
closed trails.

We now prove Theorem 4.8. First, let C be the laminar family of vertex-sets described
in the Gomory–Hu Theorem (Theorem 4.3). Take C′ = {X ∈ C : |δ(X)| < 6t(t− 1)}. Next,
let LH be the laminar family of vertex-sets described in Theorem 4.4, and take L′H to be
the (vertex-disjoint) collection of maximal sets Y of LH such that p(Y,H) < 3

2 t(t − 1).
Suppose Z is some vertex-set in the partition associated with C′ with at least t vertices.
Any cut separating vertices of Z has at least 6t(t − 1) edges. Thus λ(vi, vj) ≥ 6t(t − 1)
for all vi, vj ∈ Z. In particular, no vertex-set Y ∈ L′H separates vertices in Z, because
|δ(Y )| ≤ 2p(Y,H) < 3t(t− 1) is too small. Therefore, if |Z| ≥ t and no vertex-set Y ∈ L′H
contains Z, then p(X,H) ≥ 3

2 t(t−1) for all vertex-sets X intersecting Z. Claim 4.3.3 applies
to find a totally odd immersion of Kt. This completes the proof of Theorem 4.8.
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Chapter 5

Sufficient conditions for totally odd
immersions of large cliques

If a graph has chromatic number t, must it contain (in some sense) the complete graph of
order t? This central question of graph colouring theory has been asked in several ways,
with varying degrees of success. Hajós conjectured that every t-chromatic graph has Kt as
a subdivision, but was proven wrong in [12]. Hadwiger [51] suggested instead that every
t-chromatic graph has Kt as a minor; this has not yet been decided one way or the other,
and is now widely considered one of the deepest open problems of graph theory. Considerable
progress has been made towards Hadwiger’s Conjecture (see [105]) and its “odd” variant
(see [44, 67, 70]), but the problem is still far from solved.

An illuminating first approach to Hajós’s and Hadwiger’s Conjectures is to test them
on random graphs. Almost every graph in Gn,p has chromatic number O

(
np

lognp

)
[6, 80];

in comparison, almost every graph in Gn,1/2 has a has a minor of a complete graph on
Ω
(
n/
√

logn
)
vertices [8], but only admits a subdivision of the complete graph on Θ(

√
n)

vertices [7, 30]. This means that Hajós’s Conjecture fails for almost all graphs, while
Hadwiger’s Conjecture is true on average.

Because of the similarities between subdivisions, minors, and immersions, it is natural to
consider the immersion version of the above conjectures.

Conjecture 5.1 (Lescure and Meyniel [77], Abu-Khzam and Langston [1]). Every graph
with chromatic number t admits an immersion of the complete graph Kt.

As a random graph is expected to have a clique immersion of linear size, Conjecture 5.1
is also true on average. Indeed, almost all graphs in Gn,p have minimum degree ≈ pn, so the
minimum degree conditions in [22, 27, 76] imply an immersion of a complete graph with
Θ(pn) root vertices. Here, we propose a totally odd variant of Conjecture 5.1.

Conjecture 5.2. Every graph with chromatic number t admits a totally odd immersion of
the complete graph Kt.
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In this chapter, we attack Conjecture 5.2 from two different angles. First, we test it on
random graphs and show that it is true for almost all graphs.

Theorem 5.3. Let ε ∈ (0, 1) be constant and p = pn ∈ (0, 1). Provided pn ∈ ω
(√

logn/n
)
,

almost every graph in Gn,p admits a totally odd strong immersion of the complete graph on
bγpnc vertices, where

γ = (1− ε)
√
p(1− ε)

1 +
√
p(1− ε)

.

This gives a totally odd strong immersion of a complete graph on roughly p3/2n vertices,
which is asymptotically larger than the chromatic number so long as p is not too small.

Corollary 5.4. Let p = pn ∈ (0, 1) satisfy lim supn→∞ pn < 1. If pn ∈ ω
(
(logn)−2/3

)
, then

almost every graph G in Gn,p admits a totally odd strong immersion of Kt, where t is the
chromatic number of G.

Our proof of Theorem 5.3 is given in Section 5.1.2. Our arguments also apply to show
that quasi-random graphs admit totally odd clique immersions of linear size; see Section 5.3.

In Section 5.2, we take a different approach to studying the relationship between totally
odd immersions and graph colourings. It has already been observed that mere minimum
degree conditions are enough to guarantee large clique immersions1. This is not the case
for totally odd immersions: the complete bipartite graph Kn,n admits a immersion of Kn

despite its low chromatic number, but has no totally odd immersion of K3.
With this in mind, it is interesting to see how the colouring structure of a graph can be

used to find totally odd clique immersion. We present in Section 5.2 a simple argument to
construct immersions whose root vertices have different colours under a particular kind of
proper colouring, provided vertex pairs in the same colour class have many neighbours in
common.

5.1 Clique immersions in random graphs

5.1.1 Concentration bounds

Before embarking on our proof of Theorem 5.3 about totally odd clique immersions in
random graphs, it is helpful to make note of a few consequences of the Chernoff2 bound.
(See [87] for a more complete treatment of this technique.)

1This is not to say that the colouring structure is completely irrelevant for finding immersions: Kempe
chain arguments can augment the known bounds to find immersions of somewhat larger cliques in t-chromatic
graphs than would be expected from their minimum degree alone [76].

2Chernoff first published his eponymous bound in [14] but later credited Rubin with its discovery [13].
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Theorem 5.5 (Chernoff [14]). Let ε ∈ (0, 1). If B is a random variable following a binomial
distribution, then

P(B ≤ (1− ε)E(B)) < e−cE(B),

where c > 0 depends only on ε.

Corollary 5.6. Let ε ∈ (0, 1) be constant and p = pn ∈ (0, 1). Almost every graph in Gn,p

has minimum degree at least (1− ε)pn.

Proof. The expected degree of any vertex is pn, so by Theorem 5.5,

P(δ(G) ≤ (1− ε)pn) ≤
∑

v∈V (G)
P(deg(v) ≤ (1− ε)pn)

=
∑

v∈V (G)
P(deg(v) ≤ (1− ε)E(deg(v)))

<
∑

v∈V (G)
e−cE(deg(v))

=
∑

v∈V (G)
e−cpn

= ne−cpn → 0.

Thus almost every graph in Gn,p has minimum degree at least (1− ε)pn.

Corollary 5.7. Let ε ∈ (0, 1) be constant, p = pn ∈ (0, 1), and m = mn ∈ Z+. Provided
pnmn ∈ ω(logn), almost every graph in Gn,p is such that, for every pair of (not necessarily
disjoint) vertex-sets X,Y with |X|, |Y | = m, there are at least (1−ε)pm2

2 edges with one end
in X and the other in Y .

Proof. For vertex-sets X, Y , let BXY be the random variable counting the number of edges
with one end in X and the other in Y . That is, let

BXY = |E(X \ Y, Y \X) ∪ E(X ∩ Y,X 4 Y ) ∪ E(X ∩ Y )| .

Observe that BXY follows a binomial distribution with expectation

E(BXY ) = p

(
|X \ Y ||Y \X|+ |X ∩ Y ||X \ Y |+ |X ∩ Y ||Y \X|+

(
|X ∩ Y |

2

))
≥ p

2

(
|X \ Y ||Y \X|+ |X ∩ Y ||X \ Y |+ |X ∩ Y ||Y \X|+ |X ∩ Y |2 − |X ∩ Y |

)
= p

2

(
|X ∩ Y |+ |X \ Y |

)(
|X ∩ Y |+ |Y \X|

)
− p

2 |X ∩ Y |

= p
2 |X||Y | −

p
2 |X ∩ Y |

≥ p
2(m2 −m)

≥ (1− ε′)pm2

2
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where the last inequality holds for any constant ε′ ∈ (0, 1) provided n is large enough. In
particular, we can choose ε′ such that (1− ε′)2 = (1 − ε). Then the Chernoff bound in
Theorem 5.5 controls the probability that the statement fails for some X,Y :

∑
X,Y⊆V (G)
|X|,|Y |=m

P
(
BXY ≤

(1− ε)pm2

2

)
=

∑
X,Y⊆V (G)
|X|,|Y |=m

P
(
BXY ≤

(1− ε′)2pm2

2

)

≤
∑

X,Y⊆V (G)
|X|,|Y |=m

P
(
BXY ≤ (1− ε′)E(BXY )

)

<
∑

X,Y⊆V (G)
|X|,|Y |=m

e−cE(Buv)

≤
∑

X,Y⊆V (G)
|X|,|Y |=m

e−c(1−ε
′)pm2/2

≤
(
n

m

)2

e−c(1−ε
′)pm2/2

< e2m logn−c(1−ε′)pm2/2

The exponent 2m logn−c(1−ε′)pm2/2 tends to −∞ as n increases because pnmn ∈ ω(logn)
and c, ε′ are constant with respect to n. Therefore, the probability that the statement fails
asymptotically approaches zero, and the claim holds for almost all graphs in Gn,p.

5.1.2 Proof of Theorem 5.3

We are now prepared to prove our main theorem about clique immersions in random graphs.
Recall the statement of Theorem 5.3: we are asked to show that almost every graph in Gn,p

admits a totally odd strong immersion of a complete graph on bγpnc vertices, where

γ = (1− ε)
√
p(1− ε)

1 +
√
p(1− ε)

.

To this end, let R be a set of bγpnc vertices each with degree at least (1− ε)pn; such a set
exists by Corollary 5.6. We will construct an immersion with root vertices R. First, for every
pair of adjacent u, v ∈ R, let the edge uv be the (u, v)-trail of the immersion. Then, for each
nonadjacent pair u, v ∈ R, we obtain a (u, v)-trail of length three as follows.

Let X be a set of m = deg(u)− |R| ≥ (1− ε− γ)pn vertices x in N(u) \R for which the
edge ux has not yet been used in the immersion. Likewise, let Y be a set of m vertices y
in N(v) \R for which vy has not yet been used. Because p < 1, lim sup

n→∞
γ < 1, and in turn

pnmn ∈ Ω
(
p2
nn− γp2

nn
)
⊆ Ω

(
p2
nn
)
⊆ ω(logn). We may therefore apply Corollary 5.7; setting

BXY = |E(X \ Y, Y \X) ∪ E(X ∩ Y,X 4 Y ) ∪ E(X ∩ Y )| ,
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we find

BXY ≥
(1− ε)pm2

2

≥ (1− ε)p(1− ε− γ)2p2n2

2

= p2n2

2

(
(1− ε− γ)

√
p(1− ε)

)2

= p2n2

2

((
1− ε− (1− ε)

√
p(1− ε)

1 +
√
p(1− ε)

)√
p(1− ε)

)2

= p2n2

2

((
1−

√
p(1− ε)

1 +
√
p(1− ε)

)
(1− ε)

√
p(1− ε)

)2

= p2n2

2

((
1 +

√
p(1− ε)−

√
p(1− ε)

1 +
√
p(1− ε)

)
(1− ε)

√
p(1− ε)

)2

= p2n2

2

(
(1− ε)

√
p(1− ε)

1 +
√
p(1− ε)

)2

= (γpn)2

2

In other words, there are at least
(bγpnc

2
)
edges with one end in X and the other in Y .

Consequently, at least one such edge is unused by E(T), since each trail in T uses at most
one edge in E(V (G) \R). So there is a path uxyv in G − E(T), where x ∈ X and y ∈ Y .
We add this path to T as the (u, v)-trail in the immersion. After repeating this procedure
for every nonadjacent pair u, v, we have constructed the trails T of a totally odd immersion
of Kγpn with root vertices R. This completes the proof of Theorem 5.3.

5.2 Forcing clique immersions with colourings and common
neighbourhoods

The following results illustrate how the colouring structure of a graph can be used to find
totally odd clique immersions. In fact, our simple methods find a very special type of
immersion: a strong immersion in which all of the trails are paths of length 1 or 3.

Theorem 5.8. Let G be a graph, let r1, . . . , r` and x1, . . . , x` be distinct vertices in G.
Suppose there are

(`
2
)
edges eij, 1 ≤ i < j ≤ `, such that:

(1) eij ∈ {rirj , rixj , xirj} for all 1 ≤ i < j ≤ `;

(2) eij = rirj whenever ri and rj are adjacent; and
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(3) for every I ⊆ {1, . . . , `},

∑
i∈I

(|N(ri) ∩N(xi)| − degH(ri)) ≥ 2
(
|I|
2

)
− 2|E({ri : i ∈ I})|

where H denotes the subgraph of G with E(H) = {eij : 1 ≤ i < j ≤ `}

Then G admits a totally odd strong immersion of K` with root vertices R.

Proof. Write R = {r1, . . . , r`}. If G[R] is a clique, we are done. Otherwise, if ri, rj ∈ R and
(say) eij = rixj , we would like to find a vertex yij ∈ N(rj) ∩N(xj) such that rjyij 6∈ E(H);
if so, we might use the odd path rixjyijrj as the trail connecting ri and rj in the immersion.
In fact, for a fixed i, j, there are at least |N(rj) ∩N(xj)| − degH(rj) choices for such a yij .

To construct our immersion, we have to simultaneously choose yij as above for every
nonadjacent pair ri, rj ∈ R, ensuring that no edge xjyij is enlisted twice. (If so, it is clear
that the edges rjyij will also be distinct.) To this end, construct an auxiliary bipartite graph,
with bipartition (X,Y ), as follows. The vertex-set X consists of ordered pairs (ri, rj) of
nonadjacent vertices in R, where the order of each pair is chosen according to which vertex
is an end of eij (or eji, as appropriate). To be precise, (ri, rj) ∈ X whenever rixj ∈ E(H).
On the other side of the bipartition, the vertex-set Y consists of unordered pairs of vertices
{xj , y} for which y ∈ V (G) \R is a common neighbour of rj and xj in G−E(H). Finally,
the edges of the auxiliary graph connect the vertices (ri, rj) ∈ X to {xj , y} ∈ Y if and only
if rixjyrj is a path in G. As it turns out, a matching in this auxiliary graph corresponds to
an edge-disjoint collection of paths in G.

To construct our immersion, we apply Hall’s Theorem [52] (see also [9]) to find a
matching saturating X. For any S ⊆ X, let IS = {i, j : (ri, rj) ∈ S}. The size of the
neighbourhood of S in the auxiliary graph is dependent only on IS , and is greater than
or equal to 1

2
∑
i∈IS

(|N(ri) ∩ N(xi)| − degH(ri)). By hypothesis, this number is at least(|I|
2
)
−|E({ri : i ∈ I})| ≥ |S|, so Hall’s Theorem gives us a matching saturating X. In G, this

corresponds to an edge-disjoint collection of (odd) paths connecting the nonadjacent pairs
ri, rj of R. Together with the edges of G[R], these paths form the trails of an immersion of
K` with root vertices R.

Although the edges eij in the above theorem seem a little mysterious, they are very
handy for finding totally odd clique immersions in graphs where special colourings are known.
A Grundy colouring of a graph G is a proper colouring with colours 1, 2, . . . , ` such that
for every vertex x the colour of x is the smallest colour not used by any neighbour of x;
see [49, 58]. In other words, a Grundy colouring partitions the vertices of the graph into
independent sets X1, . . . , X` such that every vertex in Xi has neighbours in X1, . . . , Xi−1.
The Grundy number Γ(G) is the largest number ` for which G has a Grundy `-colouring;
it is not hard to see that Γ(G) ≥ χ(G).
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Corollary 5.9. If G is a graph with Grundy number Γ(G) and no independent set of size 3,
such that every pair of non-adjacent vertices has at least ` ≤ Γ(G) common neighbours, then
G admits a totally odd immersion of the complete graph K`.

Proof. Let X1, . . . , X` be the colour classes in a Grundy colouring of G and let R =
{r1, . . . , r`} be any set of differently-coloured vertices (setting ri ∈ Xi for i = 1, . . . , `). Since
the independence number of G is at most two, each |Xi| ≤ 2; for every i = 1, . . . , ` having
|Xi| = 2, let Xi = {ri, xi}.

By the definition of Grundy colourings, each rj ∈ R is incident with an edge eij ∈
{rirj , xirj}. We may assume that eij is chosen from G[R] whenever possible, in order to
satisfy the hypotheses of Theorem 5.8. Finally, for all I ⊆ {1, . . . , `},

∑
i∈I

(|N(ri) ∩N(xi)| − degH(ri)) ≥
∑
i∈I

(`− i+ 1)

≥
|I|∑
j=1

j

≥ |I|(|I|+ 1)
2

≥ 2
(
|I|
2

)
− 2|E({ri : i ∈ I})|

where the last inequality follows from Turán’s theorem [84, 113]; see also [9]. The result then
follows from Theorem 5.8.

5.3 Concluding remarks

In Corollary 5.9, we gave a sufficient condition for a graph with independence number 2 to
have a totally odd immersion of Kn/2 based on the number of common neighbours of any
pair of nonadjacent vertices. As it turns out, this common-neighbours condition is tight.

Fact 5.10. There exists:

• a graph on n = 4k vertices, no independent set of size 3, and such that every pair of
non-adjacent vertices has at least 2k − 2 = n−1

2 common neighbours,

• a Grundy colouring of the graph of order n
2 , and

• and a set R of n
2 vertices of different colours,

such that there is no totally odd immersion of Kn/2 with root vertices R.

Proof. Let Gk be a graph with vertices {u1, . . . , uk}∪{v1, . . . , vk}∪{u′1, . . . , u′k}∪{v′1, . . . v′k}
such that uiu′i, viv′i, uivj , and u′iv

′
j are not edges for any i, j = 1, . . . , k, but all other
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u1 u2 v1 v2

u′
1 u′

2 v′1 v′1

Figure 5.1: A graph with χ(G) = |V (G)|/2 and a set {u1, u2, . . . , v1, v2, . . . } of differently-
coloured vertices which are not the root vertices of any totally odd immersion of K |V (G)|/2.

possible edges in the graph are present. (The graph G2 is illustrated in Figure 5.1.) Any
nonadjacent vertices in Gk have at least 2k − 2 common neighbours, so Gk only narrowly
misses the common-neighbours condition in Corollary 5.9 for ` = 2k = χ(Gk) ≤ Γ(Gk).
However, there is no totally odd immersion of the complete graph K2k with root vertices
R = {u1, . . . , uk, v1, . . . , vk}: each trail of such an immersion would contain an edge from
either E(R) or E(V (G) \R), but there are only 4

(k
2
)
<
(2k

2
)
such edges.

It is worth noting that a more general version of Corollary 5.9 holds; we can extend the
two-vertex sets {ri, xi} to colour classes of arbitrary size—replacing Hall’s Theorem in the
proof of Theorem 5.8 with Haxell’s theorem on independent transversals [53]— as long as
we demand more common neighbours between vertices in the same colour class. This can
also be used to prove that almost every graph in Gn,p satisfies Conjecture 5.2: almost every
graph is such that every pair of vertices has a linear number of common neighbours, which
is asymptotically larger than the chromatic number. However, the methods of Section 5.1.2
generally produce clique immersions of larger complete graphs.

Theorem 5.3 can also be applied in more broad circumstances than its statement. As our
proof only depends on Corollary 5.6 and Corollary 5.7, we can use the same argument to
find a large totally odd clique immersion in any graph having sufficiently many vertices close
to the average degree and sufficiently many edges between any pair of vertex-sets of the
appropriate size. These properties are fulfilled by any quasi-random family of dense graphs.

Definition (see [18, 74, 108]). Let (Gn) = (G1, G2, . . . ) be a sequence of graphs where each
Gn has n vertices. Let p ∈ (0, 1) be fixed. We call (Gn) a quasi-random sequence if, each
subset U ⊆ V (Gn), |E(U)| = p

2 |U |
2 + o

(
n2).

A quasi-random sequence of graphs satisfies analogues of Corollary 5.6 and Corollary 5.7.

Fact 5.11. Let ε ∈ (0, 1) and p ∈ (0, 1) be constant. Then in a quasi-random sequence (Gn),
each graph Gn has a set of Ω(pn) vertices of degree at least (1− ε)pn.
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Fact 5.12. Let p ∈ (0, 1) be constant. Then in a quasi-random sequence (Gn), for each
graph Gn and X,Y ⊆ V (Gn) of size |X| = |Y | ∈ Ω(n), there are Ω

(
pn2) edges with an end

in X and the other in Y .

Proof. The number of such edges is bounded below by |E(X ∩ Y )| = p
2 |X ∩ Y |

2 + o
(
n2) and

by |E(X \ Y, Y \X)| = |E(X ∪ Y )| − |E(X \ Y )| − |E(Y \X)| = p
2 |X \ Y ||Y \X|+ o

(
n2).

Either |X ∩ Y | has linear size or |X \ Y |, |Y \X| both do. Therefore, at least one of these
quantities is Ω

(
pn2).

A quasi-random version of Theorem 5.3 can be obtained by inserting these facts into the
proof in place of Corollary 5.6 and Corollary 5.7.

Theorem 5.13. Let p ∈ (0, 1) be constant and let (Gn) be a quasi-random sequence of
graphs with edge-density p. Then each graph Gn admits a totally odd strong immersion of a
complete graph with Ω(pn) vertices.
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Chapter 6

Open problems

In this thesis, we proved two packing–covering dualities for odd trails, introduced the
perimeter measure, and found sufficient conditions for a graph to have a totally odd
immersion of a large clique. These accomplishments bring us closer to understanding odd
trails and totally odd immersions, but we have only scratched the surface. In this chapter,
we review the main results of our work and recommend a number of open problems in this
area.

6.1 Packing edge-disjoint odd (u, v)-trails

In Chapter 2 and Chapter 3, we showed how the odd edge-connectivity between two vertices
can be approximated in terms of edge-connectivity and the minimum perimeter among sets
containing u and v. (See Figure 6.1.)

However, our results are not known to be tight. For general graphs, the most extreme
examples we know of (see Section 2.4) have

λ(u, v) = min
u,v∈X

p(X,H) = 2λo(u, v).

Question 6.1. What is the minimum constant c such that λo(u, v) ≤ τo(u, v) ≤ cλo(u, v)
for all graphs G and vertices u, v?

We know, by our results in Chapter 2, that 2 ≤ c ≤ 6; Ibrahimpur [56] has recently improved
on the upper bound, proving that τo(u, v) ≤ 5λo(u, v) + 2. Similarly, the worst known
Eulerian family (see Section 3.4) leaves a gap with Theorem 3.2:

λ(u, v) = min
u,v∈X

p(X,H) = 1.5λo(u, v).

Question 6.2. What is the minimum constant c such that λo(u, v) ≤ τo(u, v) ≤ cλo(u, v)
for all Eulerian graphs G and vertices u, v?
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edge-connectivity

minimum perimeter

2k 3k 4k 5k 6k 7k 8k

2k

3k

4k

×
◦

k odd trails exist
k odd trails exist if G is Eulerian
k odd trails do not exist
no information

× examples without k odd trails
◦ examples without k odd trails (Eulerian)

Figure 6.1: The existence of disjoint odd (u, v)-trails depends on λ(u, v) and min p(X,H).
Theorem 2.4 applies in the darkest region and Theorem 3.2 in the light grey region. The
extreme examples are described in Section 2.4 and Section 3.4.

Our results in Chapter 3 show that 1.5 ≤ c ≤ 2.5.
This thesis presents several polynomial-time algorithms (see Theorems 2.3, 3.3, and 4.3.1)

for approximating the odd edge-connectivity between two vertices. It would be interesting
to see if any of them can be refined to an exact algorithm.

Question 6.3. Is there a polynomial-time algorithm to compute λo(u, v) exactly?

As we remarked in Chapter 4, the maximum bipartite subgraph used in Theorem 2.4 and
Theorem 4.6 is NP-hard to find [60]. Our algorithms work around this by using an arbitrary
bipartite subgraph H and restarting whenever we finds a way to increase the number of
edges in H, which adds an extra factor of m to the runtime.

The reason Theorem 2.4 needs a maximum bipartite subgraph is to guarantee |δG(X)|
|δH(X)| ≤ 2

for all X ⊆ V (G), a condition which is equivalent to being maximum.

Fact 6.4. A bipartite subgraph H of a graph G is maximum if and only if |δG(X)|
|δH(X)| ≤ 2 for

all X ⊆ V (G).

Proof. We have already remarked that |δ(A4B)| = |δ(A)|+ |δ(B) \ δ(A)| − |δ(B) ∩ δ(A)|
implies |δG(X)|

|δH(X)| ≤ 2 when E(H) = δ(A) is the edge-set of a maximum bipartite subgraph.
Conversely, if we arrange for δ(A4B) to be maximum and we assume |δG(X)|

|δH(X)| ≤ 2, then
the fact that |δ(B) \ δ(A)| ≤ |δ(B) ∩ δ(A)| implies |E(H)| = |δ(A)| ≥ |δ(A4B)|.

However, if we could quickly precompute a bipartite subgraph H containing a constant
fraction of edges from each cut, we could greatly improve the runtime of our algorithms in
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Section 2.3 and especially in Section 4.3.1 (at the cost of having to adjust the appropriate
approximation ratios). It is well-known that a bipartite subgraph can easily be constructed
with at least half the edges of G, and there is a polynomial-time algorithm to find a
bipartite subgraph with at least ≈ 87.8% of the maximum number of edges [47], but these
approximations may not be uniform over all cuts in G.

Question 6.5. Is there a constant c for which there exists a polynomial-time algorithm to
find a bipartite subgraph H of G such that |δG(X)|

|δH(X)| ≤ c for all X ⊆ V (G)?

6.2 Sufficient conditions for totally odd clique immersions

In Chapter 5, we proposed a totally odd immersion variant of Hadwiger’s Conjecture:

Conjecture 6.6. Every graph with chromatic number t admits a totally odd immersion of
Kt.

Although we have made some partial progress towards this conjecture (see Theorem 4.5,
Theorem 5.3, and Figure 5.1), many interesting and realistically-answerable questions remain.
Our study of totally odd clique immersions in random graphs uses very crude methods—for
example, the immersions produced only use paths of length one or three—and if longer trails
are taken into account, it is probable that sparse random graphs could admit immersions of
larger cliques.

Question 6.7. Is there a constant α ∈ (0, 1) such that almost every graph in Gn,p admit a
totally odd immersion of Kαpn?

A less greedy method of choosing short trails may also be possible. Indeed, the uniform
edge-connectivity and “non-bipartiteness” of random graphs makes it plausible that they
could contain totally odd immersions of any complete graph whose vertex degrees fit. If so,
it may be possible to improve our result for Gn,1/2.

Fact 6.8. Let ε ∈ (0, 1). Almost all graphs in Gn,1/2 admits a totally odd strong immersion
of a complete graph on (1− ε) n

2(1+
√

2) ≈ 0.2071n vertices.

Proof. Let ε′ ∈ (0, 1) be such that (1 − ε) ≤ (1− ε′)3/2 Apply Theorem 5.3 with this ε′.
Almost all graphs in Gn,p admit a totally odd strong immersion of a complete graph on γpn
vertices where

γpn = (1− ε′)3/2 np
√
p

1 +
√
p(1− ε)

≥ (1− ε)
np
√
p

1 +√p.

When p = 1/2, this simplifies to γpn ≥ n
2(1+

√
2)

Question 6.9. For every ε > 0, does almost every graph in Gn,1/2 admit a totally odd
immersion of K( 1

2−ε)n?
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If the answer to Question 6.9 is “yes”, the result would be very tight: a totally odd
immersion of Kn/2, if it exists, uses almost every edge on average. Since there are 1

2
(n/2

2
)

expected non-edges among a vertex-set of size n/2, a totally odd clique immersion on those
root vertices is expected to use at least

(
1
2 + 3

2

) (n/2
2
)

= n(n−2)
4 edges. In comparison, the

expected number of edges in Gn,1/2 is n(n−1)
4 .

Following the extensive literature on graph minors [26, 66], Vergara [114, 115] studied
clique immersions in dense graphs and showed that every n-vertex graph with no independent
set of size 3 admits an immersion of Kn/3. It follows from our Corollary 5.9 that such an
immersion can be chosen to be totally odd. More recently, Gauthier and Wollan [42] have
shown that these graphs admit complete graph immersions on two-fifths of their vertices.

Question 6.10. Does every n-vertex graph with no independent set of size 3 admit a (totally
odd) immersion of Kn/2?

Finally, it remains to be seen if a totally odd immersion of Kt is guaranteed by some
variant of the obvious necessary conditions for its existence. This question justifies further
exploration of odd edge-connectivity and the world of edge-disjoint odd trails.

Question 6.11. If a graph has a set of t vertices R such that λo(S,R \ S) ≥ s(t− s) for
every s-vertex subset S ⊆ R, must there be a totally odd immersion of Kt with root vertices
R?

6.3 Further questions

Let G be an n-vertex graph, possibly with parallel edges. Although there are
(n

2
)
distinct pairs

of vertices in G, the Gomory–Hu Theorem [48] implies that there are at most n− 1 distinct
sizes among minimum (u, v)-cuts—and therefore at most n− 1 distinct edge-connectivities.
In comparison, directed graphs may have up to (n+2)(n−1)

2 distinct minimum cut values [40,
50]. Although we proved an odd trails variant of the Gomory–Hu Theorem in Chapter 4, we
do not have as precise control over the exact odd edge-connectivities.

Question 6.12. Among the
(n

2
)
pairs of vertices in a graph G, how many distinct values

can λo(u, v) take on?

10

15

20

8

u

t

v

w

x
y

z

Figure 6.2: Graphs with more than n− 1 distinct odd edge-connectivities; labels denote the
number of parallel edges.
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Figure 6.3: A graph with 1.5(n− 1) distinct pairwise odd edge-connectivities.

Since a connected bipartite graph can have vertices with zero odd edge-connectivity, it is
obvious that a graph can have more distinct odd edge-connectivities than edge-connectivities.
The 3-vertex example on the left of Figure 6.2, for instance, has three distinct odd edge-
connectivities: λo(t, u) = 2, λo(t, v) = 3, and λo(u, v) = 0. It is perhaps not so obvious that
an n-vertex graph can have more than n distinct odd edge-connectivities, but this also true:
the 4-vertex graph on the right of Figure 6.2 has λo(w, x) = 10, λo(w, y) = 15, λo(w, z) = 20,
λo(x, y) = λo(y, z) = 8, and λo(x, z) = 7, for a total of five different values. Generalizing to
an infinite family of graphs, a typical example of which is illustrated in Figure 6.3, we find
that a graph can have almost three-halves as many odd edge-connectivities as vertices.

6.4 Concluding remarks

In this thesis, we introduced the odd edge-connectivity λo(u, v) between vertices of a graph.
We proved an approximate packing–covering duality for odd (u, v)-trails, achieved a better
approximation ratio in the case of Eulerian graphs, and described several polynomial-time
approximation algorithms for λo(u, v).

We also experimented with a totally odd immersion version of Hadwiger’s Conjecture.
We showed that random graphs admit totally odd immersions of a clique of linear size, and
presented several sufficient conditions for a graph to have a totally odd Kt-immersion. Our
unsophisticated bounds are tight in the case of K3-free graphs if we want to be able to
choose the root vertices of the immersion.

Our most important contribution is the definition of perimeter, a submodular function
that is closely related to the odd edge-connectivity. The perimeter is at the heart of both
of our approximate duality theorems, our rough structure theorem for totally odd clique
immersion, and all of our algorithmic results. We expect many more interesting structural
and algorithmic applications of the perimeter measure and its submodularity.
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