Method Comparison for Analyzing Wound Healing Rates

Prabhpreet K. Dhillona, Xinyin Lib, Jurgen T. Sanesb, Oluwafemi S. Akintolab, Bingyun Suna,b,c,*

a Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada

b Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada

c Centre for Cell Biology, Development, and Disease, Simon Fraser University, BC, Canada

* Correspondence: Bingyun Sun, Simon Fraser University, Burnaby, BC, Canada, Tel.: (778) 782-9097, Fax: (778) 782-3765, Email: bingyun_sun@sfu.ca
ABSTRACT

Wound healing scratch assay is a frequently used method to characterize cell migration, which is an important biological process in the course of development, tissue repair, and immune response for example. The measurement of wound healing rate, however, varies among different studies. Here we summarized these measurements into three types: I) Direct Rate Average; II) Regression Rate Average; and III) Average Distance Regression Rate. Using Chinese Hamster Ovary (CHO) cells as a model, we compared the three types of analyses on quantifying the wound closing rate, and discovered that type I & III measurements are more resistant to outliers, and type II analysis is more sensitive to outliers. We hope this study can help researchers to better use this simple yet effective assay.

KEYWORDS

wound healing scratch assay, cell migration rate, Chinese Hamster Ovary cells, N-acetylglucosamine (GlcNAc)
Cell migration is fundamental to normal development and homeostasis of tissues and organs as well as to various pathological states, such as cancer metastasis. In developing embryo, cell migration plays an essential role in gastrulation and organogenesis; in developed organs, migration is also crucial to tissue regeneration (Lauffenburger, D. A. et al. 1996). The process itself is a complex phenomenon that requires synchronization and coordination of various cellular events, such as cell polarization, protrusion, adhesion, translocation of the cell body and the retraction of its trailing edge (Lauffenburger, D. A. et al. 1996; Horwitz, R. et al. 2003). Due to the paramount physiological importance, understanding the underlying biology of cell migration is of interest to scientists for a number of therapeutic applications.

Several in vitro assays have been developed to characterize this process. Transwell migration assay (Boyden chamber assay), cell exclusion zone assay, fence assay, micro-carrier bead assay and wound healing assay are a few examples (Kramer, N. et al. 2013). Among these, wound healing scratch assay is one of the simplest, economical and well-studied methods to measure cell migration in vitro that to some extent mimics in vivo wound healing (Lampugnani, M. G. 1999; Liang, C.-C. et al. 2007). It operates on the idea that formation of an artificial gap or scratch in a confluent monolayer of cells will result in the migration of cells on the wound edge towards the center of the gap until the scratch is closed (Zahm, J.-M. et al. 1997). This response is due to the disruption of cell-cell contacts resulting in an increased concentration of growth factors at the wound edge (Wong, M. K. et al. 1988; Coomber, B. L. et al. 1990; Zahm, J.-M. et al. 1997). The healing then takes place through a combination of migration and proliferation until the cell-cell contacts are reestablished (Wong, M. K. et al. 1988; Yarrow, J. C. et al. 2004).
Due to its ease of operation, it has been widely adapted for studying wound healing. The method of computing the rate, however, has varied from study to study. The scratching of a confluent cell surface is likely to create uneven boundary with the intrinsic variation. The moving front of cells is therefore not even, and multiple measurements are necessary at different locations over time to assess the average rate (Maini, P. K. et al. 2004). Studies on the migration of single cells have also been carried out to more accurately examine the rate (Friedl, P. et al. 2003; Ridley, A. J. et al. 2003; Friedl, P. et al. 2010). In these studies, the sequence varies on computing the gap closing rate through regression analysis and on averaging the obtained rates. Recently, single-time-point measurement also emerged for quick assessment of migration difference among studied conditions, in which regression analysis as a function of time on wound closing is omitted (Dowling, Catríona M. et al. 2014; Shafqat-Abbasi, H. et al. 2016).

We for the first time attempted to catalog these measurements of wound closing rate into three types: I) Direct Rate Average; II) Regression Rate Average and III) Average Distance Regression Rate. Using Chinese Hamster Ovary (CHO) cells as a model, and using regular and starving media as two conditions, we compared the difference of wound closing rate measured by all three methods in varied N-acetylglucosamine (GlcNAc) concentrations. We demonstrated that the rates computed by all methods are similar with slight difference when no outliers existed. Interestingly, we also discovered that with outliers, type II analysis was affected more, therefore, more sensitive to inconsistent measurements; whereas the other two analyses were more robust to outliers.

MATERIALS AND METHODS

Cell culture
CHO-K1 cells were cultured in regular DMEM media (Lonza 12614F12) supplemented with 10% Fetal Bovine Serum (FBS), 1% L-glutamine and 1% antibiotics (streptomycin and penicillin) obtained from Invitrogen. Prior to scratching, cells were incubated at 37°C and 5% CO\textsubscript{2} to reach ~ 90% confluency.

Condition 1

Cells were cultured with treatment DMEM media (Sigma, D5030-10L) supplemented with pyruvate, L-glutamine, NaHCO\textsubscript{3}, 10% FBS, 4.5 g/L glucose and various concentrations of N-acetylglucosamine (GlcNAc) obtained from Sigma.

Condition 2

Cells were incubated with starving media, which was treatment DMEM media without FBS and lowered glucose at 1 g/L for 24 hours prior to scratching. After scratching, the cells were switched to 10% FBS supplemented treatment media with still lowered glucose at 1 g/L.

Wound healing scratch assay

Two vertical wounds were created on the cell monolayer using P100 pipette tip (Liang, C.-C. et al. 2007) in every culture plate. Wound closing was monitored over defined time intervals by digital camera (Nikon Coolpix S6200). The recorded wound length was analyzed by imageJ (http://imagej.nih.gov/ij/).

Four spots were chosen in each plate to compute the healing rate in condition 1; and 3 spots were used in condition 2.

Analysis of wound healing rate

Type I analysis (Direct Rate Average):

The wound healing rate (R) at any spot in one plate with defined time was computed by the healing distance (∆W\textsubscript{t}) over time (t), i.e. \[R = \frac{\Delta W_t}{\Delta t} \]
The average wound healing rate, R_{plate}, over different spots at defined time, was computed as following:

$$R_{\text{plate}} = \frac{\sum R}{N_{\text{spots}}}$$

Where N_{spots} is the number of spots chosen for monitoring over time. The overall average wound healing rate of all detected time points was calculated by the equation below:

$$R_{\text{total}} = \frac{\sum R_{\text{plate}}}{N_{\text{time points}}}$$

Where R_{total} is the final wound healing rate, and $N_{\text{time points}}$ is the number of time points chosen in the experiment to monitor the wound closure. For single time-point analysis, the value of $N_{\text{time points}}$ is one.

Type II analysis (Regression Rate Average):

We plotted the wound distance (W) at a given spot as a function of time and used linear regression to obtain the slope, which is the wound healing rate per spot (R_{spot}). Then, the plate wound healing rate was computed by averaging the spot wound healing rate at all monitored spots using equation below:

$$R_{\text{total}} = \frac{\sum R_{\text{spot}}}{N_{\text{spots}}}$$

Type III analysis (Average Distance Regression Rate):

We first averaged the wound length (\bar{W}) at each time point for all spots of a plate. Then, we calculated the closed average wound ($\Delta \bar{W}_t$) at each time point of all spots of a plate:

$$\Delta \bar{W}_t = \bar{W}_0 - \bar{W}_t$$

Where \bar{W}_0 is the original wound length at 0 hour, and \bar{W}_t is the wound length at t hour. Finally, we plotted the $\Delta \bar{W}$ as a function of t, and used linear regression to obtain the total wound healing rate R_{total}.
Significance analysis:

Microsoft Graphpad Prism software was used for significance analysis. One-way ANOVA Tukey’s test was used to analyze rate changes across multiple GlcNAc concentrations within the same treatment condition. Unpaired and two-tail t test was used to analyze significant changes between two conditions.

RESULTS AND DISCUSSION

Comparison of methods used for analysis

To compare different rate analysis methods, we used CHO cells, a common mammalian cell line that is frequently used as a host for expression of specific proteins (Zhu, J. 2012). Therefore, CHO cells have been used to investigate the function of exogenous proteins in migration (Hori, A. et al. 2001; Ganguly, A. et al. 2012). Under two slightly different conditions, we monitored the wound healing as shown in Figs. 1 & 2, respectively. We used three types of analyses to quantify the wound healing rate and compared their results. The three methods differ in how and when the migration rate is computed. Type I analysis directly computes the migration rate at given time point by dividing the wound length over time. Then wound closing rates at different spots and different time points can be averaged for overall healing rate of the population. This analysis was frequently applied recently when single time point was selected for assessing migration rate (Dowling, Catriona M. et al. 2014; Shafqat-Abbasi, H. et al. 2016).

Type II analysis uses linear regression to obtain healing rate over several time points for every spot. Then the rate of different spots is averaged for final closing rate of the population, which has been employed to study single-cell migration (Komuro, H. et al. 1995). Type III analysis averages the wound length across multiple spots first, and then uses the average distance over time for regression analysis to
obtain the overall healing rate (Stokes, C. L. et al. 1991). Type III analysis is the common method used in scratching assay when multiple time points are used for analysis.

To further examine the changes of wound healing rate, we treated CHO cells with various concentrations of GlcNAc. GlcNAc is well known for its structural role on the cell surface (Naseem, S. et al. 2012). It is a key component of extracellular matrix of mammalian cells, and participates in wound healing events in metazoan (Janik, M. E. et al. 2010; Hart, G. W. et al. 2011; Konopka, J. B. 2012). The obtained wound healing rates under various GlcNAc concentrations in condition 1 are summarized in Fig. 1. In the figure, except for Fig. 1B, 10 and 50 mM GlcNAc concentrations, all three types of analyses showed relatively good agreement to each other. Our measured closing rates of CHO cells without GlcNAc by all three analysis methods were between 0.01-0.03 mm/hour, which was in the same range as previous reports (Dübe, B. et al. 2001) suggesting our assay was reliable.

To note in the experiments of Fig 1B, two of the four spots under 10mM and 50mM GlcNAc showed early closure of the wound. The cause of early closure was likely due to the insufficient removal of extracellular matrix structure. It is known that the inconsistent scratching can cause the variation of the subsequent cell migration if the cell basal membrane or extracellular matrix were not removed effectively (Liang, C.-C. et al. 2007). The absence of early closure in the results of Figs. 1C & 1D supported that the two incidences observed in Fig. 1B were outliers.

Interestingly in Fig. 1B, results from analysis I & III were similar to each other across different GlcNAc concentrations regardless of the outliers, whereas only those from analysis II showed large difference at GlcNAc concentrations with abnormal migration (outliers). These results suggested that analysis II is more prone to outlier effects than the other two types of analyses.

Comparison of conditions
In addition to condition 1, we also designed starvation condition 2 to monitor CHO cell wound closing rate under varied GlcNAc concentrations as shown in Fig. 2. The reason was because extracellular GlcNAc was known to slowdown cell migration and proliferation (Runyan, R. B. et al. 1986; Atnip, K. D. et al. 1987; Viola, S. et al. 2008). Our results under condition 1 in Fig. 1 only showed a small drop of closing rate at higher GlcNAc concentration, and ANOVA analysis of results from three sets of repeated experiments (Fig. 1B) across varied GlcNAc concentration did not show significant difference regardless of analysis methods. We wanted to verify whether our analysis can identify any statistically significant rate difference. Towards this end, we designed condition 2, i.e. the starving condition. Condition 2 was different from condition 1 in two ways: first, cells in condition 2 were starved for 24 hours before being cultured in treatment media containing different concentrations of GlcNAc; and second, glucose concentration in the conditional 2 media was 1 g/L as compared to 4.5 g/L in condition 1. The example images and the computed migration rates by three different methods are shown in Fig. 2. Interestingly, type II analysis again identified an outlier in Fig. 2B under 2mM GlcNAc treatment further validated its sensitivity. We compared the average migration rate in two biological replicates between conditions 1 & 2 (excluding the results with outliers) obtained by sensitive type II analysis for both the control and 10mM-GlcNAc treatment as shown in Fig. 3. A significant reduction of wound healing rate (P<0.01, t test) was observed in condition 2 compared to condition 1 under the same GlcNAc concentration. For GlcNAc effect, no statistical difference was observed between 0 and 10mM GlcNAc in condition 1, but a decrease of rate in GlcNAc was observed in condition 2 (P: 0.01~0.02, t test). A result suggested that our analysis was able to assess the rate change. The decreased wound closing rate of cells under starving condition was congruent with the existing knowledge. Starvation is known to arrest cells at G0/G1 phase of the cell cycle (Pardee, A. B. 1974; Khammanit, R. et al. 2008; Rosner, M. et al. 2011), and the hypoglycemia introduced by the reduced...
glucose concentration in culture media can impair normal wound healing (Hayashi, J. N. et al. 1991; McDermott, A. M., Kern, T. S., & Murphy, C. J. 1998; Liu, Y. et al. 2003). The reduction of wound healing rate in condition 2 allowed us to disclose the reported GlcNAc effect (Runyan, R. B. et al. 1986; Atnip, K. D. et al. 1987; Viola, S. et al. 2008) that were otherwise confounded by the large variance in the experiments in condition 1.

CONCLUSION

We cataloged three different methods of quantifying the wound closing rate in scratching assay and discovered their differential capacity to tolerate outliers. We hope this study can help other researchers to better analyze the results generated from this simple yet effective assay.

ACKNOWLEDGEMENTS

This work was financially supported by Simon Fraser University work-study program and Canadian Stem Cell Network.
REFERENCES

FIGURE CAPTIONS

Fig. 1. A. Images of scratch wound healing over time under different GlcNAc concentrations in condition 1. The vertical lines on the images indicate the boundary of wound at 0 hour. Healing distance was measured relative to this boundary. B-D. Comparison of migration rate computed by three types of analysis in three repeated assays under condition 1, and * labels the outliers. Number of spots used (N) were 4, error bar is the standard deviation. In type III analysis, linear regression analysis r² values for migration rates computed for GlcNAc concentration from 0 to 50 mM are all above 0.8.

Fig. 2. Images of scratch wound healing over time under different GlcNAc concentrations in condition 2. The vertical lines on the images indicate the boundary of wound at 0 hour. Healing distance was measured relative to this boundary. B-D. Comparison of migration rate computed by three types of analysis in three repeated assays under condition 2, and * labels the outlier. Number of spots used (N) were 3, error bar is the standard deviation. In type III analysis, linear regression analysis r² values for migration rates computed for GlcNAc concentration from 0 to 10 mM are all above 0.9.

Fig. 3. Comparison of wound healing rates between condition 1 and 2 using analysis type II. Error bar is the standard deviation of two biological replicates (C & D in both Figs. 1 & 2) without outliers.
Fig. 1. A. Images of scratch wound healing over time under different GlcNAc concentrations in condition 1. The vertical lines on the images indicate the boundary of wound at 0 hour. Healing distance was measured relative to this boundary. B-D. Comparison of migration rate computed by three types of analysis in three repeated assays under condition 1, and * labels the outliers. Number of spots used (N) were 4, error bar is the standard deviation. In type III analysis, linear regression analysis r2 values for migration rates computed for GlcNAc concentration from 0 to 50 mM are all above 0.8.
Fig. 2. Images of scratch wound healing over time under different GlcNAc concentrations in condition 2. The vertical lines on the images indicate the boundary of wound at 0 hour. Healing distance was measured relative to this boundary. B-D. Comparison of migration rate computed by three types of analysis in three repeated assays under condition 2, and * labels the outlier. Number of spots used (N) were 3, error bar is the standard deviation. In type III analysis, linear regression analysis r² values for migration rates computed for GlcNAc concentration from 0 to 10 mM are all above 0.9.
Fig. 3. Comparison of wound healing rates between condition 1 and 2 using analysis type II. Error bar is the standard deviation of two biological replicates (C & D in both Figs. 1 & 2) without outliers.