Essays in Financial Markets and Time Series Econometrics

by

Daniele Signori

Ph.D., Penn State University, 2009

B.Sc., Universitá di Milano, 2004

A Thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

in the
Department of Economics
Faculty of Social Sciences

© Daniele Signori 2016
SIMON FRASER UNIVERSITY
Spring 2016

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately.
APPROVAL

Name: Daniele Signori
Degree: Doctor of Philosophy (Economics)
Title of Thesis: Essays in Financial Markets and Time Series Econometrics

Examing Committee:
Chair: Simon Woodcock
Associate Professor, Department of Economics

Ramazan Gençay
Senior Supervisor
Professor, Department of Economics

Robert Jones
Supervisor
Professor, Department of Economics

Marie Rekkas
Supervisor
Associate Professor, Department of Economics

Christina Atanasova
Internal Examiner
Associate Professor, Beedie School of Business

Via Videoconference
David Giles
External Examiner
Professor, Department of Economics
University of Victoria

Date Defended/Approved: May 2, 2016
Abstract

This thesis consists of two independent essays on financial econometrics.

The first study introduces a new family of portmanteau tests for serial correlation. Using the wavelet transform, we decompose the variance of the underlying process into the variance of its low frequency and of its high frequency components and we design a variance ratio test of no serial correlation in the presence of dependence. Such decomposition can be carried out iteratively, each wavelet filter leading to a rich family of tests whose joint limiting null distribution is a multivariate normal. We illustrate the size and power properties of the proposed tests through Monte Carlo simulations.

The second study focuses on counterparty risk and its role as a determinant of corporate credit spreads. However, there are only a few techniques available to isolate it from other factors. In this paper we describe a model of financial networks that is suitable for the construction of proxies for counterparty risk. Using data on the U.S. supplier-customer network of public companies, we find that, for each supplier, counterparties’ leverage and jump risk are significant determinants of corporate credit spreads. Our findings are robust after controlling for several idiosyncratic, industry, and market factors.
Contents

Approval ii

Abstract iii

Contents iv

1 Multi-scale tests for serial correlation 1

1.1 Preliminaries ... 5
 1.1.1 Wavelet Transformations ... 7
1.2 Multi-scale Variance Ratios .. 9
 1.2.1 Sample Multiscale Variance Ratios: Scale One 11
 1.2.2 Sample Multiscale Variance Ratios: Scale m 12
1.3 Asymptotic Analysis .. 14
 1.3.1 Multivariate multiscale tests 18
1.4 Asymptotic Local Power and Finite Sample Performance 19
 1.4.1 Asymptotic Local Power ... 21
 1.4.2 Monte Carlo Simulations ... 23
1.5 Application to High Frequency Financial Data 26
1.6 Conclusions ... 27

2 Economic Links and Credit Spreads 36

2.1 Background and Literature Review 38
2.2 The NARMA Model .. 41
 2.2.1 Networks and graphs .. 41
Chapter 1

Multi-scale tests for serial correlation

In this chapter we propose a new family of frequency-domain tests for the white noise hypothesis, the assumption that a process is uncorrelated. Frequency-domain tests take as their starting point the result that, under stationarity conditions, the linear dependence structure of a process \(\{y_t\} \) is fully captured by its spectral density function \(S_y(f) \). We focus our attention on the relation between the spectral density function and the variance,

\[
\text{var}(y) = 2 \int_{0}^{1/2} S_y(f) \, df,
\]

which, paraphrasing, says that the contribution of the frequencies in a small interval \(\Delta f \) containing \(f \) is approximately \(S_y(f) \Delta f \). It is an elementary result that—when defined—the spectral density function of an uncorrelated process is constant or, in other words, that each frequency contributes equally to the variance of a white noise process; instead, when a process is serially correlated, each frequency generally contributes in different amounts and the spectral density function is non-constant.

Such contrast is the basis for the tests developed in this paper. Imagine that \(\{y_t\} \) is a Gaussian white noise process (Fig. 1.1, left panel). Then high frequencies, say those in the band \([1/4, 1/2]\), will contribute exactly half of the total variance of \(\{y_t\} \). On the other hand, if \(\{y_t\} \) is an autoregressive process of order 1 with a positive coefficient (right panel), high frequencies will account for less than half of the total variance. This example motivates the introduction of the variance ratio \(\mathcal{E}(a, b) \), defined as the fraction

\[
\mathcal{E}(a, b) = \frac{\int_a^b S_y(f) \, df}{\int_0^{1/2} S_y(f) \, df}.
\]
CHAPTER 1. MULTI-SCALE TESTS FOR SERIAL CORRELATION

Figure 1.1: High frequency contribution (in grey) to the total variance of a white noise process (left) and an AR(1) process (right).

of the total variance contributed by the frequency band \((a, b)\). Under the null of no serial correlation, \(E(a, b)\) is equal to the length of the interval \((a, b)\) and any departure from this benchmark provides the means to detect serial correlation.

Although the variance ratio can be defined for an arbitrary frequency domain, the need to estimate the corresponding integral of the spectral density function—the numerator of \(E\)—imposes practical limitations. We resort to wavelet analysis to address this need. For frequency bands of a particular form, the numerator of the statistic \(E\) is a well known quantity, the wavelet variance,\(^1\) which can be estimated efficiently using the maximum-overlap discrete wavelet transformation estimator. In this light, given the temporal resolution properties of the wavelet transform, it is appropriate to refer to \(E(a, b)\) as a multiscale variance ratio. The recursive application of this procedure generates a family of tests whose joint limit distribution is multivariate normal under mild restrictions.

While the main intuition behind multiscale variance ratios originates under covariance stationarity assumptions, the corresponding test statistics are informative in more general scenarios. Indeed, the null hypothesis can be relaxed to allow for a degree of non-stationarity, specifically, for heteroskedastic white noise. Heteroskedastic white noise is an uncorrelated process with varying variance. We develop the asymptotic theory of multiscale variance ratios for uncorrelated but possibly dependent processes within the framework of near-epoch dependence (NED). Besides accommodating heterogeneity,

\(^1\)The wavelet variance was studied, among others, by Allan (1966), Percival (1983), Percival and Guttorp (1994), Percival (1995), and Howe and Percival (1995).
there are three further benefits of this approach. Firstly, the asymptotic results originate from one of the most general Gaussian central limit theorems for dependent processes (De Jong, 1997). Secondly, it permits trending higher moments (see Assumption A and Assumption B1). Finally, it leverages a rich literature devoted to the derivation of the NED property for many nonlinear time series models and, thus, parametric restrictions for the validity of our test can be obtained in several typical cases.²

We contribute to the literature on tests for serial correlations in several ways. First, the design we propose leads to serial correlation tests with desirable empirical size and power in small samples. Second, as argued in the previous paragraph, our test is robust to the presence of higher order dependence, heteroskedasticity, and trending moments, while at the same time the asymptotic theory is developed in great generality. Third, ours is the first test of serial correlation that utilizes directly the wavelet coefficients of the observed time series to construct the wavelet-based test statistics.³ The tests we design generalize, on one hand, variance ratios tests (Lo and MacKinlay, 1988), on the other, they are related to ratios of quadratic forms and Von Neumann ratios (1941).

In addition, since the proposed test statistic does not rely on a point estimate of the spectral density, the rate of convergence issues relating to the nonparametric spectral density are not of first order of importance.

One of the well-known time-domain portmanteau tests for serial correlation is the Box and Pierce’s test Q_K (BP). Given independent and identically distributed observations, Box and Pierce (1970) show that the sum of K sample autocovariances times the number of observations is approximately distributed as a Chi-squared distribution with K degrees of freedom; statistically large values of Q_K indicate a likely serial correlation among the data. In practice, the strict restrictions of independence and homogeneity are violated, leading to possibly very inaccurate inference. There is a long streak of papers that address these limitations, starting from the small sample improvements of Ljung and Box (1978), to the more recent robustification program of Lobato (2001) and Lobato, Nankervis, and Savin (2002). Robust inference can also be achieved using bootstrapping methods. Building on the block bootstrap inference for autocorrelations of Romano and

²These results include GARCH, IGARCH, FIGARCH, $ARCH(\infty)$ (Davidson, 2004), ARMA, Bilinear models, switching and threshold autoregressive models, and smooth nonlinear autoregressions. (Davidson, 2002).

³This approach was originally put forth by Fan and Gençay (2010) in unit root testing. Within a similar framework, Xue et al. (2010) propose discrete wavelet-based jump tests to detect jump arrival times in high frequency financial time series data.
Thombs (1996), Horowitz, Lobato, Nankervis, and Savin (2006) develop a blocks-of-blocks bootstrap that reduces the error rejection probability to nearly zero for samples with at least 500 observations. Finally, Escanciano and Lobato (2009) (EL) combine robustification techniques with a data-driven approach for automatic lag selection. The resulting adaptive test has particularly high empirical power in finite samples.

Frequency-domain tests provide an alternative framework for testing serial correlation. Hong (1996) uses a kernel estimator of the spectral density for testing serial correlation of arbitrary form. His procedure relies on a distance measure between two spectral densities of the data and the one under the null hypothesis of no serial correlation. Paparoditis (2000) proposes a test statistic based on the distance between a kernel estimator of the ratio between the true and the hypothesized spectral density and the expected value of the estimator under the null. Wavelet methods are particularly suitable in such situations where the data has jumps, kinks, seasonality and nonstationary features. The framework established by Lee and Hong (2001) is a wavelet-based test for serial correlation of unknown form that effectively takes into account local features, such as peaks and spikes in a spectral density. Duchesne (2006) extends the Lee and Hong (2001) framework to a multivariate time series setting. Hong and Kao (2004) extend the wavelet spectral framework to the panel regression. The simulation results of Lee and Hong (2001) and Duchesne (2006) indicate size over-rejections and modest power in small samples. Reliance on the estimation of the nonparametric spectral density together with the choice of the smoothing parameter affects their small sample performance. Recently, Duchesne et al. (2010) have made use of wavelet shrinkage (noise suppression) estimators to alleviate the sensitivity of the wavelet spectral tests to the choice of the resolution parameter. This framework requires a data-driven threshold choice and the empirical size may remain relatively far from the nominal size. Therefore, although a shrinkage framework provides some refinement, the reliance on the estimation of the nonparametric spectral density slows down the rate of convergence of the wavelet-based tests, and consequently leads to poor small sample performance.

In Section 1.1, we fix the notation, describe the discrete wavelet transform, and present the concept of near-epoch dependence together with the law of large numbers and the central limit theorem from which our main results will obtain. In Section 1.2, we introduce and motivate our tests. In Section 1.3 we study its large sample distribution. In Section 1.4, we analyze the small sample properties through several Monte Carlo
1.1 Preliminaries

Let \(y_t \) be a stochastic sequence with \(E(y_t) = 0 \) and \(\text{var}(y_t) = \sigma_t^2 \). If \(y_t \) is homoskedastic, that is \(\sigma_t^2 = \sigma^2 \) for all \(t \), and uncorrelated, that is \(\text{cov}(y_t, y_s) = 0 \) for all \(s \neq t \), then \(y_t \) is called white noise. If homoskedasticity is violated, we refer to \(y_t \) as heteroskedastic white noise. We consider tests of the null hypothesis of no correlation, \(H_0 : \text{cov}(y_t, y_s) = 0 \) for all \(s \neq t \), against correlated alternatives, \(H_1 : \text{cov}(y_t, y_s) \neq 0 \) for some \(s \neq t \). A finite sample realization of \(y_t \) with \(T \) observations is denoted with \(\{y_t\} \) and, when viewed as a vector in \(\mathbb{R}^T \), we use the notation \(y_T \), or simply \(y \), leaving \(T \) understood when there is no chance for confusion. Throughout the paper we impose periodic boundary conditions on \(\{y_t\} \), that is \(y_t \equiv y_{t \mod T} \), and we define \(s_n^2(y) \) as

\[
s_n^2(y) = \sum_{t=1}^{n} \text{var}(y_t) + 2 \sum_{t=2}^{n} \sum_{k=1}^{n-1} \text{cov}(y_t, y_{t-k}) .
\]

A stochastic sequence \(y_t \) gives rise to a filtration of sigma fields

\[
\mathcal{F}_{t-m}^{t+m}(x) \equiv \sigma(x_{t-m}, \ldots, x_{t+m}) ,
\]

where \(\mathcal{F}_{t-m}^{t+m}(x) \) is the smallest sigma field on which \(\{x_{t-m}, \ldots, x_{t+m}\} \) are measurable, that is the collection of sets of the form \(x_i^{-1}(B) \) where \(B \) is a measurable set in the codomain of \(x_i \) and the index \(i \) ranges from \(t-m \) to \(t+m \). Either bounds can be let go to infinity, yielding the sigma fields \(\mathcal{F}_{-\infty}^{t} — containing the information from the remote past up to now — and \(\mathcal{F}_{t}^{\infty} — containing the information from the present to the remote future. When there is no risk of confusion, we will write \(\mathcal{F}_{t-m}^{t+m} \) for \(\mathcal{F}_{t-m}^{t+m}(x) \). All proofs can be found in the Appendix.

4The notation \(a - b \mod T \) stands for “\(a - b \) modulo \(T \)”. If \(j \) is an integer such that \(1 \leq j \leq T \), then \(j \mod T \equiv j \). If \(j \) is another integer, then \(j \mod T \equiv j + nT \) where \(nT \) is the unique integer multiple of \(T \) such that \(1 \leq j + nT \leq T \).
In developing the statistical properties of our test for serial correlation, we consider a very general null hypothesis, namely that the data generating process is heteroskedastic white noise, thus restricting only the correlation properties of the process while leaving higher order dependence completely unconstrained. In order to remain close to the intention of a very general null hypothesis, we develop the asymptotic theory for our serial correlation test in terms of concept of near-epoch dependence (NED). For a stochastic sequence x_t define

$$
\alpha_m \equiv \sup_{i \in \mathbb{Z}} \sup \{A \in \mathcal{F}_t^{-\infty}, B \in \mathcal{F}_t^{\infty} \} |P(A \cup B) - P(A)P(B)|
$$

$$
\phi_m \equiv \sup_{i \in \mathbb{Z}} \sup \{A \in \mathcal{F}_t^{-\infty}, B \in \mathcal{F}_t^{\infty}, P(A)>0 \} |P(B|A) - P(B)| .
$$

Then, if $\phi_m = o(m^{-a-\varepsilon})$ for $\varepsilon > 0$, then x_t is ϕ-mixing of size $-a$. If $\alpha_m = o(m^{-a-\varepsilon})$ for $\varepsilon > 0$, then x_t is α-mixing of size $-a$.

Definition 1 (Adapted from Davidson (1995), Definition 17.1, page 261). A stochastic sequence x_t is said to be near-epoch dependent on ϵ_t in L_p-norm for $p > 0$ if

$$
\| x_t - \mathbb{E}[x_t|\mathcal{F}_{t+m}(\epsilon)] \|_p \leq d_t \nu_m
$$

where $\nu_m \to 0$ as $m \to \infty$ and d_n is a sequence of positive real numbers such that $d_t = O(\| x_t \|_p)$.

Any process x_t that satisfies Definition 1 will be referred to as “L_p-NED on ϵ_t” for short. The concept of near-epoch dependence was popularized in the econometrics literature by Gallant and White (1988), but its inception can be traced back to the work of Ibragimov (1962). As pointed out by Davidson (1995), near-epoch dependence is not an alternative to mixing assumptions, instead it allows to establish useful memory properties of x_t in terms of those of ϵ_t.

When the innovation process ϵ_t is mixing, powerful laws of large numbers and central limit theorems can be established for NED processes. In order to apply these results, the following proposition will be useful (a generalization of Theorem 17.9 in Davidson, 1995, from L_2 to L_p processes).

5 The sequence d_t is a technical device used to accommodate trending moments. For all the data generating processes encountered in the examples, it can be set equal to 1.

Proposition 2. If x_t and y_t be L_p-NED on $\{\epsilon_t\}$ of size $-\phi_x$ and $-\phi_y$ respectively, then $x_t y_t$ is $L_{p/2}$-NED of size $-\min(\phi_x, \phi_y)$ on $\{\epsilon_t\}$.

1.1.1 Wavelet Transformations

In this section we introduce the Maximum Overlap Discrete Wavelet Transform (MODWT).\footnote{This section closely follows Gençay et al. (2001), see also (Percival and Walden, 2000, Chap. 5). It is common in the literature distinguish the objects related Discrete Wavelet Transform from those related to the Maximum Overlap Discrete Wavelet Transform by placing a tilde (\sim) in the latter case. Since all quantities in the main part of the paper refer to the MODWT and we believe there is little scope for confusion, we warn the reader that in this paper we do not follow this convention.} A vector $\{h_l\} = (h_0, \ldots, h_{L-1})$ in \mathbb{R}^L gives rise to a linear time invariant filter by means of the convolution operation: Given a sequence to be filtered $\{y_t\}$, the convolution of $\{h_l\}$, and $\{y_t\}$ is the sequence

$$ h * y_t = \sum_{l=-\infty}^{l=\infty} h_l y_{t-l}, \quad \forall t, $$

where we define $h_l = 0$ for all $l < 0$ and $l \geq L$.

A wavelet filter is a linear time invariant filter $\{h_l\}$ of length L, such that for all $n \neq 0$:

$$ \sum_{l=0}^{L-1} h_l = 0, \quad \sum_{l=0}^{L-1} h_l^2 = 1/2, \quad \sum_{l=-\infty}^{\infty} h_l h_{l+2n} = 0. \quad (1.3) $$

In words, h sums to zero, has norm $1/2$, and is orthogonal to its even shifts. The natural complement to the wavelet filter $\{h_l\}$ is the scaling filter $\{g_l\}$ determined by the quadrature mirror relationship

$$ g_l = (-1)^{l+1} h_{L-1-l} \quad \text{for} \quad l = 0, \ldots, L-1. $$

The scaling filter satisfies the following basic properties, analogous to Equations 1.3:

$$ \sum_{l=0}^{L-1} g_l = 1, \quad \sum_{l=0}^{L-1} g_l^2 = 1/2, \quad \sum_{l=-\infty}^{\infty} g_l g_{l+2n} = 0, \quad \sum_{l=-\infty}^{\infty} g_l h_{l+2n} = 0, \quad (1.4) $$

for all nonzero integers n.

In general, the definitions of wavelet and scaling filter do not imply any specific
band-pass properties (see Percival and Walden, 2000, Chap. 4, Pag. 105, for an in-depth discussion). Further conditions must be imposed to recover the domain frequency interpretation associated with the continuous wavelet transform and to guarantee that \{h_l\} is a high-pass filter (which, as a consequence of the QMF relationship, implies that \{g_l\} is a low-pass filter). An example of such additional constraints, sometimes referred to as regularity conditions, are the vanishing moment conditions introduced by Daubechies (1993). Nevertheless, all the results in the paper apply without any regularity conditions on the filters and hence to any arbitrary dyadic band-pass decomposition. In particular, when the filters \{h_l\} and \{g_l\} applied to an observed time series are from a wavelet filter-bank, we can separate high-frequency oscillations from low-frequency ones.

Formally, the MODWT of level \(M\) is a linear operator and can be represented in terms of matrix operations:

\[
\mathbf{w} = \mathcal{W} \mathbf{y}
\]

where \(\mathcal{W}\) is a \((M + 1)T \times T\) matrix. The matrix \(\mathcal{W}\) is constructed by assembling \(M + 1\) sub-matrices of dimensions \(T \times T\):

\[
\mathcal{W} = [\mathcal{W}_1, \mathcal{W}_2, \ldots, \mathcal{W}_M, \mathcal{V}_M]^T,
\]

whose action is defined in terms of wavelet filter \(\{h_l\}\) and scaling filter \(\{g_l\}\). Specifically,

\[
(\mathcal{W}_m \mathbf{y})_t = \sum_{l=0}^{L_m} h_{m,l} v_{m,t-l \mod T}
\]

where \(L_m := (2^m - 1)(L - 1) + 1\). The \(m\)-th level filter \(\{h_{m,l}\}\) can be written as a filter cascade

\[
h_m = h \ast \underbrace{g \ast \ldots \ast g}_{m-1},
\]

where \(g\) is the scaling filter and \(\ast\) denotes a convolution.\(^8\)

The MODWT of the observed time series \(\mathbf{y}^T\) can be organized into \(M + 1\) vectors of

\(\text{A general explicit formula for } h_m \text{ requires working with transfer functions in Fourier space}

\[
h_m(l) = \frac{1}{L} \sum_{f=0}^{L-1} H \left(\frac{2^m f}{N} \right) \prod_{k=1}^{m-2} G \left(\frac{2^k f}{N} \right) e^{2\pi ifn/L}.
\]
length T

$$w = (w'_1, \ldots, w'_M, v'_M)'$$, \hspace{1cm} (1.5)

where $M \leq \log_2 T$ be the decomposition level of the MODWT. In practice, w is computed recursively via a so-called pyramid algorithm. Each iteration of the MODWT pyramid algorithm, requires three objects: the data vector to be filtered, the wavelet filter $\{h_l\}$ and the scaling filter $\{g_l\}$. The initial step consists of applying the wavelet and scaling filter to the data with each filter to obtain the first level wavelet and scaling coefficients:

$$w_{1,t} = (w_1)_t = \sum_{l=0}^{L-1} h_ly_{t-l \mod T} \quad \text{and} \quad v_{1,t} = (v_1)_t = \sum_{l=0}^{L-1} g_ly_{t-l \mod T}$$

for all $t = 1, \ldots, T$.

The length T vector of observations has been high- and low-pass filtered to obtain T coefficients associated with this information. The m-th step consists of applying the filtering operations as above to obtain the $(m+1)$-st level of wavelet and scaling coefficients

$$w_{m+1,t} = (w_1)_t = \sum_{l=0}^{L-1} h_lv_{m,t-l \mod T} \quad \text{and} \quad v_{m+1,t} = (v_1)_t = \sum_{l=0}^{L-1} g_lv_{m,t-l \mod T}$$ \hspace{1cm} (1.6)

for all $t = 1, \ldots, T$.

Keeping all vectors of wavelet coefficients, and the level M scaling coefficients, we obtain the decomposition of Equation 1.5.

1.2 Multi-scale Variance Ratios

Consider the general variance ratio

$$\mathcal{E}(a, b) = 2 \int_a^b S_y(f) \, df / \text{var}(y).$$

where H and G are the Discrete Fourier Transforms of h and g, respectively:

$$H(f) = \sum_{l=0}^{L-1} h_le^{2\pi if/L}, \quad G(f) = \sum_{l=0}^{L-1} g_le^{2\pi if/L}.$$
The numerator of $E(a, b)$ can, for specific intervals, be expressed in terms of the wavelet variance. Indeed, neglecting the leakage of the wavelet filter, the following approximation holds:

$$\text{wvar}_m(y) \approx 2 \int_{1/2^{-j+1}}^{1/2^j} S_y(f) \, df.$$

(1.7)

For $m = 1$, the integral in Equation (1.7) corresponds to the area E_1 in Figure 1.1. Formally, the wavelet variance for a stationary process y is defined as

$$\text{wvar}_m(y) \equiv \text{var}(w_{m,t}).$$

(1.8)

From equation (1.6), we see that $w_{m,t}$ is a linear process, obtained by applying the time invariant filter h_m to a zero mean process y. If y is stationary, then the spectrum of $w_{m,t}$ is $S_m(f) = |H_m(f)|^2 S_y(f)$, where $H_m(f)$ is the discrete Fourier transform of the filter $\{h_i\}$ (see Brockwell and Davis, 2009, Page 121, Eq. 4.4.3.). It follows that

$$\text{wvar}_m(y) = \int_{-1/2}^{1/2} S_m(f) \, df = \int_{-1/2}^{1/2} |H_m(f)|^2 S_y(f) \, df.$$

(1.9)

In particular, if $\{y_t\}$ is a covariance stationary white noise, then $S_y(f) = \sigma_y^2$ and

$$\text{wvar}_m(y) = \sigma_y^2 \int_{-1/2}^{1/2} |H_m(f)|^2 \, df = \sigma_y^2 \|h_m\|_2^2 = \sigma_y^2 \|g\|_2^2 \prod_{i=1}^{m-1} \|h_i\|_2^2 = \sigma_y^2 2^{-m}.$$

The second equality uses Parseval’s identity, the third equality holds because the norm of a convolution is the product of the norms, and the last equality follows from the normalization Equation (1.3). In conclusion, we proved the following

Theorem 3. The wavelet variance ratio for a stationary white noise process is

$$E_m(y) \equiv \frac{\text{wvar}_m(y)}{\text{var}(y)} = \frac{1}{2^m}.$$

When there is no risk of confusion, we will write E_m for $E_m(y)$. In the remainder of this section we introduce a family of statistics that detect serial correlation by testing the

9See Percival and Walden (2000), Equation (297a), page 297.
implications of Theorem 3.

1.2.1 Sample Multiscale Variance Ratios: Scale One

The Maximum Overlap Discrete Wavelet Transform (MODWT) consists of a set of linear filters that given a time series generates a collection of vectors. The design of the MODWT filters are such that each of the resulting vectors contains the characteristics of the original time series corresponding to a specific time-scale.

We illustrate the workings of the MODWT and the intuition behind our test with the simple case of a first level decomposition using the Haar filter. Consider the Haar wavelet filter \(\{h_t\}_{t=0}^{1} = (1/2, -1/2) \) and the corresponding scaling filter \(\{g_t\}_{t=0}^{1} = (1/2, 1/2) \). The wavelet and scaling coefficients of a time series \(\{y_t\}_{t=1}^{T} \) are given by

\[
\begin{align*}
w_{t,1} & = \frac{1}{2}(y_t - y_{t-1}), \quad t = 1, 2, \ldots, T, \\
v_{t,1} & = \frac{1}{2}(y_t + y_{t-1}), \quad t = 1, 2, \ldots, T.
\end{align*}
\]

The wavelet coefficients \(\{w_{t,1}\} \) capture the behavior of \(\{y_t\} \) in the high frequency band \([1/4, 1/2]\), while the scaling coefficients \(\{v_{t,1}\} \) capture the behavior of \(\{y_t\} \) in the low frequency band \([0, 1/4]\). A sample analogue of \(\mathcal{E}_1 \) is readily constructed following the analogy principle

\[
\hat{\mathcal{E}}_{1,T} = \frac{\text{wvar}\ y}{\text{var}\ y} = \frac{\sum_{t=1}^{T} w_{1,t}^2}{\sum_{t=1}^{T} y_{1,t}^2}.
\]

We show (see Theorem 4) that under \(H_0 \), \(\hat{\mathcal{E}}_{1,T} \) is close to \(1/2 \), since the numerator is the half of the denominator, while under \(H_1 \) the variance ratio \(\hat{\mathcal{E}}_{1,T} \), in general, deviates from \(1/2 \).

The definition of the variance ratio \(\hat{\mathcal{E}}_{1,T} \) can be applied to the wavelet decomposition obtained from a generic filter wavelet \(\{h_t\} \). As before, we expect \(\hat{\mathcal{E}}_{1,T} \) to be close to \(1/2 \) under \(H_0 \).

\(^{10}\)The MODWT goes by several names in the literature, such as the stationary DWT by Nason and Silverman (1995) and the translation-invariant DWT by Coifman and Donoho (1995). A detailed treatment of MODWT can be found in Percival and Mofjeld (1997), Percival and Walden (2000) and Gençay et al. (2001).
1.2.2 Sample Multiscale Variance Ratios: Scale \(m \)

The intuitive results that we discussed above can be generalized to arbitrary scales. For a white noise process, variance is asymptotically equi-partitioned in Fourier space: each frequency contributes an equal share to the total variance of the process. An analogous result holds in “wavelet space”: the variance at scale \(m \) contributes a ratio of \(2^{-m} \) to the total variance. The variance ratio corresponding to the resolution scale \(m \) is defined as

\[
\hat{E}_{m,T} = \frac{\text{wvar}_m y}{\text{var}_y} = \frac{\sum_{t=1}^{T} w_{m,t}^2}{\sum_{t=1}^{T} y_{m,t}^2},
\]

where \(w_m \) are the \(m \)-th level wavelet coefficients of \(y \).

To formalize the above discussion, we need to prove that \(\hat{E}_{m,T} \) is a consistent estimator of the wavelet variance ratio. Indeed, the next result goes a step further: as the sample multiscale variance ratio is well defined for nonstationary processes, we show that \(\hat{E} \) converges in probability to \(2^{-m} \) even for (unconditionally) heteroskedastic white noise processes, that is uncorrelated processes that may fail to be covariance stationary.

Assumption A. \(\{y_t\} \) is stochastic sequence that is \(L_r \) bounded for \(r > 2 \) and \(L_p \)-NED on an \(\alpha \)-mixing process for \(p \geq 2 \).

Theorem 4. Let \(\{y_t\} \) be a heteroskedastic white noise process with zero mean. Under Assumption A

\[
\hat{E}_{m,T} \overset{p}{\to} \frac{1}{2^m}
\]

Example 5 (GARCH(1,1) with \(\alpha \)-mixing innovations, Hansen (1991)). Let \(\{\epsilon_t\} \) be a \(\alpha \)-mixing process and define

\[
x_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha x_{t-1}^2
\]

for some real numbers \(\omega, \beta, \) and \(\alpha \). Hansen (1991) shows that if

\[
(\mathbb{E} [(\beta + \alpha \epsilon_t^2)^p | \mathcal{F}_{-\infty}^t(\epsilon)])^{1/p} \leq c < 1 \quad \text{a.s. for all } t,
\]

then \(\{x_t, \sigma_t\} \) is \(L_r \)-NED on \(\{\epsilon_t\} \) with an exponential decay of NED coefficients. With
\[p = 2, \text{ the condition (1.13) is equivalent to } \]
\[\beta^2 + 2\alpha\beta\mu_t^2 + \alpha^2\mu_t^4 < 1 \quad \text{a.s. for all } t, \]

in which \(\mu_t^4 = \mathbb{E}(\epsilon_t^4|\mathcal{F}_{-\infty}^t) \) is the conditional kurtosis.

Example 6 (ARCH(\(\infty \)) with i.i.d. innovations, Davidson (2004)). Let \(\{\epsilon_t\} \) be a i.i.d. process, with zero mean and unit variance, and define:

\[
x_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \omega + \sum_{i=1}^{\infty} \alpha_i x_{t-i}^2.
\]

This specification is called ARCH(\(\infty \)) model. It encompasses several nonlinear time series, including GARCH (Bollerslev, 1986), IGARCH (Engle and Bollerslev, 1986), FIGARCH Baillie et al. (1996). Assume that \(\mathbb{E}\epsilon_4 \) exists and \(\sum_{i=1}^{\infty} \alpha_i < (\mathbb{E}\epsilon_4)^2 \). Davidson (2004) shows that if \(0 \leq \alpha_i \leq C i^{-1-\lambda} \) for some \(\lambda > \lambda_0 \), then \(x_t \) is \(L_2 \)-NED on \(\epsilon_t \) of size \(-\lambda_0 \).

Example 7 (Bilinear Model with i.i.d. innovations, Davidson (2002)). Consider the following bilinear models

\[
x_t = \sum_{j=1}^{p} \alpha_j x_{t-j} + \sum_{j=1}^{m} \beta_j x_{t-j}\epsilon_{t-1} + \sum_{j=1}^{r} \gamma_j \epsilon_{t-j},
\]

This parametric family is referred to as \(\text{BL}(p,r,m,1) \) and it is discussed in detail in (Priestley, 1988, Chapter 4). When the innovations are i.i.d. , Davidson (2002) concludes that the covariance stationary \(\text{BL}(p,r,m,1) \) is \(L_2 \)-NED on \(\{\epsilon_t\} \) with an exponential decay of NED coefficients. A simple example of bilinear white noise is the process

\[
x_t = \beta x_{t-2}\epsilon_{t-1} + \epsilon_t \sim \text{i.i.d}(0,1).
\]

It is covariance stationary if \(0 < \beta < 1/\sqrt{2} \) (see Granger and Newbold, 1986).

In the next section we study the asymptotic distribution of the wavelet ratio \(\hat{E}_{m,T} \).
1.3 Asymptotic Analysis

In the remainder of the paper, the process \(\{z_{m,t}\} \) is defined as the cross-product component of the square of each wavelet coefficient

\[
z_{m,t} := \sum_{i=0}^{L-1} \sum_{j>i}^{L} h_{m,i} h_{m,j} y_{t-i} y_{t-j}.
\]

When there is no risk of confusion, we omit the index \(m \). Our next result establishes the asymptotic distribution of the wavelet variance ratio \(\hat{\mathcal{E}}_{m,T} \).

Assumption B. Fix a wavelet filter \(h_m \).

B1. for \(r > 1 \) and for all \(i, j, k, l \) such that \(0 \leq i < j \leq L_m \) and \(0 \leq k < l \leq L_m \),
\[
\{y_{t-i}y_{t-j}y_{t-k}y_{t-l}/M_{4,t}\}
\]

is uniformly \(L_r \)-bounded for \(r > 1 \), where
\[
M_{4,t} = \sum_{i=0}^{L_m} \sum_{j=1}^{L_m} \sum_{k=0}^{L_m} \sum_{l=1}^{L_m} h_i h_j h_k h_l \mathbb{E}(y_{t-i}y_{t-j}y_{t-k}y_{t-l});
\]

B2. For all positive \(i \leq L_m \), \(\{y_t y_{t-i}\} \) is a stochastic sequence that is \(L_r \)-bounded for \(r > 2 \) and \(L_p \)-NED of size \(-1/2\) on a \(\phi \)-mixing process for \(p \geq 2 \).

B3. \(\text{var}(z_t) \sim t^\beta \) and \(s_n^2(z) \sim n^{1+\gamma}, \beta \leq \gamma \).

Assumption B imposes very mild restrictions on \(\{y_t\} \) and allows for substantial deviation from stationarity. Condition B3 can alternatively be expressed in terms of rate of growth the fourth order cumulants of \(\{y_t\} \), we omit the resulting expression as it is not particularly revealing. Condition B1 is infinitesimally stricter than allowing for trending joint fourth moments in \(\{y_t\} \). Notice that neither B1 nor B2 require finite joint fourth moments for \(\{y_t\} \) but place no explicit restrictions on the fourth moments \(\mathbb{E}y_t^4 \). For instance, our asymptotic results are valid under the null of independently (but possibly heterogenously) distributed Student’s \(t \) shocks with \(\nu \geq 3 \) degrees of freedom. We discuss GARCH(1,1) processes in detail below (Example 9).

Proposition 8. Let \(\{y_t\} \) be a a heteroskedastic white noise process with zero mean and let

\[
T^{-1} \sum_{t=1}^{T} \mathbb{E}y_t^2 \xrightarrow{p} \sigma^2 < \infty.
\]
CHAPTER 1. MULTI-SCALE TESTS FOR SERIAL CORRELATION

Under Assumption B

\[\sqrt{\frac{T \sigma^4}{4s_T^2(z)}} \left(\hat{\epsilon}_{m,T} - \frac{1}{2m} \right) \overset{d}{\rightarrow} N(0,1), \]

where \(s_T(z) \) is defined in Equation (1.1).

Proposition 8 suggests the following definition for a test statistic

\[GS_m = \sqrt{\frac{T \sigma^4}{4 \text{avar}(z)}} \left(\hat{\epsilon}_{m,T} - \frac{1}{2m} \right), \]

where \(\text{avar}(z) \) is the probability limit of \(s_T^2(z) \). To implement the test, generally the asymptotic variance of \(\{z_t\} \) needs to be estimated. The asymptotic results considered here extend seamlessly to the case of estimated normalizations (Davidson, 1995, Chapter 25). Generally any estimator from the class of kernel estimators is appropriate.\(^{11}\)

Example 9 (GARCH(1,1) with \(\alpha \)-mixing innovations). Consider again Example 5. A straightforward generalization of of Hansen’s computation (1991, Proof of Theorem 1, page 185) shows that \(\{y_t y_{t-1}\} \) is \(L_2 \)-NED if and only if condition (1.13) with \(p = 4 \) is satisfied. Specifically, \(\{y_t y_{t-1}\} \) is \(L_2 \)-NED whenever

\[\beta^4 + 4\alpha\beta^3 \mu_t^2 + 6\alpha^2\beta^2 \mu_t^4 + 4\alpha^3\beta \mu_t^6 + \alpha^4 \mu_t^8 \leq 1 \quad \text{a.s. for all } t, \]

in which \(\mu_t^k = \mathbb{E}[\epsilon^k | F_{-\infty}] \). If \(\epsilon_t \sim N(0,1) \) are i.i.d., the condition reads

\[\beta^4 + 4\beta^3 \alpha + 18\beta^2 \alpha^2 + 60\beta \alpha^3 + 105\alpha^4 \leq 1 \quad \text{a.s. for all } t. \]

The solution set of this inequality is depicted in Figure 1.2.

Estimating the asymptotic variance is not always necessary. If \(y_t \) is a white noise whose cross-joint cumulants of order four are zero, the asymptotic variance of test can be computed exactly. More specifically, let \(X_{t}^{ijkl} = (X_{t-i}, X_{t-j}, X_{t-k}, X_{t-l}) \) and \(\xi \) a vector

\(^{11}\)See Andrews (1991) for a general theory of kernel estimators. Among several approaches and kernel choices we did not find significant differences pointing to a strong preference for one method over the others.
Figure 1.2: Let \(\{\epsilon_t\} \) be a identically and independently normally distributed. Let \(x_t = \sigma_t \epsilon_t \) and \(\sigma_t^2 = \omega + \beta \sigma_{t-1}^2 + \alpha x_{t-1}^2 \) for some real numbers \(\omega, \beta, \) and \(\alpha \). The pink region depicts the solution to the inequality \(\beta^2 + 2\alpha \beta + \alpha^2 \mu_t^4 < 1 \). In this case \(x_t \) satisfies Assumption A. The purple region depicts the solution to the inequality \(\beta^4 + 4\beta^3 \alpha + 18\beta^2 \alpha^2 + 60\beta \alpha^3 + 105\alpha^4 \leq 1 \). In this case \(x_t \) satisfies Assumption B.
in \mathbb{R}^4 and $M(\xi)$. be the moment generating function X_{ijkl}^{ijkl}

$$M_{ijkl}^{ijkl}(\xi) = \mathbb{E} \exp(\xi'X_{ijkl}^{ijkl})$$

has as coefficients of its Taylor expansion

$$M(\xi) = \sum_a \xi_a \kappa^a + \frac{1}{2!} \sum_{a,b} \xi_a \xi_b \kappa^{ab} + \frac{1}{3!} \sum_{a,b,c} \xi_a \xi_b \xi_c \kappa^{abc} + \cdots$$

The cumulants of X_{ijkl}^{ijkl} are defined as the coefficients $\kappa^{(*)}$ in the Taylor expansion

$$\log M(\xi) = \sum_a \xi_a \kappa^a + \frac{1}{2!} \sum_{a,b} \xi_a \xi_b \kappa^{a,b} + \frac{1}{3!} \sum_{a,b,c} \xi_a \xi_b \xi_c \kappa^{a,b,c} + \cdots$$

Notice how commas separating indexes serve to distinguish cumulants from moments when necessary.

Corollary 10. Let $\{y_t\}$ be white noise process with zero four order cumulants. Then

$$\sqrt{\frac{T}{a_m}} \left(\hat{E}_{m,T} - \frac{1}{2m} \right) \rightarrow N(0,1)$$

with

$$a_m = \sum_{s \in \mathbb{Z}} \sum_{i = i_{min}}^{i_{max}} \sum_{j > i} h_{m,i} h_{m,j} h_{m,i-s} h_{m,j-s},$$

where h_m is the wavelet filter used in the construction of \hat{E}_m and

$$i_{min} = \max(0,s), \quad i_{max} = \min(L_m, L_n + s) - 2, \quad j_{max} = \min(L_m, L_n + s) - 1.$$

The computation of a_m is trivial but tedious.\(^{12}\) The following Corollary contains several asymptotic results for the Haar filter.

Corollary 11 (Asymptotics for the Haar filter). Let $h_1 = (\frac{1}{2}, -\frac{1}{2})$ (the Haar filter).

\(^{12}\) We implement a routine in a symbolic algebra program (Mathematica) to compute both exact and approximate values of a_m for different filters and different resolution scales. The source code is available upon request.
The G_{S_m} test statistics for the scales 1 to 4 are

\[
\sqrt{4T} \left(\hat{\epsilon}_{1,T} - \frac{1}{2} \right), \quad \sqrt{\frac{32T}{3}} \left(\hat{\epsilon}_{2,T} - \frac{1}{4} \right), \quad \sqrt{\frac{256T}{15}} \left(\hat{\epsilon}_{3,T} - \frac{1}{8} \right), \quad \sqrt{\frac{2048T}{71}} \left(\hat{\epsilon}_{4,T} - \frac{1}{16} \right),
\]

respectively. Their asymptotic distribution is the standard normal.

1.3.1 Multivariate multiscale tests

Each test in the G_S family has a particularly strong power against specific alternatives. For example, for $m = 1$, the test is particularly powerful against AR(1) and MA(1) alternatives, while for $m = 2$, the test has significant power against AR(2) and MA(2) alternatives. In the reminder of this section we derive the asymptotic joint distribution of these tests. These results will allow us to combine these tests to gain power against a wide range of alternatives.

Theorem 12. Let $\{y_t\}$ be a heteroskedastic white noise process with zero mean. Under Assumption B, the vector $(G_{S_1}, \ldots, G_{S_N})$ has asymptotic distribution $N(0, \Sigma)$, where

\[
\Sigma_{i,j} = \frac{\text{acov}(z_i z_j)}{\text{avar}(z_i) \text{avar}(z_j)}.
\]

Moreover, Large sample inference can be implemented using the test statistics

\[
G_{SM_N} = (G_{S_1}, \ldots, G_{S_N})\Sigma^{-1}(G_{S_1}, \ldots, G_{S_N})^T,
\]

which is asymptotically distributed as a χ^2_N distribution.

The proof of this results follows closely the proof of Proposition 8, we omit it in the interest of space. Large sample inference on the values of the vector $(G_{S_1}, \ldots, G_{S_N})$ can be handily implemented using the χ^2 distribution. Indeed, it is a standard result (see Bierens, 2004, Theorem 5.9, page 118) that for a multivariate normal n-dimensional vector X and a non-singular $n \times n$ matrix Σ, $X^T \Sigma^{-1} X$ is distributed as a χ^2_n. Accordingly, we define the test statistics

\[
G_{SM_N} = (G_{S_1}, \ldots, G_{S_N})\Sigma^{-1}(G_{S_1}, \ldots, G_{S_N})^T,
\]
whose asymptotic distribution is a χ^2_N.

As before, if the fourth cumulants of y_t vanish, the asymptotic variance can be computed explicitly as a function of the filters $\{h_m\}$. Let

$$\gamma_{m,n}(s) = \sigma^4 \sum_{i=i_{\text{min}}}^{i_{\text{max}}} \sum_{j \geq i} h_{m,i} h_{m,j} h_{n,l-s} h_{n,k-s}$$

with

$$i_{\text{min}} = \max(0, s), \quad i_{\text{max}} = \min(L_m, L_n + s) - 2, \quad j_{\text{max}} = \min(L_m, L_n + s) - 1.$$ Define, furthermore,

$$a_{m,n} = \frac{1}{\sigma^4} \sum_{s \in \mathbb{Z}} \gamma_{m,n}(s)$$

and let A be an $N \times N$ matrix with ones on the main diagonal and off-diagonal entries

$$A_{mn} = \frac{a_{m,n}}{\sqrt{a_{m}a_{n}}}$$

Corollary 13. The vector (GS_1, \ldots, GS_N) has asymptotic distribution $\mathcal{N}(0, A)$.

In the case of the Haar filter we have:

Corollary 14 (Multi-scale asymptotics for the Haar filter).

$$\begin{pmatrix} GS_1 \\ GS_2 \\ GS_3 \end{pmatrix} \xrightarrow{d} \mathcal{N}(0, A), \quad \text{with} \quad A = \begin{pmatrix} 1 & -1/\sqrt{6} & -5/\sqrt{60} \\ -1/\sqrt{6} & 1 & 2/\sqrt{360} \\ -5/\sqrt{60} & 2/\sqrt{360} & 1 \end{pmatrix}.$$

1.4 Asymptotic Local Power and Finite Sample Performance

In this section, we evaluate the GSM test family generated by the Haar filter using two criteria, namely asymptotic local power and finite sample performance.\(^{13}\)

First, we illustrate, through an example, the inconsistency of the family GSM_N.

\(^{13}\)Results for other wavelet filters are similar and available from the authors upon request.
Consider the spectrum S_y of the stochastic process y:

$$S_y(f) = \begin{cases}
\frac{1}{2} + \frac{1}{4}sin(8\pi f) & \text{if } f \in \left(\frac{1}{4}, \frac{1}{2}\right] \\
\frac{1}{2} + \frac{1}{8}sin(16\pi f) & \text{if } f \in \left(\frac{1}{8}, \frac{1}{4}\right] \\
\vdots
\end{cases}$$

(1.14)

Figure 1.3: Spectrum of an ARMA model of infinite degree. No test of the GSM family is consistent against this alternative.

The spectrum $S_f(y)$ is shown in Figure 1.3 and it is non-flat and, hence, the corresponding time series is correlated. At the same time the area underneath S_y within any of the blocks considered by the dyadic decomposition of the frequency space is consistent with the equipartition of variance result valid for white noise processes (Theorems 3 and 4).

For a feasible wavelet filter whose Fourier transform is H, a process x for which the test is inconsistent is one whose spectrum S_x is a solution to the integral equation $H \ast S_x = S_y$, where \ast denotes convolution and S_y is given by (1.14).

At the same time, for any finite ARMA model there is a test in the $\{GSM_N\}$ family which is consistent against it. Recall that the spectrum of a finite ARMA process is a
trigonometric rational function in the frequency domain (Theorem 4.4.2 Brockwell and Davis, 2009, page 121):

\[S_y(f) = \frac{P(f)}{Q(f)} \]

(1.15)

where \(P(f) \) and \(Q(f) \) are trigonometric polynomials. With no loss of generality, assume that \(\text{var}(y) = 1 \). Let \(\mathcal{F} \) be the set of solutions to the equation

\[\frac{P(f)}{Q(f)} - \frac{1}{2} = 0, \]

(1.16)

and let \(f_{\text{min}} \) be

\[f_{\text{min}} = \min_{f > 0} \{ f \in \mathcal{F} \}. \]

Since Equation (1.16) has only a finite number of solutions on a compact set (see Powell, 1981), \(f_{\text{min}} \) is well defined and positive. Choose \(k \) such that

\[2^{-k-1} < f_{\text{min}}, \]

then the test \(GS_k \) is consistent against \(H_1 : S_y(f) = \frac{P(f)}{Q(f)} \). Indeed, \(S_y(f) > 1/2 \) or \(S_y(f) < 1/2 \) for all \(f \) in \((2^{-k-1}, 2^{-k-2}) \) and therefore the expected value of \(GS_k \) on the process \(y \) with spectrum \(S_y \) is \(\mathbb{E}[GS_k(X_f)] \neq 0 \).

1.4.1 Asymptotic Local Power

Let \(\chi^2_\ell(c) \) denote the non-central \(\chi^2 \) distribution with non-centrality parameter \(c \) and \(\ell \) degrees of freedom. Consider the family of alternative hypothesis

\[H_{1,T} : S_T(f) = T^{-1/2} \left(S(f) - \frac{1}{2} \right) + \frac{1}{2}, \]

(1.17)

where \(S(f) \) is a non-constant spectrum. Recall that

\[\mathcal{E}_k = \int_{2^{-k-1}}^{2^{-k}} |H_k(f)|^2 S(f) df \]

and that, in probability, \(\widehat{\mathcal{E}}_k \to \mathcal{E}_k \) and, therefore, \(GS_k(X) \to \mathcal{E}_k/\mathcal{E}_0 - 1/2^k \). Let

\[TGS_N = \sqrt{T} \mathbb{E}(GS_1(X), \ldots, GS_N(X)) \]
\[\left(\mathcal{E}_1 / \mathcal{E}_0 - 1/2^1, \ldots, \mathcal{E}_N / \mathcal{E}_0 - 1/2^N \right). \]

Since the estimator of the covariance matrix of \((GS_1(X), \ldots, GS_N(X)) \) is consistent under \(H_{1,T} \), it follows that the distribution of the test \(GS_N \) is the non-central \(\chi^2_N(c) \), where

\[
c = T \ast GSM_N(X) = TGS'_{1,N} \text{var}(TGS_{1,N})^{-1}TGS_{1,N}.
\]

Therefore the asymptotic local power of \(GSM_N \) is given by

\[
\Pr(\chi^2_N(c) > \chi^2_{N,1-\alpha}),
\]

where \(\chi^2_{N,1-\alpha} \) denotes the \((1 - \alpha)\)-quantile of a \(\chi^2_N \) distribution.

Figure 1.4: Asymptotic rejection rates at the nominal level \(\alpha = 0.10 \) against a two-dimensional AR family. The first and second plot (left and center, respectively) depict the asymptotic rejection rate of the one dimensional tests \(GS_1 \) and \(GS_2 \) together with their 0.10 level (in black). The third plot (right) shows the asymptotic power of the bivariate test \(GSM_2 \): in this case the 0.10 level is only one point, corresponding to \(\alpha_1 = \alpha_2 = 0 \).

Figure 1.4 plots the asymptotic rejection rate for the nominal level \(\alpha = 0.05 \) against the two dimensional family of alternatives

\[y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \epsilon_t \]

where \(\epsilon_t \) is Gaussian white noise. The first and second plot (left and center) depict the asymptotic power of the univariate tests \(GS_1 \) and \(GS_2 \) for the Haar wavelet. The black lines correspond to the 0.10 levels and highlight the subset of the parameter space for which the tests are inconsistent. The third plot (right) shows the asymptotic power
of the bivariate test GSM₂: its 0.10 level is the intersection of the 0.10 levels for the univariate tests and it consists of only one point, the origin \((\alpha_1, \alpha_2) = (0, 0)\).

1.4.2 Monte Carlo Simulations

Feasible tests are obtained from Theorem 12 by replacing the matrix \(\Sigma\) with a known matrix. A natural choice is to replace all the asymptotic quantities with consistent estimators, for example using the Newey and West (1987) estimator. We denote the corresponding statistic with \(GSM\), and also consider two additional feasible statistics:

1. First, the test statistics can be computed under the assumption that the fourth order cumulants vanish, combining Corollary 11 and 14. We denote these statistics \(GS^g\) and \(GSM^g\) in the univariate case and multivariate case, respectively.

2. Second, each level \(GS_i\) can be computed using an estimator of the long run variance (again, we use the Newey and West’s estimator) while using the asymptotic covariance matrix implied by vanishing fourth order cumulants. This feasible statistic is denoted with \(GSM^\Delta\).

The \(GS^g\) and \(GSM^g\) tests display accurate empirical size in small samples. With 100 observations and 50,000 replications, the rejection rates at the 1% level against \(y_t \sim \mathcal{N}(0,1)\) are 0.78%, 1.07%, and 0.82% for the tests \(GS^g_1\), \(GS^g_2\), and \(GSM^g_2\), respectively. At the 5% nominal level, the rejection rates are 4.72%, 4.52%, 4.77%. Tables 1.1 and 1.2 contain a systematic comparison of the rejection rates of \(GSM^g_2\), \(GSM^\Delta\), \(GSM_2\), the \(Q_k\) test of Box and Pierce (1970), and the Esconciano-Lobato test (EL, see Escanciano and Lobato, 2009). We consider sample sizes of 100, 300, 1000, and 5,000 observations and compute the empirical rejection rates form 50,000 replications of the following five different data generating processes under the null hypothesis:

1. A standard normal process \(y_t\), such that \(y_t \sim \mathcal{N}(0,1)\);

2. A GARCH(1,1) process with i.i.d. standard normal innovations,

\[
y_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0,1), \quad \sigma_t^2 = 0.001 + 0.05y_{t-1}^2 + 0.90\sigma_{t-1}^2 ;
\]

3. A GARCH(1,1) process with i.i.d innovations following a Student’s \(t\) with 5 degrees of freedom (and an otherwise identical specification as above)
(4) An EGARCH(1,1) process with i.i.d standard normal innovations

\[y_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0,1), \quad \log \sigma_t^2 = 0.001 + 0.5|\epsilon_t| - 0.2\epsilon_t + 0.95\sigma_{t-1}^2; \]

(5) An mixture of two normals \(N(0,1/2) \) and \(N(0,1) \) with mixing probability 1/2.

(6) An heterogeneous normal with trending mean: \(y_t \sim N(0,t) \).

For a small sample size (100 observations), the \(GSM_2^2 \) test has an accurate rejection rate across several of the models analyzed, both at the 1\% level and the 5\% level, with the exception of the EGARCH model and model (6) (trending variance). With larger sample sizes (1000 and above) and in the presence of a marked deviation from normality, the gains from estimating the asymptotic covariance matrix are significant. Indeed, under these circumstances, the size of the \(GSM_{1,2} \) is accurate across all models (in particular at the 5\% level). In general, the test \(GSM^\Delta \) performs satisfactorily across all models: at the 1\% level \(GSM^\Delta \) dominates \(EL \) in all cases but against EGARCH, while at the 5\% level with \(T \geq 300 \) the two test perform very similarly (although, \(EL \) maintains a significant edge against EGARCH).

Figure 1.5 illustrates the empirical power functions of the tests \(GS_1^q \), \(GS_2^q \), and \(GSM_2^q \) against two one-dimensional families of alternatives, an AR(1) model (AR1: \(y_t = \alpha y_{t-1} + \epsilon_t \)) and a restricted AR(2) model (RAR2: \(y_t = \alpha y_{t-2} + \epsilon_t \)) with standard normal innovations. The rejection rates are computed with respect to a 1\% nominal size for sample sizes of 100, 300, and 1000 observations. From the first row, it is apparent that the test \(GS_1^q \) has strong power against an AR1 alternative while at the same time its power is practically orthogonal to an RAR2 deviation from the null. The second row shows that the test \(GS_2^q \) has a complementary behavior: its power against AR1 deviations from the null is uneven, while it displays strong power against RAR2 deviations from the null. Finally, the last row illustrates how the joint test \(GSM_2^q \) incorporates the best properties of the single scale tests. The power of \(GSM_2^q \) is consistently high against AR1 and RAR2 alternatives. The panels in Figure 1.5 also show that the power of the various tests increases steadily as the sample size increases.

To further understand how the power of the \(GS \) test family varies against the two-parameter family

\[y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \epsilon_t, \quad \epsilon_t \sim N(0,1), \quad (1.18) \]
we plot in Figure 1.6 the contours of the power surface obtained varying α_1 in the interval $(-0.50, 0.50)$ and α_2 in $(-0.45, 0.45)$. Simulations are carried out for a grid of values of the parameters spaced by 0.05 ans intermediate values are interpolated. The black lines correspond to 25%, 50%, 75%, and 100% percent power (starting from the center), while the grey lines correspond to 5% increments. Approximately, contour lines of the power function of GS_1^g test (first panel) run vertically, an indication that the first scale test is not very sensitive to variations in the parameter α_2. This picture is approximately reversed in the second panel: the contour lines for the GS_2^g test run horizontally. In the third panel we see that the contour lines of the multi-scale test GSM_2^g are, even in small samples, close to ellipses, the shape predicted by our asymptotic results.

In the remainder of this section we restrict our analysis to a size of 1% (results are similar at the 5% level) and a sample size of 100 observations.

An accurate analysis is contained in Table 1.3, where we compare the size adjusted power of the three tests against the two-dimensional Gaussian AR(2) alternative defined in Equation (1.18). The first column contains the size adjusted power of each test for various alternatives.\(^{14}\) In the second column we report the relative power gains of the multi-scale test GSM_2^g with respect to the LB tests, the BP test and the EL test. Against the great majority of the alternatives the GSM_2^g test outperforms the BP and LB tests.\(^{15}\) The GSM_2^g test clearly outperforms the EL test when the first order parameter is negative ($\alpha_1 < 0$) with a power improvement of up to 125%. When α_1 is positive, neither test has a clear edge, with variations in power against various alternatives between $+44\%$ and -49%.\(^{16}\)

In Table 1.4 we repeat the previous power analysis for AR(2) models with innovations driven by a GARCH(1,1) process (with the same parameters as in model (5)). Qualitatively the results are unchanged: the GSM_2^g outperforms the BP and LB tests across a wide variety of alternatives (by up to 283% and 311%, respectively); the GSM_2^g also outperforms the EL test when the first order autoregressive coefficient is negative (by up to 134%), while when $\alpha_1 > 0$, neither test has a clear advantage.

\(^{14}\)Size adjusted power is computed using, for a given sample size, the empirical critical values obtained from Monte Carlo simulations with 100,000 replications.

\(^{15}\)Analogous results hold for Gaussian MA(2) and Gaussian ARMA(2,2) alternatives. The results are very close to those of Table 1.3. These results are available upon request.

\(^{16}\)Despite our adjustments, sized-distortions remain because of the random nature of the Monte Carlo simulations.
In econometric practice, it necessary to choose a value for N. Ultimately, this choice is dictated by the amount of data available, as deeper wavelet decompositions consume more degrees of freedom. According to Percival and Walden (2000), the properties of the wavelet variance estimator are well approximated by its asymptotic distribution whenever $T - L_{h,m} > 128$, where $L_{h,m}$ is the length of the mth level filter. Recall that $L_{h,m} = (2^m - 1)(L_h - 1) + 1$, where L_h is the length of wavelet filter. We report some size and power simulations comparing various of N up to 6. Table 1.5 shows that in general there is a trade off between the depth of the wavelet decomposition and the sample size: for small sample size, a shallower wavelet decomposition has better size properties.

To investigate power as N is allowed to vary, we consider the restricted autoregressive model $rar(p)$ as $y_t = 0.1y_{t-p} + \epsilon_t$ for $p = 1, 2, 4$. Table 1.6 illustrates another tradeoff: lower values of N correspond to higher power but only against ARMA models of lower order.

Finally, in our simulations the choice of the wavelet family was generally influential, with small idiosyncratic differences across various nulls and alternative models.

1.5 Application to High Frequency Financial Data

In this section we apply our test and the AQ test to high frequency market data, specifically to returns from transactions of Apple Inc. (AAPL). We use intraday data from January 2, 2012 to December 28, 2012 and restrict our sample to the 10 minutes time interval from 11:50 to 12:00. Using data from TAQ we construct 1-second returns from transactions for the entire period and test each day for serial correlation, so that for each test the sample consists of 600 observations. Serial correlation at high frequency is on one hand related to liquidity measures (as an indirect estimate of the bid-ask spread, see Roll, 1984) and on the other to market efficiency (see, for example, Jegadeesh and Titman, 2001).

The average p-values over the 251 testing days for the tests GM_4^A, GSM_4 and AQ are 0.0077, 0.0109, and 0.0130, respectively (we do not report the other test because of the large size distortions). On average, our wavelet based tests reject the null of no serial correlation slightly more strongly than the AQ test. This example shows that our test can be useful in econometric practice.
1.6 Conclusions

We use the wavelet coefficients of the observed time series to construct a test statistics in the spirit of Von Neumann variance ratio tests. In our approach, there is no intermediate step such as the estimation of the spectral density for the null and alternative hypotheses. Therefore, we are not constrained with the rate of convergence of nonparametric estimators.

Our analysis of consistency and power does not apply to more general local alternatives, such as

$$H_{1,t} : S_y(f) = T^{-1/2} \left(S(f; T) - \frac{1}{2} \right) + \frac{1}{2},$$

where the lag order is allowed to grow with T. On one hand, we have already established that all tests are inconsistent against certain carefully designed alternatives. On the other, we expect that, much like variance tests in the spirit of Lo and MacKinlay (1989), there is an optimal choice of N that will maximize power(see for example Deo and Richardson, 2003; Perron and Vodounou, 2005). A related, and more general, issue is that of choosing optimally the wavelet decomposition to be used. Intuitively, it is clear that, for a given alternative, there is a choice of frequency bands that will maximize power, namely those bands that deviate the most from the white noise baseline. The development of an adaptive version of the current test could resolve the problem of inconsistency while providing better all round power properties.

Another natural extension of the portmanteau framework is through the residuals of a regression model. In the linear regression setting, the most well-known test for serial correlation is the d-test of Durbin and Watson (1950). Alternative tests proposed by Breusch (1978) and Godfrey (1978) are based on the Lagrange multiplier principle, but although they allow for higher order serial correlation and lagged dependent variables, their finite sample performance can be poor. Our current framework can be generalized to residual-based tests and it embeds Durbin-Watson's d-test as a special case. These extensions are currently under investigation by the authors.
CHAPTER 1. MULTI-SCALE TESTS FOR SERIAL CORRELATION

Table 1.1
Rejection probabilities under the null hypothesis at 1% nominal level

Rejection probabilities in percentages of tests with nominal levels of 1% against five different data generating processes under the null hypothesis:

(1) A standard normal process $y_t \sim N(0, 1)$;

(2) A GARCH(1,1) process with i.i.d. standard normal innovations,
\[
y_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0, 1), \quad \sigma^2_t = 0.001 + 0.05y_{t-1}^2 + 0.90\sigma^2_{t-1};
\]

(3) A GARCH(1,1) process with i.i.d innovations following a Student’s t with 5 degrees of freedom;

(4) An EGARCH(1,1) process with i.i.d standard normal innovations
\[
y_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0, 1), \quad \log \sigma^2_t = 0.001 + 0.5|\epsilon_t| - 0.2\epsilon_t + 0.95\sigma^2_{t-1};
\]

(5) An mixture of two normals $N(0, 1/2)$ and $N(0, 1)$ with mixing probability 1/2.

(6) An heterogeneous normal with trending mean: $y_t \sim N(0, t)$.

The tests GSM^{y}, GSM^{A}, and GSM are computed assuming zero fourth order cumulants, estimating the scaling coefficients, and estimating scaling coefficients and asymptotic covariance matrix, respectively; Q_k is the Box and Pierce test with k lags; EL is the Escanciano and Lobato test. All size simulations based on 50,000 replications.

<table>
<thead>
<tr>
<th></th>
<th>$N(0, 1)$</th>
<th>$N(0, 1)$-GARCH(1,1)</th>
<th>t_5-GARCH(1,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>100 300 1000 5000</td>
<td>100 300 1000 5000</td>
<td>100 300 1000 5000</td>
</tr>
<tr>
<td>GSM_y</td>
<td>0.82 0.92 0.87 1.04</td>
<td>1.32 1.81 1.62 1.86</td>
<td>1.76 2.84 4.04 5.16</td>
</tr>
<tr>
<td>GSM_A</td>
<td>2.75 1.47 1.12 1.21</td>
<td>2.60 1.65 1.12 1.22</td>
<td>2.14 1.04 1.20 1.12</td>
</tr>
<tr>
<td>GSM_2</td>
<td>5.25 2.75 1.87 1.54</td>
<td>5.13 2.72 1.64 1.55</td>
<td>4.26 2.14 1.70 1.25</td>
</tr>
<tr>
<td>Q_5</td>
<td>0.86 0.88 0.95 1.06</td>
<td>1.22 1.94 1.81 2.17</td>
<td>1.81 3.59 5.67 7.51</td>
</tr>
<tr>
<td>Q_{10}</td>
<td>0.90 1.02 1.03 1.08</td>
<td>1.60 2.34 2.26 2.70</td>
<td>1.95 4.24 7.08 10.51</td>
</tr>
<tr>
<td>Q_{20}</td>
<td>0.88 1.15 1.02 1.14</td>
<td>1.51 2.40 2.59 2.63</td>
<td>1.59 4.98 8.51 12.08</td>
</tr>
<tr>
<td>EL</td>
<td>2.73 2.28 1.71 1.23</td>
<td>2.65 2.68 1.80 1.36</td>
<td>2.17 1.94 1.78 1.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$N(0, 1)$-EGARCH(1,1)</th>
<th>Mixture of Normals</th>
<th>Trending σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>100 300 1000 5000</td>
<td>100 300 1000 5000</td>
<td>100 300 1000 5000</td>
</tr>
<tr>
<td>GSM_y</td>
<td>8.45 19.67 32.22 45.52</td>
<td>0.86 0.90 0.98 1.24</td>
<td>2.63 2.87 2.88 3.05</td>
</tr>
<tr>
<td>GSM_A</td>
<td>1.65 0.66 0.46 0.55</td>
<td>2.64 1.40 1.32 1.40</td>
<td>1.72 1.20 1.11 1.19</td>
</tr>
<tr>
<td>GSM_2</td>
<td>4.14 1.84 1.06 0.91</td>
<td>4.98 2.63 1.93 1.73</td>
<td>4.48 2.19 1.84 1.55</td>
</tr>
<tr>
<td>Q_5</td>
<td>12.15 30.15 49.57 67.07</td>
<td>0.93 0.79 1.09 1.03</td>
<td>3.49 3.99 4.34 4.86</td>
</tr>
<tr>
<td>Q_{10}</td>
<td>12.15 36.45 59.61 79.79</td>
<td>0.88 0.94 0.97 1.02</td>
<td>4.28 5.57 6.22 6.93</td>
</tr>
<tr>
<td>Q_{20}</td>
<td>8.40 35.13 63.07 84.86</td>
<td>0.83 0.90 1.04 0.99</td>
<td>4.38 7.90 9.62 10.18</td>
</tr>
<tr>
<td>EL</td>
<td>1.98 1.93 1.38 1.17</td>
<td>2.58 2.28 1.83 1.55</td>
<td>2.56 2.31 1.87 1.26</td>
</tr>
</tbody>
</table>
Table 1.2
Rejection rates under the null hypothesis at 5% nominal level

Rejection probabilities in percentages of tests with nominal levels of 5% against five different data generating processes under the null hypothesis:

1. A standard normal process $y_t \sim N(0, 1)$;
2. A GARCH(1,1) process with i.i.d. standard normal innovations,
 \[y_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0, 1), \quad \sigma_t^2 = 0.001 + 0.05y_{t-1}^2 + 0.90\sigma_{t-1}^2; \]
3. A GARCH(1,1) process with i.i.d innovations following a Student’s t with 5 degrees of freedom;
4. An EGARCH(1,1) process with i.i.d standard normal innovations
 \[y_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0, 1), \quad \log \sigma_t^2 = 0.001 + 0.5|\epsilon_t| - 0.2\epsilon_t + 0.95\sigma_{t-1}^2; \]
5. An mixture of two normals $N(0, 1/2)$ and $N(0, 1)$ with mixing probability 1/2.
6. An heterogeneous normal with trending mean: $y_t \sim N(0, t)$.

The tests GSM^g, GSM^A, and GSM are computed assuming zero fourth order cumulants, estimating the scaling coefficients, and estimating scaling coefficients and asymptotic covariance matrix, respectively; Q_k is the Box and Pierce test with k lags; EL is the Escanciano and Lobato test. All size simulations based on 50,000 replications.

<table>
<thead>
<tr>
<th>T</th>
<th>$N(0, 1)$</th>
<th>$N(0, 1)$-GARCH(1,1)</th>
<th>t_5-GARCH(1,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>300</td>
<td>1000</td>
</tr>
<tr>
<td>GSM^g_1</td>
<td>4.77</td>
<td>4.71</td>
<td>4.74</td>
</tr>
<tr>
<td>GSM^g_2</td>
<td>9.21</td>
<td>6.32</td>
<td>5.53</td>
</tr>
<tr>
<td>GSM</td>
<td>13.32</td>
<td>8.37</td>
<td>7.12</td>
</tr>
<tr>
<td>Q_5</td>
<td>4.12</td>
<td>4.75</td>
<td>4.74</td>
</tr>
<tr>
<td>Q_{10}</td>
<td>4.06</td>
<td>4.53</td>
<td>4.64</td>
</tr>
<tr>
<td>Q_{20}</td>
<td>3.20</td>
<td>4.29</td>
<td>4.49</td>
</tr>
<tr>
<td>EL</td>
<td>7.80</td>
<td>6.70</td>
<td>5.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>$N(0, 1)$-EGARCH(1,1)</th>
<th>Mixture of Normals</th>
<th>Trending σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>300</td>
<td>1000</td>
</tr>
<tr>
<td>GSM^g_1</td>
<td>18.37</td>
<td>33.17</td>
<td>46.74</td>
</tr>
<tr>
<td>GSM^g_2</td>
<td>6.22</td>
<td>3.83</td>
<td>3.21</td>
</tr>
<tr>
<td>GSM</td>
<td>10.80</td>
<td>6.43</td>
<td>4.73</td>
</tr>
<tr>
<td>Q_5</td>
<td>24.32</td>
<td>45.80</td>
<td>64.90</td>
</tr>
<tr>
<td>Q_{10}</td>
<td>23.53</td>
<td>51.90</td>
<td>73.62</td>
</tr>
<tr>
<td>Q_{20}</td>
<td>16.86</td>
<td>50.37</td>
<td>77.03</td>
</tr>
<tr>
<td>EL</td>
<td>6.64</td>
<td>5.65</td>
<td>5.11</td>
</tr>
</tbody>
</table>
Figure 1.5: Empirical power functions of the tests GS_1^g, GS_2^g, and GSM_2^g (first, second, and third row, respectively) against AR(1) and AR(2) alternatives (first and second columns, respectively). The rejection rates are based on 5,000 replications with 1% nominal size for sample sizes of 100 (circle), 300 (triangle), and 1000 (square) observations.
\[y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \epsilon_t \]

Figure 1.6: Contours of the power surface of the tests GS_1^g, GS_2^g, and GSM_2^g against the Gaussian AR(2) alternative. Simulations are carried out for a grid of values of the parameters obtained varying α_1 in the interval $(-0.50, 0.50)$ and α_2 in $(-0.45, 0.45)$ in steps of size 0.05. Intermediate values are interpolated. From the center of each graph, the black lines correspond to the 25-th, 50-th, 75-th and 100-th quantiles, while each grey line corresponds to a 5% increment.
CHAPTER 1. MULTI-SCALE TESTS FOR SERIAL CORRELATION

Table 1.3
Size-adjusted power against Gaussian AR(2) processes

Power and relative power against the two-parameter family

\[y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \epsilon_t, \quad \epsilon_t \sim N(0, 1), \]

Simulations are carried out for set of alternatives obtained varying \(\alpha_1 \) in the interval \((-0.50, 0.50)\) and \(\alpha_2 \) in \((-0.45, 0.45)\) in increments of 0.05.

<table>
<thead>
<tr>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
<th>(G_{SM}^2)</th>
<th>(Q_{20})</th>
<th>(\text{Relative power: } (G_{SM}^2/Q_{20}) - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.30)</td>
<td>(0.00)</td>
<td>(94.3)</td>
<td>(84.7)</td>
<td>(0.30)</td>
</tr>
<tr>
<td>(0.30)</td>
<td>(0.10)</td>
<td>(76.2)</td>
<td>(58.8)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>(0.20)</td>
<td>(0.33)</td>
<td>(51.6)</td>
<td>(33.7)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>(0.10)</td>
<td>(0.32)</td>
<td>(43.8)</td>
<td>(19.9)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>(0.10)</td>
<td>(0.32)</td>
<td>(28.8)</td>
<td>(9.6)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>(0.10)</td>
<td>(0.32)</td>
<td>(26.1)</td>
<td>(9.6)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>(0.10)</td>
<td>(0.32)</td>
<td>(12.1)</td>
<td>(5.0)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>(0.10)</td>
<td>(0.00)</td>
<td>(3.6)</td>
<td>(2.2)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>(0.10)</td>
<td>(-0.10)</td>
<td>(6.1)</td>
<td>(-1.1)</td>
<td>(-0.10)</td>
</tr>
<tr>
<td>(0.10)</td>
<td>(-0.20)</td>
<td>(8.6)</td>
<td>(-3.3)</td>
<td>(-0.20)</td>
</tr>
<tr>
<td>(0.10)</td>
<td>(-0.30)</td>
<td>(23.0)</td>
<td>(-10.0)</td>
<td>(-0.30)</td>
</tr>
</tbody>
</table>
CHAPTER 1. MULTI-SCALE TESTS FOR SERIAL CORRELATION

Table 1.4
Size-adjusted power against GARCH(1,1)-AR(2) processes

Power and relative power against the two-parameter family

\[y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \epsilon_t, \]
\[\epsilon_t = \sigma_t z_t, \quad z \sim N(0, 1), \quad \sigma_t^2 = 0.001 + 0.05 y_{t-1}^2 + 0.90 \sigma_{t-1}^2. \]

Simulations are carried out for set of alternatives obtained varying \(\alpha_1 \) in the interval \((-0.50, 0.50)\) and \(\alpha_2 \) in \((-0.45, 0.45)\) in increments of 0.05.

<table>
<thead>
<tr>
<th>(GSM^2_t)</th>
<th>(Q_{20})</th>
<th>(Q_{10})</th>
<th>Relative power: ((GSM^2_t/Q_{20}) - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_t)</td>
<td>(z_{10})</td>
<td>(0.30)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>0.30</td>
<td>92.5</td>
<td>70.7</td>
</tr>
<tr>
<td>(0.20)</td>
<td>80.7</td>
<td>48.8</td>
<td>19.9</td>
</tr>
<tr>
<td>(0.10)</td>
<td>65.1</td>
<td>28.1</td>
<td>7.2</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>0.00</td>
<td>46.9</td>
<td>15.4</td>
</tr>
<tr>
<td>(-0.10)</td>
<td>34.4</td>
<td>8.7</td>
<td>1.8</td>
</tr>
<tr>
<td>(-0.20)</td>
<td>27.1</td>
<td>8.4</td>
<td>6.4</td>
</tr>
<tr>
<td>(-0.30)</td>
<td>30.0</td>
<td>20.9</td>
<td>23.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(LB)</th>
<th>(Q_{20})</th>
<th>(Q_{10})</th>
<th>Relative power: ((GSM^2_t/LB) - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_t)</td>
<td>(z_{10})</td>
<td>(0.30)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>0.30</td>
<td>88.1</td>
<td>55.2</td>
</tr>
<tr>
<td>(0.20)</td>
<td>60.4</td>
<td>30.2</td>
<td>11.4</td>
</tr>
<tr>
<td>(0.10)</td>
<td>38.3</td>
<td>14.6</td>
<td>4.6</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>0.00</td>
<td>19.8</td>
<td>6.2</td>
</tr>
<tr>
<td>(-0.10)</td>
<td>12.3</td>
<td>4.6</td>
<td>2.6</td>
</tr>
<tr>
<td>(-0.20)</td>
<td>14.0</td>
<td>8.8</td>
<td>6.3</td>
</tr>
<tr>
<td>(-0.30)</td>
<td>25.6</td>
<td>20.5</td>
<td>18.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(EL)</th>
<th>(Q_{20})</th>
<th>(Q_{10})</th>
<th>Relative power: ((GSM^2_t/EL) - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_t)</td>
<td>(z_{10})</td>
<td>(0.30)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>0.30</td>
<td>90.4</td>
<td>78.2</td>
</tr>
<tr>
<td>(0.20)</td>
<td>79.7</td>
<td>51.8</td>
<td>25.5</td>
</tr>
<tr>
<td>(0.10)</td>
<td>57.8</td>
<td>25.2</td>
<td>7.6</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>0.00</td>
<td>37.1</td>
<td>11.5</td>
</tr>
<tr>
<td>(-0.10)</td>
<td>26.2</td>
<td>8.3</td>
<td>3.5</td>
</tr>
<tr>
<td>(-0.20)</td>
<td>28.1</td>
<td>17.4</td>
<td>14.1</td>
</tr>
<tr>
<td>(-0.30)</td>
<td>30.0</td>
<td>45.5</td>
<td>41.4</td>
</tr>
</tbody>
</table>
CHAPTER 1. MULTI-SCALE TESTS FOR SERIAL CORRELATION

Table 1.5
Size for higher order wavelet decompositions

Rejection probabilities of tests with nominal levels of 5% against the following models for the null

(1) A standard normal process \(y_t \sim N(0,1) \);
(2) A Student-t process \(y_t \) with 3 degrees of freedom;
(3) A GARCH(1,1) process with i.i.d. standard normal innovations,

\[
y_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0,1), \quad \sigma_t^2 = 0.001 + 0.05 y_{t-1}^2 + 0.90 \sigma_{t-1}^2;
\]

All simulations based on 10,000 replications.

<table>
<thead>
<tr>
<th>model</th>
<th>(N)</th>
<th>GSM2</th>
<th>GSM3</th>
<th>GSM4</th>
<th>GSM5</th>
<th>GSM6</th>
</tr>
</thead>
<tbody>
<tr>
<td>norm</td>
<td>100</td>
<td>0.0518</td>
<td>0.0499</td>
<td>0.0563</td>
<td>0.0642</td>
<td>0.0787</td>
</tr>
<tr>
<td>t3</td>
<td>100</td>
<td>0.0385</td>
<td>0.0388</td>
<td>0.0428</td>
<td>0.0503</td>
<td>0.0664</td>
</tr>
<tr>
<td>garch</td>
<td>100</td>
<td>0.0566</td>
<td>0.0603</td>
<td>0.0667</td>
<td>0.0727</td>
<td>0.0896</td>
</tr>
<tr>
<td>norm</td>
<td>300</td>
<td>0.0468</td>
<td>0.0503</td>
<td>0.0547</td>
<td>0.0574</td>
<td>0.0650</td>
</tr>
<tr>
<td>t3</td>
<td>300</td>
<td>0.0425</td>
<td>0.0431</td>
<td>0.0433</td>
<td>0.0496</td>
<td>0.0565</td>
</tr>
<tr>
<td>garch</td>
<td>300</td>
<td>0.0644</td>
<td>0.0673</td>
<td>0.0705</td>
<td>0.0729</td>
<td>0.0831</td>
</tr>
<tr>
<td>norm</td>
<td>1000</td>
<td>0.0493</td>
<td>0.0500</td>
<td>0.0506</td>
<td>0.0518</td>
<td>0.0543</td>
</tr>
<tr>
<td>t3</td>
<td>1000</td>
<td>0.0486</td>
<td>0.0485</td>
<td>0.0493</td>
<td>0.0503</td>
<td>0.0532</td>
</tr>
<tr>
<td>garch</td>
<td>1000</td>
<td>0.0736</td>
<td>0.0755</td>
<td>0.0797</td>
<td>0.0798</td>
<td>0.0814</td>
</tr>
</tbody>
</table>
Table 1.6

Power for higher order wavelet decompositions

Rejection probabilities of tests with nominal levels of 5% against the restricted autoregressive model \(\text{rar}(p) \)

\[y_t = 0.1y_{t-p} + \epsilon_t , \quad \text{for } p = 1, 2, 4 . \]

All simulations based on 10,000 replications.

<table>
<thead>
<tr>
<th>model</th>
<th>N</th>
<th>(GSM_2^g)</th>
<th>(GSM_3^g)</th>
<th>(GSM_4^g)</th>
<th>(GSM_5^g)</th>
<th>(GSM_6^g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rar(1)</td>
<td>100</td>
<td>0.1009</td>
<td>0.0673</td>
<td>0.0496</td>
<td>0.0408</td>
<td>0.0479</td>
</tr>
<tr>
<td>rar(2)</td>
<td>100</td>
<td>0.0912</td>
<td>0.0769</td>
<td>0.0614</td>
<td>0.0506</td>
<td>0.0553</td>
</tr>
<tr>
<td>rar(4)</td>
<td>100</td>
<td>0.0404</td>
<td>0.0645</td>
<td>0.0663</td>
<td>0.0602</td>
<td>0.0641</td>
</tr>
<tr>
<td>rar(5)</td>
<td>100</td>
<td>0.0389</td>
<td>0.0568</td>
<td>0.0591</td>
<td>0.0558</td>
<td>0.0632</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rar(1)</td>
<td>300</td>
<td>0.2966</td>
<td>0.2226</td>
<td>0.1716</td>
<td>0.1359</td>
<td>0.1079</td>
</tr>
<tr>
<td>rar(2)</td>
<td>300</td>
<td>0.2376</td>
<td>0.2004</td>
<td>0.1643</td>
<td>0.1296</td>
<td>0.1049</td>
</tr>
<tr>
<td>rar(4)</td>
<td>300</td>
<td>0.0395</td>
<td>0.1308</td>
<td>0.1192</td>
<td>0.0971</td>
<td>0.0826</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rar(1)</td>
<td>1000</td>
<td>0.8152</td>
<td>0.7504</td>
<td>0.6931</td>
<td>0.6338</td>
<td>0.5752</td>
</tr>
<tr>
<td>rar(2)</td>
<td>1000</td>
<td>0.7069</td>
<td>0.6558</td>
<td>0.5866</td>
<td>0.5292</td>
<td>0.4743</td>
</tr>
<tr>
<td>rar(4)</td>
<td>1000</td>
<td>0.0399</td>
<td>0.4084</td>
<td>0.3807</td>
<td>0.3280</td>
<td>0.2838</td>
</tr>
</tbody>
</table>
Chapter 2
Economic Links and Credit Spreads

Is counterparty risk an important determinant of corporate risk? In times of distress, credit contagion is well documented; bankruptcy announcements are followed by a widening in credit defaults swaps (CDS) spreads for creditors (Jorion and Zhang, 2009). At the same time, little is known about its impact on corporate risk under general market conditions. We examine whether counterparty risk in supplier-customer relationships matters in describing the cross-sectional and time-series variation in corporate credit spreads. Along the supply chain, counterparty risk arises from two primary mechanisms, trade credit exposure and future cash flow risk. Trade credits are extended whenever payment is not made upon delivery. When payment is delayed, the supplier acts as a lender, and vice-versa, when payment is anticipated, it is the buyer that acts as a lender.\(^1\) In both circumstances, the lender takes on a risk exposure, whose magnitude depends on the size of the trade and the credit standing of the borrower. In turn, such exposure affects the credit standing of the lender. The second propagation mechanism, cash flow risk, hinges on the strength of the economic link between buyer and seller. Strong ties along the supply chain arise for several reasons. For example, a customer might share his technical knowledge for the engineering of custom-built parts, while a supplier might invest in customer-specific equipment. Such economic links are, indeed, a form of business partnership in which customers and suppliers are co-invested and

\(^1\)For a summary of the theoretical literature and a study of the determinants of credit terms, see Ng et al. (1999).
therefore exposed to the uncertainties in each others' businesses.

What emerges from these mechanisms is that the impact of these economic links rests heavily on the degree of financial commitment they imply. Normally strong commitment is difficult to observe, but the dataset we use allows for its identification. Since 1998, Regulation SFAS No. 131 requires firms to disclose those customers that account for more than 10% of their total yearly sales.\(^2\) Clearly, these relationships point to strong ties and are potential channels for the propagation of counterparty risk.

Our results establish counterparty risk, as identified by network factors, as an important determinant of credit spreads for corporate bonds. The magnitude of network effects is substantial: for a given firm, an increase of one standard deviation in the leverage of its main customers leads to a widening of its credit spread of 25 basis points on average. This figure is particularly compelling when compared to the effect of a firm’s own leverage: an increase of a standard deviation in a firm’s own leverage widens its credit spread by 50 basis points. Our result is consistent with the theoretical work of Merton (1974), in which leverage plays a key role in the pricing of corporate debt. A customer with higher leverage has on average wider spreads and, hence, a higher implied probability of default. This, in turn, reflects negatively on the supplier’s prospects (trade credits are riskier and future demand uncertain), and it eventually leads to a higher spread.

In this paper, we describe an econometric model of network effects that is appropriate for the analysis of counterparty risk. In our context, nodes represent firms, while links between them represent supplier-customer relations. The essence of our approach is best described through an analogy. Just like in time series models the basic building blocks are constructed with the help of the time lag operator, we use a network lag operator which plays a similar role, only along a different dimension. The time lag operator shifts a variable by one period and its powers refer to events more distant in the time. Instead, a network lag of a variable is the average, possibly weighted, of values from neighboring nodes. Higher powers of the network lag operator refer, intuitively, to more distant firms along the supply chain. The network lag operator allows us to define processes that include moving averages and are autoregressive along the network directions. We

\(^2\)Regulation SFAS 131 is established in FASB Statement No. 131, Disclosures about Segments of an Enterprise and Related Information (FASB, 1997). SFAS 131 is designed to increase information disaggregation, providing financial analysts with additional data about diversification strategies and exposures.
CHAPTER 2. ECONOMIC LINKS AND CREDIT SPREADS

refer to these processes as Network Autoregressive Moving Average (NARMA).

Typically, each node in a financial network is observed through time and the data sample is structured as a panel. Although this type of data is the natural domain of panel data econometrics, modeling explicitly the network structure—when available—offers important complementarities, as well as some distinct advantages, over standard panel data models. First, the standard assumption of cross-sectional independence for the disturbances for panel models often does not hold in practice. While several panel techniques are available to tackle this issue, they do not exploit the rich information about the links between the units, when available. In a network model, on the contrary, cross-sectional dependence is explicitly described in terms of a parsimonious model. Second, network models provide the ability to estimate the effects that neighboring units have on each other. While in principle allowing for individual effects can mitigate the bias introduced when ignoring these dependencies, the panel approach provides minimal information about their structural underpinnings.

The paper is organized as follows. Section 2.1 provides some background and reviews the literature. Section 2.2 is an introduction to the NARMA model. We define several basic notions from graph theory, describe the workings of the network lag operator and the general specification of the model. Section 2.3 contains the main empirical result of the paper. We describe application of our modeling framework to the analysis of counterparty risk in supplier-customer networks. Section 2.4 considers three robustness checks: we consider the issue of bi-directionality of economic links, we discuss alternative specifications, and we explore the hypothesis that network effects proxy for cross-industry covariates rather than measuring counterparty risk. We reject this hypothesis. Section 2.5 concludes.

2.1 Background and Literature Review

Recently, networks have risen to the foreground of empirical finance. Several studies document the importance of social ties in portfolio choices of retail investors and mutual

3 A textbook example is the seemingly unrelated regressions method (SURE) introduced by Zellner (1962) which can account for cross-sectional correlations in long, narrow panels; asymptotically correct inference can be achieved using the method of Driscoll and Kraay (1998) to consistently estimate standard errors. Driscoll-Kraay standard errors are robust to heteroskedasticity, cross-sectional and temporal dependence.
fund managers, in contracting decisions and as drivers of return predictability. Other works focus on the structural properties of financial networks and one of the most salient examples is the analysis of interbank loan markets. By examining the dynamic properties of the network structure and through the use of simulations, these studies try to assess how the network topology determines market liquidity and systemic risk.

Our research combines the recent literature on the econometrics of networks and the broad topic of credit risk. The origin of our modeling framework can be traced back to the field of spatial econometrics and to the literature concerned with the identification of social interactions. The monographs on spatial econometrics by Anselin (1988), LeSage and Pace (2009) and Lee and Yu (2011), and the chapter on social interactions by Blume et al. (2010) provide recent overviews of these areas. Despite many formal similarities, there are a few differences that are worth noting.

An essential ingredient in spatial models is the weight matrix, an analogue of the network lag operator that encodes information about the relative locations and distances of the spatial units. Two common critiques directed at spatial models involve the arbitrariness in the determination of the spatial units and the, sometimes, tenuous economic relevance of the weights. In contrast, nodes in a network model are identified with specific entities and the normalization of the network lag operator follows either an equal weighting scheme or is suggested by the economic setting.

Our work expands on a long series of studies of corporate credit spreads by analyzing their network determinants. At the firm level, the most important factors are leverage, volatility, and jump risk (see, among others, Cremers et al., 2008). Campbell and Taksler (2003) find that equity volatility accounts for as much variation in corporate spreads as do credit ratings. Cremers et al. (2008) calibrate a jump-diffusion firm value process from

4Hong et al. (2004) document that socially engaged households are more likely to participate in the stock market, and Cohen et al. (2008) find that portfolio managers place larger bets on firms to which they have social ties. Kuhnen (2009) shows that the contracting decisions made by mutual funds, such as selecting the board of directors and fund advisors, are influenced by past business relationships. Cohen and Frazzini (2008) suggest that investors fail to promptly take into account supplier-customer links and construct a customer momentum strategy that yield abnormal returns.

5Boss et al. (2004) and Soramaki et al. (2007) analyze the Austrian interbank market and the Fedwire Funds Service, respectively, and they both find these networks have a low average path length and low connectivity. Applying methods of network theory, Müller (2006) uses simulations to assess the risk of contagion in the Swiss interbank market.

6For example, in the supplier-customer network that we consider, the sales associated to each edge (each supplier-customer pair) provide relevant economic weights.
equity and option data and confirm the importance of including jump risk with an out-of-sample test. Besides risk determinants, market frictions are priced in the spreads. An example is the liquidity premium that investors demand for their inability to trade large quantities over a short horizon without incurring into negative price effects. Chen et al. (2007) find that liquidity is priced in both levels and changes in the yield spread, while Bao et al. (2011) quantify implicit illiquidity costs as the (negative) autocorrelation of price reversals in high frequency transaction data and reach similar conclusions.

Another area related to our paper is the literature exploring the nature of default correlations. Several authors document the clustering of corporate default in time.\(^7\) The practical repercussions are significant both from both asset pricing and risk management perspective. For example, Das et al. (2007) show that default correlations cannot be explained by the widely used doubly stochastic model of defaults.\(^8\) A possible explanation for default clustering is the dependence of default intensities on a dynamic common factor. From this viewpoint, default clustering is puzzling only to the extent that such factor is unobserved. Duffie et al. (2009) discuss a model in which the posterior distribution of the latent factor is updated at the occurrence of defaults arriving with an anomalous timing (i.e. overly clustered). A second, independent explanation for default clustering is counterparty risk. A common limitation of many studies is the abstraction from the economic links that connect the firms under consideration. In the absence of a suitable empirical framework and readily available data, such a limitation is both technical and practical. As a by-product, counterparty risk cannot be identified.

One of the few papers that is successful in isolating counterparty risk from generic credit contagion is the work of Jorion and Zhang (2009). In their study, they consider a sample of 250 bankruptcies between 1999 and 2005 and collect information about counterparty exposures as detailed in bankruptcy filings. Within this sample, equity value decreases and credit default swap spreads widen for those firms whose debtors undergo bankruptcy. Our analysis corroborates these findings but differs in that our approach not only provides evidence of counterparty risk, but it also includes a study of its determinants and of their impacts on credit spreads. Moreover, we are not restricted to events of particular gravity, such as bankruptcies, but instead examine interactions

\(^7\)See Lucas (1995), and more recently Akhavein et al. (2005), Das et al. (2006), and de Servigny and Renault (2002).

\(^8\)According to the doubly stochastic model, defaults are independent Poisson arrivals, conditional on past determinants of default intensities.
under general market conditions.

2.2 The NARMA Model

2.2.1 Networks and graphs

Networks can be represented by graphs. A graph g is a pair of sets (V,E) containing the vertices and the edges of the graph. These correspond to nodes and links in the network. In what follows, the terms network and graph are used interchangeably.

Edges can be uni-directional or bi-directional. Accordingly, the graph is called directed or undirected, respectively. A precise mathematical definition can be given as follows. An edge is identified by an ordered pair of vertices, its source and its target. Thus, the set E of all edges is a subset of $V \times V$ and, consequently, any edge e in E can be thought of as a pair (i,j), meaning that there is a edge between the node i and the node j. Therefore specifying E is the same as specifying a map

$$G : V \times V \rightarrow \{0, 1\} ,$$

such that $G(i,j) = 1$ if and only if there is an edge between (i,j). A graph is undirected (all edges are bi-directional) is the map G is symmetric, that is if $G(i,j) = G(j,i)$, for all the pairs of vertices (i,j). We assume that there are no selfloops, which is equivalent to condition $G(i,i) = 0$ for all i.

In some applications, it is useful to introduce the concept of strength of a link. A simple way of doing this is to attach a number to every edge, its weight. In practice this corresponds to extending the edge map G to the real numbers:

$$G : V \times V \rightarrow \mathbb{R} .$$

Given that the number of vertices V is finite, the map G can be interpreted as a square matrix with dimension the number of vertices, the adjacency matrix. More explicitly:

$$(G)_{ij} = G(i,j) .$$

When the graph is undirected, the matrix G is symmetric. In particular the sum of the entries of the i-th row is equal to the sum of the entries of the i-th column. Intuitively,
this means that the vertex \(i \) influences the same number of nodes by which it is influenced. A typical weighting scheme is a simple uniform normalization where each non-zero row is divided by the sum of its entries.

The successive powers of the adjacency matrix capture the topology of the graph. A walk from node \(i \) to node \(j \) of length \(k \) is a succession of \(k \) edges starting at \(i \) and ending at \(j \).\(^9\) More precisely, the matrix entry \((G^k)_{ij}\) is equal to the number of walks from node \(i \) to node \(j \) of length \(k \).

The following proposition characterizes the powers of the adjacency matrix:

Proposition 15. (Van Mieghem, 2010, pag. 26, Lemma 3) The matrix entry \((G^k)_{ij}\) is equal to the number of walks from node \(i \) to node \(j \) of length \(k \).

Proposition 15 holds whether the graph is directed or undirected. When the graph is weighted, the task of interpreting higher powers of the adjacency matrix is more complex.

2.2.2 Basic properties of NARMA models

The next step is to recognize that the adjacency matrix is a linear operator on vectors of vertex characteristics. We refer to this operator as the *Network Lag Operator* (NLO). Indeed, let \(x \) be an \(n \)-dimensional vector of vertex characteristics (i.e. \(x_i \) is some property of node \(i \)). Since the matrix \(G \) is an \(n \times n \) matrix, \(x \) can be right multiplied by \(G \). A *NARMA* process of order \((p,q)\) is a stochastic process \(y \) on a network \(g \) (i.e. indexed by the nodes of the network \(g \)) that follows the data generating process

\[
y = \sum_{i=1}^{p} \alpha_i G^i y + \sum_{j=0}^{q} \beta_j G^j x + \epsilon ,
\]

where \(x \) is an \((n \times 1)\)-dimensional vector, \(\{\alpha_i\} \) and \(\{\beta_j\} \) are families of real parameters, \(G \) is the adjacency matrix (weighted or unweighted) of the network \(g \), and \(\epsilon \) is an \((n \times 1)\)-dimensional vector of disturbances. More generally \(x \) can be an \(n \times k \) matrix of exogenous characteristics and each \(\beta_j \) is a \(1 \times k \) vector.

To further understand the action of the network lag operator, consider the following three alternative uses of the adjacency matrix. First, \(G \) can taken to be the (unweighted)\(^9\) generally, a *walk* is not *path*. A path on a graph is to a succession of edges that does not visit the same vertex more than once, i.e. a path is a walk in which all vertices are different.
adjacency matrix of a given graph g. Then the entries of Gx are the sums of neighbors’ characteristics. More specifically,\footnote{The sums are written as sums over all the vertices in V. This is equivalent to summing over j that ranges from 1 to n.}

$$\begin{align*}
(Gx)_i &= \sum_{j \in V} G_{ij}x_j = \sum_{j : i \to j} x_j,
\end{align*}$$

where the notation $j | i \to j$ means “(node) j such that i connects to j”. A second option is for G be a row normalized adjacency matrix. Then

$$\begin{align*}
(Gx)_i &= \sum_{j \in V} \frac{1}{n_i} \sum_{j : i \to j} x_j = \frac{1}{n_i} \sum_{j : i \to j} x_j,
\end{align*}$$

where n_i is the number of neighbors of i, that is the number of nodes j such that i connects to j. Thirdly, G can be an stochastic weighted adjacency matrix.\footnote{A square matrix of nonnegative real numbers is stochastic if the sum of the elements of each row is equal to one. This concept of stochasticity is not related to the concept of random networks.} Then

$$\begin{align*}
(Gx)_i &= \sum_{j \in V} G_{ij}x_j = \sum_{j : i \to j} G_{ij}x_j
\end{align*}$$

is the weighted average of the neighbors of nodes i.

First- and second-order network effects can be easily interpreted in a simple network and the arguments that follow can be easily extended to higher-order effects. Consider the directed network g depicted in Figure 2.1. For this network the adjacency matrix G
and the matrix G^2 of walks of length 2 are

$$G = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad G^2 = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

In a NARMA model, v_2 and v_3 affect v_1 and these are first order effects. The effect of v_4 on v_1 is a second order effect. According to the matrix G^2, shocks from v_4 have weight 2 because there are two walks from v_4 to v_1. Walks accounting becomes important when there is a need to discriminate between the relative impacts of different nodes, as it is the case for the second order effects of the network depicted Figure 2.2.

![Figure 2.2](image)

Figure 2.2: In this network, the second order effect of v_4 on v_1 has weight 2, while the second order effect of v_5 on v_1 has weight 1.

A similar line of reasoning can be applied to weighted adjacency matrices. In a NARMA model, when the adjacency matrix G is weighted, the product Gx is the local weighted sum of vertex characteristics, where local refers to the fact that, at each node, the sum is taken over neighboring nodes. To understand higher powers of the network lag operator, define the weight of a walk as the product of the weights of its segments. Then, the entry (i,j) of the k-th power of the adjacency matrix is the sum of the weights of the paths from i to j of length k.

[12] Note that it is the target vertex influencing the source vertex and not vice versa. This convention, which might seem counterintuitive, stems from the way the adjacency matrix is constructed and from the fact that it acts from the left. One could transpose the adjacency matrix and gain a more intuitive picture, but this would mean breaking away from the common practice adopted in graph theory.
CHAPTER 2. ECONOMIC LINKS AND CREDIT SPREADS

2.3 The Network Determinants of Credit Spreads

2.3.1 The model: network spillovers

We focus our analysis on a model of network spillovers. Network spillovers occur when the characteristics of a node’s neighbors have a direct impact on its outcomes. The NARMA(0,1) model is a simple approach that accounts for neighbors’ characteristics by way of the network lags of the covariates:

\[CS_{i,t} = \alpha + \beta \text{Firm}_{i,t} + \gamma \text{Customers}_{i,t} + \delta_1 S&P_t + \delta_2 \text{YieldCurve}_t + \epsilon_{i,t}, \]

(2.2)

where,

1. \(CS_{i,t} \) is the credit spread for of firm \(i \) at time \(t \).
2. \(\text{Firm}_{i,t} \) is a vector of the firm’s characteristics: leverage, volatility, and a measure of jump-to-default risk.
 \[\text{Firm}_{i,t} = \{ \text{lev}_{i,t}, \text{ivol}_{i,t}, \text{jump}_{i,t} \}. \]

Alongside their theoretical underpinnings (Merton, 1974), leverage (\(\text{lev} \)), idiosyncratic volatility (\(\text{ivol} \)), and jump-to-default risk (\(\text{jump} \)) have been documented as determinants of credit spreads in several studies (for example Campbell and Taksler, 2003; Cremers et al., 2008).

3. \(\text{Customers}_{i,t} \) is a vector of the characteristics of the firm’s customers constructed using the supplier-customer network \(G \):
 \[\text{Customers}_{i,t} = \{ (G_t \cdot \text{lev}_t)_i, (G_t \cdot \text{ivol}_t)_i, (G_t \cdot \text{jump}_t)_i \}. \]

4. \(S&P_t \) is a vector of the market’s characteristics:
 \[S&P_t = \{ \text{ret}_{S&P,t}, \text{ivol}_{S&P,t}, \text{jump}_{S&P,t} \}. \]

5. \(\text{YieldCurve}_t \) is a vector with two components,
 \[\text{YieldCurve}_t = \{ r^{10}_t, \text{slope}^{(2,10)}_t \}. \]
the 10-year Benchmark Treasury rate r_{10}^t and the slope of the yield curve, defined as the difference between the 10-year and the 2-year Benchmark Treasury rates, $\text{slope}_{t}^{(2,10)} = r_{10}^t - r_{2}^t$.

6. $\epsilon_{i,t}$ is a vector of white noise disturbances.

2.3.2 Sources

The data in this study is combined from several sources. In this section, we describe in detail how each variable is constructed. The analysis is carried out on weekly data for the 2004-2009 period.

1. Credit Spreads. Corporate bonds transactions come from the Trade Reporting and Compliance Engine (TRACE), a platform operated by the Financial Industry Regulatory Authority (FINRA) that covers the majority of US corporate bonds. The TRACE facility has been operating since 2002 and, by February 2005, its coverage reached approximately 99% of all public transactions. Our sample covers the years from 2004 to 2009. For each Friday in the sample and for each bond issue, we compute the volume weighted average yield from transaction data. We obtain detailed information on corporate bond issues from Thompson Reuters DataStream and only select issues with fixed rate coupons and no embedded optionality. From Thompson Reuters DataStream we also obtain benchmark treasury interest rates and compute maturity matched credit spreads from a linear interpolation of the yield curve. Finally, for each firm in the sample we select the most traded issue as measured by the average number of trades over the number of days the issue was traded.

2. Firm leverage. Following Collin-Dufresne et al. (2001), for each firm i, we define

13 In our calculations we consider only regular trades (trades executed between 8:00 a.m. to 6:29:59 p.m., Eastern Time, and reported within 15 minutes of trade execution) which are not flagged as having a "special price". Moreover, we impute large trades to their minimum possible size. Indeed, for investment grade bonds (junk bonds) when the par value of a transaction is greater than 5 million (1 million), the quantity field in the TRACE dataset contains the value “5MM+” (“1MM+”).

14 The yield curve is linearly interpolated using maturities of 1, 3, 6 months and of 2, 3, 5, 7, 10, 30 years.

15 There is no substantial difference when we select issues based on the average quantity traded.
firm leverage \(lev_{i,t} \) as

\[
\frac{\text{Book Value of Debt}}{\text{Market Value of Equity} + \text{Book Value of Debt}}.\]

3. **Implied Volatility.** Weekly implied volatilities are constructed using the OptionMetrics dataset. OptionMetrics contains quotes and analytics for US equity option markets and, in particular, it reports the volatility surface constructed via kernel smoothing on a fixed grid of maturities and deltas. \(^{17}\) We estimate future volatility as the average of the implied volatilities of near-the-money call and put options:

\[
ivol = 0.5 \left(\sigma_{i,\text{put}}^{\text{imp}}(-0.5) + \sigma_{i,\text{call}}^{\text{imp}}(0.5) \right),
\]

where \(\sigma_{i,\text{put}}^{\text{imp}} \) is the implied volatility of the call option with 60 days to expiry on the underlying stock of firm \(i \) as a function of delta.

4. **Jump Measure.** To quantify the probability of negative jumps we use a formula developed by Yan (2010) as a formalization of the intuitive measure defined by Collin-Dufresne et al. (2001). The basic idea is to exploit the stylized fact, known as the volatility smile, that, as the strike value of an option varies, implied volatility follows approximately a concave parabola — volatility smiles. This pattern is attributed to the probability of extreme moves in firm value, with such probability being higher the more the smile is accentuated. Practically, one can use near- and out-of-the-money puts and near and in-the-money calls to interpolate the implied volatility \(\sigma(K) \) as a quadratic polynomial in the strike \(K \) and quantify jump risk as \(\sigma(0.9 S) - \sigma(S) \), where \(S \) is the stock closing price. This is the approach of Collin-Dufresne et al. (2001). Instead, we use the formula by Yan (2010), who provides a formal argument in support of the following estimate of the slope of the

\(^{16}\) *Book Value of Debt* is the the sum of long term debt (Compustat item DLTTQ) and debt in liabilities (Compustat item DLCQ), while *Market Value of Equity* is the product of the number of share outstanding (CRSP item SHROUT) and the price or bid/ask average (CRSP item PRC).

\(^{17}\) The OptionMetrics volatility surface contains information on standardized options, both calls and puts, with expirations of 30, 60, 91, 122, 182, 273, 365, 547, and 730 calendar days, at deltas from 0.20 to 0.80 in steps of 0.05 units for calls and at negative deltas for puts. For European options, the implied volatility is calculated inverting numerically the Black-Scholes model. For American options, the implied volatility is estimated by evaluating iteratively a binomial tree model until the model price converges to the market price.
volatility smile:
\[\text{jump} = \sigma_{i,\text{put}}^{\text{imp}}(-0.5) - \sigma_{i,\text{call}}^{\text{imp}}(0.5), \]

where \(\sigma_{i,\text{call}}^{\text{imp}} \) is defined as above.

5. **Market returns.** Weekly S&P index returns, \(S&P_{i,t} \), are obtained by aggregating daily data from the Center for Research on Security Prices (CRSP).

2.3.3 Supplier-customer network

According to Regulation SFAS no.131, suppliers are required to report those customers that account for at least 10% of their total yearly sales. This information is contained in the Compustat Customer Segment files. For each supplier, the key items in each entry of the customers segments are the customer’s name and the customer’s total amount of sales. As major customers are self-reported and, in particular, names are manually entered, the matching of a reported customer’s name with a standard identifier is not a straightforward matter. For example, the same company can be reported with different names (IBM vs. International Business Machines), acronyms are sometimes included and sometimes omitted (ADR, LLC, INC, etc.), or the company’s name can be outright misspelled. We take a very conservative approach. After filtering common acronyms, we only consider those links for which there is an exact match between a word in the reported name and an entry in the Compustat datafile of names. In the case of multiple matches, a link is manually identified by inspecting additional information, such as TIC symbols and CUSIP codes, and by querying the online matching engine available through the WRDS servers.\(^{18}\)

Following this procedure, we identify 4,462 companies and 21,400 links, between the years 2003 and 2009. For each supplier, links are weighted by the total amount of sales corresponding to the target customer, normalized by the observed total amount of sales. With such weighting, more importance is given to those customer that account for a larger shares of trades. There are two aspects that dictate the network dynamics. First, when a link is identified, it is considered active for one year prior to the reported date. In the case of multiple links between two vertices for a given date, these are aggregated into one link and the sales counts associated with different links summed. Second, as fiscal

\(^{18}\)This procedure allows us to match a major customer firm to its unique identifier in Compustat (GVKEY field). In turn, this allows us to merge data from Compustat with CRSP and TRACE data.
years vary between businesses, new links are established and existing links are dropped throughout the year. Overwhelmingly, links are updated in the month of December (2887 links reported, on average), followed by end-of-quarter-months (March, June, and September; 279 links reported, on average), and the rest (68 links, on average). Overall, the supplier-customer network so constructed, although dynamic, is slowly varying.

Of the 4,462 companies in the supplies-customer network, 3,521 are covered in CRSP, 2,133 are reported in the OptionMetrics dataset, and only 564 firms are active in the credit markets. For each time unit t, let lev_t, $ivol_t$, and $jump_t$ be the vectors of vertex (firms) characteristics, and let G_t be the adjacency matrix of the supplier-customer network. Using the formalism of the network lag operator, we compute the weighted average of customers’ characteristics as $G_t \cdot lev_t$, $G_t \cdot ivol_t$ and $G_t \cdot jump_t$.

Table 2.1 contains the summary statistics for the final sample. The time period is January 2004 to December 2009 and the sample frequency is weekly. The sample includes bonds that have a spread of less than 30% and more than 0.1%, maturities that are between 5 and 35 years, and with a minimum of 20 observations. After matching the firms in the supplier-customer network with the corporate bond trades in TRACE, with the bond characteristics from DataStream, and dropping incomplete observations, our final sample consists of 154 firms, and 12,128 weekly observations. Our panel is unbalanced: the number of observations for each firm varies between 20 to 294, with a median value of 74. The median maturity of the sample is December 2016.

2.3.4 Results

The regression estimates in Table 2.2 indicate that network lags are economically and statistically significant determinants of corporate credit spreads. Moreover, the signs of the coefficients, when significant, are consistent with theoretical predictions. Standard errors are estimated following the procedure of Driscoll and Kraay (1998), which is robust to heteroskedasticity, cross-sectional and temporal dependence. Our most important findings are reported in Table 2.2 below.\footnote{The total market capitalization of our sample is approximately $2.8 trillion (median value between 2004 and 2009). For comparison, the S&P 500 has a median market capitalization over the same period of $11.3 trillion.}

\footnote{All the numerical examples in this section refer to model 7 in Table 2.2. Since the estimated coefficients are stable across various models, the differences in the interpretation of the results are immaterial.}
We find that an increase in the average of the customers’ leverage increases the credit spread. Its economic impact is sizable: an increase of one standard deviation (0.23) in the average leverage of the customers leads to a widening of the credit spread of up to 25 basis points ($0.22 \times 1.13 \times 100$ bp). In comparison, the credit spreads increase by 50 basis points ($0.22 \times 2.3 \times 100$ bp) when own leverage increases by one standard deviation (0.22).

The slope of the volatility smile, as captured by the variable \textit{jump}, is statistically significant and its economic significance is comparable to the firms’ own jump risk measure. The average value of firm’s \textit{jump} (0.009) is twice as much than the corresponding customer variable (0.004, see Table 2.1), the factor loading on the latter (20.6) is almost twice as much as the former (13.4, see Table 2.2). As a result, the economic impact of the customer \textit{jump} risk is comparable to that of the supplier specific \textit{jump} risk.

S&P returns, volatility and jump risk are included in the model as control variables for general economic conditions. Across all models S&P returns have a positive impact on credit spreads and are statistically significant. Neither S&P implied volatility nor S&P jump risk are significant when yield curve covariates are included in the regression.

2.4 Robustness

2.4.1 Bi-directionality of Supplier-Customer Relationships

The customer-supplier relationship is clearly bi-directional and, potentially, so is the possibility of risk transfer. Our analysis so far has been concerned solely with the risks flowing from customers to their suppliers and has disregarded the possibility that distressed suppliers affect their customers’ financial standing. There are several counter-examples that illustrate this possibility. For example, at the end of 2011, Western Digital had to shut down its Thai factories as a consequence of severe floods, cutting its hard drive production capacity by 60%. The incident influenced computer makers world-wide21. Earlier in the same year, the Japanese Earthquake similarly caused serious disruptions to the worldwide supply chain22. This section addresses two issues related to the bi-directionality of supplier-customer relationships. First, we estimate the influence of suppliers’ characteristics on the credit worthiness of customers. Second, our findings

21 Counting the cost of calamities, The Economist, Jan 14th, 2012.

22 Broken Links, The Economist, Mar 31st, 2011.
provide evidence that the risk channel operating from customers to suppliers is distinct from the channel operating from suppliers to customers.

In order to account for suppliers’ effects, consider again the supplier-customer network g and its adjacency matrix G. To the transposed matrix G^T, there corresponds another network g^T, whose links are reversed with respect to the original network g, that is, g^T is a network whose connections run from suppliers to customers. The initial specification (see Equation 2.2) is augmented with the introduction of a term containing the characteristics of the firm’s suppliers constructed using the the adjacency matrix G^T

$$Customers_{i,t} = \{(G^T_t \cdot lev_t)_i, (G^T_t \cdotivol_t)_i, (G^T_t \cdot jump_t)_i \}.$$

Table 2.2 reports estimates under various restrictions of the following model:

$$CS_{i,t} = \alpha + \beta \ Firm_{i,t} + \gamma^c Customers_{i,t} + \gamma^s Suppliers_{i,t} + \delta_1 S&P_t + \delta_2 YieldCurve_t + \epsilon_{i,t}. $$

Within our sample, the coefficients for suppliers’ leverage and jump risk are not significantly different from zero. Instead, there is strong statistical evidence that suppliers’ implied volatility has, perhaps counterintuitively, a negative impact on a firm’s credit spread. This holds true across numerous different specifications (see also Tables 2.3 and 2.5). For our purposes, there are two important lessons that emerge from Table 2.2. The first one is that the economic and statistical significance of customer’s effects is robust to the introduction of supplier’s covariates. Indeed, the statistical significance of the customers’ leverage and jump coefficients (γ^c_1 and γ^c_3, respectively) is even stronger upon introducing suppliers into the model. The second is that customers’ and suppliers’ effects seem to operate through different channels, leverage and jump risk in the case of customers, implied volatility in the case of suppliers.

2.4.2 Model Specification and Higher Network Lags

We focus on a model of network spillovers and ignore the autoregressive component because the supplier-customer network resulting from our final sample does not contain many long walks. Indeed, the non-zero observations for higher lags are only 354 at degree 2 and 4 at degree 3. Under such circumstances, it is easy to show that the a network autoregressive model is equivalent to a finite network moving average.
A NARMA process admits, under certain regularity conditions, a Wold-type representation as a network moving average (NMA) of infinite order. For example, consider the following NARMA(1,1) process:

\[y = \alpha G y + \beta x + \epsilon \]

Let \(I_n \) be the identity matrix of dimension given by the number of vertices in the graph \(g \). Then, when the matrix \((I - \alpha G)\) is invertible, \(y \) admits a NMA(\(\infty \)) representation,\(^{23}\) indeed

\[
\begin{align*}
 y - \alpha G y &= \beta x + \epsilon \\
 (I - \alpha G)y &= \beta x + \epsilon \\
 y &= (I - \alpha G)^{-1}(\beta x + \epsilon) = \sum_{k=0}^{\infty} \alpha^k G^k(\beta x + \epsilon).
\end{align*}
\] (2.4)

The general NARMA model can be represented as a NMA whenever the matrix \((I - \sum \alpha_k G^k)\) is invertible.\(^{24}\)

For the sake of argument, consider the extreme example of a network in which there are no walks of length greater than one. As an immediate consequence of Proposition 15, the square of the adjacency matrix of such network is zero. Expanding (2.4)

\[
y = (I + \alpha G + \alpha^2 G^2 + \ldots)(\beta x + \epsilon) \\
y = \beta x + \alpha \beta G x + \tilde{\epsilon},
\]

for an appropriate error process \(\tilde{\epsilon} \).\(^{25}\) As a result there is little difference between local averages and global effects, making the case for the need of an autoregressive component weak.\(^{26}\)

\(^{23}\)The matrix \((I - \alpha G)\) is invertible if (1) \(G \) is row normalized and \(|\alpha| \leq 1\), or more generally (2) \(\alpha^{-1} \in (\min \sigma(G), \max \sigma(G)) \), where \(\sigma(G) \) is the spectrum of \(G \), i.e. the set of all eigenvalues of \(G \).

\(^{24}\)A condition for the invertibility of the matrix \((I - \sum \alpha_k G^k)\) is that \(\lim_{n \to \infty} (\sum \alpha_k G^k)^n \) exists. A sufficient condition is that \(\sum |\alpha_k| \cdot ||G^k|| < 1 \), where \(|| \cdot || \) is any matrix norm.

\(^{25}\)In this case powers of the adjacency matrix of order two and higher are zero and the vector of disturbances \(\tilde{\epsilon} \) is equal to \(\epsilon + G \epsilon \).

\(^{26}\)This is confirmed empirically: coefficients pertaining to the second lag of firm’s characteristics are insignificantly different from zero, while the main results are practically unchanged. These results are available upon request.
2.4.3 Counterparty Risk and Cross-Industry Effects

Beside originating from counterparty risk, an alternative explanation for the presence of network effects in our model of credit spreads is cross-industry spillover. Averaging over customers’ characteristics, the argument goes, builds proxies for whole industrial sectors that are connected along the supply-chain. Therefore, according to this hypothesis, network effects should be interpreted as broad macroeconomic covariates and not as measures of idiosyncratic counterparty shocks. To address these concerns, we introduce control variables for both industry and cross-industry economic conditions.

We obtain value-weighted returns of industry portfolios from French’s website. These returns are constructed by assigning each AMEX, NYSE and NASDAQ stock to a portfolio according to its Standard Industrial Classification (SIC) code. For robustness, we consider various classifications, resulting in 12, 17, 30, 38 and 48 portfolios. For example the 12-industry classification consists of the following 12 categories: 1. consumer non-durables; 2. consumer durables; 3. manufacturing; 4. oil, gas, and goal extraction and products; 5. chemicals and allied products; 6. business equipment; 7. telephone and television transmission; 8. utilities; 9. shops (wholesale, retail and some services); 10. healthcare, medical equipment, and drugs; 11. finance; 12. other. Detailed definitions for the 12-industry classification, as well as the others, are available from French’s website.

Industry variables are constructed as follows. First, for each classification scheme and each industry portfolio we compute weekly realized volatilities. Second, given a classification scheme, each firm in our dataset is assigned to a portfolio using its Compustat SIC codes. Third, each firm’s neighboring industries are identified by the industries of the firm’s customers, and neighboring industries returns and volatilities are computed as weighted averages of weekly returns. This extension fits naturally within the modeling framework described thus far. Let $indret_k$ and $indvol_k$ denote the returns and volatility for industry k, and denote with $k(i)$ the industry of firm i. Define the $2 \times n$ matrix Ind of firm specific industry characteristics as the vector

\[
Ind_i = (indret_{k(i)}, indvol_{k(i)})
\]

27 These data and definitions are available online at Ken French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

28 As before, weights are normalized sales.
where \(n \) is the number of firms. With this notation, the model with industry and cross-industry effects is

\[
y = \beta \text{Firm} + \gamma (G \cdot \text{Firm}) + \delta (S&P, \text{YieldCurve}) + \eta \text{Ind} + \phi (G \cdot \text{Ind}) + \epsilon ,
\]

where \(\eta \) and \(\phi \) are 2-vectors of parameters quantifying industry and cross-industry effects, respectively.
Table 2.1
Summary Statistics

This table presents summary statistics for the regressors and regressand in our final sample. The data covers the years 2004 to 2009 with weekly frequency. Credit spreads are computed using transaction data as differences between volume weighted average yields and a linear interpolation of benchmark treasury bond yields. Leverage is defined as the ratio between book value of debt and total capital. Volatility is estimated as the average of the implied volatilities of near-the-money call and put options with 60 days to expiry. The jump measure quantifies the risk of negative jumps using an estimate of the slope of the volatility smile (see Equation (2.3)). The slope of the yield curve is defined as the difference between the 10-year, r^{10}, and the 2-year, r^2, Benchmark Treasury rates. Firm, Customers, Suppliers, and S&P refer to individual, downstream neighbors (customers), upstream neighbors (suppliers), and market characteristics, respectively. In particular, for a each firm, customers’ characteristics are averages of leverage, volatility and jump measure, weighted on sales shares, of their customers. Suppliers’ characteristics are defined similarly. Several firms in our supplier-customer network have no customers. In this case, customers’ characteristics are zero. Summary statistics including these observation are also reported (under “Customers (all)”). The same considerations apply to the definition of “Suppliers (all)”.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Spread</td>
<td>2.927</td>
<td>3.117</td>
<td>.115</td>
<td>29.261</td>
<td>12133</td>
</tr>
<tr>
<td>Implied Volatility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm</td>
<td>.3619</td>
<td>.2285</td>
<td>.085</td>
<td>2.363</td>
<td>12133</td>
</tr>
<tr>
<td>Customers</td>
<td>.2555</td>
<td>.1288</td>
<td>.107</td>
<td>2.012</td>
<td>2695</td>
</tr>
<tr>
<td>Customers (all)</td>
<td>.0606</td>
<td>.1255</td>
<td>0</td>
<td>2.012</td>
<td>11357</td>
</tr>
<tr>
<td>Suppliers</td>
<td>.3999</td>
<td>.2010</td>
<td>.020</td>
<td>1.353</td>
<td>1296</td>
</tr>
<tr>
<td>Suppliers (all)</td>
<td>.1006</td>
<td>.2007</td>
<td>0</td>
<td>1.353</td>
<td>5150</td>
</tr>
<tr>
<td>S&P</td>
<td>.1860</td>
<td>.0959</td>
<td>.095</td>
<td>2.012</td>
<td>12133</td>
</tr>
<tr>
<td>Implied Jump Measure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm</td>
<td>.0089</td>
<td>.0419</td>
<td>-6.02</td>
<td>.881</td>
<td>12133</td>
</tr>
<tr>
<td>Customers</td>
<td>.0039</td>
<td>.0148</td>
<td>-2.64</td>
<td>.281</td>
<td>2695</td>
</tr>
<tr>
<td>Customers (all)</td>
<td>.0009</td>
<td>.0074</td>
<td>-2.64</td>
<td>.281</td>
<td>11357</td>
</tr>
<tr>
<td>Suppliers</td>
<td>.0103</td>
<td>.0951</td>
<td>-1.016</td>
<td>1.824</td>
<td>1295</td>
</tr>
<tr>
<td>Suppliers (all)</td>
<td>.0025</td>
<td>.047</td>
<td>-1.016</td>
<td>1.824</td>
<td>5150</td>
</tr>
<tr>
<td>S&P</td>
<td>.0016</td>
<td>.0090</td>
<td>-0.39</td>
<td>.035</td>
<td>12133</td>
</tr>
<tr>
<td>Leverage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm</td>
<td>.3387</td>
<td>.2158</td>
<td>.0123</td>
<td>.979</td>
<td>12133</td>
</tr>
<tr>
<td>Customers</td>
<td>.2440</td>
<td>.2275</td>
<td>.0008</td>
<td>.9992</td>
<td>2698</td>
</tr>
<tr>
<td>Customers (all)</td>
<td>.0570</td>
<td>.1508</td>
<td>0</td>
<td>.9992</td>
<td>11422</td>
</tr>
<tr>
<td>Suppliers</td>
<td>.278</td>
<td>.2254</td>
<td>0</td>
<td>.9347</td>
<td>1923</td>
</tr>
<tr>
<td>Suppliers (all)</td>
<td>.1217</td>
<td>.2032</td>
<td>0</td>
<td>.9347</td>
<td>4406</td>
</tr>
<tr>
<td>Weekly Returns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S&P</td>
<td>.0010</td>
<td>.026</td>
<td>-1.95</td>
<td>.116</td>
<td>12133</td>
</tr>
<tr>
<td>Term Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r^{10}</td>
<td>4.140</td>
<td>.6341</td>
<td>2.130</td>
<td>5.226</td>
<td>12133</td>
</tr>
<tr>
<td>slope</td>
<td>1.003</td>
<td>.9498</td>
<td>-1.90</td>
<td>2.749</td>
<td>12133</td>
</tr>
</tbody>
</table>
Table 2.2
Network Determinants of Credit Spreads

Regression estimates for various restrictions of the model

\[CS_{i,t} = \alpha + \beta \text{Firm}_{i,t} + \gamma \text{Customers}_{i,t} + \delta_1 \text{S&P}_t + \delta_2 \text{YieldCurve}_t + \epsilon_{i,t}, \]

where \(\text{Firm}_{i,t}, \text{Customers}_{i,t} \) and \(\text{S&P}_t \) are vectors of firm’s, customers’, and market’s characteristics, including leverage \(\text{lev} \) (for firms and customers) and returns \(\text{ret} \) (for the S&P), option implied volatilities \(\text{ivol} \) and an implied jump risk measure \(\text{jump} \). The vector \(\text{YieldCurve}_t \) has two components, the 10-year Benchmark Treasury rate \(r^{10}_t \) and the slope of the yield curve, defined as the difference between the 10-year and the 2-year Benchmark Treasury rates, \(\text{slope}^{(2,10)}_t = r^{10}_t - r^2_t \). The index \(i \) refers to the \(i \)-th observation at time \(t \). The observation frequency is weekly. The time period is January 2004 to December 2009. The sample includes bonds with at least 20 observations which have a spread of less that 30% and higher that 0.1%, and maturities between 5 and 35 years. The numbers in parenthesis are Driscoll-Kraay \(p \)-values (robust to heteroskedasticity, cross-sectional and temporal dependence).

<table>
<thead>
<tr>
<th></th>
<th>Classical Models</th>
<th>Customers Spillovers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Firm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lev, (\beta_1)</td>
<td>2.020***</td>
<td>2.243***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>ivol, (\beta_2)</td>
<td>9.298***</td>
<td>8.502***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>jump, (\beta_3)</td>
<td>12.44***</td>
<td>12.97***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Customers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lev, (\gamma_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ivol, (\gamma_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jump, (\gamma_3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S&P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ret, (\delta_{1,1})</td>
<td></td>
<td>3.961***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.000)</td>
</tr>
<tr>
<td>ivol, (\delta_{1,2})</td>
<td></td>
<td>0.159</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.823)</td>
</tr>
<tr>
<td>jump, (\delta_{1,3})</td>
<td></td>
<td>-1.463</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.538)</td>
</tr>
<tr>
<td>Yield Curve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r^{10}), (\delta_{2,1})</td>
<td>-0.680***</td>
<td>-0.684***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>slope, (\delta_{2,2})</td>
<td>-0.128*</td>
<td>-0.140**</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.233***</td>
<td>1.920***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>N</td>
<td>12133</td>
<td>12133</td>
</tr>
<tr>
<td>R²</td>
<td>0.684</td>
<td>0.694</td>
</tr>
</tbody>
</table>
Table 2.3
Industry Controls for Customers Spillovers

Regression estimates for various models with industry and cross-industry effects.

\[y = \beta_{\text{Firm}} + \gamma(G \cdot \text{Firm}) + \delta(S&P, \text{YieldCurve}) + \eta_{\text{Ind}} + \phi(G \cdot \text{Ind}) + \epsilon, \]

where \(\eta \) and \(\phi \) are 2-vectors of parameters quantifying industry and cross-industry effects, respectively. Let \(\text{indret}_k \) and \(\text{indvol}_k \) denote the returns and volatility for industry \(k \), and denote with \(k(i) \) the industry of firm \(i \). Then \(\text{Ind} \) is the matrix of firm specific industry characteristics

\[\text{Ind}_{i} = (\text{indret}_{k(i)}, \text{indvol}_{k(i)}), \]

and the vector \(G \cdot \text{Ind} \) involves characteristics of downstream industries (customers’ industries). We use the same sample selection and variable definitions as in Table 2.2. We consider various classifications, resulting in 12, 17, 30, 38 and 48 portfolios. The numbers in parenthesis are Driscoll-Kraay \(p \)-values (robust to heteroskedasticity, cross-sectional and temporal dependence). For brevity \(\text{Yield Curve} \) and \(S&P \) coefficients are omitted.

<table>
<thead>
<tr>
<th>No Industries</th>
<th>Firm</th>
<th>Customer</th>
<th>Industry</th>
<th>Cross-Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lev, (\beta_1)</td>
<td>2.282***</td>
<td>2.222***</td>
<td>2.237***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>ivol, (\beta_2)</td>
<td>8.474***</td>
<td>8.494***</td>
<td>8.521***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>jump, (\beta_3)</td>
<td>13.35***</td>
<td>13.48***</td>
<td>13.51***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>lev, (\gamma_1)</td>
<td>1.135*</td>
<td>1.202*</td>
<td>1.161*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.030)</td>
<td>(0.021)</td>
<td>(0.030)</td>
</tr>
<tr>
<td></td>
<td>ivol, (\gamma_2)</td>
<td>0.337</td>
<td>0.0966</td>
<td>0.235</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.458)</td>
<td>(0.835)</td>
<td>(0.647)</td>
</tr>
<tr>
<td></td>
<td>jump, (\gamma_3)</td>
<td>20.63**</td>
<td>20.90***</td>
<td>21.60***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td></td>
<td>ret, (\eta_1)</td>
<td>0.00288</td>
<td>0.00186</td>
<td>0.00795</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.671)</td>
<td>(0.863)</td>
<td>(0.248)</td>
</tr>
<tr>
<td></td>
<td>vol, (\eta_2)</td>
<td>-0.00936***</td>
<td>-0.0104***</td>
<td>-0.00634***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>ret, (\phi_1)</td>
<td>-0.0481**</td>
<td>-0.0385***</td>
<td>-0.0343**</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th></th>
<th>(0.004)</th>
<th>(0.001)</th>
<th>(0.001)</th>
<th>(0.241)</th>
<th>(0.077)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vol, (\phi_2)</td>
<td>0.0166***</td>
<td>0.00229</td>
<td>−0.00057</td>
<td>0.00174</td>
<td>0.00530*</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.644)</td>
<td>(0.799)</td>
<td>(0.133)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.818***</td>
<td>1.540***</td>
<td>1.351***</td>
<td>1.521****</td>
<td>1.910***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>N</td>
<td>11186</td>
<td>11186</td>
<td>11186</td>
<td>11186</td>
<td>11186</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.700</td>
<td>0.702</td>
<td>0.702</td>
<td>0.702</td>
<td>0.700</td>
</tr>
</tbody>
</table>
Our principal result remains unchanged. Cross-industry effects are generally insignificant across the classification considered models, and moreover the economic significance of their contribution to the corporate credit spreads is minimal. The estimates of the network effects are the same for all practical purposes. Tables 2.4 and 2.5 extend these robustness results to include upstream (suppliers) industries.
Regression estimates for various models with industry and cross-industry effects.

\[y = \beta Firk + \gamma^s (G \cdot Firm) + \delta (S&P, YieldCurve) + \eta Ind + \phi^s (G^T \cdot Ind) + \epsilon, \]

where \(\eta \) and \(\phi \) are 2-vectors of parameters quantifying industry and cross-industry effects, respectively. Let \(indret_k \) and \(indvol_k \) denote the returns and volatility for industry \(k \), and denote with \(k(i) \) the industry of firm \(i \). Then \(Ind \) is the matrix of firm specific industry characteristics

\[Ind_i = \left(indret_{k(i)}, indvol_{k(i)} \right), \]

and the vector \(G^T \cdot Ind \) involves characteristics of upstream industries (suppliers’ industries). We use the same sample selection, variable definitions and controls (omitted for the sake of space) as in Table 2.2. We consider various industry classifications, resulting in 12, 17, 30, 38 and 48 portfolios. The numbers in parenthesis are Driscoll-Kraay \(p \)-values (robust to heteroskedasticity, cross-sectional and temporal dependence).

<table>
<thead>
<tr>
<th></th>
<th>No Industries</th>
<th>Industry Portfolios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>lev, (\gamma_1^1)</td>
<td>-1.26</td>
<td>-1.54*</td>
</tr>
<tr>
<td></td>
<td>(0.101)</td>
<td>(0.036)</td>
</tr>
<tr>
<td>Suppliers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ivol, (\gamma_2^1)</td>
<td>-1.3***</td>
<td>-1.39***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>jump, (\gamma_3^1)</td>
<td>.283</td>
<td>.287</td>
</tr>
<tr>
<td></td>
<td>(0.655)</td>
<td>(0.698)</td>
</tr>
<tr>
<td>Supplier Industries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ret, (\phi_1^2)</td>
<td>- .0225</td>
<td>- .0132</td>
</tr>
<tr>
<td></td>
<td>(0.240)</td>
<td>(0.652)</td>
</tr>
<tr>
<td>vol, (\phi_2^2)</td>
<td>.0119***</td>
<td>.00882</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.310)</td>
</tr>
<tr>
<td>N</td>
<td>3849</td>
<td>3791</td>
</tr>
</tbody>
</table>
Table 2.5
Industry Controls for Suppliers and Customers Spillovers

Regression estimates for various models with industry and cross-industry effects.

\[y = \beta \text{Firm} + \gamma^c (G \cdot \text{Firm}) + \gamma^s (G^T \cdot \text{Firm}) + \delta (S&P, \text{YieldCurve}) + \eta \text{Ind} + \phi^c (G \cdot \text{Ind}) + \phi^s (G^T \cdot \text{Ind}) + \epsilon, \]

where \(\eta \) and \(\phi \) are 2-vectors of parameters quantifying industry and cross-industry effects, respectively. Let \(\text{indret}_k \) and \(\text{indvol}_k \) denote the returns and volatility for industry \(k \), and denote with \(k(i) \) the industry of firm \(i \). The vectors \(\text{Ind}, G \cdot \text{Ind}, \) and \(G \cdot \text{Ind} \) are defined as in Tables 2.3 and 2.4. We use the same sample selection and variable definitions as in Table 2.2. The numbers in parenthesis are Driscoll-Kraay \(p \)-values (robust to heteroskedasticity, cross-sectional and temporal dependence).

<table>
<thead>
<tr>
<th></th>
<th>No Industries</th>
<th>Industry Portfolios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Customers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lev, (\gamma^c_1)</td>
<td>2.01***</td>
<td>1.83**</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>ivol, (\gamma^c_2)</td>
<td>-0.817</td>
<td>-0.772</td>
</tr>
<tr>
<td></td>
<td>(0.129)</td>
<td>(0.189)</td>
</tr>
<tr>
<td>jump, (\gamma^c_3)</td>
<td>12.8***</td>
<td>14.2***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Suppliers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lev, (\gamma^s_1)</td>
<td>-1.15</td>
<td>-1.5*</td>
</tr>
<tr>
<td></td>
<td>(0.135)</td>
<td>(0.042)</td>
</tr>
<tr>
<td>ivol, (\gamma^s_2)</td>
<td>-1.17***</td>
<td>-1.26***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>jump, (\gamma^s_3)</td>
<td>-0.225</td>
<td>-0.539</td>
</tr>
<tr>
<td></td>
<td>(0.681)</td>
<td>(0.431)</td>
</tr>
<tr>
<td>Customer Industries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ret, (\phi^c_1)</td>
<td>-0.0337</td>
<td>-0.0521</td>
</tr>
<tr>
<td></td>
<td>(0.216)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>vol, (\phi^c_2)</td>
<td>0.0192***</td>
<td>0.0038</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>Supplier Industries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ret, (\phi^s_1)</td>
<td>-0.0174</td>
<td>-0.0157</td>
</tr>
<tr>
<td></td>
<td>(0.371)</td>
<td>(0.643)</td>
</tr>
<tr>
<td>vol, (\phi^s_2)</td>
<td>0.0141***</td>
<td>0.0121</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.174)</td>
</tr>
<tr>
<td>N</td>
<td>3530</td>
<td>3506</td>
</tr>
</tbody>
</table>
2.5 Conclusions

The main objective of this paper is to evaluate the market assessment of counterparty risk in supplier-customer relationships. To this end, we study the network determinants of corporate credit spreads and use network effects as an instrument for counterparty risk. Using an econometric framework that allows us to estimate network effects, we show that along the supply chain, network effects are economically and statistically significant determinants of credit spreads.

Besides the empirical analysis of counterparty risk, an important contribution of this paper is the introduction of a powerful modeling framework for financial networks. Its major strengths are the ability to model parsimoniously cross-sectional dependence and the possibility to quantify the impact that neighboring units have on each other. In our application of the NARMA model we showed the importance of network effects in asset pricing. There are several possible directions for future research in this area. The interbank loans market and fragmentation that characterizes equity trading are only two of many interesting topics where we believe that the application of our modeling framework can lead to new insights.
Appendix A

Proofs and Additional Materials

A.1 Proofs for Chapter 1

Recall that the process \(\{z_{m,t}\} \) is defined as the cross-product component of the square of each wavelet detail
\[
z_{m,t} := \sum_{i=0}^{L-1} \sum_{j>i} h_{m,i} h_{m,j} y_{t-i} y_{t-j}
\]
and that when there is no risk of confusion we omit the index \(m \).

Proof of Proposition 2. Recall that on a measure space \(\{X, \mu\} \), for any \(f \in L^p(\Omega) \) and \(g \in L^q(\Omega) \), the generalized Hölder inequality holds (see, for example, Reed and Simon, 1972, page 82):
\[
\|fg\|_r \leq \|f\|_p \|g\|_q, \text{ with } p^{-1} + q^{-1} = r^{-1}, \tag{A.1}
\]
in particular, if \(p = q \), \(\|fg\|_{p/2} \leq \|f\|_p \|g\|_p \). For the remainder of this proof let \(\mathbb{E}[\cdot] = \mathbb{E}[\cdot | \mathcal{F}^m_{t-m}(c)] \). The following computation follows almost exactly the proof of Theorem 17.9 in Davidson (1995). Using the triangle inequality and the generalized Hölder inequality (A.1):

\[
\begin{align*}
&\|x_t y_t - \mathbb{E}x_t y_t\|_{p/2} \\
&= \|(x_t y_t - x_t \mathbb{E}y_t) + (x_t \mathbb{E}y_t - x_t \mathbb{E}x_t) \mathbb{E}y_t - \mathbb{E}(x_t - \mathbb{E}x_t)(y_t - \mathbb{E}y_t)\|_{p/2} \\
&\leq \|x_t(y_t - \mathbb{E}y_t)\|_{p/2} + \|(x_t - \mathbb{E}x_t) \mathbb{E}y_t\|_{p/2} + \|\mathbb{E}(x_t - \mathbb{E}x_t)(y_t - \mathbb{E}y_t)\|_{p/2} \\
&\leq \|x_t\|_p \|y_t - \mathbb{E}y_t\|_p + \|x_t - \mathbb{E}x_t\|_p \|\mathbb{E}y_t\|_p + \|x_t - \mathbb{E}x_t\|_p \|y_t - \mathbb{E}y_t\|_p \\
&\leq \|x_t\|_p d_t^y \nu^y_m + \|y_t\|_p d_t^x \nu^x_m + d_t^x \nu^x_m d_t^y \nu^y_m \leq d_t \nu_m,
\end{align*}
\]
where \(d_t = \max(\|x_t\|_p d_t^p, \|y_t\|_p d_t^p, d_t^x d_t^y) \) and \(\nu_m = O(m^{-\min\phi_x,\phi_y}) \).

Proof of Theorem 4. Let \(\{\epsilon_t\} \) be the driving mixing process of \(\{y_t\} \). Since the NED property is preserved under linear combinations (Davidson, 1995, Theorem 17.8, page 267), \(\{w_{m,t}\} \) is \(L_2 \)-NED on \(\epsilon_t \). It follows that \(\{w_{m,t}^2\} \) is \(L_1 \)-NED on \(\epsilon_t \) (Davidson, 1995, Theorem 17.9, page 268). Recall that

\[
 z_{m,t} = w_{m,t}^2 - \sum_{i=1}^{L_m} h_{m,i}^2 y_{t-i}^2.
\]

Again, since the linear combination of NED processes is a NED process, \(\{z_{m,t}\} \) is \(L_1 \)-NED. Notice that \(\hat{E}_{m,T} - \frac{1}{2^m} \) can be written in terms of \(z_t \) and \(y_t \):

\[
 \hat{E}_{m,T} - \frac{1}{2^m} = \frac{2 \sum_t z_{m,t}}{\sum_t y_t^2},
\]

indeed

\[
\begin{align*}
 \hat{E}_{m,T} &= \frac{\|w_{m,T}^T\|}{\|y_T^T\|} = \sum_{t=1}^{T} \left(\sum_{i=0}^{L_m} h_{m,i} y_t \right)^2 \\
 &= \sum_{t=1}^{T} \left(\sum_{i=0}^{L_m} h_{m,i}^2 y_{t-i}^2 + 2 \sum_{i=0}^{L_m-1} \sum_{j>i}^{L_m} h_{m,i} h_{m,j} y_{t-i} y_{t-j} \right) \\
 &= \sum_{i=0}^{L_m} h_{m,i}^2 \sum_{t=1}^{T} y_{t-i}^2 + 2 \sum_{t=1}^{T} z_{m,t} \sum_{t=1}^{T} y_t^2 \\
 &= \sum_{i=0}^{L_m} h_{m,i}^2 + 2 \sum_{t=1}^{T} z_{m,t} \sum_{t=1}^{T} y_t^2 \\
 &= \frac{1}{2^m} + \frac{2 \sum_{t=1}^{T} z_{m,t}}{\sum_{t=1}^{T} y_t^2}.
\end{align*}
\]

Step A.4 uses the fact that filtering is cyclic, therefore the sum \(\sum_{t=1}^{T} y_{t-i} \) does not depend on \(i \) and is the same as the denominator \(\sum_{t=1}^{T} y_t \). The last equality holds because the norm of a convolution is the product of the norms. Since \(h_{m,t} \) is the cascade filter obtained by convolution of \(m \) filters with norm \(1/2 \), the result holds. Now, Theorem ?? together with Slutsky’s Theorem imply

\[
 \frac{2 \sum_{t=1}^{T} z_{m,t}}{\sum_{t=1}^{T} y_t^2} \xrightarrow{p} 0
\]

and the theorem is proven.
APPENDIX A. PROOFS AND ADDITIONAL MATERIALS

In the stationary case, Theorem 4 follows easily from Theorem ?? and Slutsky’s Theorem. Indeed,

\[\sum_{t=1}^{n} w_{m,n}^2 \xrightarrow{p} \frac{2^{-m} \sigma^2}{\sigma^2} = \frac{1}{2^m}, \]

as \(\mathbb{E} w_{m,n}^2 = 2^{-m} \sigma^2 \) for all \(m \) and \(n \).

Lemma 16. Let \(\{y_t\} \) be a stochastic sequence with zero means with finite joint fourth cumulants, i.e.

\[\mathbb{E}[y_{t-i}y_{t-j}y_{t-k}y_{t-l}] < \infty, \]

for all \(i, j, k, \) and \(l \) such that \(0 \leq i < l < L \) and \(0 \leq k < l < L \). Then,

\[\text{var}(z_t) = \sum_{i=0}^{L-1} \sum_{j>i}^{L} \sum_{k=0}^{L-1} \sum_{l>k}^{L} h_i h_j h_k h_l \mathbb{E}(y_{t-i}y_{t-j}y_{t-k}y_{t-l}) \]

and

\[\text{cov}(z_{t}, z_{t-s}) = \sum_{i=0}^{L-1} \sum_{j>i}^{L} \sum_{l=0}^{L-1} \sum_{k>l}^{L} h_i h_j h_{t-s} h_{k-s} \mathbb{E}(y_{t-i}y_{t-j}y_{t-s-l}y_{t-s-k}), \]

Proof. The proof relies on a direct computation. First, we compute the variance:

\[
\text{var}(z_{t}) = \text{var}\left(\sum_{i=0}^{L-1} \sum_{j>i}^{L} h_{i} h_{j} y_{t-i} y_{t-j} \right) \\
= \text{cov}\left(\sum_{i=0}^{L-1} \sum_{j>i}^{L} h_{i} h_{j} y_{t-i} y_{t-j}, \sum_{k=0}^{L-1} \sum_{l>k}^{L} h_{k} h_{l} y_{t-k} y_{t-l} \right) \\
= \sum_{i=0}^{L-1} \sum_{j>i}^{L} \sum_{k=0}^{L-1} \sum_{l>k}^{L} h_{i} h_{j} h_{k} h_{l} \text{Cov}(y_{t-i} y_{t-j}, y_{t-k} y_{t-l}) \\
= \sum_{i=0}^{L-1} \sum_{j>i}^{L} \sum_{k=0}^{L-1} \sum_{l>k}^{L} h_{i} h_{j} h_{k} h_{l} \mathbb{E}(y_{t-i} y_{t-j} y_{t-k} y_{t-l}) \quad \text{(A.5)}
\]

where at step (A.5) we used the fact that \(y_t \) has zero mean.

The autocovariances of \(\{z_t\} \) are computed similarly. Let \(h_l = 0 \) for all \(l > L \), then

\[
\text{cov}(z_{t}, z_{t-s}) = \text{cov}\left(\sum_{i=0}^{L-1} \sum_{j>i}^{L} h_{i} h_{j} y_{t-i} y_{t-j}, \sum_{l=0}^{L-1} \sum_{k>l}^{L} h_{l-s} h_{k-s} y_{t-s-l} y_{t-s-k} \right)
\]
which implies that \(z \) under Assumption (B2), and since the NED property is preserved under linear combinations, it follows that under

\[
\sum_{i=0}^{L-1} \sum_{j>i}^{L-1} \sum_{l=0}^{L-1} \sum_{k>l}^{L-1} h_i h_j h_{l-s} h_{k-s} \text{Cov}(y_{t-i} y_{t-j}; y_{t-s-l} y_{t-s-k}) = \sum_{i=0}^{L-1} \sum_{j>i}^{L-1} \sum_{l=0}^{L-1} \sum_{k>l}^{L-1} h_i h_j h_{l-s} h_{k-s} \mathbb{E}(y_{t-i} y_{t-j} y_{t-s-l} y_{t-s-k}) .
\]

(A.6)

\[\Box \]

Proof of Theorem 8. Since \(\{z_{m,t}\} \) is linear combination of processes of the form \(\{y_t y_{t-i}\} \) and since the NED property is preserved under linear combinations, it follows that under Assumption (B2), \(\{z_{m,t}\} \) is \(L_2 \)-NED of size -1/2 on \(\epsilon_t \).

To see that Assumption B1 implies condition (a) of Theorem 8 recall that from lemma 16

\[
\text{var}(z_{m,t}) = \sum_{i=0}^{L_m} \sum_{j>i}^{L_m} \sum_{k=0}^{L_m} \sum_{l=1}^{L_m} h_i h_j h_k h_l \mathbb{E}(y_{t-i} y_{t-j} y_{t-s-l} y_{t-s-l}) .
\]

Then,

\[
\left\| \sum_{i=0}^{L_m} \sum_{j>i}^{L_m} \sum_{k=0}^{L_m} \sum_{l=1}^{L_m} h_i h_j h_k h_l \mathbb{E}(y_{t-i} y_{t-j} y_{t-s-l} y_{t-s-l}) \right\|_p \approx \left\| \sum_{i=0}^{L_m} \sum_{j>i}^{L_m} \sum_{k=0}^{L_m} \sum_{l=1}^{L_m} h_i h_j h_k h_l \mathbb{E}(y_{t-i} y_{t-j} y_{t-s-l} y_{t-s-l}) \right\|_p = \left\| \frac{z^2_{t,m}}{\text{var}(z_{m,t})} \right\|_p = \frac{z_{t,m}}{\sigma_{m,t}} 2_p ,
\]

which implies that \(z_{m,t}/\sigma_{m,t} \) is \(L_r \)-bounded for \(r = 2p > 2 \).

Thus, \(z_{m,t} \) satisfies the conditions of Theorem 8 and

\[
\sum_{i=1}^{T} z_{m,t}/s_T(z) \xrightarrow{d} N(0,1) .
\]

Therefore,

\[
\sum_{t=1}^{T} \frac{y_t^2}{2s_T(z)} \left(\hat{\epsilon}_{m,T} - \frac{1}{2m} \right) \xrightarrow{d} N(0,1)
\]

\[
\sqrt{T \sigma_T^2} \left(\hat{\epsilon}_{m,T} - \frac{1}{2m} \right) \xrightarrow{d} N(0,1) , \text{where } \sigma_T^2 = T^{-1} \sum_{t=1}^{T} \text{E}y_t^2 .
\]

\[\Box \]

Proof of Corollary 10. In order to prove Corollary 10, we require the following lemma.
Lemma 17. Let \(\{ y_t \} \) be a stochastic sequence with zero means, identical variances \(\sigma_t = \sigma \), and vanishing fourth order joint cumulants. Let \(\{ h_t \}_{0}^{L-1} \) be an \(L \)-dimensional vector. Then the stochastic sequence \(z_t \) is has variance

\[
\text{var}(z_t) = \sigma^4 \sum_{i=0}^{L-1} \sum_{j>i}^{L} (h_i h_j)^2 ,
\]

and autocovariances

\[
\text{cov}(z_t, z_{t-s}) = \begin{cases}
\sigma^4 \sum_{i=i_{\min}}^{i_{\max}} \sum_{j>i}^{j_{\max}} h_i h_j h_{i-s} h_{j-s} , & \text{if } s \leq L - 1 \\
0 , & \text{otherwise}
\end{cases}
\]

where

\[
i_{\min} = \max(0, s) , \quad i_{\max} = L - 1 + \min(0, s) , \quad j_{\max} = L + \min(0, s) .
\]

Proof. When fourth cumulants are zero, the fourth moment \(\kappa^{abcd} \) of \(y_t \) can be expressed in terms of the second moments \(\kappa^{ab} \). Such decomposition is valid whenever the fourth cumulant \(\kappa^{a,b,c,d} \) is zero. Indeed (see for example McCullagh (1987))

\[
x_{sr} \kappa^{abcd} = \kappa^{a,b,c,d} + \kappa^{a,b,c} \kappa^d[4] + \kappa^{a,b} \kappa^{c,d}[3] + \kappa^{a,b} \kappa^{c} \kappa^d
\]

where the the bracket notation \([n] \) indicates the number of terms in implicit summation over distinct partitions having the same block sizes. The second equality follows since \(\kappa^s = 0 \) as \(y_t \) is a zero mean sequence. Continuing form (A.5), since \(y_t \) is independently distributed and since \(i \neq j \) and \(k \neq l \) (from the second and fourth summations), the only non vanishing contributions in (A.5) correspond to the two possibilities \((i = k, j = l) \) and \((i = l, j = k) \). The second scenario never arises. Indeed, when \(i = l \) and \(j = k \), using \(l > k \) (from the fourth summation)

\[
i = l > k = j \implies i > j,
\]

which contradicts the condition \(j > i \) (from the second summation). Let \(\delta_{ij} \) be equal to
A very similar computation yields the autocorrelation function γ_s:

$$\gamma_m(s) = \text{Cov}(\sum_{i=0}^{L-1} \sum_{j>i} L \sum_{k=0}^{L-1} h_i h_j h_{k-s} h_{k-s} \mathbb{E}(y_{t-i-y_{t-j}} y_{t-s-i-y_{t-s-k}}))(\delta_{i,s} + \delta_{i,s+k} + \delta_{i,s+k} \delta_{j,s+l})$$

$$= \sum_{i=0}^{L-1} \sum_{j>i} L \sum_{l=0}^{L-1} h_i h_j h_{l-s} h_{l-s} \mathbb{E}(y_{t-i-y_{t-j}} y_{t-s-l-y_{t-s-k}}) \delta_{i,s} \delta_{j,s+l}$$

(A.9)

$$= \sigma_k^4 \sum_{i=0}^{L-1} \sum_{j>i} h_i^2 h_j^2$$

(A.10)

where

$$i_{\text{min}} = \max(0, s), \quad i_{\text{max}} = L - 1 + \min(0, s), \quad j_{\text{max}} = L + \min(0, s).$$
At equality (A.10) we used the fact that the contribution of $\delta_{i,s+k}\delta_{j,s+l}$ is zero. The argument is the same as for the analogous contribution to $\gamma_m(0)$.

Notice that the autocovariance $\gamma(s)$ is zero when $i_{\text{min}} > i_{\text{max}}$. For $s > 0$, this condition holds when

$$\max(0, s) > L - 1 + \min(0, s)$$
$$s > L - 1.$$

In particular, the sequence z_t is a $(L - 1)$-dependent sequence (i.e. z_t is independent of z_{t-l} for $l > L - 1$).

Using Equation A.3 and the fact that $\hat{E}_{m,T} \xrightarrow{p} \frac{1}{2^m}$ (see Theorem 8) we can write

$$\sqrt{T} \left(\hat{E}_{m,T} - \frac{1}{2^m} \right) = \sqrt{T} \sum_{t=1}^{T} \sum_{i=0}^{2^m-2} \sum_{j>i}^{2^m-1} h_i h_j y_{t-i} y_{t-j}.$$

$$= \sqrt{T} \sum_{t=1}^{T} \sum_{i=0}^{2^m-2} \sum_{j>i}^{2^m-1} h_i h_j y_{t-i} y_{t-j}.$$

$$d \xrightarrow{} N \left(0, \frac{4 \sum_{j=-L+1}^{L-1} \gamma(j)}{\sigma^2} \right) \sim \frac{N(0, \sigma^4 a_n)}{\sigma^2} \sim \sqrt{a_n} N(0, 1).$$

In step (A.11) we used the Continuous Mapping Theorem and the Central Limit Theorem for stationary time series (see Hamilton, 1994, Theorem 7.11). Independence of a_m from σ follows directly from Equations (A.7) and (A.8).

Proof of Theorem 13. Consider the vector $(GS_{1,T}, \ldots, GS_{N,T})$.

$$\begin{pmatrix} GS_{1,T} \\ \vdots \\ GS_{N,T} \end{pmatrix} = \begin{pmatrix} \sqrt{T} \hat{E}_{1,T} - \frac{1}{2^1} \\ \vdots \\ \sqrt{T} \hat{E}_{N,T} - \frac{1}{2^N} \end{pmatrix}$$

$$= \sqrt{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{1}{\sqrt{a_i}} \sum_{t=1}^{T} \hat{z}_{i,t}.$$

Let q be the column N-vector with coordinates $\frac{1}{\sqrt{a_i}}$. Let $\text{diag}(v)$ be the square matrix
with v on the main diagonal and zero everywhere else. By definition

$$\text{diag}(q) \left(\sum_{s \in \mathbb{Z}} \Gamma(s) \right) \text{diag}(q) = \sigma^2 A.$$

Indeed,

$$
\begin{pmatrix}
\frac{1}{\sqrt{a_1}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sqrt{a_2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\sqrt{a_N}}
\end{pmatrix}
\begin{pmatrix}
\sigma^4 a_1 & \sigma^4 a_{12} & \cdots & \sigma^4 a_{1N} \\
\sigma^4 a_{21} & \sigma^4 a_2 & \cdots & \sigma^4 a_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma^4 a_{N1} & \sigma^4 a_{N2} & \cdots & \sigma^4 a_N
\end{pmatrix}
\begin{pmatrix}
\frac{1}{\sqrt{a_1}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sqrt{a_2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\sqrt{a_N}} e
\end{pmatrix} = \sigma^4 A
$$

The joint asymptotic distribution of the vector of multi-scale energy ratios is

$$\left(\begin{array}{c}
GS_{1,T} \\
\vdots \\
GS_{N,T}
\end{array} \right) \xrightarrow{d} \frac{1}{\sigma^2} \mathcal{N} \left(0, \text{diag}(q) \left(\sum_{j=-\infty}^{+\infty} \Gamma(j) \right) \text{diag}(q) \right) \sim \mathcal{N} (0, A) .$$
Bibliography

