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Abstract

The area under the receiver operating characteristic curve (AUC) is a popular threshold-
free metric to retrospectively measure the discriminatory performance of medical tests. In
risk prediction or medical screening, main interests often focus on accurately predicting the
future risk of an event of interest or prospectively stratifying individuals into risk categories.
Thus, AUC might not be optimal in assessing the predictive performance for such purposes.
Alternative accuracy measures have been proposed, such as the positive predictive value
(PPV). Yuan et al. [1] proposed a threshold-free metric, the average positive predictive
value (AP), which is the area under the PPV versus true positive fraction (TPF) curve,
when the outcome is binary disease status. In this thesis, we propose the time-dependent
AP when the outcome is censored event time. Empirical estimates of the time-dependent
AP (APt0) are developed, where the inverse weighted probability technique is applied to
deal with censoring. In addition, inference procedures — using bootstrap and perturbation
resampling — are proposed to construct confidence intervals. We conduct simulation studies
to investigate the performance of the proposed estimation and inference procedures in finite
samples. The method is also illustrated through a real data analysis.

Keywords: ROC curve; precision-recall curve; AUC; AP; survival data; medical risk pre-
diction model
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Chapter 1

Introduction

In medicine, appropriate treatment depends on accurate diagnosis of medical conditions.
Usually, diagnostic tests include radiographic images, biochemical analysis of body fluids,
etc. Considering medical diagnoses in a broader context, screening healthy subjects is also
important since many diseases can be more successfully treated if they are detected earlier.
For clinicians, the utility of risk prediction is determined by its ability to predict the risk
of developing disease by a specific follow-up time point t0 given information of the subject.
That is, the aim is to predict P (Di = 1 | Zi) where Di indicates the i-th subject’s disease
status (i.e. Di = 1 if the subject developed the disease, and Di = 0, otherwise). Zi is a
marker which contains certain information of the subject i. Accurate risk prediction is an
important component in disease prevention and treatment management. Several accuracy
measures have been proposed in the following literature.

1.1 Literature Review

The most widely used accuracy measure is called the receiver operating characteristic (ROC)
curve. The ROC curve first arose in the context of signal detection theory, which was
developed in the 1950s and 1960s [2, 3] and has been popular in medical diagnostic research,
especially in radiology [4]. The ROC curve displays the sensitivity and specificity of an
ordinal or continuous marker for a binary disease status variable D. Details about the
ROC curve are presented in Section 2.1. A parametric ROC regression model [5, 6] of a
generalized linear model (GLM) form has been proposed to examine covariates that affect
the discriminatory capacity of a biomarker, which can be expressed as

ROCZ(u) = g{θ′Z + hα(u)}, 0 ≤ u ≤ 1,

where u is the range of 1-specificity, Z denote covariates, g is the link function, and h is
the baseline function specified for a parameter α. This model extended the classic binormal
model for the ROC curve [7] to include covariates. Cai and Pepe [8] extended the aforemen-
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tioned parametric ROC regression method of Pepe [5, 6] to a semiparametric form, which
reduced the requirements for model specification and increased robustness. In addition,
smooth nonparametric and semiparametric estimators of ROC curves were proposed by
Zou et al. [9] and by Metz et al. [10], respectively.

Area under the ROC curve (AUC) is one of the most commonly used summary indexes
of the ROC curve. AUC captures the inherent discriminatory capability of the diagnostic
test. A larger AUC value corresponds to a better test performance. Partial area under the
curve (pAUC) is another summary index when clinical interests lie only in a specific range
of the sensitivity or specificity [11, 12].

In risk prediction, disease outcomes are time dependent, depending on factors such
as the time to occurrence of the disease. In these situations, the aim is to predict the
t0-year risk, which is the probability P (T ≤ t0 | Z) of developing the disease by a pre-
determined time t0, where T is the time to occurrence of the disease. Heagerty et al.
[13] proposed a time-dependent ROC curve with a single marker where the disease status
D(t) = I (T ≤ t0) is time-dependent, and I (·) is the indicator function. They proposed two
ROC curve estimators that accommodate censored data. One is based on the Kaplan-Meier
survival function method and the other is based on a nearest neighbor estimator for the
bivariate distribution function. With multiple markers, the t0-year risk can be estimated by
Cox proportional hazards models [14] or linear transformation models [15]. Uno et al. [16]
proposed a class of time-dependent GLMs which allows the effects of multiple covariates
to vary with time. Based on the estimated risk, the time-dependent ROC curve can be
estimated parametrically [17] or nonparametrically [16].

Aside from AUC, the positive predictive value (PPV) curve [18] was proposed to be
useful in prospective accuracy evaluation. Zheng et al. [19] extended the PPV curve to
censored data. In addition, Zheng et al. [20] also proposed a covariate-specific PPV curve
based on semiparametric models with censored data. The precision-recall curve, which is the
PPV versus true positive fraction (TPF) curve, is another metric which can be considered
for risk prediction. This curve is widely used in the information retrieval community, where
documents are assigned to two categories: ‘relevant’ and ‘not relevant’. In medical research,
it is of great interest for clinicians to use a marker to identify high risk groups. People
with marker values greater than a given cut-off value are classified as being in the high risk
group, and they may be recommended for intensive follow-up or therapeutic treatment in
order to improve long-term disease outcomes. The ability of the marker to identify high risk
subpopulations may be better reflected by its PPV. Yuan et al. [1] proposed that the area
under precision-recall curve, the average precision (AP), which is a threshold-free summary
index of the precision-recall curve, could be an attractive alternative metric to AUC in
detecting the high risk group. They have shown that AP could improve decision making
for screening tests where a low prevalence disease rate is typical.
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1.2 Objectives

In this thesis, we propose the time-dependent AP (APt0) for censored time to event data in
risk prediction. We derive its estimation and inference procedures through a nonparamet-
rical approach. One of the challenges in the estimate derivation and inference procedures is
that the event time may be subject to censoring, thus not all the event time are observable.
The inverse probability weighting (IPW) technique [16] is used to deal with this issue. In ad-
dition, through simulation studies, we compare the two accuracy measures, time-dependent
AUC and AP, when the distributions of the marker values differ among the subjects who
develop the disease by time t0 and those subjects who are disease-free by time t0.

1.3 Outline

In Chapter 2, we derive the estimates of AUC and AP when the test outcomes are binary and
censored event time, as well as the corresponding inference procedures via bootstrap and
perturbation resampling. Chapter 3 presents simulation studies, where we investigate the
finite sample performance of proposed estimates and inference procedures. In Chapter 4, we
use a real-life dataset from the Childhood Cancer Survivor Study to examine the proposed
time-dependent AUC and AP. In Chapter 5, we summarize this project and outline a few
problems for future investigation.
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Chapter 2

Method

In this chapter, we introduce several popular prediction accuracy measurements when the
outcomes are either ‘binary disease status’ or ‘time to event’. A new metric to evaluate
the predictive performance of risk prediction models is proposed, and the corresponding
estimation and inference procedures are also provided.

2.1 Prediction accuracy measures with binary outcome

In epidemiology, the group of diseased individuals (D = 1) are called the cases, and the
group of disease-free individuals (D = 0) are called the controls. Let Z denote a marker used
in the diagnostic test, which takes ordinal or continuous values. It is usually assumed that
higher values of the marker indicate higher risks of having the disease. With a threshold c,
a positive test result is defined if Z ≥ c. Otherwise, a negative test result is defined.

Several accuracy measures have been proposed to evaluate the performance of the diag-
nostic test. ROC curve is one of the most popular tools. An ROC curve is a plot of the TPF
function versus false positive fraction (FPF) function for all possible thresholds c. The TPF
is defined as the fraction of subjects with positive test results in the case group, and the FPF
is defined as the fraction of subjects with positive test results in the control group. That
is, TPF (c) = P [Z > c | D = 1] and FPF (c) = P [Z > c | D = 0]. In the literature, the
TPF is also called the sensitivity and 1−FPF is also called the specificity. The ROC curve
is the entire set of possible true and false positive fraction values with different threshold
values c (i.e. ROC(·) = {(FPF (c), TPF (c)), c ∈ (−∞,+∞)}). An ROC curve can also be
written as ROC(·) = {(u,ROC(u)), u ∈ (0, 1)}, where ROC(u) = TPF{FPF−1(u)}.

AUC is one of the most commonly used threshold-free summary indexes of the ROC
curve, it is defined as

AUC =
∫ 1

0
ROC(u)du =

∫ −∞
∞

TPF (c)dFPF (c).

4



It can be shown that AUC is the probability AUC = P (Z1 > Z0) that the marker value of a
randomly selected diseased subject is greater than that of a randomly selected disease-free
subject, where Z1 and Z0 correspond to the marker values of a randomly chosen case and
control, respectively. AUC captures the inherent discriminatory ability of the diagnostic
tests. According to Yuan et al. [1], the range of AUC is [0.5, 1]. When a diagnostic (or
screening) test is random, which is a useless test, AUC is equal to 0.5. Whereas when the
diagnostic (or screening) test is perfect, which is regarded as the best test, AUC is equal to
1.

Besides the ROC curve and AUC, accuracy of the test can also be measured by looking at
how well the test can predict the true disease status, such as the PPV and negative predictive
value (NPV). The PPV is defined as the fraction of diseased subjects among the group with
positive test results, and the NPV is defined as the fraction of non-diseased subjects among
the group with negative test results. That is, PPV (c) = P [D = 1 | Z > c] and NPV (c) =
P [D = 0 | Z ≤ c]. The precision-recall (PR) curve plots the PPV (precision) function
versus the TPF (recall) function. That is, PR(·) = {(TPF (c), PPV (c)), c ∈ (−∞,+∞)}.
It can also be written as PR(·) = {(u, h(u)), u ∈ (0, 1)}, where h(u) = PPV {TPF−1(u)}.

Area under the precision-recall curve, which is also called the average precision (AP),
was proposed by Yuan et al. [1]. It can be written as

AP =
∫ 1

0
h(u)du =

∫ −∞
∞

PPV (c)dTPF (c).

In Appendix A, we show that AP gives the expected probability that a randomly selected
subject is diseased given his/her marker value is greater than that of a randomly selected
diseased subject. That is, AP = E[P (Di = 1 | Zi > Z1j)], where Z1j stands for the marker
value of a randomly selected diseased subject, and expectation is taken with respect to the
distribution of Z1j . Thus, AP captures the marker’s ability to identify diseased individuals.
According to Yuan et al. [1], the range of AP is [r, 1] where r represents the event rate.
When a diagnostic (or screening) test is random, AP is equal to r. When the test is perfect,
AP is equal to 1.

To estimate metrics TPF, FPF, PPV and NPV , we use an empirical nonparametric
approach. Their estimates are

T̂PF (c) =
∑n
i=1 I(Di = 1)I(Zi > c)∑n

i=1(Di = 1) , F̂PF (c) =
∑n
i=1 I(Di = 0)I(Zi > c)∑n

i=1(Di = 0) ,

P̂PV (c) =
∑n
i=1 I(Di = 1)I(Zi > c)∑n

i=1 I(Zi > c) , N̂PV (c) =
∑n
i=1 I(Di = 0)I(Zi ≤ c)∑n

i=1 I(Zi ≤ c)
.

Combining the aforementioned estimates, the estimated AUC and AP are
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ÂUC =
∫ −∞
∞

T̂PF (c)dF̂PF (c) =
∑n
j=1

∑n
i=1 I(Dj = 0)I(Di = 1)I(Zi > Zj)∑n
j=1 I(Dj = 0)

∑n
i=1 I(Di = 1) ,

ÂP =
∫ −∞
∞

ˆPPV (c)d ˆTPF (c) = 1∑n
j=1 I(Dj = 1)

n∑
j=1

I(Dj = 1)
∑n
i=1 I(Di = 1)I(Zi > Zj)∑n

i=1 I(Zi > Zj)
.

2.2 Prediction accuracy measures with censored survival data

In some applications, the time to event (such as the occurrence of the disease) is of interest.
The event time might be subject to censoring due to failure to follow up or end of study.
Let Ci be the censoring time. With censoring, only (Xi, δi, Zi) can be observed, where
Zi stands for the individual’s marker, Xi = min(Ti, Ci), and δi = I (Ti ≤ Ci). Given
a prespecified time t0, individuals with Ti ≤ t0 make up the case group; the individuals
with Ti > t0 constitute the control group. The time-dependent TPF, FPF, PPV and
NPV are defined as TPFt0(c) = P (Z > c | T ≤ t0), FPFt0(c) = P (Z > c | T > t0),
PPVt0(c) = P (T ≤ t0 | Z > c), and NPVt0(c) = P (T > t0 | Z ≤ c).

The corresponding time-dependent AUC and AP are defined as

AUCt0 =
∫ −∞
∞

TPFt0(c)dFPFt0(c) = P (Zi > Zj | Ti ≤ t0, Tj > t0),

APt0 =
∫ −∞
∞

PPVt0(c)dTPFt0(c) = E[P (Ti ≤ t0 | Zi > Zj , Tj ≤ t0)].

Without censoring, AUC and AP can be estimated by the empirical estimates as

ÂUCt0 =
∑n
j=1

∑n
i=1 I(Tj > t0)I(Ti ≤ t0)I(Zi > Zj)∑n
j=1 I(Tj > t0)

∑n
i=1 I(Ti ≤ t0) ,

ÂP t0 = 1∑n
j=1 I(Tj ≤ t0)

n∑
j=1

I(Tj ≤ t0)
∑n
i=1 I(Ti ≤ t0)I(Zi > Zj)∑n

i=1 I(Zi > Zj)
.

With censoring, for subjects whose Xi ≤ t0 and δi = 0, I(Ti ≤ t0) are unknown, which
can be regarded as missing values. Using the IPW technique by Uno et al. [16], the estimates
of AUCt0 and APt0 are given by

ÂUCt0 =
∑n
j=1

∑n
i=1 I(Xj > t0)ŵjI(Xi ≤ t0)ŵiI(Zi > Zj)∑n
j=1 I(Xj > t0)ŵj

∑n
i=1 I(Xi ≤ t0)ŵi

,

ÂP t0 = 1∑n
j=1 I(Xj ≤ t0)ŵj

n∑
j=1

I(Xj ≤ t0)ŵj
∑n
i=1 I(Xi ≤ t0)ŵiI(Zi > Zj)∑n

i=1 I(Zi > Zj)
,
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where ŵi is the inverse of the probability that I(Ti ≤ t0) is observed. More precisely,
ŵi = I(Xi≤t0)δi

Ĝ(Xi)
+ I(Xi>t0)

Ĝ(t0) , where Ĝ(·) is the estimate of the survival functionG(·) of censoring
time Ci (i.e. G(c) = P (Ci > c)). If the censoring is independent of both the event time and
the marker, then G(·) can be estimated by the Kaplan-Meier estimator. If the censoring
depends on the marker, then Cox proportional hazard models could be fit to the censoring
time depending on the marker and obtain the estimates of G(· | Z).

2.3 Inference

In this thesis, we focus on time-dependent AUC and AP. To construct confidence intervals,
two methods can be applied. The first one is bootstrap, and the second one is perturbation
resampling.

Bootstrap is a random sampling method with replacement; the procedure has no ex-
ternal input. Standard deviations and confidence intervals can be derived from numerous
repetitions of bootstrapping with the same sample size n.

The perturbation resampling is also called the wild bootstrap [21, 22], which is widely
used in survival analysis when the asymptotic variances are difficult to calculate. Let
{Vi, i = 1, . . . , n} be n independent copies of a positive random variable V with mean 1
and variance 1. For example, Vi can be generated from an exponential distribution. The
perturbed estimates of AUC and AP are obtained by

ÂUC
∗
t0 =

∑n
j=1

∑n
i=1 I(Xj > t0)ŵ∗jVjI(Xi ≤ t0)ŵ∗i ViI(Zi > Zj)∑n
j=1 I(Xj > t0)ŵ∗jVj

∑n
i=1 I(Xi ≤ t0)ŵ∗i Vi

,

ÂP
∗
t0 = 1∑n

j=1 I(Xj ≤ t0)ŵ∗jVj

n∑
j=1

I(Xj ≤ t0)ŵ∗jVj
∑n
i=1 I(Xi ≤ t0)ŵ∗i VjI(Zi > Zj)∑n

i=1 I(Zi > Zj)Vi
,

where ŵ∗i is the perturbed ŵi, which can also be written as ŵ∗i = I(Xi≤t0)δi

Ĝ∗(Xi)
+ I(Xi>t0)

Ĝ∗(t0) .
Here Ĝ∗(·) is the perturbed estimate of G(·) with weights Vi. More precisely, Ĝ∗(t) =
exp{−Λ̂∗(t)} and Λ̂∗(t) =

∑n
i=1

I(Xi≤t)(1−δi)Vi∑n

k=1 I(Xk≥Xi)
from the Nelson-Aalen estimator.

To construct the 95% confidence intervals for the AUC and AP using bootstrap or
perturbation resampling, two approaches are applied. The first one is to find the 2.5th
quantile from all of the resampling estimates as the lower limit, whereas the 97.5th quantile
is the upper limit. The second approach is to apply the normal approximation. For example,
the 95% confidence interval for AUCt0 estimates can be calculated as

Lower Limit = ÂUCt0 − 1.96× sd(ÂUC
∗
t0)

Upper Limit = ÂUCt0 + 1.96× sd(ÂUC
∗
t0)

,
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where ÂUCt0 is the point estimate, and sd(ÂUC
∗
t0) is obtained from bootstrap or perturbed

resampling. This procedure is also applied to construct the confidence intervals of APt0 .
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Chapter 3

Simulation Studies

To examine the finite sample performances of time-dependent AUC and AP estimators, we
conducted a simulation study.

Let the event time Ti = exp(2+εi), where εi is generated from a standard extreme value
distribution. Given a prespecified time t0, the marker values Zi for the control group with
Ti > t0 are generated from a standard normal distribution; the marker values for the case
group with Ti ≤ t0 are generated from a normal distribution N (µZ , σZ). In this simulation,
we consider two sets of values for {µZ , σZ},which are {0.95, 1} and {1.51, 2}. This setting
will result in similar estimated values of time-dependent AUC but different time-dependent
AP based on the studies of Yuan et al. [1]. The censoring time Ci is generated following
Ci = min{C1i, C2i + 1}, where Ci1 ∼ Uniform(0, 40), and C2i ∼ Gamma(4, 0.75). This
configuration results in about 50% of censoring. With the realizations of Ti, Zi, and Ci, let
Xi = min(Ti, Ci) and δi = I (Ti ≤ Ci).

In this simulation study, three prediction time points are considered so that they result
in event rates r = P (Ti ≤ t0) to be 0.01, 0.05 and 0.1. In addition, we generate the
data {(Xi, Zi, δi), i = 1, . . . , n} with different sample sizes n to be 5000 and 10000. The
following results are obtained based on 1000 repetitions. For each repetition, 1000 bootstrap
resamples and 1000 perturbed resamples are generated to construct confidence intervals.

Table 3.1 and 3.2 below report the results for sample sizes 5000 and 10000, respectively.
In each table, we show the following summary statistics: bias, empirical standard error
(ESE), average standard errors from bootstrap (ASEb), average standard errors from per-
turbation resampling (ASEp), the empirical coverage probability from bootstrap (ECOVPb)
and the empirical coverage probability from perturbation resampling (ECOVPp) using nor-
mal approximation. Specifically, the bias is calculated as the difference between the average
of the point estimates of the 1000 replicates and the true value of the accuracy measures
AUCt0 or APt0 . In this simulation study, we obtain the true value via averaging the esti-
mates of AUCt0 and APt0 from a very large sample (n = 100000) over 10 repetitions without
censoring. The ESE is equal to the empirical standard deviation of 1000 point estimates.
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TRUE BIAS ESE ASEb ASEp ECOVPb ECOVPp

r=0.01 AUC N(0.95,1) 74.99 0.04 2.99 2.95 2.91 94.4 93.9
AUC N(1.51,2) 74.96 0.00 4.01 4.00 3.94 94.4 94.2
AP N(0.95,1) 5.02 -0.09 1.50 1.36 1.31 85.7 85.3
AP N(1.51,2) 31.15 -1.26 5.83 5.83 5.62 93.1 91.9

r=0.05 AUC N(0.95,1) 74.93 -0.04 1.56 1.53 1.52 94.2 94.3
AUC N(1.51,2) 75.16 -0.12 2.09 2.03 2.02 94.3 94.5
AP N(0.95,1) 16.72 -0.16 2.00 1.93 1.89 92.6 91.7
AP N(1.51,2) 44.57 -0.69 3.25 3.10 3.08 93.4 93.2

r=0.1 AUC N(0.95,1) 74.92 -0.04 1.12 1.13 1.13 94 94.3
AUC N(1.51,2) 75.02 0.04 1.46 1.46 1.46 95.1 95.4
AP N(0.95,1) 28.22 -0.27 1.93 1.93 1.91 94.6 94.1
AP N(1.51,2) 52.76 -0.20 2.20 2.20 2.19 95.2 95

Table 3.1: Result of Sample Size 5000.

(*All the values shown have been multiplied by 100)

TRUE BIAS ESE ASEb ASEp ECOVPb ECOVPp

r=0.01 AUC N(0.95,1) 74.99 -0.06 2.00 2.09 2.07 95.9 95.5
AUC N(1.51,2) 74.96 0.23 2.80 2.82 2.79 94.4 94.4
AP N(0.95,1) 5.02 -0.05 1.06 1.02 1.00 90.3 89.8
AP N(1.51,2) 31.15 -0.59 4.14 4.15 4.08 94.7 94

r=0.05 AUC N(0.95,1) 74.93 -0.02 1.04 1.08 1.08 95.7 95.5
AUC N(1.51,2) 75.16 -0.07 1.45 1.43 1.43 94.3 94.4
AP N(0.95,1) 16.72 0.00 1.42 1.40 1.38 93.6 92.9
AP N(1.51,2) 44.57 -0.36 2.22 2.20 2.18 95.2 95.1

r=0.1 AUC N(0.95,1) 74.92 -0.03 0.77 0.80 0.80 96.5 96.5
AUC N(1.51,2) 75.02 0.00 1.06 1.04 1.04 95.2 95
AP N(0.95,1) 28.22 -0.11 1.37 1.39 1.37 95.7 95.3
AP N(1.51,2) 52.76 -0.10 1.60 1.56 1.55 95 94.8

Table 3.2: Result of Sample Size 10000.

(*All the values shown have been multiplied by 100)
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Based on the simulation results from finite samples, we can observe that

• The estimates have small bias in each scenario, and the bias decreases with the increase
of sample size.

• The standard errors generated from bootstrap ASEb and perturbation resampling
ASEp are close to the ESE. In addition, all of these standard errors decrease when
the sample size increases.

• The empirical coverage probabilities from bootstrap and perturbation resampling
have no substantial differences from each other, but perturbation resampling is more
computation-friendly. Most of the coverage probabilities approach 95%. However,
there are a few under-coverage situations for APt0 , which happens when both event
rate and sample size are small. Therefore, a logit transformation is applied to improve
the performance of time-dependent AP estimates. That is, ̂new_APt0 = log( ÂPt0

1−ÂPt0
).

Table B.1 and B.2 in Appendix B have more details about the improved results on
the coverage of the transformed estimator.
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Figure 3.1: True Distribution Density Curves for Case and Control Marker Values (r =
0.05).

For different event rates (r = 0.01, 0.05, 0.1), the values of AUCt0 are similar to each
other and they are invariant to event rates. On the contrary, the values of APt0 are quite
distinct from each other and they are sensitive to different event rates. In addition, we
compare the time-dependent AUC and AP under these two scenarios where the distribution
of the marker values for controls is the same (both N (0, 1)) but the distribution of the
marker values for cases are different (N (0.95, 1) versus N (1.51, 2)). For example, when the
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event rate is 0.05, the AUCt0s are 0.749 and 0.751 for N (0.95, 1) and N (1.51, 2), and the
APt0s are 0.167 and 0.446, respectively.

Moreover, we consider that the two markers’ difference in APt0 come from how different
the distribution of the marker values among cases is from controls. Figure 3.1 shows the
density curves of the marker values for cases and controls when event rate is 0.05. We
expect to use this plot to explain the similarity of AUCt0 and diversity of APt0 . It seems
that AUCt0 is associated with the overlapping area of the two density curves for cases and
controls. In these two plots of Figure 3.1, the overlapping areas appear to be similar, and
correspondingly the two AUCt0 values are similar. On the other hand, APt0 seems to be
associated with the right tail area of the cases’ density curve beyond the density curve of
controls. The larger this area is, the larger the value of APt0 appears. The right tail area
in the right plot seems larger compared to the area in the left plot. Correspondingly, the
value of APt0 for the right plot is larger than the one for the left plot. Further theoretical
verification is required.

This simulation has shown that APt0 is an attractive alternative to AUCt0 for comparing
markers. Especially when the markers have the same AUCt0 and our goal is to detect high
risk groups, we can use APt0 to measure the risk prediction models. In addition, APt0 is
sensitive to event rate, which provides more information.
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Chapter 4

Data Analysis

Here we use an example to illustrate our proposed time-dependent AP on the Childhood
Cancer Survivor Study (CCSS) data [23]. The dataset consists of 13060 observations with
survival data, of which 11437 subjects who have complete information are analyzed. 98.7%
of the analyzed subjects are censored, while the remaining 248 individuals who developed
significant cardiovascular disease are observed. In the study by Chow et al. [23], the subjects
are the survivors who were free of significant cardiovascular disease 5 years after cancer
diagnosis from the CCSS cohort. The children in the study were diagnosed with cancer
before age 21 and were enrolled in 26 institutions in North America between 1970 and
1986. The follow-up stopped when the participants turned 40 years old. The goal of Chow
et al. [23] was to create clinically useful risk groups that incorporate demographic and cancer
treatment information available at the end of therapy to predict subsequent congestive heart
failure (CHF) among participants. Even though CHF risk predictors can be found in the
general older adult population, cardiovascular disease is becoming increasingly recognized
as one of the top contributors to late morbidity and mortality in the now more than 400000
childhood cancer survivors in the United States. Seeing that validated CHF risk prediction
models specified for adolescent and young adult survivors were not available, they hoped
that a robust CHF prediction model can be created to help clinicians better identify and
counsel this population with higher risk of CHF.

The data analyzed in our study includes nine risk score systems developed by Chow et al.
[23]: simple_riskscore, simple_riskgroup, heart_riskscore, standard_riskgroup,

heart_riskgroup, standard_logP, standard_riskscore, simple_logP, heart_logP.
‘Simple’, ‘heart’ and ‘standard’ represent three different risk prediction models: ‘simple’
refers to a simple model where chemotherapy and radiotherapy treatment were categorized
as yes or no, ‘standard’ is a standard model where clinical dose information was known,
and ‘heart’ is a standard with heart dose model which uses average radiation dose to the
heart in lieu of chest field dose. Meanwhile, ‘logP’, ‘riskgroup’, and ‘riskscore’ are three
risk subsystems. ‘Riskscore’ stands for the integer risk scores converted from the predicted
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relative risks through Poisson regression models. ‘Riskgroup’ represents three risk groups
low, moderate, and high, which are created based on ‘riskscore’. ‘LogP’ is a linear predictor
from the regression model.

We estimate AUCt0 and APt0 for the nine risk scores developed by Chow et al. [23]
with different prediction time points t0 ranging from year 5 to year 35. These estimates are
shown in Figure 4.1 and Figure 4.2. The numeric results and the inferences are provided in
Table C.1 and C.2 from Appendix C.

Figure 4.1 shows that: (1) among the three risk prediction models, ‘logP’ has higher
AUCt0 than ‘riskscore’ in general, and ‘riskgroup’ has the lowest AUCt0 within each model,
(2) comparing the three prediction models, ‘heart’ and ‘standard’ are indistinguishable
for the first two years and last five years with ‘logP’ and ‘riskscore’, but ‘heart’ model
seems to be better than ‘standard’ between the two time intervals, (3) ‘heart’ overwhelms
both ‘standard’ and ‘simple’ with risk subsystem ‘riskgroup’, (4) and among the nine risk
score systems, ‘heart_logP’ and ‘standard_logP’ have better performances than any others.
‘Heart_logP’ is an even better choice than ‘standard_logP’ from year 7 to year 30 based on
AUCt0-scale. The line at the bottom of this figure is a reference line which indicates that
AUCt0 is equal to 0.5 for a random classifier. Theoretically, all useful risk score systems
should be above this line.

Figure 4.2 shows the performances of the nine risk score systems in terms of APt0 . The
results show that: (1) within each risk subsystem (‘logP’, ‘riskscore’, ‘riskgroup’), ‘heart’
outperforms ‘simple’ and ‘standard’, (2) within the prediction model ‘heart’, ‘riskgroup’
has the most competitive performance, while ‘logP’ outperforms ‘riskscore’. With prediction
models ‘simple’ and ‘standard’, ‘logP’ has a slightly better performance than ‘riskscore’, and
‘riskscore’ overwhelms ‘riskgroup’, (3) comparing these nine risk scores, ‘heart_riskgroup’
outperforms every other score. The line at the bottom of the plot indicates the event rate
over time, which is used as a reference line. Theoretically, all useful risk score systems
should be above this line.

Comparing Figure 4.1 and 4.2, we find that some riskscore systems have similar AUCt0
but different APt0 . For example, ‘heart_logP’ and ‘standard_logP’ share similar AUCt0
but different APt0 over time, which can be shown by the upper two plots in Figure 4.3.
On the contrary, some riskscore systems share similar APt0 but different AUCt0 . This
situation can be shown by the lower two plots of riskscore systems ‘standard_riskscore’ and
‘standard_logP’ in Figure 4.3.

Depending on the different performance measures AUCt0 and APt0 , we arrive at different
conclusions for the choice of risk score system. Based on the AUCt0-scale plot, ‘heart_logP’
and ‘final_logP’ are preferred, whereas the APt0-scale plot favours the ‘heart_riskgroup’,
which has a relatively small AUCt0 . However, both measures suggest that ‘heart’ is the best
prediction model over time. In addition, when two riskscore systems share similar perfor-
mance over time based on one of the two measures, they might have different performances
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depending on the other measure. Chow et al. [23] used AUC and C-statistics as the main
performance measures, thus the proposed assessment provided by APt0 as discussed might
provide them with delightful insights into their study.
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Figure 4.1: Risk Score System’s Time-dependent AUC.
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Figure 4.2: Risk Score System’s Time-dependent AP.
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Chapter 5

Discussion

5.1 Summary

In this project, we extend the AP, which was proposed by Yuan et al. [1] for binary outcomes,
to accommodate time-dependent outcomes. Nonparametric estimates of the proposed mea-
sure are derived. In the presence of censoring, for some subjects, their time-dependent
disease outcomes are unknown. Thus, the IPW technique is applied to deal with the miss-
ing disease outcomes due to censoring. Then bootstrap and perturbation resampling are
applied to construct confidence intervals. We conducted simulation studies to examine the
performance of estimated AUCt0 and APt0 through finite samples. The results show that
the performance of the estimated time-dependent AUC and AP is satisfactory with ignor-
able biases and accurately estimated standard errors. We need to point out that by the
design of the simulation studies, the estimated values of AUCt0 are similar in each scenario
and the estimates of APt0 are different in the two scenarios. This can help us to understand
how distributions of marker values for cases and controls is related to time-dependent AUC
and AP. More simulation studies might be required for further investigation.

We realize that the estimation of time-dependent AP is not stable when the number of
cases is small, since calculation of the AP depends on the number of cases. If the event rate
is small, we need a large sample size to have satisfactory performance of the estimation and
inference procedures.

Lastly, we estimated the time-dependent AUC and AP, and evaluated the predictive
performance of the nine risk score systems in a real-life dataset — CCSS data. Depending
on different measurements: AUCt0 and APt0 , we arrive at different choices of the risk score
system, but a certain unique prediction model is favoured.
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5.2 Future Investigation

In this project, we propose the time-dependent AP for a single marker. In reality, clinicians
construct risk prediction models with more than one significant markers. The t0-year risk
can be estimated parametrically or nonparametrically. We intend to extend the time-
dependent AP to accommodate multiple markers. Parametric and nonparametric estimates
of the time-dependent AP can be developed.

In practice, clinicians are also interested in investigating whether adding new markers
on top of the existing markers could improve the risk predictive performance. Differences
in AP can also be used as a measure to quantify the incremental value of the new markers
by comparing the performance of the new prediction model with both existing markers and
new markers with the old prediction model.

In some applications, clinicians usually want to measure the predictive performance
when FPF is below a certain threshold, such as 5% or 10%. Therefore, partial AP (area
under a specific range of the precision-recall curve) might also be of interest when they want
to apply AP to evaluate prediction models given a prespecified range of FPF.
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Appendix A

The probability expression of AP

Let S1(c) = P (Z1i > c) denote a survival function of cases, where Z1i is the marker value
of cases. F1(c) = P (Z1i ≤ c) denotes the cumulative density function of cases and f1(c) is
the corresponding probability density function.

It is known that

AP =
∫ −∞
∞

PPV (c)dTPF (c) =
∫ −∞
∞

P (Zi > c,Di = 1)
P (Zi > c) dS1(c)

=
∫ −∞
∞

P (Zi > c | Di = 1)P (Di = 1)
P (Zi > c | Di = 1)P (Di = 1) + P (Zi > c | Di = 0)P (Di = 0)(−f1(c))dc

=
∫ ∞
−∞

P (Zi > c | Di = 1)P (Di = 1)
P (Zi > c | Di = 1)P (Di = 1) + P (Zi > c | Di = 0)P (Di = 0)f1(c)dc

Assume that P (Di = 1) = π, which is the event rate, and S0(c) = P (Z0i > c) denote the
survival function for the control. Then,

AP =
∫ ∞
−∞

S1(c)π
S1(c)π + S0(c)(1− π)f1(c)dc

= E

{
S1(Z1j)π

S1(Z1j)π + S0(Z1j)(1− π)

}
= E [P (Di = 1 | Zi > Z1j)] .
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Appendix B

The transformed estimates’
coverage probability in simulation

We summarized the original and transformed coverage probability of time-dependent AUC
and AP estimates in Chapter 3 with two tables: one is for bootstrap and the other one is
for perturbation resampling results.

Sample Size 5000 Sample Size 10000
Original Transformed Original Transformed
ECOVP ECOVP ECOVP ECOVP

r=0.01 AP N(0.95,1) 0.857 0.906 0.903 0.921
AP N(1.51,2) 0.931 0.974 0.947 0.961

r=0.05 AP N(0.95,1) 0.926 0.931 0.936 0.936
AP N(1.51,2) 0.934 0.938 0.952 0.954

r=0.1 AP N(0.95,1) 0.946 0.949 0.957 0.959
AP N(1.51,2) 0.952 0.954 0.95 0.95

Table B.1: Transformed AP Estimates Coverage Probability for Bootstrap.

Sample Size 5000 Sample Size 10000
Original Transformed Original Transformed
ECOVP ECOVP ECOVP ECOVP

r=0.01 AP N(0.95,1) 0.853 0.883 0.898 0.911
AP N(1.51,2) 0.919 0.952 0.94 0.955

r=0.05 AP N(0.95,1) 0.917 0.92 0.929 0.933
AP N(1.51,2) 0.932 0.939 0.951 0.954

r=0.1 AP N(0.95,1) 0.941 0.944 0.953 0.956
AP N(1.51,2) 0.95 0.953 0.948 0.948

Table B.2: Transformed AP Estimates Coverage Probability for Perturbation Resampling.
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Appendix C

Numeric Results of CCSS dataset

Two tables below represent the numeric estimates and inferences of the nine markers from
CCSS data with specified t0 and the corresponding event rate r. ‘Estimate’ stands for the
point estimate and ‘SE’ is the standard error obtained via perturbation resampling.
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Appendix D

ROC and precision-recall curves
for CCSS data
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Figure D.1: ROC and PR curve : t0=7 (year).
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Figure D.2: ROC and PR curve : t0=8 (year).
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Figure D.3: ROC and PR curve : t0=15 (year).
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Figure D.4: ROC and PR curve : t0=25 (year).
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Figure D.5: ROC and PR curve : t0=35 (year).
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