Rules and ontologies in support of real-time ubiquitous application

Marek Hatala, Ron Wakkary, Leila Kalantari

School of Interactive Arts and Technology, Simon Fraser University, 2400 Central City, 10153 King George Highway, Surrey, BC, Canada V3T 2W1

Received 6 May 2005; received in revised form 11 May 2005; accepted 12 May 2005

Abstract

The focus of this paper is the practical evaluation of the challenges and capabilities of combination of ontologies and rules in the context of real-time ubiquitous application. The eco project designed a platform to create a museum experience that consists of a physical installation and an interactive virtual layer of three-dimensional soundscapes that are physically mapped to the museum displays. The retrieval mechanism is built on the user model and conceptual descriptions of sound objects and museum artifacts. The rule-based user model was specifically designed to work in environments where the rich semantic descriptions are available. The retrieval criteria are represented as inference rules that combine knowledge from psychoacoustics and cognitive domains with compositional aspects of interaction. Evaluation results both from the laboratory and museum deployment testing are presented together with the end user usability evaluations. We also summarize our findings in the lessons learned that provide a transferable generic knowledge for similar type of applications. The eco project proved that ontologies and rules provide an excellent platform for building a highly-responsive context-aware interactive application.

Keywords: Ontologies; Rule-based systems; User modeling; Context aware; Augmented reality; Audio; Museum guide

1. Introduction

Audio museum guides have existed for some time as a means of overcoming the scheduling inflexibility of group tours by museum docents. While beneficial in many respects, the audio guides are limited by their linear sequence and non-interactive structure. Bederson [3] developed a prototype utilizing portable mini-disc players and an infra-red system to allow museum visitors to explore at their own pace and sequence. As museum visitors approached artifacts on display, relevant audio information would be triggered on the mini-disc player and heard through headphones. Hyperaudio [16] provided visitors with palmtop computers and developed specific user models for adaptive systems within a museum setting. MEG [2] is a portable digital museum guide for the Experience Music Project in
Seattle that allows visitors 20 hours of audio and video on demand. Visitors make their selections either by use of the keyboard within the PDA device or by pointing the device at transmitters located adjacent to artifacts. In the previous works, the relationship of the digital content to the artifacts is either pre-planned and fixed, or the digital content is not networked and limited to the local device; in some cases both limits are true. ec(h)o employs a semantic web approach to the museum’s digital content, thus it is networked, dynamic, and user-driven. The interface of ec(h)o does not rely on portable computing devices; rather it utilizes a combination of gesture and object manipulation recognized by a vision system.

The dynamic and user-driven nature of ec(h)o requires a highly responsive retrieval mechanism with a criteria defined by psychoacoustics, content, and composition domains. The retrieval mechanism is based on a user model that is continually updated as a visitor moves through the exhibition and listens to sound objects. The criteria are represented by rules operating on the ontological descriptions of sound objects, museum artifacts, and user interests.

One of the main goals of ec(h)o is to achieve an enhanced experience for the museum visitors without inserting an extra layer of technology between the visitor and the museum exhibit. Two mechanisms contribute to an accurate retrieval of sound objects in ec(h)o: the user model and ontology descriptions of objects.

With the development of the semantic web [4] the use of ontologies as a formalism to describe knowledge and information in a way that can be shared on the web is becoming common. Adoption of the standard for the ontology web language (OWL) [21] is propelling this trend toward large scale application in different domains. However, the utility of the ontologies is limited by the processing mechanisms that are smoothly integrated with this form of representation. Therefore there is an effort on the way to formalize the logic layer for ontologies. The semantic web rule language (SWRL) [21] is proposed as an important step in this direction, building on the experience of the previous work on RuleML [5]. Eventually the availability of standardized rule language for the semantic web will make it possible to use both ontologies and rules as a basis for innovative applications that are connected to the semantic web. The understanding of capabilities and implications of this combination will be essential for successful deployment and adoption of these technologies. This paper aims at addressing some of these issues through the development of a ubiquitous system with some extreme requirements testing the capabilities of the emerging technological platform.

The paper is organized as follows. First we present the ec(h)o architecture and then we describe ontologies used in the ec(h)o. Section 4 describes the user model and Section 5 outlines the retrieval mechanisms for sound objects. Before we show the results of the evaluation in Section 7 we describe the implementation challenges and lessons learned in Section 6.

2. ec(h)o Architecture

The platform for ec(h)o is an integrated audio, vision, and location tracking system installed as an augmentation of an existing museum exhibition installation. The platform is designed to create a museum experience that consists of a physical installation, an interactive layer of three-dimensional soundscapes that are physically mapped to museum displays, and the overall exhibition installation.

Each soundscape consists of zones of ambient sound and “soundmarks” generated by dynamic audio data that relates to the artifacts the visitor is experiencing. The soundscapes change based on the position of the visitor in the space, their past history with viewing the artifacts, and their individual interests in relation to the museum collection. To achieve this type of audio experience the overall system must be integrated with a position tracking system that has a frequent update cycle and a high level of spatial resolution. A pattern of the user’s movement can indicate the type of museum visitor [19] as well as user intentions [17].

When the user stops in front of an artifact, she is presented with three sound objects spatially positioned to the left, center, and right. By way of a gesture-based interaction, the visitor can interact with a single artifact or multiple artifacts in order to listen to related audio information. The audio delivery is dynamic and generated by agent-assisted searches inferred by past interactions, histories, and individual interests.

The source for the audio-data is digital objects. In the case of ec(h)o, we developed a large sample set of digital objects that originated from the partner...
museums. These digital objects were used to populate the network of object repositories.

The ec(h)o architecture (Fig. 1) consists of four independently functioning modules: position tracking module, vision module, sound delivery module, and reasoning module. Two main types of events trigger the communication between the modules: the user’s movement through the exhibition space and the user’s explicit selection of the sound objects.

3. Semantic description of objects

We have identified two types of information as essential for ec(h)o:

• the content description of the user interests (user model), sound objects, and museum artifacts, and
• psychoacoustics and sound characteristics of the sound objects.

3.1. Ontologies for describing content

The ec(h)o interaction model is based on the semantic description of the content of the sound objects. We have developed a sound object ontology describing objects with several properties. As the ability to link to other museum collections is an important feature of ec(h)o, our ontology builds significantly on the standard conceptual reference model (CRM) for heritage content developed by CIDOC [7]. The CRM provides definitions and a formal structure for describing the implicit and explicit concepts and relationships used in cultural heritage documentation. To describe sound objects we use CRM Temporality concept for modeling periods and events and Place for modeling locations. We describe museum artifacts using the full CRM model.

The content of the sound object is not described directly but annotated with three entities: concepts, topics, and themes. The concepts describe the domains that are expressed by the sound object such as evolution, behaviour, lifestyle, diversity, habitat, etc. Since the collections in individual museums are different, so are the concept maps describing these collections. A topic is a more abstract entity that is represented by several concepts, such as botany, invertebrates, marine biology, etc. To facilitate the mappings between topic ontologies in individual museums we have mapped the topics to the Dewey decimal classification [8] whenever

Table 1

<table>
<thead>
<tr>
<th>Property</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>hasTheme</td>
<td>SoundObject</td>
<td>Theme</td>
</tr>
<tr>
<td>hasTopic</td>
<td>SoundObject</td>
<td>Topic</td>
</tr>
<tr>
<td>hasPrimaryConcept</td>
<td>SoundObject</td>
<td>ConceptOfInterest</td>
</tr>
<tr>
<td>hasSecondaryConcept</td>
<td>SoundObject</td>
<td>ConceptOfInterest</td>
</tr>
<tr>
<td>relatesToTemporalEntity</td>
<td>SoundObject</td>
<td>CRM_Temporality</td>
</tr>
<tr>
<td>relatesToPlace</td>
<td>SoundObject</td>
<td>CRM_Place</td>
</tr>
<tr>
<td>describesArtifact</td>
<td>SoundObject</td>
<td>MuseumArtifact</td>
</tr>
</tbody>
</table>
Fig. 2. ec(h)o Content ontologies.

possible. Finally, themes are defined as entities supported by one or more topics, for example, the theme of “bigness” in invertebrates and marine biology.

Table 1 shows content related properties with their domains and ranges.

In Fig. 2 the sound object ‘IN00327’ is annotated with concepts ‘Anatomy’ and ‘Genus Info’, has a topic ‘From Head to Toe’, and supports the theme ‘What Can You Tell Me About That’. The sound object ‘IN00327’ describes the artifact ‘C3-18’ that is modeled as an instance of ‘Biological object’ type in the CRM model described by the ‘Common dolphin skull’ object. The exhibit ‘E3’ from the exhibit ontology holds the information about the artifacts in the particular exhibit.

The ontologies for ec(h)o were modeled in DAML + OIL. The DAML + OIL representation of the IN000327 audio object is shown below:

```
In ec(h)o the ontological concepts are transformed into the Jess facts that represent RDF triples (see imple-
```

For readability we use XML entities to refer to namespaces in this paper. For example, &aposch; refers to the namespace http://echo.iat.sfu.ca/owl/psychoacoustic.daml, other references are self-explanatory.
mentation section for details.) The above DAML + OIL
description of the audio object IN000327 is represented
with the following facts (with PropertyValue being a
fact name used for all RDF triples):

```
(PropertyValue %rdf:Type apsich:#IN000327 apsich:#InfoNarration)
(PropertyValue apsich:#hasPrimaryConcept apsich:#IN000327
 http://echo.ist.sfu.ca/owl/concept-daml#anatomy)
(PropertyValue apsich:#hasSecondaryConcept apsich:#IN000327
 #concept#Genre_info)
(PropertyValue apsich:#hasTopic apsich:#IN000327
 atopic:#From_head_to_tool)
(PropertyValue apsich:#hasRecord apsich:#IN000327
 http://192.168.0.103/audible_objects/0027.mp3)
(PropertyValue apsich:#describes apsich:#IN000327 crwm:BCJ-16)
(PropertyValue apsich:#hasAPICategory apsich:daml#IN000327
 apsich:#Expert)
(PropertyValue apsich:#hasTheme apsich:#IN000327
 (schema:#What_can_you_tell_me_about_this?)
```

For details on creation of content and related ontolo-
gies see [23].

3.2 Psychoacoustics and sound characteristics ontologies

The auditory interface of ec(h)o follows an ecolog-
ical approach to the sound composition. It provides
the basic mechanisms of navigation and orientation
within the information space. Three areas are taken
into account: psychoacoustic, cognitive, and compo-
sitional problems in the construction of a meaning-
ful and engaging interactive audible display. Psychoa-
coustic characteristics of the ecological balance include
spectral balancing of audible layers. Cognitive aspects
of listening are represented by content-based criteria.
Compositional aspects are addressed in the form of the
orchestration of an ambient informational soundscape
of immersion and flow that allows for the interactive
involvement of the visitor.

Table 2
Psychoacoustic properties for the Sound Object

<table>
<thead>
<tr>
<th>Property</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>hasSpectralDensityCenter</td>
<td>SoundObject</td>
<td><Number></td>
</tr>
<tr>
<td>hasSpectralDensityWidth</td>
<td>SoundObject</td>
<td><Number></td>
</tr>
<tr>
<td>hasBandwidth</td>
<td>SoundObject</td>
<td><Number></td>
</tr>
<tr>
<td>relatesToEnvironment</td>
<td>SoundObject</td>
<td>Physical_Environment</td>
</tr>
<tr>
<td>relatesToEvent</td>
<td>SoundObject</td>
<td>CRM_Event</td>
</tr>
<tr>
<td>hasSource</td>
<td>SoundObject</td>
<td>Source_TypeValue (e.g. AnimalSound, HumanEnvironment-Sound)</td>
</tr>
</tbody>
</table>

Table 2 shows the psychoacoustics ontology that
defines the characteristic of the sound objects that are
used by the composition rules.

4. The user model

In the core of the ec(h)o’s reasoning module is
a user model [22] that is continually updated as the
user moves through the exhibition and selects sound
objects.

Fig. 3 shows an interaction schema of the user
model with other modules. There are two main up-
date sources in the system. First, as the user moves
through the exhibition, the speed of the movement
due to stopping or slowing down at different artifacts
provide updates to the user model. The user’s behav-
ior type is computed based on the speed and homo-
geney of the user’s movement. Stopping and slowing
down in front of an artifact are interpreted as interest
in topics represented by the artifact. The user inter-
ests and intentions influence the presentation of sound-
marks. For example, soundmark radius and volume is
increased for those artifacts that correspond with cur-
rent user interests. Another example can be the reduc-
tion of the number of soundmarks in the exhibition,
if the user’s recognized intent is to quickly cross the
room.

The second source of updates to the user model
considers the user’s direct interaction when selecting
a sound object. In the model, this maps to an in-
creased user interest in topics presented by the sound
object and updates the user’s interaction history. We de-
scribe the user model and retrieval mechanism in detail
below.
4.1. User model components

Interaction history is a record of how the user interacts with the ec(h)o-augmented museum environment. Two types of events are stored in the interaction history: the user’s movement and the user’s selection of objects. The user’s path through the museum is stored as discrete time-space points of locations on the path. A second type of information stored in Interaction History is the user’s selections in the form of URLs of sound objects.

User behavior in the museum context is well studied in museum studies [9] and is used in several systems personalizing the user experience [18,19]. In the case of ec(h)o, several categorizations were used; for example, one user may go through almost every artifact that is on his/her way, and another user may be more selective and choose artifacts that have certain concepts. Our categorization of user types is based on Sparacino’s work [19] and it classifies users in three main categories: (1) the avaricious type who approaches artifacts in a deliberate and sequenced manner, (2) the selective type who explores certain concepts thoroughly, and (3) the busy type who wants a general idea of the exhibitions by browsing quickly through the museum.

In ec(h)o, the user behavior is not static. It continually updates by considering the location data accumulated in the previous 5 min; in addition to considering topics of previously selected sound objects.

User interests are represented as a set of weighted concepts from the ontology. In ec(h)o each artifact/exhibition is annotated with a set of concepts. The sound objects address a set of particular concepts as well. The system updates the user interests in response to two update channels described above. The interaction of the user and artifacts and sound objects is stored in the Interaction History that together with the user behavior type are used to infer the visitor’s interests.

The following rule `concept-evol-choose--1` shows an example of how concepts of interest are updated in the user model. The `^user-model-concepts*` object accumulates contributions from all activated rules first and indicates that the user model has to be updated. After all contributions are made, the rule `update-user-model---1` (with lower salience value) fires and recalculates the user interests values. It then inserts facts representing values of user interests into the knowledge base. These facts are used in the ranking of sound objects (described in Section 5).
4.2. Generalization of user model for semantic web applications

When designing a user model for ec(h)o we considered other application domains where the user model is needed. Another active research area of our lab is eLearning, specifically intelligent support to learners and automatic just-in-time assembly of learning material. A core part of the user model is maintaining user interests that also reappear in other contexts either directly as user interests or as user knowledge, abilities, skills, etc. Recognizing many similarities between requirements from ec(h)o and eLearning domains, we have designed our user model in a modular fashion that benefits from two easily scalable technologies: ontologies and rule-based systems. Fig. 4 shows the generalized flow of processing that keeps track of user interests with generic parts in bold.

The user observations and actions are related to the application-specific objects and the environment that can be modeled using ontologies. In ec(h)o, we use the CIDOC CRM ontology for modeling museum artifacts and the ontologies we developed for sound objects and exhibition (space). In other domains the objects and environment can be modeled in similar ways; for example, in the eLearning domain we model learning objects, courses, curriculum, and learning design (pedagogical processes). We found that user actions correspond to user’s interaction with learning systems. In the Concept Mapping and Extraction block in Fig. 4, we use inference rules to extract the concepts relevant to user interests and level of user engagement.
with these concepts. For example, when a user selects a sound object annotated with primary and secondary concepts of interest, the system extracts these two concepts and assigns them two different levels of engagement (‘activated concepts of interest’ link in Fig. 4).

As the name suggests, the Interest Adjustment block is responsible for adjusting the user interest as a reaction to user actions. In our design, this is a generic component that has two parameters: maximum level of individual interest, and a maximum for a sum of all interests. Based on a set of activated concepts and previous values for interest, the algorithm re-computes the values accordingly. Both components are implemented as rule sets and therefore the model can be easily adapted to other applications.

5. Inference-based sound object retrieval

We have identified the following requirements for the retrieval of appropriate sound objects:

1. Content-relevant to the viewed artifact;
2. Content-relevant to the user interests;
3. Content invites to exploration of other areas;
4. Content is plausible from the psychoacoustics perspective.

In addition to the criteria for an individual object the following criteria apply to the sequence of the objects offered to the user:

5. Provide for exploration of a subject in depth;
6. Provide for the fluidity in experience both in content and sound experience;
7. Provide a mix of informational and entertaining objects.

The retrieval process in ech(o) can be broken into several steps. The input into the process is user interests, interaction history and semantic descriptions of sound objects. In the process the criteria listed above contribute to overall ranking for each sound object.

The following rule c1---1 contributes to the rating of object ?in2. The object ?in2 is a candidate object to replace previously listened to object ?in1 (represented by the replace fact). The object ?in2 is a candidate because it matches the concept of user interest ?c (fact user-concept) within the context of the current exhibition ?e (fact is-about). The object rating is a combination of level of user interest in the concept and level by which the concept is represented by the sound object. The rating is added to the ?*object-ratings* java object (see discussion in Section 6.5).

The object-concept facts were created from the semantic representation using rules below. These facts also include different levels for primary and secondary concepts (rules concept-level-c1 and concept-level-c2):

```
(defrule concept-level-c1
  (PropertyValue & psch:hasPrimaryConcept ?in ?c)
  ==> (assert (object-concept (object ?in (concept ?c) (level 1)))))

(defrule concept-level-c2
  (PropertyValue & psch:hasSecondaryConcept ?in ?c)
  ==> (assert (object-concept (object ?in (concept ?c) (level 0.5)))))
```

The ?*object-ratings* is bound to a Java object that simplifies the calculation of object ratings.
The composition criteria considers the next object in the context of the objects the user listened to previously. The selection is based on theme, topic, concepts, and described artifacts. An example of such rules is a rule that increases the rating of the sound objects that continue to provide more information about an artifact described by the previous selected sound object. The rule below adds ratings to the sound object that describes the same artifact as the object being replaced. The rule checks whether candidate object ?in2 describes the same artifact as previous object ?in1 while ?in2 cannot be an exhibition object but an actual artifact within the exhibition.

When all the rules contributing to the ratings of sound objects are applied the object with highest rating is selected to replace the object user listened to (rule calculate-best-object--1).

Another rule supporting echo's interaction model is the rule that favors objects annotated as a guide sound object after a previous guide object was offered for a particular artifact. This allows system to keep focus on the artifact. As guide objects are related to specific artifacts the rule makes sure that logical ordering between two consecutive sound objects is not violated.

However in certain cases it is not desirable to offer some guide objects once the user listened to other guide objects. This is prevented by explicitly specifying such undesirable ordering. Second type of objects are expert objects that provide more generic information applicable across several exhibitions, e.g. sound objects describing relation between evolution and diversity.
For more details of information retrieval aspects in e(c)h(o) see [11].

6. Implementation

The e(c)h(o) system was fully implemented, deployed, and tested in the setting of the real exhibition space in Nature Museum in Ottawa in March 2004. The system used radio frequency based position tracking system with an update rate of up to 1.6 seconds. The vision and audio delivery systems were developed in our lab in the MAX/MSP environment.

The reasoning module is fully implemented with all features described in the previous section. During the development we embedded the reasoning engine in the Tomcat environment in order to facilitate online editing of knowledge models as shown in Fig. 5. However, for the final deployment we removed the reasoning engine from the Tomcat environment for the performance reasons. All communication with the reasoning engine was accomplished through a UDP connection.

6.1. Reasoning engine implementation

The real-time nature of the e(c)h(o) environment was the driving force for the selection of the implementation platform that would support the reasoning engine. As shown in Fig. 5, the Jess inference engine is in the center of the reasoning module. We have used DAMLJessKB to load DAML + OIL ontologies into Jess (for details see [13]). DAMLJessKB uses Jena toolkit to convert ontologies into RDF triples which are converted to Jess facts (see examples in Section 3). When converted, ontologies are loaded into the Jess; the rules representing DAML + OIL semantics (provided by DAMLJessKB) infer all the missing relations in the RDF graph. This happens at the start time and prepares the system to respond to the input in a real-time fashion. However, this nice theoretical assumption was challenged by the reality of our implementation, which we summarize in the following sections.

6.2. Memory requirements of ontological representations

E(c)h(o) makes use of several ontologies that need to be loaded into the Jess knowledge base. Table 3 summarizes the number of classes, properties, and instances for each ontology used in e(c)h(o).

During the loading process the ontologies are converted into RDF triples and the full DAML + OIL semantics is applied, generating complete RDF tree for the knowledge models. Table 4 shows the number of triples for ontology models only and then for ontology models and instances before and after applying semantic rules.

Fig. 5. Implementation schema of the reasoning module.
Table 3
Ontologies used in ec(h)o

<table>
<thead>
<tr>
<th>Ontology</th>
<th>No. of classes</th>
<th>No. of properties</th>
<th>No. of instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts of interests</td>
<td>2</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>CRM</td>
<td>62</td>
<td>139</td>
<td>209</td>
</tr>
<tr>
<td>Exhibition</td>
<td>1</td>
<td>3</td>
<td>149</td>
</tr>
<tr>
<td>Psychoacoustics</td>
<td>52</td>
<td>26</td>
<td>241^2</td>
</tr>
<tr>
<td>Theme</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Topic</td>
<td>1</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Topic Dewey</td>
<td>107</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

^ There are 613 instances representing sound objects. The remaining number represents prefaces – short sound objects introducing the main object.

As we can see in the first row of Table 4, the number of facts increased by 75% after applying DAML + OIL semantics. The same wasn’t true for the facts representing instances. We explain this by instances linking to concepts and other instances through properties. As we do not have a rich system of properties in our ontologies the number of inferred facts is smaller.

Table 4
Number of facts representing ontologies in Jess at the startup

<table>
<thead>
<tr>
<th>No. of facts</th>
<th>Before applying semantics</th>
<th>After applying semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontology models only</td>
<td>8321</td>
<td>14411</td>
</tr>
<tr>
<td>Ontologies including instances</td>
<td>40910</td>
<td>65005</td>
</tr>
</tbody>
</table>

6.3. Rules

Although the numbers listed in Table 4 are relatively moderate, the real influence of the number of facts is felt in combination with forward chaining rules in Jess. Jess implements the RETE algorithm to build a network to keep track of possible combinations of facts supporting rule activations. With a large number of facts with similar patterns representing RDF triples, the number of possible combinations can be potentially huge.

Another aspect of ec(h)o that was influential for the rule set design is the sequential nature of the retrieval process. The processing chain from the rule perspective is shown in Fig. 6. The processing is triggered by an observation that is inserted into the knowledge base as
a fact. First, the system updates user and environment models, then proceeds with the ranking of objects considering updated user and environment models; finally, it applies the interaction criteria to select next recommended objects. To achieve the sequencing we had to prioritize between groups of rules using salience values which consequently had some undesirable effects. We describe particular challenges and lessons learned in the section below.

6.4. Performance

The final implementation of the reasoning engine ran on a Pentium M 1.5 GHz with 768 MB of RAM. The final demonstration served two concurrent users (of maximum four possible). The reasoning engine received input about the location of each user approximately every two seconds. This input caused a short 50% spike in processor activity when the user moved within the same exhibit and a short 100% spike when the user changed exhibits. After receiving input about user selection of a sound object, the processor performance briefly reached 100% and completed the selection of a new sound object below the 1 s limit (this was well below the time the user actually listened to sound objects, which was typically 5–20 s). The memory usage during load time reached above 512 MB and then stabilized around 372 MB (these numbers measure memory used by Java JVM).

The use of a forward chaining inference engine has proved itself to be an efficient mechanism for responding to the dynamic nature of the user input. The system loading time was relatively long as a lot of parsing and initial inference is performed on the ontologies and object descriptions. After the startup phase the amount of inference is limited to updates from the user input, resulting in quick responses.

6.5. Challenges and lessons learned

From the implementation perspective (we will talk about qualitative evaluation in the next section) the reasoning engine had the only criterion: a real time response to other parts of the e(h)o system. As we developed content incrementally we did most of the reasoning engine design and development with a limited set of 150 sound objects recorded early in the process. As a result some of the challenges showed up when we scaled up to the full set of over 600 sound objects. Another aspect that challenged us was simultaneous support for multiple users. We discuss some of these challenges that have general implications for similar systems.

6.5.1. Problem 1: rich semantics can cause significant computational delays

6.5.1.1. Problem. The rules for selecting sound objects use several criteria for fluency of a dialogue. The criteria depend on ontological annotation of themes, topics, concepts, etc. With richly annotated objects the system was not able to select new sound objects in real-time.

6.5.1.2. Cause. Different criteria are represented by individual rules and when fired they contribute a value towards the final score for the objects. Some criteria are satisfied for many sound objects. For example, the criterion that keeps coherency of theme in the dialogue is activated many times as all sound objects are categorized only into seven themes, which are present in the exhibition. The criterion itself has little decisive power but consumes many resources.

6.5.1.3. Solution. After we analyzed results from the preliminary user testing we eliminated some of the rules/criteria. This had a minimal impact on the quality of the end user experience and significantly reduced the number of rule activations. In general, the semantic annotation that categorizes an object in a coarse manner should not be used in a generative computation but rather used for filtering out of unsuitable candidates.

6.5.2. Problem 2: concurrency has to be treated explicitly

6.5.2.1. Problem. In the case of concurrent users, the reasoning modules waits until sound objects for all users are computed and delivers all of them at the same time. This caused significant latency for individual users.

6.5.2.2. Cause. In e(h)o we had to work with salience values (rules with higher salience value fire before rules with a lower value). In the case of multiple users, the rules interfered with each other. For example, if a second user makes a choice before a computation for the first user is finished then rules with a higher salience
for the first user to be pending until all the rules for the second user with higher salience values fire. With an increasing number of visitors the latency increased.

6.5.2.3. Solution. We found the solution with help from the Jess community. We categorized the users into groups and assigned an identical set of critical rules for each group. The set of rules is activated only for users belonging to the group, so the users from different groups do not block each other. In general, the same problem can occur when the reasoning engine is exposed as a web service and a multiple access to the service is allowed.

6.5.3. Problem 3: know-your-tool or carefully consider implications of implementation platform

6.5.3.1. Problem. A rule that gets activated many times with a ‘not’ clause positioned early on the list of preconditions takes a long time to fire.

6.5.3.2. Cause. ‘not’ Pattern can only match an absence of a fact. In our case, it is evaluated only when the fact is asserted (then it fails) or when the pattern immediately before the ‘not’ clause on the rule left hand side is evaluated. Therefore patterns following the ‘not’ clause are evaluated at the runtime. Combining this with a large number of candidate facts resulting from the ontology representations causes significant delays.

6.5.3.3. Solution. Position a ‘not’ clause as the last pattern on the left hand side of the rule.

6.5.4. Problem 4: do not use rules for extensive numerical computations

6.5.4.1. Problem. Computing multi-criteria numerical preferences required assertion of extensive number of facts and use of salience values resulting in growing response times for subsequent iterations.

6.5.4.2. Cause. As several criteria are used to contribute preference values to the overall score of each sound objects, we need a mechanism ensuring that all contributions are made before making sound object selection decision. There are two possible approaches: first, add all the contributions as facts and then fire summation rule; or, keep adding contribution to one fact, which means retracting and re-asserting it into the knowledge base. The second approach is more time consuming. Both approaches require use of salience values to make sure all contributions were made.

6.5.4.3. Solution. Build a simple extension in Java (or other language) that will perform the computation and make it accessible through the inference engine extension mechanism (direct call to Java in the case of Jess). This will speed up computation as generating large volume of facts and build up of the Rete network for rule activations will be avoided. The salience will still be

![Fig. 7. Number of facts in iteration steps.](image-url)
needed to ensure that all contributions were made. The rules in Section 4.1 illustrate the solution. Figs. 7 and 8 show the effect of moving computation from the knowledge base to the external Java module.

7. Evaluation and discussion

ech\(\)o is a complex interdisciplinary research project that has to be evaluated from different perspectives. As the evaluation of ubiquitous computing systems is extremely complex \([20]\) we have found Miller’s and Funk’s \([14]\) view of the problem of evaluation of ubiquitous computing systems from the traditional ‘validation’ and ‘verification’ perspective very useful. In validation we evaluate whether the system performs the functions it was built for based on the requirements specification. Verification tests the system against the reality by checking whether the system provides the envisioned benefits. Finally, the evaluation of technical aspects of the system implementation can provide insights to the developers of a similar system.

Following Miller’s and Funk’s approach allowed us to focus our evaluation on the areas where we researched novel approaches in the adaptive ubiquitous systems. We also avoided the evaluation of the aspects of the system that are not well defined or understood and the evaluation results would provide very little value.

Our validation efforts concentrated on the system components for which we either had predicted outcomes or have established the criteria for such outcomes. Specifically, we have validated the flexibility and responsiveness of the user model and effectiveness of the object recommendation component. We have verified our solution with the targeted end user group through extensive questionnaires and videotaped interviews.

In this section we provide an overview of the evaluation results as those are reported in detail elsewhere \([10]\). A detail account is given for the evaluation aspects related to rules and ontologies.

7.1. Suitability of ontologies and rules for user modeling

In the context of our work, the user model performs a function of a recommender system \([15]\). “Recommender systems represent user preferences for the purpose of suggesting items to purchase or examine” \([6]\). Several types of recommendation techniques have been developed: collaborative, content-based, demographic, utility based, and knowledge-based. Often the researchers combine several techniques to achieve maximum effect. The knowledge-based recommender systems perform favorably with respect to the introduction of new users and new items (so called ‘ramp-up’ problem \([12]\)) which is an important feature for ubiquitous computing environments. The knowledge recommender systems require three types of knowledge \([6]\): catalog knowledge or knowledge about objects to
be recommended, functional knowledge of mapping between user needs and objects, and user knowledge.

From this perspective we have used ontologies extensively to describe knowledge about objects, environment, and the user. As multiple criteria were used to determine the user interests, a rule-based approach provided us with the flexibility that enabled us to evolve the system through several iterations. Furthermore, to be able to respond to the specifics of the application we have parameterized the influence of inputs from the user and ubiquitous environment such as maximum interest value, object selection, and location change contributions towards user’s interests, etc. The purpose of the parameterization was to fine-tune our generic user model framework. We performed an extensive testing for the suitable combination of parameters in the lab setting with early input from the test users.

The user model uses a spring model to keep interests balanced. The level of interest is represented by the real number and can range from 0 to 10 (the value was set with respect to other values used for ranking objects). The sum of all interests never exceeds the value of 30. In the model we consider only positive influence from the user interaction that directly increases the level of some of the interests. When this increase causes an imbalance (the sum is above 30), the implemented spring model proportionally decreases values of other interests.

Fig. 9 show the sequence of steps and evolution of interests in each step. In the first step three concepts are selected by the user. The circle icon indicates concepts introduced to the model by the visually represented exhibit concepts (Steps 2, 11, and 15). In the rest of the steps the user selected sound objects. The square icon indicates primary concept and triangle icon secondary concept in the selected sound object.

The rule-based model proved to be very flexible and responsive to the parameters. The representation of the knowledge in the form of ontologies made the

![Fig. 9. Evolution of user interests.](image-url)
design and implementation of the model very easy with the clear way of accessing the knowledge. The use of the DAMLJessKB module accompanied with the DAML + OIL language semantics made the inference in the knowledge base transparent, which enabled us to concentrate on the model implementation instead on navigating and inferring static knowledge.

7.2. End user verification

As Miller and Funk [14] point out the verification evaluates the system from the perspective of provided value. Typically, the qualitative methods are used and end user testing is involved. The qualitative methods are more suitable for novel approaches and new areas of research to verify the potential of those.

In e(h)o we have conducted in depth usability testing of the system while deployed in the real museum setting. An extensive testing was done with 6 subjects. The subjects were briefly trained on how to use the system (learning phase), and then had an opportunity to ask questions. They used the system on their own for a period of 10–20 min. After this session, they completed a modified version of Ben Schneiderman’s acceptance test. Finally, we conducted and videotaped interviews with the subjects. In addition to these tests, we had one museum expert evaluating the content side of the system in depth.

The overall use of the system was rated relatively high. For example, when asked to rank between 1 and 5 on a Likert scale (5 being best) over five different questions relating to the overall reaction to the system, the averaged response was 3.6. The evaluation scored 4.6 for ease of use and 2.8 for satisfaction. Navigation and engagement of the audio information rated high; for example, appropriateness of the audio experience scored 4.0. This leads us to believe that the system meets or satisfies many of the current advances of electronic guide systems. Participants were explicitly asked to compare the system to experiences with other systems and the prototype ranked favorably.

Difficulties exist in relating sound objects to a specific artifact. In certain cases visitors didn’t mind the ambiguity while others clearly found it frustrating. The results also differ in the ‘attitude’ related questions. Some users had strong feelings about their preferred modes of interaction; others approached the system from the more playful perspective.

It is difficult to draw conclusions from the number of testers we had. The expert reviews were strongly in favor of the approach and the system. The reviews were helpful in catching potential inconsistencies and challenges.

Hatala and Wakkary [10] provides more detailed discussion on the e(h)o evaluation results from the user modeling perspective.

7.3. Efficiency of ontologies and rules for ubiquitous real-time applications

As the implementation section already presented concrete results and lessons learned from using ontologies and forward chaining rules in e(h)o, in this section we summarize the outcomes and highlight a potential of used technologies for the real-time applications.

The e(h)o implementation was based on technologies that were available, stable, and supported by tools in 2003. W3C’s Ontology Web Language has since superseded the DAML + OIL ontology language. This would be our candidate language if we were developing the systems now.

The representation of DAML + OIL (or OWL) ontologies in the forward chaining system knowledge base reflects their RDF representation in the form of triples. This form of representation creates an enormous number of syntactically similar facts resulting in potential performance problems. However, these problems can be overcome by using unordered facts [13]. A major benefit for the real-time systems is that the inference applies ontology language semantics at startup time, inferring the full graph representing all existing relations. During the runtime only relations with newly created instances are inferred resulting in speedy updates to the system. From the developer’s perspective the uniformity of the representation and availability of the full relation graph makes it easier to develop rules referring to the ontologies and properties between objects.

There are many best practices available for writing forward-chaining rule systems. With the large number of syntactically uniform facts some of the recommendations need to be observed rigorously otherwise resulting in a big performance hit. A good knowledge of underpinnings of the inference system is needed (in our case a Rete network and algorithm) particularly about ordering facts in the precondition part of the rules and
using the not clauses in the rules. Also, carefully con-
sidering the delegation of certain tasks such as numer-
ical computation to the external modules can improve
the performance significantly.

One specific aspect of the multi-user real-time appli-
cation that we were not able to resolve satisfactorily is
the possible collision of rules for individual users. The
problem occurs when the salience values are used to se-
quence processing steps. Our approach grouped users
and assigned them their own rule sets so the users from
different groups did not collide. A more robust solu-
tion would call for the dynamic creation of modules
for each user with the full management of these mod-
tules to avoid exhausting of the system resources.

Another related effort in the Semantic Web com-
munity in the area of rules is Rule Markup Language
(RuleML) aiming at interoperability between inference
environments. However, we have not considered the
RuleML since other requirements such as performance
had a priority over the interoperability. We also wanted
to benefit from the ability to experiment with and ex-
tend our selected inference engine.

8. Conclusions

In this paper we have presented the design and im-
plementation of an augmented audio reality system for
museum visitors named ec(h)o. Each visitor experience
is tailored to the visitor’s interests. The user interests
are inferred from the user’s movement through the ex-
hibition as well as from the visitor’s interaction with the
sound objects. The sound objects are retrieved based on
their relevance to the user interests, narrative criteria,
and psychoacoustic criteria. ec(h)o uses ontologies to
describe concepts, temporal and spatial characteristics,
and psychoacoustic and sound characteristics of sound
objects. In the core of the system is a rule-based infer-
ence engine that powers the retrieval mechanism and
the user model specifically designed for the applica-
tions using rich semantic descriptions.

The system is a result of convergent research streams
from research in object repositories, interaction design,
auditory display, knowledge representation, and infor-
mation retrieval. The ontologies combined with the
rule-based inference proved to be a powerful imple-
mentation platform well suited for this type of the sys-
tems. We believe this has enabled us to extend works
cited through the paper in several directions. First, it ex-
tends the work of the Alfaro et al. work [1] by building
a rich model of the concepts represented by the sound
objects. In ec(h)o, the content presented to the user is
not pre-processed for possible linkages as in the sys-
tems using Rhetorical Structure Theory [24]. Our
approach replaces pre-processed linkages with a retrieval
mechanism based on composition and interaction cri-
teria formulated in the form of the rules and applied to
semantically-annotated independent objects.

The requirements of the real-time ubiquitous ap-
plication required us to face the challenges stemming
from the combination of two powerful technologies: on-
tologies and forward-chaining rules. We have sum-
marized our findings in the lessons learned that provide
a transferable generic knowledge for similar type of ap-
plication. The ec(h)o proved that ontologies and rules
provide an excellent platform for building a highly-
responsive context-aware interactive application.

Acknowledgements

Work presented in this paper is supported by a Ca-
narie Inc. grant under the E-Content program. The au-
thors would especially like to thank Mark Graham and
his colleagues in the Nature Museum in Ottawa for
their enthusiastic support of this project. We would also
like to thank our colleagues and participants in sev-
eral workshops who contributed to the development of
the project, namely Kenneth Newby, Dale Evernden,
Doreen Leo, Gilly Mah, Robb Lowell, Mark Brady,
Jordan Willms, and Phil Thomson.

References

[1] I. Alfaro, M. Zancanaro, M. Nardon, A. Guerzoni, Navigating
by knowledge, in: Proceedings of the Eighth International Con-
ference on Intelligent User Interfaces, 2003, pp. 221–223.
ing Collections and Management Systems to Inform And Create
New Narrative Structures. 2001, in: Archives and Museum In-
[3] B.B. Bederson, Audio augmented reality: a prototype auto-
matic tour guide, in: Conference Companion on Human Factors
Am. (2001)
a markup language for semantic Web rules, in: International Semi-