Transcriptional regulation of the ciliopathy gene

\textit{MKS1/mks-1}

by

Ting Zhang

B.Sc., Fudan University, 2011

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

in the
Department of Molecular Biology and Biochemistry
Faculty of Science

© Ting Zhang 2014

SIMON FRASER UNIVERSITY
Summer 2014

All rights reserved. However, in accordance with the \textit{Copyright Act of Canada}, this work may be reproduced, without authorization, under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately.
Approval

Name: Ting Zhang

Degree: Master of Science

Title of Thesis: Transcriptional Regulation of the ciliopathy gene MKS1/mks-1

Examinig Committee: Chair: Ryan Morin
 Assistant Professor

Jack Chen
Senior Supervisor
Professor

David Baillie
Supervisor
Professor

Nancy Hawkins
Supervisor
Associate Professor

Harald Hutter
Internal Examiner
Professor
Department of Biological Sciences

Date Defended: June 12, 2014
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted to
Simon Fraser University the non-exclusive, royalty-free right to include a digital copy of
this thesis, project or extended essay[s] and associated supplemental files ("Work")
title[s] below) in Summit, the Institutional Research Repository at SFU. SFU may also
make copies of the Work for purposes of a scholarly or research nature; for users of the
SFU Library; or in response to a request from another library, or educational institution,
on SFU’s own behalf or for one of its users. Distribution may be in any form.

The author has further agreed that SFU may keep more than one copy of the Work for
purposes of back-up and security; and that SFU may, without changing the content,
translate, if technically possible, the Work to any medium or format for the purpose of
preserving the Work and facilitating the exercise of SFU’s rights under this licence.

It is understood that copying, publication, or public performance of the Work for
commercial purposes shall not be allowed without the author’s written permission.

While granting the above uses to SFU, the author retains copyright ownership and moral
rights in the Work, and may deal with the copyright in the Work in any way consistent
with the terms of this licence, including the right to change the Work for subsequent
purposes, including editing and publishing the Work in whole or in part, and licensing the
content to other parties as the author may desire.

The author represents and warrants that he/she has the right to grant the rights
contained in this licence and that the Work does not, to the best of the author’s
knowledge, infringe upon anyone’s copyright. The author has obtained written copyright
permission, where required, for the use of any third-party copyrighted material contained
in the Work. The author represents and warrants that the Work is his/her own original
work and that he/she has not previously assigned or relinquished the rights conferred in
this licence.

Simon Fraser University Library
Burnaby, British Columbia, Canada

revised Fall 2013
Abstract

Meckel Gruber Syndrome (MKS) is a severe ciliopathy. The first identified causal loci of MKS resided in the gene \textit{MKS1}. The only known transcription factor of \textit{MKS1} is Regulatory Factor X (RFX). \textit{C. elegans}, an organism with well-characterized ciliated neurons, is ideal for studying ciliary genes. Many ciliary genes including \textit{MKS1} are conserved in \textit{C. elegans}. My study aims to find candidate mutants of transcription factor(s) for \textit{mks-1}, the \textit{C. elegans} ortholog of \textit{MKS1}. In order to track in vivo \textit{mks-1} expression in \textit{C. elegans}, I generated a transgenic strain that expressed Green Fluorescence Protein (GFP) driven by \textit{mks-1} promoter. I carried out genetic screens to identify mutations that altered GFP fluorescence intensity and expression profile, as a way to search for potential transcription factor(s) for \textit{mks-1} in \textit{C. elegans}. I successfully found an X-linked recessive mutant, which suppresses \textit{mks-1} reporter gene expression in subset of labial neurons. The mutant has normal labial neurons development. This research has set up a solid stage for studying the transcriptional regulation of \textit{mks-1} and other ciliary genes.

\textbf{Keywords:} Transcription factor; \textit{MKS1/mks-1}; Mutagenesis; Genetic Screening
Dedication

To my family, my parents and my husband. They enlightened my way in the darkness.

To my best friends. I was lucky to have met them on the campus of Fudan University.

To my dreams. My dreams led me to the path of honesty and courage.

To my heart. I followed my heart faithfully all the time.

To my future. I am waiting for a promising and bright future.
Acknowledgements

Most importantly, I would like to thank my senior supervisor Dr. Jack Chen, who kindly gave me the opportunity to study in Simon Fraser University, who generously supported my thesis work, and who nicely advised me through my three-year master’s work. I would like to thank my supervisory committee members Dr. David Baillie and Dr. Nancy Hawkins. I would like to thank them for their important advice and support on my project. I would like to thank all colleagues in Chen lab in general: Jun Wang for training me when I first came to Chen lab, for preparing the GFP PCR fusion construct of transcriptional \textit{mks-1} expression, and for designing some primers in my thesis work; Zhaozhao Qin for kindly injecting the transcriptional \textit{mks-1} expression constructs into \textit{C. elegans}, for help on my first round of genetic screening, and for helping with X-ray integrations of transgenic strains; Dr. Maja Tarailo-Graovac for her advice on my experiments; Dr. Jeffery Chu for his help on genomic DNA preparation and whole-genome sequencing; Timothy Warrington for suggestions on my work and pointing out some grammar errors in my thesis draft; Judy Kim, a summer NSERC-USRA undergraduate student, for help on second round of genetic screening; Dr. Christian Frech, Tammy Wong, Dr. Jiarui Li for their good suggestions in my work. It was interesting and inspiring to work with Chen lab colleagues. I would also like to thank members from Baillie lab, especially Shuyi Chua, for her helpful suggestions in my troubleshooting. I would like to thank Dr. Robert Johnson from Baillie lab for providing some strains used in this study. I would like to thank Tim Heslip for training me on confocal microscopy performance and helping me with confocal microscopy issues. Some strains were hosted by the CGC, which is funded by NIH Office of Research infrastructure Programs (P40OD010440). Also some strains were obtained from NBRP. Last but not least, I would like to thank all the friends I met in SFU. It was encouraging to discuss science with friends in MBB. The three-year research experience in MBB would be a turning point in my life, so I am appreciated that I have stayed here and learned a lot.
Table of Contents

Approval .. ii
Partial Copyright Licence .. iii
Abstract ... iv
Dedication .. v
Acknowledgements .. vi
Table of Contents .. vii
List of Tables .. ix
List of Figures .. x
List of Acronyms .. xii
Glossary .. xiii

Chapter 1. General Introduction .. 1
 1.1. C. elegans ... 1
 1.2. Cilia and Ciliogenesis ... 3
 1.3. Ciliopathy and Meckel Gruber Syndrome (MKS) ... 9
 1.4. Transcriptional Regulation in C. elegans .. 13
 1.5. Applying Genetic Screening to identify transcription factors 20
 1.6. Aims of the thesis ... 22

Chapter 2. Generation of a transgenic strain that stably expresses GFP
driven by mks-1 promoter .. 25
 2.1. Background ... 25
 2.2. Materials and Methods ... 30
 2.2.1. Strains and worm growing conditions ... 30
 2.2.2. Generation of transcriptional mks-1 expression construct 30
 2.2.3. Microinjection .. 30
 2.2.4. Integration and Outcross to N2 .. 31
 2.2.5. Confocal microscopy ... 32
 2.2.6. Cross mks-1 promoter drive GFP reporter into daf-19 mutant background ... 32
 2.2.7. Single Worm lysis and PCR genotyping .. 33
 2.2.8. Generation of Males ... 34
 2.3. Results and Discussions .. 39
 2.3.1. Transgenic mks-1 promoter driven GFP expression in wildtype background ... 39
 2.3.2. Transgenic mks-1 promoter driven GFP expression in daf-19 mutant background ... 40
 2.4. Conclusion .. 46

Chapter 3. Identifying mks-1 transcription factors through genetic screening 48
 3.1. Background ... 48
3.2. Materials and Methods... 50
 3.2.1. Strains ... 50
 3.2.2. EMS mutagenesis and genetic screening 51
 3.2.3. Maintenance and selections of EMS mutants 52
 3.2.4. Characterizations of EMS mutants 52
 3.2.5. Preliminary Genetic analysis of EMS mutants 53

3.3. Results and Discussions ... 63
 3.3.1. Two characterized mutants (JNC260,JNC262) from first round of
 genetic screen have defective transgene array 63
 3.3.2. One characterized mutant (JNC286) from second round of genetic
 screen carries X-linked recessive mutations 65
 3.3.3. Preliminary genetic analysis of dot14 mutant (JNC286) 69

3.4. Conclusion ... 89

Chapter 4. General Conclusion ... 92
4.1. Conclusion and Discussion .. 92
4.2. Future Work .. 96

References ... 99

Appendix. Candidate gene approach ... 115
 Introduction: Candidate genes ... 115
 Materials and Methods ... 116
 Results and Discussions .. 122
 Conclusion .. 124
List of Tables

Table 3.1. Details of homozygous viable mutants selected from first round of genetic screening ... 64

Table 3.2. Details of homozygous viable mutants selected from second round of genetic screening ... 67

Table 3.3. Ratio of F2 progeny phenotypes in cross dot14 mutant to wildtype pmks-1::gfp transgenic worms ... 69
List of Figures

Figure 1.1. Anatomical structure of *C. elegans* .. 2
Figure 1.2. Life cycle of *C. elegans* ... 3
Figure 1.3. Location of ciliated sensory neurons in *C. elegans* hermaphrodites 7
Figure 1.4. Structure of primary cilium base in *C. elegans* ... 8
Figure 1.5. Intraflagellar transport (IFT) in *C. elegans* .. 9
Figure 1.6. RFX targeted ciliary genes .. 20
Figure 2.1. Transcriptional expression and translational expression of *mks-1* (a.k.a *xbx-7*) in *C. elegans* ... 28
Figure 2.2. *daf-19* promoter driven GFP expression in *C. elegans*. 29
Figure 2.3. Promoter sequences used to generate *mks-1* transcriptional fusion construct .. 35
Figure 2.4. PCR fusion of *mks-1* promoter to GFP sequence 36
Figure 2.5. Protocol of outcross JNC236 strain to N2 strain .. 37
Figure 2.6. Protocol of cross *mks-1* promoter driven GFP reporter into *daf-19* (*m86*) mutant ... 38
Figure 2.7. *mks-1* promoter driven GFP expression in strain OE3152 (transgenic strain), JNC225 (transgenic strain) and JNC248 (integrated transgenic strain) .. 42
Figure 2.8 Expression of *pmks-1::gfp* in inner labial neurons in wildtype (transgenic strain JNC248) ... 43
Figure 2.9. DNA electrophoresis result showing the *m86* homozygous and *pmks-1::gfp* heterozygous clone .. 44
Figure 2.10. *mks-1* promoter driven GFP expression in *daf-19* (*m86*) mutant 45
Figure 3.1. Genetic crossing process to generate transgenic worms with double GFP reporters of *pmks-1::gfp* and *ppgp-12::gfp* ... 56
Figure 3.2. GFP expression pattern in transgenic worms with double GFP reporters of *pmks-1::gfp* and *ppgp-12::gfp* (strain JNC285) ... 57
Figure 3.3. Protocol for first round of EMS mutagenesis and genetic screening 58
Figure 3.4. Protocol for second round of EMS mutagenesis and genetic screening... 59
Figure 3.5. Cross mutants to N2 males to characterize mutant allele’s traits........ 60
Figure 3.6. Cross mutants to wildtype pmks-1::gfp transgenic worm (strain JNC248) to determine whether the mutants have dominant mutation or defective constructs.. 61
Figure 3.7. Protocol for preliminary analysis of dot14 mutant.............................. 62
Figure 3.8. GFP signal levels in head and tail regions of 12 mutants.................. 72
Figure 3.9. GFP signal patterns in head and tail regions of 12 mutants............... 73
Figure 3.10. GFP signal levels in 7 mutants after 10 generations 74
Figure 3.11. dot6 mutant (strain JNC260) is characterized to carry defective transgene array .. 75
Figure 3.12. dot7 mutant (strain JNC262) is characterized to carry defective transgene array .. 76
Figure 3.13. GFP expression levels in 3 viable mutants with100% penetrance from second round of genetic screening ... 77
Figure 3.14. GFP expression patterns in 3 viable mutants with100% penetrance from second round of genetic screening 78
Figure 3.15. dot14 mutant (strain JNC286) is characterized as X-linked recessive mutant. .. 79
Figure 3.16 Expression of pmks-1::gfp in wildtype transgenic worm (strain JNC285) and dot14 mutant (strain JNC286) 80
Figure 3.17 Expression of pmks-1::gfp in inner labial neurons in wildtype (JNC285) and dot14 mutant (JNC286).. 81
Figure 3.18. srab-12 promoter driven GFP expression in labial neurons. 82
Figure 3.19. Observation of F1 progeny in cross psrab-12::gfp transgene (strain BC12597) to dot14 mutant (strain JNC286) 83
Figure 3.20. tub-1 promoter driven tdTomato expression pattern in JNC247 strain ... 85
Figure 3.21. Observation of F1 progeny in cross ptub-1::tdTomato transgene (strain JNC247) to dot14 mutant (strain JNC286) 86
Figure 3.22 Dye-filling assay of dot14 mutant (JNC286 strain) 88
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBS</td>
<td>Bardet-biedl Syndrome</td>
</tr>
<tr>
<td>CRX</td>
<td>Cone-rod Homeobox protein</td>
</tr>
<tr>
<td>EMS</td>
<td>Ethyl methanesulfonate</td>
</tr>
<tr>
<td>FOX</td>
<td>Forkhead Box protein</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescence Protein</td>
</tr>
<tr>
<td>IFT</td>
<td>Intraflagellar transport</td>
</tr>
<tr>
<td>JBTS</td>
<td>Joubert Syndrome</td>
</tr>
<tr>
<td>MKS</td>
<td>Meckel Syndrome</td>
</tr>
<tr>
<td>NPHP</td>
<td>Nephronophthisis</td>
</tr>
<tr>
<td>RFX</td>
<td>Regulatory Factor X</td>
</tr>
<tr>
<td>tdTomato</td>
<td>Tandem dimer Tomato protein</td>
</tr>
<tr>
<td>VHL</td>
<td>Von Hippel–Lindau Disease</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bardet-biedl Syndrome</td>
<td>One type of ciliopathy. It is a mild ciliopathy. Major symptoms are obesity, retinitis pigmentosa, polydactyly, and hypogonadism.</td>
</tr>
<tr>
<td>Cone-red Homeobox protein</td>
<td>A photoreceptor-specific transcription factor</td>
</tr>
<tr>
<td>Ethyl methanesulfonate</td>
<td>An alkylating mutagen that causes GC to AT transitions</td>
</tr>
<tr>
<td>Forkhead Box protein</td>
<td>Transcription factor that regulates gene expressions in cell differentiation, growth, proliferation and longevity</td>
</tr>
<tr>
<td>Green Fluorescence Protein</td>
<td>A protein that shows green fluorescence in blue ultraviolet light. Isolated from jellyfish.</td>
</tr>
<tr>
<td>Intraflagellar transport</td>
<td>Bidirectional mobility along axonemal microtubules in cilia formation</td>
</tr>
<tr>
<td>Joubert Syndrome</td>
<td>One type of ciliopathy. It is a moderate ciliopathy. Major symptoms are ataxia and hyperpnea.</td>
</tr>
<tr>
<td>Meckel Syndrome</td>
<td>One type of ciliopathy. It is a severe and lethal ciliopathy. Major symptoms are renal cystic dysplasia, encephalocele, polydactyly, pulmonary hypoplasia and hepatic development defects.</td>
</tr>
<tr>
<td>Nephronophthisis</td>
<td>One type of ciliopathy. It is a mild ciliopathy. It causes problems in patient's urinary system.</td>
</tr>
<tr>
<td>Regulatory Factor X</td>
<td>Transcription factor that regulates ciliary genes</td>
</tr>
<tr>
<td>Tandem dimer Tomato protein</td>
<td>Proteins that show exceptionally red fluorescence under a 581 nm wavelength. Developed by Dr. Roger Tsien</td>
</tr>
<tr>
<td>Von Hippel–Lindau Disease</td>
<td>One type of ciliopathy. It is a moderate ciliopathy. Patients have tumors in central nervous system or retina.</td>
</tr>
</tbody>
</table>
Chapter 1.

General Introduction

1.1. C. elegans

Caenorhabditis elegans is a nematode species that Sydney Brenner proposed to use as a model organism for studying neuronal development in the 1960s. He carried out an unprecedented genetic analysis of _C. elegans_, which set up a platform for many ground breaking scientific discoveries (Brenner 1974). An adult hermaphrodite _C. elegans_ has 959 somatic cells, 302 of which are neurons (Sulston and Horvitz 1977). An adult male _C. elegans_ has 1031 somatic cells, 381 of which are neurons (Sulston et al. 1980). The simple body plan and well-defined cell lineage make _C. elegans_ an ideal organism for genetics studies (Brenner 1974). _C. elegans_ has two genders, males and hermaphrodites, based on an X-O sex determination system. The males contain one X chromosome, while the hermaphrodites have two copies. Researchers are able to maintain _C. elegans_ easily in a lab environment, because of its simple sex determination system and self-reproducing ability of hermaphrodites. An adult _C. elegans_ is around 1 mm in length (Figure 1.1). In Brenner's studies, he screened for _C. elegans_ mutant phenotypes, including uncoordinated, rolling, long, dumpy, blister, and lethal (Brenner 1974). Since then, _C. elegans_ has been widely used as a model organism for neuroscience and genomics studies. _C. elegans_ has a small genome size. The 98 megabytes genome sequence of _C. elegans_ is first published in 1998, with some gaps left at that time. More than 19,000 protein-coding gene sequences were identified (Consortium 1998). The publication of _C. elegans_ genome information accelerates genomics studies on _C. elegans_. Now with persistent efforts, _C. elegans_ is the only animal whose genome has been completely deciphered. The whole _C. elegans_ genome is 100,291,840bp including mitochondrial genome (Hillier et al. 2005).
At 20°C, it takes 3.5 days for wildtype *C. elegans* to develop from embryos to adults. The worms go through four larvae stages, L1-L4, during development (Figure 1.2).

Figure 1.1. Anatomical structure of *C. elegans*

Note. Figure source: http://en.wikipedia.org/wiki/File:Caenorhabditis_elegans_hermaphrodite_adult-en.svg
1.2. Cilia and Ciliogenesis

The word “cilia” means hair or eyelash in Latin. The cilia were first observed by Antoni van Leeuwenhoek more than 300 years ago (Leeuwenhoek 1677). He described cilia as thin legs for protozoa that move them nimbly (Leeuwenhoek 1677; Bloodgood 2009). The term cilium was first used by Muller in 1786 (Muller 1786). Cilia were defined as “active organelles moved by contractile materials along their length” in a review in 1835 (Sharpey 1835; Gibbons 1981), but now cilia are defined as small hair-like organelles that are projected from eukaryotic cell surfaces (Goetz and Anderson 2010).

Now scientists know there are two types of cilia: motile and non-motile cilia (Satir and Christensen 2008). In 1950s, scientists were able to observe cilia structures aided
with Transmission Electron Microscopy techniques. A cilium is divided into three parts: basal body, middle segment and distal segment. The components of a cilium are a ring of microtubule scaffolding called the axoneme and the plasma membrane. Primary cilia have “9+0” microtubule structures (Sotelo and Trujillo-Cenoz 1958). It is called a “9+0” structure because the axoneme in primary cilia lacks the central microtubules. Motile cilia have a “9+2” microtubule structure, because the axoneme has a pair of central microtubules (Sotelo and Trujillo-Cenoz 1958). In cilia structure, “9” stands for 9 microtubules. The axoneme consists of 9 doublet microtubules surrounding the periphery in the middle segment, and 9 singlet microtubules surrounding the periphery in the distal segment (Fisch and Dupuis-Williams 2011). The axoneme is extended from the basal body, which develops from the centriole after cytokinesis, and which connects the cilium to the cell body. In mammals’ ciliated cells, the axoneme consists of 9 triplet microtubules surrounding the periphery in the basal body, but the triplet microtubules degenerate in the basal body of C. elegans’ ciliated cells (Perkins et al. 1986).

Motile cilia help cells move themself, or move fluids and dirt away from the surface of cells. Non-motile cilia, also named primary cilia, are necessary for cells to sense the environment and to work in signal transduction. Cells with primary cilia are found in many sensory organs in humans. For example, primary cilia are found on the surface of photoreceptor cells in the retina and olfactory cells in the nose. Primary cilia are also very important for kidney cells. Praetorius and Spring observed the mechanoreceptive ion channels (TRP channels) in primary cilia on mammalian kidney cell membranes(Praetorius and Spring 2003). Primary cilia are important in many signalling pathways for vertebrate development. Studies have demonstrated that primary cilia play roles in Hedgehog signalling (i.e. Sonic Hedgehog signalling in mammals) and Notch signalling (Goetz and Anderson 2010). Ezratty et al. discovered the role of primary cilia in epidermal differentiation of skin development: they are primarily involved in Notch signalling (Ezratty et al. 2011).

Studies in cilia have been boosted since 1990s. Because cilia are very conserved organelles in eukaryotes, many model organisms have been used in the studies of primary cilia, including Chlamydomonas, C. elegans, Drosophila and mammalian cells.
C. elegans is an ideal model organism to study the function of primary cilia in sensory neurons. Of 302 sensory neurons in C. elegans, 60 are ciliated sensory neurons. These ciliated neurons include amphids, phasmids, inner labial, outer labial and some other types (Figure 1.3). The amphids, labial neurons and phasmids appear in bilaterally symmetric pairs (Bargmann 2006). There are 12 pairs of amphids ciliated neurons, named ASH, ASI, ASG, ASE, ASJ, ASK, ADF,ADI, AWA, AWB, AWC and AFD (Ward et al. 1975; Perkins et al. 1986), and two pairs of phasmids ciliated neurons, named PHA and PHB (Hall and Russell 1991). There are two kinds of inner labial neurons: IL1, IL2, with each consisting of three pairs of neurons (Ward et al. 1975; Ware 1975). In the outer labial, there are two pairs of OLL neurons and four pairs of OLQ neurons (Ward et al. 1975; Ware 1975).

C. elegans primary cilia possess the "9+0" structure. The primary cilium has three components: the base, which is a degenerated basal body that consists of a structure termed transition zone, the middle segment, which has 9 doublets microtubules, and the distal segment, which has 9 singlet microtubules (Figure 1.4) (Gilula and Satir 1972; Evans et al. 2006). C. elegans ciliary base structure is different from other species. The axoneme is degenerated in basal body, but still the basal body contains transition fibres (Perkins et al. 1986). Axoneme structure of primary cilia in C. elegans is same as that in other species. The conserved cilia structures in C. elegans make it ideal for cilia studies.

All cilia detected in C. elegans are primary cilia. Defective cilia cause a variety of phenotypes in C. elegans, an indication of functional failure of cilia. The major phenotype is failure to take Dil or DiO in the 6 amphids and 2 phasmids neurons (Dyf phenotypes) (Herman 1984; Hedgecock et al. 1985). Mutants with defective cilia also have these phenotypes: not able to avoid regions with high osmotic strength (Osm phenotype) (Culotti and Russell 1978), unable to perform chemotaxis (Che phenotype) (Bargmann et al. 1993), and reduced ability to respond to touch (Mec phenotype) (Chalfie and Sulston 1981). Some ciliary mutants might have abnormal male mating behaviour (Barr and Sternberg 1999), constitutive dauer formation (Riddle et al. 1981), or abnormal response to noxious temperatures (Wittenburg and Baumeister 1999). The ciliary gene tub-1 mutant is connected to abnormal lipid accumulation (Mak et al. 2006).
Ciliogenesis starts after cytokinesis. The centriole migrates, and then fuses to the plasma membrane. The ciliary vesicles are docked to the mother centriole to form the basal body (Sorokin 1962; Sorokin 1968). Meanwhile, the cilia membrane is formed. Basal body proteins, which are transported to basal body from Golgi complex, are required in the formation of mature basal body. For example, two transition zone modules in C. elegans, NPHP module and MKS module, are required in generating the cilia base. The MKS module includes transmembrane lipid-interacting C2/B9 domain proteins MKS-1, MKSR-1, and MKSR-2, and also includes the MKS-3/TMEM67, MKS-5/RPGRIIP1L, MKS-6/CC2D2A proteins. The NPHP module includes NPHP-1 and NPHP-4. Deleting one component from each module causes defective transition zone formation (Williams et al. 2011). In C. elegans, inversin compartment protein NPHP-2 (Inversin ortholog), enriched in middle segment, acts as a modifier of the MKS module and the NPHP module for transition zone formation in an amphid and phasmid sensilla-specific manner. Deleting NPHP-2 and one component of MKS module result in misplacement of transition zone, and short cilia length in amphid and phasmid sensilla (Warburton-Pitt et al. 2012). In C. elegans, the IFT-associated proteins, namely IFT proteins and BBS proteins, are anchored the basal body while forming the structure termed ciliary gate, which consists of transition zone and transition fibres (Williams et al. 2011). Then the axoneme is elongated by Intraflagellar transport (IFT) activities to form the middle and distal segment (Figure 1.5) (Inglis et al. 2007).

Intraflagellar transport (IFT) was first observed in Chlamydomonas reinhardtii flagella. They observed “rapid bidirectional granule-like particles movement along the length of Chlamydomonas reinhardtii flagella (Kozminski et al. 1993). The bidirectional movement is named anterograde movement and retrograde movement (Cole et al. 1998). Two motors kinesin-2 family (heterotrimeric kinensin-II) and homodimeric OSM-3, working cooperatively, in the anterograde direction (Cole et al. 1998). IFT particle sub-complexes A and B, large protein complexes that facilitate IFT cargo and motor connections, are bound to kniesin-II and OSM-3, respectively (Cole et al. 1998). BBS proteins stabilize the interaction between the IFT particles and the motors (Blacque et al. 2004; Snow et al. 2004; Ou et al. 2005). IFT dynein are bound to the IFT particles. IFT cargos/motors/particles/dynein complexes then move along the axoneme by kinesin-II and OSM-3 activities to form the middle segments. In the middle segment, the kinesin-II
movement slows down the fast OSM-3 movement. At the boundary of the middle segment, kinesin-II is released from IFT-complex. Only the OSM-3 motor moves the IFT cargos/particles/dynein to form the distal segment (Snow et al. 2004). For the retrograde direction, the redundant IFT motors, IFT particles, BBS proteins are moved back by IFT dynein activities to be recycled and used in next anterograde transport (Orozco et al. 1999). The discovery of Intraflagellar transport (IFT) was a milestone in cilia studies. After the discovery, many genes encoding IFT components are associated with a class of genetic diseases termed “ciliopathies”. For example, the gene encoding IFT protein IFT88/polaris is mutated in cystic kidney disease, one kind of ciliopathies (Pazour et al. 2002).

Figure 1.3. Location of ciliated sensory neurons in C. elegans hermaphrodites

Note. Figure shows all known ciliated sensory neurons cell bodies and associated dendrites relative positions in C. elegans hermaphrodites. Figure is adopted from (Inglis et al. 2007). This is a lateral view from left side. The neuron cell bodies are labelled with names. The names in the head region are explained as following. ASE, ASG, ASH, ASI, ASJ, ASK: amphids single rod. ADF, ADL: amphids pair rods. AWA, AWB, AWC: amphids wing. AFD: amphids finger. ADE: anterior deirid. IL1: inner labial 1. IL2: inner labial 2. OLL: outer labial. OQLD: outer labial quadrant dorsal. OLOV: outer labial quadrant ventral. CEPD: cephelic dorsal. CEPV: cephalic ventral. AQR: amphids pseudocoelomic. BAG: bags. FLP: flaps. The names in the tail region are explained as following. PHA, PHB: phasmids A/B. PDE: posterior deirid. PQR: phasmids pseudocoelomic. The ciliated dendrites endings are indicated with black rectangle box.
Figure 1.4. Structure of primary cilium base in *C. elegans*

Note. Fibre structures and TEM images in *C. elegans* cilium basal body and transitions zone. Figure is adopted from (Reiter et al. 2012). Cilium has a microtubule-based axoneme that is projected from a centriolar structure termed “basal body”. Cilium basal body has “9x3+0” microtubules, surrounded by transition fibres (TF), shown in TEM. In *C. elegans*, microtubules are degenerated and only transition fibres composed of basal body, shown in TEM. The transition zone (TZ) has “9x2+0” microtubules. Y-shaped links in TZ make up the ciliary necklace on ciliary surface, shown in TEM and as beads on schematic.
1.3. Ciliopathy and Meckel Gruber Syndrome (MKS)

Failure of ciliary gene functions causes severe genetic diseases. These diseases are classified into a type called ciliopathies. Ciliopathy patients usually have polycystic kidney disease, nephronophthisis, retinitis pigmentosa, mental retardation, polydactyly, hepatic disease, bone malformation, diabetes, obesity and other problems with lungs, limbs, kidneys, brains and eyes (Hildebrandt et al. 2011; Davis and Katsanis 2012). Ciliopathy is defined as “genetically heterogeneous disorders that are caused by mutations in genes with products localized to cilium-centrosome complex” (Hildebrandt et al. 2011).
Ciliopathies are classified into mild, moderate and severe based on the onset symptoms. For example, Bardet-biedl Syndrome (BBS) is a mild ciliopathy, which causes developmental abnormalities and degenerative problems. Patients are often diagnosed in late childhood or early adulthood. Although there is no targeted treatment for BBS, clinical approaches can help patients (Dar 2001). An example of a moderate ciliopathy is Joubert Syndrome (JBTS). JBTS patients have mental retardation and ataxia. It is diagnosed in early childhood. Supportive clinical approaches are available to increase survival rate of JBTS patients (Maria et al. 1999; Karegowda et al. 2014). Severe ciliopathies always cause lethality at birth. Meckel Gruber Syndrome (MKS) is a severe ciliopathy.

Ciliopathies were genetically classified as dominant or recessive. Von Hippel–Lindau Disease (VHL) is an autosomal dominant ciliopathy caused by heterozygous germline inactivation of VHL gene (Kaelin 2003). BBS, JBTS and MKS are autosomal recessive disorders, with recessive mutations in multiple genes. More than 50 causal loci have been genetically identified in more than 15 clinically discrete ciliopathies (Badano et al. 2006; Baker and Beales 2009). In any of the clinically discrete ciliopathies, multiple causal genes have been found. For example, 16 genes are associated with over 80% clinically diagnosed BBS patients (Forsythe and Beales 2013). Among these causal genes, **BBS1** and **BBS10**, are the major pathogenically mutated genes. 23.1% patients have mutations in **BBS1** gene, and 20% of patients carry mutation in **BBS10** gene (Waters and Beales 1993-2003 (updated 2011)). Different causal loci in same gene or allelism at single locus result in different severity of clinically discrete disorders. For example, mutations in **NPHP6** gene cause JBTS, MKS and Nephronophthisis (NPHP) (Hildebrant et al. 2011). MKS is severe and lethal while NPHP is mild and degenerative (den Hollander et al. 2006; Helou et al. 2007).

In my thesis, I am interested in gene **MKS1**, which is first identified as causal gene in Meckel Gruber Syndrome (MKS) patients. I have three reasons to study **MKS1** gene. First, MKS is an autosomal recessive lethal disorder. Meckel first defined this disorder in a report, as he found newborn patients of “occipital encephalocele, polydactyly, cleft palate, and large cystic kidneys” who died after birth (Meckel 1822; Salonen and Paavola 1998). The prevalence of MKS varied from 1 in 13,250 to 1 in 140,000 in different countries (Salonen and Norio 1984). Based on data from 1977 to
1982, two European countries have high prevalence: The prevalence is 1 in 3,000 in Belgium and 1 in 9,000 in Finland (Salonen and Norio 1984; Alexiev et al. 2006). MKS symptoms include polydactyly, polycystic kidneys, encephalocele, and hepatic defects, while some of the patients also have congenital heart abnormalities and cerebellar hypoplasia (Gazioglu et al. 1998). MKS is such fatal disease that patients are born dead or die within few months after birth. No treatment is available now. Early diagnosis is applied to stop gestation of MKS babies with medical abortion (Gazioglu et al. 1998). MKS is usually diagnosed by ultrasound at 11th to 14th weeks of gestation (Pachi et al. 1989; Sepulveda et al. 1997; Mittermayer et al. 2004). Because multiple causal genes have been identified, it is possible to diagnose MKS based on DNA information (Roume et al. 1998; Kyttriala et al. 2006; Smith et al. 2006; Baala et al. 2007; Delous et al. 2007; Tallila et al. 2008). For reproductive couples with a diagnosed MKS infant, the chance of having a MKS baby in subsequent pregnancy is 25% each time (Alexiev et al. 2006).

As of 2009, five causal genes, MKS1, TMEM67, CEP290, RPGRIP1L and CC2D2A, have been identified in MKS (Roume et al. 1998; Kyttriala et al. 2006; Smith et al. 2006; Baala et al. 2007; Delous et al. 2007; Tallila et al. 2008). Up to 2012, 17 causal genes (NPHP3, TMEM216, TCTN2, BBS2, BBS4, BBS6, BBS10, B9D1, B9D2, KIF7, WDPCP, TTC218 and the five previously identified genes) were identified as casual loci in MKS patients (Karmous-Benailly et al. 2005; Stoetzel et al. 2006; Bergmann et al. 2008; Leitch et al. 2008; Kim et al. 2010; Riazuddin et al. 2010; Davis et al. 2011; Dowdle et al. 2011; Hopp et al. 2011; Sang et al. 2011). A recent study in Arabian MKS families identified three new causal genes C5orf42, EVC2 and SEC8 (Shaheen et al. 2013). Causal genes in MKS are allelic with those in JBTS, NPHP, BBS, Leber congenital amaurosis (LCA) and Senior-Loken syndrome (SLS). For example, these genes are causal in different ciliopathies: MKS1 is causal for MKS and BBS, TMEM67 for MKS and JBTS, CEP290 for MKS, NPHP, BBS, LCA and SLS, RPGRIP1L for MKS, JBTS, NPHP and SLS, CC2D2A for MKS and JBTS (Roume et al. 1998; Kyttriala et al. 2006; Smith et al. 2006; Baala et al. 2007; Delous et al. 2007; Tallila et al. 2008). Among 20 identified causal genes in MKS, MKS1 and TMEM67 (MKS3) are the two major causal genes, with majority of patients carrying mutations in these two genes. For example, Majority of Finnish MKS families carried MKS1 mutations. TMEM67 (MKS3) mutations were common in Asian MKS families. MKS1 and TMEM67 (MKS3) are also
major causal genes in non-consanguineous European origin populations (Consugar et al. 2007).

Second, MKS1 is mutated in majority of MKS patients, and is also mutated in BBS patients (Kyttala et al. 2006; Leitch et al. 2008). In 1995, mutations in a group of MKS patients were mapped to Chromosome 17q21-q24 in the 13cM region (Paavola et al. 1995). The first reported locus resides in the MKS1 gene. In 2005, studies on suspected chromosome regions of 40 Finnish families and 24 non-Finnish families confirmed that 26 Finish families and 3 non-Finish Families have the heterozygous MKS1 mutations in parents and homozygous MKS1 mutations in affected children (Kyttala et al. 2006). The mutations were large intronic deletion, large exonic deletion, small exonic insertion or small intronic transition. MKS1 encodes a B9 domain protein (Tammachote et al. 2009). C2/B9 domain binds to Ca²⁺/lipids, and B9 domain proteins usually participate in vesicle trafficking and membrane fusion (Nalefski and Falke 1996). MKS1 protein is localized to basal body of cilia (Dawe et al. 2007). MKS1 is important in cilia formation and epithelial morphogenesis (Dawe et al. 2007; Tammachote et al. 2009; Cui et al. 2011; Warburton-Pitt et al. 2012). Studies in mouse have shown that MKS1 protein, through interaction with MKS3/Meckelin, is important to translocation of centriole to cell plasma membrane during basal body formation in most, but not all tissues (Dawe et al. 2007; Weatherbee et al. 2009; Cui et al. 2011). Also MKS1 protein interacts with Shh signaling components and Wnt signaling components in mouse models (Dawe et al. 2007; Wheway et al. 2013). The Mks1 null-mutant mice have abnormal limb bud formation and defects in kidney, nerve code and cochlea (Cui et al. 2011).

Third, gene xbx-7/mks-1 is identified as ortholog of MKS1 in C. elegans by reciprocal BLASTp of the MKS1 polypeptide (Kyttala et al. 2006). The gene mks-1 expresses in a subset of ciliated neurons in C. elegans (Efimenko et al. 2005). The gene product MKS-1 is localized to transition zone in C. elegans (Williams et al. 2008). Studies have focused on the role of MKS-1 in transition zone and basal body proteins complex of cilia. MKS-1, MKSR-1 (B9D1) and MKSR-2 (B9D2), three B9 domains proteins in C. elegans, genetically interacted with each other (Williams et al. 2008; Bialas et al. 2009). Further studies in C. elegans demonstrated that the three B9 domain proteins, MKS-1, MKSR-1, MKSR-2, form a complex with MKS-3, MKS-5, MKS-6 to recruit mother centriole docking to membrane. The MKS complex works cooperatively
with NPHP (nephronophthisis) complex, which includes NPHP-1 and NPHP-4. Deleting components of both complexes cause abnormal cilia in *C. elegans*. Thus MKS/NPHP proteins recruit the basal body, and form ciliary gate to block non-ciliary proteins in cilia formation (Williams *et al.* 2008; Bialas *et al.* 2009; Williams *et al.* 2011; Warburton-Pitt *et al.* 2012). 45 different mutant alleles of *mks-1* are available in *C. elegans*. 43 of them were generated by “the million mutation project”, and further analysis on these *mks-1* mutants phenotype is required (Thompson *et al.* 2013). The other two alleles are *tm2705* (large deletion in exons and intron) and *otn392* (single substitution in intron). *otn392* is carried by a strain with multiple mutations obtained from EMS mutagenesis, and is detected by whole genome sequencing (Sarin *et al.* 2010). *tm2705* deletion, a 190-bp deletion of *mks-1* that begins in intron 2 and includes partial exon 4, cause the splicing of exon 2, and thus the protein product lacks 70 amino acids near N-terminus. *tm2705* is a hypomorphic allele, the splicing does not abrogate the B9 domain (Williams *et al.* 2008). Single *tm2705* mutant exhibit normal Intraflagellar transport (Bialas *et al.* 2009). Single *tm2705* mutant does not have dye-filling defect phenotype (non-Dyf), but double mutants that carry *tm2705* allele and a mutant allele of *nphp-1* or *nphp-4*, which both belong to NPHP complex that participate in basal body formation, have a severe Dyf phenotype (Williams *et al.* 2008; Warburton-Pitt *et al.* 2012). In accordance to Dyf phenotype, the dendrites of phasmid neurons are not properly extended in *mks-1 (tm2705)* and *nphp-4* double mutants (Williams *et al.* 2008).

1.4. Transcriptional Regulation in *C. elegans*

Although there are many studies on MKS-1 functions, there are limited studies on transcriptional regulation of gene *mks-1*. Thus, I am interested in studying transcriptional regulation mechanism of *mks-1*.

In eukaryotes, RNA polymerase II catalyze the transcription of DNA to mRNA. To initiate the transcription, RNA polymerase II must be recruited to the transcription initiation site. To recruit RNA polymerase II, interactions between transcription factors and cis-regulatory sequences are required. The process is called transcription regulation (Lemon and Tjian 2000). The first step is to assemble a pre-initiation complex (PIC), which consists of RNA Pol II, a set of general transcription factors (GTFs) that regulates
all or most gene expression, and mediator proteins that directly interact with specific transcription factors (Lemon and Tjian 2000; Orphanides and Reinberg 2002). Recruitment of PIC is regulated by activities of transcription factors and histone modifications as well (Chan and La Thangue 2001). After PIC is recruited to core promoter regions, GTFs activities enable RNA pol II binding to specific transcription start site (i.e. start codon). The core promoter region contains conserved cis-regulatory sequences that interact with GTFs. In eukaryotes, TATA-box Binding Protein (TBP) interacts with a TA rich sequence (TATA box), which is an important activity for recruiting RNA Pol II binding (Lichtsteiner and Tjian 1993). RNA Pol II must be phosphorylated on an extended C-terminal domain (CTD) to an active form to start transcription (Seydoux and Dunn 1997). The phosphorylation is assisted by activates of cyclin-dependent kinase on some GTFs (Bentley 2005).

In most cases, cis-regulatory elements are located in the intergenic region from the 5’UTR of the interested gene to the nearest upstream gene. These regions include core promoter, proximal promoter and distal promoter. Core promoter is the minimal promoter sequences that contain a set of conserved cis-regulatory elements to initiate transcription. Core promoter is the region where GTFs bind, where RNA Pol II binds and where transcription start site locates. Grishkevich et al. studied the conserved cis-regulatory elements among different core promoter regions in C. elegans. They identified five conserved elements, including Sp1 like site for general transcription factor SP1 protein binding, T-blocks that correlate to nucleosome eviction and gene expression level, TATA box, trans-splicing site and Kozak sequence that include the transcription start site (Grishkevich et al. 2011). Proximal promoter region is located close to the target genes. In C. elegans this region is usually located within 2 kb upstream of the translation start codon (Okkema and Krause 2005; Reinke et al. 2013). Most specific transcription factors binding sites reside in proximal promoter regions. The modENCODE project has set up a series of database of transcription factors and cis-regulatory sequences information in C. elegans. In a modENCODE study to identify cis-regulatory elements for transcription factors, majority of the binding sites lie within 500 bp of the transcription start site near gene coding region (Niu et al. 2011). Distal promoter region is located far upstream of the coding sequences. For example, in C. elegans, the Hox gene lin-39 expression requires regulation by cis-elements ~30 kb
upstream of the coding region (Wagmaister et al. 2006). Regulation in this region usually causes a weaker influence on gene expression level (Kroeger et al. 1987).

The natural promoter, where all cis-elements are found, covers more than merely upstream of coding regions. Cis-elements are found in downstream and large introns of targets genes as well. For example, in the same study of regulatory sequences for Hox gene lin-39 expression in C. elegans, cis-elements are also found ~30 kb downstream of coding region (Wagmaister et al. 2006). In C. elegans most introns are smaller than 100 bp. Small introns less 100 bp are not likely to contain cis-regulatory elements. However, intronic regulatory sequences have been identified in larger introns. For example, Reid et al. identified two intronic regulatory elements that regulate expression of hypoxanthine phosphoribosyltransferase (HPRT) gene in mouse embryonic stem cells (Reid et al. 1990).

Transcription factors, also called trans-acting factors, are proteins that bind to cis-regulatory elements to regulate gene expression. There are two types of transcription factors, general and specific. General transcription factors (GTFs), namely TFIIF, TFIIB, TFIID, TFIIE, TFIIF and TFIIH, recruit RNA Pol II to transcription start site directly (Matsui et al. 1980; Orphanides et al. 1996). They are required for most gene expressions. Specific transcription factors regulate gene expression in a tissue-specific, cell-specific, gene-specific or pathway-specific manner (Britton et al. 1998; Chang et al. 2003). Specific transcription factors either activate (by activator activities) or repress (by repressor activities) target gene expression. Non-covalent interactions between transcriptional co-factors and DNA-binding transcription factors also regulate target gene expression (Shi and Mello 1998).

Noncoding microRNA specifically regulate gene expression in post-transcriptional level as well. Mature microRNA binds to miRNA target sites in mRNA transcript, and thus repress translation of mRNA (Engels and Hutvagner 2006). Mature microRNA is short single strand RNA that is cleaved from hairpin-structure pre-miRNA by enzyme dicer. Pre-miRNA is formed from a pri-mRNA transcript that is transcribed from DNA by RNA Pol II (Lee et al. 2004). MicroRNA was first discovered in C. elegans (Lee et al. 1993), and many C. elegans microRNAs were identified in the modENCODE project (Kato et al. 2009).
In chromatin level, histone modification regulates gene expression because DNA is wound into nucleosomes that are composed of histone protein complexes (H1, H2A, H2B, H3 and H4). Residues on amino terminal of histones are modified by phosphorylation, methylation, acetylation and ubiquitination (Bannister and Kouzarides 2011). Such modifications usually have effect on gene transcription by changing chromatin density to facilitate or repress association of transcription factor and DNA, or by proving specific recruitment sites for transcription factors (Stimpson and Sullivan 2010). Studies of histone modification during \textit{C. elegans} development have identified several conserved chromatin complexes that guided the modifications, and thus regulating target gene expression. For example, NuRD (Nucleosome Remodeling and Deacetylase) complex deacetylates lysine 9 of histone H3 (Brehm \textit{et al.} 1998), and then histone methyltransferases (HMT) could methylate the residue to suppress target gene expression (Andersen and Horvitz 2007).

\textit{C. elegans} is an ideal organism to study transcription regulation, because its transparent body is ideal for monitoring gene expression in live worms by using fluorescent proteins, and because its small genome size is ideal for searching cis-regulatory elements by using Bioinformatics tools. Computational search identified 934 transcription factor-encoding genes by using Gene-Ontology terms and DNA binding domain sequences in the worm genome, which composes of $\sim 4.6\%$ of all protein coding genes in \textit{C. elegans} (Reece-Hoyes \textit{et al.} 2005). Genome- wide binding profiles of 120 transcription factors were studied in the modENCODE project, which aims to explore transcriptional regulation elements in model organisms (Gerstein \textit{et al.} 2010).

There are many ways to study transcriptional regulation in \textit{C. elegans}. Applying mutagenesis and genetic screens can identify mutations in transcription factors (Singh and Han 1995). RNA interference (RNAi) disrupts the regulation pathways and helps analyze functions of regulators (Powell-Coffman \textit{et al.} 1996). The presence of mRNA could be visualized by \textit{in situ} hybridization (Seydoux and Fire 1994). Chromatin immunoprecipitation (ChIP) is used to directly identify binding sites for transcription factors \textit{in vivo} (Oh \textit{et al.} 2006). Many transcription factors that regulate different development pathways including pharynx development, vulva development and neuron development have been identified through genetic screens. For example, \textit{pha-4}, the
central regulator in pharynx development, was identified in a genetic screen for larva lethal phenotypes (Mango et al. 1994).

Two conserved transcription factor families are identified in ciliary gene regulation: RFX (Regulatory Factor X), discovered in both motile and primary cilia, and FOX (forkhead protein) family, only discovered in motile cilia (Reith et al. 1990; Clevidence et al. 1993).

The first RFX was identified in a search of proteins binding to a X-box motif DNA sequence in MHC class II gene promoter regions (Reith et al. 1990). X-box motif was identified by searching for conserved sequence in 5’ flanking regions of MHC class II gene molecules (Saito et al. 1983). RFX family has a characterized winged-helix DNA-binding Domain (DBD). RFX use this DBD to bind to the minor groove of DNA in X-box (Gajiwala et al. 2000). RFX are highly conserved through species. Nine RFXs have been identified in human, including RFX1-9 (Emery et al. 1996; Chu et al. 2010). In Drosophila, RFX1 and RFX2 are identified. CRT1 is identified in S. cerevisiae. SAK1 is identified in S. pombe (Huang et al. 1998; Durand et al. 2000; Thomas et al. 2010). DAF-19 is the sole known RFX member in C. elegans (Swoboda et al. 2000). A subgroup of RFX, including C. elegans DAF-19, Drosophila RFX, human RFX1-4, RFX6 and RFX8, are connected to transcriptional regulation in cilia (Chu et al. 2010). This subgroup of RFX shared five conserved domains including an activation domain, DBD, domain B, domain C and dimerization domain, which are conserved structurally and functionally (Choksi et al. 2014).

DAF-19 is the sole known member of RFX in C. elegans (Swoboda et al. 2000). DAF-19C isoform expresses specifically in all ciliated neurons in C. elegans (Senti and Swoboda 2008). daf-19 null-mutants have defective cilia, and have phenotypes of constitutively dauer formation and Dyf phenotype (Dye-filling defects) (Swoboda et al. 2000). X-box is a predictor for ciliary genes (Chen et al. 2006). Up to now, the featured X-box motif, for DAF-19 characteristic DNA domain binding, is detected upstream of all known ciliary gene in C. elegans. Thus, Efimenko et al. use bioinformatics tolls to predict ~ 750 xbx genes (genes with X-box motif) in C. elegans by the search of X-box motif in gene promoter regions (Efimenko et al. 2005). They generated transcriptional fusion constructs of 27 predicted xbx genes and injected the constructs into daf-19 null-mutant
to observe transgene expression. They validated that expression of 22 xbx genes (out of 27) are DAF-19 dependent, based on transgene expression in wildtype and daf-19 null-mutant. Efimenko et al. divided DAF-19 dependent genes into two groups. The first group expresses in all ciliated neurons. It is predicted that genes in first group are required by cilia formation in most ciliated neurons and are strongly regulated by DAF-19. The second group expresses in subset of ciliated neurons. It is predicted that genes in second group are required by cilia formation in specific ciliated neurons and are partially regulated by DAF-19. Examples of RFX-targeted ciliary genes and their correlations to cilia components are shown in Figure 1.6 (Thomas et al. 2010). The gene mks-1 was detected in second group of ciliary genes in Efimenko et al. studies (Efimenko et al. 2005). The X-box sequence for mks-1 gene is GTCACCATAGGAAC. The expression of transgene pmks-1::gfp in daf-19 null-mutant was strongly diminished in Efimenko et al. study, while it is absent in Williams et al. study (Efimenko et al. 2005; Williams et al. 2008). A second motif is identified in DAF-19 dependent ciliary gene promoter regions recently. The C-box, an 8-to-11bp motif, function as an enhancer in DAF-19 dependent gene expression, although transcription factors that bind to C-box and binding domains are yet to be known (Burghoorn et al. 2012).

Forkhead box protein J1 (FOXJ1) was first cloned from rat lung cDNA library in PCR for forkhead domain sequences (Clevidence et al. 1993). FOXJ1 belongs to FOX family, which has a forkhead domain. It is identified that FOX family regulates ciliary gene expression in motile cilia of mouse, Xenopus, zebrafish and Drosophila (Chen et al. 1998; Brody et al. 2000; Stubbs et al. 2008; Yu et al. 2008; Newton et al. 2012). FOXJ1 knock-out mouse had complete loss of axonemes in cilia (Chen et al. 1998; Brody et al. 2000). Fox transcriptional factor in Drosophila, FD3F, regulates cilia formation in auditory and chordotonal neurons (Cachero et al. 2011; Newton et al. 2012). Because C.elegans does not have motile cilia, no ortholog of FOX family is identified in C. elegans (Mazet et al. 2003).

Besides RFX family and Fox family, cell-specific regulators in cilia formation have been identified by multiple studies in different organism. In mouse, for example, CRX (cone-rod homeobox containing gene) regulates ciliated photoreceptor cells differentiation (Freund et al. 1997; Furukawa et al. 1997). Another homeobox transcription factor, NOTO (notochord homeobox), regulates motile cilia formation in
ventral node of mouse (Beckers et al. 2007). In *Drosophila*, ATO (Atonal) regulates motile cilia formation indirectly in chordtonal neurons to activate expression of *fd3F* and *Rfx* (Cachero et al. 2011). In *Xenopus* epidermis and *mouse* airway, multicilin, a coiled-coil domain containing protein, is required for multi-ciliated cell formation (Stubbs et al. 2012). In *C. elegans*, transcription factor FKH-2 (forkhead 2) specifically works downstream of DAF-19 to regulate kinesin-II subunit gene *kap-1* expression in olfactory neuron AWB (amphid wing B) (Mukhopadhyay et al. 2007b). The miRNA targeting ciliary genes in post-transcriptional level is also identified in mouse. For example in ciliated cells in mammalian inner ears, miR-96 targets *oldf-2* gene, which encodes a component of cilia basal body (Mencia et al. 2009). These data suggested a complicated regulating system of ciliary genes. In specific cells, other transcription factors regulate downstream, upstream or as co-factor of RFX (in primary cilia formation) or FOXJ1 (in motile cilia formation) for some ciliary gene expression. And in post-transcription level, miRNA regulates some gene expression in specific cells.
Figure 1.6. RFX targeted ciliary genes

Note. Gene orthlogs related to different components of cilia in *C. elegans*, *Drosophila* and mouse. Figure is adopted from (Thomas et al. 2010). Simple schematic of a primary cilium basal body, middle segment and distal segment is shown. Gene orthlogs, of which protein products correlate to different ciliary components, are listed in tables. Genes in bold are found to be regulated by Regulatory Factor X (RFX). Other genes were not tested.

1.5. Applying Genetic Screening to identify transcription factors

Among methods to study transcriptional regulation, forward genetic screening provides a direct way to identify unknown transcription factors of interested genes. In forward genetic screens, non-directed genome-wide mutagenesis is applied to introduce random mutations. One way of mutagenesis is to treat wildtype animals with chemical mutagens such as ethyl methanesulfonate (EMS) (Brenner 1974). Mutants defective in
certain biological processes are picked up during screen. The genetic mapping, whole genome sequencing and molecular analysis are used to identify unknown mutated gene(s) after genetic screening. In my thesis study, I applied genetic screens to find mutants defective in mks-1 expression.

Sydney Brenner first introduced genetic screening method to the nematode C. elegans. In Brenner’s work, he treated wildtype C. elegans with ethyl methanesulfonate (EMS), an alkylating mutagen, to introduce mutations (Brenner 1974). During the screening, he generated the mutant population in two ways. 30-40 plates with one mother worm each were prepared. In M set, The EMS treated mother worms were removed after it laid around 50 F1 progeny. The F2 in M set were screened, and only one mutant was picked up from each plate. In S set, mother worms were not removed. 5 F1 from same mother were transferred to new plates, with one worm per plates. The F2 were screened and one mutant was picked up from the same F1. The S set avoided the bias of slow growing mutants and mutant phenotypes that only expressed in adult form. Mutant worms were different in size, shape and movement. The screening successfully identified mutants of uncoordinated (unc genes), roller (rol genes), dumpy (dpy genes), small (sma genes), long (lon genes), blistered and abnormal formation. Mutants were crossed to wildtype N2 males to determine whether the mutations are recessive, dominant or semi-dominant. Meanwhile, one mutant is crossed to another mutant in a complementation test. If F1 progeny are wildtype, two mutants have different mutations. If F1 progeny still possesses mutant phenotype, two mutants have the same mutation. Only mutants that generate reproductive males can be tested in a complementation test. Mutations are mapped using phenotypic gene markers. Mutant of interest is crossed to the mutant with phenotypic markers (usually recessive mutations in marker genes on different chromosomal locations). The F1 progeny are double heterozygous with wildtype phenotypes. F1 progeny are self-crossed to generate F2 progeny. F2 progeny has segregation of two mutant phenotypes. If mutant of interest is recessive, double homozygous F2 generation segregate have double mutant phenotypes. Genetic distance is the recombination rate between two loci (in every 100 chromosomes). Recombination rate (genetic distance) is calculated with the equation: genetic distance = √ (percentage of double homozygous in whole F2 generation*100) (cM). About 100 genes were identified in Brenner’s genetic screens, of which results published in 1974.
After Brenner introduced genetic screening methods to *C. elegans*, it was improved to find genes in signalling pathway, modifiers (enhancers or suppressors), lethal genes, maternal-effect genes, or drug-resistant genes. Many transcription factors have been identified through genetic screens. For example, Mango *et al.* applied forward genetic screens to isolate mutants of first-stage larva arrest. In their screens, they identified *pha-4* gene, which encodes a transcription factor in pharynx development (Mango *et al.* 1994; Kiefer *et al.* 2007). In studies of neurogenesis, genetic screens are widely applied to identify genes that control neuronal specification. In screens for behavioural mutants, transcription factors that regulate specific neuron differentiation were identified. For example, *che-1* mutant is isolated in forward genetic screens for mutants with defects in chemotaxis behaviour (Dusenbery *et al.* 1975; Chang *et al.* 2003; Uchida *et al.* 2003). The gene *che-1* encodes a zinc finger transcription factor CHE-1 that specifically regulates ASE neuron differentiation (Sarin *et al.* 2009). Transcription factors that regulate axon positioning or neuron migration are also identified from genetic screens for mutants that are defective in axon positioning and neuron migration. For example, *ceh-17* mutants were obtained in reverse genetic screens to reveal *ceh-17* role in regulating axon growth and navigation (Pujol *et al.* 2000).

Some transcription factor mutants do not have visible phenotypes. Markers as green fluorescence proteins (GFP) were introduced to worms in genetic screens to identify transcription regulators. Doitsudou *et al.* provided a good example of using GFP marker in genetic screens (Doitsidou *et al.* 2008). In a forward genetic screen to isolate mutants defective in dopaminergic cell fate, they used promoter of dopaminergic-neuron specific gene fused to GFP transgene to track dopaminergic neurons. They use EMS to mutagenize transgenic worms. They screened for mutants with reduced GFP expression in one or multiple dopaminergic neurons.

1.6. Aims of the thesis

Many studies have been carried out to functionally analyse *MKS1* orthologs in mouse, *Drosophila* and *C. elegans*. I studied *mks-1* transcription regulation for two reasons. First, *MKS1*, human and mouse ortholog of *C.elegans mks-1* is the first
identified casual loci in Meckle Syndrome, one type of ciliopathies. Ciliopathies are caused by genetic defects in cilia formation, and thus mutations in same causal gene could lead to different syndromes. Mutations in \textit{MKS1} also cause other ciliopathy, such as Bardet Biedl Syndrome (Kyttala \textit{et al.} 2006; Leitch \textit{et al.} 2008). Ciliopathies could cause fatal symptoms that lead to early death. No effective treatment is available to cure ciliopathies. Although each ciliopathy has low prevalence, the prevalence of overall ciliopathies is high because more than 100 ciliopathies have been identified. The prevalence of overall ciliopathies is 1 in 1000, which is as high as common genetic defects Down Syndrome (Hook 1983). Thus, it is important to understand the molecular mechanism that cause ciliopathies. Second, transcription regulation plays an important role in generating proper proteins. Some identified causal loci of ciliopathies locate in genes that encode transcription regulator. One causal locus of Meckel Syndrom resides in gene \textit{KIF7} (Putoux \textit{et al.} 2011). \textit{KIF7} (kinesin family member 7) encodes a cilia-associated protein that regulates GLI1 and GLI2 transcription factor through sonic hedgehog (SHH) pathway (Dafinger \textit{et al.} 2011). It is important to understand the regulation mechanism of ciliary proteins.

However, there were only few studies about transcriptional regulation of \textit{MKS1}. In \textit{C. elegans}, the only known transcriptional factor of \textit{mks-1} is DAF-19. DAF-19 is the sole transcriptional factor of the RFX family in \textit{C. elegans}. Multiple lines of evidence reveal that \textit{mks-1} regulation involves a group of transcription factor including DAF-19. First \textit{daf-19c} isoform expresses in all ciliated neurons but \textit{mks-1} expresses in subset of ciliated neurons (Efimenko \textit{et al.} 2005). A mechanism that aid DAF-19 to turn on \textit{mks-1} expression in specific cell is yet to be known. A specific transcription factor is likely to be involved in this process to turn on \textit{mks-1} expression in subset of ciliated neurons. Second, other regulatory sequences have been discovered in promoter region of ciliary gene including \textit{mks-1} for DAF-19 dependent expression. C-box was discovered as an enhancer in the promoter of \textit{daf-19} dependent ciliary genes that already contains RFX characteristic cis-element X-box (Burghoorn \textit{et al.} 2012). It is not known what kind of transcription factor interacts with the C-box in regulating \textit{daf-19} dependent ciliary gene expression. Third, many cell-specific transcription factors have been identified in regulating ciliary gene expression in model organisms including \textit{C. elegans} e.g. (Furukawa \textit{et al.} 1997; Beckers \textit{et al.} 2007; Mukhopadhyay \textit{et al.} 2007b; Cachero \textit{et al.} 2007).
2011; Stubbs et al. 2012). Co-regulation by RFX3 and FOXJ1 (i.e. FD3F in Drosophila) exists in regulating ciliary genes in motile cilia formation in mouse and Drosophila (Newton et al. 2012; Didon et al. 2013). Thus, I hypothesize in my thesis that mks-1 is regulated by other transcriptional factors together with DAF-19.

In my thesis, I have two specific aims. First, I would like to generate transgenic worms that stably express GFP driven by mks-1 promoter. I would like to examine expression patterns of the reporter transgene, so I could use this strain for genetic screens. Second, I would like to isolate mutants in candidate transcription factor(s) of mks-1.

In Chapter 2, I describe generating the transgenic worms that stably express GFP driven by mks-1 promoter. Moreover, I observed pmks-1::gfp expression in daf-19 mutant.

In Chapter 3, I mainly discuss the technical details of my two rounds of genetic screens, characterizations of mutants, and preliminary genetic analyses. I successfully isolated a X-linked recessive mutant with changed pmks-1::gfp expression pattern.

In Chapter 4, I discuss the value of this thesis work, and improvements for methods. I also propose the future work.

The appendix is about an alternative approach that I applied: candidate gene approach. Although I did not find significant targets here, results may be valuable for other researchers.
Chapter 2.

Generation of a transgenic strain that stably expresses GFP driven by mks-1 promoter

2.1. Background

The ciliary gene mks-1 expresses in amphids and inner labial neurons in the head and phasmids in the tail (Figure 2.1A and 2.1B) (Efimenko et al. 2005; Williams et al. 2008). Further observation at subcellular level resolution demonstrated that MKS-1 protein concentrates to basal body/ transition zone in cilia (Figure 2.1C) (Bialas et al. 2009).

The expression of mks-1 is daf-19 dependent (Efimenko et al. 2005). DAF-19 is the sole RFX family in C. elegans that regulates all known ciliary gene expression (Swoboda et al. 2000). The gene daf-19 encodes three isoforms. DAF-19C isoform is expressed in all ciliated sensory neurons (Figure 2.2) (Swoboda et al. 2000; Senti and Swoboda 2008). In my study, I used daf-19 mutant allele m86. daf-19 (m86) mutant is generated by EMS mutagenesis, and selected from a genetic screening for mutants of constitutively dauer larva formation (Malone and Thomas 1994). The m86 allele carries a nonsense mutation C → T, resulting in an Arginine change to a premature stop codon before the DNA binding Domain (Swoboda et al. 2000). Thus, m86 is a null-allele of daf-19. Electron Microscopy observation of daf-19 (m86) mutants showed that ciliated endings of sensory neurons are entirely missing (Perkins et al. 1986). In accordance to this observation, the daf-19 (m86) mutants have Dyf phenotype, and constitutively form dauer larva stage (67% at 15°C and 85% at 20°C) (Swoboda et al. 2000). Efimenko et al. generated transgene GFP constructs by inserting 2.1 kb promoter region of mks-1 into GFP expression vector pPD95.77. They microinjected the constructs into daf-19 (m86) mutants and wildtype worms, together with co-injection markers. They observed
diminished mks-1 expression in daf-19 (m86) mutant (Efimenko et al. 2005). Williams et al. also generated a transgenic strain by injecting transcriptional fusion constructs xbx-7::YFP to daf-19 (m86) mutants (xbx-7 is the name used for mks-1 in their study). They observed abolished xbx-7::YFP transgene expression in daf-19(m86) mutant background (Figure 2.1D). They then crossed the transgenic strain to daf-19 wildtype worms, and the transgene expression is restored after the outcross (Williams et al. 2008). X-box is the putative target site for DAF-19. It is a 14bp to 20bp short sequence (Chu et al. 2012). In both Efimenko et al. (Efimenko et al. 2005) and Jeffery Chu’s predictions (Dr. J. Chu, personal communication), they found X-box sequences in mks-1 promoter region. Thus, it is confirmed that mks-1 is regulated by DAF-19.

In my study, I need a transgenic strain that stably expresses mks-1 promoter driven GFP in a wildtype background for EMS mutagenesis and genetic screening. Previously, Efimekno et al. generated a transgenic strain by co-injecting the rol-6 (su1006) dominant marker and GFP expression vector that carries mks-1 promoter sequences into wildtype worms. The transgenic strain OE3152 ofEx120 [R148.1::gfp;rol-6(su1006)] has pmks-1::gfp expression in subset of ciliated neurons, including labial neurons, amphids and phasmids (Figure 2.1A). However, the OE3152 transgenic strain that Efimenk et al. generated has a Rol phenotype. Thus, it is hard to use for genetic screening. I decided to microinject the transcriptional fusion construct of pmks-1::gfp into dpy-5 (e907) recessive mutant, with dpy-5 rescue plasmids. The goal in is to generate a transgenic C. elegans strain that has a wildtype phenotype with stable expression of GFP constructs driven by mks-1 promoter. With help from my colleagues, I generated the promoter driven transcriptional expression of mks-1, using the same mks-1 promoter sequences that Efimenko et al. used (Efimenko et al. 2005). The 2.1 kb promoter sequence covered the upstream intergenic region between mks-1 and R148.2. X-box is located inside this region. Current studies found that most cis-acting sequences sufficient to regulate gene expression resided within 2 kb upstream of the starting codon in C. elegans (Levine and Tjian 2003), thus the 2.1 kb promoter sequence of mks-1 is sufficient to drive transgene expression (Efimenko et al. 2005) and for potential transcription factors binding. I compared pmks-1::gfp transgene expression patterns in the strain that is generated in this study and the strain that Efimenko et al. generated.
Efimenko et al. reports diminished pmks-1::gfp transgene expression in daf-19 (m86) mutant while Williams et al. reports abolished pmks-1::YFP transgene expression in the mutant (Efimenko et al. 2005; Williams et al. 2008). Because there is a difference in previous reports, I would like to confirm the observation of pmks-1::gfp transgene expression in daf-19 (m86) mutant. I generated a strain that carries pmks-1::gfp transgene in daf-19 (m86) background by crossing the reporter strain with daf-19 (m86) mutant strain. I observed transgene expression to understand the effect of daf-19 (m86) null-allele on pmks-1::gfp transgene expression. Thus, I set up a criterion for genetic screening in my study.
Figure 2.1. Transcriptional expression and translational expression of mks-1 (a.k.a xbx-7) in C. elegans

Note. A: mks-1 promoter driven GFP expression in labial neurons and amphids neurons indicated by arrows (lateral view), phasmds neurons not shown. Images obtained from (Efimenko et al. 2005) with permission, doi: 10.1242/dev.01775. B: mks-1 (xbx-7) promoter driven YFP expression in transition zone of cilia (dorsal view). Images obtained from (Williams et al. 2008). Left: schematic that explains amphid cilia bundles in head and phasmid cilia bundles in tail. Dentrites are labelled in red, transition zone in green, and axonemne in blue. Right: che-13 promoter driven CFP express along anxoneme and transition zone in cilia, and is used as cilia marker. mks-1 (xbx-7) express at transition zone of cilia in amphid neuron in head (top) and phasmid neuron in tail (bottom). C: GFP-tagged MKS-1 localize specifically in transition zone of cilia in ciliated sensory neurons. Images obtained from (Bialas et al. 2009) with permission, doi: 10.1242/jcs.028621. Left: MKS-1 localize to transition zone of cilia at tip of dentrites in head amphid neurons (arrowhead and white box). Right: MKS-1 localize to transition zone of cilia at tip of dentrites in tail phasmid neurons (arrowhead and white box). The transgenic constucts include endogeneous promoter region of mks-1 and entire coding region of mks-1. Scale bar: 5 μm D: xbx-7::YFP expression in daf-19 (m86) and wildtype background. Images obtained from (Williams et al. 2008). Left: xbx-7::YFP expression is absent in daf-19 (m86) mutant. Right: After outcross the transgnc strain in daf-19 (m86) mutant (the left image showed) to daf-19 (+) widttype worms, the transgene xbx-7::YFP expression is restored.
Figure 2.2. *daf-19* promoter driven GFP expression in *C. elegans.*

Note. 2.9 kb *daf-19* promoter and 10 kb *daf-19* genomic sequence were fused to GFP to drive transgenic expression. Expression is seen in all ciliated neurons. Images obtained from (Swoboda *et al.* 2000). Top: Normaski images of *daf-19::gfp* transgenic worm head (A) and tail (B) at L1 stage. Bottom: GFP images of *daf-19::gfp* transgenic worm head (A) and tail (B) at L1 stage. Scale bar: 5 μm.
2.2. Materials and Methods

2.2.1. Strains and worm growing conditions

Worms were grown in Easiest Worm Agar plates seeded with OP50. The medium contains 11.8 g Easiest Worm Plate Base Mix (55 g Tris-HCL, 24 g Tris-OH, 310 g Bacto-Peptone, 800 mg Cholesterol and 200 g NaCl) and 36.0 g agar in 2 L ddH2O (Brenner 1974). The OP50 strain was cultured in Tryptic Soy Broth culture before it was seeded to agar plates. The strain for microinjection is *dpy-5* (*e907*) mutant, and was obtained from Baillie lab. The *daf-19* mutant strain is *DR86* (*m86*), and was obtained from Swoboda lab. The hermaphrodites N2 strain for backcross is BC9184. The male N2 strain for backcross is BC9183. All worms were growing at 20°C except DR86. DR86 was growing at 15°C. DR86 strain had around 85% dauer formation rate (J. Wang, personal communication). The dauer formation rate of DR86 strain at 15°C was reported as 67% (Swoboda *et al.* 2000).

2.2.2. Generation of transcriptional mks-1 expression construct

2.1 kb intergenic region on the 5' upstream of *mks-1* was amplified from *C. elegans* genomic DNA, because the region was considered as *mks-1* promoter sequences to drive transcriptional expression (Figure 2.3). GFP sequence was amplified from GFP expression plasmids Pd95.75. Jun Wang generated PCR fusion constructs of *mks-1* promoter fused to GFP with standard protocols (Figure 2.4) (Boulin *et al.* 2006).

2.2.3. Microinjection

The linear constructs of *mks-1* promoter fused to GFP sequences were co-injected with *dpy-5* rescue plasmids pcEh361 into *dpy-5* (*e907*) mutant worms. Around 20 *dpy-5* mutant worms were injected each time. Zhaozhao Qin kindly injected the worms using Tritech Microinjector Platform (Mello *et al.* 1991; Mello and Fire 1995). I selected F1 progeny with wildtype phenotype. Those worms have successfully injected constructs. I observed GFP expression in F2 generations. I selected wildtype F2
progeny with strong GFP expression in amphids, inner labial neurons and phasmids. Progeny from same injected P0 worms is considered as one line and given same strain name. I got three transgenic worm lines. I named them JNC225 dotEx225 \([\text{pmks-1::gfp;dpy-5(+)}]\), JNC226 dotEx226 \([\text{pmks-1::gfp;dpy-5(+)}]\), and JNC227 dotEx227 \([\text{pmks-1::gfp;dpy-5(+)}]\) respectively. To maintain the strains, I picked up wildtype worms, and transferred them to fresh plates, three worms per plates. All the injected lines were frozen in L1-L2 stage in liquid nitrogen. The freezing solution recipe is: 240 ml M9 (contains 3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl and 1 ml of 1 M MgSO4 in 1 L dH2O), 158 ml S Buffer (contains 5.845 g NaCl and 6.805 g KH2PO4 in 1 L dH2O, PH adjusted to 6.0 with approximately 5-6 ml of 1M NaOH) and 72 ml Glycerol. The ingredients (M9, S Buffer and Glycerol) were autoclaved separately and then mixed by sterile techniques. The sterile freezing solutions were kept at 4°C.

2.2.4. Integration and Outcross to N2

The JCN225 strain (genotype: dotEx225 \([\text{pmks-1::gfp;dpy-5(+)}]\)) was used for X-ray integration. I prepared a plate of ~200 worms synchronized at young adult stages. I treated these young adults with 145 kV X-ray for 135 seconds. After one-hour recovery, I placed ~40 X-ray treated worms on ~40 large plates and grew them at 23°C. After 24 hours, the X-ray treated worms were killed, leaving around ~50 embryos of F1 generation. Then the F1 were growing at 23°C until the F2 generation grew to L4 stage. With the help from Zhaozhao Qin and undergraduate student John Coo, I picked up ~600 L4-stage worms in F2 generation, one per small plate. After three to four days at 20°C, the F3 generations grew up. At that time, all ~600 plates were screened for integrated lines. In the integrated lines, all F3 progeny have wildtype phenotypes. I also observed plates of all F3 generation worms under a fluorescence dissecting microscope. All F3 worms on the plate had mks-1 promoter driven GFP expression in head and tail. Worms in these lines have transgenic arrays integrated into chromosome. In total, I obtained three independent integrated lines. These lines were named JNC236 dotIs236 \([\text{pmks-1::gfp;dpy-5(+)}]\), JNC237 dotIs237 \([\text{pmks-1::gfp;dpy-5(+)}]\) and JNC238 dotIs238 \([\text{pmks-1::gfp;dpy-5(+)}]\). Because JNC236 has strongest GFP expression, I chose it for following experiments. JNC236 dotIs236 \([\text{pmks-1::gfp;dpy-5(+)}]\) was backcrossed with N2 strains for four times (Figure 2.5). The backcrossed strain was used for mutagenesis.
(see chapter 3 for EMS mutagenesis). The backcrossed strain that carries integrated mks-1 promoter driven GFP expression reporter was named JNC248 dotls248 [pmks-1::gfp;dpy-5(+)].

While I used JNC248 reporter strain that stably expresses pmks-1::gfp for candidate gene approach experiments (see appendix for details), I discovered that transgene is linked to zip-5, a gene on chromosome V. It was hard to isolate double recombinant progeny that carry homozygous pmks-1::gfp transgene and homozygous zip-5 (gk646) mutant allele, so pmks-1::gfp transgene array is inserted on the ChrV in strain JNC248.

2.2.5. Confocal microscopy

I observed the GFP expression of JNC225 and JNC248 strain by confocal microscopy using 40X oil lens. Glass slides with 2% agarose placed on top were prepared for confocal observation. Worms were fixed on the agarose with M9 solution and 5% (300 mM) NaN₂ (1.95 g solid NaN₃ dissolved in 100 ml ddH₂O). M9 solution contains 3 g KH₂PO₄, 6 g Na₂HPO₄, 5 g NaCl and 1 ml of 1 M MgSO₄ in 1L dH₂O. The worms were observed in the ZEISS confocal microscopy platform.

2.2.6. Cross mks-1 promoter drive GFP reporter into daf-19 mutant background

In order to observe mks-1 promoter drive GFP expression in daf-19 mutant background, I introduced mks-1 promoter driven GFP reporter into daf-19 mutant by genetic cross. I crossed the pmks-1::gfp transgene of JNC248 strain (dotls236 [pmks-1::gfp;dpy-5(+)]) with daf-19 (m86) mutant of DR86 strain (Figure 2.6). daf-19 (m86) allele is the null allele that previous studies also used (Efimenko et al. 2005; Williams et al. 2008). I obtained a worm line that had heterozygous mks-1 promoter driven GFP reporter in homozygous daf-19 (m86) mutant. Then I observed GFP signal in this worm line, and compared it to that in wildtype transgenic worms (JNC248 strain).
2.2.7. **Single Worm lysis and PCR genotyping**

To get DNA from a single worm, I ran the single worm lysis program. The lysis buffer was prepared with 10 mM Tris (PH 8.4), 50 mM KCl, 2.5 mM MgCl$_2$, 0.45% Tween 20, and 0.5 mg/mL gelatin. 500 μl lysis buffer was aliquoted into each eppendorf tube. 5 μl proteinase K (2 mg/μl) was added to every 500 μl lysis buffer. PCR tubes with 5 μl mix of lysis buffer and proteinase K in each were prepared. A single worm was put into the 5 μl mix in each PCR tube. The tubes with buffer mix and worms were put in -80°C freezer for half an hour so that worm cells were broken in extreme low temperature. The frozen tubes were taken out to room temperature. The tubes were centrifuged for 30 seconds. Then the tubes were put in PCR machine with program: 60°C, 60 min; 95°C, 15 min; keep at 4°C. The 60°C was the working temperature for proteinase K to release the DNA. The 95°C was the temperature to deactivate extra proteinase K. After running the lysis program, the lysis DNA was used as template for PCR genotyping. The lysis DNA was stored in -20°C freezer.

The PCR genotyping aimed to use specific primers to test the existence of mutant and transgene alleles. For the cross of pmks-1::gfp transgene to daf-19 (m86) mutant (see Figure 2.6), Jun Wang designed primers to detect GFP sequence and m86 point mutation. The primers to detect GFP sequence are: Forward: 5’ GAAACGGCATGACTTTTTCAA 3’, Reverse: 5’ CTTTTCGTTGGGATCTTTCG 3’. The GFP primers bind to regions inside GFP coding sequences. The GFP primers generated a band of around ~500 bp in GFP transgenic worms, but in wildtype worms the primers do not generate any band. I also used a pair of testing primers to indicate that the PCR worked properly. The test primers’ sequences are: Forward: 5’ TTATGCAGCGCTCAACATTT 3’, Reverse: 5’ GGGTCTTGCCACCACTAAAA 3’. The testing primers generated a band of around ~800 bp in all reactions. I used testing primers together with GFP primers in the reaction to genotype GFP. In reactions to genotype GFP, a band of ~500 bp and a band of ~800 bp shows up in worms with GFP transgene, while only one band of ~800 bp shows up in worms without GFP transgene. Because of using testing primers, I confirmed that all PCR reactions were working properly. The primers to detect m86 point mutation are: Forward: 5’ ACCTACCACAGTGCAATACC 3’, Reverse: 5’ ACCGTTGCGGGGAAAGC 3’. The m86 forward primer binds to sequences upstream to the point mutation. The first
nucleotide in the m86 reverse primer is A. Thus the m86 reverse primer specifically binds to the C -> T mutation and its upstream region. The m86 primers generated a band of around ~750 bp in m86 mutant, but the m86 primers do not generate any band in wildtype worms.

The recipe for PCR reactions with one pair of primers was: Total 10 μl, includes ddH2O 5.45 μl, 10XTBA 1 μl, MgCl2 0.4 μl, dNTP 0.25 μl, Forward Primer 0.4 μl, Reverse Primer 0.4 μl, lysis template 2 μl, Taq polymerase 0.1 μl. The recipe for PCR reactions with two pairs of primers was: Total 10 μl, includes ddH2O 4.65 μl, 10XTBA 1 μl, MgCl2 0.4 μl, dNTP 0.25 μl, Forward Primer 0.4 μl each, Second Forward Primer 0.4 μl each, lysis template 2 μl, Taq polymerase 0.1 μl. The PCR program for GFP genotyping was: 94°C 10 min; x25 cycles of 94°C 30 s, 58°C 30 s and 72°C 1 min 30 s; 72°C 1 min 30 s; keep at 10°C. The annealing temperature was adjusted to 62°C in m86 genotyping. PCR products were separated by DNA electrophoresis using 1% agarose gel that contained 0.02% ethidium bromide (10μl ethidium bromide in every 50ml agarose gel). The DNA products were visualized using UV light gel documentation system Geni2. The DNA ladders were Generuler 1 kb or 1 kb plus ladder.

2.2.8. Generation of Males

Males were generated by heat-shock. 60 late L4 worms were placed on 60 petri agar plates, with one worm per plate. Worms were divided into three groups, with 20 worms in each group. The three groups were incubated at 30°C for 5 hours, 5.5 hours and 6 hours, respectively. Then the worms were placed at 20°C incubator. After 3-4 days, the F1 progeny were screened for males. To keep the males, around 8 males were crossed to two L4 hermaphrodites. The hermaphrodites were not treated with heat shock. All the males were maintained in the mating plates, which was seeded with around 1 cm diameter circle of OP50 in the middle.
Figure 2.3. Promoter sequences used to generate \textit{mks-1} transcriptional fusion construct

\textit{Note.} Images were download from Wormbase genome browser (http://www.wormbase.org). The ~2.1kb \textit{mks-1} 5’ upstream intergenic sequences is used to generate \textit{mks-1} transcriptional fusion construct (in red bar).
Figure 2.4. PCR fusion of mks-1 promoter to GFP sequence

Note. A: PCR amplicon of ~2.1 kb mks-1 promoter region. B: Fusion-PCR amplicon of ~2.1 kb mks-1 promoter fused to ~1.9 kb GFP DNA sequence. The total fusion product length is ~4 kb. DNA ladders in A and B are Generuler DNA ladder 1 kb plus. A and B images are obtained from J.Wang. C: Procedure of generating PCR fusion construct. The figure is adopted from (Boulin et al. 2006). Primer A and primer B amplify the interested gene regions (amplicon #1). Primer B adds an overlap with GFP coding region in the end. Primer C and primer D amplify the reporter GFP gene coding region and 3' UTR (amplicon #2). Primer A* and primer D* are used to fuse amplicon #1 (interested gene regions) and amplicon #2 (reporter GFP gene). Gray box indicated the overlap regions. The fusion product of interested gene regions fused to GFP (amplicon #3) can be injected to C. elegans to observe expression.
Figure 2.5. Protocol of outcross JNC236 strain to N2 strain

Note. The JNC236 strain is outcrossed to N2 for four times. In outcross 1X and outcross 2X, heterozygous progeny were picked up. After 2X outcross, homozygous hermaphrodites were isolated from heterozygous progeny. The 2X outcrossed homozygous hermaphrodites were kept so that if any further cross failed, the outcross did need to be reconducted from 1X. The 2X outcrossed homozygous hermaphrodites were crossed to N2 again for outcross 3X and followed by outcross 4X. After 4X outcross, homozygous hermaphrodites were isolated from heterozygous progeny. The 4X outcrossed reporter strain's genotype is *dotls248 [pmks-1::gfp+dpy-5(+)]* and strain name is JNC248.
Figure 2.6. Protocol of cross mks-1 promoter driven GFP reporter into daf-19 (m86) mutant

Note. The JNC248 is the GFP reporter strain and DR86 is the daf-19 (m86) mutant strain. Heterozygous F1 hermaphrodites were picked up. Homozygous daf-19 (m86) mutant were first isolated in F2 generation. Then worms with pmks-1::gfp transgenic arrays were selected from the homozygous daf-19 (m86) mutant F2 hermaprodites. pmks-1::gfp transgene is located on the ChrV because in one genetic cross (see Appendix), the transgene is linked to zip-5 (gk646) on the ChrV.
2.3. Results and Discussions

2.3.1. Transgenic mks-1 promoter driven GFP expression in wildtype background

In my study, I generated fusion constructs of 2.1 kb promoter fused to GFP coding sequences. I used the same promoter sequences as previously reported (Efimenko et al. 2005; Williams et al. 2008). I microinjected pmks-1::gfp constructs together with dpy-5 rescue plasmids into dpy-5 mutant worms to get transgenic strain that carry mks-1 promoter driven GFP reporter. In order to get a strain that stably expresses mks-1 promoter driven GFP, I used X-ray to integrate the extra-chromosomal array of pmks-1::gfp constructs and dpy-5 rescue constructs into chromosome of transgenic worms. Meanwhile, I obtained transgenic strain OE3152 (ofEx120 [R148.1::gfp;rol-6(su1006)]) from Swoboda lab, that Efimenko et al. generated in previous study. Worms of strain OE3152 have Rol phenotype, and wildtype pmks-1::gfp expression. I expected to observe same pmks-1::gfp expression patterns in both the strains generated in my study and the strain that Efimenko et al. generated.

The expression of GFP in JNC225, JNC248 and OE5132 strain were carefully observed by confocal microscopy using the 40X oil lens. JNC225 strain is the transgenic strain with extra-chromosomal mks-1 promoter driven GFP reporter. JNC248 strain is the transgenic strain with integrated mks-1 promoter driven GFP reporter. OE5132 strain is the transgenic strain with extra-chromosomal mks-1 promoter driven GFP reporter (Efimenko et al. 2005).

In transgenic strain JNC225 and JNC248 that were generated in my study, pmks-1::gfp expresses in 3 pairs of inner labial neurons, 12 pairs of amphids and 2 pairs of phasmids (Fig 2.7 A-H and Figure 2.8). In transgenic strain OE3152 that were generated by Efimenko et al. (Efimenko et al. 2005), pmks-1::gfp also expresses in 3 pairs of inner labial neurons, 12 pairs of amphids and 2 pairs of phasmids (Figure 2.7 I-L). There are 6 pairs of inner labial neurons in C. elegans. Three pairs are termed IL1 and the other three are termed IL2 (Ward et al. 1975; Ware 1975). IL1 and IL2 cells are close to each other, so it is hard to distinguish whether pmks-1::gfp expresses in IL1 or IL2 (Figure 2.8). Further co-localization study, for example, cell staining, is required to identify the
inner labial neurons in pmks-1::gfp transgenic worms. The expression patterns are the same in the strains generated in my study and the strain generated in previous study. However, the expression level in phasmids is higher in Efimenko et al’s strain OE3152. Although there are variations of expression levels in different transgenic strains, the expression patterns are the identical to previous report. Thus, the transgenic strains JNC248, which stably expresses pmks-1::gfp in a wildtype phenotype, is used for EMS mutagenesis and genetic screening.

2.3.2. Transgenic mks-1 promoter driven GFP expression in daf-19 mutant background

In order to confirm the DAF-19 loss-of-function effect on mks-1 expression, I crossed pmks-1::gfp reporter strain (JNC248) to daf-19 (m86) mutant strain (DR86). I picked up heterozygous m86 and pmks-1::gfp F1 progeny. I isolated homozygous m86 progeny that carry pmks-1::gfp reporter from self-crossed progeny of heterozygous F1 generation. This is a pmks-1::gfp heterozygous and m86 homozygous clone. I confirmed that this clone is GFP heterozygous and m86 homozygous by genotyping progeny of this clone. I randomly picked up 10 self-fertilized progeny from this clone. All of progeny had m86 allele but only 8 of them had GFP construct (Figure 2.9).

Then I observed the mks-1 expression in daf-19 (m86) mutant in progeny of this clone that carry heterozygous pmks-1::gfp transgenic arrays. I expected to observe absent or diminished pmks-1::gfp expression in daf-19 (m86) mutant.

I observed that neuronal GFP signal is absent in daf-19 (m86) mutant (Figure 2.10). I increased confocal exposure time for observation, but still I could not observe expression in labial neurons, amphids, and phasmids in daf-19 (m86) mutant (Figure 2.10 K and L), where pmks-1::gfp expresses in those cells in wildtype (Figure 2.10 G and H). When I increased exposure time, non-neuronal GFP signal is shown in images’ background in both wildtype and daf-19 (m86) mutant due to GFP emission under long exposure time (Waters 2009). Under long exposure time, I did not observe non-neuronal GFP signal in worms with pmks-1::gfp transgene that Efimenko et al generated (OE3152 strain). Different constructs were used to generate different transgene array in this study and Efimenko et al. study. Efimenko et al. used GFP expression plasmids while I used
PCR fusion constructs in this study. However, it is yet to known whether using PCR-fusion constructs as transgene resulted in detectable GFP signal in all worm body under high exposure time. Still, I concluded that pmks-1::gfp neuronal expression is absent in daf-19 (m86) mutant, which is same as reported by Williams et al. (Williams et al. 2008).
Figure 2.7. \textit{mks-1} promoter driven GFP expression in strain OE3152 (transgenic strain), JNC225 (transgenic strain) and JNC248 (integrated transgenic strain)

Note. A-D: extra-chromosomal \textit{mks-1} promoter driven GFP reporters express in labial neurons, amphids and phasms in OE3152 ofEx120[R148.1::gfp;rol-6(su1006)]. E-H: extra-chromosomal \textit{mks-1} promoter driven GFP reporters express in labial neurons, amphids and phasms in JNC225 dotEx225[pmks-1::gfp; dpy-5(+)]. I-L: intra-chromosomal \textit{mks-1} promoter driven GFP reporters express in labial neurons, amphids and phasms in JNC248 dotIs248[pmks-1::gfp; dpy-5(+)]. Inner labial neurons are indicated by red arrowheads, amphids by grey arrowheads and phasms by white arrowheads. In order to best display the GFP signal, different strains were observed under different settings (i.e. exposure time, sensitivity and contrast enhancement). All GFP images are confocal stacks of whole worm body from lateral view. Scale bar: 25 μm. To compare the GFP signal levels, worms from different strains (one worm per strain) were also observed under same settings and measured their signal strength by counting the signal pixels. For worms measured in M and N, GFP exposure was at 182 ms. M: measurement of head region signals in different strains under same confocal settings. The head expression level is slightly higher in transgenic strain JNC225 and OE3152 that carry extra-chromosomal reporters than strain JNC248 that carry intra-chromosomal reporters. N: measurement of tail region signals in different strains under same confocal settings. The tail expression level is slightly higher in strain JNC225 than in strain JNC248. The tail expression level is much higher in strain OE3152. Expression level differences can only be detected by confocal microscopy.
Figure 2.8 Expression of pmks-1::gfp in inner labial neurons in wildtype (transgenic strain JNC248)

Note I scanned each layers of the projected confocal image of pmks-1::gfp wildtype transgenic worm’s head region. 6 neuron cell bodies are identified, although it is yet to be known whether these neurons are IL1 or IL2. A,B : In left lateral side, three cell bodies, of neuron ILDL, ILLL, ILVL (unknown whether IL1 or IL2), are indicated by white arrowheads. C, D: In right lateral side, three cell bodies, of neuron ILDR, ILLR, ILVR (unknown whether IL1 or IL2), are indicated by white arrowheads. Exposure is taken at 182 ms. Brightness is set at x6.5 so the whole cell bodies are clearly displayed. Scale bar: 25 μm.
Figure 2.9. DNA electrophoresis result showing the m86 homozygous and pmks-1::gfp heterozygous clone

Note. The figure shows how to determine that a worm clone is homozygous m86 and heterozygous pmks-1::gfp. 10 progeny of a worm clone were lysated to collect DNA in ten tubes. Then 10 lysates were tested with two rounds of PCR (A and B). A: The primers generate one ~750 bp in m86 mutant and none band in wt. Genotyping of 10 progenies showed 10 m86 specific band ~750 bp, so ten progeny are from a m86 homozygous mother. B: The primers generate two bands, ~500 bp and ~800 bp in worms with pmks-1::gfp constructs. The primers generate one ~800 bp band in wt. Genotyping of 10 progenies only showed 8 GFP specific band ~500 bp, so ten progeny are from a pmks-1::gfp heterozygous mother. This homozygous m86 and heterozygous pmks-1::gfp reporters line was used to observe mks-1 promoter driven GFP signal in m86 mutant. DNA ladder: Gene ruler 1 kb ladder.
Figure 2.10. *mks-1* promoter driven GFP expression in *daf-19 (m86)* mutant

Note. Images A-F were taken under low exposure time, 394 ms. A, B: In wildtype strain that carries *pmks-1::gfp* reporters, GFP signal is detected in inner labial neurons (indicated by red arrowhead), amphids (indicated by grey arrowhead) and phasmids (indicated by white arrowhead). C, D: In m86 mutant strain that does not carry reporters, no signal is detected. E, F: In m86 mutant that carries *pmks-1::gfp* reporters, GFP signal is absent. A, C, E were taken under same sensitivity. B, D, F were taken under same sensitivity that is a bit higher than A, C, E, because reporter gene expression is higher in head region than tail region (see Fig 2.8 M, N). Images G-L were taken under high exposure time, 768 ms. G, H: In wildtype strain that carries *pmks-1::gfp* reporters, GFP signal is detected in inner labial neurons (indicated by red arrowhead), amphids (indicated by grey arrowhead) and phasmids (indicated by white arrowhead). Because exposure time is high, the signals are saturated. I, J: In m86 mutant strain that does not carry reporters, no signal is detected. K, L: In m86 mutant that carries *pmks-1::gfp* reporters, *mks-1* expression in labial neurons, amphids and phasmids is suppressed because no GFP signal is detected in these regions. Non-neuronal expression is introduced by *pmks-1::gfp* reporter genes, which can also be seen in the background of image G and H. All GFP images are confocal stacks of whole worm body from lateral view. Scale bar: 25 μm.
2.4. Conclusion

First, I prepared reporter strain (JNC248 dotls248 [pmks-1::gfp; dpy-5(+)]) that would be used for genetic screening (see Chapter 3) and candidate gene approach (See Appendix). I confirmed that pmks-1::gfp expresses in 3 pairs of inner labial neurons, 12 pairs of amphids and 2 pairs of phasmids. The transgene expression resembles in-vivo mks-1 gene expression. My observation of wildtype mks-1 promoter driven GFP expression pattern is consistent with previous report (Efimenko et al. 2005; Williams et al. 2008). It is possible that different dosage of injected constructs caused the difference of transgene expression level. In my study, the concentration of injected pmks-1::gfp fusion constructs is 15 μg/μl. And the concentration of transgene constructs that Efimenko et al. used is not revealed (Efimenko et al. 2005).

Second, I confirmed mks-1 expression level in daf-19 (m86) mutant, although previous reports are conflicting. Efimenko et al. first observed diminished pmks-1::gfp expression in daf-19 (m86) mutant in 2005 (Efimenko et al. 2005). However, in 2008 Williams et al. described pmks-1::gfp expression in daf-19 (m86) mutant as absent (Figure 2.1 D) (Williams et al. 2008). Both of them injected pmks-1::gfp constructs into daf-19 (m86) mutants. Efimenko et al. used clones of GFP plasmids that are inserted with mks-1 promoter sequences. Slightly differently, Williams et al. used PCR fusion constructs of mks-1 promoter sequences fused to YFP coding sequences. In my study, I also used pmks-1::gfp transcriptional fusion constructs. I injected the constructs with dpy-5 rescue vectors into dpy-5 (e907) mutants to generate a wildtype transgenic strain. I generated a transgene-integrated strain from injection strain. Then I crossed this transgene-integrated strain with daf-19 (m86) mutant to get a strain that carries both alleles. I observed absent pmks-1::gfp neuronal expression in daf-19 (m86) mutant. My observation is consistent with report from Williams et al. (Williams et al. 2008). In Efimekno et al. study and my study, different injection constructs were used. It could be possible that cloning plasmids have higher expression than PCR fusion constructs level and thus it is hard to shut down transgene expression in transgenic worms that carry expression plasmids.
I come to a criterion for genetic screening based on my observations of pmks-1::gfp expression in wildtype and daf-19 (m86) mutant. I would look for mutant with reduced GFP signal since deleting DAF-19 resulted in loss of pmks-1::gfp neuronal expression.
Chapter 3.

Identifying *mks-1* transcription factors through genetic screening

3.1. Background

Effimenko *et al.* found X-box sequence, which is for RFX characteristic DBD binding, in *mks-1* upstream intragenic regions (Efimenko *et al.* 2005). The *mks-1* expression is DAF-19 dependent based on the evidence that *mks-1* promoter driven GFP expression is absent in *daf-19* null-mutant in (Williams *et al.* 2008) and current study. Several lines of evidence reveal that *mks-1* is regulated by other transcription factors together with DAF-19. First, DAF-19C isoform is expressed in all ciliated neurons, while *mks-1* only express in subset of ciliated neurons. Efimenko *et al.* predicted existence of co-factor to DAF-19 in regulating ciliary genes that only express in subset of ciliated neurons (Efimenko *et al.* 2005). This group of ciliary genes has function in specific cells in cilia formation (Thomas *et al.* 2010; Choksi *et al.* 2014). Second, evidences of co-regulation in cilia exist. For example, RFX3 is a co-factor to FOXJ1 to augment FOXJ1 dependent transcription in regulating motile cilia formation in mouse airway cells (Didon *et al.* 2013). Third, it is reported that some cell-specific transcription factors work upstream or downstream of RFX to regulated ciliary gene expression. In *C. elegans*, transcription factor FKH-2 functions downstream to DAF-19 to regulate ciliary gene *kap-1* expression in AWB neurons (Mukhopadhyay *et al.* 2007b). Thus, I hypothesized that *mks-1* is regulated by a group of transcriptional factors including DAF-19. In order to find transcription factors in addition to DAF-19, I applied different approaches, including genetic screening and a candidate gene approach. In the candidate gene approach, I introduced *mks-1* promoter driven GFP reporters into different mutants. The candidate genes encode already known transcription factors in *C.*
elegans (See Appendix). However, I spent most time and energy on genetic screens to find mutants of new candidate transcription factor(s).

In my study, I applied EMS mutagenesis and genetic screens based on Brenner’s methods (Brenner 1974). EMS (Ethyl methanesulfonate, CH3SO3C2H5) is an alkylating mutagen that adds an ethyl group to guanine to form O6-ethylguanine which pairs with thymine, thus causing GC to AT substitutions (Brookes and Lawley 1961; Coulondre and Miller 1977). It generates mutations in a rate of 1 in 2000 genes to 1 in 20 genes, depending on the concentration and treatment time (Gengyo-Ando and Mitani 2000). My study used GFP as reporters for genetic screening. Because C. elegans body is transparent, it is ideal to monitor gene expression in live worms by using fluorescence transgene reporters. It is a mature technique to use GFP as reporters in genetic screens to search for changes in cell positioning or gene expression levels. For example, Troemel et al. generated worms carrying str-2 promoter fused to GFP transgene array. str-2 encodes an odorant receptor that expresses in one of the bilaterally symmetric AWC neurons. They successfully identified mutants that express str-2::GFP in both AWC neurons or no AWC neurons. Their screens help identifying regulators in the AWC neuron-specific signaling pathway (Troemel et al. 1999). Doitsidou et al. applied similar genetic screen strategy to search for mutants defective in dopaminergic cell differentiation. They use GFP reporter fused with promoter of dat-1 to label dopaminergic neurons. dat-1 encodes a plasma membrane dopamine transporter which exclusively express in dopaminergic neurons. They applied two ways for screens, either manually or by using COPAS Biosort system (worm sorter) to select mutants of subtle alterations in GFP expression. Their study revealed high efficiency in using worm sorter for GFP-labeled genetic screens (Doitsidou et al. 2008).

In this thesis study, I looked for mutants with reduced pmks-1::gfp expression. I expected to find mutants that specifically affect mks-1 or ciliary gene expression. Because DAF-19 is a known transcription factor of mks-1, I expected to isolate daf-19 mutant that has absent or reduced pmks-1::gfp expression. Because EMS generates random mutations in a rate of 1 in 1000 genes (Brenner 1974), in this study I expected to obtain EMS-induced mutations in some genes from large gene families such as unc or dpy. I expected to see mutants of Unc (uncoordinated) phenotype because unc genes belong to one of the largest gene family in C. elegans. I expected that EMS mutagen
would also hit genes in a wide spectrum of pathways that affecting cell development, cell cycles, apoptosis, cell positioning and so on. Thus, I expected to see mutants that are larva-arrest, lethal, sterile, vulvaless or malformed in different organs. If these mutations locate in genes that upstream to mks-1 regulating pathway, I would expect to observe reduced or abolished GFP expression in these larva-arrest, lethal, sterile, or malformed mutants.

3.2. Materials and Methods

3.2.1. Strains

I used the reporter strain JNC248 for first round of EMS mutagenesis and genetic screen (generation of JNC248 described in Chapter 1, Figure 2.5 and Figure 2.7). In second round of EMS mutagenesis, I used a double-reporter strain JNC285 with pmks-1::gfp and ppgp-12::gfp reporters. JNC285 strain was generated by genetic cross. The transgenic ppgp-12::gfp strain was obtained from Baillie lab. The pgp-12 promoter driven GFP reporter was integrated into chromosome. Then the ppgp-12::gfp integrated strain was backcrossed to N2 strain for four times to clean background mutations. The cleaned ppgp-12::gfp integrated strain is named JNC296 dotIs296 [ppgp-12::gfp;dpy-5(+)]. I crossed dotIs248 [pmks-1::gfp;dpy-5(+)] transgenic worms (strain JNC248) with dotIs296[ppgp-12::gfp;dpy-5(+)] transgenic worms (strain JNC296) (Figure 3.1). I selected the outcrossed heterozygous F1 generation hermaphrodites. In F2 progeny, 1 out of 16 worms have two homozygous GFP reporters. The F2 generation worm with both homozygous pmks-1::gfp and ppgp-12::gfp reporters was selected. This strain was named JNC285 (genotype: dotIs248 [pmks-1::gfp;dpy-5(+)]; dotIs296 [ppgp-12::gfp;dpy-5(+)]). I observed the expression of GFP in JNC285 under a confocal microscope. Worms in JNC285 strain have pmks-1::gfp expression in inner labial neurons, amphids and phasmids; and ppgp-12::gfp expression in the excretory cell (Figure 3.2). The N2 male is BC9183. All experiments were conducted at 20°C, unless otherwise noted for temperature sensitive strains.
3.2.2. EMS mutagenesis and genetic screening

In order to find mutants of candidate transcriptional factors of mks-1, I applied two rounds of genetic screens (Figure 3.3). In first round, worms carrying pmks-1::gfp reporter (JNC248 strain) were mutagenized. Around 200 young adult worms were treated with 50 mM EMS for 4 hours and then recovered in room temperature for an hour. The EMS treated worms were put on large plates. They grew until all the worms on plates were starved at L1-L2 stage. I used non-clonal F2 screening. When screening F2 generation, I was able to get homozygous mutants. Moreover, by F2 non-clonal screen, I do not need to pick up individual F1 clones, which saves time and energy. If F1 progeny is heterozygous, 1/4 of the F2 progeny is homozygous. The F2 and F3 generation starved worms were transferred to fresh plates by chunking agar and putting it on new plates. After the F2 and F3 generations grew up to L4 stage on fresh plates, I screened them under a dissecting fluorescent microscope. Worms with altered GFP expression (i.e. reduced or abolished expression) in amphids, phasmids and inner labial neurons were picked up.

The procedures of second round of genetic screen were very similar to the first rounds. There were three major improvements (Figure 3.4). First, the mutagenized worms have two reporter transgene ppmks-1::gfp and ppgp-12::gfp (JNC285 strain). pmks-1::gfp represents the expression of target gene mks-1. ppgp-12::gfp represents a transmembrane coding gene expression in the excretory cell. There are different regulating pathways between ppg-12 and ciliary gene mks-1. ppgp-12::gfp is a control reporter because mutants affecting ppgp-12::gfp expression are in regulators unrelated to ciliary-gene specific regulation. Second, I used different ways to transfer F2 or F3 generations. In first round of genetic screening, I transferred almost all starving F2 or F3 generations to fresh plates. Because each F1 generation mutant is estimated to lay ~150 embryos, most F2 generation mutants on the same plate are segregates of the same F1 generation mutant. Thus I do not need to screen all F2 progeny. In second round, only starving F2 or F3 generations on 9 pieces of agar in 1 cm² size of each original plate were transferred to fresh plates. Third, the phenotypes in the second round of screening were altered GFP expression in amphids, phasmids or inner labial neurons, but unchanged expression in excretory cells. The changed screen criterion enables me to pick up mutants that specifically affect ciliary gene expression in neurons. Because
cell-specific transcription factors could be discovered from the screen (Mukhopadhyay et al. 2007b), the altered GFP includes reductions in overall signal strength as well as reductions in specific neurons (i.e. missing expression in certain neurons). After screening, I selected only one mutant from each P0 plate because multiple mutants on same plates are likely to be segregates from same mutant F1 progeny, considered the number of discovered mutants and number of progeny that a F1 generation mutant could lay. The selected mutants were characterized as recessive, dominant or transgenic-array defective, with genetic crossings.

3.2.3. Maintenance and selections of EMS mutants

All mutants were maintained at 20°C unless any mutants were identified as temperature sensitive. ~3-5 worms with mutant GFP phenotypes were picked up under a fluorescence dissecting microscope for maintaining. After maintaining three generations, I selected mutant lines that have stably altered pmks-1::gfp expression. These mutant lines have 100% penetrance. Mutants with 100% penetrance were kept for regular maintaining by picking up ~3-5 worms each time under a normal dissecting microscope. The worms were kept for more than ten generations. If GFP signal in some mutant strains recovered to wildtype level after ten generations, they were not studied. Mutant strains with 100% penetrance were characterized.

3.2.4. Characterizations of EMS mutants

In order to know whether the mutants carried dominant mutations, recessive mutations or transgenic-array defective, I crossed the mutant hermaphrodites with N2 male (Figure 3.5). I observed GFP signals in all F1 generation worms under a fluorescence dissecting microscope. The F1 outcrossed males were carefully observed under a confocal microscope. The mutants and wildtype pmks-1::gfp transgenic worms were used as controls for confocal observation. If F1 generation hermaphrodites and males both have wildtype GFP signal, the mutant is autosomal recessive. If F1 generation hermaphrodites have wildtype GFP signal, and F1 generation males have altered GFP signal (mutant phenotype), the mutant is X-linked recessive. If the F1 generation worms all have altered GFP signal (mutant phenotype), the mutant hermaphrodites was crossed with wildtype pmks-1::gfp transgenic male worms to
determine whether the mutation is dominant or transgenic-array defective (Figure 3.6). Again, I observed GFP signals in all F1 generation worms under a fluorescence dissecting microscope. And GFP signal in the F1 generation males were carefully observed under a confocal microscope. If F1 generation worms all have altered GFP signal (mutant phenotypes), the mutant is dominant. If F1 generation hermaphrodites have wildtype GFP signal, the mutant has defective transgenic arrays. Depending on where the defective arrays are located, the F1 generation males would have wildtype GFP signal if the arrays are located on the autosome, while the GFP signal is altered (mutant phenotype) in F1 generation males if the arrays are located on the X-chromosome.

3.2.5. Preliminary Genetic analysis of EMS mutants

After two rounds of genetic screens, I isolated a X-linked recessive mutation (dot14) that suppresses mks-1 expression in subset of labial neurons. In order to preliminarily understand whether the mutations affect transcription factors of mks-1 or affect neuron cell differentiation, I labeled labial neurons in the mutant strain by genetic cross (Figure 3.7A). I used the strain BC12597 (dpy-2(e907) I; sls12174 [rCes C47A10.6::GFP+pCeh361]). The strain has stable srab-12 promoter driven GFP expression in labial neurons, phasmids, and scattered nonchemosensory neurons along worm body (Hunt-Newbury et al. 2007). SRAB-12 is a transmembrane serpentine receptor that belongs to class AB family (Chen et al. 2005). srab-12 expresses in inner labial neurons although it is not a ciliary gene. Thus srab-12 and mks-1 are regulated by different pathways. Transgenic worms that stably expresses psrab-12::gfp (BC12597) is obtained from Baillie lab. I used heat shock to generate male worms carrying psrab-12::gfp transgene. The male worms carrying srab-12 promoter driven GFP reporter was crossed with mutants that carried mks-1 promoter driven GFP reporter and mutant alleles. The F1 generation males were carefully observed under a confocal microscope.

In order to know whether the mutations affect other ciliary gene expression, I introduced tub-1 reporter transgene into mutants. Gene tub-1 encodes TUBBY homolog that is important for fat storage and life span (Mukhopadhyay et al. 2005). Gene tub-1 expressed in ciliated neurons including amphids and phasmids in C. elegans (Efimenko et al. 2005). In Efimenko et al. prediction, tub-1 and mks-1 belong to the same group of
ciliated genes that function specifically in subset of ciliated neurons. It is highly possible that gene in this group is regulated by some tissue specific transcription factors. I would like to know whether the mutation affect regulation on this group of genes.

In order to track tub-1 expression, I generated a tub-1 promoter driven tdTomato transgenic strain. Jun Wang kindly perfumed the PCR fusion of ptub-1::tdTomato constructs. I microinjected the constructs of PCR-fused tub-1 promoter to tdTomato sequence and dpy-5 rescue plasmids pcEh361 into dpy-5 (e907) mutant worms. I generated the strain of stable ptub-1::tdTomato expression using X-ray introduced integration (See Chapter 2 methods). The transgenic strain of integrated tub-1 promoter driven tdTomato was named JNC247 (dottls247 [ptub-1::gfp+dpy-5(+)]). Then I used heat shock method to generate male transgenic worms of tub-1 promoter driven tdTomato expression (See Chapter 2 methods). I crossed the ptub-1::tdTomato transgenic worms with the dot14 mutants, and screened for F1 generation males (Figure 3.7B). F1 males were carefully observed under confocal microscope.

In order to know whether the mutants have Dyf phenotype (Dye-filling defect), I applied dye-filling assay to mutant worms. The Dil (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) could enter worm phasmids and 6 pairs of amphids neurons through the exposed ciliated endings (Herman 1984). The Dil is observed as red under red fluorescence. Abnormal Dye-filling (Dyf) phenotypes, i.e. failure to take dye in these neurons, could be indication of abnormal cilia, although some ciliary mutants still possessed non-Dyf phenotype (Perens and Shaham 2005; Schafer et al. 2006). To perfume dye-filling assay, I washed one plate of worms of L4-to-young adult stage with 1ml M9. The M9 with worms were added to 1.5 ml eppendorf tubes. The tubes were centrifuged at 1200 rpm for 1 min. The supernatant was removed. The worm pellets were kept in the tube. To remove bacteria, the worm pellets were washed with 1 ml M9. Then the tubes were centrifuged at 1200 rpm for 1 min again, and the supernatant was removed again. The wash was repeated twice. Clean worm pellets were collected in tubes. 1 ml M9 and 5 μl Dil (2 mg/ml) were mixed with worm pellets in tube. The tube was wrapped with tinfoil. Worms in tube were incubated at room temperature on rocker for three hours. Then the tubes were centrifuged at 1200 rpm for 1 min, and the supernatant was removed. To remove any left Dil, the worm pellets were washed with 1ml M9. Then the tubes were centrifuged at 1200 rpm for 1 min. Most
supernatant were removed, while only 100-200 μl M9 were left in tube, mixed with worm pellets. Worms in M9 were transferred to plates seeded with OP50. The plates were covered with tinfoil. The worms were left on the plates for an hour to recover. Then I checked all worms under a fluorescence dissecting microscope to observe whether the Dil went into worms phadmids and amphids. I randomly picked up 10 worms, and placed them on 2% agarose pad on glass slide with 10 μl M9. To fixed worms to its position, I added final concentration 10 mM of NaN₃ to the agarose pad (Shaham 2006). The worms were observed under a confocal microscope to check what neurons took Dil. The wildtype reporter strain JNC285 (dotIs248 [pmks-1::gfp;dpy-5(+)] + dotIs296 [ppgp-12::gfp;dpy-5(+)]) was used as a control.
Figure 3.1. Genetic crossing process to generate transgenic worms with double GFP reporters of pmks-1::gfp and ppfp-12::gfp

Note. The flow chart shows the process to generate JNC285 strain by genetic crossing. Genotypes of F3 generation are shown in the dihybrid chart. In F3 generation, worms with expression in labial neurons, amphids, phasmsids (where pmks-1 express) and excretory cells (where ppfp-12 express), were picked up, and placed in separate plates, one worm per plate. F4 generations were observed. Plates with all worms having expression in labial neurons, amphids, phasmsids and excretory cells were selected as lines with homozygous ppfp-12::gfp and pmks-1::gfp reporters' alleles.
Figure 3.2. GFP expression pattern in transgenic worms with double GFP reporters of pmks-1::gfp and ppgp-12::gfp (strain JNC285)

Note. Images show confocal observation of transgenic worms of JNC285 strain (dotIs248[pmks-1::gfp;dpy-5(+)]; dotIs296[ppgp-12::gfp;dpy-5(+)]). A, B, C,D: mks-1 promoter driven GFP expresses in labial neurons (red arrowheads) and amphids (grey arrowheads). ppgp-12 promoter driven GFP expresses in excretory cell (white triangles). Scale bar: 25 μm. E,F: mks-1 promoter driven GFP expresses in phasmids (white arrowhead). Scale bar: 25 μm. G, H: mks-1 promoter driven GFP expresses in labial neurons (red arrowheads) and amphids (grey arrowheads). ppgp-12 promoter driven GFP expresses in excretory cell (white triangles). Scale bar: 100 μm. All images were taken at exposure 200 ms. To best display the expression patterns, auto-contrast enhancement were applied to all images.
Figure 3.3. Protocol for first round of EMS mutagenesis and genetic screening.

Note. The protocol is modified based on a protocol in Jorgensen and Mango’s review (Jorgensen and Mango 2002). Diagram was drawn by Jun Wang and modified by Ting Zhang.
Figure 3.4. Protocol for second round of EMS mutagenesis and genetic screening.

Note. The protocol is modified based on first round of genetic screening. Three major changes are highlighted as red in the protocol. Diagram was drawn by Jun Wang and modified by Ting Zhang.
Figure 3.5. Cross mutants to N2 males to characterize mutant allele’s traits

Note. I crossed mutant hermaphrodites to N2 males. I observed GFP expression in outcrossed F1 generation. The P0 worms for cross are transferred to new plates after first 24 hours. Progeny on new plates are observed. Because self-crossed embryos are laid first, most self-crossed progeny are not observed in this way. Outcrossed F1 generation's genotype is heterozygous in mutant allele and transgene allele. All males are from outcross. If all male F1 progeny have strong expression, the mutation is autosomal recessive. If all male F1 progeny have weak expression, then F1 hermaphrodites are observed. Most self-crossed progeny are excluded from plates after transferring, and also they have weak GFP. If most F1 hermaphrodites have strong GFP, these are outcrossed F1 hermaphrodites, and the mutation is X-linked recessive. If all F1 hermaphrodites have weak GFP, I crossed mutants to wildtype males that carry pmks-1::gfp reporter to determine whether the mutants have dominant mutations or defective transgenic arrays (see Figure 3.6).
Figure 3.6. Cross mutants to wildtype *pmks-1::gfp* transgenic worm (strain JNC248) to determine whether the mutants have dominant mutation or defective constructs.

Note. I crossed mutant hermaphrodites to *pmks-1::gfp* wildtype transgenic males. I observed GFP expression in outcrossed F1 generation. The worms for cross are transferred to new plates after first 24 hours. Progeny on new plates are observed. Because self-crossed embryos are laid first, most self-crossed progeny are not observed in this way. Outcrossed F1 generation’s genotype is heterozygous in mutant allele but homozygous in transgene allele. One copy of transgene is intact, obtained from starting strain. One copy of transgene is from mutants. Most self-crossed progeny are excluded from plates after transferring, and also they have weak GFP. If all F1 hermaphrodites have weak GFP, mutants are dominant. If most F1 hermaphrodites have strong GFP, these are outcrossed F1 hermaphrodites. The mutants have defective transgenic arrays (integrated array of transgenic reporter genes) in this case, because one intact copy of transgenic arrays complement the defective transgenic arrays in mutants. The defective transgene array in mutants could be caused by two possibilities: the transgene size shrinks due to non-homologous recombination after generations, or chromatin enzymes silenced the transgene expression by histone modification. Depending on the male F1 progeny’s phenotype, we could know whether the transgene is located on the X chromosome or not. If male F1 progeny also have strong GFP, transgene is located on the autosome. If male F1 progeny have weak GFP, transgene is located on the ChrX.
Figure 3.7. Protocol for preliminary analysis of dot14 mutant

Note. In preliminary analysis of JNC286 mutant, the mutant hermaphrodites were crossed to males carrying srab-12 promoter driven GFP reporter (A) or males carrying tub-1 promoter driven tdTomato reporter (B). Because dot14 is located on the X chromosome, the F1 generation males had mutant phenotype of mks-1 expression. To determine if the mutations affect labial neuron differentiation, and if the mutations affect ciliary gene tub-1 expression, I observed phenotypes of labial neuron expression and ptub-1::tdTomato expression in F1 generation males.
3.3. Results and Discussions

3.3.1. Two characterized mutants (JNC260, JNC262) from first round of genetic screen have defective transgene array

I used the strain JNC248 with stably pmks-1::gfp expression as a reporter strain for screens. Transgenic worms in JNC248 strain (dotls248 [pmks-1::gfp;dpy-5(+)]) was treated with 50 mM EMS for mutagenesis. I manually screened under a fluorescence dissecting microscope for F2 or F3 generation worms with altered GFP expression in head and tail regions. I aimed to pick up mutants of transcription factors that regulate mks-1 or ciliary gene specifically. I estimated the screening genome size based on the number of EMS treated P0 worms. Based on the fact that each P0 worms have estimated 150 progeny and that C. elegans genome is diploid, I used the calculation that genome size = the number of P0 worms x150 x2 for estimation. The F1 genome size is calculated because in non-clonal F2 screens, F2 genome is inherited from F1 genome, which has the mutations. The first round of genetic screen covered the genome 40,200 times.

After screening, I immediately froze all viable mutants at -80 °C for long-term storage. I am not able to maintain and freeze mutants that have lethal progeny or larva-arrest. Meanwhile, homozygous viable mutants were maintained for three generations. Mutants with low-penetrance and heterozygous mutants were not further studied because it is hard to characterize these mutants as recessive or dominant. With so many mutants on hand, I focus on homozygous viable mutants that are easy to characterize. 12 homozygous viable mutants were selected and carefully observed for GFP expression by confocal microscopy (Table 3.1). The mutants have reduced GFP expression level in either head, tail neurons, or both (Figure 3.8). Although pmks-1::gfp expression is reduced in mutants, the pmks-1::gfp transgene expresses in same neurons in both wildtype and mutant worms, including inner labial neurons, amphids and phasmids (Figure 3.9). Then I chose one mutant from the same P0 plates, because mutants from the same P0 plates are likely to be segregates from the same F1 mutant progeny. I chose 8 mutants. The eight mutants were maintained for more than ten generations (i.e. three months). After three months, GFP expression level recovered to wildtype for some mutants (Table 3.1). It is yet to be known what caused the GFP signal
to recover to wildtype in these mutants. One possibility is that the transgenic arrays’ expression in these mutants was suppressed by epigenetics modification, but the modification disappeared after a few generations. I did not study mutants that recovered wildtype GFP expression (Figure 3.10). Mutant lines 19-2-1 and 3-3-1 have stable mutant phenotypes. These two mutant lines were from different P0 worms. Mutant line 3-3-1 is named strain JNC262 (genotype: dot7; dotls248 [pmks-1::gfp+dpy-5(+)]). Mutant line 19-2-1 is named strain JNC260 (genotype: dot6; dotls248 [pmks-1::gfp+dpy-5(+)])

Table 3.1. Details of homozygous viable mutants selected from first round of genetic screening

<table>
<thead>
<tr>
<th>Category</th>
<th>P0 plate numbers</th>
<th>Amount of P0 on plate</th>
<th>Mutant serial number</th>
<th>Mutant phenotype under dissecting microscope</th>
<th>Phenotype after 10 generations</th>
<th>Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details</td>
<td>3</td>
<td>6</td>
<td>3-3-1 (JNC262)</td>
<td>No signal</td>
<td>Weak almost no signal</td>
<td>Defective transgenic arrays</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>8</td>
<td>19-2-1 (JNC260)</td>
<td>No signal</td>
<td>Weak almost no signal</td>
<td>Defective transgenic arrays</td>
</tr>
<tr>
<td></td>
<td>19-3-1</td>
<td>Weak</td>
<td></td>
<td></td>
<td>Relative weak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>7</td>
<td>32-1-1</td>
<td>Weak</td>
<td>Relative weak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5</td>
<td>23-2-1</td>
<td>Weak</td>
<td>Relative weak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>7</td>
<td>18-1-2</td>
<td>Weak only in phasmids</td>
<td>Weak only in phasmids; lost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>9</td>
<td>27-3-5</td>
<td>Weak</td>
<td>Relative strong</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27-3-2</td>
<td>Weak</td>
<td></td>
<td></td>
<td>Relative strong</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5</td>
<td>16-3-2</td>
<td>Weak</td>
<td>Relative strong</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7</td>
<td>4-2-2</td>
<td>Weak</td>
<td>Relative strong</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-2-3</td>
<td>Weak only in phasmids</td>
<td></td>
<td></td>
<td>Relative strong</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>4</td>
<td>22-3-2</td>
<td>Weak</td>
<td>Relative strong</td>
<td></td>
</tr>
</tbody>
</table>

Note. The 3-3-1 and 19-2-1 mutants were used for following study. 3-3-1 was named JNC262 strain. 19-2-1 is named JNC260 strain.

To characterize whether the mutations are recessive, dominant or the mutants have defective transgenic arrays, JNC260 (dot6; dotls248 [pmks-1::gfp+dpy-5(+)]) and JNC262 (dot7; dotls248 [pmks-1::gfp+dpy-5(+)]) mutant hermaphrodites were crossed to
N2 males. I observed outcrossed F1 generations under a fluorescence dissecting microscope. All F1 generation worms have reduced GFP expression phenotype. The F1 generation males were carefully observed under confocal microscope. GFP signal in F1 male progeny is reduced (Figure 3.11 and Figure 3.12). Thus, either the mutations are dominant or the transgene expression is defective. The dot6 mutant (strain JNC260) and dot7 mutant (strain JNC262) hermaphrodites were then crossed to wildtype male pmks-1::gfp transgenic worms. By cross with wildtype males that carry pmks-1::gfp transgene, intact copies of pmks-1::gfp transgene was introduced to F1 progeny. I observed that all F1 generation males and outcrossed F1 generation hermaphrodites had wildtype GFP expression. Confocal observation of F1 generation males was also conducted. GFP signal in F1 male progeny is as strong as wildtype male transgenic worms (Figure 3.11 and Figure 3.12). Thus, I concluded that dot6 and dot7 mutants have defective transgenic arrays. It might be caused by non-homologous recombination of transgenic arrays during meiosis, which result in loss of transgene copy numbers (J. Wang, personal communication). It might also be caused by chromatin enzyme-induced histone modification, which reduces transgene expression at the epigenetics level (Dr. N. Hawkins, personal communication).

3.3.2. **One characterized mutant (JNC286) from second round of genetic screen carries X-linked recessive mutations**

In my first round of genetic screen, I isolated two mutants but they had defective transgenic arrays. Doitsidou et al. also pick up mutants that carry mutations in transgenic arrays, which silence the expression of transgenic arrays (Doitsidou et al. 2008). However, I used transgenic worms with multiple copies of transgenic arrays (approximately 20 copies) in this study. Considering the EMS mutation rate and the length of C. elegans genome, it is very hard to mutate most transgene copies to generate a reduced expression phenotype. In the two mutants from first round of screen in this study, the transgene array is likely to be silenced by modification in epigenetics level. Thus, I introduced a second reporter, pgp-12 promoter fused to GFP coding sequences, in second round of screen. pgp-12 encodes a transmembrane protein that belongs to P-glycoprotein subclass of ATP-binding cassette (ABC) transporter family (Zhao et al. 2005). The gene pgp-12 expresses in the excretory cell (Zhao et al. 2005;
Zhao et al. 2007). I introduced ppgp-12::gfp reporter to genetic screens based on three reasons. First, pgp-12 is not regulated by any ciliary gene-specific transcription factors. Mutants with unchanged ppgp-12::gfp expression but altered pmks-1::gfp expression are highly likely to carry mutations in ciliary-gene specific transcription factors. Second, pgp-12 and mks-1 are under a common regulation network that regulates all gene expressions and cell development. Using ppgp-12::gfp as a second reporter, I would avoid picking up mutants that affect common regulation pathways, which is not the interest of this study. Third, epigenetics modification on transgenes that silences pmks-1::gfp expression could have effect on ppgp-12::gfp at the same time. I could avoid picking up mutants with epigenetics modifications of the transgenes.

I generated transgenic worms that carry independent insertions of pmks-1::gfp and ppgp-12::gfp reporters (strain JNC285). In the second round of screening, transgenic worms with pmks-1::gfp and ppgp-12::gfp reporters were treated with 50 mM EMS for mutagenesis. The pgp-12 promoter driven GFP reporter was used as a control for screening. I expected to exclude mutants that affect regulators not working in neurons by introducing a second reporter ppgp-12::gfp in screens. I screened for the worms that had unchanged expression of ppgp-12::gfp and that had altered expression of pmks-1::gfp. I used same estimation to calculate screening genome size. The genome is covered for 94,200 times in second round of screen.

In order to eliminate heterozygote or low penetrance mutants, the mutants were maintained for three generations. Every time I maintained the worms, I picked up the mutant worms with altered GFP expression under a fluorescence dissecting microscope. After three generations, worms with stably altered GFP expression were selected. Worms from these three selected mutant lines were carefully observed under a confocal microscope (Table 3.2). Compared to wildtype, mutant worms in line 36-3-1, 11-3-1 have reduced GFP signal in inner labial neurons, amphids and phasmdis, but GFP signal in excretory cell is the same as widltype (Figure 3.13). The pmks-1::gfp expresses in same neurons in mutant line 36-3-1 and 11-3-1 and wildtype (Figure 3.14). ppgp-12::gfp expresses in the excretory cell (Figure 3.14). Mutants from line 39-1-7 have identical pmks-1::gfp expression in amphids and phasmids (Figure 3.13). Mutant line 39-1-7 have wildtype ppgp-12::gfp expresion in excretory cell (Figure 3.13). However, mutants from 39-1-7 have suppressed pmks-1::gfp expression in subset of inner labial neurons (Figure
These mutants were crossed to N2 and wildtype pmks-1::gfp males respectively to determine whether they carry dominant mutations, recessive mutations or have defective transgenic arrays (Table 3.2). Mutants from line 36-3-1 and 11-3-1 have defective transgenic arrays. Mutants from line 39-1-7 have a recessive mutation on the X-chromosome. Mutant line 39-1-7 is named as JNC286 (dot14; dotls248 [pmks-1::gfp;dpy-5(+)]; dotls296 [ppgp-12::gfp;dpy-5(+)]). However, I did not avoid picking up mutants that have epigenetics modifications of the transgene with introducing ppgp-12::gfp reporter to screens. One possible reason is that two transgenes are of different loci. Thus, it is worth generating transgenic worms with two reporters in one array by co-injection for future genetic screens.

Table 3.2. Details of homozygous viable mutants selected from second round of genetic screening

<table>
<thead>
<tr>
<th>Category</th>
<th>P0 plate numbers</th>
<th>Amount of P0 on plate</th>
<th>Mutant serial number</th>
<th>Mutant phenotype under dissecting microscope</th>
<th>Penetrance (observation of three generations)</th>
<th>Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details</td>
<td>39</td>
<td>9</td>
<td>39-1-7 (JNC286)</td>
<td>mks-1 expression pattern changes</td>
<td>100%</td>
<td>X-linked recessive mutations</td>
</tr>
<tr>
<td>36</td>
<td>9</td>
<td>36-3-1</td>
<td>No mks-1 expression</td>
<td>100%</td>
<td>Defective transgenic arrays</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>11-3-1</td>
<td>Weak mks-1 expression</td>
<td>100%</td>
<td>Defective transgenic arrays</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>34-1-3</td>
<td>mks-1 expression pattern changes</td>
<td>100%</td>
<td>Lost: all dead after three generation</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>10</td>
<td>41-2-1</td>
<td>Weak mks-1 expression Low</td>
<td>Not studied</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>10</td>
<td>43-1-2</td>
<td>Weak mks-1 expression Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>7</td>
<td>23-1-1</td>
<td>Weak mks-1 expression Low</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. The 39-1-7 was used for following study. The 39-1-7 was named JNC286.

After characterization, I found one homozygous recessive mutant, named dot14 (strain JNC286). In cross of dot14 mutant to N2, I observed that F1 outcrossed hermaphrodite progeny has wildtype GFP signal and F1 outcrossed male progeny has abolished GFP signal in subset of inner labial neurons. The F1 generation worms were
carefully observed under a confocal microscope. Outcrosses F1 progeny have different inner labial neurons expression in two genders. F1 male progeny have abolished GFP signal in subset of inner labial neurons, which is identical to dot14 mutant GFP expression (Figure 3.15). F1 outcrossed hermaphrodite progeny have GFP signal in three pairs of inner labial neurons, which is identical to wildtype expression (Figure 3.15). Thus, dot14 is an X-linked recessive mutation.

In order to confirm that dot14 an X-linked recessive mutation, I crossed dot14 mutant (strain JNC286) to wildtype pmks-1::gfp;ppgp-12::gfp transgenic worms (strain JNC285). I also observed that F1 outcrossed hermaphrodite progeny has wildtype GFP signal and F1 outcrossed male progeny has abolished GFP signal in subset of inner labial neurons. I count gene segregation ratio in F2 progeny. I scored phenotypes of the F2 progeny. I placed one L4-stage F1 generation worm in one plate. I set up two such plates. Every morning, I transferred the F1 generation worm to a new plate. I kept transferring F1 generation worms to new plates for four days, until the F1 generation worms were too old to lay more embryos. On the fourth day, I started scoring phenotypes of L4-stage or adult-stage F2 generation worms. After continuously scoring the F2 generation worms for four days, I added up number of same phenotypes. The F2 segregates either had abolished GFP signal in subset of inner labial neurons (mutant) or wildtype GFP signal in three pairs of inner labial neurons (wildtype), in a ratio of 1:3 (Table 3.3). In theory, from a heterozygous F1 with recessive mutant allele, 1/4 of the F2 segregates will be mutant, and 3/4 will be wildtype. Thus, I conclude that dot14 mutant has a X-linked recessive mutation.
Table 3.3. Ratio of F2 progeny phenotypes in cross dot14 mutant to wildtype pmks-1::gfp transgenic worms

<table>
<thead>
<tr>
<th>Plate number</th>
<th>Category</th>
<th>Phenotype</th>
<th>Genotypes</th>
<th>Phenotype</th>
<th>Genotypes</th>
<th>Ratio (Regular GFP: Mutant GFP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of F2 segregates from one F1 worm</td>
<td>359</td>
<td>270</td>
<td>89</td>
<td>3.03:1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>327</td>
<td>258</td>
<td>69</td>
<td>3.74:1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Each heterozygous F1 generation hermaphrodite of cross dot14 mutant to wildtype pmks-1::gfp transgenic worms is self crossed on one plate. Phenotypes of F2 generation progeny on each plate are counted.

I carefully compared GFP expression pattern in dot14 mutant and wildtype transgenic worms. Compared to wildtype, the dot14 mutant lost expression in five inner labial neurons (Figure 3.16). In dot14 mutant, the pmks-1::gfp expression is lost in ILL and ILV in both left and right asymmetrical side (Figure 3.17), yet it is unidentified whether these neurons are IL1 or IL2. In dot14 mutant, the pmks-1::gfp expression is also lost in one of the two ILD, although it is not known whether it is lost in left or right side, and whether the pmks-1::gfp expressed neuron is IL1 or IL2 (Figure 3.17).

3.3.3. Preliminary genetic analysis of dot14 mutant (JNC286)

In order to know whether the dot14 mutation in JNC286 strain affect labial neurons differentiation, I introduced psrab-12::gfp reporter to dot14 mutant. I used strain BC12597, a transgenic strain that has GFP expression in labial neurons driven by srab-12 promoter. In head region, psrab-12::gfp expresses in a set of neurons including inner labial neurons (Figure 3.18) (Hunt-Newbury et al. 2007). srab-12 encodes a transmembrane serpentine receptor. Because srab-12 is not a ciliary gene, it is not regulated by ciliary gene-specific transcription factors. If dot14 affect neuron
development, *psrab-12::gfp* expression would be absent where inner labial neurons originally develop. If so, inner labial neuron is not differentiated properly in *dot14* mutant. The F1 male progeny from cross of *dot14* mutant to *psrab-12::gfp* wildtype transgenic worms has suppressed *pmks-1::gfp* expression in subset of inner labial neurons in accordance that *dot14* mutation is X-linked recessive. In *dot14* mutant, *pmks-1::gfp* expression is suppressed in four pairs of labial neurons (Figure 3.19). I observed F1 male progeny under a confocal microscope. I clearly observed GFP expression in three pairs of inner labial neurons in F1 male progeny (Figure 3.19). Thus, the labial neuron differentiation was not affected by the X-linked recessive mutation *dot14*. I conclude that *dot14* affect regulators of *mks-1* expression, but does not affect regulators of neuron development.

I would like to know whether the *dot14* mutation would affect other ciliary gene expression. The gene *tub-1* is a ciliary gene that express in subset of ciliated neurons. The gene *tub-1* encodes a TUBBY protein that regulates life span and fat storage pathways in *C. elegans* (Mukhopadhyay *et al.* 2005; Mukhopadhyay *et al.* 2007a). It is highly possible that *tub-1* and *mks-1* is regulated by a same group of transcription factors so that both genes express in subset of ciliated neurons, despite the fact that the only known ciliary gene transcription factor of *mks-1* and *tub-1* in *C. elegans*, DAF-19C isoform, expresses in all ciliated neurons (Efimenko *et al.* 2005). I introduced *ptub-1::tdTomato* transgene to *dot14* mutant to test the hypothesis.

I used microinjection and X-ray integration to generate a transgenic strain of stable expressed *tub-1* promoter driven tdTomato (strain name JNC247). The *ptub-1::tdTomato* expresses in most ciliated neurons including amphids and phasmsids (Figure 3.20). I chose tdTomato to track in-vivo *tub-1* expression so that I could distinguish it from *pmks-1::gfp* expression. The *ptub-1::tdTomato* transgene expression in strain JNC247 is identical with previous report (Efimenko *et al.* 2005). I used heat shock to introduce male strains carrying *tub-1* promoter driven tdTomato expression. I crossed the male *ptub-1::tdTomato* transgenic worms with *dot14* mutant hermaphrodites. The F1 hermaphrodite progeny is heterozygous in tdTomato, GFP and mutant allele loci. However, because the recessive *dot14* mutation is located on the X-Chromosome, the F1 male progeny is homozygous in *dot14* mutation loci. I observed F1 male progeny to know whether the X-linked recessive *dot14* mutation would affect *ptub-1::tdTomato*
expression. Confocal observation shows that in F1 male progeny, *ptub-1::tdTomato* expression is the same as wildtype transgene expression, while *pmks-1::gfp* expression is suppressed in inner labial neurons as expected (Figure 3.21). I conclude that *dot14* mutation does no affect *tub-1* expression.

Dyf phenotype (defect to take Dil or DiO) is an indication of *C. elegans* mutants that have malformation in cilia (Perens and Shaham 2005; Schafer *et al.* 2006). If a mutant have Dyf phenotype, I could conclude that cilia formation is abnormal in this mutant. However, some mutants with abnormal cilia, for example, ciliary gene *ifta-2* mutant still possesses a non-Dyf phenotype, and take Dil or DiO normally as wildtype worms in a dye-filling assay (Schafer *et al.* 2006). If the mutant has non-Dyf phenotype, I cannot make any conclusion on cilia formation. In this case, sub-cellular observation is required to understand cilia formation in the mutant (Williams *et al.* 2011).

I chose Dil for Dye-filling assay because mutants and wildtype carry GFP transgene, which is observable under blue fluorescence, while Dil is observable under red fluorescence. It reveals that 98% (60 out of 61 worms) of *dot14* mutant worms (JNC286 strain) take Dil in 6 pairs of amphids neurons and phasmids neurons. As control, 100% (90 out of 90 worms) wildtype transgenic worms (JNC285 strain) strain take Dil in 6 pairs of amphids neurons and phasmids neurons (Figure 3.22). Thus, *dot14* mutant has non-Dyf phenotype. The Dil went into 6 pairs of amphids neurons and phasmids neurons in both wildtype and *dot14* mutant (Figure 3.22). Thus, it is yet to be known that cilia formation in *dot14* mutant is abnormal or not.
Figure 3.8. GFP signal levels in head and tail regions of 12 mutants

Note. Comparison of GFP signal strength between strain JNC248 with mks-1 promoter driven GFP expression in wildtype background and mutant strains with mks-1 promoter driven GFP expression in mutant background. First pane: wild-type pmks-1::gfp expression level in reporter strain. pmks-1::gfp express in labial neurons (red arrowheads), amphids (grey arrowheads) and phasmids (white arrowheads). Rest panels: pmks-1::gfp expression levels in mutant strains. The expression is significantly reduced in labial neurons, amphids and/or phasmids. Labial neurons were indicated by red arrowheads, amphids by grey arrowheads and phasmids by white arrowheads. The mutant worms in all images were observed immediately after isolation. All GFP exposure were taken at 345 ms. Contrast enhancement of all head images was set at black point 1750 and white point 44000. Contrast enhancement of tail images was set at black point 1750 and white point 10000. All GFP images were confocal stacks of whole worm body from lateral view. Scale bar: 25 μm.
Figure 3.9. GFP signal patterns in head and tail regions of 12 mutants

Note. Comparison of GFP signal patterns between starting strain JNC248 with mks-1 promoter driven GFP expression in wildtype background and mutant strains with mks-1 promoter driven GFP expression in mutant background. First panel: wild-type pmks-1::gfp expression patterns in reporter strain. pmks-1::gfp expresses in labial neurons (red arrowheads), amphids (grey arrowheads) and phasmids (white arrowheads). Rest panels: pmks-1::gfp expression patterns in mutant strains. pmks-1::gfp expresses in labial neurons (red arrowheads), amphids (grey arrowheads) and phasmids (white arrowheads), which is similar to wildtype. All GFP exposure were taken at 345 ms. To display the GFP signal in all images, auto contrast enhancement were applied so that the signal would be visible. The mutant worms in all images were observed immediately after isolation. All GFP images were confocal stacks of whole worm body from lateral view. Scale bar: 25 μm.
Note. After maintaining the mutants for 10 generations, I observed GFP signal strength of 7 mutants using confocal microscope. A-D: wild-type pmks-1::gfp expression level in reporter strain. pmks-1::gfp expresses in labial neurons (red arrowheads), amphids (grey arrowheads) and phasmids (white arrowheads). E-H: pmks-1::gfp expression levels were significantly reduced in mutant strain 3-3-1 and 19-2-1. I-S: pmks-1::gfp expression levels in mutants that recovered to wildtype GFP expression levels after 10 generations. pmks-1::gfp expresses in labial neurons (red arrowheads), amphids (grey arrowheads) and phasmids (white arrowheads). These mutants that recovered to wildtype were discarded. All GFP exposure were taken at 354 ms. Contrast enhancement of all head images was set at black point 1750 and white point 44000. Contrast enhancement of tail images was set at black point 1750 and white point 10000. All GFP images were confocal stacks of whole worm body from lateral view. Scale bar: 25 μm
Figure 3.11. *dot6* mutant (strain JNC260) is characterized to carry defective transgene array

Note. Head regions were showed here because it is able to identify wildtype reporter expression and mutant expression by only showing head regions. A,B: wildtype *pmks-1::gfp* expression is the male worms that carries heterozygous reporter gene. The worms were male progeny from crossing *pmks-1::gfp* homozygous transgenic worms to N2. *pmks-1::gfp* expresses in labial neurons (red arrowheads), amphids (grey arrowheads). C,D: *pmks-1::gfp* expression in *dot6* mutant. Expression is significantly reduced in mutant worms. E, F: In F1 male progeny of cross mutant to N2, a copy of wildtype allele was introduced. F1 male progeny had significantly reduced reporter gene expressions. G, H: In F1 male progeny of cross mutant to wildtype reporter strain, an allele of intact transgene *pmks-1::gfp* copies was introduced. F1 male progeny had wildtype reporter gene expression in labial neurons (red arrowheads), amphids (grey arrowheads). Thus, mutant strain JNC260 carries defective *pmks-1::gfp* transgenic arrays. GFP* stands for the transgene after EMS treatment. All GFP images were taken at exposure of 354 ms. Contrast enhancement was set at black point 2000 and white point 25000. All GFP images were confocal stacks of whole worm body from lateral view. Scale bar: 25 μm
Figure 3.12. *dot7* mutant (strain JNC262) is characterized to carry defective transgene array

Note. Head regions were showed here because it is able to identify wildtype reporter expression and mutant expression by only showing head regions. A,B: wildtype *pmks-1::gfp* expression is the male worms that carries heterozygous reporter gene. The worms were male progeny from crossing *pmks-1::gfp* homozygous transgenic worms to N2. *pmks-1::gfp* expresses in labial neurons (red arrowheads), amphids (grey arrowheads). C,D: *pmks-1::gfp* expression in *dot7* mutant. Expression is significantly reduced in mutant worms. E, F: In F1 male progeny of cross mutant to N2, a copy of wildtype allele was introduced. F1 male progeny had significantly reduced reporter gene expressions. G, H: In F1 male progeny of cross mutant to wildtype reporter worms, an allele of intact transgene *pmks-1::gfp* copies was introduced. F1 male progeny had wildtype reporter gene expression in labial neurons (red arrowheads), amphids (grey arrowheads). Thus, mutant strain JNC262 carries defective *pmks-1::gfp* transgenic arrays. GFP* stands for the transgene after EMS treatment. All GFP images were taken at exposure of 354 ms. Contrast enhancement was set at black point 1500 and white point 30000. All GFP images were confocal stacks of whole worm body from lateral view. Scale bar: 25 μm
Figure 3.13. GFP expression levels in 3 viable mutants with 100% penetrance from second round of genetic screening

Note. Comparison of pmks-1::gfp expression levels in wildtype reporter strain JNC285 and three mutants A, B: pmks-1::gfp expression level in wildtype reporter strain JNC285. pmks-1::gfp expresses in abial neurons (red arrowhead), amphids (grey arrowhead) and phasmids (white arrowhead). ppgp-12::gfp expresses in excretory cell (white triangles). C, D: pmks-1::gfp expression is suppressed in subset of labial neurons (red arrowhead) in mutant 39-1-7. pmks-1::gfp expresses in amphids (grey arrowhead) and phasmids (white arrowhead), similar to wildtype expression level. ppgp-12::gfp expresses in excretory cell (white triangles). E-H: pmks-1::gfp expression level is significantly reduced in these two mutants. Red arrowheads indicate labial neurons in image G. ppgp-12::gfp expresses in excretory cell (white triangles). All GFP exposures were taken at 200 ms. Contrast enhancement was set at head: black point 1700, white point 30000, tail: black point 1700, white point 10000. All GFP images were confocal stacks of whole worm body from lateral view. Scale bar: 25 μm
Figure 3.14. GFP expression patterns in 3 viable mutants with 100% penetrance from second round of genetic screening

Note. Comparison of pmks-1::gfp expression patterns in wildtype reporter strain JNC285 and three mutants. A, B: pmks-1::gfp expression pattern in wildtype reporter strain JNC285. pmks-1::gfp expresses in labial neurons (red arrowhead), amphids (grey arrowhead) and phasmids (white arrowhead). pp gp-12::gfp expresses in excretory cell (white triangles). C, D: pmks-1::gfp expression pattern mutant 39-1-7. Expression is suppressed in subset of labial neurons (red arrowhead). pmks-1::gfp expresses in amphids (grey arrowhead) and phasmids (white arrowhead). pp gp-12::gfp expresses in excretory cell (white triangles). E-H: pmks-1::gfp expression pattern in two mutants. pmks-1::gfp expresses in inner labial neurons (red arrowhead), amphids (grey arrowhead) and phasmids (white arrowhead), similar to wildtype expression pattern. pp gp-12::gfp expresses in excretory cell (white triangles). All GFP exposures were taken at 200 ms. In order to display GFP signals, Autocontrast enhancement was applied to all images. All GFP images were confocal stacks of whole worm body from lateral view. Scale bar: 25 μm
Figure 3.15. *dot14* mutant (strain JNC286) is characterized as X-linked recessive mutant.

Note. Head regions were showed here because it is able to identify wildtype reporter expression and mutant expression by only showing head regions. I crossed *dot14* mutant to N2, and observe F1 progeny. A, B, G, H: In wildtype strain, GFP signal is detected in three pairs of inner labial neurons (red arrowhead). C, D: In mutant strain, GFP signal is only detected in subset of inner labial neurons (red arrowhead). E, F: In F1 hermaphrodite progeny, GFP signal is detected in three pairs of inner labial neurons (red arrowhead), similar to wildtype. I, J: In F1 male progeny, GFP signal is detected in subset of inner labial neurons (red arrowhead), similar to *dot14* mutant. Thus, the mutant strain JNC286 carries X-linked recessive mutation that suppresses *mks-1* expression in subset of inner labial neurons. All GFP exposures were taken at 131 ms. Contrast enhancement for GFP is: black point 1500, white point 40000. All GFP images were confocal stacks of whole worm body from lateral view. Scale bar: 25 μm
Figure 3.16 Expression of *pmks-1::gfp* in wildtype transgenic worm (strain JNC285) and *dot14* mutant (strain JNC286)

Note Comparison of *pmks-1::gfp* expression patterns widltype and mutant. A, B: Schematics of labial neurons and phasmids. Images obtained from wormatlas (Altun and Hall 2012). C-E: In wildtype reporter strain JNC285 head region, *pmks-1::gfp* expresses in inner labial neurons (dotted area pointed by red arrowhead), amphids (grey arrowhead). F-H: In *dot14* mutant strain JNC286 head region, mutation suppresses *pmks-1::gfp* expression in 2 pairs of inner labial neurons: ILLL, ILVL, ILLR, ILVR (dotted area pointed by red arrowhead), but *pmks-1::gfp* expression in amphids is similar to wildtype (grey arrowhead). Single layer images are also presented to identify inner labial neurons in wildtype transgenic worms and *dot14* mutant worms (see Figure 3.17). I-K: In wildtype reporter strain JNC285 tail region, *pmks-1::gfp* expresses in phasmids (white arrowhead). L-N: In mutant strain JNC286 tail region, *pmks-1::gfp* expresses in phasmids (white arrowhead), which is similar to wildtype expression. *ppgp-12::gfp* expresses in excretory cells (white triangles) in image C-N. All GFP images were at the exposure of 394 ms. All GFP images were confocal stacks of whole worm body from lateral view. Scale bar: 25 μm
Figure 3.17 Expression of pmks-1::gfp in inner labial neurons in wildtype (JNC285) and dot14 mutant (JNC286)

Note I captured single layer images of wildtype pmks-1::gfp transgenic worms (JNC285 strain) in head regions. 6 inner labial neuron cell bodies are observed. A-C: pmks-1::gfp expression is observed in ILDL, ILLL, ILVL, indicated by white arrowheads. D,E: pmks-1::gfp expression is observed in ILDR, ILLR, ILVR. It is unidentified whether these 6 cell bodies belong to IL1 or IL2 neurons. I captured single layer images of dot-14 mutant (JNC286 strain) in head regions. One inner labial neuron cell body is observed. F: pmks-1::gfp expression is observed in ILD neuron, but it is hard to identified whether the neuron is in left or right side. It is also unidentified whether this cell body belongs to IL1 or IL2 neurons. Exposure time was 394 ms. Scale bar: 25 μm.
Figure 3.18.

A: DIC image of BC12597 (psrab-12::gfp) transgenic worm head region. B: psrab-12::gfp expression is detected in inner labial neurons (red arrowhead pointing dotted area). GFP exposure is 667 ms. GFP images are confocal stacks of whole worm body from lateral view. Scale bar: 25 μm. The strain was obtained from the Baillie lab.
Figure 3.19. Observation of F1 progeny in cross psrab-12::gfp transgene (strain BC12597) to dot14 mutant (strain JNC286)
Note. I crossed wildtype males that carrying *psrab-12::gfp* reporter to mutant hermaphrodites that carry X-linked recessive mutation (JNC286), and observed the F1 progeny males and hermaphrodites. Head regions were showed here because it is able to identify wildtype reporter expression and mutant expression by only showing head regions. A: In wildtype *pmks-1::gfp* transgenic worms (JNC285 strain), three pairs of inner labial neurons is visible with GFP signal (red arrowhead). B: In wildtype *psrab-12::gfp* transgenic worms (BC12597 strain), three pairs of inner labial neurons are visible with GFP signal (red arrowhead). C: In dot14 mutant (JNC286), *pmks-1::gfp* expression is suppressed in subset of inner labial neurons (red arrowhead). D: In F1 generation males that carries *psrab-12::gfp* reporters, three pairs of inner labial neurons are visible with GFP signal. Although F1 generation males are X-linked recessive mutants, inner labial neuron differentiate normally in mutants. E: In F1 generation hermaphrodites, inner labial neurons are visible with GFP signal. Because F1 generation hermaphrodites only have one copy of recessive mutant allele, the phenotype is similar to wildtype. Thus, the conclusion is that dot14 mutation does not affect inner labial neuron development. *ppgp-12::gfp* expresses in excretory cells in image A, C, D, E (white triangles). GFP exposure is 667 ms. GFP images are confocal stacks of whole worm body from lateral view. Scale bar: 25 μm.
Figure 3.20. *tub-1* promoter driven tdTomato expression pattern in JNC247 strain

Note. A, B: In head regions, *ptub-1::tdTomato* expresses in amphids (grey arrowhead). C, D: In tail region, *ptub-1::tdTomato* expresses in phasmids (white arrowhead). RFP exposure is 111 ms. Autocontrast enhancement were applied to best display tdTomato signal. RFP images are confocal stacks of whole worm body from lateral view. Scale bar: 25 μm.
Figure 3.21. Observation of F1 progeny in cross *ptub-1::tdTomato* transgene (strain JNC247) to dot14 mutant (strain JNC286)
Note. I crossed *ptub-1::tdTomato* reporter male strain (JNC247) to mutant hermaphrodites that carry X-linked recessive mutation (JNC286). I observed F1 progeny. Head regions were showed here because the mutations in JNC286 affect *pmks-1::gfp* expression in head region. A: In wildtype *pmks-1::gfp* transgenic worms, three pairs of inner labial neurons are visible with GFP signal (red arrowhead). B: In wildtype *ptub-1::tdTomato* transgenic worms, *ptub-1::tdTomato* expresses in amphids (grey arrowhead). C: In *dot14* mutant, mutations suppress *pmks-1::gfp* expression in subset of inner labial neurons (red arrowhead). D-F: In F1 male progeny from cross *ptub-1::tdTomato* transgenic worms to *dot14* mutant, mutation suppresses *pmks-1::gfp* expression in subset of inner labial neurons (red arrowhead). *ptub-1::tdTomato* expression in amphids (grey arrowhead) is similar to wildtype expression in image B. Because F1 generation males are X-linked recessive mutants, *dot14* mutation do not affect *ptub-1::tdTomato* expression. G-I: In F1 hermaphrodite progeny, *pmks-1::gfp* expression is visible in three pairs of inner labial neurons (red arrowhead), and *ptub-1::tdTomato* expression is visible in amphids (grey arrowhead). Because F1 generation hermaphrodites only have one copy of recessive mutant allele, the phenotype is similar to wildtype *ptub-1::tdTomato* and *pmks-1::gfp* reporter expression. Thus, the conclusion is that *dot14* mutation does not affect *ptub-1::tdTomato* expression. *ppgp-12::gfp* expresses in excretory cells in image A, C, D, F, G, I (white triangles). GFP exposure is 182 ms. RFP exposure is 111 ms. All images are confocal stacks of whole worm body from lateral view. Scale bar: 25 μm.
Figure 3.22 Dye-filling assay of dot14 mutant (JNC286 strain)

Note. I scored the numbers of wildtype (JNC285) and dot14 mutant (JNC286) that take Dil. I observed the Dil-filling patterns in wildtype (JNC285) and dot14 mutant (JNC286). A: The percentages of mutant JNC286 that take Dil (98.36%), is almost the same as wildtype JNC285 (100%). B, C: The schematic diagram of 6 pairs of amphids neurons and two pairs of phasmds neurons that take Dil in wildtype worms. Images adopted from Starich, T.A. et al. (Starich et al. 1995). D, E: In wildtype worms (JNC285), Dil enters 6 pairs of amphids (grey arrowhead) and two pairs of phasmds (white arrowhead). F, G: The dot14 mutant (JNC286) takes Dil in 6 pairs of amphids (grey arrowhead) and two pairs of phasmds (white arrowhead), which is the same as wildtype. RFP exposure is 91 ms. All images are confocal stacks of whole worm body from lateral view. Scale bar: 25 μm.
3.4. Conclusion

In my study, I applied EMS to introduce random mutations to wildtype worms genome that carries *pmks-1::gfp* as an indicator of screens. I used non-clonal F2 screens to look for mutants that have altered transgene expression. In non-clonal F2 screens, P0 worms laid all embryos. F2 progeny is a mixture of population from different F1 progeny. I screened all F2 progeny in first round, but I randomly screened 1/4 of F2 progeny in second round. This screening strategy avoided bias on slow-growing mutants. Another advantage of non-clonal F2 screen is that it saves time because there is no need to pick up individual F1 clones. However, it is not able to maintain lethal, sterile or dauer mutant alleles in a non-clonal F2 screens. In F1 clonal screens, after isolation of such mutant alleles, one can go back to the progeny of same F1 clones to maintain the mutation in a heterozygous genome (Rosenbluth *et al.* 1985). It should also be noted that the genome size for second round of screen might not be accurate. Although genome size could be estimated based on P0 worm numbers in non-clonal F2 screens, it is only accurate to the situation when all F2 progeny are screened. In second round of screen, only 1/4 of F2 progeny are screened. In another estimation, number of worms that one person could look at in a manual approach within one hour is recorded. And it is more accurate to use the calculation genome size= worm screened per hour (average) x total hours of screen x2.

In the screens, I expected to isolate mutants of candidate transcription factors that co-regulate *mks-1* expression with DAF-19. Multiple line of evidence reveal the possibility of existence of undiscovered transcription factors that specifically regulate *mks-1* expression or specifically regulate a group of ciliary genes expression (Efimenko *et al.* 2005; Mukhopadhyay *et al.* 2007b; Thomas *et al.* 2010; Choksi *et al.* 2014). After two rounds of genetic screens, I found one mutant, *dot14*, which carries a recessive mutation on the X chromosome. The *dot14* mutation affects suppresses expression of *mks-1* in subset of inner labial neurons. I applied simple genetic crosses to understand whether the *dot14* mutation non-specifically disrupts labial neuron development, and whether the *dot14* mutation affects other ciliary gene expression. The *dot14* mutation does not disrupt labial neuron differentiation because inner labial neurons are tracked by *psrab-12::gfp* expression in *dot14* mutant. The *dot14* mutation does not affect ciliary
gene *tub-1* expression, either. It is thus possible that *dot14* is located in a gene that specifically regulates *mks-1* expression in subset of ciliated neurons, which is correlated to my hypothesis. In regulation of ciliary gene *kap-1* expression in AWB neurons, such specific transcription factor exists. Cell-specific transcription factor FKH-2 functions downstream to DAF-19 to regulate *kap-1* expression in AWB neurons (Mukhopadhyay et al. 2007b).

Because EMS randomly introduces mutations to worm genome (Brenner 1974), I would expect mutants of multiple phenotypes. First, I expected that mutations were generated in a variety of genes that regulate worm development. For example, I isolated a vulvaless mutant in first screen. It is likely that vulva development is disrupted in this mutant. I isolated many sterile mutants. Mutations in genes that play a role in germline development might cause sterile phenotypes. Some of the isolated mutants are larva-arrest. Mutations in genes affecting life span might cause larva-arrest phenotype. All these vulvaless, sterile and larva-arrest mutants might carry mutations in the regulators upstream of *mks-1* specific regulation pathway, so these mutants also have reduced *pmks-1::gfp* expression. In second screen, I used *ppgp-12::gfp* transgene as a control so that I did not pick up vulvaless, sterile or larva-arrest mutants. Second, I expected to see mutants with Unc phenotype. There are 112 members of *unc* gene family. Based on EMS mutation rate and screening genome size, at least one mutation would hit an *unc* gene. I saw *unc* mutants during screen as expected. Because *daf-19* is a known transcription factor for *mks-1*, I also expected to isolate *daf-19* mutant. *daf-19* null mutation cause constitutively dauer-formation (Swoboda et al. 2000). I isolated some dauer mutants but was not able to maintain and characterize them. Probably these dauer mutants are *daf-19* null-mutant. Due to disadvantage of non-clonal F2 screen, I was not able to keep any dauer mutant.

In this study, I improved screening methods. In second round, I avoid wasting time on sterile, larva-arrest or vulvaless mutants because of using a second reporter *ppgp-12::gfp*. I improved selection of mutants by selecting one mutant from same P0 plate because multiple mutants from same P0 plate are likely to be segregated from same F1 mutant progeny. I observed mutant penetrance for three generations to select mutants with complete penetrance. I applied genetic cross to characterize mutants as recessive, dominant or transgene defective. It is not clearly understood what results in
the defective transgenic arrays in screens. Doitsidou et al. proposed that transgene is silenced by mutations in transgene array (Doitsidou et al. 2008). In my study, I used a transgenic strain with multiple copies of the pmks-1::gfp transgene. Based on estimation, there are 20 copies of pmks-1::gfp transgene in the worms. Thus it is hard for the EMS mutagen to hit all copies of transgene. Two possibilities could cause transgenic-array defects in my study. First, the copy number of transgene array is reduced because non-homologous recombination happens. Second, chromatin enzymes silence the transgene expression at an epigenetics level by histone modifications. I introduced a second reporter ppgp-12::gfp to avoid picking up transgenic-array defective worms, but I still got such worms in second screen. Two reporters, pmks-1::gfp and ppgp-12::gfp, are located on different loci. Thus, it is important to generate transgenic worms that carry both reporters integrated to same locus on the chromosome by co-injection. In this case, both transgene reporters' expression would be suppressed if chromatin enzyme modifies same location of histone. For further genetic screens, it should be considered to generate transgenic worms by co-injecting two reporter constructs.

I identified a recessive dot14 mutation on the X chromosome. The dot14 mutation is likely to affect regulators of mks-1 expression in inner labial neurons. Whole genome sequencing and SNP-mapping is required to identify the location of the dot14 mutation, the nucleotide information of the mutation, and the affected gene (Doitsidou et al. 2010). To prepare for whole genome sequencing, I cleaned the dot14 mutant (strain JNC286) by backcrossing it four times to wildtype transgenic worms (strain JNC285). The backcrossed strain was named JNC319 (dot14; dotls248 [pmks-1::gfp;dpy-5(+)]; dotls296 [ppgp-12::gfp;dpy-5(+)]). In the future, colleagues in Chen lab will sequence the whole genome of the cleaning mutant strain JNC319, and use bioinformatics tools to map the dot14 mutation. Based on genetic features of the mutation, which I provided in my thesis, lab colleagues can collect bioinformatics data to identify the mutated gene, which plays important role in transcriptional regulation of mks-1.
Chapter 4.

General Conclusion

4.1. Conclusion and Discussion

I used forward genetic screens to isolate mutants of genes that encoding transcription factor regulating mks-1 expression. Genome-wide mutagenesis is applied in forward screens to search for unknown genes controlling a biological pathway. Forward genetic screens have been applied to identify transcription factors in many studies. For example, Mango et al. isolated mutant alleles of a transcription factor encoding gene pha-4 in a screen to isolated first stage larva lethal mutant (Mango et al. 1994). Homozygous pha-4 mutant arrests at embryos or first stage larva. Microscope observation shows that pha-4 mutant lacks pharynx. They are able to maintain the recessive mutant allele in a heterozygous form, which appears as wildtype phenotype. pha-4 encodes PHA-4 protein that regulates proper pharyngeal cell differentiation. Later on, it is found that PHA-4 encodes a FOXA transcription factor in early embryonic stage (Kiefer et al. 2007). In Mango et al. study, they used 0.5 M ethylnitrosourea or 0.05 M methanesulfonate to conduct several rounds of screens. In total they obtained seven recessive alleles of pha-4 gene. They used clonal screen so they could maintain lethal alleles in a heterozygous form after isolation. Mango et al. searched for a lethal phenotype, which could be seen among mutants that affect any regulators of worm development. Compared to their study, I introduced reporter transgene to track target gene expression. I monitor target gene expression to search for mutants that affect target gene expression. The mutant pool is small and specific on mks-1 regulation. The reason to introduce transgene to monitor mutant phenotype is that target gene mks-1 only expresses in subset of ciliated neurons. Thus, defects in transcription factor that specifically regulate mks-1 expression might merely cause changes of mks-1 expression in subset of cells instead of causing severe functional malformations. The subtle change
in expression is visible with GFP transgene expression. I use non-clonal screen in my thesis study, because I did not expect to pick up and maintain mutants with severe developing problem. This kind of mutant is more likely to hit transcription factors, such as DAF-19, that regulate all ciliary gene expression or worm development.

Introducing GFP transgene to monitor gene expression in genetic screens is a mature technique. Compared with other similar GFP genetic screens, I would like to discuss some interesting phenomena. First I found that some mutants are actually transgenic worms with defective transgenic arrays. Doitsidu et al. also find this kind of mutants in a screen for mutations affect dopaminergic neuron differentiation (Doitsidou et al. 2008). They used GFP transgene that contains dopaminergic neuron specific gene dat-1 fused to GFP. They identified mutants that carry defective transgenic arrays, by using same genetic cross that were described in my thesis. Although they find that mutants have mutations in transgenic arrays (Doitsidou et al. 2008), I propose other possibilities that generate defective transgenic arrays. The transgenic worms carries at least 20 copies of transgenic constructs (Dr. D. Baillie, personal communication), and thus it is theoretically hard to generate mutations in all copies of transgene array to silence transgene expression (Mello and Fire 1995). My lab colleagues are using same method to screen for mutants that have other ciliary gene expression changes. They also found “mutants” that actually had defects in transgenic arrays. There could be two hypotheses: a chromatin silencing due to histone modification at an epigenetics level (Kelly and Fire 1998), or reduction of transgene copy numbers due to non-homologous recombination (J. Wang, personal communication). Histone is modified by methylation, acetylation, phosphorylation and ubiquitination in some locations, thus making DNA unapproachable by transcription complex (Bannister and Kouzarides 2011). It is possible that some transgene expression is silenced by chromatin-enzyme induced histone modification near transgene copies. Based on Doistsidou et al. report and result in this thesis, transgene defective mutants occur in two independent screens. It is worth discussing whether defective transgenic arrays occur naturally in a certain proportion of transgenic worm population. If the rate could be determined, we can decide screening genome size for an efficient screen based on the rate. Second, “worm sorter” (COPAS Biosort machine) has been widely used to aid genetic screens. The worm sorter is a flow cytometry instrument to assort live worms based on their fluorescence density or size
(Pulak 2006). Compared with using manual screens, using the worm sorter saves time. In Doitsidou et al. study, they compared speed of manual screens and applying the worm sorter to screen (Doitsidou et al. 2008). The speed increased at least 10 times after applying the worm sorter. 10-laborous day manual work was finished within 1.5 day in a part-time manner. Meanwhile, the efficiency of the worm sorter approach is higher than the manual approach. Within same time, Doitsidou et al. obtained alleles of six loci by the worm sorter approach, while they only isolated alleles of two loci by the manual approach. The reason is likely to be that more samples were screened in the worm sorter approach within same time period. The sensitivity of the worm sorter is higher than human eyes. In the same study, mutants with as little as one cell losing GFP signal were retrieved even though the wildtype transgenic worms have GFP signal in eight different cells in head and tail. I used a manual approach due to limited machine availability in our lab. However, I would recommend using a worm sorter if it is available. Human eyes are not as accurate as high-fidelity cameras in detecting signals. With application of worm sorters, it will be possible to detect slightly altered signals (Stoeckius et al. 2009; Fernandez et al. 2010).

I have to admit that some limitations exist within this thesis work. First, I was not able to study any regulation of intronic region or downstream regions. I used a 2.1 kb upstream intergenic region fused to GFP to drive transgene expression. Although this upstream intergenic region contains minimal set of cis-regulatory sequences that is sufficient to regulate gene expression, cis-regulatory sequences are discovered in introns and downstream sequences (Okkema et al. 1993; Wagmaister et al. 2006). In my thesis study, I focused on regulators that bind to upstream sequences of mks-1. Second, I was not able to isolate any lethal or dauer mutant by using a non-clonal F2 screens. The C. elegans mks-1 hypomorphic mutant allele tm2705 does not cause lethal or dauer phenotype (Williams et al. 2008). If candidate regulators control mks-1 expression level or gene “on”/“off” state in specific neurons, the mutants are not likely to carry lethal phenotype. Non-clonal F2 screens enable me to focus on mutants that affect this kind of candidate regulators. But I could not detect mutants of transcription factors that regulate all ciliary gene expression or that regulate neuron development pathways, for example, DAF-19. Third, I was not able to detect repressors that regulate mks-1 expression. Because dot14 mutation is recessive on X chromosome, it is likely to be a loss-of-
function mutation in a gene encoding an activator in \textit{mks-1} regulation. In my thesis work, I screened for reduced GFP signal only. Mutants with reduced GFP signal might carry three kinds of mutations: a recessive loss-of-function mutation in a gene encoding an activator, a dominant loss-of-function mutation in a gene encoding an activator or a dominant gain-of-function mutation in a gene encoding a repressor. A dominant/recessive loss-of-function mutation on repressor gene results in increased GFP signal in mutant worms. The phenotypic criteria on selecting reduced GFP signal limited the possibilities to detect more repressors in \textit{mks-1} regulation. Moreover, the amount of mutants isolated from this thesis work is smaller than expected. For example, Doitsidou \textit{et al.} screened genome for 11,000 times manually, and they identified 10 mutants (Doitsidou \textit{et al.} 2008). After isolation, they identified mutants based on similar criteria this thesis work used. They only picked up independent isolates from different P0 plates or have different phenotypes if from same P0 plate. However, in this thesis work, I merely identified 22 mutants for a genome overage of 40,200 times. It is possible that phenotypic screening criteria in my thesis work were too strict. Mutants with increased GFP were not picked up. Those mutations might be loss-of function of genes encoding repressors. It is possible that \textit{mks-1} expression is suppressed by repressors in subset of ciliated neurons.

Other approach could be applied to identify transcription factors that regulate \textit{mks-1} expression. Yeast One Hybrid Assay could be applied to identify proteins that bind to \textit{mks-1} upstream/ downstream intergenic regions and intronic regions \textit{in vitro}. Y1H assay methods for transcriptional regulation study in \textit{C. elegans} is reviewed by Reece-Hoyces and Walhout (Reece-Hoyes and Marian Walhout 2012). The interested DNA sequences (e.g. \textit{mks-1} upstream/ downstream intergenic regions and intronic region) are connected to a reporter gene that generates one kind of amino acid in yeast. The Y1H library includes transcription factors identified in \textit{C. elegans} (Reece-Hoyes \textit{et al.} 2005). Library proteins are fused with activation domain that activates reporter gene expression. The expression construct (library proteins fused to activation domain) and the bait reporter construct (DNA sequences fused to reporter gene) are transformed into yeast mutant that is not able to grow on selective medium that lacks the reporter-gene encoding amino acid. If interaction exists between a library protein and DNA sequences, reporter gene is activated so that yeast clone will grow on the selective medium. Y1H
assay can only detect direct interaction between transcription factor and DNA, but it is not applicable to study transcription factor in a pathway that regulate gene expression by targeting other direct-binding transcription factor.

I isolated recessive X-linked \textit{dot14} mutation that specifically suppresses \textit{mks-1} expression in five inner labial neurons. In \textit{dot14} mutant, inner labial neuron differentiates and develops properly. Based on results from my thesis work and other studies, I propose two models for \textit{mks-1} regulation in \textit{C. elegans}. In first model, an unknown transcription factor recruits DAF-19 to \textit{mks-1} regulatory sequences in a co-regulation manner to activate \textit{mks-1} expression in specific ciliated neurons. Evidence of such co-regulation manner is reported as RFX3 and Fd3F regulate ciliary gene expression in motile cilia of \textit{Drosophila} (Newton \textit{et al.} 2012). In this case, it is interesting to know whether the unknown transcription factor physically interacts with DAF-19 or binds to \textit{mks-1} promoter directly to co-regulate \textit{mks-1} expression. In second model, an unknown transcription factor acts upstream or downstream of DAF-19 to control DAF-19 activity in specific ciliated neurons. DAF-19 is activated by the unknown transcription factor in subset of ciliated neurons in this model. Such regulation is reported in \textit{kap-1} regulation in AWB neuron. It is reported that forkhead transcription factor FKH-2 regulated \textit{kap-1} expression specifically in AWB neuron (Mukhopadhyay \textit{et al.} 2007b). Many studies revealed that MKS-1 participate in activities of docking centriole to membrane to form basal body/transition zone in specific ciliated cells (Dawe \textit{et al.} 2007; Weatherbee \textit{et al.} 2009; Cui \textit{et al.} 2011). My study shows that \textit{dot14} mutation does not affect ciliary gene \textit{tub-1} expression in amphids and phasmids. It would be interesting to know whether the unknown transcription factor is a gene-specific regulator for \textit{mks-1} expression, or it is a cell-specific regulator for a group of ciliary gene regulation in inner labial neurons.

The methodology in my thesis work could be applied to studies of different ciliary genes on identifying gene-specific or cell-specific transcription factors.

\section*{4.2. Future Work}

The next step is to analysis the mutant strain with Bioinformatics tools. I prepared genomic DNA of \textit{dot14} mutant (JNC319 strain, 4x backcrossed strain from mutant
JNC286) and wildtype pmks-1::gfp transgenic worms (JNC285 strain). My lab colleagues will sequence the whole genome of the dot14 mutant and the wildtype transgenic worms. They will map the mutations using SNP-mapping based on standard method (Doitsidou et al. 2010). They will use comparative genomics tools to identify genomic variations in the mutant strain. They will identify candidate genes that are affected by the variations. They will use candidate gene approach protocol (see Appendix) to genetically analyze candidates. Then they can identify the mutated gene that encodes transcription factors in mks-1 regulation.

After identifying the unknown gene that dot14 mutations hit, it is necessary to understand protein encoded by this gene, most likely a transcription factor, in two aspects: structure including DNA binding characteristics and function including roles in different pathways. First, it is important to understand the structure of transcription factor: either it has a domain of zinc finger, forkhead, winged-helix, homeobox or other unknown functional domain. Also, it is interesting to know the type of dot14 mutation: is it a null-mutation or a hypomorphic mutation? It is interesting to know the transcription target site on a genome-wide scale. Chromatin Immunoprecipitation (ChIP) assay can be applied to identify the target sites. Many transcription factor target sites have been identified by ChIP assays in the modENCODE project e.g. (Niu et al. 2011). It is wise to search wormbase for available data of target sites before any experiments. Second, it is necessary to test both models proposed in my thesis. To test first model, my colleagues could apply Co-immunoprecipitation (Co-IP) to test direct physical interactions between DAF-19 and the identified transcription factor. They could use DNA footprinting to detect direct target sites for identified transcription factor in mks-1 promoter sequences. To test second, model my colleagues could use RNAi to interfere transcription factor expression. By RNAi of identified transcription factor, they can track daf-19 expression using GFP fused transgene, or they can label daf-19 mRNA product by in situ hybridization. They can place identified transcription factor in a signalling pathway that regulate specific gene expression or regulate ciliary gene expression in specific cells. Moreover, multiple genetic crosses could be done to answer the question whether identified transcription factor is cell-specific or gene-specific. My colleagues can introduce reporter transgene of different ciliary components into dot14 mutant to track changes in gene expression.
Taken together, my thesis work has set up a stage for studying transcriptional regulation of \textit{mks-1}.
References

Leeuwenhoek A. 1677. Concerning little animals observed in rain-, well-, sea- and snow-water; as also in water wherein pepper had lain infused. *Philos Trans Lond* **12**: 821–831.

Muller OF. 1786. Animalcula infusoria; fluvia tilia et marina, que detexit, systematice descripts et ad vivum delineari curavit. *Moller, Havniae*.

Appendix.

Candidate gene approach

Introduction: Candidate genes

Candidate gene approach is widely used in genetics studies. In candidate gene approach, it is important to hypothesize possible candidate genes using statistical models. Then the candidates are identified with genetics methods. The aim is to find out the functionally important genes, which work in a signalling pathway, or regulate other genes. In studies of genetic disease, candidate gene approach is used to identify genes in complex genetic diseases (Tabor et al. 2002). In plant genetics, candidate gene approach is applied to identify qualitative trait locus (QTL) (Pflieger et al. 2001).

In my study, I used this method, in addition to genetic screening, for two reasons: First, I had a list of transcriptional factors that affect gene expression in ciliated neurons or other neurons. Mutants of these transcriptional factors are available in the CGC or NBRP. I would know whether one of these candidates regulates mks-1 by crossing mks-1 promoter driven GFP reporter into the mutant background. Second, I was learning how to carry out genetic cross. It was a good practice to work on multiple genetic crosses by this method. So this piece of work was done at the beginning of my master study.

Dr. Jack Chen searched the SAGE profiling database. SAGE is Serial Analysis of Gene Expression. It is used for quantitative and qualitative analysis of expressed RNA. C. elegans SAGE database is available to run at http://elegans.bcgsc.ca/home/sage.html (McKay et al. 2003). He got a list of 6 genes that code for known transcriptional factors in C. elegans (Table A1). He ordered mutant strains of all 6 genes. I crossed the mks-1 promoter driven GFP reporter into these 6 mutants’ background.
Table A 1. Information of six candidate genes

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Location</th>
<th>Functional domain</th>
<th>Expression Profiles</th>
<th>Cellular function</th>
</tr>
</thead>
<tbody>
<tr>
<td>tag-97</td>
<td>Chr X</td>
<td>ETS protein domains</td>
<td>ALM neurons, CAN neurons, Amphids and phasmids neurons, Excretory cells</td>
<td>NA</td>
</tr>
<tr>
<td>nhr-20</td>
<td>Chr III</td>
<td>ligand-binding, core Zinc finger, nuclear hormone receptor type</td>
<td>AFD neurons, Pan-neural cells, Pharyngeal marginal cells</td>
<td>Nuclear Hormone Receptor</td>
</tr>
<tr>
<td>ceh-31</td>
<td>Chr X</td>
<td>homeobox domain</td>
<td>Amphids neurons</td>
<td>NA</td>
</tr>
<tr>
<td>F22D6.2</td>
<td>Chr I</td>
<td>Zinc finger, A20 type Zinc finger, AN1 type</td>
<td>AFD neurons, ASER neurons, Ciliated neurons, Pan-neural cells, Pharyngeal marginal cells, Pharynx cells</td>
<td>NA</td>
</tr>
<tr>
<td>zip-5</td>
<td>Chr V</td>
<td>Basic-leucine zipper domain</td>
<td>Head and tail neurons, Head muscles and intestines</td>
<td>bZip transcription factor</td>
</tr>
<tr>
<td>nhr-4</td>
<td>Chr IV</td>
<td>ligand-binding, core Steroid hormone receptor Zinc finger, nuclear hormone receptor type</td>
<td>AFD neurons, ASER neurons, Ciliated neurons, Pan-neural cells, Pharyngeal marginal cells, Pharynx cells</td>
<td>Nuclear hormone receptor</td>
</tr>
</tbody>
</table>

- The information is collected from SAGE profiling database (http://elegans.bcgsc.ca/home/sage.html) and Wormbase (http://www.wormbase.org). SAGE data were obtained from the Genome BC C. elegans Gene Expression Consortium http://elegans.bcgsc.bc.ca/. These SAGE data were produced at the Michael Smith Genome Sciences Centre with funding from Genome Canada.

Materials and Methods

Table A2 shows the information of 6 mutant strains that Dr. Jack Chen ordered (Table A2). Before I introduced mks-1 reporter to mutant, each mutant strain was crossed with N2 males for four times to clean the background mutations (Figure A1). The 4x cross (with N2) was done in cooperation with Zhaozhao Qin. I backcrossed ok286 mutant and tm1059 mutant. Zhaozhao Qin backcrossed tm1068, gk646, ok1685 and tm239 mutants (Table A2). All six mutants carry large deletion. To detect mutant alleles in cross...
progeny, primers were designed to genotype the mutant alleles. There were three working primers: a forward and a reverse that work outside the deletion region, and a deletion forward that reside inside the deletions. In wildtype, two amplicons were generated. In mutant, one amplicon was generated. Primer binding positions in the genome for detection of mutant allele ok286 (tag-97) are shown as an example (Figure A2). The sequence for all six groups of primers and expected PCR products are: 1. tag-97 (ok286): genoF: 5’ ACACATGTGGCAAAACCAGA 3’; genodelF: 5’ TTGTGCCAATGCTCAAATA 3’; genoR 5’ TTATGCAGCGCTCAACATT 3’; N2 has two bands of 2942bp and 916bp; ok286 mutant has one band of 582bp; heterozygous worm has all three above bands. 2. nhr-20 (tm1059): genoF: 5’ GGCTGTGTACATTTCGCTCA 3’; genodelF: 5’ TTATGCAGCGCTCAACATT 3’; genoR 5’ GGCTCTGCTCCACTAA 3’; N2 has two bands of 1145bp and 807bp; tm1059 mutant has one band of 594bp; heterozygous worm has all three above bands. 3. ceh-31 (tm0239): genoF: 5’ TTCCAACCACTCATTCA 3’; genodelF: 5’ AACGCTCCAGTAGCCTCATGG 3’; genoR 5’ GCTGCTGCTTCCACTTTTGT 3’; N2 has two bands of 1213bp and 802bp; tm0239 mutant has one band of 500bp; heterozygous worm has all three above bands. 4. F22D6.2 (ok1685): genoF: 5’ CTTGACCTGCCCTCTCCTCT 3’; genodelF: 5’ GCTGCTGCTTCCACTTTTCT 3’; genoR 5’ TCAACCTACGTCACCAATC 3’; N2 has two bands of 1473bp and 871bp; ok1685 mutant has one band of 432bp; heterozygous worm has all three above bands. 5. zip-5 (gk646): genoF: 5’ TGGTTGGTCCCATTTCT 3’; genodelF: 5’ CCCACCATCATCATCATCAT 3’; genoR 5’ GGGTATTTTCCACTCCATAT 3’; N2 has two bands of 2300bp and 541bp; gk646 mutant has one band of 293bp; heterozygous worm has all three above bands. 6. nhr-4 (tm1068): genoF: 5’ GATCCGAGATTGAGCGCTATT 3’; genodelF: 5’ TCCAGCTGACCTCCTACTCA 3’; genoR 5’ AATAATTCCGAGGGTTGGG 3’; N2 has two bands of 1083bp and 813bp; tm1068 mutant has one band of 519bp; heterozygous worm has all three above bands. Zhaozhao Qin kindly designed the primers.

Table A 2. Information of six mutant strains

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Allele name</th>
<th>Mutant strain name</th>
<th>4X backcrossed clean strain name</th>
</tr>
</thead>
<tbody>
<tr>
<td>tag-97</td>
<td>ok286</td>
<td>RB568</td>
<td>JNC215</td>
</tr>
<tr>
<td>nhr-20</td>
<td>tm1059</td>
<td>FX01059</td>
<td>JNC210</td>
</tr>
<tr>
<td>ceh-31</td>
<td>tm0239</td>
<td>FX00239</td>
<td>JC218</td>
</tr>
<tr>
<td>F22D6.2</td>
<td>ok1685</td>
<td>VC1240</td>
<td>JNC223</td>
</tr>
<tr>
<td>zip-5</td>
<td>gk646</td>
<td>VC1392</td>
<td>JNC204</td>
</tr>
<tr>
<td>nhr-4</td>
<td>tm1068</td>
<td>FX01068</td>
<td>JNC211</td>
</tr>
</tbody>
</table>

The mutant strains were ordered from CGC and NBRP. After backcross, each strain was assigned with JNC number. The backcross was done in cooperation with Zhaozhao Qin.

Then I crossed the mks-1 promoter driven GFP transgene with the cleaned mutants. I isolated homozygous reporter in homozygous mutant alleles background (Figure A3). The heterozygous F1 progeny with GFP signal was picked up. In F2 progeny, homozygous mutant worms were detected with PCR genotyping, using primers mentioned before. Theoretically a quarter of these mutant homozygous worms would be GFP homozygous. The GFP reporter was detected with signal observation under
dissecting microscope. If the transcriptional factor did not affect \textit{mks-1} expression, the GFP homozygous worms were detected by GFP signals. F3 generations were observed, and I picked up plates that all worms have GFP. If the reporter was silenced because of the mutant alleles, all worms did not have GFP signal. In this case, PCR genotyping of GFP was used to detect GFP homozygous line (see Chapter 2 methods). After detecting GFP and mutant allele homozygous worms, I assigned each line a JNC number. Then I observed the \textit{mks-1} promoter driven GFP expression in mutants under confocal microscope.
Figure A 1. Strategy for backcross mutants to N2 for four times

Note. Use tag-97 (ok286) mutant (strain RB568) as an example.
Figure A 2. Primers to detect mutant alleles tag-97 (ok286)

Note. A: Primers labeled in Wormbase Gbrowse view of Gene model showing tag-97 (ok286). Three primers were used, and one resided inside the ok286 deletion region. PCR results to genotype tag-97 (ok286). Gene model image is downloaded from wormbase genome browser (http://www.wormbase.org). B: First lane: ~550 bp band in ok286 mutant; Second lane: ~900 bp band in N2; Third lane: GeneRuler 1 kb plus DNA ladder.
Figure A 3. Strategy to cross mks-1 promoter driven GFP reporter to mutant background

Note. ok286 mutant is used as an example. ok286 is large deletions in tag-97 gene.
Results and Discussions

I generated 6 strains of mks-1 promoter driven GFP reporter in the mutant of tag-97 (ok286), nhr-20 (tm1059), nhr-4 (tm1068), zip-5 (gk646), F22D6.2 (ok1658) and ceh-31 (tm0239) respectively (Table A3). In all mutant backgrounds, mks-1 promoter driven GFP expression was unchanged, compared to GFP expression in wildtype (Figure A4). None of the six candidate genes affect the expression of mks-1. Thus, tag-97, nhr-20, nhr-4, zip-5, F22D6.2 and ceh-31 gene are regulating mks-1.

Table A 3. Information of the six strains with mks-1 promoter driven GFP reporter in the mutant background

<table>
<thead>
<tr>
<th>Strain name</th>
<th>Allele</th>
<th>Genotype</th>
<th>Mutated gene</th>
<th>GFP expression*</th>
</tr>
</thead>
<tbody>
<tr>
<td>JNC275</td>
<td>dotls248; ok286</td>
<td>dotls248[pmks-1::gfp+dpy-5(+)] tag-97(ok286) X</td>
<td>tag-97</td>
<td>Normal</td>
</tr>
<tr>
<td>JNC257</td>
<td>dotls248; tm1059</td>
<td>dotls248[pmks-1::gfp+dpy-5(+)] nhr-20(tm1059) III</td>
<td>nhr-20</td>
<td>Normal</td>
</tr>
<tr>
<td>JNC276</td>
<td>dotls248; tm0239</td>
<td>dotls248[pmks-1::gfp+dpy-5(+)] ceh-31(tm0239) X</td>
<td>ceh-31</td>
<td>Normal</td>
</tr>
<tr>
<td>JNC277</td>
<td>dotls248; ok1685</td>
<td>dotls248[pmks-1::gfp+dpy-5(+)] F22D6.2(ok1685) I</td>
<td>F22D6.2</td>
<td>Normal</td>
</tr>
<tr>
<td>JNC281</td>
<td>dotls248; gk646</td>
<td>dotls248[pmks-1::gfp+dpy-5(+)] zip-5(gk646) V</td>
<td>zip-5</td>
<td>Normal</td>
</tr>
<tr>
<td>JNC280</td>
<td>dotls248; tm1068</td>
<td>dotls248[pmks-1::gfp+dpy-5(+)] nhr-4(tm1068) IV</td>
<td>nhr-4</td>
<td>Normal</td>
</tr>
</tbody>
</table>

* GFP expression refers to expression strength compared with GFP expression in JNC248 reporter strain. Normal means similar expression. Weak means the expression is weaker than JNC248 expression. Strong means the expression is stronger than JNC248 expression. None means could not see any expression under dissecting microscope.
Figure A 4. Comparison for mks-1 promoter driven GFP expression in mutants and in wildtype transgene

Note. A, B: mks-1 promoter driven GFP expression in the wildtype transgenic worm (JNC248 strain). C-N: mks-1 promoter driven GFP expression in different mutants. Read arrowheads: inner labial neurons; grey arrowheads: amphids; white arrowhead: phasmids. All images were taken under same exposure time 354 ms and sensitivity. No contrast enhancement was applied to images. Scale bar: 25 μm
Conclusion

Although I did not find the transcription factors of mks-1 with candidate gene approach, the results are significant to report. When people work on transcriptional regulation of mks-1 in *C. elegans* in the future, they can exclude these six genes: tag-97, nhr-20, nhr-4, zip-5, F22D6.2 and ceh-31.

Moreover, I tested candidate gene approach protocol that can be applied to genetic identification of candidate genes from genetic screens. After identifying mutations in EMS mutants, Chen lab colleagues will use candidate gene approach to genetically identify transcription factors. I proposed that it is applicable to combine methods of genetic screening and candidate gene approach. In the future, researchers will generate candidate genes’ list from genetic screening and bioinformatics analysis. Then they will identify targeted genes by candidate gene approach.