EFFICIENT AND EFFECTIVE AGGREGATE KEYWORD SEARCH ON RELATIONAL DATABASES

by

Luping Li
B.Eng., Renmin University, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the
School of Computing Science
Faculty of Applied Sciences

© Luping Li 2012
SIMON FRASER UNIVERSITY
Spring 2012

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately.
APPROVAL

Name: Luping Li
Degree: MASTER OF SCIENCE
Title of Thesis: Efficient and Effective Aggregate Keyword Search on Relational Databases

Examining Committee: Dr. Jiangchuan Liu, Professor, School of Computing Science
Simon Fraser University
Chair

Dr. Jian Pei, Professor, School of Computing Science
Simon Fraser University
Senior Supervisor

Dr. Wo-Shun Luk, Professor, School of Computing Science
Simon Fraser University
Co-Supervisor

Stephen Petschulat, Software Architect, SAP Business Objects
Co-Supervisor

Dr. Ke Wang, Professor, School of Computing Science
Simon Fraser University
Examiner

Date Approved: January 6, 2012
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the “Institutional Repository” link of the SFU Library website (www.lib.sfu.ca) at http://summit/sfu.ca and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain shall not be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the thesis, project or extended essays, including the right to change the work for subsequent purposes, including editing and publishing the work in whole or in part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, British Columbia, Canada

revised Fall 2011
Abstract

Keyword search on relational databases is useful and popular for many users without technical background. Recently, aggregate keyword search on relational databases was proposed and has attracted interest from both academia and industry. However, two important problems still remain. First, aggregate keyword search can be very costly on large relational databases, partly due to the lack of efficient indexes. Second, finding the top-k answers to an aggregate keyword query has not been addressed systematically, including both the ranking model and the efficient evaluation methods.

In this thesis, we tackle the above two problems to improve the efficiency and effectiveness of aggregate keyword search on large relational databases. We design indexes efficient both in size and in constructing time. We propose a general ranking model and an efficient ranking algorithm. We also report a systematic performance evaluation using real data sets.
To whomever whoever reads this!
“Don’t worry, Gromit. Everything’s under control!”

— The Wrong Trousers, AARDMAN ANIMATIONS, 1993
Acknowledgments

I would like to express my deep gratitude to my master thesis senior supervisor, Dr. Jian Pei. I have learned many things since I became Dr. Pei’s student. He spends lots of time instructing me and I really appreciate his kind help. Dr. Pei is a hard-working professor and I believe his academic achievements will continue to increase.

I am also grateful to Dr. Ke Wang, Dr. Wo-shun Luk and Stephen Petschulat spending time read this thesis and providing useful suggestions about this thesis.

My thanks must also go to Guanting Tang and Bin Zhou, who provide me so much help in my thesis work.

It is lucky for me to meet some friends who inspirit my effort to overcome difficulties. These friends are Yi Cui, Xiao Meng, Guangtong Zhou, Xiao Liu and Bin Jiang.

Finally, I would like to thank my family and friends for all their invaluable support.
Contents

Approval ii
Abstract iii
Dedication iv
Quotation v
Acknowledgments vi
Contents vii
List of Tables ix
List of Figures xi

1 Introduction 1

2 Problem Definition and Related Work 4
 2.1 Preliminaries .. 4
 2.2 Problem Statement and Solution 8
 2.2.1 Indexing ... 8
 2.2.2 Ranking .. 9
 2.3 Related Work .. 9
 2.3.1 Keyword Search on Relational Databases 9
 2.3.2 Keyword-based search in data cube 12

3 The Efficient Index 19
 3.1 Introduction ... 19
3.2 The new index ... 20
 3.2.1 Definitions ... 20
 3.2.2 How to use the new index? 23
 3.2.3 Index Construction Algorithm 25
 3.2.4 Advantages of the new index 26
 3.2.5 Query-answering using IPJ and using the keyword graph index . 27

4 The Top-k Algorithm ... 29
 4.1 Scoring Function ... 29
 4.1.1 Density Score ... 29
 4.1.2 Dedication Score .. 31
 4.1.3 Structure Degree .. 33
 4.1.4 The Overall Scoring Function 35
 4.2 Query Processing .. 35
 4.2.1 The Bounding Step ... 37
 4.2.2 The Pruning Step ... 44

5 Experimental Results ... 52
 5.1 Environments and Data Sets 52
 5.2 User Study .. 54
 5.3 Effectiveness of the Bounding Step and the Pruning Step 58
 5.4 The Top-k Query Answering Method 60
 5.5 The Effect of k .. 63

6 Conclusions and Future Work 65

Appendix A ... 66
 A.1 The proof of Equation 4.8 in Chapter 4 66
 A.2 The proof of Equation 4.9 in Chapter 4 69

Bibliography ... 74
List of Tables

1.1 An example of the laptop database .. 2
1.2 Construction time and space consumption of the keyword graph index
 [26] for each dataset .. 3
2.1 An example of table T ... 7
3.1 An example of table T ... 21
3.2 IPJ of table T .. 22
3.3 Number of group-bys in different indexes 23
3.4 Construction time of the Keyword Graph Index (KGI) and IPJ 27
3.5 Runtime of query-answering on the e-Fashion dataset using Keyword
 Graph Index (KGI) and using IPJ 28
3.6 Runtime of query-answering on the SuperstoreSales dataset using key-
 word graph index and using IPJ 28
4.1 Symbols and formulas used in Section 4 30
4.2 Query Keywords in the e-Fashion Database 33
5.1 Dimensions of the e-Fashion database 53
5.2 Dimensions of the SuperstoreSales database 53
5.3 Tested Queries 1 .. 55
5.4 One good result for the query $(D, C, \{Austin, Boston, Washington\})$ 55
5.5 Tested Queries 2 .. 56
5.6 One good result for the query $(D, C, \{php, html, ajax\})$ 56
5.7 Tested Queries 3 .. 57
5.8 One good result for the query $(D, C, \{roy, matt, collins\})$ 57
5.9 The user study results 1 ... 57
List of Figures

2.1 The Keyword Graph Index .. 7
2.2 The Query Keyword Graph .. 8
2.3 The DBLP schema graph [2] .. 11
2.4 A subset of the DBLP graph [2] 11
2.5 Keyword-based interactive exploration in TExplorer [25] 17

3.1 An example of the Query Keyword Graph 23
3.2 An example of the Query Keyword Graph after pruning non-minimal answers 24

4.1 A query-answering example ... 32
4.2 An example of Query Keyword Graph in Chapter 4 36
4.3 12 max-join operations ... 37
4.4 10 max-join operations ... 37
4.5 6 max-join operations ... 38
4.6 Sort the nodes for each edge .. 39
4.7 Detect white nodes for edge(w_2, w_3) 39
4.8 Detect white nodes for edge (w_1, w_2) 40
4.9 An example when the upper bounds are reached 41
4.10 Define two types of scores for each node 44
4.11 Detect white nodes for edge(w_2, w_3) 50
4.12 Detect white nodes for edge(w_2, w_3) 51

5.1 Effectiveness of the bounding step and the pruning step on the e-Fashion dataset 59
5.2 Effectiveness of the bounding step and the pruning step on the Super-storeSales dataset 59
5.3 Efficiency of the Top-\(k\) query answering method and the complete query answering method on the e-Fashion dataset under various number of tuples 61

5.4 Efficiency of the Top-\(k\) query answering method and the complete query answering method on the SuperstoreSales dataset under various number of tuples 61

5.5 Efficiency of the Top-\(k\) query answering method and the complete query answering method on the e-Fashion dataset under various number of dimensions 62

5.6 Efficiency of the Top-\(k\) query answering method and the complete query answering method on the SuperstoreSales dataset under various number of dimensions 62

5.7 Effect of the parameter \(k\) on the e-Fashion and the SuperstoreSales datasets 63
Chapter 1

Introduction

More and more relational databases contain textual data and thus keyword search on relational databases becomes popular. Although many users are not familiar with the SQL language or the Database schemas, they still require searching in relational Databases (RDBs). These users can easily retrieve information from text-rich attributes using keyword search on RDBs.

Aggregate keyword search [26] was recently applied on relational databases to address the following search problem: given a set of keywords, find a set of aggregates such that each aggregate is a group-by covering all query keywords.

Aggregate keyword search on relational databases has attracted a lot of attention from academia [26, 7, 25, 6, 15, 5, 16]. A few critical challenges have been identified, such as how to develop efficient approaches for finding all minimal group-bys [26] or top-k relevant cells [7, 6] to a user given keyword query. Moreover, aggregate keyword search is useful in many applications and thus attracted interest from industry. For example, our work on aggregate keyword search has been supported by SAP Business Object and a prototype has been implemented to help find useful information in their business datasets.

For aggregate keyword search, each group-by that covers all query keywords is an answer. In our work, if a group-by is an answer and one of its descendants (the definition is in Section 2.1) is also an answer, this group-by is not a minimal answer. Our search engine only returns minimal answers.

Generally, aggregate keyword search can be viewed as the integration of online analytical processing (OLAP) and keyword search, since conceptually the aggregate keyword search methods conduct keyword search in a data cube. [26]
Example 1 (Motivations) An uploaded spreadsheet about laptops is first transformed into a relational table, as shown in Table 1.1. Scott, a customer planning to buy a laptop, is interested in finding a beautiful design, light and sturdy laptop.

While searching individual tuples using keywords is useful, in our example, current keyword search methods may not find a single tuple in the table that contains all the keywords \{“beautiful design”, “light”, “sturdy”\}. No single tuple can summarize the information required by Scott.

However, the aggregate group-by (Apple, Mac, *, *, *) may be interesting, since most of the Mac products are beautiful designed and sturdy, and some of them are thin and light. Scott can easily find a MacBook Air laptop that satisfies his requirements if he goes to the apple store and focuses on the Mac products. The * signs on attributes Model, Selling Point and Customer Reviews mean that Scott can choose from several Mac products with different selling points and reviews. To make his shopping plan effective, Scott may want to have the aggregate as specific as possible, which tends to cover a small number of brands and series. In summary, the task of aggregate keyword search is to find minimal group-bys in the laptop database such that for each of such aggregates, all keywords are contained by the union of the tuples in the aggregate.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Series</th>
<th>Model</th>
<th>Selling Point</th>
<th>Customer Reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>Mac</td>
<td>11 Air</td>
<td>beautiful design</td>
<td>dramatically fast</td>
</tr>
<tr>
<td>Apple</td>
<td>Mac</td>
<td>13 Air</td>
<td>weights little</td>
<td>thin, light</td>
</tr>
<tr>
<td>Apple</td>
<td>Mac</td>
<td>15 Pro</td>
<td>desktop replacement</td>
<td>sturdy and powerful</td>
</tr>
<tr>
<td>Lenovo</td>
<td>ThinkPad</td>
<td>T420</td>
<td>portability</td>
<td>good build quality</td>
</tr>
</tbody>
</table>

Table 1.1: An example of the laptop database

Two problems still remain for aggregate keyword search. First, aggregate keyword search is still costly on large relational databases, partly due to the lack of efficient indexes. For example, the keyword graph index [26] is used to help quickly generate all aggregate groups for a keyword query. However, it usually takes a long time to construct and has a large space consumption, as shown in Table 1.2.

The second problem is that finding the top-\(k\) answers to an aggregate keyword query has not been addressed systematically. Since aggregate keyword search on large relational databases may find a huge number of answers, ranking the answers effectively becomes important. Moreover, it is necessary to develop efficient top-\(k\) algorithm to
Table 1.2: Construction time and space consumption of the keyword graph index [26] for each dataset

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Construction Time</th>
<th>Space Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-Fashion (308KB)</td>
<td>2 hours 57 mins</td>
<td>≥ 1.0 GB</td>
</tr>
<tr>
<td>SuperstoreSales (2MB)</td>
<td>> 3 hours</td>
<td>≥ 1.5 GB</td>
</tr>
<tr>
<td>CountryInfo (19KB)</td>
<td>17 mins</td>
<td>≥ 0.5 GB</td>
</tr>
</tbody>
</table>

find the top-\(k\) most relevant aggregates. Although [7, 6] develop efficient methods to find top-\(k\) relevant cells for an aggregate keyword query, such a relevant cell may not match all the query keywords. [26] proposes two approaches to find all the minimal group-bys for an aggregate keyword query and each minimal group-by matches all the query keywords, but these minimal group-bys are unranked and there is no top-\(k\) algorithm in [26].

In this thesis, we tackle the above two problems to improve the efficiency and effectiveness of aggregate keyword search on large relational databases. We design indexes efficient both in size and in constructing time. We propose a general ranking model and an efficient ranking algorithm. We also report a systematic performance evaluation using real data sets.

The rest of the thesis is organized as follows. In Chapter 2, we formulate the aggregate keyword search problem and review the previous studies related to our work. We discuss the index design in Chapter 3. The top-\(k\) query answering method is presented in Chapter 4. We report an empirical evaluation in Chapter 5, and finally conclude the thesis in Chapter 6.
Chapter 2

Problem Definition and Related Work

For the sake of simplicity, we follow the terminology in [26] throughout the thesis. We first review some basic concepts used in our aggregate keyword search model in Section 2.1, then formally state the problem in Section 2.2 and analyze the related works in Section 2.3.

2.1 Preliminaries

We first review some definitions introduced in [26].

Definition 1 (Group-by, Cover, Base group-by, Ancestor and Descendant [26]) Let \(T = (A_1, \cdots, A_n) \) be a relational table. A group-by on table \(T \) is a tuple \(c = (x_1, \cdots, x_n) \) where \(x_i \in A_i \) or \(x_i = * \) (\(1 \leq i \leq n \)), and * is a meta symbol meaning that the attribute is generalized. The cover of group-by \(c \) is the set of tuples in \(T \) that have the same values as \(c \) on those non-* attributes, that is, \(\text{Cov}(c) = \{(v_1, \cdots, v_n) \in T | v_i = x_i \text{ if } x_i \neq *, 1 \leq i \leq n \} \).

A base group-by is a group-by which takes a non-* value on every attribute.

For two group-bys \(c_1 = (x_1, \cdots, x_n) \) and \(c_2 = (y_1, \cdots, y_n) \), \(c_1 \) is an ancestor of \(c_2 \), and \(c_2 \) a descendant of \(c_1 \), denoted by \(c_1 \succ c_2 \), if \(x_i = y_i \) for each \(x_i \neq * \) (\(1 \leq i \leq n \)), and there exists \(k(1 \leq k \leq n) \) such that \(x_k = * \) but \(y_k \neq * \).

The query model of aggregate keyword search on relational database in [26] is defined as follows:
Definition 2 (Aggregate keyword query) [26] Given a table T, an aggregate keyword query is a 3-tuple $Q = (D, C, W)$, where D is a subset of attributes in table T, C is a subset of text-rich attributes in T, and W is a set of keywords. We call D the aggregate space and each attribute $A \in D$ a dimension. We call C the set of text attributes of Q. D and C do not have to be exclusive to each other.

In this thesis, we only consider short queries. So, we assume that the number of keywords in each aggregate keyword query is small.

Definition 3 (Minimal Answer) [26] A group-by c is a minimal answer to an aggregate keyword query Q if c is an answer to Q and every descendant of c is not an answer to Q.

As mentioned in Chapter 1, users may prefer specific information, so our method needs to guarantee that every returned group-by is minimal.

Definition 4 (Max-join) [26] For a set of tuples t_1 and t_2 in table T, the max-join of t_1 and t_2 is a tuple $t = t_1 \lor t_2$ such that for any attribute A in T, $t[A] = t_1[A]$ if $t_1[A] = t_2[A]$, otherwise $t[A] = \ast$. We call $(\ast, \ast, \cdots, \ast)$ a trivial answer.

Lemma 1 (Max-join on answers) [26] If t is a minimal answer to aggregate keyword query $Q = (D, C, \{w_1, \cdots, w_m\})$, then there exists minimal answers t_1 and t_2 to queries $(D, C, \{w_1, w_2\})$ and $(D, C, \{w_2, \cdots, w_m\})$, respectively, such that $t = t_1 \lor t_2$.

According to Lemma 1, if we already know answers Ans_1 for $(D, C, \{w_1, w_2\})$ and answers Ans_2 for $(D, C, \{w_2, \cdots, w_m\})$, we can generate answers for query $Q = (D, C, \{w_1, \cdots, w_m\})$ by performing max-join on Ans_1 and Ans_2. For example, if $t_1 \in Ans_1$ and $t_2 \in Ans_2$, we can get an answer $t = t_1 \lor t_2$ for query Q.

The retrieval model of aggregate keyword search on relational databases in [26] is: given an aggregate query $Q=(D,C,\{w_1, \cdots, w_m\})$, it first performs max-join on each pair of rows in the database to get a set of answers $\{Ans_1, Ans_2, \ldots, Ans_{m-1}\}$ for $(D,C,\{w_1,w_2\})$, $(D,C,\{w_2,w_3\}), \ldots, (D,C,\{w_{m-1}, w_m\})$; using Lemma 1 repeatedly, answers for query Q can then be generated by performing max-join on $Ans_1, Ans_2, \ldots, Ans_{m-1}$.

Proof 1 [26] Since t is a minimal answer, there must exist one group-by (based on t) that has tuples matching $\{w_1, w_2, \cdots, w_m\}$. This group-by also matches $\{w_1, w_2\}$ and
Thus, there must exist minimal answers \(t_1 \) and \(t_2 \) for queries \(\{w_1, w_2\} \) and \(\{w_2, \ldots, w_m\} \), and \(t_1 \) and \(t_2 \) may be equal to \(t \), or \(t_1 \) and \(t_2 \) may be a descendant of \(t \). So \(t_1 \lor t_2 \) could be equal to \(t \), or \(t_1 \lor t_2 \) could be a descendant of \(t \). The latter one is not possible, since \(t \) is a minimal answer (because \(t_1 \lor t_2 \) is also an answer to \(\{w_1, w_2, \ldots, w_m\} \)).

Property 1 [26] To answer query \(Q = (D, C, \{w, \ldots, w_m\}) \), using Lemma 1 repeatedly, we only need to check \(m - 1 \) edges covering all keywords \(w_1, \ldots, w_m \) in the clique. Each edge is associated with the set of minimal answers to a query on a pair of keywords. The weight of the edge is the size of the answer set. In order to reduce the total cost of the joins, heuristically, we can find a spanning tree connecting the \(m \) keywords such that the product of the weights on the edges is minimized.

Definition 5 (Keyword Graph Index) [26] Given a table \(T \), a keyword graph index is an undirected graph \(G(T) = (V, E) \) such that 1) \(V \) is the set of keywords in the table \(T \); and 2) \((u, v) \in E \) is an edge if there exists a non-trivial answer to query \(Q_{uv} = (D, C, \{u, v\}) \). Edge \((u, v) \) is associated with the set of minimal answers to query \(Q_{uv} \).

Zhou and Pei [26] proved that 1) if there exists a nontrivial answer to an aggregate keyword query \(Q \), the keyword graph index exists a clique on all keywords of \(Q \) (Theorem 3 in [26]).

We define the query keyword graph as follows.

Definition 6 (Query Keyword Graph) Given a table \(T \), a query keyword graph for the aggregate keyword query \(Q \) is an undirected graph \(G(T, Q) = (V, E) \) such that 1) \(V \) is the set of query keywords in \(Q = (D, C, \{w_1, \ldots, w_m\}) \); and 2) \((w_i, w_j) \in E \) is an edge if there exists a non-trivial answer to query \((D, C, \{w_i, w_j\}) \), Edge \((w_i, w_j) \) is associated with the set of minimal answers to query \((D, C, \{w_i, w_j\}) \), \(1 \leq i, j \leq m \).

Example 2 (Keyword Graph Index and Query Keyword Graph) As shown in Table 2.1, a table \(T \) has 3 text attributes and 3 tuples (or base group-bys). Its keywords are \(w_1, w_2, w_3 \) and \(w_4 \). We perform max-join on each pair of tuples in table \(T \) and get the following group-bys:

Group-by \(g_1 : (\ast, w_3, w_2) \)
CHAPTER 2. PROBLEM DEFINITION AND RELATED WORK

Table 2.1: An example of table T

<table>
<thead>
<tr>
<th>RowID</th>
<th>TextAttri1</th>
<th>TextAttri2</th>
<th>TextAttri3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>w1</td>
<td>w3</td>
<td>w2</td>
</tr>
<tr>
<td>r2</td>
<td>w4</td>
<td>w3</td>
<td>w2</td>
</tr>
<tr>
<td>r3</td>
<td>w1</td>
<td>w3</td>
<td>w4</td>
</tr>
</tbody>
</table>

Group-by $g_2 : (w_1, w_3, \ast)$
Group-by $g_3 : (\ast, w_3, \ast)$
Base Group-by $r_1 : (w_1, w_3, w_2)$
Base Group-by $r_2 : (w_4, w_3, w_2)$
Base Group-by $r_3 : (w_1, w_3, w_4)$

The corresponding Keyword Graph Index is shown in Figure 2.1. Each edge (w_i, w_j) in Figure 2.1 contains a set of group-bys and each such group-by is a minimal answer to the query $(D, C, \{w_i, w_j\})$. For example, edge (w_1, w_2) contains a base group-by r_1, which is a minimal answer to the query $(D, C, \{w_1, w_2\})$.

Figure 2.1: The Keyword Graph Index

For the aggregate keyword query $(D, C, \{w_1, w_2, w_3\})$, a corresponding query keyword graph would be constructed during the query processing period, as shown in Figure 2.2.

The number of edges in the keyword graph index is $O(|V|^2)$, where V is the set of keywords in the relational database. For a small relational database, the number of keyword in the database is limited and the corresponding keyword graph index can be maintained easily. As the database grows larger, the number of keyword increases and
2.2. PROBLEM STATEMENT AND SOLUTION

The difference between the query keyword graph and the keyword graph index is that vertices of the former are keywords in the query Q and vertices of the latter are keywords in the database.

Since the number of keywords in a query is much smaller than the number of keywords in a relational database, the query keyword graph is much smaller than the keyword graph index [26] and can be constructed quickly.

Theorem 1 (Query Keyword Graph) For an aggregate keyword query Q, there exists a non-trivial answer to Q in table T only if in the query keyword graph $G(T,Q)$ is a clique.

Proof 2 Let c be a non-trivial answer to $Q = (D,C,W)$. Then, for any $u,v \in W$, c must be a non-trivial answer to query $Q_{u,v} = (D,C,\{u,v\})$. That is, (u,v) is an edge in $G(T,Q)$.

2.2 Problem Statement and Solution

2.2.1 Indexing

As discussed in Section 2.1, the number of edges in the keyword graph index on a relational database is $O(|V|^2)$, where V is the set of keywords in the database. As the database grows larger, the number of keyword increases and the keyword graph index becomes less efficient. Table 1.2 shows the sizes, as well as the constructing times of three keyword graph indexes on different datasets.
Our solution is to build a new index, such that its stored information can be used to construct a query keyword graph during the query-processing period. The aggregate information in the query keyword graph is then used to generate minimal answers. If the query contains \(m \) keywords, to construct the query keyword graph, we need build \(m - 1 \) edges. The construction time of the query keyword graph grows linearly with the number of keywords in the query. Since we assume that the number of keywords in a query is small, the query keyword graph is very small and can be constructed quickly.

Our complete query-answering method successfully uses the new index to generate all the minimal answers to a keyword query.

2.2.2 Ranking

Although many non-minimal answers are pruned during the query processing period, the number of minimal answers to a keyword query could still be large. For example, there are about 1000 minimal answers to some aggregate keyword query on the SuperstoreSales dataset (8300 tuples and 21 dimensions). It is necessary to provide users with top-\(k \) most relevant minimal answers.

We define several features on the group-by. The overall score function of the group-by is a linear combination of those features. We then develop efficient pruning methods to quickly find the top-\(k \) results.

2.3 Related Work

In general, our study is related to the existing work on keyword search on relational databases and keyword-based search in data cube. In this Section, we review some representative studies and point out the differences between those studies and our work.

2.3.1 Keyword Search on Relational Databases

Keyword search on relational databases is an active topic in database research nowadays. It is an integration of information retrieval and database technology [22]. Several interesting and effective solutions and prototype systems have been developed in this field.

Zhou and Pei [26] study keyword based aggregation on large relational databases using minimal group-bys. Given a table, it constructs a keyword graph index, which
would be used during the online query processing period to generate all minimal answers that contain all the user given keywords. Each edge in the keyword graph index is corresponding to a pair of keywords. Minimal answers to every pair of keywords are pre-calculated and stored in the keyword graph index. To answer an aggregate keyword query \(Q \), it first scans the keyword graph index to check if there exists a clique on all the query keywords. If so, it then performs max-join repeatedly on \(|Q| - 1\) edges in that clique and finds nontrivial minimal answers from the max-join results. If not, there are no nontrivial minimal answers to \(Q \). The workflow of constructing a keyword graph index is shown in Algorithm 1 [26].

\[
\text{Algorithm 1 The Keyword Graph Index construction algorithm. [26]} \\
\text{Require:} \\
\quad \text{A table } T; \\
\text{Ensure:} \\
\quad \text{A keyword graph } G(T) = (V, E); \\
1: \text{for each row } r_1 \in T \text{ do} \\
2: \quad \text{for each keyword } w_1 \in r_1 \text{ do} \\
3: \quad \quad \text{for each row } r_2 \in T \text{ do} \\
4: \quad \quad \quad \text{gb} = r_1 \lor r_2; \\
5: \quad \quad \quad \text{for each keyword } w_2 \in r_2 \text{ do} \\
6: \quad \quad \quad \quad \text{add gb to edge } (w_1, w_2); \\
7: \quad \quad \quad \quad \text{remove non-minimal answers on edge } (w_1, w_2); \\
8: \quad \quad \text{end for} \\
9: \quad \text{end for} \\
10: \text{end for} \\
11: \text{end for}
\]

Algorithm 1 [26] conducts a self-maximum join on the table \(T \) to construct the keyword graph index. For two rows \(r_1 \) and \(r_2 \), it performs max-join on them and add the max-join result to all edges of \((u, v)\) where \(u \) and \(v \) are contained in \(r_1 \) and \(r_2 \). After removing those non-minimal answers, all the minimal answers for every pair of keywords are stored in the graph index.

In this thesis, we design a new index which is more efficient than the keyword graph index [26]. The details will be discussed in the next chapter. The new index can be used to quickly construct a small query keyword graph which has the same usage as the keyword graph index. We also develop efficient and effective methods to rank the minimal answers.

There are also a number of works on relational databases in the literature.
Balmin et al. [2] treat the database as a labeled graph. It builds a labeled graph index which has a natural flow of authority. For example, to generate a labeled graph index on the DBLP database, 1) it extracts some labels (conference, year, paper and author) from the DBLP database; 2) a schema graph is built based on the relationships of these labels, as shown in Figure 2.3; and 3) the labeled graph index is obtained by annotating the schema graph, Figure 2.4 shows a subset of the labeled graph on the DBLP database. Given a keyword query, Balmin et al. [2] applies a PageRank algorithm to find nodes (in the labels graph) that have high authority with respect to all query keywords.

![Image](image1.png)

Figure 2.3: The DBLP schema graph [2]

![Image](image2.png)

Figure 2.4: A subset of the DBLP graph [2]

The index in Hristidis et al. [12] is combined of a set of joining networks, each
represents a row that could be generated by joining rows in multiple tables using primary
and foreign keys. Given a keyword query, it scans the index to find relevant joining
networks such that each relevant joining network contains all the query keywords.

Agrawal et al. [1] implements a keyword-based search system (DBXplorer) on a
commercial database. Such a system returns relevant rows as answers such that each
relevant row contains all the query keywords. Its index contains a symbol table which
can help to quickly locate the query keywords in the relational database.

Bhalotia et al. [4] designs a graph index on the database. Each node represents a
row and each edge represents an application-oriented relationship of two rows. Given a
keyword query, it scans the index to find Steiner trees [11] that contain all the query
keywords.

These previous studies [2, 12, 1, 4] focus on finding relevant tuples instead of aggregate
cells, so their indexes, score functions and top-k algorithms can hardly be extended
to solve our problems.

2.3.2 Keyword-based search in data cube

In data cubes built on top of databases, B. Ding et al. [7, 6] find the top-k most
relevant cells for a keyword query, while B. Zhao et al. [25] and Wu et al. [24] support
interactive exploration of data using keyword search.

B. Ding et al. [7, 6] study the keyword search problem on data cube with text-rich
dimensions, which is the work most relevant to ours. They rank cells within the data
cube of a database according to their relevance for the query \(q \). The relevance score
of a cell \(C_{cell} \) is defined as a function \(rel(q, C_{cell}) \) of the cell document \(C_{cell}[D_{cell}] \) and
the query \(q \). In their work, a base group-by is treated as a document and documents
covered by a cell \(C_{cell} \) is treated as a “big document” (also called cell document of \(C_{cell} \),
represented by \(C_{cell}[D_{cell}] \)). The relevance score of the cell \(C_{cell} \) is the relevance of this
big document with respect to \(q \). In summary, they use an IR style model to design the
score function of a cell.

The score function used in [7] is as follows:

\[
rel(q, C_{cell}) = \sum_{t \in q} \ln \left(\frac{N - df_t + 0.5}{df_t + 0.5} \right) + \frac{(k_1 + 1)t_{f_t,D_{cell}}}{k_1((1 - b) + b \frac{df_{t,D_{cell}}}{avdf}) + t_{f_t,D_{cell}}} + \frac{(k_3 + 1)q_{t,f_t,q}}{k_3 + q_{t,f_t,q}}
\]

(2.1)
where N is the number of rows in the database, D_{cell} is the big document of C_{cell}, $t_{f,t,D_{cell}}$ is the term frequency of term $t \in q$ in D_{cell}, df_t is the number of documents in the database containing t, dl_D represents the length of D_{cell}, $avdl$ is the average length of documents covered by C_{cell}, $qt_{f,t,q}$ is the number of times t appearing in q, and k_1, b, k_3 are the parameters used in Okapi BM25 [20, 19].

Since the parameters of Okapi BM25 are query- and collection (cell)-dependent, this score function may suffer from the problem of tuning parameters.

To find the top-k relevant cells, B. Ding proposes four approaches in [7]: inverted-index one-scan, document sorted-scan, bottom-up dynamic programming, and search-space ordering. In [6], another two approaches are proposed: TACell and BoundS.

The inverted-index one-scan method generates and scores all the non-empty cells. Since the number of non-empty cells increases exponentially with respect to the dimensionality of the database, this method is efficient only when the number of dimensions is small (from 2 to 4). Its workflow is as follows.

\begin{algorithm}[H]
\caption{One-Scan Inverted Index Algorithm. [7]}
\label{alg:one-scan}
\begin{algorithmic}
\Require
A table T;
\Ensure
Top-k cells with highest scores;
\For {each tuple $t \in T$}
\For {each cell $C_{cell} \in$ ancestors of t and $|C_{cell}| \geq \text{minsup}$}
\State Update the score of C_{cell} using the score of t;
\EndFor
\EndFor
\State Output cells C_{cell}’s with the top-k highest score.
\end{algorithmic}
\end{algorithm}

The document sorted-scan approach uses a priority queue to keep candidate cells in the descending order of relevance. All rows (documents) of the database are scanned in the descending order of relevance in the beginning. Similar to the inverted-index one-scan method, once a row is scanned, all the cells covering it are explored. It then calculates the relevance scores of the explored cells. As we discussed earlier, rows covered by a cell are treated as a “big document” and they use the mentioned IR style score function to calculate the score of the cell from its big document. Finally, if an explored cell does not cover any non-scanned rows in the database and the number of its covered rows is larger than a threshold, it would be inserted into the priority queue. Top-k cells
are selected from the priority queue. For this method, once a row is scanned, 2^n cells are explored in a n-dimension cube. So the numbers of candidate cells and explored cells increase very quickly. Although the complexity of this method is worse than the inverted-index one-scan, it may terminate earlier before scanning all rows.

Different from the above one-scan and sorted-scan approaches which compute the relevance score of a cell from rows in the database, the bottom-up approach and the search-space ordering approach compute the score of a cell from its children cells in a dynamic-programming manner. The following example shows the relationship of a cell C_{cell} and its children cells.

Example 3 Given a database with 3 dimensions, suppose the first dimension only contains 2 unique values “x_1” and “x_2” in the database, if $C_{\text{cell}} = (\ast, \ast, x_3)$, $C_1 = (x_1, \ast, x_3)$ and $C_2 = (x_2, \ast, x_3)$ (C_1 and C_2 are the children of C_{cell}), we can quickly find out that $\text{Cov}(C_{\text{cell}}) = \text{Cov}(C_1) + \text{Cov}(C_2)$. So, we have two properties:

Property 2 The score of cell C_{cell} can be easily computed from the scores of C_1 and C_2.

Property 3 For any non-base cell C_{cell} in text cube and any query q, there exists two children C_i and C_j of C_{cell} such that $\text{rel}(q, C_i) \leq \text{rel}(q, C_{\text{cell}}) \leq \text{rel}(q, C_j)$. The proof is given in Section 3 of [7].

The bottom-up approach is based on a dynamic programming algorithm which directly utilizes property 2. The algorithm first computes the relevance scores $\text{rel}(q, C_{\text{cell}})$ for all rows (n-dimension base cells). By using property 2, it then computes the relevance scores from the base cells to higher levels. Finally, after the relevance scores of all cells are obtained, it outputs the top-k relevant ones with supports no less than a threshold. Since the score of a cell on a certain level can be quickly calculated from its children cells on the lower level, which is faster than computing from cells on the base level, the bottom-up is more efficient than the previous two approaches. However, the bottom-up method still needs to calculate the scores of all the cells, so it’s efficient only when the number of dimensions is small.

The search-space ordering method carries out cell-based search and explores as small number of cells in the cube as possible to find the top-k answers. Property 2 and property 3 are utilized in this method. Since the search space can be pruned using property 3,
this method avoids exploring all cells in the text cube and is more efficient than the previous three approaches.

The above four approaches do not pre-process the database to build corresponding index offline, which may make the online query processing less efficient. So, B. Ding et al. [6] develop another two approaches, TACell and BoundS, which use the index built offline.

The TACell method extends the threshold algorithm (TA) [9] for finding the top-k relevant cells with respect to a given keyword query \(q \). It treats each cell as a ranking object in TA and needs to build an offline index containing many sorted lists. Given a database, it first generates all the non-empty cells; for each term \(t \) in the database, it creates a sorted list of cells \(L_t \), where the generated cells are sorted in the descending order of term frequency of \(t \) in each cell document (big document). It also creates another sorted list \(L_{len} \), where cells are sorted in the ascending order of the lengths of cell documents. So, if the \(n \)-dimension database (\(N \) rows) contains \(M \) terms, the number of sorted lists is \(M + 1 \). On large relational databases, the number of terms is huge and the total number of non-empty cells is \(\Omega(N \cdot 2^n) \). Such an index may not be efficient since its space consumption could be too large to keep the whole index in memory and thus this method may have additional IO cost during the online query processing period.

The index of BoundS only contains some inverted indices for all terms with respect to the rows in the database. Compared with TACell, BoundS is more efficient in building the offline index but consumes more time for online queries. The basic idea of online processing in BoundS is to estimate and update the lower bounds and upper bounds of the relevance scores of the cells (explored when scanning the database rows) to prune some non-top-k cells.

TACell and BoundS apply an IR-style relevance model for scoring and ranking cell documents in the text cube.

\[
q = \{t_1, t_2, ..., t_l\}
\]

\[
rel(q, C_{cell}) = s(t_{f_{t_1}}, t_{f_{t_2}}, ..., t_{f_{t_l}}, |D_{cell}|)
\]

(2.2)

where \(t_{f_{t_i}} \) is the term frequency (the occurrence count of a term in a document [21, 23]) of the \(i_{th} \) term of \(q \) in the cell document \(D_{cell} \) of \(C_{cell} \), and \(s \) is a user defined function.
The score function $s()$ needs to be monotone to ensure the correctness of TACell and BoundS. B. Ding et al. [6] use a simple monotone function which considers the term frequency and document length (terminology in IR). If more IR features (such as df_t and $qt(f_t,q)$) are considered in the score function, 1) more sorted lists need to be created in TACell and thus its index would have an even larger space consumption; and 2) the upper bounds and lower bounds defined in BoundS may no longer be applicable.

In BoundS, B. Ding et al. [6] assume that the length of each cell’s big document (document length) is precomputed, so B. Ding et al. [6] only need to consider the term frequency when estimating the lower bounds and upper bounds of the relevance scores of the cells. In such a case, if more rows are scanned, the number of times a query term appear in a cell’s big document will possibly increase. Then, bounds can be estimated since the score function is monotonically increasing with respect to the term frequency. If more IR features are considered in the score function, the score of a cell may decrease when more rows are scanned. Moreover, if the score function only considers term frequency and document length, the query processing time may be short but the quality of the top-k cells may not be guaranteed.

Wu et al. [24] propose a system (KDAP) which supports interactive exploration of data using keyword search. Given a keyword query, the system first generates the candidate subspaces in an OLAP database such that each subspace essentially corresponds to a possible join path between the dimensions and the facts. It then ranks the subspaces and asks users to select one subspace. Finally, it computes the group-by aggregates over some predefined measure using qualified fact points in the selected subspace and finds the top-k group-by attributes to partition the subspace.

B. Zhao et al. [25] propose a similar keyword-based interactive exploration framework called TEXplorer. Different from the work in [26, 7, 6], whose goal is to return a ranked list of the cells directly, TEXplorer guides users to find their interested information step by step.

Given a keyword query q and a table T, TEXplorer first calculates the significance of each dimension of the table T using a novel significance measure. A user then determine which dimension to drill down. Once the user drill down a certain dimension, cells in the corresponding cuboid are ranked by using the following equation. The user can select an interested cell C_{cell} from a list of ranked cells in that cuboid.
\[\text{Rel}(q, C_{\text{cell}}) = \frac{1}{|D_{\text{cell}}|} \sum_{d \in D_{\text{cell}}} \text{rel}(q, d) \]
\[\text{rel}(q, d) = \sum_{w \in q} \text{IDF}_w \times TFW_{w,d} \times QTW_{w,q} \]

where \(D_{\text{cell}} \) represents the cell documents (terminology in [7, 6]) of cell \(C_{\text{cell}} \), \(\text{rel}(q, d) \) is the relevance of a document \(d \) (a row is treated as a document) with respect to \(q \), \(\text{IDF}_w \) is the inverted document frequency factor of term \(w \in q \), \(TFW_{w,d} \) represents the term frequency factor of \(w \) in document \(d \), and \(QTW_{w,q} \) is the query term frequency factor of \(w \) in \(q \).

In the second stage of TEXplorer, the rest dimensions and cells in each dimension are re-ranked based on the selected cell \(C_{\text{cell}} \). Users can repeat to drill down another dimension and select a cell (a child of cell \(C_{\text{cell}} \)) in the corresponding cuboid. Figure 2.5 is a running example of TEXplorer in [25]. It shows how a user uses the TEXplorer to find a powerful laptop suitable for gaming step by step.

![Figure 2.5: Keyword-based interactive exploration in TEXplorer [25]](image)

In TEXplorer, the significance of a dimension \(A_i \) is measured by \(CV_{A_i} \) and \(IDV_{A_i} \), as shown in Equation 2.4. The \(CV \) function measures how much the relevance of each of \(C_{\text{cell}} \)'s \(A_i \)-children deviates from the relevance of \(C_{\text{cell}} \). For instance, in [25], given...
a database with 3 dimensions “Brand”, “Screen” and “Model”, suppose the dimension “Model” only contains 2 unique values “ThinkPad” and “IdeaPad” in the database. If the selected cell $C_{\text{cell}} = (\text{Lenovo}, *, *)$, the “Model”-child of C_{cell} are $C_1 = (\text{Lenovo}, *, \text{ThinkPad})$ and $C_2 = (\text{Lenovo}, *, \text{IdeaPad})$. If C_1 is very relevant (its relevance score is much larger than that of C_{cell}) to the query “long battery life” while C_2 is not (its relevance score is much smaller than that of C_{cell}), then users might be more interested in drilling down dimension “Model” from cell C_{cell}. The IDV function considers the documents (rows) in each of the A_i-child of C_{cell}. If these documents are consistent with respect to the query q, i.e., they are either all relevant to q or all irrelevant to q, then it implies the relevance of this cell is of high confidence.

\[\text{Sig}_{A_i}(q, C_{\text{cell}}) = CV_{A_i}(q, C_{\text{cell}}) \times IDV_{A_i}(q, C_{\text{cell}}) \]

\[CV_{A_i}(q, C_{\text{cell}}) = \frac{\sum_{C'_{\text{cell}} \in \text{chd}_{A_i}(C_{\text{cell}})} |C'_D| \times (\text{Rel}(q, C'_{\text{cell}}) - \text{Rel}(q, C_{\text{cell}}))^2}{|\text{chd}_{A_i}(C_{\text{cell}})| - 1} \]

\[IDV_{A_i}(q, C_{\text{cell}}) = \frac{|C_D| - |\text{chd}_{A_i}(C_{\text{cell}})|}{\sum_{C'_{\text{cell}} \in \text{chd}_{A_i}(C_{\text{cell}})} (\sum_{d \in C'_{D}} (\text{rel}(q, d) - \text{Rel}(q, C'_{\text{cell}}))^2) \right)} \]

(2.4)

where $\text{chd}_{A_i}(C_{\text{cell}})$ represents A_i-child of C_{cell}.

More related work can be found in [5, 13], which give an overview of the state-of-the-art techniques for supporting keyword-based search and exploration on databases. Different from our work, the top-k cells found in [7, 6] are not guaranteed to contain all the query terms and works in [25, 24] address a different application scenario from us. In this thesis, we extend [26] and focus on the efficiency and the effectiveness issues of keyword search on relational databases.
Chapter 3

The Efficient Index

Without building any index on a relational database, we need to scan the whole database online to generate all the minimal group-bys for an aggregate keyword query. There is no problem if the queries are very long. However, as mentioned in Chapter 2, we only consider short queries. In such a case, building index can make the aggregate keyword search more efficient.

As the relational database grows larger, the keyword graph index [26] may a high space consumption and thus requires additional IO operations when memory is not large enough during the query processing period. To make aggregate keyword search more efficient on large relational databases, we design a new index, which is smaller and faster to construct. The new index can be used to correctly generate the same minimal aggregates as the keyword graph index [26]. We test the new index in the complete query answering method.

3.1 Introduction

As discussed in Chapter 2, Zhou and Pei [26] materialized a keyword graph index for fast answering of keyword queries on relational databases.

To help quickly generate minimal answers for a keyword query, minimal answers to every pair of keywords are pre-calculated and stored in the keyword graph index. In other words, for any query that contains only two keywords w_1 and w_2, the minimal answers can be found directly from edge (w_1, w_2) since the answers are materialized on the edge. If the query involves more than 2 keywords and there exists a clique on all the query keywords in the keyword graph index, the minimal answers can be computed
by performing maximum joins on the sets of minimal answers associated with the edges in the clique. So, storing all the minimal answers for each pair of keywords is useful for fast answering of keyword search on relational databases. However, the disadvantage is that it leads to an increase in the space consumption of the keyword graph index.

The number of edges in the keyword graph index is proportional to the square of the number of keywords in the relational database. If the database grows larger or becomes text-richer, the keyword graph index could contain huge number of edges and thus has a high space consumption.

Example 4 (Space Consumption of the Keyword Graph Index) Given a table T with $m = 10^4$ unique keywords and $n = 10$ dimensions, the number of edges in the corresponding keyword graph index is $n_1 = \frac{m \times (m-1)}{2} = 0.5 \times 10^8$. If the average number of minimal answers on each edge is $p = 5$, the keyword graph index contains $n_2 = n_1 \times p = 2.5 \times 10^8$ minimal answers. If we use an integer (4 bytes) to represent a dimension value, the size of a minimal answer is $p' = n \times 4 = 40$ bytes, so the size of the keyword graph index is $p' \times n_2 = 10^{10}$ bytes, which is about 10 GB.

Although the size of the keyword graph index can be decreased if we store all generated group-bys in a set (to prune duplicated group-bys) and replace each group-by in the graph with its position in this set, the space consumption is still a bottleneck and we need to design more efficient index for large relational databases. Such a new index should have less space consumption and can still help quickly generate minimal answers for a keyword query.

3.2 The new index

Our new index is called Inverted Pair-wise Joins (IPJ), which is designed based on the following idea:

The index only needs to store necessary information that can be used to quickly generate the same clique as is used in the keyword graph index [26] during the query processing period.

3.2.1 Definitions

Definition 7 Given a table T, an index is constructed such that:
- **The Pair-wise Joins of a keyword** \(w \) \(PJ[w] = \{ gb \mid gb \text{ is a group-by such that } gb = r_i \lor r_j, \text{ where } w \text{ is a keyword in } T, (r_i, r_j) \text{ is a pair of rows in } T, w \in r_i \text{ or } w \in r_j \} \)

- **The Inverted Pair-wise Joins** \(IPJ = \{ (w, PJ[w]) \mid w \text{ is a keyword in the table } T \} \)

For each keyword \(w \) in the table, the inverted pair-wise joins \(IPJ \) records the corresponding pair-wise joins of \(w \) \((PJ[w]) \). \(PJ[w] \) stores without redundancy all relevant group-bys (non-trivial) such that each relevant group-by is generated by performing max-join operation on a certain pair of rows (at least one row contains the keyword \(w \)).

Example 5 (The Inverted Pair-wise Joins) As shown in Table 3.1, a table \(T \) has \(m = 4 \) text attributes, \(n = 4 \) rows \((r_1, r_2, r_3 \text{ and } r_4) \), and \(p = 12 \) different keywords. Each dimension has \(p' = 3 \) different values. Since the dimension value of a group-by could be \(* \), there are \((p' + 1)^m = (3 + 1)^4 = 256\) possible group-bys and 255 of them are non-trivial group-bys. The index of TACell [6] needs to store \((p + 1) \times 255 = 3315\) group-bys. For the keyword graph index, there are \(\frac{p \times (p-1)}{2} = 66\) edges inside. If the average number of minimal answers on an edge is 2, the keyword graph index needs to store \(66 \times 2 = 132\) group-bys. How many group-bys does \(IPJ \) need to store?

<table>
<thead>
<tr>
<th>RowID</th>
<th>TextAttri1</th>
<th>TextAttri2</th>
<th>TextAttri3</th>
<th>TextAttri4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>(w_{11})</td>
<td>(w_{21})</td>
<td>(w_{31})</td>
<td>(w_{41})</td>
</tr>
<tr>
<td>(r_2)</td>
<td>(w_{11})</td>
<td>(w_{22})</td>
<td>(w_{32})</td>
<td>(w_{42})</td>
</tr>
<tr>
<td>(r_3)</td>
<td>(w_{12})</td>
<td>(w_{22})</td>
<td>(w_{33})</td>
<td>(w_{43})</td>
</tr>
<tr>
<td>(r_4)</td>
<td>(w_{13})</td>
<td>(w_{23})</td>
<td>(w_{33})</td>
<td>(w_{41})</td>
</tr>
</tbody>
</table>

Table 3.1: An example of table \(T \)

We first perform max-join on each pair of rows in table \(T \) and get the following group-bys:

Base Group-by \(r_1 : (w_{11}, w_{21}, w_{31}, w_{41}) = r_1 \lor r_1 \)

Base Group-by \(r_2 : (w_{11}, w_{22}, w_{32}, w_{42}) = r_2 \lor r_2 \)

Base Group-by \(r_3 : (w_{12}, w_{22}, w_{33}, w_{43}) = r_3 \lor r_3 \)

Base Group-by \(r_4 : (w_{13}, w_{23}, w_{33}, w_{41}) = r_4 \lor r_4 \)

Group-by \(g_1 : (w_{11}, *, *, *) = r_1 \lor r_2 \)

Group-by \(g_2 : (*, *, *, *) = r_1 \lor r_3 \)
3.2. THE NEW INDEX

Group-by $g_3 : (\ast, \ast, \ast, w_{41}) = r_1 \lor r_4$

Group-by $g_4 : (\ast, w_{22}, \ast, \ast) = r_2 \lor r_3$

Group-by $g_5 : (\ast, \ast, \ast, \ast) = r_2 \lor r_4$

Group-by $g_6 : (\ast, \ast, w_{33}, \ast) = r_3 \lor r_4$

So there are 4 base group-bys (r_1, r_2, r_3 and r_4) and 4 other non-trivial group-bys (g_1, g_3, g_4 and g_6). Trivial group-bys (g_2 and g_5) are pruned. The inverted pair-wise joins IPJ (Table 3.2) can then be generated according to its definition. For example, we know that only the row r_3 contains the keyword w_{12}, to generate the pair-wise joins for w_{12}, we need perform max-join operations on (r_3, r_3), (r_3, r_1), (r_3, r_2) and (r_3, r_4), the corresponding max-join results are r_3, g_2, g_4 and g_6. Since Group-by g_2 is trivial and should be pruned, $PJ[w_{12}] = \{ r_3, g_4, g_6 \}$.

<table>
<thead>
<tr>
<th>Keywords</th>
<th>$PJ[w]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{11}</td>
<td>r_1, r_2, g_1, g_3, g_4</td>
</tr>
<tr>
<td>w_{12}</td>
<td>r_3, g_4, g_6</td>
</tr>
<tr>
<td>w_{13}</td>
<td>r_4, g_3, g_6</td>
</tr>
<tr>
<td>w_{21}</td>
<td>r_1, g_1, g_3</td>
</tr>
<tr>
<td>w_{22}</td>
<td>r_2, r_3, g_1, g_4, g_6</td>
</tr>
<tr>
<td>w_{23}</td>
<td>r_4, g_3, g_6</td>
</tr>
<tr>
<td>w_{31}</td>
<td>r_1, g_1, g_3</td>
</tr>
<tr>
<td>w_{32}</td>
<td>r_2, g_1, g_4</td>
</tr>
<tr>
<td>w_{33}</td>
<td>r_3, r_4, g_3, g_4, g_6</td>
</tr>
<tr>
<td>w_{41}</td>
<td>r_1, r_4, g_1, g_3, g_6</td>
</tr>
<tr>
<td>w_{42}</td>
<td>r_2, g_1, g_4</td>
</tr>
<tr>
<td>w_{43}</td>
<td>r_3, g_4, g_6</td>
</tr>
</tbody>
</table>

Table 3.2: IPJ of table T

As discussed above, the index of TACell [6] needs to store 3315 group-bys. The keyword graph index needs to store 132 group-bys. Our inverted pair-wise joins IPJ needs to store 44 group-bys (Table 3.3). The construction time tradeoffs for the keyword graph index and the IPJ are shown in Table 3.4.

To further decreased the size of our new index, we can prune duplicate group-bys by storing all generated group-bys in a set and replace each group-by in the inverted pair-wise joins with its position in this set.
3.2.2 How to use the new index?

To capture our intuition, we define the inverted pair-wise joins and test it in our complete query-answering method.

To answer the query \(q = (D, C, \{w_1, \cdots, w_h\}) \), the complete query-answering method first constructs a query keyword graph (Section 2.1) by using our new index.

For example, if the query is \((D, C, \{w_{11}, w_{22}, w_{33}\})\) and the table is Table 3.1, a query keyword graph, as shown in Figure 3.1, is then quickly constructed. The graph is a clique and each node of the graph is a query keyword. For each edge \((w_i, w_j)\) in the clique, the corresponding candidate answers are the intersection of \(PJ[w_i]\) and \(PJ[w_j]\) in the new index (Table 3.2). After pruning non-minimal answers on each edge, the query keyword graph is as shown in Figure 3.2.

Figure 3.1: An example of the Query Keyword Graph

According to property 1, once the clique is generated, the complete query-answering method only needs to check \(h - 1 \) edges covering all keywords \(w_1, \cdots, w_h \) in the clique.

In the above example, the query contains 3 keywords, so only 2 edges need to be checked.

\textbf{Property 1} [26] To answer query \(Q = (D, C, \{w_1, \cdots, w_m\}) \), using Lemma 1 repeatedly, we only need to check \(m - 1 \) edges covering all keywords \(w_1, \cdots, w_m \) in the clique. Each edge is associated with the set of minimal answers to a query on a
3.2. THE NEW INDEX

Figure 3.2: An example of the Query Keyword Graph after pruning non-minimal answers

pair of keywords. The weight of the edge is the size of the answer set. In order to reduce the total cost of the joins, heuristically, we can find a spanning tree connecting the m keywords such that the product of the weights on the edges is minimized.

(Section 2.1) Lemma 1 (Max-join on answers) [26] If \(t \) is a minimal answer to aggregate keyword query \(Q = (D, C, \{ w_1, \ldots, w_m \}) \), then there exists minimal answers \(t_1 \) and \(t_2 \) to queries \((D, C, \{w_1, w_2\})\) and \((D, C, \{w_e, \ldots, w_m\})\), respectively, such that \(t = t_1 \lor t_2 \).

- If we check edge \((w_{11}, w_{22})\) and edge \((w_{22}, w_{33})\), to generate the candidate answers, we need to perform max-join operations on \((r_2, r_3)\). The corresponding results are Group-by \(g_4 \).

- If we check edge \((w_{11}, w_{22})\) and edge \((w_{11}, w_{33})\), to generate the candidate answers, we need to perform max-join operations on \((r_2, g_3)\) and \((r_2, g_4)\). The corresponding results are a trivial group-by and Group-by \(g_4 \).

- If we check edge \((w_{22}, w_{33})\) and edge \((w_{11}, w_{33})\), to generate the candidate answers, we need to perform max-join operations on \((r_3, g_3)\) and \((r_3, g_4)\). The corresponding results are a trivial group-by and Group-by \(g_4 \).

So, no matter which two edges are checked, after pruning unsatisfied (duplicated, trivial, non-minimal) group-bys, the results are the same. In the above example, the complete query-answering method finds one minimal answer (Group-by \(g_4 \)) for the query \((D, C, \{w_{11}, w_{22}, w_{33}\})\).
Suppose there are m rows in the database, if a keyword w appears only in one row of the database, the size of $PJ[w]$ will be less than m since one row only performs max-join with all rows in the database and there may exist duplicated max-join results.

3.2.3 Index Construction Algorithm

To construct the Inverted Pair-wise Joins on a table T, we first create an inverted index L_1 to record information about which rows contain a certain keyword. We then conduct max-join operations on each pair of rows in the table T to construct another inverted index $L_2=\{(r, S[r]) \mid r \text{ is a row in } T, \text{ the corresponding set } S[r] \text{ is null at the beginning}\}$. For example, if the group-by g is the max-join result of row r_1 and r_2, we add g into $S[r_1]$ and $S[r_2]$. Finally, we join L_1 and L_2 to generate our Inverted Pair-wise Joins.

The workflow is summarized in Algorithm 3.

Algorithm 3 The new index construction algorithm.

Require:
- A table T;

Ensure:
- The new index IPJ

1. Create $L_1=\{(w, R[w]) \mid w \text{ is a keyword in } T, R[w] \text{ represents all the rows that contain } w\}$;
2. Create $L_2=\{(r, S[r]) \mid r \text{ is a row in } T, \text{ the corresponding set } S[r] = NULL\}$;
3. **for** each row $r_1 \in T$ **do**
 4. **for** each row $r_2 \in T$ **do**
 5. $g = r_1 \lor r_2$;
 6. Add g into $S[r_1]$ and add g into $S[r_2]$;
 7. **end for**
4. **end for**
9. Create an Inverted Pair-wise Joins $IPJ=\{(w, PJ[w]) \mid w \text{ is a keyword in } T, \text{ the corresponding Pair-wise Joins } PJ[w] = NULL\}$
10. **for** each item $(w, R[w]) \in L_1$ **do**
 11. **for** each row $r \in R[w]$ **do**
 12. Move group-bys from $S[r]$ into $PJ[w]$;
 13. Prune duplicated group-bys in $PJ[w]$;
 14. **end for**
7. **end for**
16. **return** The inverted pair-wise joins $IPJ=\{(w, PJ[w]) \mid w \text{ is a keyword in } T, PJ[w] \text{ is the corresponding Pair-wise Joins}\}$
3.2.4 Advantages of the new index

In summary, our new index has the following advantages compared to the keyword graph index:

- The maintenance is easier.

 For example, if a keyword is deleted, to maintain the keyword graph index [26], we need to find all the corresponding edges and then delete them. So, every edge in the keyword graph index [26] must be checked and the time complexity is \(O(m^2) \), where \(m \) is the number of unique keywords in the table. To maintain our new index, we only need to delete the corresponding item from the inverted pair-wise joins and the time complexity is \(O(m) \).

 It may be costly to maintain \(IPJ \) is a new keyword is added or a row is deleted from the database. To make \(IPJ \) easy to maintain, we can also create two inverted indexes: 1) an inverted index used to record which rows contain a certain keyword; and 2) an inverted index used to record which group-bys are generated by using a certain row. If a new keyword \(w \) is added into \(IPJ \), we can use the first inverted index to find out which rows contain \(w \); we then use the second inverted index to find group-bys that are generated by using the rows found in previous step and add them into the entry of \(w \) in \(IPJ \).

 Suppose there are \(m \) rows and \(n \) dimensions in the database, if a new row is inserted into the database, to maintain our index, this new row needs to perform max-joins with all of the rows in the database and generate at most \(m + 1 \) new group-bys. The time complexity of performing these max-joins is \(O(m \times n) \). Those new group-by are then inserted into the original index. Suppose our index is stored in a hash table and assume that each row contains at most \(p \) keywords. Since each new group-by is the max-join result of two rows, we need to check at most \(2 \times p \) keyword entries for each new group-by. So, the time complexity of inserting those new group-bys is \(O(p \times m) \).

- Smaller and faster to construct. The space complexity of the keyword graph index [26] is \(O(m^2 \times n \times p) \), where \(m \) is the number of unique keywords in the table, \(n \) is the number of dimensions and \(p \) is the average number of minimal answers on each edge in the graph. The space complexity of our new index is \(O(m \times n \times p'') \), where \(p'' \) is the average size of \(PJ[w] \) (\(w \) is a keyword) in our new index.
Example 6 (Space Consumption of IPJ) As discussed in Example 3, Given a table T with $m = 10^4$ unique keywords and $n = 10$ dimensions, assume that the average number of minimal answers on each edge is $p = 5$, if we use an integer (4 bytes) to represent a dimension value, the size of a minimal answer is $p' = 40$ bytes, the size of the keyword graph index is about 10 GB. Assuming that the average size of $PJ[w]$ (w is a keyword) is $p'' = 100$, the size of IPJ is $p'' \times p' \times m = 100 \times 40 \times 10^4 = 40 \times 10^6$ bytes, which is about 40 MB.

Table 3.4 shows the construction time of the two indexes on different datasets (CUP 2.4 GHZ, Memory 2G), from which we can see that our new index is more efficient.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>NumOfEdges</th>
<th>KGI</th>
<th>IPJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-Fashion (308KB)</td>
<td>10^7</td>
<td>2 hour 57 mins</td>
<td>20 seconds</td>
</tr>
<tr>
<td>SuperstoreSales (2MB)</td>
<td>10^{11}</td>
<td>> 3 hour</td>
<td>6 mins</td>
</tr>
<tr>
<td>CountryInfo (19KB)</td>
<td>10^6</td>
<td>17 mins</td>
<td>8 seconds</td>
</tr>
</tbody>
</table>

Table 3.4: Construction time of the Keyword Graph Index (KGI) and IPJ

• The partitioning is easier.

As the database scales up, we need to partition the index. We can partition the index according to the popularity of keywords used in queries, since some keywords are very popular and appear frequently in the queries while other keywords are seldom used. Indexes that contain the popular keywords are then stored in memory. Others can be stored on disk. If there are m keywords in the database, to split the keyword graph index, we need scan m^2 edges. The IPJ is not a graph and it only contains m entries. So we only need to scan m entries to split the IPJ.

3.2.5 Query-answering using IPJ and using the keyword graph index

As we mentioned earlier, if we use the IPJ, we need to spend some additional time to construct a query keyword graph during the query-answering period. So, when the memory space is large enough (or the database is small) such that the IO difference can be ignored, the runtime would become longer if using the IPJ instead of using the keyword graph index. We tested three queries on a small database (308KB). The
memory size in the experiments is 1GB, which is large enough for storing all the data. The results are shown in Table 3.5.

If the memory is not large enough or the database becomes larger, using the keyword graph index would become less efficient because of the additional IO costs. We tested three other queries on a larger database (2MB). The memory size is still 1GB. The results are shown in Table 3.6. In summary, IPJ can help to improve the efficiency for aggregate keyword search on large relational databases.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Query keywords</th>
<th>KGI (msec)</th>
<th>IPJ (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-Fashion</td>
<td>Jackets Leather Sweaters 2001</td>
<td>599</td>
<td>751</td>
</tr>
<tr>
<td>e-Fashion</td>
<td>Jackets Leather Sweaters</td>
<td>591</td>
<td>656</td>
</tr>
<tr>
<td>e-Fashion</td>
<td>2001 2002 2003 Jackets</td>
<td>1797</td>
<td>2668</td>
</tr>
</tbody>
</table>

Table 3.5: Runtime of query-answering on the e-Fashion dataset using Keyword Graph Index (KGI) and using IPJ

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Query keywords</th>
<th>KGI (msec)</th>
<th>IPJ (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperstoreSales</td>
<td>Paper Envelopes Tables</td>
<td>45855</td>
<td>32468</td>
</tr>
<tr>
<td>SuperstoreSales</td>
<td>Roy Matt Collins</td>
<td>13402</td>
<td>1810</td>
</tr>
<tr>
<td>SuperstoreSales</td>
<td>Tracy Truck Box</td>
<td>317118</td>
<td>308757</td>
</tr>
</tbody>
</table>

Table 3.6: Runtime of query-answering on the SuperstoreSales dataset using keyword graph index and using IPJ
Chapter 4

The Top-\(k\) Algorithm

Zhou and Pei [26] return all the minimal answers (unranked) for an aggregate keyword query. As the relational database grows larger, there could be many minimal answers for an individual query. In such a case, finding all the minimal answers without ranking may overwhelm users.

We propose a general ranking model and an efficient ranking algorithm. Our top-\(k\) query answering method provides users with top-\(k\) answers in a short time than computing all minimal answers. It works in two steps, the bounding step and the pruning step, to generate top-\(k\) results. The two steps can help to prune unnecessary max-join operations and save the query processing time.

In this section, we present the scoring function and top-\(k\) query answering method.

4.1 Scoring Function

We define three scoring functions on a group-by: the density score, the dedication score and the structure degree. The overall score of a group-by is a linear combination of these three scores. Table 4.1 presents the symbols and formulas used in this section.

4.1.1 Density Score

We use a density score to measure whether the query keywords appear frequently in the minimal answers. If a group-by has a high density score, it means that query keywords appear frequently in this group-by, and thus this group-by should be ranked high in the search engine.
4.1. SCORING FUNCTION

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>The threshold on the overall score of k generated answers</td>
<td>s</td>
</tr>
<tr>
<td>An aggregate keyword query</td>
<td>Q, $Q = (D, C, {w_1, \cdots, w_n})$</td>
</tr>
<tr>
<td>The number of query terms in Q</td>
<td>$</td>
</tr>
<tr>
<td>Query terms</td>
<td>w_i, $1 \leq i \leq n$</td>
</tr>
<tr>
<td>A table of the relational database</td>
<td>T</td>
</tr>
<tr>
<td>One minimal answer</td>
<td>g</td>
</tr>
<tr>
<td>One black node (group-by) on an edge of the query keyword graph</td>
<td>A_i</td>
</tr>
<tr>
<td>The set of rows covered by g</td>
<td>$Cov(g)$, $Cov(g)={r_1, \cdots, r_m}$</td>
</tr>
<tr>
<td>In $Cov(g)$, rows that contain w_i</td>
<td>N_i, $1 \leq i \leq n$</td>
</tr>
<tr>
<td>The set of sub-queries of Q</td>
<td>C, $C={c_1, \cdots, c_y}$</td>
</tr>
<tr>
<td>One sub-query of Q</td>
<td>c_j, $1 \leq j \leq y$</td>
</tr>
<tr>
<td>In $Cov(g)$, rows that contain c_j</td>
<td>M_j, $1 \leq j \leq y$</td>
</tr>
<tr>
<td>The occurrences of query terms in g</td>
<td>$Num(Q,g)$</td>
</tr>
<tr>
<td>The total number of keywords in g</td>
<td>$Num(g)$</td>
</tr>
<tr>
<td>The density score of g</td>
<td>$Density(g) = \frac{Num(Q,g)}{Num(g)}$</td>
</tr>
<tr>
<td>In T, rows that contain w_i</td>
<td>$DF(w_i)$, $IDF(w_i) = \frac{1}{DF(w_i)}$, $1 \leq i \leq n$</td>
</tr>
<tr>
<td>The dedication of g</td>
<td>$Dedication(g) = \sum_{i=1}^{n} IDF(w_i) \times \frac{N_i}{</td>
</tr>
<tr>
<td>The Structure Degree (SD) of g</td>
<td>$SD(g) = \sum_{j=1}^{y} \frac{</td>
</tr>
</tbody>
</table>

Table 4.1: Symbols and formulas used in Section 4
The feature of term frequency is often used in IR technologies [21, 23]. Since each group-by covers a set of rows in the table T, we can treat these covered rows as a document and similarly consider the query term frequency in these covered rows.

Definition 8 (Density Score) Given an aggregate query Q, the density score of a group-by g is defined as

$$\text{Density}(g) = \text{Density}(\text{Cov}(g)) = \frac{\text{Num}(Q,g)}{\text{Num}(g)}$$

where $\text{Num}(Q,g)$ is the total number of occurrences of query terms in the group-by g, $\text{Num}(g)$ represents the total number of keywords in g, and $\text{Cov}(g)$ represents rows covered by g.

We calculate the density score of a group-by g by using information in its covered rows ($\text{Cov}(g)$). Therefore, in this thesis, $\text{Density}(g)$ and $\text{Density}(\text{Cov}(g))$ are the same.

Example 7 (Density Score) As shown in Figure 4.1, the aggregate keyword search engine returns two minimal group-bys for a user given query. For simplicity, throughout this thesis, we assume all the attributes in the table are text attributes unless otherwise specified. The query Q is $(D,C,\{\text{Austin,Boston,2001}\})$. The two results are $g = "*,*,2001,\text{accessories,*}"$ and $g' = "*,*,*,*,43"$. The number of keywords in group-by g is $\text{Num}(g) = 19$, and the number of query terms in g is $\text{Num}(Q,g) = 7$. So, the density score of group-by g is $\text{Density}(g) = \frac{7}{19} = 0.37$. Similarly, the number of keywords in g' is $\text{Num}(g') = 28$, and the number of query terms in g' is $\text{Num}(Q,g') = 7$, so the density score of group-by g' is $\text{Density}(g') = \frac{7}{28} = 0.25$.

4.1.2 Dedication Score

The feature of IDF (term specific) is often used with term frequency in IR technologies [21, 23]. We use a dedication score to measure whether terms with high IDF scores appear frequently in the minimal answers. If a group-by has a high dedication score, it means that terms with high IDF scores appear frequently in this group-by, and thus this group-by should be ranked high in the search engine.

In a text-rich relational database, some terms may appear in many rows while others may only appear in few rows, if we treat a row as a document, we can similarly consider the IDF feature of a group-by.
4.1. SCORING FUNCTION

Figure 4.1: A query-answering example

Definition 9 *(Dedication Score)* Given a query \(Q = (D, C, \{w_1, \cdots, w_n\}) \), the dedication score of a group-by \(g \) is defined as

\[
\text{Dedication}(g) = \text{Dedication}(|Cov(g)|) = \sum_{i=1}^{n} \text{IDF}(w_i) \times \frac{N_i}{|Cov(g)|} \quad (4.2)
\]

where \(\text{IDF}(w_i) \) is the inverted value of \(\text{DF}(w_i) \), \(\text{DF}(w_i) \) is the number of rows that contain a query term \(w_i \), and \(N_i \) is the number of rows (in \(Cov(g) \)) that contain the term \(w_i \). We use \(\frac{N_i}{|Cov(g)|} \) to measure the weight of \(w_i \) in \(g \). The group-by \(g \) is highly dedicated to the term \(w_i \) if most of its covered rows contain \(w_i \). We use \(\text{IDF}(w_i) \times \frac{N_i}{|Cov(g)|} \) to measure how \(g \) is dedicated to the term \(w_i \).

The dedication score of a group-by \(g \) is calculated by using information in its covered rows (\(Cov(g) \)), so in this thesis, \(\text{Dedication}(g) \) and \(\text{Dedication}(|Cov(g)|) \) are the same.

Example 8 *(Dedication Score)* In the scenario of the above example, suppose the database is as shown in Table 4.2 ("Austin", "Boston" and "2001" are the query terms). In the database, the number of rows that contain "Austin" is 2, the number of rows that contain "Boston" is 2, the number of rows that contain "2001" is 3, so the IDF score of each query term is as follows.
IDF("Austin") = \frac{1}{2} = 0.5
IDF("Boston") = \frac{1}{2} = 0.5
IDF("2001") = \frac{1}{3} = 0.33

In Figure 4.1, the number of rows covered by group-by \(g = "*, *, 2001, accessories, *" \) is \(|\text{Cov}(g)| = 3 \), the number of rows in \(\text{Cov}(g) \) that contain "Austin" is \(N_1 = 1 \), the number of rows in \(\text{Cov}(g) \) that contain "Boston" is \(N_2 = 1 \) and the number of rows in \(\text{Cov}(g) \) that contain "2001" is \(N_3 = 3 \). So, the dedication score of group-by \(g \) is

\[
\text{Dedication}(g) = 0.5 \times \frac{1}{3} + 0.5 \times \frac{1}{3} + 0.33 \times \frac{3}{3} = 0.66.
\]

Similarly, the number of rows covered by group-by \(g' = "*, *, *, * , 43" \) is \(|\text{Cov}(g')| = 4 \), the number of rows in \(\text{Cov}(g') \) that contain "Austin" is \(N_1 = 1 \), the number of rows in \(\text{Cov}(g') \) that contain "Boston" is \(N_2 = 2 \) and the number of rows in \(\text{Cov}(g') \) that contain "2001" is \(N_3 = 1 \). So, the dedication score of group-by \(g' \) is

\[
\text{Dedication}(g') = 0.5 \times \frac{1}{4} + 0.5 \times \frac{2}{4} + 0.33 \times \frac{1}{4} = 0.46.
\]

<table>
<thead>
<tr>
<th>StoreName</th>
<th>City</th>
<th>Year</th>
<th>Lines</th>
<th>QuantitySold</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-Fashion Austin</td>
<td>Austin</td>
<td>2003</td>
<td>accessories</td>
<td>43</td>
</tr>
<tr>
<td>e-Fashion Boston</td>
<td>Newbury</td>
<td>2003</td>
<td>accessories</td>
<td>43</td>
</tr>
<tr>
<td>e-Fashion Washington</td>
<td>Tolbooth</td>
<td>2003</td>
<td>trousers</td>
<td>43</td>
</tr>
<tr>
<td>e-Fashion Boston</td>
<td>Newbury</td>
<td>2001</td>
<td>accessories</td>
<td>43</td>
</tr>
<tr>
<td>e-Fashion Dallas</td>
<td>Dallas</td>
<td>2001</td>
<td>accessories</td>
<td>18</td>
</tr>
<tr>
<td>e-Fashion Washington</td>
<td>Tolbooth</td>
<td>2002</td>
<td>trousers</td>
<td>18</td>
</tr>
<tr>
<td>e-Fashion Washington</td>
<td>Tolbooth</td>
<td>2003</td>
<td>dresses</td>
<td>18</td>
</tr>
<tr>
<td>e-Fashion Austin</td>
<td>Austin</td>
<td>2001</td>
<td>accessories</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 4.2: Query Keywords in the e-Fashion Database

4.1.3 Structure Degree

If a keyword query \(Q = (D, C, \{w_1, \cdots, w_n\}) \), there exists \(2^n \) sub-queries (including the empty sub-query). Each row in the database matches one of these sub-queries (if a row has no query keyword inside, it matches the empty sub-query). Different sub-queries may have different importance and we assume that longer sub-queries are more important than shorter ones. A group-by is good if its covered rows match many important sub-queries.

We use a structure degree to measure whether important sub-queries (structures) appear frequently in the minimal answers. If a group-by has a high structure degree, it
means that important sub-queries (structures) appear frequently in this group-by, and thus this group-by should be ranked high in the search engine.

Definition 10 (Structure Degree) Given a query Q, the sub-queries of Q are $\{c_1, \ldots, c_y\}$, the structure degree of a group-by g is defined as

$$\text{StructureDegree}(g) = \text{StructureDegree}(\text{Cov}(g)) = \sum_{j=1}^{y} \frac{|c_j|}{|Q|} \times \frac{M_j}{|\text{Cov}(g)|} \quad (4.3)$$

where M_j is the number of rows in $\text{Cov}(g)$ that contain the sub-query c_j.

Since we assume that longer sub-queries are more important than shorter ones, we can use $\frac{|c_j|}{|Q|}$ to measure the importance of a sub-query c_j. Also, we use $\frac{M_j}{|\text{Cov}(g)|}$ to measure the weight of c_j in the group-by g, thus the score of c_j in group-by g can be measured by using $\frac{|c_j|}{|Q|} \times \frac{M_j}{|\text{Cov}(g)|}$.

The structure degree of a group-by g is calculated by using information in its covered rows ($\text{Cov}(g)$), so in this thesis, $\text{StructureDegree}(g)$ and $\text{StructureDegree}(\text{Cov}(g))$ are the same.

Example 9 (Structure Degree) In the scenario of the above two examples, the search engine returns two group-bys (g and g') for the query $(D,C,\{Austin,Boston,2001\})$. For group-by $g = "*,*,2001,accessories,*"$, its covered rows match the following sub-queries:

$$(D,C,\{Boston,2001\}), (D,C,\{Austin,2001\}), (D,C,\{2001\})$$

For group-by $g' = "*,*,*,43"$, its covered rows match the following sub-queries:

$$(D,C,\{Boston,2001\}), (D,C,\{Austin\}), (D,C,\{Boston\})$$

In Figure 4.1, the number of rows covered by group-by g is $|\text{Cov}(g)| = 3$, the number of rows in $\text{Cov}(g)$ that match $(D,C,\{Boston,2001\})$ is $M_1 = 1$, the number of rows in $\text{Cov}(g)$ that match $(D,C,\{Austin,2001\})$ is $M_2 = 1$ and the number of rows in $\text{Cov}(g)$ that match $(D,C,\{2001\})$ is $M_3 = 1$. So, the structure degree of group-by g is $\text{StructureDegree}(g) = \frac{2}{3} \times \frac{1}{4} + \frac{1}{3} \times \frac{1}{4} + \frac{2}{3} \times \frac{1}{4} = 0.56$. Similarly, the number of rows covered by group-by g' is $|\text{Cov}(g')| = 4$, the number of rows in $\text{Cov}(g')$ that match $(D,C,\{Boston,2001\})$ is $M_1 = 1$, the number of rows in $\text{Cov}(g')$ that match $(D,C,\{Austin\})$ is $M_2 = 1$ and the number of rows in $\text{Cov}(g')$ that match $(D,C,\{Boston\})$ is $M_3 = 1$. So, the structure degree of group-by g' is $\text{StructureDegree}(g') = \frac{1}{3} \times \frac{1}{4} + \frac{1}{3} \times \frac{1}{4} + \frac{2}{3} \times \frac{1}{4} = 0.33$.
4.1.4 The Overall Scoring Function

In this thesis, assuming that the max-join result of group-by \(g_1 \) and group-by \(g_2 \) is \(g \), the scores of group-by \(g \) can be calculated by using information in \(\text{Cov}(g_1) \cup \text{Cov}(g_2) \).

The overall score of group-by \(g \) is the linear combination of its density score, dedication score and structure degree, which is shown in the following equation.

\[
\text{Score}(g) = \text{Score}(\text{Cov}(g_1) \cup \text{Cov}(g_2)) = e_1 \times \text{Density}(g) + e_2 \times \text{Dedication}(g) + (1 - e_1 - e_2) \times \text{StructureDegree}(g)
\]

where \(e_1, e_2 \) are two coefficients, \(0 \leq e_1, e_2 \leq 1 \).

4.2 Query Processing

At the beginning of the query processing, a query keyword graph is constructed by using our new index. For example, if the query \(q \) is \((D,C,\{w_1,w_2,w_3\})\), the corresponding query keyword graph is shown in Figure 4.2. Each vertex in the graph represents a query keyword and each edge contains a set of corresponding minimal answers.

Other steps of the query processing are the same with the keyword graph approach [26]: 1) according to property 1, we need to check \(|q| - 1 = 3 - 1 = 2\) edges (ignore the edge with the largest number of minimal answers) in the graph to generate all the candidate answers; and 2) delete duplicated, empty and non-minimal group-bys in the candidate answers. In our example, we need to check edge \((w_1,w_2)\) and edge \((w_2,w_3)\). The edge \((w_1,w_3)\) is ignored and does not need to be checked since it has more minimal answers than other edges.

(Section 2.1) Property 1 [26] To answer query \(Q = (D,C,\{w_1,\cdots,w_m\}) \), using Lemma 1 repeatedly, we only need to check \(m - 1 \) edges covering all keywords \(w_1,\cdots,w_m \) in the clique. Each edge is associated with the set of minimal answers to a query on a pair of keywords. The weight of the edge is the size of the answer set. In order to reduce the total cost of the joins, heuristically, we can find a spanning tree connecting the \(m \) keywords such that the product of the weights on the edges is minimized.
4.2. QUERY PROCESSING

Figure 4.2: An example of Query Keyword Graph in Chapter 4

(Section 2.1) Lemma 1 (Max-join on answers) [26] If \(t \) is a minimal answer to aggregate keyword query \(Q = (D, C, \{w_1, \cdots, w_m\}) \), then there exists minimal answers \(t_1 \) and \(t_2 \) to queries \((D, C, \{w_1, w_2\})\) and \((D, C, \{w_e, \cdots, w_m\})\), respectively, such that \(t = t_1 \lor t_2 \).

Definition 11 (node, back node, line and white node) In the query keyword graph, each edge is associated with a set of minimal answers. We use a node to represent a minimal answer of the corresponding edge, as shown in Figure 4.2. All nodes are black nodes at the beginning. As shown in Figure 4.3, each line represents a max-join operation on two black nodes. The max-join result is a candidate answer. We need to perform 12 max-join operations in order to generate all the candidate answers. Our top-\(k \) method detects some black nodes as white nodes (Figure 4.4), such that if max-joins are all on white nodes, the corresponding max-join results are not top-\(k \) answers.

We have to do many max-join operations if generating all minimal answers. Since we only need top-\(k \) answers, some unnecessary max-join operations can be pruned.

We develop a two-step (the bounding step and the pruning step) pruning method to prune unnecessary max-join operations. In Figure 4.3, each node represents a minimal answer in the corresponding edge. All these nodes are black at the beginning. To prune unnecessary joins, the bounding step detects some black nodes as white nodes.
CHAPTER 4. THE TOP-K ALGORITHM

(Chapter 4.3), such that if max-joins are all on white nodes, the corresponding max-join results are not top-\(k\) answers. The pruning step is developed to help detect more white nodes in the checked edges (Chapter 4.5). The number of max-joins reduced by half after using these two steps. We only need to perform 6 max-join operations (max-joins that are all on white nodes are pruned). The more white nodes we detect, the more max-join operations we can prune.

4.2.1 The Bounding Step

Suppose there are \(n\) edges in the query keyword graph and thus we need to check \(n - 1\) edges to generate all the candidate answers. To generate one candidate answer \(g\), we need to perform max-joins on a set of nodes \(\{A_1, \cdots, A_{n-1}\}\), where \(A_i\) is a node from a corresponding checked edge. As mentioned in Section 4.1.4, the overall score of \(g\)
4.2. QUERY PROCESSING

is calculated by using information in $\text{Cov}(A_1) \cup \text{Cov}(A_2) \cup \cdots \cup \text{Cov}(A_{n-1})$, so we can define an upper bound for g using the overall scores of those nodes, as shown in Equation 4.5. If the upper bound is smaller than a threshold s, we do not need to perform max-join operations on these nodes. To find a suitable threshold, we generate k answers (may not be top-k answers) and calculate their overall scores. We use the lowest overall score as the threshold.

$$UpperBound(g) = UpperBound(A_1, \cdots, A_{n-1}) = \sum_{i}^{n-1} \text{Score}(A_i) \quad (4.5)$$

where $\text{Score}(A_i)$ is the overall score of node A_i.

Example 10 (The bounding step) Suppose the query is $(D, C, \{w_1, w_2, w_3\})$ and the corresponding query keyword graph is as shown in Figure 4.2. To generate candidate answers, we need to check edge (w_1, w_2) and edge (w_2, w_3) (Figure 4.3). All nodes of the checked edges are black at the beginning. To prune unnecessary max-join operations, we then detect some white nodes according to the following steps.

First, we calculate the overall scores of all nodes and rank them according to their overall scores (Figure 4.6).

Second, we detect white nodes for edge (w_2, w_3).

- For each checked edge, 1) we scan its associated nodes and find the black node with the lowest overall score; 2) if the edge is not (w_2, w_3), we record the overall score of that black node in a set S. In our example, $S = \{0.025\}$.
CHAPTER 4. THE TOP-K ALGORITHM

Figure 4.6: Sort the nodes for each edge

- Scanning every black node of edge \((w_2, w_3)\) from top to down. Once we find a certain black node (suppose its overall score is \(s'\)), such that \(\text{UpperBound}(0.025, s')\) is smaller than the threshold \(s\), we stop scanning and mark that black node and nodes blow as white nodes. In our example, \(s' = 0.05\), and the result is shown in Figure 4.7.

Figure 4.7: Detect white nodes for edge\((w_2, w_3)\)

Finally, we detect white nodes for edge \((w_1, w_2)\).

- For each checked edge, 1) we scan its associated nodes and find the black node with the lowest overall score; 2) if the edge is not \((w_1, w_2)\), we record the overall score of that black node in a set \(S\). In our example, \(S = \{0.10\}\).

- Scanning every black node of edge \((w_1, w_2)\) from top to down. Once we find a certain black node (suppose its overall score is \(s'\)), such that \(\text{UpperBound}(0.10, s')\) is smaller than the threshold \(s\), we stop scanning and mark that black node and nodes blow as white nodes. In our example, \(s' = 0.05\), and the result is shown in Figure 4.8.
4.2. QUERY PROCESSING

Figure 4.8: Detect white nodes for edge \((w_1, w_2)\)

It is hard to say what kind of data sets would have the best or worst situations in the bounding step. The bounding step can detect many white nodes if we can find tight upper bounds. The limitation of this step is that the best upper bounds we can find are still not tight enough.

What are the best upper bounds?

Since the overall score is a linear combination of the three kinds of scores we defined (density, dedication, structure degree), we have the following equation:

\[
UpperBound_{\text{OverallScore}}(g) = e_1 \times UpperBound_{\text{DensityScore}}(g) + e_2 \times UpperBound_{\text{DedicationScore}}(g) + (1 - e_1 - e_2) \times UpperBound_{\text{StructureDegree}}(g)
\]

(4.6)

Theorem 2 For simplicity, suppose \(n = 2\) and \(g\) is the max-join result of nodes (group-bys) \(A_1\) and \(A_2\).

The best upper bound of \(g\)’s density score is:

\[
\frac{(Density(A_1) + Density(A_2) - 2 \times Density(A_1) \times Density(A_2))}{1 - Density(A_1) \times Density(A_2)}
\]

(4.7)

The best upper bound of \(g\)’s dedication score is:

\[
Dedication(A_1) + Dedication(A_2)
\]

(4.8)
The best upper bound of g's structure degree is:

\[
\text{StructureDegree}(A_1) + \text{StructureDegree}(A_2)
\]

(4.9)

The above upper bounds are reached in the following case:

If a row is covered by both A_1 and A_2, this row contains no query keyword; else this row’s terms are all query keywords and each query keyword only appears in one row of the database (Figure 4.9).

\[
\begin{align*}
\text{Database} & \quad \text{A}_1 & \quad \text{A}_2 \\
\begin{array}{c|c|c}
\hline
r_1 & w_1, w_i, w_{n+i} & \hline
r_2 & w_2, \ldots, w_n & \hline
r_3 & w_i, w_l & \hline
\end{array} & \quad \begin{array}{c|c|c}
\hline
r_1 & w_1, w_i, w_{n+i} & \hline
r_2 & w_2, \ldots, w_n & \hline
\end{array} & \quad \begin{array}{c|c|c}
\hline
r_3 & w_i, w_l & \hline
r_2 & w_2, \ldots, w_n & \hline
\end{array}
\end{align*}
\]

Query $Q = (D, C, \{w_i, w_{n+i}\})$

Group-by $g = \text{A}_1 \max\text{-join} \text{A}_2$

Figure 4.9: An example when the upper bounds are reached

Proof 3 (Equation 4.7) Suppose: 1) there are M rows in $\text{Cov}(A_1) \cup \text{Cov}(A_2)$, the density scores of these rows are d_1, \ldots, d_M; 2) there are N' rows in $\text{Cov}(A_1) \cap \text{Cov}(A_1) \cup \text{Cov}(A_2)$, the density scores of these rows are $a_1, \ldots, a_{N'}$; and 3) there are N'' rows in $\text{Cov}(A_2) \cap \text{Cov}(A_1) \cup \text{Cov}(A_2)$, the density scores of these rows are $b_1, \ldots, b_{N''}$.

For simplicity, we assume that each row has the same length (number of keywords), so we have:

\[
\begin{align*}
\text{Density}(A_1) &= \frac{\sum_{i=1}^{N'} a_i + \sum_{i=1}^{M} d_i}{N' + M} \\
\text{Density}(A_2) &= \frac{\sum_{i=1}^{N'} b_i + \sum_{i=1}^{M} d_i}{N'' + M} \\
\text{Density}(g) &= \frac{\sum_{i=1}^{N'} a_i + \sum_{i=1}^{N'} b_i + \sum_{i=1}^{M} d_i}{N' + N'' + M}
\end{align*}
\]

(4.10)
4.2. QUERY PROCESSING

We can prove Equation 4.7 if the following lemma can be proved:

Lemma 2 The upper bound of $\text{Density}(g)$ is:

$$\frac{\text{Density}(A_1)+\text{Density}(A_2)-2\times\text{Density}(A_1)\times\text{Density}(A_2)}{1-\text{Density}(A_1)\times\text{Density}(A_2)}$$

Proof 4 (Lemma 2) Since each density score is from 0 to 1, we have:

$$0 \leq B = \sum_{i=1}^{N'} a_i \leq N'$$

$$0 \leq C = \sum_{i=1}^{N''} b_i \leq N''$$

$$0 \leq D = \sum_{i=1}^{M} d_i \leq M$$

(4.11)

Let ξ be a very small positive number, and let $D' = D - \xi, B' = B + \xi, C' = C + \xi$, so we have

$$\text{Density}(A_1) = \frac{\sum_{i=1}^{N'} a_i + \sum_{i=1}^{M} d_i}{N' + M}$$

$$= \frac{B + D}{N' + M}$$

$$= \frac{B' + D'}{N' + M}$$

(4.12)

$$\text{Density}(A_2) = \frac{\sum_{i=1}^{N''} b_i + \sum_{i=1}^{M} d_i}{N'' + M}$$

$$= \frac{C + D}{N'' + M}$$

$$= \frac{C' + D'}{N'' + M}$$

(4.13)

$$\frac{D' + B' + C'}{N' + N'' + M} = \frac{D + B + C + \xi}{N' + N'' + M} > \frac{D + B + C}{N' + N'' + M} = \text{Density}(g)$$

(4.14)
If D becomes smaller (or B and C become larger), $\text{Density}(g)$ would become larger.
So, if the upper bound of $\text{Density}(g)$ is reached, D must be 0, which means rows covered by both A_1 and A_2 contain no query keywords.

Since D is 0, we have:

$$\text{Density}(g) = \frac{B + C}{N' + N'' + M}$$

$$\text{Density}(A_1) = \frac{B}{N' + M}$$

$$\text{Density}(A_2) = \frac{C}{N'' + M}$$

(4.15)

Let $M' = M + \xi, N'_1 = N' - \xi, N''_1 = N'' - \xi$, so we have:

$$\frac{B + C}{N'_1 + N''_1 + M'} = \frac{B + C}{N' + N'' + M - \xi} > \frac{B + C}{N' + N'' + M} = \text{Density}(g)$$

(4.16)

$$0 \leq B = \sum_{i=1}^{N'} a_i \leq N'$$

$$0 \leq C = \sum_{i=1}^{N''} b_i \leq N''$$

(4.17)

If N' and N'' become smaller (or M becomes larger), $\text{Density}(g)$ would become larger.
So, if the upper bound of $\text{Density}(g)$ is reached, N' must be B and N'' must be C, which means $a_1 = \cdots = a_{N'} = 1$ and $b_1 = \cdots = b_{N''} = 1$.

So, the upper bound of $\text{Density}(g)$ is reached if $D = 0, B = N'$ and $C = N''$. In such a case, the upper bound of $\text{Density}(g)$ is:

$$\frac{(\text{Density}(A_1) + \text{Density}(A_2) - 2 \times \text{Density}(A_1) \times \text{Density}(A_2))}{1 - \text{Density}(A_1) \times \text{Density}(A_2)}$$

(4.18)
4.2. QUERY PROCESSING

The proof of Equation 4.8 is similar to the above proof and is presented in the Appendix.

The proof of Equation 4.9 is similar to the above proof and is presented in the Appendix.

4.2.2 The Pruning Step

As discussed earlier, the bounding step may not be able to find all white nodes, so we use the pruning step to detect more white nodes.

In the pruning step, we define a score function f: \[f(C) = (\text{Score}(C) - s) \times |C| \] (4.19)

where C represents a set of rows, $\text{Score}(C)$ is the overall score function we defined above, and s is the threshold.

The candidate answer g is generated by performing max-joins on a set of nodes $\{A_1, \cdots, A_{n-1}\}$, where A_i is a minimal answer of a corresponding edge. So, for each node A_i, its covered rows $\text{Cov}(A_i)$ can be divided into two parts, $\text{Cov}(A_i)_1$ and $\text{Cov}(A_i)_2$, such that 1) for each row r in $\text{Cov}(A_i)_1$, $\text{Score}(r) \leq s$; and 2) for each row r' in $\text{Cov}(A_i)_2$, $\text{Score}(r') < s$. Therefore, we can calculate another two types of scores $f(\text{Cov}(A_i)_1)$ and $f(\text{Cov}(A_i)_2)$ for each node A_i using the function f. Figure 4.10 is an example about the two types of scores of each node of the checked edges.

![Figure 4.10: Define two types of scores for each node](image)

Theorem 3 Let s be the threshold on the overall score of k generated answers. Given a group-by g, if $f(\text{Cov}(g)_1) + f(\text{Cov}(g)_2) < 0$, the overall score of g is smaller than the threshold s.
Corollary 1 Let s be the threshold on the overall score of k generated answers. Suppose the candidate answer g is generated by performing max-joins on a set of nodes (minimal answers) $\{A_1, \ldots, A_{n-1}\}$, where A_i is a minimal answer of a corresponding checked edge in the query keyword graph. If the following inequality is satisfied, the overall score of g is smaller than the threshold s.

$$\sum_{i=1}^{n-1} f(Cov(A_i)) + \min\{f(Cov(A_1)), \ldots, f(Cov(A_{n-1}))\} < 0$$

Proof 5 (Theorem 3) We need to prove that given a group-by g, if $f(Cov(g)_1) + f(Cov(g)_2) < 0$, the overall score of g is smaller than the threshold s.

Proof:

According to the definition of function f, we have:

$$f(Cov(g)_1) = (Score(Cov(g)_1) - s) \times |Cov(g)_1|$$
$$f(Cov(g)_2) = (Score(Cov(g)_2) - s) \times |Cov(g)_2|$$

(4.20)

We already know that $f(Cov(g)_1) + f(Cov(g)_2) < 0$, so we have:

$$0 > f(Cov(g)_1) + f(Cov(g)_2)$$
$$= (Score(Cov(g)_1) - s) \times |Cov(g)_1| + (Score(Cov(g)_2) - s) \times |Cov(g)_2|$$
$$= Score(Cov(g)_1) \times |Cov(g)_1| + Score(Cov(g)_2) \times |Cov(g)_2| - s \times (|Cov(g)_1| + |Cov(g)_2|)$$
$$= Score(Cov(g)_1) \times |Cov(g)_1| + Score(Cov(g)_2) \times |Cov(g)_2| - s \times |Cov(g)|$$

(4.21)

$$s \times |Cov(g)| > Score(Cov(g)_1) \times |Cov(g)_1| + Score(Cov(g)_2) \times |Cov(g)_2|$$

(4.22)

So we only need to prove the following equation:
4.2. QUERY PROCESSING

\[
Score(Cov(g)) = \frac{Score(Cov(g)_1) \times |Cov(g)_1| + Score(Cov(g)_2) \times |Cov(g)_2|}{|Cov(g)|}
\]

(4.23)

For simplicity, we assume that each row has the same length \(l\) (number of keywords), and we have:

\[
Density(Cov(g)) = \frac{Density(Cov(g)_1) \times Num(Cov(g)_1) + Density(Cov(g)_2) \times Num(Cov(g)_2)}{Num(Cov(g))}
\]

\[
= \frac{Density(Cov(g)_1) \times |Cov(g)_1| \times l + Density(Cov(g)_2) \times |Cov(g)_2| \times l}{|Cov(g)| \times l}
\]

\[
= \frac{Density(Cov(g)_1) \times |Cov(g)_1| + Density(Cov(g)_2) \times |Cov(g)_2|}{|Cov(g)|}
\]

(4.24)

\[
Dedication(Cov(g)) = \sum_{i=1}^{n} IDF(w_i) \times \frac{N_i}{|Cov(g)|}
\]

\[
= \sum_{i=1}^{n} IDF(w_i) \times N_i
\]

\[
= \sum_{i=1}^{n} IDF(w_i) \times (N'_i + N''_i)
\]

\[
= \sum_{i=1}^{n} IDF(w_i) \times N'_i + \sum_{i=1}^{n} IDF(w_i) \times N''_i
\]

\[
= \frac{|Cov(g)_1| \times \sum_{i=1}^{n} IDF(w_i) \times \frac{N'_i}{|Cov(g)|}}{|Cov(g)|} + \frac{|Cov(g)_2| \times \sum_{i=1}^{n} IDF(w_i) \times \frac{N''_i}{|Cov(g)|}}{|Cov(g)|}
\]

\[
= \frac{|Cov(g)_1| \times Dedication(Cov(g)_1) + |Cov(g)_2| \times Dedication(Cov(g)_2)}{|Cov(g)|}
\]

(4.25)
\(\text{StructureDegree}(\text{Cov}(g)) \)
\[
\begin{align*}
\sum_{j=1}^{y} \frac{|c_j|}{|Q|} \times \frac{M_j}{|\text{Cov}(g)|} &= \sum_{j=1}^{y} \frac{|c_j|}{|Q|} \times M_j \left/ \frac{\text{Cov}(g)}{} \right. \\
&= \sum_{j=1}^{y} \frac{|c_j|}{|Q|} \times (M_j' + M_j'') \left/ \frac{\text{Cov}(g)}{} \right. \\
&= \sum_{j=1}^{y} \frac{|c_j|}{|Q|} \times M_j' + \sum_{j=1}^{x} \frac{|c_j|}{|Q|} \times M_j'' \\
&= \frac{|\text{Cov}(g)| \times \sum_{j=1}^{y} \frac{|c_j|}{|Q|} \times \frac{M_j'}{|\text{Cov}(g)_1|} + \frac{|\text{Cov}(g)| \times \sum_{j=1}^{x} \frac{|c_j|}{|Q|} \times \frac{M_j''}{|\text{Cov}(g)_2|}}}{|\text{Cov}(g)|} \\
&= \frac{|\text{Cov}(g)| \times \text{StructureDegree}(\text{Cov}(g)_1)}{|\text{Cov}(g)|} + \frac{|\text{Cov}(g)| \times \text{StructureDegree}(\text{Cov}(g)_2)}{|\text{Cov}(g)|} \\
\end{align*}
\]

(4.26)

where \(w_i \) is a query keyword, \(N_i \) represents the number of rows that contain \(w_i \) in \(\text{Cov}(g) \), \(N_i' \) is the number of rows that contain \(w_i \) in \(\text{Cov}(g)_1 \), \(N_i'' \) is the number of rows that contain \(w_i \) in \(\text{Cov}(g)_2 \), \(c_j \) is a sub-query, \(M_j \) represents the number of rows that contain \(c_j \) in \(\text{Cov}(g) \), \(M_j' \) is the number of rows that contain \(c_j \) in \(\text{Cov}(g)_1 \), and \(M_j'' \) is the number of rows that contain \(c_j \) in \(\text{Cov}(g)_2 \).

Since the overall score is the linear combination of density score, dedication score and structure degree, we have:
4.2. QUERY PROCESSING

\[Score(Cov(g)) \]
\[= e_1 \times Density(Cov(g)) + e_2 \times Dedication(Cov(g)) + \]
\[(1 - e_1 - e_2) \times StructureDegree(Cov(g)) \]
\[= e_1 \times \left(\frac{\text{Density}(Cov(g)_1) \times |Cov(g)_1| + \text{Density}(Cov(g)_2) \times |Cov(g)_2|}{|Cov(g)|} \right) + \]
\[e_2 \times \left(\frac{|Cov(g)_1| \times \text{Dedication}(Cov(g)_1) + |Cov(g)_2| \times \text{Dedication}(Cov(g)_2)}{|Cov(g)|} \right) + \]
\[(1 - e_1 - e_2) \times \frac{1}{|Cov(g)|} \times \]
\[(|Cov(g)_1| \times \text{StructureDegree}(Cov(g)_1) + |Cov(g)_2| \times \text{StructureDegree}(Cov(g)_2)) \]
\[= \frac{1}{|Cov(g)|} \times \left[\left(e_1 \times \text{Density}(Cov(g)_1) + e_2 \times \text{Dedication}(Cov(g)_1) + \right. \right. \]
\[\left(1 - e_1 - e_2 \right) \times \text{StructureDegree}(Cov(g)_1) \right] \times |Cov(g)_1| + \]
\[\left(e_1 \times \text{Density}(Cov(g)_2) + e_2 \times \text{Dedication}(Cov(g)_2) + \right. \right. \]
\[\left(1 - e_1 - e_2 \right) \times \text{StructureDegree}(Cov(g)_2) \right] \times |Cov(g)_2| \]
\[= \frac{\text{Score}(Cov(g)_1) \times |Cov(g)_1| + \text{Score}(Cov(g)_2) \times |Cov(g)_2|}{|Cov(g)|} < s \]

(4.27)

Proof 6 (Corollary 1) We need to prove that: suppose the candidate answer \(g \) is generated by performing max-joins on a set of nodes (minimal answers) \(\{A_1, \ldots, A_{n-1}\} \), each of which is from a corresponding checked edge in the query keyword graph. If \(\sum_{i=1}^{n-1} f(Cov(A_i)_1) + \min\{f(Cov(A_1)_2), \ldots, f(Cov(A_{n-1})_2)\} < 0 \), the overall score of \(g \) is smaller than the threshold \(s \).

We first prove Corollary 1 for \(n = 3 \). The candidate answer \(g \) is generated by performing max-joins on a set of nodes (minimal answers) \(\{A_1, A_2\} \), each of these nodes is from a corresponding checked edge in the query keyword graph. We need to prove that: if \(f(Cov(A_1)_1) + f(Cov(A_2)_1) + \min\{f(Cov(A_1)_2), f(Cov(A_2)_2)\} < 0 \), the overall score of \(g \) is smaller than the threshold \(s \).

Since \(g \) is generated by performing max-joins on \(A_1 \) and \(A_2 \), as we discussed in Section 4.1.4, the scores of group-by \(g \) will be calculated using information in \(Cov(A_1) \)
\[f(Cov(g)_1) = f(Cov(A_1)_1) \cup Cov(A_2)_1 \leq f(Cov(A_1)_1) + f(Cov(A_2)_1) \]
\[f(Cov(g)_2) = f(Cov(A_1)_2) \cup Cov(A_2)_2 \leq \min\{Cov(A_1)_2, Cov(A_2)_2\} \]

So we have:

\[f(Cov(g)_1) + f(Cov(g)_2) \leq f(Cov(A_1)_1) + f(Cov(A_2)_1) + \min\{Cov(A_1)_2, Cov(A_2)_2\} \leq 0 \quad (4.28) \]

According to Theorem 3, we proved that the overall score of \(g \) is smaller than the threshold \(s \). Similarly, we can prove Corollary 1 for \(n \geq 4 \):

\[f(Cov(g)_1) = f(Cov(A_1)_1) \cup \cdots \cup Cov(A_2)_1 \leq f(Cov(A_1)_1) + \cdots + f(Cov(A_2)_1) \]
\[f(Cov(g)_2) = f(Cov(A_1)_2) \cup \cdots \cup Cov(A_2)_2 \leq \min\{Cov(A_1)_2, \cdots, Cov(A_2)_2\} \]

\[f(Cov(g)_1) + f(Cov(g)_2) \leq f(Cov(A_1)_1) + \cdots + f(Cov(A_2)_1) + \min\{Cov(A_1)_2, \cdots, Cov(A_2)_2\} < 0 \quad (4.30) \]

Example 11 (The pruning step) In the scenario of the above example, two white nodes of edge \((w_1, w_2)\) and one white node of edge \((w_2, w_3)\) are detected in the bounding step (Figure 4.8). In the pruning step, more white nodes can be detected using Corollary 1.

First, we detect more white nodes for edge \((w_2, w_3)\).

- Create two sets, \(S_1 \) and \(S_2 \).
- For each checked edge, if the edge is not \((w_2, w_3)\) and suppose its associated white nodes are \(\{B_1, \cdots, B_h\} \), 1) we scan these white nodes and record \(\max\{
4.2. QUERY PROCESSING

\[f(\text{Cov}(B_1))_1, f(\text{Cov}(B_2))_1, \ldots, f(\text{Cov}(B_h))_1 \} \text{ in } S_1; \text{ and 2) we also record } \max \{ f(\text{Cov}(B_1)_2), f(\text{Cov}(B_2)_2), \ldots, f(\text{Cov}(B_h)_2)\} \text{ in } S_2. \text{ In our example, } S_1 = \{4\}, S_2 = \{-11\}. \]

- Let \(s_1 \) be the sum of items in \(S_1 \) and \(s_2 \) be the minimal item in \(S_2 \). In our example, \(s_1 = 4 \) and \(s_2 = -11 \).

- Scanning every black node of edge \((w_2, w_3)\) from top to down. Once we find a certain black node \(z \), such that \(s_1 + f(\text{Cov}(z)_1) + \min\{s_2, f(\text{Cov}(z)_2)\} < 0 \) \(\text{(Corollary 1)} \), we stop scanning and mark that black node and nodes below as white nodes. In our example, \(f(\text{Cov}(z)_1) = 3 \) and \(f(\text{Cov}(z)_2) = -12 \), the result is shown in Figure 4.11.

![Figure 4.11: Detect white nodes for edge \((w_2, w_3)\)](image)

Second, we detect more white nodes for edge \((w_1, w_2)\).

- Create two sets, \(S'_1 \) and \(S'_2 \).

- For each checked edge, if the edge is not \((w_1, w_2)\) and suppose its associated white nodes are \(\{B'_1, \ldots, B'_h\} \), 1) we scan these white nodes and record \(\max\{ f(\text{Cov}(B'_1)_1), f(\text{Cov}(B'_2)_1), \ldots, f(\text{Cov}(B'_h)_1)\} \text{ in } S'_1; \text{ and 2) we also record } \max \{ f(\text{Cov}(B'_1)_2), f(\text{Cov}(B'_2)_2), \ldots, f(\text{Cov}(B'_h)_2)\} \text{ in } S'_2. \text{ In our example, } S'_1 = \{3\}, S'_2 = \{-12\}. \]

- Let \(s'_1 \) be the sum of items in \(S'_1 \) and \(s'_2 \) be the minimal item in \(S'_2 \). In our example, \(s'_1 = 3 \) and \(s'_2 = -12 \).
Scanning every black node of edge \((w_1, w_2)\) from top to down. Once we find a certain black node \(z'\), such that \(s'_1 + f(\text{Cov}(z'))_1 + \min\{s'_2, f(\text{Cov}(z'))_2\} < 0\) (Corollary 1), we stop scanning and mark that black node and nodes blow as white nodes. In our example, \(f(\text{Cov}(z))_1 = 8\) and \(f(\text{Cov}(z))_2 = -16\), the result is shown in Figure 4.12.

![Figure 4.12: Detect white nodes for edge \((w_2, w_3)\)](image)

In the pruning step, we detect more white nodes for both edge \((w_1, w_2)\) and edge \((w_2, w_3)\). The number of max-joins reduced by half after using the bounding step and the pruning step.
Chapter 5

Experimental Results

In this section, we report an empirical study of our top-k query answering method on two real data sets. We first describe the user study which is used to learn the coefficients for the overall scoring function. Then, we report the effectiveness of the bounding step and the pruning step. Finally, we evaluate the top-k query answering method and the complete query answering method under various number of tuples and dimensions.

5.1 Environments and Data Sets

All the experiments were conducted on a PC computer running the Microsoft Windows 7 Professional Edition operating system, with a 2.4 GHz CPU, 2.0 GB main memory, and a 250 GB hard disk. The programs were implemented in JAVA (JDK 1.6) and were compiled using eclipse 3.7.0.

The e-Fashion dataset and the SuperstoreSales dataset have been used in example projects of SAP on keyword search on relational databases. Since our project is supported by SAP, we use these two datasets to empirically evaluate our aggregate keyword search methods. The dimensions of the e-Fashion dataset are shown in Table 5.1. There are 9 dimensions, 4300 tuples and 4000 unique keywords in the e-Fashion dataset. The SuperstoreSales dataset has 21 dimensions, 8339 tuples and 0.35 million unique keywords. Table 5.2 shows the dimensions in the SuperstoreSales dataset. To keep our discussion simple, we assume all the database fields are text attributes. In data representation, we adopted the popular packing technique [3]. A value on a dimension is mapped to an integer. The star value on a dimension is mapped to 0. We also map keywords to integers.
Table 5.1: Dimensions of the e-Fashion database

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store name</td>
<td>branch store name</td>
</tr>
<tr>
<td>State</td>
<td>which State the branch store is located</td>
</tr>
<tr>
<td>City</td>
<td>which city the branch store is located</td>
</tr>
<tr>
<td>Year</td>
<td>year of the sales information</td>
</tr>
<tr>
<td>Quarter</td>
<td>quarter of the sales information</td>
</tr>
<tr>
<td>Month</td>
<td>month of the sales information</td>
</tr>
<tr>
<td>Lines</td>
<td>type of the product sold in the branch store</td>
</tr>
<tr>
<td>Sales revenue</td>
<td>sales revenue of the product</td>
</tr>
<tr>
<td>Quantity sold</td>
<td>quantity sold of the product</td>
</tr>
</tbody>
</table>

Table 5.2: Dimensions of the SuperstoreSales database

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order ID</td>
<td>ID of the order</td>
</tr>
<tr>
<td>Order Date</td>
<td>the order date</td>
</tr>
<tr>
<td>Order Priority</td>
<td>priority of the order</td>
</tr>
<tr>
<td>Order Quantity</td>
<td>product quantity of the order</td>
</tr>
<tr>
<td>Sales</td>
<td>total price of the order</td>
</tr>
<tr>
<td>Discount</td>
<td>discount on the order</td>
</tr>
<tr>
<td>Ship Mode</td>
<td>ship method of the order</td>
</tr>
<tr>
<td>Profit</td>
<td>profit of the order</td>
</tr>
<tr>
<td>Unit Price</td>
<td>price per unit</td>
</tr>
<tr>
<td>Shipping Cost</td>
<td>cost of the shipping</td>
</tr>
<tr>
<td>Customer Name</td>
<td>name of the customer</td>
</tr>
<tr>
<td>Customer State</td>
<td>which State the customer is located</td>
</tr>
<tr>
<td>Zip Code</td>
<td>Zip code of the customer location</td>
</tr>
<tr>
<td>Region</td>
<td>region of the customer location</td>
</tr>
<tr>
<td>Customer Segment</td>
<td>customer type</td>
</tr>
<tr>
<td>Product Category</td>
<td>category of the product</td>
</tr>
<tr>
<td>Product Sub-Category</td>
<td>sub-category of the product</td>
</tr>
<tr>
<td>Product Name</td>
<td>name of the product</td>
</tr>
<tr>
<td>Product Container</td>
<td>container of the product</td>
</tr>
<tr>
<td>Product Base Margin</td>
<td>base margin of the product</td>
</tr>
<tr>
<td>Ship Date</td>
<td>shipping date</td>
</tr>
</tbody>
</table>
5.2 User Study

We use the traditional linear regression model [10, 8] to learn the ranking function. A user study is then performed to calculate the coefficients of the overall scoring function. For each tested query, we randomly select 5 answers for users to evaluate. For each selected answer x_i, its density score (x_{i1}), dedication score (x_{i2}) and structure degree (x_{i3}) are pre-calculated. Let y_i be the score evaluated by users for the answer x_i, we have the following linear regression model:

$$f(x_i) = e_1 \times x_{i1} + e_2 \times x_{i2} + (1 - e_1 - e_2) \times x_{i3}$$

(5.1)

The minimum sum of squares (SSE, the error sum of squares) we used in the learning model is:

$$SSE = \sum_{i=1}^{m} (y_i - f(x_i))^2$$

(5.2)

where m is the total number of selected answers evaluated by users.

In the user study, we designed three types of tested queries, each of which represents a possible search intension. For example, given a query $Q = (D, C, \{w_1, w_2, w_3\})$, it may have the following search intensions:

1) “w_1 or w_2 or w_3” (Table 5.3)
2) “w_1 and w_2 and w_3” (Table 5.5)
3) Others, i.e. “w_1 and w_2 OR w_1 and w_3” (Table 5.7)

For each type of query, we test 10 instance queries. We have 10 people participating in the studies. We get 10 sets of results, each of which is from a single user and can be used to calculate a set of values of the coefficients. We also mix all the results from the users and get another set of values of the coefficients. So, we have 11 sets of values of the coefficients, as shown in Table 5.9 and Table 5.10.

The learning results may not be the best, since there are only 10 people in the user study and we only select 5 answers randomly for each tested query. We will get better coefficients if we have larger samples and more people.
CHAPTER 5. EXPERIMENTAL RESULTS

55

Query Template	Tested Queries
Q = (D, C, \{Austin, Boston, Washington\})	

Description
Each keyword represents a city. Users are interested in common information about these cities. For example, products sold in these cities. **Table 5.4** shows such an interesting result.

Keywords in other tested queries
“austin boston washington miami”,
“sweaters trousers jackets”,
“paper envelopes tables bookcases”,
“michigan florida virginia maryland”, “newbury springs leighton”,
“2001 2002 2003”,
“sweaters trousers jackets outerwear”,
“michigan florida virginia”, “paper envelopes tables”

<table>
<thead>
<tr>
<th>StoreName</th>
<th>City</th>
<th>Year</th>
<th>Quarter</th>
<th>Lines</th>
<th>QuantitySold</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td>2003</td>
<td>*</td>
<td>accessories</td>
<td>78</td>
</tr>
<tr>
<td>e-Fashion Austin</td>
<td>Austin</td>
<td>2003</td>
<td>q1</td>
<td>accessories</td>
<td>78</td>
</tr>
<tr>
<td>e-Fashion Newbury</td>
<td>Boston</td>
<td>2003</td>
<td>q3</td>
<td>accessories</td>
<td>78</td>
</tr>
<tr>
<td>e-Fashion Tolbooth</td>
<td>Washington</td>
<td>2003</td>
<td>q3</td>
<td>accessories</td>
<td>78</td>
</tr>
</tbody>
</table>

Table 5.3: Tested Queries 1

Table 5.4: One good result for the query (D, C, \{Austin, Boston, Washington\})
5.2. USER STUDY

<table>
<thead>
<tr>
<th>Query Template</th>
<th>Tested Queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_1 \text{ and } w_2 \text{ and } w_3)</td>
<td>(Q = (D, C, { \text{php, html, ajax} }))</td>
</tr>
</tbody>
</table>

Description

Each keyword represents a job skill, a job hunter is interested in jobs that contain as many related job skills as possible. Table 5.6 shows such an interesting result.

Keywords in other tested queries

“tracy truck box”, “2001 austin trousers”, “2001 q1 trousers”, “express high furniture”, “austin q1 trousers”, “carolina express furniture”, “austin q1 2001”, “carolina high express”, “mobile android downtown”

Table 5.5: Tested Queries 2

<table>
<thead>
<tr>
<th>JobDescription</th>
<th>Avg(USD)</th>
<th>JobType</th>
<th>Started</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>... to add the necessary code into the current system to enable hotmail address to be used. I would love the user to also be ...</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>richmond</td>
</tr>
<tr>
<td>85</td>
<td>joomla, php, .net, ajax, software</td>
<td>Nov.</td>
<td>richmond</td>
<td></td>
</tr>
<tr>
<td>... it needs to be fun and yet professional looking...</td>
<td>121</td>
<td>graph design, website design</td>
<td>Oct.</td>
<td>richmond</td>
</tr>
</tbody>
</table>

Table 5.6: One good result for the query \((D, C, \{ \text{php, html, ajax} \}) \)
CHAPTER 5. EXPERIMENTAL RESULTS

Query Template	Tested Queries
\(w_1 \text{ and } w_3 \) | Q =\{(D, C, \{\text{roy, matt, collins}\}

Description
The first two keywords represent first names, the last keyword represents a last name. Users are interested in information about “roy collins” or “matt collins”.

The first two keywords represent first names, the last keyword represents a last name. Users are interested in information about “roy collins” or “matt collins”.

Keywords in other tested queries

Table 5.8 shows such an interesting result.

<table>
<thead>
<tr>
<th>OrderID</th>
<th>Priority</th>
<th>ShipMode</th>
<th>CustomerName</th>
<th>State</th>
<th>Container</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>(*)</td>
<td>high</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>small box</td>
<td>laptop</td>
</tr>
<tr>
<td>130</td>
<td>high</td>
<td>regular</td>
<td>roy collins</td>
<td>florida</td>
<td>small box</td>
<td>laptop</td>
</tr>
<tr>
<td>5318</td>
<td>high</td>
<td>express</td>
<td>matt collins</td>
<td>michigan</td>
<td>small box</td>
<td>laptop</td>
</tr>
</tbody>
</table>

Table 5.8: One good result for the query (D, C, \{\text{roy, matt, collins}\})

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>No.1</th>
<th>No.2</th>
<th>No.3</th>
<th>No.4</th>
<th>No.5</th>
<th>No.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_1)</td>
<td>16.869</td>
<td>16.207</td>
<td>16.418</td>
<td>18.014</td>
<td>18.135</td>
<td>15.757</td>
</tr>
<tr>
<td>(e_2)</td>
<td>24.440</td>
<td>20.884</td>
<td>24.920</td>
<td>23.910</td>
<td>32.815</td>
<td>24.111</td>
</tr>
<tr>
<td>(e_3)</td>
<td>4.500</td>
<td>5.095</td>
<td>4.788</td>
<td>4.868</td>
<td>4.669</td>
<td>5.276</td>
</tr>
</tbody>
</table>

Table 5.9: The user study results 1
5.3. EFFECTIVENESS OF THE BOUNDING STEP AND THE PRUNING STEP

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>No.7</th>
<th>No.8</th>
<th>No.9</th>
<th>No.10</th>
<th>Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>14.925</td>
<td>15.037</td>
<td>17.137</td>
<td>19.475</td>
<td>16.765</td>
</tr>
<tr>
<td>e_2</td>
<td>26.524</td>
<td>27.383</td>
<td>30.775</td>
<td>34.009</td>
<td>26.453</td>
</tr>
<tr>
<td>e_3</td>
<td>5.226</td>
<td>5.352</td>
<td>4.783</td>
<td>3.970</td>
<td>4.867</td>
</tr>
</tbody>
</table>

Table 5.10: The user study results

5.3 Effectiveness of the Bounding Step and the Pruning Step

In the query keyword graph, each checked edge contains a set of minimal answers (black nodes). The bounding step and the pruning step prune many unnecessary max-joins by detecting some black nodes as white nodes for each checked edge. So, the effectiveness of the bounding step and the pruning step can be evaluated by measuring the rate of white nodes of the checked edges.

We test the following 6 queries, three of which are on the e-Fashion dataset and others are on the SuperstoreSales dataset. For each tested query, we measure the percentage of white nodes of the checked edge.

For the e-Fashion dataset,

- $Q_1 = (D_e^{-Fashion}, C_{e-Fashion}, \{Jackets, Leather, Sweaters, 2001\})$
- $Q_2 = (D_e^{-Fashion}, C_{e-Fashion}, \{Jackets, Leather, Sweaters\})$

For the SuperstoreSales dataset,

- $Q_4 = (D_{SuperstoreSales}, C_{SuperstoreSales}, \{Paper, Envelopes, Tables\})$
- $Q_5 = (D_{SuperstoreSales}, C_{SuperstoreSales}, \{Roy, Matt, Collins\})$
- $Q_6 = (D_{SuperstoreSales}, C_{SuperstoreSales}, \{Tracy, Truck, Box\})$

Figure 5.1 shows the experiment results on the e-Fashion dataset and Figure 5.2 is the results on the SuperstoreSales dataset. The bounding step is effective in detecting white nodes for Q_5. However, it detects few white nodes for Q_3. For Q_5, the bounding step can detect many white nodes because: 1) the overall scores of most group-bys are close to their upper bounds; and 2) the overall scores of most group-bys are much smaller than the threshold s. For Q_3, few white nodes are detected in the bounding step because: 1) the overall score of most group-bys are much smaller than their upper bounds; or 2) the overall scores of most group-bys are larger than the threshold s. The pruning
CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.1: Effectiveness of the bounding step and the pruning step on the e-Fashion dataset

Figure 5.2: Effectiveness of the bounding step and the pruning step on the Superstore-Sales dataset
5.4 The Top-k Query Answering Method

We use the e-Fashion dataset and the SuperstoreSales dataset to study the efficiency of the top-k query answering method. To study the scalability of our algorithm, we measure the query answering time of our method under various number of tuples and dimensions in the datasets.

We conduct two query answering experiments on the datasets. In our experiments, the top-k query answering method returns top-10 answers. In the first experiment, we change the number of tuples in the datasets. The corresponding results are shown in Figure 5.3 and Figure 5.4. For the complete query answering method, increasing the number of tuples results in a fairly linear increase in the runtime. One reason is that the number of max-join operations increases with the number of tuples. Another reason is that there could be more answers if the datasets contains more tuples. The top-k query answering method is also sensitive to the number of tuples in the datasets, but it is faster than the complete query answering method. The reason is that many unnecessary max-join operations in the top-k query answering method are pruned after the bounding step and the pruning step. As the number of tuples increases, more unnecessary joins are pruned and the top-k query answering method performs better than the complete query answering method.

In the second experiment, we change the number of dimensions in the datasets. The corresponding results are shown in Figure 5.5 and Figure 5.6. The result of the second experiment is similar with that of the first experiment. When the number of dimensions increases, both the top-k query answering method and the complete query answering method spend longer time to find the answers. One reason is that when there are more dimensions in the datasets, the number of max-join operations does not increase but it
CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.3: Efficiency of the Top-k query answering method and the complete query answering method on the e-Fashion dataset under various number of tuples

Figure 5.4: Efficiency of the Top-k query answering method and the complete query answering method on the SuperstoreSales dataset under various number of tuples
5.4. THE TOP-K QUERY ANSWERING METHOD

Figure 5.5: Efficiency of the Top-k query answering method and the complete query answering method on the e-Fashion dataset under various number of dimensions

Figure 5.6: Efficiency of the Top-k query answering method and the complete query answering method on the SuperstoreSales dataset under various number of dimensions
takes longer time to perform each max-join operation. Another reason is that, as the dimensionality increases, more answers could be found. Thus more query processing time is needed for both methods, especially for the complete query answering method since it needs to find all the answers. In summary, our experimental results on the two datasets clearly show that the top-k query answering method is highly feasible.

5.5 The Effect of k

Figure 5.7 shows the runtime of the top-k query answering method on the two data sets with respect to k. Clearly, the smaller the value of k, the more efficient the results. As discussed in Chapter 5, at the beginning of top-k query answering process, we generate k answers (may not be top-k) and use the lowest overall score as the threshold. The larger the threshold is, the more max-join operations we can prune. If k becomes smaller, the threshold could become larger and thus we could prune more max-join operations.

![Figure 5.7: Effect of the parameter k on the e-Fashion and the SuperstoreSales datasets](image)

From Figure 5.7, we find that results on the SuperstoreSales dataset are not sensitive to the value of k. The reverse is true for the e-Fashion dataset. One possibility is that the overall scores of answers on the SuperstoreSales dataset are very close, so even if k has a great increase in its value, the threshold does not have a great change and thus the runtime does not have a great increase. For the e-Fashion dataset, the top-k query answering method is more efficient than the complete query answering method if the
value of k is small (< 80). For the SuperstoreSales dataset, the top-k query answering method is more efficient than the complete query answering method for most values of k.
Chapter 6

Conclusions and Future Work

In this thesis, we tackled two practical and interesting problems to improve the efficiency and effectiveness of aggregate keyword search on large relational databases. First, aggregate keyword search can be very costly on large relational databases, partly due to the lack of efficient indexes. To tackle this problem, we designed a new index which is efficient both in size and in constructing time. Second, finding the top-k answers to an aggregate keyword query has not been addressed systematically, including both the ranking model and the efficient evaluation methods. To tackle this problem, we proposed a general ranking model and an efficient ranking algorithm which using a two-step method to prune unnecessary max-join operations. We also reported a systematic performance evaluation using real data sets. Our experimental results show that our new index is very efficient and our two-step method is very effective. Our top-k query answering method can find top-k answers in a shorter time than that of the complete query answering method on the real data sets.

Our work on aggregate keyword search is focused on a single table. As future work, we plan to extend our work in multiple tables. Also, in some cases, a user may find a minimal answer that is close to the search intension, it could be interesting if we can help the user find other group-bys that are “close” to this minimal answer. Moreover, it would be useful to develop new methods to further improve the query answering time for large relational databases.
A.1 The proof of Equation 4.8 in Chapter 4

Suppose there are \(n \) edges in the query keyword graph and thus we need to check \(n - 1 \) edges to generate all the candidate answers. To generate one candidate answer \(g \), we need to perform max-joins on a set of nodes \(\{ A_1, \cdots, A_{n-1} \} \), where \(A_i \) is a node from a corresponding checked edge. For simplicity, suppose \(n = 2 \) and \(g \) is the max-join result of nodes (group-bys) \(A_1 \) and \(A_2 \). The best upper bound of \(g \)'s dedication score is:

\[
Dedication(A_1) + Dedication(A_2) \quad (4.8)
\]

Proof 7 (Equation 4.8) Suppose: 1) there are \(M \) rows in \(Cov(A_1) \cup Cov(A_2) \), the dedication scores of these rows are \(d_1, \cdots, d_M \); 2) there are \(N' \) rows in \(Cov(A_1) - Cov(A_1) \cup Cov(A_2) \), the dedication scores of these rows are \(a_1, \cdots, a_{N'} \); and 3) there are \(N'' \) rows in \(Cov(A_2) - Cov(A_1) \cup Cov(A_2) \), the dedication scores of these rows are \(b_1, \cdots, b_{N''} \). So we have:
\[|Cov(A_1)| = N' + M; \]
\[
\sum_{i=1}^{N'} a_i + \sum_{i=1}^{M} d_i
\]
\[
= \sum_{i=1}^{N'+M} \left(\sum_{j=1}^{n} \left(IDF(w_j) \times \frac{N_{i,j}}{|Cov(A_1)|} \right) \right)
\]
\[
= \sum_{i=1}^{|Cov(A_1)|} \left(\sum_{j=1}^{n} \left(IDF(w_j) \times \frac{N_{i,j}}{|Cov(A_1)|} \right) \right)
\]
\[
= \sum_{j=1}^{n} \left(\sum_{i=1}^{|Cov(A_1)|} \left(IDF(w_j) \times \frac{N_{i,j}}{|Cov(A_1)|} \right) \right)
\]
\[
= \sum_{j=1}^{n} \left(IDF(w_j) \times \sum_{i=1}^{|Cov(A_1)|} \left(\frac{N_{i,j}}{|Cov(A_1)|} \right) \right)
\]
\[
(A.1)
\]

where \(n \) is the number of query keywords. If the row \(r_i \in Cov(A_1) \) contains the query keyword \(w_j \), \(N_{i,j} = 1 \), else \(N_{i,j} = 0 \).

So we have:
\[
\sum_{j=1}^{n} \left(IDF(w_j) \times \sum_{i=1}^{|Cov(A_1)|} \left(\frac{N_{i,j}}{|Cov(A_1)|} \right) \right)
\]
\[
= \sum_{j=1}^{n} \left(IDF(w_j) \times \frac{N_j}{|Cov(A_1)|} \right)
\]
\[
= Dedication(A_1)
\]
\[
(A.2)
\]

where \(N_j \) is the number of rows (in \(Cov(A_1) \)) that contain query keyword \(w_j \).

So, we have:
\[
Dedication(A_1) = \sum_{i=1}^{N'} a_i + \sum_{i=1}^{M} d_i
\]
\[
(A.3)
\]

Similarly, we have:
A.1. THE PROOF OF EQUATION 4.8 IN CHAPTER 4

We can prove Equation 4.8 if the following lemma can be proved:

Lemma 3 The upper bound of \(Dedication(g) \) is

\[
Dedication(A_1) + Dedication(A_2).
\]

Proof 8 (Lemma 3)

\[
B = \sum_{i=1}^{N'} a_i,
\]
\[
C = \sum_{i=1}^{N''} b_i,
\]
\[
D = \sum_{i=1}^{M} d_i.
\]

Let \(\xi \) be a very small positive number, and let \(D' = D - \xi, B' = B + \xi, C' = C + \xi, \) so we have

\[
Dedication(A_1) = \sum_{i=1}^{N'} a_i + \sum_{i=1}^{M} d_i
\]
\[
= B + D
\]
\[
= B' + D'
\]

(A.6)
\[\text{Dedication}(A_2) = \sum_{i=1}^{N''} b_i + \sum_{i=1}^{M} d_i = C + D = C' + D' \]
\[(A.7) \]

\[D' + B' + C' = D + B + C + \xi > D + B + C = \text{Dedication}(g) \]
\[(A.8) \]

If \(D \) becomes smaller (or \(B \) and \(C \) become larger), \(\text{Dedication}(g) \) would become larger. So, if the upper bound of \(\text{Dedication}(g) \) is reached, \(D \) must be 0, which means rows covered by both \(A_1 \) and \(A_2 \) contain no query keywords.

Since \(D \) is 0, we have:

\[\text{Dedication}(g) = B + C \]
\[\text{Dedication}(A_1) = B \]
\[\text{Dedication}(A_2) = C \]
\[(A.9) \]

So, the upper bound of \(\text{Dedication}(g) \) is reached if \(D = 0 \). In such a case, the upper bound of \(\text{Dedication}(g) \) is:

\[\text{Dedication}(A_1) + \text{Dedication}(A_2) \]
\[(A.10) \]

A.2 The proof of Equation 4.9 in Chapter 4

Suppose there are \(n \) edges in the query keyword graph and thus we need to check \(n - 1 \) edges to generate all the candidate answers. To generate one candidate answer \(g \), we
need to perform max-joins on a set of nodes \(\{A_1, \ldots, A_{n-1}\} \), where \(A_i \) is a node from a corresponding checked edge. For simplicity, suppose \(n = 2 \) and \(g \) is the max-join result of nodes (group-bys) \(A_1 \) and \(A_2 \). The best upper bound of \(g \)’s structure degree is:

\[
\text{StructureDegree}(A_1) + \text{StructureDegree}(A_2) \quad (4.8)
\]

Proof (Equation 4.9) Suppose: 1) there are \(M \) rows in \(\text{Cov}(A_1) \cup \text{Cov}(A_2) \), the structure degrees of these rows are \(d_1, \ldots, d_M \); 2) there are \(N' \) rows in \(\text{Cov}(A_1) \setminus \text{Cov}(A_2) \), the structure degrees of these rows are \(a_1, \ldots, a_{N'} \); and 3) there are \(N'' \) rows in \(\text{Cov}(A_2) \setminus \text{Cov}(A_1) \), the structure degrees of these rows are \(b_1, \ldots, b_{N''} \). So we have:

\[
\begin{align*}
|\text{Cov}(A_1)| &= N' + M; \\
\sum_{i=1}^{N'} a_i + \sum_{i=1}^{M} d_i &= \sum_{i=1}^{N'+M} \left(\sum_{j=1}^{y} \left(\frac{c_j}{|Q|} \times \frac{M_{i,j}}{|Cov(A_1)|} \right) \right) \\
&= \sum_{i=1}^{|\text{Cov}(A_1)|} \left(\sum_{j=1}^{y} \left(\frac{c_j}{|Q|} \times \frac{M_{i,j}}{|Cov(A_1)|} \right) \right) \\
&= \sum_{j=1}^{y} \left(\sum_{i=1}^{\text{Cov}(A_1)} \left(\frac{c_j}{|Q|} \times \frac{M_{i,j}}{|Cov(A_1)|} \right) \right) \\
&= \sum_{j=1}^{y} \left(\frac{c_j}{|Q|} \times \sum_{i=1}^{|Cov(A_1)|} \left(\frac{M_{i,j}}{|Cov(A_1)|} \right) \right)
\end{align*}
\]

(A.11)

where \(y \) is the number of sub-queries. If the row \(r_i \in \text{Cov}(A_1) \) contains the sub-query \(w_j, M_{i,j} = 1 \), else \(M_{i,j} = 0 \).

So we have:

\[
\begin{align*}
\sum_{j=1}^{y} \left(\frac{c_j}{|Q|} \times \sum_{i=1}^{\text{Cov}(A_1)} \left(\frac{M_{i,j}}{|Cov(A_1)|} \right) \right) \\
&= \sum_{j=1}^{y} \left(\frac{c_j}{|Q|} \times \frac{M_j}{|Cov(A_1)|} \right) \\
&= \text{StructureDegree}(A_1)
\end{align*}
\]

(A.12)
where M_j is the number of rows (in $\text{Cov}(A_1)$) that contain the sub-query c_j.

So, we have:

$$\text{StructureDegree}(A_1) = \sum_{i=1}^{N'} a_i + \sum_{i=1}^{M} d_i$$ \hspace{1cm} (A.13)

Similarly, we have:

$$\text{StructureDegree}(A_2) = \sum_{i=1}^{N''} b_i + \sum_{i=1}^{M} d_i$$

$$\text{StructureDegree}(g) = \sum_{i=1}^{N'} a_i + \sum_{i=1}^{N''} b_i + \sum_{i=1}^{M} d_i$$ \hspace{1cm} (A.14)

We can prove Equation 4.9 if the following lemma can be proved:

Lemma 4 The upper bound of $\text{StructureDegree}(g)$ is

$$\text{StructureDegree}(A_1) + \text{StructureDegree}(A_2).$$

Proof 10 (Lemma 4)

$$B = \sum_{i=1}^{N'} a_i$$

$$C = \sum_{i=1}^{N''} b_i$$

$$D = \sum_{i=1}^{M} d_i$$ \hspace{1cm} (A.15)

Let ξ be a very small positive number, and let $D' = D - \xi, B' = B + \xi, C' = C + \xi$, so we have
A.2. THE PROOF OF EQUATION 4.9 IN CHAPTER 4

\[\text{StructureDegree}(A_1) = \sum_{i=1}^{N'} a_i + \sum_{i=1}^{M} d_i = B + D = B' + D'\] (A.16)

\[\text{StructureDegree}(A_2) = \sum_{i=1}^{N''} b_i + \sum_{i=1}^{M} d_i = C + D = C' + D'\] (A.17)

\[D' + B' + C' = D + B + C + \xi > D + B + C = \text{StructureDegree}(g)\] (A.18)

If \(D\) becomes smaller (or \(B\) and \(C\) become larger), \(\text{StructureDegree}(g)\) would become larger. So, if the upper bound of \(\text{StructureDegree}(g)\) is reached, \(D\) must be 0, which means rows covered by both \(A_1\) and \(A_2\) contain no query keywords.

Since \(D\) is 0, we have:

\[\text{StructureDegree}(g) = B + C\]
\[\text{StructureDegree}(A_1) = B\]
\[\text{StructureDegree}(A_2) = C\] (A.19)

So, the upper bound of \(\text{StructureDegree}(g)\) is reached if \(D = 0\). In such a case, the upper bound of \(\text{StructureDegree}(g)\) is:
\[\text{StructureDegree}(A_1) + \text{StructureDegree}(A_2) \]

(A.20)
Bibliography

[7] Bolin Ding, Bo Zhao, Cindy Xide Lin, Jiawei Han, and Chengxiang Zhai. Topcells: Keyword-based search of top-k aggregated documents in text cube. In *Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA*, pages 381–384. IEEE, 2010.

