On Montgomery's pair correlation conjecture to the zeros of Riedmann zeta function

Author: 
Date created: 
2005
Abstract: 

In this thesis, we are interested in Montgomery's pair correlation conjecture which is about the distribution of.the spacings between consecutive zeros of the Riemann Zeta function. Our goal is to explain and study Montgomery's pair correlation conjecture and discuss its connection with the random matrix theory. In Chapter One, we will explain how to define the Ftiemann Zeta function by using the analytic continuation. After this, several classical properties of the Ftiemann Zeta function will be discussed. In Chapter Two, We will explain the proof of Montgomery's main result and discuss the pair correlation conjecture in detail. The main result about the pair correlation functions of the eigenvalues of random matrices will also be proved. These two pair correlation functions turn out amazingly to be the same. Thus the full importance of Montgomery's conjecture is established.

Description: 
The author has placed restrictions on the PDF copy of this thesis. The PDF is not printable nor copyable. If you would like the SFU Library to attempt to contact the author to get permission to print a copy, please email your request to summit-permissions@sfu.ca.
Language: 
English
Document type: 
Thesis
Rights: 
Copyright remains with the author
File(s): 
Department: 
Department of Mathematics - Simon Fraser University
Thesis type: 
Thesis (M.Sc.)
Statistics: