Pharmacological Inhibition of O-GlcNAcase Enhances Autophagy in Brain through an mTOR-Independent Pathway

Peer reviewed: 
Yes, item is peer reviewed.
Scholarly level: 
Faculty/Staff
Final version published as: 

Zhu, Y., Shan, X., Safarpour, F., Erro Go, N., Li, N., Shan, A., Huang, M. C., Deen, M., Holicek, V., Ashmus, R., Madden, Z., Gorski, S., Silverman, M. A., & Vocadlo, D. J. (2018). Pharmacological Inhibition of O-GlcNAcase Enhances Autophagy in Brain through an mTOR-Independent Pathway. ACS Chemical Neuroscience, 9(6), 1366–1379. https://doi.org/10.1021/acschemneuro.8b00015.

Date created: 
2018-02-20
Identifier: 
DOI: 10.1021/acschemneuro.8b00015
Keywords: 
Alzheimer’s disease
Glycosylation
Autophagy
Neurodegeneration
O-GlcNAc
Thiamet-G
Abstract: 

The glycosylation of nucleocytoplasmic proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) is conserved among metazoans and is particularly abundant within brain. O-GlcNAc is involved in diverse cellular processes ranging from the regulation of gene expression to stress response. Moreover, O-GlcNAc is implicated in various diseases including cancers, diabetes, cardiac dysfunction, and neurodegenerative diseases. Pharmacological inhibition of O-GlcNAcase (OGA), the sole enzyme that removes O-GlcNAc, reproducibly slows neurodegeneration in various Alzheimer’s disease (AD) mouse models manifesting either tau or amyloid pathology. These data have stimulated interest in the possibility of using OGA-selective inhibitors as pharmaceuticals to alter the progression of AD. The mechanisms mediating the neuroprotective effects of OGA inhibitors, however, remain poorly understood. Here we show, using a range of methods in neuroblastoma N2a cells, in primary rat neurons, and in mouse brain, that selective OGA inhibitors stimulate autophagy through an mTOR-independent pathway without obvious toxicity. Additionally, OGA inhibition significantly decreased the levels of toxic protein species associated with AD pathogenesis in the JNPL3 tauopathy mouse model as well as the 3×Tg-AD mouse model. These results strongly suggest that OGA inhibitors act within brain through a mechanism involving enhancement of autophagy, which aids the brain in combatting the accumulation of toxic protein species. Our study supports OGA inhibition being a feasible therapeutic strategy for hindering the progression of AD and other neurodegenerative diseases. Moreover, these data suggest more targeted strategies to stimulate autophagy in an mTOR-independent manner may be found within the O-GlcNAc pathway. These findings should aid the advancement of OGA inhibitors within the clinic.

Language: 
English
Document type: 
Article
Rights: 
Rights remain with the authors.
File(s): 
Sponsor(s): 
Canadian Institutes of Health Research (CIHR)
Statistics: