Reaction of hydroxyl radicals with sulfonated phenylated polyphenylenes

Author: 
Date created: 
2019-04-18
Identifier: 
etd20198
Keywords: 
Fuel Cells
Polymer Electrolyte Membrane
Degradation
Oxidation
Polyphenylenes
Solid Polymer Electrolyte
Abstract: 

The perceived poor durability of non-fluorous, hydrocarbon solid polymer electrolyte membranes in the presence of reactive hydroxyl radicals remains a significant hurdle for their integration into electrochemical systems such as fuel cells. However, recent reports point to sulfonated phenylated polyphenylenes (sPPP) being considerably stable in accelerated fuel cell tests. In order to investigate the possible reaction of hydroxyl radicals with this promising class of hydrocarbon polymer electrolytes, a structurally-analogous oligophenylene model compound was synthesized and its degradation route was studied in the presence of hydroxyl radicals. Using NMR spectroscopy and mass spectroscopy, all significant degradation products are characterized and based on their chemical structures, along with changes in concentration over time, a degradation route is proposed. Hydroxyl-radical degradation was observed and found to be initiated by the oxidation of pendant phenyl rings to form fluorenone sub-structures which, upon further oxidation, lead to ring-opening of a main chain phenyl ring which, if occurring in sPPP, leads to chain-scission of the polymer backbone. In keeping with this hypothesis, molecular weights of sPPP were found to decrease when subject to hydroxyl radicals. Although degraded polymer NMR spectra remain unchanged, resonances consistent with the elimination of sulfobenzoic acid emerge. The results outlined in this work point towards a promising future for sPPP membranes and suggest a simple modification which should enhance their lifetime within fuel cell systems.

Document type: 
Thesis
Rights: 
This thesis may be printed or downloaded for non-commercial research and scholarly purposes. Copyright remains with the author.
File(s): 
Senior supervisor: 
Steven Holdcroft
Department: 
Science: Department of Chemistry
Thesis type: 
(Thesis) M.Sc.
Statistics: