Synthesis and Electronic Structure Determination of Uranium(VI) Ligand Radical Complexes

Peer reviewed: 
Yes, item is peer reviewed.
Scholarly level: 
Faculty/Staff
Final version published as: 

Herasymchuk, K., Chiang, L., Hayes, C. E., Brown, M. L., Ovens, J. S., Patrick, B. O., Leznoff, D. B., Storr, T. Synthesis and Electronic Structure Determination of Uranium(VI) Ligand Radical Complexes. Dalton. Trans. 201645, 12576-12586. DOI: 10.1039/C6DT02089E

Date created: 
2016-07
Identifier: 
DOI: 10.1039/C6DT02089E
Abstract: 

 

 Pentagonal bipyramidal uranyl complexes of salen ligands, N,N’-bis(3-tert-butyl-(5R)-salicylidene)-1,2-phenylenediamine, in which R = tBu (1a), OMe (1b), and NMe2 (1c), were prepared and the electronic structure of the one-electron oxidized species [1a-c]+ were investigated in solution. The solid-state structures of 1a and 1b were solved by X-ray crystallography, and in the case of 1b an asymmetric UO22+ unit was found due to an intermolecular hydrogen bonding interaction. Electrochemical investigation of 1a-c by cyclic voltammetry showed that each complex exhibited at least one quasi-reversible redox process assigned to the oxidation of the phenolate moieties to phenoxyl radicals. The trend in redox potentials matches the electron-donating ability of the para-phenolate substituents. The electron paramagnetic resonance spectra of cations [1a-c]+ exhibited gav values of 1.997, 1.999, and 1.995, respectively, reflecting the ligand radical character of the oxidized forms, and in addition, spin-orbit coupling to the uranium centre. Chemical oxidation as monitored by ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy afforded the one-electron oxidized species. Weak low energy intra-ligand charge transfer (CT) transitions were observed for [1a-c]+ indicating localization of the ligand radical to form a phenolate / phenoxyl radical species. Further analysis using density functional theory (DFT) calculations predicted a localized phenoxyl radical for [1a-c]+ with a small but significant contribution of the phenylenediamine unit to the spin density. Time-dependent DFT (TD-DFT) calculations provided further insight into the nature of the low energy transitions, predicting both phenolate to phenoxyl intervalence charge transfer (IVCT) and phenylenediamine to phenoxyl CT character. Overall, [1a-c]+ are determined to be relatively localized ligand radical complexes, in which localization is enhanced as the electron donating ability of the para-phenolate substituents is increased (NMe2 > OMe > tBu).

Language: 
English
Document type: 
Article
Rights: 
Rights remain with the authors.
File(s): 
Statistics: