A High-Performance Piezoelectric Vibration Sensor

Peer reviewed: 
Yes, item is peer reviewed.
Scholarly level: 
Final version published as: 

Yaghootkar, B., Azimi, S., Bahreyni, B. "A High-Performance Piezoelectric Vibration Sensor." IEEE Sensors Journal. 17 (13). 2017. 4005-4012. https://doi.org/10.1016/j.matdes.2016.10.011

Date created: 

We are reporting on the design, fabrication, and characterization of wideband, piezoelectric vibration microsensors. Prototypes were fabricated in a commercial foundry process. The entire thickness of the handle wafer was employed to carve the proof-mass of the device, leading to high sensitivity at a reduced chip area. A thin layer of aluminum nitride was used for sensing the displacements of the proof-mass. A continuous membrane was employed for the device structure in order to push undesired modes to high frequencies. Sensors with different geometries were designed and fabricated. Analytic and finite element analyses were conducted to study device response. A lump element model was developed for the piezoelectric vibration sensor and used for the noise modeling of the complete sensor system. Various performance metrics for the devices were characterized experimentally. Fabricated prototypes exhibited sensitivities as high as 350 mV/g with first resonant frequencies of more than 10 kHz. These devices are particularly suited for emerging applications in high-frequency vibration sensing.

Document type: 
Rights remain with the authors.
Natural Sciences and Engineering Research Council of Canada (NSERC)