Two-Way Relaying Using Constant Envelope Modulation and Phase-Superposition-Phase-Forward

Peer reviewed: 
Yes, item is peer reviewed.
Scholarly level: 
Final version published as: 

Tan and Ho EURASIP Journal on Wireless Communications and Networking 2011, 2011:120

Date created: 
2-Way relaying
Cooperative communications

In this article, we propose the idea of phase-superposition-phase-forward (PSPF) relaying for 2-way 3-phasecooperative network involving constant envelope modulation with discriminator detection in a time-selectiveRayleigh fading environment. A semi-analytical expression for the bit-error-rate (BER) of this system is derived andthe results are verified by simulation. It was found that, compared to one-way relaying, 2-way relaying with PSPFsuffers only a moderate loss in energy efficiency (of 1.5 dB). On the other hand, PSPF improves the transmissionefficiency by 33%. Furthermore, we believe that the loss in transmission efficiency can be reduced if power isallocated to the different nodes in this cooperative network in an ‘optimal’ fashion. To further put the performanceof the proposed PSPF scheme into perspective, we compare it against a phase-combining phase-forwardtechnique that is based on decode-and-forward (DF) and multi-level CPFSK re-modulation at the relay. It wasfound that DF has a higher BER than PSPF and requires additional processing at the relay. It can thus beconcluded that the proposed PSPF technique is indeed the preferred way to maintain constant envelope signalingthroughout the signaling chain in a 2-way 3 phase relaying system.

Document type: 
You are free to copy, distribute and transmit this work under the following conditions: You must give attribution to the work (but not in any way that suggests that the author endorses you or your use of the work); You may not use this work for commercial purposes; You may not alter, transform, or build upon this work. Any further uses require the permission of the rights holder (or author if no rights holder is listed). These rights are based on the Creative Commons Attribution-NonCommercial-NoDerivatives License.