A New Reduced-Complexity Detection Scheme for Zero-Padded OFDM Transmissions

Peer reviewed: 
Yes, item is peer reviewed.
Scholarly level: 
Faculty/Staff
Final version published as: 

BMC Bioinformatics2006, 7:185 doi:10.1186/1471-2105-7-185

Date created: 
2006
Abstract: 

Recently, zero-padding orthogonal frequency division multiplexing (ZP-OFDM) has been proposed as an alternative solution to the traditional cyclic prefix (CP)-OFDM, to ensure symbol recovery regardless of channels nulls. Various ZP-OFDM receivers have been proposed in the literature, trading off performance with complexity. In this paper, we propose a novel low-complexity (LC) receiver for ZP-OFDM transmissions and derive an upper bound on the bit error rate (BER) performance of the LC-ZP-OFDM receiver. We further demonstrate that the LC-ZP-OFDM receiver brings a significant complexity reduction in the receiver design, while outperforming conventional minimum mean-square error (MMSE)-ZP-OFDM, supported by simulation results. A modified (M)-ZP-OFDM receiver, which requires the channel state information (CSI) knowledge at the transmitter side, is presented. We show that the M-ZP-OFDM receiver outperforms the conventional MMSE-ZP-OFDM when either perfect or partial CSI (i.e., limited CSI) is available at the transmitter side.Index Terms-Zero-padding, orthogonal frequency division multiplexing (OFDM), equalization.

Language: 
English
Document type: 
Article
Rights: 
You are free to copy, distribute and transmit this work under the following conditions: You must give attribution to the work (but not in any way that suggests that the author endorses you or your use of the work); You may not use this work for commercial purposes; You may not alter, transform, or build upon this work. Any further uses require the permission of the rights holder (or author if no rights holder is listed). These rights are based on the Creative Commons Attribution-NonCommercial-NoDerivatives License.
Statistics: