Efficient Inference with Poor Instruments: a General Framework

Peer reviewed: 
No, item is not peer reviewed.
Scholarly level: 
Date created: 
Instrumental variable
Weak instrument

We consider a general framework where weaker patterns of identifcation may arise: typically, the data generating process is allowed to depend on the sample size. However, contrary to what is usually done in the literature on weak identification, we do not give up the efficiency goal of statistical inference: even fragile information should be processed optimally for the purpose of both efficient estimation and powerful testing. Our main contribution is actually to consider that several patterns of identification may arise simultaneously. This heterogeneity of identification schemes paves the way for the device of optimal strategies for inferential use of information of poor quality. More precisely, we focus on a case where asymptotic efficiency of estimators is well-defined through the variance of asymptotically normal distributions. Standard efficient estimation procedures still hold, albeit with rates of convergence slower than usual. We stress that these are feasible without requiring the prior knowledge of the identification schemes.

Document type: 
You are free to copy, distribute and transmit this work under the following conditions: You must give attribution to the work (but not in any way that suggests that the author endorses you or your use of the work); You may not use this work for commercial purposes; You may not alter, transform, or build upon this work. Any further uses require the permission of the rights holder (or author if no rights holder is listed). These rights are based on the Creative Commons Attribution-NonCommercial-NoDerivatives License.