Efficient Minimum Distance Estimation with Multiple Rates of Convergence

Peer reviewed: 
No, item is not peer reviewed.
Scholarly level: 
Faculty/Staff
Date created: 
2012
Keywords: 
GMM
Kernel estimation
Mixed-rates asymptotics
Rotation in the coordinate system
Abstract: 

This paper extends the asymptotic theory of GMM inference to allow sample counterparts of the estimating equations to converge at (multiple) rates, different from the usual square-root of the sample size. In this setting, we provide consistent estimation of the structural parameters. In addition, we define a convenient rotation in the parameter space (or reparametrization) to disentangle the different rates of convergence. More precisely, we identify special linear combinations of the structural parameters associated with a specific rate of convergence. Finally, we demonstrate the validity of usual inference procedures, like the overidentification test and Wald test, with standard formulas. It is important to stress that both estimation and testing work without requiring the knowledge of the various rates. However, the assessment of these rates is crucial for (asymptotic) power considerations. Possible applications include econometric problems with two dimensions of asymptotics, due to trimming, tail estimation, infill asymptotic, social interactions, kernel smoothing or any kind of regularization.

Language: 
English
Document type: 
Report
Rights: 
You are free to copy, distribute and transmit this work under the following conditions: You must give attribution to the work (but not in any way that suggests that the author endorses you or your use of the work); You may not use this work for commercial purposes; You may not alter, transform, or build upon this work. Any further uses require the permission of the rights holder (or author if no rights holder is listed). These rights are based on the Creative Commons Attribution-NonCommercial-NoDerivatives License.
Statistics: