Error Concealment for 5/3 Motion Compensated Temporal Filtering with Lifting

Author: 
Peer reviewed: 
Yes, item is peer reviewed.
Scholarly level: 
Undergraduate student
Date created: 
2007-10-09
Keywords: 
error concealment
motion compensated temporal filter
scalable video coding
lifting
Abstract: 

5/3 Motion Compensated Temporal Filtering (MCTF) is a tool for highly scalable video coding which has been recently studied by many researchers. This thesis presents several error concealment algorithms for 5/3 MCTF with lifting, which can be used to improve the quality of compressed video damaged by packet losses. In MCTF video, the low frequency subband frame, abbreviated as L-frame, contains most of the signal energy in any given Group-of-Pictures (GOP). We assume that one of these L-frames is lost. The proposed error concealment algorithms use the available data to reconstruct the missing L-frame. The simplest error concealment method considered in the thesis is Zero Motion Error Concealment. This method simply assumes zero motion through the damaged GOP, and averages the neighboring L-frames to reconstruct the missing L-frame. Another method called Motion Concatenation finds temporal pathways through the damaged GOP by connecting motion vectors available at the decoder, and copies the corresponding pixel values from the neighboring L-frames to the missing L-frame. Finally, Motion Re-estimation uses motion estimator at the decoder to find a motion vectors between two neighboring L-frames of the missing L-frame, and synthesizes the missing L-frame halfway between its neighboring L-frames. The overall error concealment system combines these three methods to maximize visual performance, as well as the Peak Signal-to-Noise-Ratio (PSNR).

Language: 
English
Document type: 
Thesis
Rights: 
You are free to copy, distribute and transmit this work under the following conditions: You must give attribution to the work (but not in any way that suggests that the author endorses you or your use of the work); You may not use this work for commercial purposes; You may not alter, transform, or build upon this work. Any further uses require the permission of the rights holder (or author if no rights holder is listed). These rights are based on the Creative Commons Attribution-NonCommercial-NoDerivatives License.
File(s): 
Senior supervisor: 
Ivan V. Bajic
Department: 
School of Engineering Science
Thesis type: 
BASc
Statistics: