Oviposition ecology of house flies, Musca domestica (Diptera: Muscidae): competition, chemical cues, and bacterial symbionts.

Author: 
Date created: 
2010
Keywords: 
Musca domestica
Diptera
Muscidae
Klebsiella oxytoca
Communication ecology
Bacterial symbiont
Abstract: 

House fly larvae face several challenges during their development to adulthood. They must: (1) condition their nutritional resources while avoiding intraspecific competition; (2) avoid competitive fungi and/or inhibit fungal growth; and (3) obtain sufficient bacteria as food supplements. In my thesis, I show that house fly eggs are provisioned with bacterial symbionts that play a major role in addressing all of these challenges, and that these bacterial symbionts can be vertically transmitted by house flies from one generation to the next. Specifically, I have shown that: (1) gravid female house flies deposit, and respond to, a time-dependent bacterial cue, Klebsiella oxytoca, that proliferates over time on the surfaces of deposited eggs, inhibiting further oviposition when a threshold bacterial density is reached. This affords female house flies the resource-conditioning benefits of aggregated oviposition while decreasing the risks of cannibalism by older conspecifics; (2) house fly eggs are associated with several bacterial strains, each with a different spectrum of anti-fungal properties that aid in inhibiting the growth of competitive fungi. Volatile semiochemical cues produced by these fungi inhibit oviposition by gravid female house flies, helping them avoid detrimental competition with them; (3) gravid female house flies deposit bacteria that significantly increase larval survival in resources lacking in appropriate bacterial food, likely through supplementation of larval nutrition. Using pEGFP-transformed K. oxytoca, I demonstrated that K. oxytoca introduced onto the surface of house fly eggs is maintained on and in house flies throughout larval, pupal, and adult stages.

Description: 
The author has placed restrictions on the PDF copy of this thesis. The PDF is not printable nor copyable. If you would like the SFU Library to attempt to contact the author to get permission to print a copy, please email your request to summit-permissions@sfu.ca.
Language: 
English
Document type: 
Thesis
Rights: 
Copyright remains with the author
File(s): 
Senior supervisor: 
G
Department: 
Biological Sciences Department - Simon Fraser University
Thesis type: 
Thesis (Ph.D.)
Statistics: