Biological Sciences, Department of

Receive updates for this collection

Evolution of Eyes and Photoreceptor Organelles in the Lower Phyla

Author: 
Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
1984
Abstract: 

How could. such a complex organ as the vertebrate eye have evolved by natural selection of numerous, successive, slight modifications? Charles Darwin posed this question but could not answer it satisfactorily because of the rather limited knowledge of invertebrate eyes in his day.

For the vertebrate eye, though genetically inheritable variations are known, the question cannot be answered even today because of the lack of examples to fill the huge gap between the relatively primitive pigment-cup eyes of chordate ancestors and the fully-developed lens eye of the simplest vertebrates. Fortunately, as we now know, the lens eye has evolved independently several other times, and stepwise evolution is suggested by the existence of intermediate grades along those distinct lines.

Document type: 
Book chapter
File(s): 

A Hemoglobin with an Optical Function

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2000-02
Abstract: 

Hemoglobins are best known as oxygen transport pro-teins. Here we describe a hemoglobin from the parasitic nematode Mermis nigrescens (Mn-GLB-E) that has an optical, light shadowing function. The protein accumu-lates to high concentration as intracellular crystals in the ocellus of mature phototactic adult females while also being expressed at low concentration in other tis-sues. It differs in sequence and expression pattern from Mn-GLB-B, a second Mermis globin. It retains the struc-ture and oxygen-binding and light-absorbing properties typical of nematode hemoglobins. As such, recruitment to a shadowing role in the eye appears to have occurred by changes in expression without modification of bio-chemistry. Both globins are coded by genes interrupted by two introns at the conserved positions B12.2 and G7.0, which is in agreement with the 3exon/2intron pat-tern model of globin gene evolution.

Document type: 
Article
File(s): 

Locomotion Behaviour

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2004
Abstract: 

By far the most characteristic traits of nematodes are their extremely narrow streamlined body and undulatory style of locomotion, useful in their common burrowing habit. These traits have enabled them to be successful in an amazingly wide range of free-living and parasitic environments that is without parallel in other meiofauna. This review examines what is known of the mechanism of this locomotion and its adaptations to various environments in the light of their unique body architecture and neuromuscular system.

Document type: 
Book chapter
File(s): 

Genetic Analysis of Larval Dispersal, Gene Flow, and Connectivity

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2017-02-12
Abstract: 

Genetic data can be used to characterize the scale or magnitude of connectivity via larval dispersal in the plankton as the per capita migration rate (m), the rate of gene flow (Nm), or counts of immigrant individuals. Population-based methods infer average effective rates of connectivity on long time scales (hundreds to thousands of generations), and those estimates will influenced by many processes (including larval dispersal). Individual-based methods based on clustering or assignment of individual genotypes to populations or families are suitable for estimating connectivity on short timescales. The typical or characteristic larval dispersal distance for any one system of populations may best be characterized by isolation-by-distance patterns (using population model methods) or by the dispersal kernel (using parentage-based methods). Migration rates estimated from individual-based methods may be more relevant to ecological studies of demographic connectivity (e.g., among demes in a network of marine prote ted areas) compared to rates of gene flow estimated from population-based methods.

Document type: 
Book chapter
File(s): 

Intracellular Amyloid β Oligomers Impair Organelle Transport and Induce Dendritic Spine Loss in Primary Neurons

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2015
Abstract: 

Introduction

Synaptic dysfunction and intracellular transport defects are early events in Alzheimer’s disease (AD). Extracellular amyloid β (Aβ) oligomers cause spine alterations and impede the transport of proteins and organelles such as brain-derived neurotrophic factor (BDNF) and mitochondria that are required for synaptic function. Meanwhile, intraneuronal accumulation of Aβ precedes its extracellular deposition and is also associated with synaptic dysfunction in AD. However, the links between intracellular Aβ, spine alteration, and mechanisms that support synaptic maintenance such as organelle trafficking are poorly understood.

Results

We compared the effects of wild-type and Osaka (E693Δ)-mutant amyloid precursor proteins: the former secretes Aβ into extracellular space and the latter accumulates Aβ oligomers within cells. First we investigated the effects of intracellular Aβ oligomers on dendritic spines in primary neurons and their tau-dependency using tau knockout neurons. We found that intracellular Aβ oligomers caused a reduction in mushroom, or mature spines, independently of tau. We also found that intracellular Aβ oligomers significantly impaired the intracellular transport of BDNF, mitochondria, and recycling endosomes: cargoes essential for synaptic maintenance. A reduction in BDNF transport by intracellular Aβ oligomers was also observed in tau knockout neurons.

Conclusions

Our findings indicate that intracellular Aβ oligomers likely contribute to early synaptic pathology in AD and argue against the consensus that Aβ-induced spine loss and transport defects require tau.

Document type: 
Article
File(s): 

Color Vision Varies More Among Populations Than Among Species of Live-Bearing Fish From South America

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2015
Abstract: 

Background

Sensory Bias models for the evolution of mate preference place a great emphasis on the role of sensory system variation in mate preferences. However, the extent to which sensory systems vary across- versus within-species remains largely unknown. Here we assessed whether color vision varies in natural locations where guppies (Poecilia reticulata) and their two closest relatives, Poecilia parae and Poecilia picta, occur in extreme sympatry and school together. All three species base mate preferences on male coloration but differ in the colors preferred.

Results

Measuring opsin gene expression, we found that within sympatric locations these species have similar color vision and that color vision differed more across populations of conspecifics. In addition, all three species differ across populations in the frequency of the same opsin coding polymorphism that influences visual tuning.

Conclusions

Together, this shows sensory systems vary considerably across populations and supports the possibility that sensory system variation is involved in population divergence of mate preference.

Document type: 
Article
File(s): 

Genetically Modifying the Insect Gut Microbiota to Control Chagas Disease Vectors through Systemic RNAi

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2015
Abstract: 

Technologies based on RNA interference may be used for insect control. Sustainable strategies are needed to control vectors of Chagas disease such as Rhodnius prolixus. The insect microbiota can be modified to deliver molecules to the gut. Here, Escherichia coli HT115(DE3) expressing dsRNA for the Rhodnius heme-binding protein (RHBP) and for catalase (CAT) were fed to nymphs and adult triatomine stages. RHBP is an egg protein and CAT is an antioxidant enzyme expressed in all tissues by all developmental stages. The RNA interference effect was systemic and temporal. Concentrations of E. coli HT115(DE3) above 3.35 × 107 CFU/mL produced a significant RHBP and CAT gene knockdown in nymphs and adults. RHBP expression in the fat body was reduced by 99% three days after feeding, returning to normal levels 10 days after feeding. CAT expression was reduced by 99% and 96% in the ovary and the posterior midgut, respectively, five days after ingestion. Mortality rates increased by 24-30% in first instars fed RHBP and CAT bacteria. Molting rates were reduced by 100% in first instars and 80% in third instars fed bacteria producing RHBP or CAT dsRNA. Oviposition was reduced by 43% (RHBP) and 84% (CAT). Embryogenesis was arrested in 16% (RHBP) and 20% (CAT) of laid eggs. Feeding females 105 CFU/mL of the natural symbiont, Rhodococcus rhodnii, transformed to express RHBP-specific hairpin RNA reduced RHBP expression by 89% and reduced oviposition. Modifying the insect microbiota to induce systemic RNAi in R. prolixus may result in a paratransgenic strategy for sustainable vector control.

Document type: 
Article
File(s): 

Trypanosomes Modify the Behavior of Their Insect Hosts: Effects on Locomotion and on the Expression of a Related Gene

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2015
Abstract: 

Background

As a result of evolution, the biology of triatomines must have been significantly adapted to accommodate trypanosome infection in a complex network of vector-vertebrate-parasite interactions. Arthropod-borne parasites have probably developed mechanisms, largely still unknown, to exploit the vector-vertebrate host interactions to ensure their transmission to suitable hosts. Triatomines exhibit a strong negative phototaxis and nocturnal activity, believed to be important for insect survival against its predators.

Methodology/Principal Findings

In this study we quantified phototaxis and locomotion in starved fifth instar nymphs of Rhodnius prolixus infected with Trypanosoma cruzi or Trypanosoma rangeli. T. cruzi infection did not alter insect phototaxis, but induced an overall 20% decrease in the number of bug locomotory events. Furthermore, the significant differences induced by this parasite were concentrated at the beginning of the scotophase. Conversely, T. rangeli modified both behaviors, as it significantly decreased bug negative phototaxis, while it induced a 23% increase in the number of locomotory events in infected bugs. In this case, the significant effects were observed during the photophase. We also investigated the expression of Rpfor, the triatomine ortholog of the foraging gene known to modulate locomotion in other insects, and found a 4.8 fold increase for T. rangeli infected insects.

Conclusions/Significance

We demonstrated for the first time that trypanosome infection modulates the locomotory activity of the invertebrate host. T. rangeli infection seems to be more broadly effective, as besides affecting the intensity of locomotion this parasite also diminished negative phototaxis and the expression of a behavior-associated gene in the triatomine vector.

Document type: 
Article
File(s): 

Simplification of Caribbean Reef-Fish Assemblages over Decades of Coral Reef Degradation

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2015
Abstract: 

Caribbean coral reefs are becoming structurally simpler, largely due to human impacts. The consequences of this trend for reef-associated communities are currently unclear, but expected to be profound. Here, we assess whether changes in fish assemblages have been non-random over several decades of declining reef structure. More specifically, we predicted that species that depend exclusively on coral reef habitat (i.e., habitat specialists) should be at a disadvantage compared to those that use a broader array of habitats (i.e., habitat generalists). Analysing 3727 abundance trends of 161 Caribbean reef-fishes, surveyed between 1980 and 2006, we found that the trends of habitat-generalists and habitat-specialists differed markedly. The abundance of specialists started to decline in the mid-1980s, reaching a low of ~60% of the 1980 baseline by the mid-1990s. Both the average and the variation in abundance of specialists have increased since the early 2000s, although the average is still well below the baseline level of 1980. This modest recovery occurred despite no clear evidence of a regional recovery in coral reef habitat quality in the Caribbean during the 2000s. In contrast, the abundance of generalist fishes remained relatively stable over the same three decades. Few specialist species are fished, thus their population declines are most likely linked to habitat degradation. These results mirror the observed trends of replacement of specialists by generalists, observed in terrestrial taxa across the globe. A significant challenge that arises from our findings is now to investigate if, and how, such community-level changes in fish populations affect ecosystem function.

Document type: 
Article
File(s): 

Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2015
Abstract: 

Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce wetland habitat availability for many species.

Document type: 
Article
File(s):