Biological Sciences, Department of

Receive updates for this collection

Unique Two-Photoreceptor Scanning Eye of the Nematode Mermisnigrescens

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2007
Abstract: 

A single eye is present in females of the nematode Mermis nigrescens. A pigment cup occupies the entire cross section near the anterior tip of the worm, and the curved cuticle at the tip becomes a cornea. The shading pigment is hemoglobin instead of melanin. The eye has been shown to provide a positive phototaxis utilizing a scanning mechanism; however, the eye's structure has not been sufficiently described. Here, we provide a reconstruction of the eye on the basis of light and electron microscopy of serial sections. Hemoglobin crystals are densely packed in the cytoplasm of expanded hypodermal cells, forming the cylindrical shadowing structure. The two putative photoreceptors are found laterally within the transparent conical center of this structure where they would be exposed to light from different anterior fields of view. Each consists of a multilamellar sensory process formed by one of the dendrites in each of the two amphidial sensory nerve bundles that pass through the center. Multilamellar processes are also found in the same location in immature adult females and fourth stage juvenile females, which lack the shadowing pigment and exhibit a weak negative phototaxis. The unique structure of the pigment cup eye is discussed in terms of optical function, phototaxis mechanism, eye nomenclature, and evolution.

Document type: 
Article
File(s): 

The Nematode Stoma: Homology of Cell Architecture with Improved Understanding by Confocal Microscopy of Labeled Cell Boundaries

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2016
Abstract: 

Nematode stomas vary widely in the cuticular structures evolved for different feeding strategies, yet the arrangement of the epithelial cell classes that form these structures may be conserved. This article addresses several issues that have impeded the full acceptance of this hypothesis including controversies arising from the structure of the Caenorhabditis elegans stoma. We investigated fluorescent antibody labeling of cell boundaries in conjunction with confocal microscopy as an alternative to transmission electron microscopy (TEM), using MH27 to label apical junctions in C. elegans and two other species. Accurately spaced optical sections collected by the confocal microscope provide a three-dimensional array of pixels (voxels) that, using image-processing software, can be rotated and sectioned at accurately chosen thicknesses and locations. Ribbons of fluorescence clearly identify cell boundaries along the luminal cuticle in C. elegans and Zeldia punctata and less clearly in Bunonema sp. The patterns render cell classes and their relationships readily identifiable. In the C. elegans stoma they correct a misreading of serial TEMs that was not congruent with architecture in other nematodes—the row of marginal cells is now seen to be continuous as in other nematodes, rather than being interrupted by encircling pm1 cells. Also impeding understanding, the reference to certain cell classes as ‘epithelial’ and others as “muscle” in the C. elegans literature is at variance with muscle expression in most other taxa. For consistent comparison among species, we propose that these cell class descriptors based on function be replaced by topological terms. With these and other confusing concepts and terminology removed, the homology of the cellular architecture among taxa becomes obvious. We provide a corrected description of the cell architecture of the C. elegans stoma and examples of how it is modified in other taxa with different feeding strategies.

Document type: 
Article
File(s): 

Evolution of Eyes and Photoreceptor Organelles in the Lower Phyla

Author: 
Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
1984
Abstract: 

How could. such a complex organ as the vertebrate eye have evolved by natural selection of numerous, successive, slight modifications? Charles Darwin posed this question but could not answer it satisfactorily because of the rather limited knowledge of invertebrate eyes in his day.

For the vertebrate eye, though genetically inheritable variations are known, the question cannot be answered even today because of the lack of examples to fill the huge gap between the relatively primitive pigment-cup eyes of chordate ancestors and the fully-developed lens eye of the simplest vertebrates. Fortunately, as we now know, the lens eye has evolved independently several other times, and stepwise evolution is suggested by the existence of intermediate grades along those distinct lines.

Document type: 
Book chapter
File(s): 

A Hemoglobin with an Optical Function

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2000-02
Abstract: 

Hemoglobins are best known as oxygen transport pro-teins. Here we describe a hemoglobin from the parasitic nematode Mermis nigrescens (Mn-GLB-E) that has an optical, light shadowing function. The protein accumu-lates to high concentration as intracellular crystals in the ocellus of mature phototactic adult females while also being expressed at low concentration in other tis-sues. It differs in sequence and expression pattern from Mn-GLB-B, a second Mermis globin. It retains the struc-ture and oxygen-binding and light-absorbing properties typical of nematode hemoglobins. As such, recruitment to a shadowing role in the eye appears to have occurred by changes in expression without modification of bio-chemistry. Both globins are coded by genes interrupted by two introns at the conserved positions B12.2 and G7.0, which is in agreement with the 3exon/2intron pat-tern model of globin gene evolution.

Document type: 
Article
File(s): 

Locomotion Behaviour

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2004
Abstract: 

By far the most characteristic traits of nematodes are their extremely narrow streamlined body and undulatory style of locomotion, useful in their common burrowing habit. These traits have enabled them to be successful in an amazingly wide range of free-living and parasitic environments that is without parallel in other meiofauna. This review examines what is known of the mechanism of this locomotion and its adaptations to various environments in the light of their unique body architecture and neuromuscular system.

Document type: 
Book chapter
File(s): 

Genetic Analysis of Larval Dispersal, Gene Flow, and Connectivity

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2017-02-12
Abstract: 

Genetic data can be used to characterize the scale or magnitude of connectivity via larval dispersal in the plankton as the per capita migration rate (m), the rate of gene flow (Nm), or counts of immigrant individuals. Population-based methods infer average effective rates of connectivity on long time scales (hundreds to thousands of generations), and those estimates will influenced by many processes (including larval dispersal). Individual-based methods based on clustering or assignment of individual genotypes to populations or families are suitable for estimating connectivity on short timescales. The typical or characteristic larval dispersal distance for any one system of populations may best be characterized by isolation-by-distance patterns (using population model methods) or by the dispersal kernel (using parentage-based methods). Migration rates estimated from individual-based methods may be more relevant to ecological studies of demographic connectivity (e.g., among demes in a network of marine prote ted areas) compared to rates of gene flow estimated from population-based methods.

Document type: 
Book chapter
File(s): 

Intracellular Amyloid β Oligomers Impair Organelle Transport and Induce Dendritic Spine Loss in Primary Neurons

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2015
Abstract: 

Introduction

Synaptic dysfunction and intracellular transport defects are early events in Alzheimer’s disease (AD). Extracellular amyloid β (Aβ) oligomers cause spine alterations and impede the transport of proteins and organelles such as brain-derived neurotrophic factor (BDNF) and mitochondria that are required for synaptic function. Meanwhile, intraneuronal accumulation of Aβ precedes its extracellular deposition and is also associated with synaptic dysfunction in AD. However, the links between intracellular Aβ, spine alteration, and mechanisms that support synaptic maintenance such as organelle trafficking are poorly understood.

Results

We compared the effects of wild-type and Osaka (E693Δ)-mutant amyloid precursor proteins: the former secretes Aβ into extracellular space and the latter accumulates Aβ oligomers within cells. First we investigated the effects of intracellular Aβ oligomers on dendritic spines in primary neurons and their tau-dependency using tau knockout neurons. We found that intracellular Aβ oligomers caused a reduction in mushroom, or mature spines, independently of tau. We also found that intracellular Aβ oligomers significantly impaired the intracellular transport of BDNF, mitochondria, and recycling endosomes: cargoes essential for synaptic maintenance. A reduction in BDNF transport by intracellular Aβ oligomers was also observed in tau knockout neurons.

Conclusions

Our findings indicate that intracellular Aβ oligomers likely contribute to early synaptic pathology in AD and argue against the consensus that Aβ-induced spine loss and transport defects require tau.

Document type: 
Article
File(s): 

Color Vision Varies More Among Populations Than Among Species of Live-Bearing Fish From South America

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2015
Abstract: 

Background

Sensory Bias models for the evolution of mate preference place a great emphasis on the role of sensory system variation in mate preferences. However, the extent to which sensory systems vary across- versus within-species remains largely unknown. Here we assessed whether color vision varies in natural locations where guppies (Poecilia reticulata) and their two closest relatives, Poecilia parae and Poecilia picta, occur in extreme sympatry and school together. All three species base mate preferences on male coloration but differ in the colors preferred.

Results

Measuring opsin gene expression, we found that within sympatric locations these species have similar color vision and that color vision differed more across populations of conspecifics. In addition, all three species differ across populations in the frequency of the same opsin coding polymorphism that influences visual tuning.

Conclusions

Together, this shows sensory systems vary considerably across populations and supports the possibility that sensory system variation is involved in population divergence of mate preference.

Document type: 
Article
File(s): 

Genetically Modifying the Insect Gut Microbiota to Control Chagas Disease Vectors through Systemic RNAi

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2015
Abstract: 

Technologies based on RNA interference may be used for insect control. Sustainable strategies are needed to control vectors of Chagas disease such as Rhodnius prolixus. The insect microbiota can be modified to deliver molecules to the gut. Here, Escherichia coli HT115(DE3) expressing dsRNA for the Rhodnius heme-binding protein (RHBP) and for catalase (CAT) were fed to nymphs and adult triatomine stages. RHBP is an egg protein and CAT is an antioxidant enzyme expressed in all tissues by all developmental stages. The RNA interference effect was systemic and temporal. Concentrations of E. coli HT115(DE3) above 3.35 × 107 CFU/mL produced a significant RHBP and CAT gene knockdown in nymphs and adults. RHBP expression in the fat body was reduced by 99% three days after feeding, returning to normal levels 10 days after feeding. CAT expression was reduced by 99% and 96% in the ovary and the posterior midgut, respectively, five days after ingestion. Mortality rates increased by 24-30% in first instars fed RHBP and CAT bacteria. Molting rates were reduced by 100% in first instars and 80% in third instars fed bacteria producing RHBP or CAT dsRNA. Oviposition was reduced by 43% (RHBP) and 84% (CAT). Embryogenesis was arrested in 16% (RHBP) and 20% (CAT) of laid eggs. Feeding females 105 CFU/mL of the natural symbiont, Rhodococcus rhodnii, transformed to express RHBP-specific hairpin RNA reduced RHBP expression by 89% and reduced oviposition. Modifying the insect microbiota to induce systemic RNAi in R. prolixus may result in a paratransgenic strategy for sustainable vector control.

Document type: 
Article
File(s): 

Trypanosomes Modify the Behavior of Their Insect Hosts: Effects on Locomotion and on the Expression of a Related Gene

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2015
Abstract: 

Background

As a result of evolution, the biology of triatomines must have been significantly adapted to accommodate trypanosome infection in a complex network of vector-vertebrate-parasite interactions. Arthropod-borne parasites have probably developed mechanisms, largely still unknown, to exploit the vector-vertebrate host interactions to ensure their transmission to suitable hosts. Triatomines exhibit a strong negative phototaxis and nocturnal activity, believed to be important for insect survival against its predators.

Methodology/Principal Findings

In this study we quantified phototaxis and locomotion in starved fifth instar nymphs of Rhodnius prolixus infected with Trypanosoma cruzi or Trypanosoma rangeli. T. cruzi infection did not alter insect phototaxis, but induced an overall 20% decrease in the number of bug locomotory events. Furthermore, the significant differences induced by this parasite were concentrated at the beginning of the scotophase. Conversely, T. rangeli modified both behaviors, as it significantly decreased bug negative phototaxis, while it induced a 23% increase in the number of locomotory events in infected bugs. In this case, the significant effects were observed during the photophase. We also investigated the expression of Rpfor, the triatomine ortholog of the foraging gene known to modulate locomotion in other insects, and found a 4.8 fold increase for T. rangeli infected insects.

Conclusions/Significance

We demonstrated for the first time that trypanosome infection modulates the locomotory activity of the invertebrate host. T. rangeli infection seems to be more broadly effective, as besides affecting the intensity of locomotion this parasite also diminished negative phototaxis and the expression of a behavior-associated gene in the triatomine vector.

Document type: 
Article
File(s):