Theses, Dissertations, and other Required Graduate Degree Essays

Receive updates for this collection

This collection contains digitized SFU theses except for those theses submitted within the last 12 months. If you cannot find the thesis you are looking for please search Recently Submitted Theses as it may be a recently submitted thesis and thus not yet available in Summit.

Development of a microfluidic platform for size-based enrichment and immunomagnetic isolation of circulating tumour cells

Date created: 
2017-08-16
Abstract: 

Cancer is a leading cause of death worldwide. Efforts to improve the longevity and quality of life of cancer patients are hindered by delays in diagnosis of tumours and treatment deficiency, as well as inaccurate prognosis that leads to unnecessary or inefficient treatments. More accurate biomarkers may address these issues and could facilitate the selection of effective treatment courses and development of new therapeutic regimens. Circulating tumour cells (CTCs), which are cancer cells that are shed from tumours and enter the vasculature, hold such a promise. Therefore, there is much interest in the isolation of CTCs from the blood. However, this is not a trivial task given the extreme scarcity of CTCs in the circulation. In this thesis, the development of a microfluidic immunomagnetic approach for isolation of CTCs is presented. First, the design, microfabrication, and experimental evaluation of a novel integrated microfluidic magnetic chip for sensitive and selective isolation of immunomagnetically labelled cancer cells from blood samples is reported. In general, to ensure the efficient immunomagnetic labelling of target cancer cells in a blood sample, an excessive number of magnetic beads should be added to the sample. When an immunomagnetically labelled sample is processed through the chip, not only cancer cells but also free magnetic beads that are not bonded to any target cells would be captured. The accumulation of these beads could disrupt the capture and visual detection of target cells. This is an inherent drawback associated with immunomagnetic cell separation systems and has rarely been addressed in the past. Therefore, the design, microfabrication, and characterization of a microfluidic filter for continuous size-based removal of free magnetic beads from immunomagnetically labelled blood samples is presented next. Connected in tandem, the two chips developed in this work form a microfluidic platform for size-based enrichment and immunomagnetic isolation of CTCs. Preclinical studies showed that the proposed approach can capture up to 75% of blood-borne prostate cancer cells at clinically-relevant low concentrations (as low as 5 cells/mL) at an acceptable throughput (200 μL/min). The retrieval and successful propagation of captured prostate cancer cells is also investigated and discussed in this thesis.

Document type: 
Thesis
File(s): 
Senior supervisor: 
Dr. Edward J. Park
Dr. Timothy V. Beischlag
Department: 
Applied Sciences: School of Mechatronic Systems Engineering
Thesis type: 
(Thesis) Ph.D.

Design and Synthesis of Novel, Lead-reduced Piezo-/Ferroelectric Materials

Author: 
Date created: 
2017-08-24
Abstract: 

Relaxor-based piezo-/ferroelectric materials of complex perovskite structure, represented by (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), have demonstrated excellent piezoelectric performance. However, they also exhibit some inherent drawbacks, such as a low Curie temperature, an even lower de-poling temperature due to the presence of a morphotropic phase boundary (MPB) region, a weak coercive field and a high content of lead, which make them unsuitable for high-temperature and high-field (power) applications and raise environmental concerns. Bismuth-based complex perovskites, such as Bi(Zn1/2Ti1/2)O3 (BZT) seem to be an interesting candidate for the replacement of lead-based compounds because, like Pb2+ ion, Bi3+ also contains the 6s2 lone electron pair which is considered to be essential for the high piezo-/ferroelectric performance in lead-based perovskite. In addition, the solid solution between BZT and PT indeed exhibits larger structural distortion resulting in a higher Curie temperature than PT. However, its coercive field is too large for the material to be poled in order to make its potentially high piezo-/ferroelectric properties useful. Faced with those issues and challenges, outcomes of this thesis are two-fold: Firstly, addition of a non-stereochemically active ion and related complex compound, namely La(Zn1/2Ti1/2)O3 (LZT), as an end-member "softens" the structures, chemical bonding and electric properties of "hard" ferroelectric materials, to achieve improved electric properties, such as giant dielectric constant, smaller coercive field and switching polarization and excellent piezoelectricity and ferroelectricity.Secondly, addition of BZT as the third component "hardens" the structures, chemical bonding and electric properties of PMN-PT binary system in order to increase its coercive field and to improve its piezo-/ferroelectricity. In particular, special efforts have been made to grow the single crystals of the PMN-PT-BZT ternary system. The studies of the single crystals provide invaluable information on the phase symmetry, domain structures, phase transitions and electric properties and allow to gain a better understanding of the relationship between crystal formation, chemical composition, phase symmetry and macroscopic properties.

Document type: 
Thesis
File(s): 
Senior supervisor: 
Zuo-Guang Ye
Department: 
Science: Department of Chemistry
Thesis type: 
(Thesis) Ph.D.

Development of a microfluidic platform for size-based enrichment and immunomagnetic isolation of circulating tumour cells

Date created: 
2017-08-16
Abstract: 

Cancer is a leading cause of death worldwide. Efforts to improve the longevity and quality of life of cancer patients are hindered by delays in diagnosis of tumours and treatment deficiency, as well as inaccurate prognosis that leads to unnecessary or inefficient treatments. More accurate biomarkers may address these issues and could facilitate the selection of effective treatment courses and development of new therapeutic regimens. Circulating tumour cells (CTCs), which are cancer cells that are shed from tumours and enter the vasculature, hold such a promise. Therefore, there is much interest in the isolation of CTCs from the blood. However, this is not a trivial task given the extreme scarcity of CTCs in the circulation. In this thesis, the development of a microfluidic immunomagnetic approach for isolation of CTCs is presented. First, the design, microfabrication, and experimental evaluation of a novel integrated microfluidic magnetic chip for sensitive and selective isolation of immunomagnetically labelled cancer cells from blood samples is reported. In general, to ensure the efficient immunomagnetic labelling of target cancer cells in a blood sample, an excessive number of magnetic beads should be added to the sample. When an immunomagnetically labelled sample is processed through the chip, not only cancer cells but also free magnetic beads that are not bonded to any target cells would be captured. The accumulation of these beads could disrupt the capture and visual detection of target cells. This is an inherent drawback associated with immunomagnetic cell separation systems and has rarely been addressed in the past. Therefore, the design, microfabrication, and characterization of a microfluidic filter for continuous size-based removal of free magnetic beads from immunomagnetically labelled blood samples is presented next. Connected in tandem, the two chips developed in this work form a microfluidic platform for size-based enrichment and immunomagnetic isolation of CTCs. Preclinical studies showed that the proposed approach can capture up to 75% of blood-borne prostate cancer cells at clinically-relevant low concentrations (as low as 5 cells/mL) at an acceptable throughput (200 μL/min). The retrieval and successful propagation of captured prostate cancer cells is also investigated and discussed in this thesis.

Document type: 
Thesis
File(s): 
Senior supervisor: 
Dr. Edward J. Park
Dr. Timothy V. Beischlag
Department: 
Applied Sciences: School of Mechatronic Systems Engineering
Thesis type: 
(Thesis) Ph.D.

Design and Synthesis of Novel, Lead-reduced Piezo-/Ferroelectric Materials

Author: 
Date created: 
2017-08-24
Abstract: 

Relaxor-based piezo-/ferroelectric materials of complex perovskite structure, represented by (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), have demonstrated excellent piezoelectric performance. However, they also exhibit some inherent drawbacks, such as a low Curie temperature, an even lower de-poling temperature due to the presence of a morphotropic phase boundary (MPB) region, a weak coercive field and a high content of lead, which make them unsuitable for high-temperature and high-field (power) applications and raise environmental concerns. Bismuth-based complex perovskites, such as Bi(Zn1/2Ti1/2)O3 (BZT) seem to be an interesting candidate for the replacement of lead-based compounds because, like Pb2+ ion, Bi3+ also contains the 6s2 lone electron pair which is considered to be essential for the high piezo-/ferroelectric performance in lead-based perovskite. In addition, the solid solution between BZT and PT indeed exhibits larger structural distortion resulting in a higher Curie temperature than PT. However, its coercive field is too large for the material to be poled in order to make its potentially high piezo-/ferroelectric properties useful. Faced with those issues and challenges, outcomes of this thesis are two-fold: Firstly, addition of a non-stereochemically active ion and related complex compound, namely La(Zn1/2Ti1/2)O3 (LZT), as an end-member "softens" the structures, chemical bonding and electric properties of "hard" ferroelectric materials, to achieve improved electric properties, such as giant dielectric constant, smaller coercive field and switching polarization and excellent piezoelectricity and ferroelectricity.Secondly, addition of BZT as the third component "hardens" the structures, chemical bonding and electric properties of PMN-PT binary system in order to increase its coercive field and to improve its piezo-/ferroelectricity. In particular, special efforts have been made to grow the single crystals of the PMN-PT-BZT ternary system. The studies of the single crystals provide invaluable information on the phase symmetry, domain structures, phase transitions and electric properties and allow to gain a better understanding of the relationship between crystal formation, chemical composition, phase symmetry and macroscopic properties.

Document type: 
Thesis
File(s): 
Senior supervisor: 
Zuo-Guang Ye
Department: 
Science: Department of Chemistry
Thesis type: 
(Thesis) Ph.D.

Development of a microfluidic platform for size-based enrichment and immunomagnetic isolation of circulating tumour cells

Date created: 
2017-08-16
Abstract: 

Cancer is a leading cause of death worldwide. Efforts to improve the longevity and quality of life of cancer patients are hindered by delays in diagnosis of tumours and treatment deficiency, as well as inaccurate prognosis that leads to unnecessary or inefficient treatments. More accurate biomarkers may address these issues and could facilitate the selection of effective treatment courses and development of new therapeutic regimens. Circulating tumour cells (CTCs), which are cancer cells that are shed from tumours and enter the vasculature, hold such a promise. Therefore, there is much interest in the isolation of CTCs from the blood. However, this is not a trivial task given the extreme scarcity of CTCs in the circulation. In this thesis, the development of a microfluidic immunomagnetic approach for isolation of CTCs is presented. First, the design, microfabrication, and experimental evaluation of a novel integrated microfluidic magnetic chip for sensitive and selective isolation of immunomagnetically labelled cancer cells from blood samples is reported. In general, to ensure the efficient immunomagnetic labelling of target cancer cells in a blood sample, an excessive number of magnetic beads should be added to the sample. When an immunomagnetically labelled sample is processed through the chip, not only cancer cells but also free magnetic beads that are not bonded to any target cells would be captured. The accumulation of these beads could disrupt the capture and visual detection of target cells. This is an inherent drawback associated with immunomagnetic cell separation systems and has rarely been addressed in the past. Therefore, the design, microfabrication, and characterization of a microfluidic filter for continuous size-based removal of free magnetic beads from immunomagnetically labelled blood samples is presented next. Connected in tandem, the two chips developed in this work form a microfluidic platform for size-based enrichment and immunomagnetic isolation of CTCs. Preclinical studies showed that the proposed approach can capture up to 75% of blood-borne prostate cancer cells at clinically-relevant low concentrations (as low as 5 cells/mL) at an acceptable throughput (200 μL/min). The retrieval and successful propagation of captured prostate cancer cells is also investigated and discussed in this thesis.

Document type: 
Thesis
File(s): 
Senior supervisor: 
Dr. Edward J. Park
Dr. Timothy V. Beischlag
Department: 
Applied Sciences: School of Mechatronic Systems Engineering
Thesis type: 
(Thesis) Ph.D.

Development of a microfluidic platform for size-based enrichment and immunomagnetic isolation of circulating tumour cells

Date created: 
2017-08-16
Abstract: 

Cancer is a leading cause of death worldwide. Efforts to improve the longevity and quality of life of cancer patients are hindered by delays in diagnosis of tumours and treatment deficiency, as well as inaccurate prognosis that leads to unnecessary or inefficient treatments. More accurate biomarkers may address these issues and could facilitate the selection of effective treatment courses and development of new therapeutic regimens. Circulating tumour cells (CTCs), which are cancer cells that are shed from tumours and enter the vasculature, hold such a promise. Therefore, there is much interest in the isolation of CTCs from the blood. However, this is not a trivial task given the extreme scarcity of CTCs in the circulation. In this thesis, the development of a microfluidic immunomagnetic approach for isolation of CTCs is presented. First, the design, microfabrication, and experimental evaluation of a novel integrated microfluidic magnetic chip for sensitive and selective isolation of immunomagnetically labelled cancer cells from blood samples is reported. In general, to ensure the efficient immunomagnetic labelling of target cancer cells in a blood sample, an excessive number of magnetic beads should be added to the sample. When an immunomagnetically labelled sample is processed through the chip, not only cancer cells but also free magnetic beads that are not bonded to any target cells would be captured. The accumulation of these beads could disrupt the capture and visual detection of target cells. This is an inherent drawback associated with immunomagnetic cell separation systems and has rarely been addressed in the past. Therefore, the design, microfabrication, and characterization of a microfluidic filter for continuous size-based removal of free magnetic beads from immunomagnetically labelled blood samples is presented next. Connected in tandem, the two chips developed in this work form a microfluidic platform for size-based enrichment and immunomagnetic isolation of CTCs. Preclinical studies showed that the proposed approach can capture up to 75% of blood-borne prostate cancer cells at clinically-relevant low concentrations (as low as 5 cells/mL) at an acceptable throughput (200 μL/min). The retrieval and successful propagation of captured prostate cancer cells is also investigated and discussed in this thesis.

Document type: 
Thesis
File(s): 
Senior supervisor: 
Dr. Edward J. Park
Dr. Timothy V. Beischlag
Department: 
Applied Sciences: School of Mechatronic Systems Engineering
Thesis type: 
(Thesis) Ph.D.

Development of a microfluidic platform for size-based enrichment and immunomagnetic isolation of circulating tumour cells

Date created: 
2017-08-16
Abstract: 

Cancer is a leading cause of death worldwide. Efforts to improve the longevity and quality of life of cancer patients are hindered by delays in diagnosis of tumours and treatment deficiency, as well as inaccurate prognosis that leads to unnecessary or inefficient treatments. More accurate biomarkers may address these issues and could facilitate the selection of effective treatment courses and development of new therapeutic regimens. Circulating tumour cells (CTCs), which are cancer cells that are shed from tumours and enter the vasculature, hold such a promise. Therefore, there is much interest in the isolation of CTCs from the blood. However, this is not a trivial task given the extreme scarcity of CTCs in the circulation. In this thesis, the development of a microfluidic immunomagnetic approach for isolation of CTCs is presented. First, the design, microfabrication, and experimental evaluation of a novel integrated microfluidic magnetic chip for sensitive and selective isolation of immunomagnetically labelled cancer cells from blood samples is reported. In general, to ensure the efficient immunomagnetic labelling of target cancer cells in a blood sample, an excessive number of magnetic beads should be added to the sample. When an immunomagnetically labelled sample is processed through the chip, not only cancer cells but also free magnetic beads that are not bonded to any target cells would be captured. The accumulation of these beads could disrupt the capture and visual detection of target cells. This is an inherent drawback associated with immunomagnetic cell separation systems and has rarely been addressed in the past. Therefore, the design, microfabrication, and characterization of a microfluidic filter for continuous size-based removal of free magnetic beads from immunomagnetically labelled blood samples is presented next. Connected in tandem, the two chips developed in this work form a microfluidic platform for size-based enrichment and immunomagnetic isolation of CTCs. Preclinical studies showed that the proposed approach can capture up to 75% of blood-borne prostate cancer cells at clinically-relevant low concentrations (as low as 5 cells/mL) at an acceptable throughput (200 μL/min). The retrieval and successful propagation of captured prostate cancer cells is also investigated and discussed in this thesis.

Document type: 
Thesis
File(s): 
Senior supervisor: 
Dr. Edward J. Park
Dr. Timothy V. Beischlag
Department: 
Applied Sciences: School of Mechatronic Systems Engineering
Thesis type: 
(Thesis) Ph.D.

Development of a microfluidic platform for size-based enrichment and immunomagnetic isolation of circulating tumour cells

Date created: 
2017-08-16
Abstract: 

Cancer is a leading cause of death worldwide. Efforts to improve the longevity and quality of life of cancer patients are hindered by delays in diagnosis of tumours and treatment deficiency, as well as inaccurate prognosis that leads to unnecessary or inefficient treatments. More accurate biomarkers may address these issues and could facilitate the selection of effective treatment courses and development of new therapeutic regimens. Circulating tumour cells (CTCs), which are cancer cells that are shed from tumours and enter the vasculature, hold such a promise. Therefore, there is much interest in the isolation of CTCs from the blood. However, this is not a trivial task given the extreme scarcity of CTCs in the circulation. In this thesis, the development of a microfluidic immunomagnetic approach for isolation of CTCs is presented. First, the design, microfabrication, and experimental evaluation of a novel integrated microfluidic magnetic chip for sensitive and selective isolation of immunomagnetically labelled cancer cells from blood samples is reported. In general, to ensure the efficient immunomagnetic labelling of target cancer cells in a blood sample, an excessive number of magnetic beads should be added to the sample. When an immunomagnetically labelled sample is processed through the chip, not only cancer cells but also free magnetic beads that are not bonded to any target cells would be captured. The accumulation of these beads could disrupt the capture and visual detection of target cells. This is an inherent drawback associated with immunomagnetic cell separation systems and has rarely been addressed in the past. Therefore, the design, microfabrication, and characterization of a microfluidic filter for continuous size-based removal of free magnetic beads from immunomagnetically labelled blood samples is presented next. Connected in tandem, the two chips developed in this work form a microfluidic platform for size-based enrichment and immunomagnetic isolation of CTCs. Preclinical studies showed that the proposed approach can capture up to 75% of blood-borne prostate cancer cells at clinically-relevant low concentrations (as low as 5 cells/mL) at an acceptable throughput (200 μL/min). The retrieval and successful propagation of captured prostate cancer cells is also investigated and discussed in this thesis.

Document type: 
Thesis
File(s): 
Senior supervisor: 
Dr. Edward J. Park
Dr. Timothy V. Beischlag
Department: 
Applied Sciences: School of Mechatronic Systems Engineering
Thesis type: 
(Thesis) Ph.D.

Development of a microfluidic platform for size-based enrichment and immunomagnetic isolation of circulating tumour cells

Date created: 
2017-08-16
Abstract: 

Cancer is a leading cause of death worldwide. Efforts to improve the longevity and quality of life of cancer patients are hindered by delays in diagnosis of tumours and treatment deficiency, as well as inaccurate prognosis that leads to unnecessary or inefficient treatments. More accurate biomarkers may address these issues and could facilitate the selection of effective treatment courses and development of new therapeutic regimens. Circulating tumour cells (CTCs), which are cancer cells that are shed from tumours and enter the vasculature, hold such a promise. Therefore, there is much interest in the isolation of CTCs from the blood. However, this is not a trivial task given the extreme scarcity of CTCs in the circulation. In this thesis, the development of a microfluidic immunomagnetic approach for isolation of CTCs is presented. First, the design, microfabrication, and experimental evaluation of a novel integrated microfluidic magnetic chip for sensitive and selective isolation of immunomagnetically labelled cancer cells from blood samples is reported. In general, to ensure the efficient immunomagnetic labelling of target cancer cells in a blood sample, an excessive number of magnetic beads should be added to the sample. When an immunomagnetically labelled sample is processed through the chip, not only cancer cells but also free magnetic beads that are not bonded to any target cells would be captured. The accumulation of these beads could disrupt the capture and visual detection of target cells. This is an inherent drawback associated with immunomagnetic cell separation systems and has rarely been addressed in the past. Therefore, the design, microfabrication, and characterization of a microfluidic filter for continuous size-based removal of free magnetic beads from immunomagnetically labelled blood samples is presented next. Connected in tandem, the two chips developed in this work form a microfluidic platform for size-based enrichment and immunomagnetic isolation of CTCs. Preclinical studies showed that the proposed approach can capture up to 75% of blood-borne prostate cancer cells at clinically-relevant low concentrations (as low as 5 cells/mL) at an acceptable throughput (200 μL/min). The retrieval and successful propagation of captured prostate cancer cells is also investigated and discussed in this thesis.

Document type: 
Thesis
File(s): 
Senior supervisor: 
Dr. Edward J. Park
Dr. Timothy V. Beischlag
Department: 
Applied Sciences: School of Mechatronic Systems Engineering
Thesis type: 
(Thesis) Ph.D.

Development of a microfluidic platform for size-based enrichment and immunomagnetic isolation of circulating tumour cells

Date created: 
2017-08-16
Abstract: 

Cancer is a leading cause of death worldwide. Efforts to improve the longevity and quality of life of cancer patients are hindered by delays in diagnosis of tumours and treatment deficiency, as well as inaccurate prognosis that leads to unnecessary or inefficient treatments. More accurate biomarkers may address these issues and could facilitate the selection of effective treatment courses and development of new therapeutic regimens. Circulating tumour cells (CTCs), which are cancer cells that are shed from tumours and enter the vasculature, hold such a promise. Therefore, there is much interest in the isolation of CTCs from the blood. However, this is not a trivial task given the extreme scarcity of CTCs in the circulation. In this thesis, the development of a microfluidic immunomagnetic approach for isolation of CTCs is presented. First, the design, microfabrication, and experimental evaluation of a novel integrated microfluidic magnetic chip for sensitive and selective isolation of immunomagnetically labelled cancer cells from blood samples is reported. In general, to ensure the efficient immunomagnetic labelling of target cancer cells in a blood sample, an excessive number of magnetic beads should be added to the sample. When an immunomagnetically labelled sample is processed through the chip, not only cancer cells but also free magnetic beads that are not bonded to any target cells would be captured. The accumulation of these beads could disrupt the capture and visual detection of target cells. This is an inherent drawback associated with immunomagnetic cell separation systems and has rarely been addressed in the past. Therefore, the design, microfabrication, and characterization of a microfluidic filter for continuous size-based removal of free magnetic beads from immunomagnetically labelled blood samples is presented next. Connected in tandem, the two chips developed in this work form a microfluidic platform for size-based enrichment and immunomagnetic isolation of CTCs. Preclinical studies showed that the proposed approach can capture up to 75% of blood-borne prostate cancer cells at clinically-relevant low concentrations (as low as 5 cells/mL) at an acceptable throughput (200 μL/min). The retrieval and successful propagation of captured prostate cancer cells is also investigated and discussed in this thesis.

Document type: 
Thesis
File(s): 
Senior supervisor: 
Dr. Edward J. Park
Dr. Timothy V. Beischlag
Department: 
Applied Sciences: School of Mechatronic Systems Engineering
Thesis type: 
(Thesis) Ph.D.