Resource and Environmental Management, School of

Receive updates for this collection

How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2013
Abstract: 

Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies.

Document type: 
Article
File(s): 

Changes in the Distribution of Atlantic Bluefin Tuna (Thunnus thynnus) in the Gulf of Maine 1979-2005

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2013
Abstract: 

The Gulf of Maine, NW Atlantic Ocean, is a productive, seasonal foraging ground for Atlantic bluefin tuna (Thunnus thynnus), but commercial landings of adult size classes were up to 40% below the allocated total allowable catch between 2004 to 2008 for the rod and reel, harpoon, and purse seine categories in the Gulf of Maine. Reduction in Atlantic bluefin tuna catches in the Gulf of Maine could represent a decline in spawning stock biomass, but given wide-ranging, complex migration patterns, and high energetic requirements, an alternative hypothesis is that their dispersal patterns shifted to regions with higher prey abundance or profitability, reducing availability to U.S. fishing fleets. This study fit generalized linear models to Atlantic bluefin tuna landings data collected from fishermen’s logbooks (1979-2005) as well as the distances between bluefin tuna schools and Atlantic herring (Clupea harengus), a primary prey species, to test alternative hypotheses for observed shifts in Atlantic bluefin tuna availability in the Gulf of Maine. For the bluefin model, landings varied by day of year, latitude and longitude. The effect of latitude differed by day of year and the effect of longitude differed by year. The distances between Atlantic bluefin tuna schools and Atlantic herring schools were significantly smaller (p<0.05) than would be expected from a randomly distributed population. A time series of average bluefin tuna school positions was positively correlated with the average number of herring captured per tow on Georges Bank in spring and autumn surveys respectively (p<0.01, r2=0.24, p<0.01, r2=0.42). Fishermen’s logbooks contributed novel spatial and temporal information towards testing these hypotheses for the bluefin tuna fishery.

Document type: 
Article
File(s): 

Sea Otters Homogenize Mussel Beds and Reduce Habitat Provisioning in a Rocky Intertidal Ecosystem

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2013
Abstract: 

Sea otters (Enhydra lutris) are keystone predators that consume a variety of benthic invertebrates, including the intertidal mussel, Mytilus californianus. By virtue of their competitive dominance, large size, and longevity, M. californianus are ecosystem engineers that form structurally complex beds that provide habitat for diverse invertebrate communities. We investigated whether otters affect mussel bed characteristics (i.e. mussel length distributions, mussel bed depth, and biomass) and associated community structure (i.e. biomass, alpha and beta diversity) by comparing four regions that varied in their histories of sea otter occupancy on the west coast of British Columbia and northern Washington. Mussel bed depth and average mussel lengths were 1.5 times lower in regions occupied by otters for >20 years than those occupied for <5 yrs. Diversity of mussel bed associated communities did not differ between regions; however, the total biomass of species associated with mussel beds was more than three-times higher where sea otters were absent. We examined alternative explanations for differences in mussel bed community structure, including among-region variation in oceanographic conditions and abundance of the predatory sea star Pisaster ochraceus. We cannot discount multiple drivers shaping mussel beds, but our findings indicate the sea otters are an important one. We conclude that, similar to their effects on subtidal benthic invertebrates, sea otters reduce the size distributions of intertidal mussels and, thereby, habitat available to support associated communities. Our study indicates that by reducing populations of habitat-providing intertidal mussels, sea otters may have substantial indirect effects on associated communities.

Document type: 
Article
File(s): 

Confronting Uncertainty in Wildlife Management: Performance of Grizzly Bear Management

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2013
Abstract: 

Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone – discrepancy between expected and realized mortality levels – led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty.

 

Document type: 
Article
File(s): 

Plants Used In Artisanal Fisheries On The Western Mediterranean Coasts Of Italy

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2013
Abstract: 

Background

Artisanal fisheries in the Mediterranean, especially in Italy, have been poorly investigated. There is a long history of fishing in this region, and it remains an important economic activity in many localities. Our research entails both a comprehensive review of the relevant literature and 58 field interviews with practitioners on plants used in fishing activities along the Western Mediterranean Italian coastal regions. The aims were to record traditional knowledge on plants used in fishery in these regions and to define selection criteria for plant species used in artisanal fisheries, considering ecology and intrinsic properties of plants, and to discuss the pattern of diffusion of shared uses in these areas.

Methods

Information was gathered both from a general review of ethnobotanical literature and from original data. A total of 58 semi-structured interviews were carried out in Liguria, Latium, Campania and Sicily (Italy). Information on plant uses related to fisheries were collected and analyzed through a chi-square residual analysis and the correspondence analysis in relation to habitat, life form and chorology.

Results

A total of 60 plants were discussed as being utilized in the fisheries of the Western Italian Mediterranean coastal regions, with 141 different uses mentioned. Of these 141 different uses, 32 are shared among different localities. A multivariate statistical analysis was performed on the entire dataset, resulting in details about specific selection criteria for the different usage categories (plants have different uses that can be classified into 11 main categories). In some uses, species are selected for their features (e.g., woody), or habitat (e.g., riverine), etc. The majority of uses were found to be obsolete (42%) and interviews show that traditional fishery knowledge is in decline. There are several reasons for this, such as climatic change, costs, reduction of fish stocks, etc.

Conclusions

Our research correlates functional characteristics of the plants used in artisanal fishery and habitats, and discusses the distribution of these uses. This research is the first comprehensive outline of plant role in artisanal fisheries and traditional fishery knowledge in the Mediterranean, specifically in Italy.

Document type: 
Article
File(s): 

How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2013
Abstract: 

Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies.

Document type: 
Article
File(s): 

Changes in the Distribution of Atlantic Bluefin Tuna (Thunnus thynnus) in the Gulf of Maine 1979-2005

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2013
Abstract: 

The Gulf of Maine, NW Atlantic Ocean, is a productive, seasonal foraging ground for Atlantic bluefin tuna (Thunnus thynnus), but commercial landings of adult size classes were up to 40% below the allocated total allowable catch between 2004 to 2008 for the rod and reel, harpoon, and purse seine categories in the Gulf of Maine. Reduction in Atlantic bluefin tuna catches in the Gulf of Maine could represent a decline in spawning stock biomass, but given wide-ranging, complex migration patterns, and high energetic requirements, an alternative hypothesis is that their dispersal patterns shifted to regions with higher prey abundance or profitability, reducing availability to U.S. fishing fleets. This study fit generalized linear models to Atlantic bluefin tuna landings data collected from fishermen’s logbooks (1979-2005) as well as the distances between bluefin tuna schools and Atlantic herring (Clupea harengus), a primary prey species, to test alternative hypotheses for observed shifts in Atlantic bluefin tuna availability in the Gulf of Maine. For the bluefin model, landings varied by day of year, latitude and longitude. The effect of latitude differed by day of year and the effect of longitude differed by year. The distances between Atlantic bluefin tuna schools and Atlantic herring schools were significantly smaller (p<0.05) than would be expected from a randomly distributed population. A time series of average bluefin tuna school positions was positively correlated with the average number of herring captured per tow on Georges Bank in spring and autumn surveys respectively (p<0.01, r2=0.24, p<0.01, r2=0.42). Fishermen’s logbooks contributed novel spatial and temporal information towards testing these hypotheses for the bluefin tuna fishery.

Document type: 
Article
File(s): 

Physiological Benefits of Being Small in a Changing World: Responses of Coho Salmon (Oncorhynchus kisutch) to an Acute Thermal Challenge and a Simulated Capture Event

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2012
Abstract: 

Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20°C at 3°C h−1) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males (‘jacks’). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7°C was size-specific, with jacks regaining resting levels of metabolism at 9.3±0.5 h post-exercise in comparison with 12.3±0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20±0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b~1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater ‘oxygen debt’ that took longer to pay back at the size-independent peak metabolic rate of ~6 mg min−1 kg−1. Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non-lethal fisheries interactions have the potential to select for small individuals within fish populations over time.

Document type: 
Article
File(s): 

Time to Evolve? Potential Evolutionary Responses of Fraser River Sockeye Salmon to Climate Change and Effects on Persistence

Peer reviewed: 
Yes, item is peer reviewed.
Date created: 
2011
Abstract: 

Evolutionary adaptation affects demographic resilience to climate change but few studies have attempted to project changes in selective pressures or quantify impacts of trait responses on population dynamics and extinction risk. We used a novel individual-based model to explore potential evolutionary changes in migration timing and the consequences for population persistence in sockeye salmon Oncorhynchus nerka in the Fraser River, Canada, under scenarios of future climate warming. Adult sockeye salmon are highly sensitive to increases in water temperature during their arduous upriver migration, raising concerns about the fate of these ecologically, culturally, and commercially important fish in a warmer future. Our results suggest that evolution of upriver migration timing could allow these salmon to avoid increasingly frequent stressful temperatures, with the odds of population persistence increasing in proportion to the trait heritability and phenotypic variance. With a simulated 2°C increase in average summer river temperatures by 2100, adult migration timing from the ocean to the river advanced by ~10 days when the heritability was 0.5, while the risk of quasi-extinction was only 17% of that faced by populations with zero evolutionary potential (i.e., heritability fixed at zero). The rates of evolution required to maintain persistence under simulated scenarios of moderate to rapid warming are plausible based on estimated heritabilities and rates of microevolution of timing traits in salmon and related species, although further empirical work is required to assess potential genetic and ecophysiological constraints on phenological adaptation. These results highlight the benefits to salmon management of maintaining evolutionary potential within populations, in addition to conserving key habitats and minimizing additional stressors where possible, as a means to build resilience to ongoing climate change. More generally, they demonstrate the importance and feasibility of considering evolutionary processes, in addition to ecology and demography, when projecting population responses to environmental change.

Document type: 
Article
File(s):