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Abstract 

Two data sets are presented and various distributions, including the lognormal, are 

fitted to the data. A method is given to calculate exact confidence intervals for the 

quantiles of the lognormal distribution. The coverage probability of the confidence 

intervals is examined when the lognormal distribution is the correct model, and for 

various departures from lognormality. In addition, the connection between the coverage 

probability and the pvalue from a goodness-of-fit test is explored. 
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Chapter 1 

Introduction 

Many data analyses begin by fitting a distribution or model to data and then make 

subsequent inference; the resulting inference depends on which model is fitted. The 

focus in this project is on fitting the lognormal distribution to  survival data and then 

going on to calculate confidence intervals for the quantiles. In practice, other models 

may provide a more adequate fit to the data, and this motivates the following questions 

concerning robustness: 

1. Are confidence intervals for quantiles, based on the lognormal assumption, sensitive 

to departures from lognormality? 

2. Is the outcome of a goodness-of-fit (GoF) test for lognormality connected to the 

performance of the confidence interval? 

These questions are first examined in the context of two data sets and then more 

generally through simulation studies. In this first chapter we present the data and 

suggest several distributions to fit the data. In the second chapter we describe and apply 

GoF procedures. In the third chapter we examine confidence intervals for the quantiles, 

focusing especially on the lognormal distribution. In the fourth chapter we present the 

simulation studies and in the final chapter we conclude with summary remarks. 
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Survival Data 

Survival data are very common in the medical field. For example, consider a group of 

patients who suffer from a particular cancer. A treatment is applied to  each patient 

and they are followed until the study period ends. During the study period, a patient 

may die, be declared in remission, relapse, or be removed from the study due to certain 

circumstances. All these factors are considered in determining the survival time for a 

patient. For example, for those patients who die of the disease during the study, their 

exact survival time is known. Patients who are alive at  the end of the study but not in 

remission are censored; that is, their survival time is known up to a lower bound. At the 

end of the study these survival times are examined to assess the treatment effect and to 

estimate survival rates. 

A method for analyzing such data is given by Boag (1948). The first step in the 

analysis is to test the fit of the lognormal distribution to the group of patients who died 

of the disease during the study period. If the lognormal distribution gives an adequate 

fit, the analysis proceeds to assess treatment effects and calculate survival rates using 

the information from the full data set. This method is still implemented today by Dr. 

Patricia Tai (2003), an oncologist at  the Saskatchewan Cancer Agency. 

The two data sets below give survival times in months for patients who died from 

a particular cancer. Both sets were kindly supplied by Tai. Table 1.1 gives survival 

times for 184 patients who had limited stage small-cell lung cancer (LC). Table 1.2 gives 

survival times for 38 patients who died of cervical cancer (CC). The complete CC data 

set is currently on-line at  www.ssc.ca/documents/case_studies/2002/cervical~e.html. 

Histograms for the LC and CC data are given in Figures 1.1 and 1.2 respectively. 

Both histograms show distributions which are skewed to the right. There is one distinct 

mode in the histogram for the LC data, while the histogram for the CC data suggests 

the possibility of two modes. 

If the lognormal assumption is reasonable for the data, transforming the data using 
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The Lung Cancer Data Set 
4.70 5.82 6.15 7.07 7.36 
7.86 7.86 7.89 8.15 8.19 
9.24 9.47 9.67 10.03 10.06 

10.36 10.42 10.42 10.45 10.52 
10.75 11.15 11.18 11.28 11.34 
11.93 12.03 12.30 12.39 12.53 
12.56 12.82 12.95 13.05 13.12 
13.32 13.74 13.91 14.04 14.17 
14.93 14.99 15.02 15.02 15.12 
15.88 15.95 15.95 16.01 16.11 
16.41 16.60 16.67 16.77 17.13 
17.79 17.82 17.98 18.02 18.02 
18.81 19.13 19.17 19.20 19.20 
19.63 19.73 19.82 19.86 19.89 
20.22 20.28 20.32 20.65 20.65 
20.81 20.84 21.11 21.14 21.47 
21.90 22.45 22.62 23.31 23.54 
23.70 23.70 23.84 24.03 24.16 
24.69 24.72 24.79 25.18 25.35 
27.12 27.16 27.48 27.65 28.04 
29.98 30.02 30.05 30.97 31.27 
34.88 35.38 36.62 38.37 42.38 
47.28 47.64 53.82 55.69 57.50 

Table 1.1: The survival times in months for lung cancer patients 

The Cervical Cancer Data Set 
5.26 6.64 8.38 9.80 11.08 11.18 12.56 12.66 

13.45 14.14 17.46 17.52 20.91 21.67 23.18 25.74 
25.78 32.55 34.13 37.55 38.07 38.70 39.85 41.88 
50.83 51.16 53.98 55.96 57.11 62.50 66.08 67.82 
67.86 70.55 78.05 82.78 96.13 100.67 

- - - -- -- 

Table 1.2: The survival times in months for cervical cancer patients 
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Lung Cancer Data Set (n=184) 

Survival times in months 

Figure 1.1: A histogram of the LC data 
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Cervical Cancer Data Set (n=38) 

Survival times in months 

Figure 1.2: A histogram of the CC data 
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the log transformation will produce a bell-shaped histogram. Histograms for the log 

survival times are given in Figures 1.3 and 1.4. The histogram for the transformed LC 

data does appear bell-shaped, but the histogram for the transformed CC data is not as 

convincing. 

There are other distributions used in survival data analysis; see Lawless (2003). Four 

of these distributions, including the lognormal, are described in the next section. 

1.2 Survival Distributions 

Some general notation is given first. Let X be a random variable with density function 

f (x; 8) and distribution function F (x ;  8) = J':~ f (t;  8)dt. Here; 8 is a vector of parame- 

ters which is usually unknown and estimated from the data; the estimate is denoted by 

6. 

We refer to XI, X2, . . . , Xn as a sample of size n from F(x;  8), and denote the order 

statistics as X(') _< X(2) 5 - .  - 5 X(,). The sample mean for the X-set is denoted by 
- 
X = C Xi and the sample variance by s$ = A C ( X i  - X)2. All sums run from 1 to 

n. In some cases, the transformation Y,  = logxi  is made, and a Y-set is obtained from 

the X-set. The sample mean and variance of the Y-set are defined in a similar fashion 

and denoted and s$ respectively. 

The pth quantile of X is the value x, such that F(x,; 8) = p. Solving this expression 

for x,, we obtain the inverse cumulative distribution function, F-'(p; 8); termed the 

quantile function. 

For each distribution, f (x; 8) , F (x; 8), and F-' (p; 8) are given, explicitly if possible. 

Using the technique of maximum likelihood (ML) estimation, we give the ML estimates 

or the ML equations that need to be solved. For the latter, existing algorithms like the 

Newton-Raphson method can be implemented to  obtain a solution. 
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Lung Cancer Data Se t  (n=184) 

r I I r I I I I 

1 .O 1.5 2.0 2.5 3.0 3.5 4.0 4.5 
Log-survival times in months 

Figure 1.3: A histogram of the transformed LC data 

Cervical Cancer Data Se t  ( ~ 3 8 )  

I , I I 1 

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
Log-survival times in months 

Figure 1.4: A histogram of the transformed CC data 
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The Exponential: EXP(P) 

The exponential distribution was one of the first distributions used in survival analy- 

sis and is the simplest of the four distributions. The parameter P is a positive scale 

parameter. 

Density Function: f (x; P) = $ exp(-x/P) for x 2 0 

Distribution Function: F (x ;  P) = 1 - exp(-x/P) for x > 0 

Quantile Function: F- ' (p;p) = x, = -Plog(l - p )  for 0 < p < 1 

ML Estimate: b = x  

The Weibull: WB(a, ,8) 

The Weibull distribution is widely used today in many survival data applications. In 

addition to its scale parameter (P), it has a shape parameter (a), making it more flexible 

than the exponential distribution. Both parameters are positive. The Weibull distribu- 

tion is equivalent to the exponential distribution when a = 1. 
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Density Function: 

Distribution Function: 

Quantile Function: 

ML Equations: 

f(x; (I, p) = ; (;)"-I exp(-(x/p)") for x 2 o 

F(x ;  a, P) = 1 - exp(-(x/P)") for x 2 0 

F-'(JI; a,  ) = x, = (-Pa log(1 - p))l/" for 0 < p < 1 

C xq log X, 
n 

Finding estimates for the Weibull distribution can be done indirectly by transforming 

the data. The transformation Y = log X gives the extreme value distribution in terms of 

a location (7) and scale (y) parameter and estimation and inference for a location-scale 

distribution is easier to apply in practice. The parameters are transformed as q = logP 

and y = and give the following functions and ML equations for the extreme value 

distribution. 
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Density Function: f (y; 7, y) = ! e x p ( 7  - e x p ( 7 ) )  for - cc < Y < cc 

Distribution Function: F(y;  7, y) = 1 - exp(- e x p ( 7 ) )  for - cc < y < cc 

Quantile Function: F - l ( ~ ; ~ , y )  = yp = 7 +  ylog(-log(l -p ) )  for 0 < p < 1 

ML Equations: 

Using the estimates for the extreme value distribution, estimates for the Weibull 

distribution are then 8 = $ and = exp(4). 

The Gamma: G(a, P )  

The gamma distribution is similar to the Weibull in terms of flexibility and use, but in 

this case no transformation to a location-scale distribution is available. Both its shape 

(a) and scale (p)  parameters are positive, and like the Weibull, the gamma reduces to 

the exponential when a = 1. 
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Density Function: 1 f (x; a,  8) = xa-l exp(-XI@) for x 2 0 

Distribution Function: F(x ;  a, 8) = S," f (u; a, 8)du for x 2 0 

Quantile Function: F 1 ( p ; a , p )  =x ,  for 0 < p <  1 

ML Equations: a = exp{$(a) + l o g x  - ; C l o g ~ ~ )  

p = "  
ck 

where $(a) is the digamma function. 

The Lognormal: LN(p, 02) 

The lognormal distribution has been used to fit a wide variety of cancer survival data 

(see Tai 2003). With two parameters, it also is very flexible. The range of p is -m to 

m, and a > 0. The functions and estimates are as follows. 
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Density Function: 

Distribution Function: 

Quantile Function: 

ML Estimates: 

-(10gx-p)~ 
f (x ; /4a2)  = $+xP( 2,,2 ) for x 2 o 

F(x;  p,  a2)  = f (u; p, a2)du for x 2 0 

F-1(p;p,a2) = xp for 0 < p < 1 

fi = ;'logxi 

3' = = '(log Xi - fi)' 
n- 1 

If a random variable X has a lognormal distribution, the random variable Y = log X 

is normally distributed, denoted N(p, a2). This allows the more well-known analysis 

techniques for the normal distribution to be applied to lognormal data through trans- 

formation. The functions and estimates for the normal distribution are given below. 

Density Function: f (y ;  p ,  a2) = &==$ e x P ( W )  for - M < y < M 

Distribution Function: F(y;  p, a2) = J!_ f (u; p,  a2)du for - M < y < M 

Quantile Function: F-'(p; p ,  a2) = yp for 0 < p < 1 

- 
ML Estimates: ji=Y 

(n-1)8~ For the lognormal and normal distributions the correct ML estimate of a2 is --, 

but as 6' is the more common estimate, and in large samples the difference vanishes, it 
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Table 1.3: Parameter estimates for the fitted distributions for each data set 

will be treated as the ML estimate for a2. 

The estimated parameters for the LC and CC data sets are given in Table 1.3. Using 

these estimates, the density functions for the fitted distributions are plotted in Figures 

1.5 and 1.6 for each data set, overlaying a relative histogram. These plots indicate to 

what extent the fitted distributions follow the shape of the data. 

In both plots, the Weibull, gamma, and lognormal follow the shape of the data 

reasonably well and appear closest to one another in the upper tail of the distribution. 

In both cases, the exponential model is unable to capture the shape and is reasonably 

close to the others only in the upper tail. One way to  look more closely at  the differences 

among the distributions is to  examine the quantiles of the fitted distributions. Estimates 

for various quantiles are given in Table 1.4 for both data sets. 

The values in the table highlight that while differences exist, they may be small. For 

example, in the LC data set, quantile estimates for the Weibull, gamma, and lognormal 

fits give very similar estimates for nearly every quantile. There is less similarity however 

in the CC data set, especially for the upper quantiles. If estimating the upper quantiles 

is important in this situation, model choice becomes an issue, and GoF testing becomes 

a very important step in the data analysis. Which distribution gives the best fit for 

these two data sets? This question is answered in Chapter 2. 

LN(P! a2) 
@ 62 

2.859 0.246 
3.390 0.645 

LC Data 
CCDa ta  

EXP(P) 
b 

19.746 
38.990 

WB(a,  P) 
6 b 

1.995 22.386 
1.520 43.368 

G(a1 P )  
6 b 

4.203 4.699 
1.980 19.690 
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Lung Cancer Data Set (n=184) 

Survival times in months 

Figure 1.5: A relative histogram of the LC data with fitted density curves 
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Cervical Cancer Data Set (n=38) 

Survival times in months 

Figure 1.6: A relative histogram of the CC data with fitted density curves 
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Table 1.4: Estimates for several quantiles based on both the LC and CC data sets 

Value of p for Pth quantile xp 
0.010 0.050 0.100 0.500 0.900 0.950 0.990 

LC Data Set (n = 184) 
EXP (19.746) 
WB(1.995, 22.386) 
G(4.203, 4.699) 
LN(2.859, 0.246) 

0.198 1.013 2.080 13.687 45.467 59.154 90.934 
2.232 5.052 7.247 18.629 34.004 38.798 48.129 
4.279 6.977 8.838 18.204 32.654 37.782 48.707 
5.501 7.714 9.238 17.449 32.957 39.468 55.349 

CC Data Set (n = 38) 
EXP (38.990) 
WB(1.520,43.368) 
G(1.980, 19.690) 
LN(3.390. 0.645) 

0.392 2.000 4.108 27.026 89.778 116.804 179.556 
2.105 6.149 9.872 34.078 75.057 89.239 118.405 
2.839 6.841 10.270 32.659 76.008 92.774 129.983 
4.578 7.914 10.596 29.667 83.060 111.209 192.267 



Chapter 2 

Testing GoF is an important step in validating assumptions and strengthening the cred- 

ibility of further analysis. For example, Tai (2003) has two phases in her analysis: the 

first phase is a GoF test for lognormality and the second is drawing inference under the 

lognormal assumption. In this chapter, a GoF procedure is presented and applied to  the 

two data sets. 

2.1 Testing Goodness-of-Fit 

The null hypothesis for a GoF test of the distribution of a random sample of size n is: 

Ho : the distribution of the sample is F(x; 8) .  

Many statistics have been proposed for testing Ho. A well-known group of statistics 

is based on the empirical distribution function (EDF). The EDF is denoted by F,(x) 

and is defined as follows: 



CHAP-TER 2. GOODNESS-OF-FIT 

I 0 if x < X(1); 

& ( x ) =  i f X ( i ) < x < X ( i + l ) , f o r i = l ,  . . . ,  n - 1 ;  

1 i f x > X ( , ) ;  

The plot of Fn(x) against x is a step function giving the proportion of observations 

less than or equal to x. If Ho is true, the EDF should mirror the null distribution, 

F (x ;  9) and EDF statistics are based on Fn (x) - F(x ;  9). Two of the more well-known 

and powerful statistics are the Cram& von Mises statistic, W2, and the Anderson-Darling 

statistic, A2, defined as 

where $(x) = [F(x;  9) (1 - F(x;  9))]-l. The weight function in A2 is the variance of the 

EDF function and gives more prominence to the tails of the distributions. In general, 

A2 is a more powerful statistic than W2 

In practice, the Probability Integral Transform (PIT), Zi = F(Xi;  0) is performed, 

which, if 9 is known, produces a 2-set which is uniformly distributed on [ O , l ] .  Performing 

the PIT does not cause the values of the statistics to change. The statistics are expressed 

in terms of Fn (z) - z as 

Computing formulas based on the 2-set are given below. 
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Usually, B is unknown and the 2-set is calculated using F(z; j) instead. Now the 

2-set is no longer uniform, but its EDF is still plotted and compared against the uniform 

distribution and the computing formulas above are also used. 

Finding the p-value for the Test 

The quantiles or percentage points of the distributions of the statistics under the null hy- 

pothesis are required in order to obtain a pvalue for the GoF test. Asymptotic percent- 

age points of the distributions of W2 and A2 are given, for example by Stephens (1986), 

for a number of common null distributions. In many cases, however, these tables are 

limited to upper tail percentage points. One exception is the test of normality. Then, 

the distribution of W2 or A2 depends only on the sample size. Using this fact, a table 

has been given by Stephens (1986) to calculate p-values anywhere along the [O, 11 inter- 

val. This table proves useful in testing for normality when a fast and efficient method 

of computing an exact pvalue is required and is used in in Chapter 4 for the simulation 

studies. 

An alternative method of obtaining a pvalue is by the parametric bootstrap. By the 

parametric bootstrap, we refer to the following procedure: 

1. Generate an X'-set of size n from F ( z ;  6). 

2. Calculate 6' based on the XI-set. 

3. Calculate 2; = F(X;; 8'), i = 1. .  . n. 

4. Calculate the test statistics W2 and A2, using the 2'-set. 

5 .  Repeat steps 1-4 M times where M is large. 
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After step 5 is complete, the values of W2 and M values of A2 give suitable 

approximations to  their respective distributions under Ho. For example, the pvalue of 

A2 is obtained by calculating the proportion of simulated A2 values which fall beyond 

the observed A2 value. 

Two errors are present in this procedure which prevent the pvalue from being exact. 

The first error is the error due to simulation because M is finite. The second error in 

this procedure is that the XI-sets are generated from the wrong distribution, that is 

F(x;  0) and not F(x ;  0). However, the error has implications for the pvalue only when 

the distribution of the test statistic depends on the true parameters. Therefore, no 

error is made in testing the fit of the normal distribution, for example. In contrast, an 

error is made in testing fit to the gamma distribution as the distributions of W2 and A2 

depend on the true value of the shape parameter. Despite these errors, the parametric 

bootstrap, being easy to  implement on the computer, remains a common procedure and 

is an improvement on the asymptotic tables. 

Once the pvalue has been obtained, the fitted distributions are ranked by their 

pvalue and the model with the highest pvalue is considered to  give the best fit. 

Application to the Data Sets 

In Figures 2.1 and 2.2, the EDF is plotted along with the fitted distributions for the two 

data sets. As in Figures 1.5 and 1.6, these plots indicate how well the EDF follows the 

fitted distributions. It remains difficult, however, to determine which of the Weibull, 

gamma, or lognormal distributions best describe the data in each case. For the CC data 

set (Figure 2.2), the upper tail of the EDF follows more closely the fitted Weibull and 

gamma models, which was not as evident in Figure 1.6. 

In Figures 2.3 and 2.4, the four fitted distributions are separately compared with the 

uniform distribution function after doing the PIT. From Figure 2.3 it is clear that the 
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Lung Cancer Data Set (n=184) 

Survival times in months 

Figure 2.1: EDF of the LC data set and four fitted distributions 
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Cervical Cancer Data Set (n=38) 

EDF 
Exponen tial(38.990) 
Weibu11(1.521,43.368) 
Gamma(1.980, 19.690) 
Lognorma1(3.390,0.645) 

Survival times in months 

Figure 2.2: EDF of the CC data set and four fitted distributions 
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LC Data EXP(19.746) 
( n  = 184) WB(1.995, 22.386) 

G(4.203, 4.699) 
LN(2.859, 0.246) 

CC Data EXP(38.990) 
( n  = 38) WB(1.520, 43.368) 

G(1.980, 19.690) 
LNf3.390. 0.645) 

W2 pvalue / A2 pvalue 1 

Table 2.1: Test statistics and pvalues for various distributions and both data sets 

Weibull, gamma, and lognormal fits to the LC data set lie close to the straight line. The 

closest are the gamma and lognormal fits, while the exponential clearly does not fit well. 

For the CC data set in Figure 2.4, it is more difficult to determine which distribution 

lies closest to  the straight line, as the distributions appear very similar in general. 

It is tempting to think that the 'best fitting' distribution is the one which lies closest 

to the straight line; in other words, the one which gives the smallest value for the statistic. 

However, the ranking of the fitted distributions based on the value of the statistic may 

not be the same as the ranking based on the pvalues, as the distribution of the statistic 

depends on the null distribution being tested. In Table 2.1, values of W2 and A2 and 

their pvalues are given. The pvalues were obtained using the parametric bootstrap 

method with M = 10000. 

Consider the LC data set first. Despite the similarity in fits for the Weibull, gamma, 

and lognormal distributions evident in Figure 2.3, the pvalue for the lognormal fit is 

much larger than for the gamma or Weibull. In fact, the Weibull gives a pvalue of 

0.0000 for both W2 and A2. Using the typical significance levels of 0.05 or 0.10, tests for 

a Weibull or gamma fit would reject Ho, while that for the lognormal would not reject 

Ho by a relatively wide margin. In this case, where sample size, n ,  is large, the power 

of the test is relatively high greatly increased and therefore allows a greater ability to 
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PIT z-values 

PIT z-values 

PIT z-values 

PIT z-values 

Figure 2.3: EDF plots for the PIT z-values from the four distributions fitted to the LC 
data set 
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PIT z-values PIT z-values 

0 I I I I l J  0 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

PIT z-values PIT z-values 

Figure 2.4: EDF plots for the PIT z-values from the four distributions fitted to the 
CC data set 
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distinguish among various models. 

The CC data set is somewhat more interesting. The pvalues confirm that the 

Weibull, gamma, and lognormal provide adequate fits, though the pvalue for the lognor- 

mal sits very near the 0.10 significance level. Even the exponential distribution, though 

it is rejected at the 0.05 significance level, has a pvalue very close to 0.05 using W2. 

Based on the ranks of the pvalues, the best fitting distribution to  the LC data is 

the lognormal, while the Weibull distribution gives the best fit to  the CC data. The 

decision seems clear for the LC data but less so for the CC data. In fact, the fits for the 

CC data give an example of the situation described in the opening paragraphs of the 

first chapter. Even though the lognormal model produces an adequate fit, the Weibull 

and gamma fits both have a higher pvalue, giving a better fit to  the data. What is 

the impact on subsequent inference in this situation if the lognormal model is chosen 

instead of the better fitting Weibull or gamma models? In particular, how do confidence 

intervals for the quantiles compare among the various fitted distributions? This question 

is examined in Chapter 3. 



Chapter 3 

Confidence Intervals 

Point estimates for various quantiles of the fitted distributions are given in Chapter 1. 

Standard errors or confidence intervals should be included to  provide an idea of the 

accuracy of the estimates. Procedures are given in this chapter to calculate confidence 

intervals for the quantile point estimates, with a special emphasis on the method for the 

lognormal quantiles. The procedures are then applied to the two data sets. 

To construct a confidence interval (CI) for the pth quantile, x,, we need to find 

numbers L, and Up that satisfy 

P(L, < x, < Up) = 1 - a, (3.1) 

and we say that (L,, Up) is a 100(1- a ) %  CI for x,. One method of finding the numbers 

L, and Up is to  construct a pivotal quantity, or pivot. In general, a random variable 

G(X1, X 2 , .  . . , Xn, 0) is a pivot for 0 if the distribution of G(X1, X2, .  . . , Xn, 0) does not 

depend on 0 (Casella and Berger, 2002). For example, given an X-set from a N(p ,  1) 

distribution, the random variable G(X1, X2, .  . . , Xn, p) = f i ( x  - p) follows a N(0 , l )  

distribution and therefore can be used as a pivot for p. For quantiles, a random variable 

is needed which includes x, in its construction, but whose distribution does not depend 

on x,. The problem is then reduced to finding the percentage points of the pivotal 

distribution. 
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In general, methods which satisfy (3.1) exactly are difficult to  obtain and may be com- 

putationally intensive. As a results, approximate methods based on asymptotic theory 

or simulations have been suggested, and are adequate given a reasonably large sample 

size. Exact methods are first discussed for the exponential and lognormal quantiles, 

followed by some approximate methods applicable to all four distributions. 

3.1 Exact Methods 

Exact methods are available (see Lawless 2003) for any location-scale distribution, even 

when there are censored data. We consider exact methods for the exponential and 

lognormal distributions for a complete (uncensored) sample. 

3.1.1 The Exponential Distribution 

The procedure for the exponential distribution is based on the following well-known 

result: given a random sample XI ,  X2, . . . , Xn from an exponential distribution, the 
- 

distribution of 2n$ is x;,. 
The quantile function for the exponential distribution is x, = -P log(1 - p ) ,  and the 

- - 
2 ML estimate is i$, = -X log(1- p). As 5 = :, the pivotal quantity 2722 follows a x2, 

=P 

distribution and can be used to give an exact CI for the pth quantile of the exponential 

distribution. 

Let C be a X;n random variable and let c, be the value which satisfies, P(C < c,) = 

a. Then 

Pivoting on x,, we obtain 
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and the 100(1- a)% CI is given by 

The percentage points for the xi, distribution can be easily obtained in tables or 

using standard statistical software. 

3.1.2 The Lognormal Distribution 

A CI for the lognormal quantile x, is obtained by transforming the CI for the normal 

quantile y,. If the interval (L,, Up) gives a CI for y,, then (exp(L,) , exp(U,)) gives a CI 

for x,. The exact CI procedure for y, is based on a pivot which follows the non-central t- 

distribution and is given by Lawless (2003) and Johnson, Kotz and Balakrishnan (1995). 

The details are outlined below. 

If X follows a LN(p,  a2) distribution, then Y = log X follows a N(p,  a2) distribution 

and y, = p + +a where z, is the value of the Pth quantile for the standard normal 

distribution, N(0 , l ) .  Given a random X-set, the log transformation produces a Y-set 
- 

with ML estimates ji = Y and c2 = S;. The pivotal quantity Q, = fi(iy-yp) follows a 

non-central t-distribution with n - 1 degrees of freedom and non-centrality parameter, 

- Jnz, . 

Let t,(b) follow a non-central t-distribution with v degrees of freedom and non- 

centrality parameter b and let t',,,(b) be the value such that P(t,(b) < t',,,(b)) = a. 

Using the fact that t',,,(-b) = -t',,,-,(b), (see Johnson et al. 1995), we can write 



CHAPTER 3. CONFIDENCE INTERVALS 

Pivoting on y,, the 100(1 - a)% CI for y, is 

The difficulty in applying this method is finding the percentage points for the non- 

central t-distribution. The percentage points can be obtained through tables in the 

literature (Owen 1962), SAS, or through IMSLIB (available in FORTRAN). If access 

to tables or statistical software is limited, however, it becomes difficult to calculate an 

exact CI. 

We define a new pivotal quantity in what follows, and give a method to calculate its 

percentage points. 

The New Pivotal 

Let fi, = Y + zpSy be an estimate for y, and consider the pivotal quantity 

Let w,,, be the value such that P(Wp < w,,,) = a .  A 100 (1 - a) %CI for y, is given 

Since W, includes 6, explicitly, it is intuitively more attractive than Q,, and also has 

two advantages over Q,: 

1. As n + m ,  W, is asymptotically normal. Q,, on the other hand, goes off to f m 

6 ( L - ~ )  6 ~ ; l z ~ ~ .  Now depending on the quantile of interest. To see this, we write Qp = 
sy SY 

*('-') + N ( 0 , l )  (see Casella and Berger, 2002) and + f m  depending on the 
SY 

sign of z,. 
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2. Due to  its limiting normal distribution, the percentage points of W, for a particular 

p and cr will produce simple curves when plotted against 1/& anchored at  an exact 

intercept when n = ca. 

Asymptotic Distribution of W, 

J;;(p-y) and V, = JnzP(-& - 1). Now -U follows The pivot W, = U + V,, where U = sy 
the central t-distribution with n - 1 degrees of freedom, and converges to a N ( 0 , l )  

distribution (Casella and Berger 2002) and therefore so does U .  

The second component, V,, converges to a N(O,$) distribution. To see this, we use 

a first-order Taylor series expansion of the function g(Sy) = $ about a. That is, for 

some a* between Sy and a 

where g"(a*)w goes to 0 as Sy converges to a in probability. Therefore we write 

from which we obtain 

We multiply the top and bottom of the right-hand side of the above equation by 

(Sy + a )  and use the fact that Sy converges to a in probability to give approximately 
J;;(S2 -a2)  s2 -zp 2b; =-?+(ii(f-1). 

S2 2 

The term, 3, follows a distribution where n- 1 is the degrees of freedom. Since 

the limiting distribution of fi - 1 is N(O,2) for large v,  the limiting distribution L2 ) 
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2 

of fi (3 - 1) is N(O,2). Therefore the limiting distribution of V, is N(O,2). 

If the two components of W, were independent, the joint distribution of U and V, 
would converge to  the joint distribution of two independent normals. This would be 

sufficient to say that W, converges to the sum of the two limiting normal distributions. 

However, though the covariance of U and V, is 0, they are not independent since Sy  is 

in both terms. 

Therefore, we write (U, V,) = (U*, V,) + (&(p - y)  (1 SY - $) , 0), where U* = 

. cr Then (U*, 4) are independent. In the second term, because Su converges to 

a in probability and f i ( p  - f7) converges to  N(0, a2), Slutsky's Theorem states that 

( f i ( p  - f7) ($ - $) , 0) converges to  (0,O) in distribution. It follows that (U, V,) and 

(U*, V,) converge to  the same asymptotic distribution. 

The asymptotic distribution of W, is therefore N(0, A,), where A, = 1 + 2. The 

moments of W, give an indication of the speed of convergence. 

The Moments of W, 

We denote the kth moment of W, about the origin as ,u;,~ = E(Wi) .  
(n-1)s5 Calculating pi,, requires finding E (-$. Using the fact that 7 follows a x&-,) 

distribution. we find: 

k/2 r ( w  
Setting C,,i = (9) d, the moments of W, are given below: 
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Table 3.1: Values of f i  and P2 for Wp at  various sample sizes 

The central moments are defined as ,up,* = E((Wp-p6,1)k)l and the skew and kurtosis 

are defined as f i  = and ,& = respectively. For a normal random variable, \II- F P , ~  

the values for and P2 are 0 and 3 respectively. In Table 3.1 the values of f i  and 

,B2 for Wp are given for various values of n and p, illustrating the speed of convergence 

to the values 0 and 3. 
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Percentage Points of Wp 

The approximate percentage points of W, can be found by fitting Pearson curves (see 

Solomon and Stephens 1978) or Cornish-Fisher expansions (see Kendall and Stuart 1977). 

These methods use the moments given above, and give very good results when the dis- 

tribution is close to normal. 

The points for W, can be found exactly, however, using (3.3) which gives 

The points for the non-central t-distribution are available in SAS or through IMSLIB, 

and the points for W, are therefore easily obtained. Some caution is needed in making 

use of the algorithms in SAS and IMSLIB, since for large sample sizes, the algorithm 

can fail to give correct output. SAS was found to be accurate for a greater sample size 

than IMSLIB, and we therefore used SAS to first obtain the percentage points of Q, 

from which we calculated the percentage points of W, using (3.5). 

Plots of the Percentage Points for Qp and Wp 

The percentage points for both Q, and W, are plotted to illustrate the advantage of the 

limiting normal distribution for W,. 

In Figure 3.1, the percentage points of Q, are plotted against 1/Jn for p = 0.9 and 

various a values. As 1/Jn --t 0, the percentage points decrease to -m 

In Figure 3.2, the percentage points of W, are plotted against 1 / f i  for the same 

values of p and a. As I/& --t 0, each curve approaches an intercept or anchor point 

given by z , G .  The smoothness of the curves and the anchor points invite us to 

approximate these curves by a function of 1 / Jn. 
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Figure 3.1: The percentage points of Qo.90 plotted against 1/fi at  various levels of a. 
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Figure 3.2: The percentage points of Wo.90 plotted against 1/fi at  various levels of a. 
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Table 3.2: Residual sums of squares for various approximations to the points of Wo.90 
at six a levels. 

Approximating the Curves of W, 

The following approximating function is considered: 

The value of a in this approximation is the intercept, z , A ,  and the (b, c, d) co- 

efficients are obtained in the following way. Subtracting a from the percentage points, 

Wp,*, we have 

The least-squares method is applied to obtain values for b', c', and, d'. These values 

are subsequently divided by a to obtain final values for the co-efficients as given in (3.6). 

Using four coefficients in the approximation was an empirical choice, motivated by first 

fitting approximations using two and three coefficients. In order to give some measure 

of the difference between the different expansions, the sum of squared residuals is given 

in Table 3.2. 

The set of co-efficients (a, b, c, d) are obtained for a number of (p, a )  combinations 

and are given in Table 3.3. The table gives values of p from 0.50 to 0.99, giving the 

co-efficients needed for the CI of an upper quantile, but the same table can be used 
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to  obtain a CI for a lower quantile. In particular, since t',-,,,(-6) = -t',-,,,-, (6) and 

z P = - ~ 1 - ~ ,  it follows that w,,, = -wl-,,l-,. 

Using Table 3.3, the procedure to calculate a CI for the quantile is straight-forward. 

For example, if a 95% CI for the goth quantile is required, we use the table and calculate 

w0.90,0.025 and W0.90,0.975 based on (3.6). The confidence limits are found using (3.4), 

where values for ep and Sy are computed from the data. 

The approximations using (a, b, c,  d) do very well, which we demonstrate in Figure 

3.3 for p = 0.90 and various a-levels. On the plots, the fitted curves are indistinguishable 

from the true curves, deviating slightly only when the sample size is small. In Figure 

3.4, the fitted expansions using only two (a, b) and three (a, b, c) coefficients are plotted 

along with the percentage points, again for p = 0.90 and various a-levels. Moving from 

two to three coefficients shows a definite improvement However, it is arguable whether 

moving from three to four coefficients is in fact necessary. 

Large Samples 

For very large sample sizes, wp,, approaches zed-, and in this case, the CI is 

approximately 

Using the fact that zl-; = -25, it can be written as 

This large sample case gives the same result as the approximate Wald CI, described 

in next section. 
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0.90 

0.95 

0.99 

Table 3.3: Coefficients (a, b, c, d) required to obtain percentage points w,,, for W,. 

a 

b 

c 

d 

a 

b 

c 

d 

a 

b 

c 

d 

-3.476 -3.139 -2.645 -2.220 -1.729 1.729 2.220 2.645 3.139 3.476 

-1.220 -1.125 -0.989 -0.880 -0.769 0.771 0.883 0.993 1.132 1.230 

1.889 1.648 1.333 1.100 0.878 1.227 1.548 1.888 2.352 2.706 

-3.752 -3.272 -2.635 -2.168 -1.739 6.718 9.430 12.795 18.274 23.247 

-3.951 -3.568 -3.006 -2.523 -1.966 1.966 2.523 3.006 3.568 3.951 

-1.354 -1.250 -1.101 -0.982 -0.863 0.865 0.985 1.106 1.257 1.365 

1.995 1.752 1.433 1.198 0.972 1.365 1.697 2.050 2.532 2.900 

-4.415 -3.803 -3.022 -2.472 -1.979 7.554 10.502 14.156 20.086 25.439 

-4.959 -4.478 -3.773 -3.166 -2.467 2.467 3.166 3.773 4.478 4.959 

-1.488 -1.375 -1.216 -1.088 -0.963 0.966 1.093 1.223 1.386 1.504 

2.106 1.863 1.544 1.308 1.080 1.547 1.895 2.266 2.767 3.145 

-4.602 -3.956 -3.140 -2.571 -2.070 8.442 11.646 15.608 22.057 27.921 
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Figure 3.3: The percentage points for Wo,90, at  various levels of a,  plotted against 1/& 
along with the fitted curves using the approximation given in (3.6). The 
solid line represents the percentage points, and the dashed line represents 
the fitted curve. 
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3.2 Approximate Methods 

The Wald Method 

The Wald method is a well-known likelihood-based procedure for calculating an approxi- 

mate CI and, under mild conditions, performs well in large samples. For a location-scale 

distribution or for a distribution which can be transformed to  a location-scale distri- 

bution, the Wald CI is easy to  compute for quantiles, and is therefore suitable for the 

exponential, Weibull, and lognormal distributions. Below we give the details, based on 

Lawless' (2003) general procedure for a location-scale distribution. 

Let x, be the quantile of a location-scale distribution with parameters u and b re- 

spectively, and let w, be the quantile of the same distribution, but with u = 0 and b = 1. 

Then x, = u + w,b, which we can estimate by 2, = 8 + wp6 using ML estimates ii and 

&. The pivotal quantity is 

where 

Based on assumption of the asymptotic normality of ML estimates, 2, is approx- 

imately N(0 , l ) .  Let Z be a N(0 , l )  random variable and z, be the value such that 

P(Z < za) = a .  A Wald 100(1 - a)% CI for x, is given by 

Let 6' = (el, e2)' = (u, b)'. The variance and covariance terms in (3.7) come from the 

asymptotic covariance matrix for 8, which is the inverse of Fisher's observed information 

matrix evaluated a t  9. Let l ( 9 )  denote the log-likelihood function and I ( B )  denote 
. 

a2'(@) i, j = 1,2. Fisher's observed information matrix. The (i, j ) th  entry in I ( @ ) ,  IS -- ae,ae, 
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The inverse of I(B) gives the variance and covariance terms: the diagonal elements of 

1(9)-' give the variances and the off-diagonal elements give the covariances. 

For the exponential distribution with only a scale parameter, P, I(,& = * and 
P2 ' 

therefore se(& = 5. Since wp = -log(l - p) for the exponential, the se(%) = 

i. se(wpP) = 2. Jr; 

For the lognormal and Weibull distributions, the standard errors are expressed in 

terms of their location-scale counterparts, the normal and extreme value distributions. 

For the normal distribution, 

Therefore, se(L)  = \/I$ (1 + $) where wp is the pth cpantile for the standard normal 

distribution. 

The standard error for the quantiles of the extreme value distribution cannot be 

written explicitly. Fisher's observed information matrix, evaluated a t  and fj, is 

where 2, = %. Using wp = log(- log(1 - p))  for the extreme value distribution and 

the variance-covariance terms from I(?, fj)-', se(CP) can be calculated as in (3.7) 

The Bootstrap Method 

Another method of approximating the distribution of 2, is the bootstrap. There are two 

ways to perform the bootstrap: the parametric and the non-parametric (Lawless 2003). 

An example of the parametric bootstrap has already been described in Chapter 2, where 

we generated pvalues. We give the steps again, here in the context of a CI for the pth 

quantile. 
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1. Generate a X'-set of size n from F(x; 8). 

2. Calculate B1 based on the XI-set. 

3. Calculate 2;. 

4. Repeat steps 1-3 M times where M is large. 

At the end of step 4, M estimates of xp will provide an approximation to  its distri- 

bution, and the limits of the CI can easily be obtained. For example, if M = 10000, a 

95% CI for xp is obtained by first putting the 10000 estimates of xp into ascending order 

and then taking the 250th and 9750th values from the ordered set of 2; values. 

For the non-parametric bootstrap, the procedure is the same, except for the first 

step. Instead of generating an XI-set from F(x ;  o), we resample with replacement from 

the X-set to obtain an XI-set. In other words, instead of sampling from F(x;  e), we 

sample from the EDF. 

3.3 Application to the Data Sets 

We now apply these methods to the two data sets. In Tables 3.4 and 3.5, 95% confidence 

intervals are given for the median and three upper quantiles for each of the four fitted 

distributions. The methods used are given in brackets. The two bootstrap methods are 

differentiated by P (parametric) and NP (non-parametric). 

In the LC data set, comparing exact and approximate methods, there is almost 

exact agreement, indicating that the approximations do very well when the sample size 

is large. In the CC data set, though the exact and approximate intervals match well a t  

the median, the discrepancy increases in the upper quantiles. 

The degree of similarity in the point estimates (see Table 1.4) is also reflected here. 

The confidence intervals for the LC data set give very similar results for the Weibull, 
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gamma, and lognormal distributions. For the CC data set, though there is a large degree 

of overlap, the similarity in confidence limits is not as strong. 

Connection Between the CI and the GoF Test 

It is interesting to compare the resulting confidence intervals in light of the GoF test 

results in Chapter 2. 

Consider first the results in Table 3.4, based on the LC data set. The GoF results 

in Table 2.1 report only the lognormal distribution as an adequate fit (pvalue > 0.05). 

Yet the confidence intervals under both the Weibull and gamma assumptions are very 

similar to the results based on the lognormal assumption. For example, all three models 

give roughly 30 to 36 months as the CI for the goth quantile. The choice of the Weibull, 

gamma, or lognormal distribution does not seem to matter, at  least in the case of a CI 

for the goth quantile. 

For the CC data set, a very different picture arises. The GoF results in Table 

2.1 report a pvalue above 0.05 for the Weibull, gamma, and lognormal distributions. 

However, in this case, the degree of overlap in the intervals for the upper quantiles is 

much lower (see Table 3.5). For example, the Weibull and gamma models estimate the 

goth quantile to be between 59 and 92 months and 68 and 95 months respectively, while 

the lognormal model estimates it roughly between 60 and 125 months. This discrepancy 

increases for the 95th and 9gth quantiles. The conclusions from confidence intervals for 

the upper quantiles is therefore dependent on which model is chosen. 

Consider the scenario where the statistician is given survival times (with no censor- 

ing) and is asked to see if the lognormal distribution gives a good fit to the data. If 

a pvalue > 0.05 is obtained, the statisician goes on to make inference. What happens 

when the data are in fact from another distribution? Does the assumption of lognor- 

mality produce misleading results? In particular, how wrong are the conclusions from a 
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Distribution 
EXP (Exact) 
EXP (Wald) 
EXP(P Bootstrap) 
EXP(NP Bootstrap) 

W B ( Wald) 
WB(P Bootstrap) 
WB(NP Bootstrap) 

G(P Bootstrap) 
G(NP Bootstrap) 

LN (Exact) 
LN(Wa1d) 
LN(P Bootstrap) 
LN(NP Bootstrap) 

Value of p for pth quantile, xp 
0.50 0.90 0.95 0.99 

(11.91, 15.90) (39.55, 52.82) (51.46, 68.73) (79.10, 105.65) 
(11.71, 15.67) (38.90, 52.04) (50.61, 67.70) (77.79, 104.07) 
(11.76, 15.77) (39.14, 52.13) (51.03, 67.85) (78.17, 104.69) 
(12.67, 14.78) (42.05, 49.04) (54.76, 64.01) (84.11, 98.23) 

Table 3.4: 95% confidence intervals, using various methods, for the middle and upper 
quantiles of the fitted distributions to the LC data set 

CI for a quantile when the data are assumed to be lognormal but are in fact distributed 

as either Weibull or gamma? The issue is one of robustness, and this is examined for 

the lognormal distribution in Chapter 4. 
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Distribution 
EXP (Exact) 
EXP ( Wald) 
EXP(P Bootstrap) 
EXP(NP Bootstrap) 

WB (Wald) 
WB(P Bootstrap) 
WB(NP Bootstrap) 

G(P Bootstrap) 
G(NP Bootstrap) 

LN (Exact) 
LN (Wald) 
LN(P Bootstrap) 
LN(NP Bootstrap) 

Value of p for Pth quantile, x, 
0.50 0.90 0.95 0.99 

(20.14, 38.19) (66.89, 126.87) (87.03, 165.06) (133.79, 253.73) 
(18.43, 35.62) (61.23, 118.32) (79.67, 153.94) (122.47, 236.65) 
(19.19, 36.00) (63.86, 120.73) (82.44, 156.42) (127.61, 240.68) 
(21.42, 32.85) (71.37, 109.93) (92.80, 141.16) (142.21, 218.11) 

rable 3.5: 95% confidence intervals, using various methods, for the middle and upper 
quantiles of the fitted distributions to the CC data set 
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Model Robustness 

A desirable feature of a statistical model is robustness. That is, under the assumed 

model, subsequent inference procedures perform well, even when there are departures 

from the assumed model. In this chapter, we examine the robustness of the lognormal 

assumption in connection with confidence intervals for the quantiles. 

Some work in this area is as follows. Lefante Jr. and Shah (2002) examine various CI 

methods for the mean of a lognormal distribution. The coverage probabilities and inter- 

val widths for the various methods are compared for several lognormal distributions and 

also for some gamma alternatives. Modarres, Nayak, and Gastwirth (2002) examine 

the performance of upper quantile estimation for several distributions. The distribu- 

tions include the lognormal, the log-logistic, and the log-double exponential. Confidence 

intervals and coverage probability (CP) are not examined. 

We investigate the performance of the CP for the quantile confidence intervals and, 

in addition, we relate the pvalue from a GoF test to  the CP. The performance is first 

examined when the distribution or parent population is indeed lognormal. We then 

look a t  the performance of the CP calculated under the lognormal assumption when the 

parent population is either Weibull or gamma. Therefore, three simulation studies are 

conducted. 
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Outline of the Simulations 

The general outline for each simulation is as follows. An x-set is generated from the par- 

ent distribution and is assumed to be lognormal. The y-set (yi = log xi) is calculated, 

and a GoF test for normality is performed for the y-set using the Anderson-Darling 

statistic A'. A pvalue is obtained using the tables by Stephens (1986, Tables 4.7 and 

4.9). A 95% CI for the quantile of interest is calculated by fitting the lognormal distri- 

bution and using the coefficients in Table 3.3. An indicator variable records whether or 

not the CI covers the quantile of the true parent distribution. 

The two factors that are varied are the quantile and sample size. Two quantiles are 

considered: the 5oth and goth, denoted xo.5 and x0.g respectively. Fifteen sample sizes 

are considered: 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 100, 200, and 500. For each 

combination of factors, 10000 runs were made. 

For a location-sacle distribution, variation in location and/or scale parameters does 

not change the CP of the CI procedure, calculated under the assumption the data are 

normally distributed.. This is shown below for a location-scale distribution and since 

the Weibull and lognormal distributions are transformed to location-scale distributions 

in order to analyze the data, there is no need to vary the parameters for these or the 

exponential distribution. For the gamma distribution, changes in the shape parameter, 

but not the scale, will affect the CP. Therefore, in addition to varying the quantile and 

sample size, the shape parameter is also a factor in the simulation when the parent 

population is gamma. 

Invariant Coverage Probabilities 

Suppose Y follows a location-scale distribution with location parameter u and scale 

parameter b; then Z = follows the standard distribution with u = 0 and b = 1. Let 

y, and z, denote the respective pth quantiles, related by yp = u + bz,. 

Given a z-set, a y-set is calculated using yi = u + bzi for any u and b. The y-set is a 
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now a sample from the distribution with parameters u and b. Note that L = u + bZ and 

s, = bs,. Under the normal assumption, the z-set is N ( 0 , l )  and the y-set is N(u,  b2). A 

CI for the Pth quantile is a function of the sample mean and standard deviation. That is, 

the CI for zp can be writ ten as (Z + Ls,, 2 + Us,) for appropriate values of L and U which 

do not depend on the parameters. Similarly, a CI for yp is given by ( j j  + Ls,, j j  + Us,) 

for the same values of L and U. 

Notice that F+ Ls, < z, < Z+Us, if and only if u+b(?+Ls,) < u+bzp < u+b(~+Us,)  

if and only if y + Ls, < yp < jj + Us,. Therefore, zp is inside the CI calculated from the 

z-set if and only if yp is inside the CI calculated from the y-set. 

Hence, coverage probabilities under the normal assumption are invariant to  location 

and/or scale changes. A similar argument can be made for the scale parameter of the 

gamma distribution. 

4.1 Parent Population: Lognormal 

Since the coverage probabilities are invariant, without loss of generality, we generate 

samples from the lognormal distribution with p = 0 and a2 = 1. Confidence intervals 

are calculated for both 20.5 and x0.9. 

The overall CP is plotted against l / n  for both quantiles in Figure 4.1. The 95% 

target CP is maintained regardless of sample size as expected. 

The CP for each quantile is now examined in the light of the pvalues resulting from 

the GoF test. The pvalues have been divided into three categories: pvalue < 0.05, 

0.05 < pvalue < 0.10, and pvalue > 0.10. 

The coverage probabilities for the confidence intervals are plotted against l / n  for 

each quantile in Figures 4.2 and 4.3 respectively, separated by the pvalue categories. 

In both cases, the results appear more variable if the pvalue is below 0.10. However, 

this increased variability is due to the simulation error and not to the pvalue itself. In 
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Parent Population - Lognormal 

- 50th Quantile 
90th Quantile 
95% Target 

Figure 4.1: The true coverage probability of a 95% CI for 20.5 and x0.g calculated under 
the lognormal assumption when the parent population is lognormal. 
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both plots, there is no visible connection between the CP and the pvalue, as for each 

category the CP remains very close to the 95% target CP. 

The results provide reassurance that, under the correct model, the CI gives an accu- 

rate coverage probability as expected. In addition, it indicates that there is no connection 

between the pvalue and the performance of the CI procedure. This lack of connection 

can be explained by Basu's theorem, which states that if a complete and minimal suffi- 

cient statistic exists, then it is independent of any other ancillary statistic (Casella and 

Berger 2002). In this case, the minimal sufficient statistic is (g, s:) and the ancillary 

statistic is A2. Since the confidence limits are functions of the minimal sufficient statis- 

tic, and the pvalue is a function of A2, the CI, and therefore the CP, are independent 

of the pvalue. 
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Parent Population - Lognormal - 50th Quantile 

- p-values 0.00 - 0.05 
- - - - .  p-values 0.05 - 0.10 

p-values > 0.1 0 ........ 

95% Target 

Figure 4.2: The true coverage probability of a 95% CI for xo.5 calculated under the 
lognormal assumption when the parent population is lognormal. The CP 
is separated by the pvalue from a GoF test for lognormality. 
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Parent Population - Lognormal - 90th Quantile 

- p-values 0.00 - 0.05 
- p-values 0.05 - 0.10 
. .-....- p-values > 0.10 

95% Target 

Figure 4.3: The true coverage probability of a 95% CI for x0.g calculated under the 
lognormal assumption when the parent population is lognormal. The CP 
is separated by the p-value from a GoF test for lognormality. 
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Parent Population: Weibull 

Since the coverage probabilities are invariant, without loss of generality, we generate 

samples from the Weibull distribution with cr = ,O = 1. Under the lognormal assumption, 

95% confidence intervals are calculated for 20.5 and 20.9.  

Coverage Probability 

In Figure 4.4 the CP for each quantile is plotted against 1/72 and the target coverage 

of 95% is also provided. The plot shows that for n < 50, the procedure maintains at  

least 80% coverage for both quantiles, and for n < 20, the procedure gives close to  95% 

coverage. In fact, the coverage for 20.9 exceeds 95% for n < 20 and is higher than the 

coverage for 20.5 for all sample sizes. The high CP in small samples can be attributed 

to the larger width of the interval. Insistence on fitting the lognormal distribution in 

small samples under the Weibull alternative promises a good CP, but the width of the 

interval may be too wide to  be useful. Larger samples yield narrower intervals but at  

the expense of decreasing the CP. 

Coverage Probability and p-values 

The CP  of the CI for 20.5 is plotted against l / n  in Figure 4.5, now separated by the p 

value. There is little variation among the separate curves, and they follow the pattern for 

the quantile shown in Figure 4.4. In general, there appears to  be no obvious connection 

between the pvalue and the CP. 

Interestingly, for small sample sizes, when the fit is bad (pvalue < 0.05), the CP 

is slightly higher than when the fit is good. At the same time, for small sample sizes, 

the power of the GoF test is low, and therefore most pvalues will be greater than 0.05. 

This is demonstrated in Figure 4.6 where the percentage of pvalues below 0.05 and 

below 0.10 is plotted against l l n .  In other words, it gives the power of the GoF test for 
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Parent Population - Weibull 

- 50th Quantile 
- - - - - -  90th Quantile 

95% Target 

Figure 4.4: The true coverage probability of a 95% CI for 2 0 . 5  and x0.g calculated under 
the lognormal assumption when the parent population is Weibull. 
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lognormality against the Weibull alternative at the two levels of significance. It will be 

the same regardless of which quantile is being considered. For example, with a sample 

size of 20 the GoF test will reject Ho about 30% of the time at the 5% significance level 

and about 40% at the 10% significance level. 

The CP for the CI for x0.g is plotted against 1/72 in Figure 4.7, but here the results 

are much different. In this case, the CP is very good for pvalues > 0.05, regardless 

of sample size, but deteriorates as sample size increases for pvalues less than 0.05. In 

other words, if the GoF test yields an acceptable pvalue for a lognormal fit even though 

the true distribution is Weibull, the CP for the 95% CI for xo.9 still gives roughly 95% 

coverage. 
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Parent Population - Weibull - 50th Quantile 

- p-values 0.00 - 0.05 
- - - - - -  p-values0.05-0.10 

p-values > 0.1 0 
95% Target 

Figure 4.5: The true coverage probability of a 95% CI for 20.5 calculated under the 
lognormal assumption when the parent population is Weibull. The CP is 
separated by the pvalue from a GoF test for lognormality. 
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Power of the GoF Test for Lognormality Against Weibull Alternative 

- 5% Significance Level 
- - -  - - - 1 0"/0 Significance Level 

Figure 4.6: Percentage of pvalues which fall below either 0.05 or 0.10 for a specific 
sample size. 
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Parent Population - Weibull - 90th Quantile 

- p-values 0.00 - 0.05 
- - - - - -  p-values 0.05 - 0.1 0 
. .  p-values > 0.1 0 
........ 95% Target 

Figure 4.7: The true coverage probability of a 95% CI for X O , ~  calculated under the 
lognormal assumption when the parent population is Weibull. The CP is 
separated by the p-value from a GoF test for lognormality. 
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4.3 Parent Population: Gamma 

The shape parameter for the gamma alternative is also varied, in addition to the two 

quantiles and fifteen sample sizes. Samples are generated from the gamma with ,B = 1 

anda=0.10,0 .25,0 .50,  0.75, 1, 2, 5, and10. 

Coverage Probability 

The overall CP is plotted in Figures 4.8 and 4.9 for 20.5 and x0.9, respectively. The 

solid line gives the coverage probability when the shape parameter a = 1. The dashed 

lines to the right of the solid line correspond to decreasing values of a. The CP becomes 

successively worse as a decreases. The dotted lines to the left of the solid line correspond 

to increasing values of a. The CP becomes successively better as a increases. The CP 

for the two quantiles gives similar results, though the plots show the confidence interval 

for xo.9 has a slightly higher CP. 
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Parent Population - Gamma - 50th Quantile 

- - - - - -  a  < 1 

- a = l  
. . . . . . . . .  a > l  

95% Target 

Figure 4.8: The true coverage probability of a 95% CI for 20.5 calculated under the 
lognormal assumption when the parent population is gamma. The CP is 
separated by the shape parameter a. 
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Parent Population - Gamma - 90th Quantile 

- - - - - -  a  < 1 

- a = l  
......... a>l 

95% Target 

Figure 4.9: The true coverage probability of a 95% CI for x0.g calculated under the 
lognormal assumption when the parent population is gamma. The CP is 
separated by the shape parameter a. 
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Coverage Probability and p-values 

The CP for each quantile is examined in light of the pvalues. Figures 4.10-4.11 give 

the CP of the 95% CI for ~ 0 . 5 0  at  the different values of a. There appears to be no 

connection between the pvalue and the CP, as the three lines on each plot roughly 

follow each other, regardless of the pvalue. In addition, as a increases, the CP for all 

pvalues approaches the 95% target level. 

Figures 4.12-4.13 give similar plots for ~ 0 . 9 .  Here there is a connection between the 

p-value and the CP, especially when a < 1. As long as the pvalue is above 0.05, a very 

good CP is maintained even for larger samples, while low pvalues correspond to a poor 

CP, which worsens as the sample size increases. As a increases, however, this connection 

fades: the CP is above 90% for large values of a (say, a = 5 or 10) regardless of the 

pvalue. 
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- p-values 0.00 - 0.05 

, . 
, .. . .... p-values > 0.10 

a, 
- p-values 0.00 - 0.05 

> - - - p-values 0.05 - 0.10 
..... p-values > 0.10 

- - - p-values 0.05 - 0.10 
...... p-values > 0.10 

- - - p-values 0.05 - 0.10 
...... p-values > 0.10 

Figure 4.10: The true coverage probability of a 95% CI for 2 0 . 5  calculated under the 
lognormal assumption when the parent population is gamma. The CP 
is separated by the pvalue from a GoF test for lognormality. Shape 
parameter values are 0.10, 0.25, 0.5, and 0.75. 
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a, 
- p-values 0.00 - 0.05 

> - - - p-values 0.05 - 0.10 
...... p-values >0.10 

I 

I 

1 - - - p-values 0.05 - 0.10 
I 

I ...... 
1 

I 

I 

I ln 

a=5 

Iln 

a= 10 

- p-values 0.00 - 0.05 
- - - p-values 0.05 - 0.10 
...... p-values > 0.10 

- p-values 0.00 - 0.05 
- - - p-values 0.05 - 0.1 0 

p-values > 0.10 . . . . . .  

0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 

I ln I ln 

Figure 4.11: The true coverage probability of a 95% CI for ~ 0 . 5  calculated under the 
lognormal assumption when the parent population is gamma. The CP 
is separated by the pvalue from a GoF test for lognormality. Shape 
parameter values are 1, 2, 5, and 10. 
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X 
g a? 
z 0 -  
a n 
2 - 
a 
g) ? -  
E 0 - - - p-values 0.05 - 0.10 
a, > - 
8 

L? - 
0 1 I I I I I 

- p-values 0.00 - 0.05 
- - - p-values 0.05 - 0.10 

p-values > 0.10 ...... 1 

- p-values 0.00 - 0.05 
- - - p-values 0.05 - 0.10 
...... p-values > 0.10 

Figure 4.12: The true coverage probability of a 95% CI for x0.g calculated under the 
lognormal assumption when the parent population is gamma. The CP 
is separated by the p-value from a GoF test for lognormality. Shape 
parameter values are 0.10, 0.25, 0.5, and 0.75. 
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- p-values 0.00 - 0.05 
- - - p-values 0.05 - 0.10 

p-values > 0.10 ...... 

- p-values 0.00 - 0.05 
- - - p-values 0.05 - 0.10 
...... p-values>0.10 

- - - p-values 0.05 - 0.10 - - - p-values 0.05 - 0.10 
...... 

Figure 4.13: The true coverage probability of a 95% CI for x0.g calculated under the 
lognormal assumption when the parent population is gamma. The CP 
is separated by the pvalue from a GoF test for lognormality. Shape 
parameter values are 1, 2, 5, and 10. 
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4.4 Return to the Data 

In the LC data set, the Weibull and gamma fits are very poor, giving pvalues of < 0.0001 

and 0.0095 respectively for A2. The lack of fit shows up strongly because the sample size 

is large (n=184). However, the lognormal fit is very good with a pvalue of 0.3698. The 

results in Table 3.4 give reasonably narrow confidence intervals, as one would expect 

from such a large sample, and our simulation studies (see Figures 4.1-4.3) suggest that 

the coverage probability will be 95% as expected. 

For the CC data set, with such a small sample (n=38), the lognormal fit is not 

as good as the Weibull and gamma fits, with a pvalue of 0.1160 for the lognormal fit 

compared to  0.3107 for the Weibull fit and 0.2821 for the gamma fit. 

Our simulation results show (see Figures 4.5 and 4.7) that if the data were in fact 

Weibull, with a sample size of 38 and a pvalue of 0.1160, the lognormal assumption 

would give a CP of a 95% CI of approximately 85% for the 5oth quantile, and at  least 

95% for the goth quantile. 

For the gamma fit to the CC data, the shape parameter was 1.98. If the data were 

indeed gamma with a shape parameter near 2, but the lognormal distribution were fitted, 

Figures 4.11 and 4.13 suggest that with a sample size of 38 and a pvalue of 0.1160, the 

CP of a 95% CI is about 90% for the 5oth quantile and 95% for the goth quantile. 

These high coverage probabilities are reassuring in terms of fitting the lognormal 

distribution to this particular data set, but again the price of a high CP is larger intervals 

which may in fact be too large to  be useful. Note that in Table 3.5, the confidence 

intervals for the Weibull and gamma fits are narrower. 
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Final Remarks 

The purpose of this project was to explore the use of the lognormal distribution in the 

context of survival data. What follows is a summary and comments on future work. 

Summary 

1. Two data sets were provided, and four distributions, including the lognormal, were 

used to fit the data. GoF testing was done to  determine which model gave the 

best fit to the data. 

2. Confidence intervals for the quantiles were considered. The focus was on calcu- 

lating confidence intervals for the quantiles of the lognormal distribution. A new 

pivotal quantity was proposed and its percentage points were well-approximated 

by an expression which depended only on the sample size. This led to a simple 

procedure to calculate the CI for the quantile. 

3. The performance of the 95% CI was examined by looking a t  the CP when the par- 

ent population was indeed lognormal. The robustness of the lognormal assump- 

tion was examined by looking at the CP of the confidence intervals for Weibull 

and gamma alternatives. The CP was studied for a middle (50th) and upper ( g o t h )  
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quantile for a number of sample sizes. The following remarks summarize the results 

of the simulation studies. 

0 Under the lognormal distribution, the CP was 95% for both quantiles regard- 

less of the sample size and pvalue. This can be explained using theoretical 

results. 

For Weibull and gamma alternatives, 95% confidence intervals calculated un- 

der the lognormal assumption yielded good CP for small samples, but as 

sample size increased, the coverage probability decreased, as expected. 

0 The connection between the CP  and the pvalue was examined. For both the 

Weibull and gamma alternatives, a low pvalue (below 0.05) corresponded to 

a lower coverage probability in the case of the goth quantile, but not the 50th 

quantile. 

0 Since the gamma distribution with a large shape parameter is similar to the 

lognormal distribution, results for the gamma distribution with a large shape 

parameter are similar to the lognormal results. 

Future Work 

The following are suggestions for future work: 

The exact CI method for the lognormal quantile applies only to complete samples. 

In practice, censored observations are common, in which case the table given in 

Chapter 3 cannot be used. We want to examine the behaviour of W, with censored 

data. 

The focus of the simulation studies was on coverage probability. We want to extend 

this work to examine the widths of the intervals. 
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