
A STATISTICAL METHOD FOR HIGH-THROUGHPUT

SCREENING OF PREDICTED ORTHOLOGS

by

Jeong Eun Min

B.Sc., Simon Fraser University, 2005

a Project submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the Department

of

Statistics and Actuarial Science

c© Jeong Eun Min 2009

SIMON FRASER UNIVERSITY

Fall 2009

All rights reserved. However, in accordance with the Copyright Act of Canada,
this work may be reproduced, without authorization, under the conditions for
Fair Dealing. Therefore, limited reproduction of this work for the purposes of
private study, research, criticism, review, and news reporting is likely to be

in accordance with the law, particularly if cited appropriately.





Abstract

Orthologs are genes in different species that diverged from a common ancestral gene

after speciation. Their identification is critical for reliable prediction of gene function

in newly sequenced genomes. Orthologous genes are usually identified by a high-

throughput method called Reciprocal-Best BLAST-hit (RBH). As RBH is subject

to errors from incomplete sequencing or gene loss in a species, a bioinformatics tool

called Ortholuge was developed that identifies RBH-predicted orthologs with atypical

genetic divergence. However, declaring the cut-off for atypical divergence in Ortholuge

is very computationally-intensive, and so we propose a faster statistical procedure and

examine its performance by simulation. We find that performance depends on the fit

of the assumed model for the distribution of divergence measures in true orthologs.
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Chapter 1

Introduction

Orthologs are genes in different species that have diverged from a common ancestral

gene due to a speciation event, whereas genes that have diverged due to a gene dupli-

cation event are paralogs (Fitch, 1970). The schematic relationship between orthologs

and paralogs is shown in Figure 1.1. Normally, orthologs retain the same function in

the course of evolution. Identification of orthologs is critical for reliable prediction of

gene function in newly sequenced genomes. Orthologous genes are usually identified

by a high-throughput method based on sequence similarity, called Reciprocal-Best

BLAST-hit (RBH). In RBH, genes from two species are predicted as orthologs if they

are both the best BLAST hit (Altschul et al., 1990) of each other (see Appendix A for

a brief overview of BLAST). However, as RBH is subject to errors from incomplete

genome sequencing or gene loss in a species, Fulton et al. (2006) developed a method

called Ortholuge.

Conceptually, we start with a list of RBH genes for the 2 comparison species, or

ingroups, and aim to refine the list by introducing an outgroup as a reference point.

The outgroup does not affect the definition of ortholog or paralog, which pertain to

the ingroup species. To predict the true orthologs that have similar function between

1
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Figure 1.1: Schematic relationship between orthologs and paralogs, taken from Koonin
(2001). Gene duplication occurs in species 0, giving rise to gene A and B. Then
speciation yields species 1 and 2, each having a set of diverged genes. A1 is orthologous
to A2 but paralogous to B1 or B2.

the ingroups, Ortholuge takes RBH-predicted orthologs for the three species as inputs.

However, if the outgroup is too phylogenetically distant from the ingroups, quite a

number of genes in the original list for the ingroups can be absent in the outgroup due

to evolutionary gene loss, so that the best BLAST hit for the outgroup is not an RBH

and the gene is dropped. Hence, the choice of outgroup is important for retaining as

many genes as possible for analysis.

Ortholuge computes the ratios of phylogenetic distance involving the three species:

ratio1 as the distance between the two ingroups (d12) over the distance between in-

group1 and the outgroup (d1O), and ratio2 as the distance between the two ingroups

(d12) over the distance between ingroup2 and the outgroup (d2O). Fulton et al. (2006)

found that the ratios for orthologs show certain consistencies over several sets of

species. The high quality RBH-predicted orthologs tend to have lower ratio values,

whereas low quality RBH-predicted orthologs generate higher ratio values. Figure 1.2
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Figure 1.2: An example of why paralogs tend to have distance ratios larger than or-
thologs, adapted from Fulton et al. (2006). Gene trees for the human, cattle, and
mouse species are shown with human and cattle orthologs in the left panel and par-
alogs in the right panel. Branch lengths on the trees indicate evolutionary distance.
If the cattle gene orthologous to the human gene is not present in the data set (cattle
gene crossed out with an X in the right panel), RBH may predict a cattle paralog
(shaded gene) as an ortholog. Ortholuge aims to detect this case as a paralog by
introducing an outgroup, mouse. For the paralogous cattle gene, the human-cattle
distance (d12) is unexpectedly larger than the human-mouse distance (d1O), so that
ratio1 (d12/d1O) for the gene is increased relative to the other genes in the data set.

illustrates why paralogs tend to have larger distance ratios. Thus, they proposed

identifying atypically diverged gene pairs within the list of RBH-predicted orthologs

by examining these distance ratios. The gene pairs with atypical divergence are con-

sidered as either paralogs that have been falsely predicted as orthologs or as orthologs

that have diverged more rapidly in one species, relative to another, and may have

evolved different functions (“non supporting-species-divergence” or non-ssd-orthologs,

as defined by Fulton et al. (2006)).

In order to determine the Ortholuge ratio cut-offs to distinguish between typical

(ssd-orthologs) and atypical divergence (non-ssd-orthologs), Fulton et al. proposed

generating true-negative gene triplets by knocking out one of the ingroup genes in the
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data sets and then taking the next reciprocal-best BLAST hit with the other ingroup

(Figure 1.3). The true-negative gene triplets represent the type of errors that the RBH

prediction method would make due to incomplete genome sequencing or gene loss in a

species. If ingroup1 was a paralog (i.e. the ingroup1 gene is knocked out), then ratio2

would tend to be increased because the numerator distance d12 would tend to get

bigger while the denominator distance d2O would stay the same. By contrast, ratio1

would not necessarily be increased because both d12 and d1O would tend to get bigger.

Thus, ratio2 would more easily detect ingroup1 paralogs than ratio1. Conversely, if the

ingroup2 gene was knocked out, then ratio1 would be increased more than ratio2, and

ratio1 would more easily detect ingroup2 paralogs. To determine the cut-off, Fulton

et al. proposed randomly replacing 25% of genes in a RBH-predicted data set with

ingroup2 true-negatives for ratio1 analysis or with ingroup1 true-negatives for ratio2

analysis. For this transformed data set, the histogram of resulting distance ratios

could be plotted, and the proportion of true-negatives introduced in each bin of ratios

could be computed (Figure 1.4). They proposed iterating this random introduction

of true-negatives 50 to 100 times and averaging the proportion of true-negatives over

all iterations. They found that the true-negatives were distributed at higher values of

ratios than the RBH-predicted orthologs. Specifically, there were no true-negatives at

the left-most bins, and as they moved to the right the proportion of the true-negatives

increased. Two cut-off points were set at the first bins moving right such that the

proportions of true-negatives in those bins were 10% and 50%. The combination of

cut-offs for ratio1 and ratio2 is used to classify orthology (Figure 1.5). Throughout,

we use the term “cut-off” in this sense. The RBH-predicted orthologs lying below

the 10% cut-off point for both ratio1 and ratio2 were classified as probable orthologs,

and those at or above the 50% cut-off point for either ratio1 or ratio2 were classified

as probable paralogs. The remaining RBH-predicted orthologs were categorized as

orthology “uncertain.”
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Figure 1.3: An example of a true-negative introduced from a list of 5000 RBH-
predicted orthologs.

Figure 1.4: Example of the generation of cut-offs in Ortholuge, taken from Fulton
et al. (2006). A histogram of ratio1 for a mouse, rat, and human RBH data set is
shown. The light shaded bars are from the whole data set and the dark shaded bars
are from the introduced true-negatives only. The proportion of randomly introduced
true-negatives at each interval is averaged over iterations to generate cut-offs. The
two vertical dashed lines represent the 10% and 50% cut-offs.
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Figure 1.5: Example of how Ortholuge classifies orthology, taken from Fulton et al.
(2006). The cut-off numbers shown in the figure are the 10% and 50% cut-offs in the
example of the mouse-rat-human analysis from Figure 1.4.

Fulton et al. found that the resulting Ortholuge method significantly improved

the correct identification of orthologs in an RBH-based ortholog analysis. However,

the required iterative true-negative analysis for each species comparison was very

time-consuming. In particular, the alignment of the transformed gene triplets for

the computation of phylogenetic distance is computationally demanding. Moreover,

as discussed in Appendix B, the Ortholuge 50% true-negative cut-off for probable

paralogs can correspond to actual paralog proportions that are in fact greater than

50% when the relative frequency of paralogs in the data is more than 1/6. Intuitively,

the cut-offs are shifted to the right because the gene triplets with introduced true-

negatives have larger ratio values than before and this shifts the distribution of the

transformed ratios to the right of the untransformed ratios.

To avoid the time-consuming iterative true-negative analysis in Ortholuge, we de-

velop a new statistical method, OL.locfdr, for declaring a cut-off for phylogenetic

distance ratios. Our method saves time because it does not require simulation and
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alignment of true-negative genes to distinguish between typical and atypical diver-

gence. Rather than transforming a subset of the gene triplets to be true-negatives

by gene knockout and using the proportions of true-negative genes to indirectly dis-

tinguish orthologs from paralogs, the method bypasses the transformation step and

estimates the proportions of paralogs directly from the data. Like Fulton et al., we

view the data as a sample from a mixture of an ortholog and paralog distribution.

The problem of identifying an ortholog/paralog cut-off can thus be phrased in terms

similar to those proposed by Efron (2004) for identifying unusual cases sampled from

a mixture distribution. Our approach allows estimation of the expected proportion of

paralogs (genes with atypical divergence) at a particular ratio value. This expected

proportion of paralogs is one minus the local false-discovery rate (fdr) of Efron.

Through simulations based on real data, we examine how overlap between the

ortholog and paralog distributions of distance ratios affects the performance of the

method. The overlap between the distributions of orthologs and paralogs depends

on the choice of an outgroup. The closer the outgroup is to the ingroups, the more

the ortholog distribution shifts towards one and towards the paralog distribution.

This shifting occurs because if the outgroup is too close to the ingroups, the distance

between the two ingroups, d12, is similar to the distance between the ingroup and the

outgroup, dIO, for true orthologs. Since the ratio distance is defined as d12/dIO, the

ratios for true orthologs will tend to be closer to 1 than they would be with a more

distant outgroup. On the other hand, an outgroup farther away from the ingroups

will have orthologs whose ratios tend to be closer to zero because d12 is much smaller

than dIO. The disadvantage of choosing a too-distant outgroup is losing tentative

orthologous genes for analysis because, if the best BLAST hit for the outgroup is not

an RBH, the gene is dropped.



Chapter 2

Method

2.1 Transformation of data

Initially we worked with a Burkholderia bacterial data set having B. cepacia and B.

cenocepacia as ingroup species and B. pseudomallei as an outgroup species to develop

our method. The histograms of both ratio1 and ratio2 were right-skewed around

the major mode with a long right tail and some extreme outliers (Figure 2.1). This

was the typical pattern for ratio1 and ratio2. Our objective was to mathematically

transform ratios so that the underlying mixture distribution could be approximated

by a mixture of two normal distributions. In order to pull in the extreme outliers

toward the rest of the distribution, we tried log transformations but found that the

transformed distributions were left-skewed (Figure 2.2). We adopted a less drastic

square-root transformation because it pulled in the extreme outliers without left-

skewing (Figure 2.3). The major mode was now roughly symmetric and there was a

slight minor mode in the right tail that could be interpreted as possibly containing

paralogous genes. We used the square-root transformation of the ratios for all our

analyses.

8
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We assumed that the ortholog distribution could have two parts: a zero-inflated

part (p0af0a; see Figure 2.3 and Section 2.2) comprised of ratios near zero and the

remaining ortholog distribution to the right. The ratios in the zero-inflated part of the

distribution are due to (effectively) zero distance between genes in the two ingroups,

scaled by the denominator of the ratio.

2.2 Statistical Approach

Consider data of z values from a mixture distribution f . Each z is generated from the

null distribution f0 with probability p0, or from the alternative distribution f1 with

probability p1:

f(z) = p0f0(z) + p1f1(z).

Efron (2004) defines the local false-discovery rate, fdr(z), as the chance of being from

the null distribution given the observed value z:

fdr(z) = Pr(null | z) =
Pr(null)f(z | null)

f(z)
=

p0f0(z)

f(z)
. (2.1)

We consider orthologs to be generated from the null distribution f0 and paralogs

to be generated from the alternative distribution f1. However, unlike Efron, we as-

sume that the null distribution consists of two sub-distributions, f0a and f0b, and the

mixture density can be written as

f(z) = p0af0a(z) + p0bf0b(z) + (1− p0a − p0b)f1(z).

The components of the mixture distribution are depicted in Figure 2.4. The sub-

distribution p0af0a corresponds to the zero-inflated part of the ortholog distribution

indicated in Figure 2.3 for the Burkholderia data. The sub-distribution p0bf0b is
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Figure 2.1: Histograms of ratio1= d12/d1O and ratio2= d12/d2O for the Burkholderia
data.



CHAPTER 2. METHOD 11

log(ratio1)

F
re

qu
en

cy

−10 −8 −6 −4 −2 0 2

0
50

10
0

15
0

20
0

25
0

log(ratio2)

F
re

qu
en

cy

−10 −8 −6 −4 −2 0 2

0
50

10
0

15
0

20
0

25
0
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assumed to be normal and centred at the major mode of the mixture distribution, f ;

it is the main ortholog sub-distribution. Hence, the null distribution is

f0(z) =
p0af0a(z) + p0bf0b(z)

p0

.

Therefore, in our case,

fdr(z) =
p0af0a(z) + p0bf0b(z)

f(z)
.

We assume that over a critical region (l, u) of values centred at the major mode of

the mixture distribution, the distributions f0a and f1 have negligible mass. Rather,

f0a places virtually all its mass at z < l and f1 places virtually all its mass at z > u.

A consequence is that, at z < u, f(z) ≈ p0af0a(z) + p0bf0b(z) and

fdr(z) =
p0f0(z)

f(z)
=

p0af0a(z) + p0bf0b(z)

f(z)
≈ p0af0a(z) + p0bf0b(z)

p0af0a(z) + p0bf0b(z)
= 1.

Conversely, at z > u, p0af0a(z) ≈ 0 and

fdr(z) =
p0f0(z)

f(z)
=

p0af0a(z) + p0bf0b(z)

f(z)
≈ p0bf0b(z)

f(z)
. (2.2)

We take the range (l, u) to be Mf ± IQR/2, where Mf is the major mode of f and

IQR is the interquartile range of f . To estimate fdr’s for z > u, f and p0bf0b are

estimated as described in the following steps.

Step0: Remove genes with extreme distance ratios. Declare genes with

distance ratios larger than 100 times the median of the data to be paralogs and

remove them from the analysis. The reduced gene list defines an upper limit zmax for

the observed root ratios that is used in subsequent steps.
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Figure 2.4: Components of the mixture distribution.

Step1: Estimate and display the mixture density f. We use a kernel den-

sity estimate f̂ of f , with Gaussian kernel and reflection about zero to account for

the boundary there (Silverman, 1986). Before reflection, a Gaussian kernel density

estimator, f̂G, based on n data points, is an equally-weighted mixture of n normal

densities, where the ith density has mean equal to the ith data point and stan-

dard deviation equal to the kernel bandwidth. After reflection about 0, we obtain

f̂(z) = f̂G(z) + f̂G(−z) for z ≥ 0. Following Silverman (1986), we implement the

reflection method by:

1. augmenting the data by the negative of all data points,

2. applying a kernel density estimator to the augmented data,

3. setting the resulting density estimates to

(a) zero for augmented data values less than zero, and

(b) double their values for augmented data values greater than or equal to zero.

We select the kernel bandwidth b using the “NRD” selection algorithm (Scott, 1992)

applied to the original data. Density estimates are obtained over a grid of 1024 points
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spanning the range of the augmented data ±3b. The density estimation function we

use returns density estimates at 512 equi-spaced points by default. We opt for twice

the default number of points because the reflection method doubles the range of data

values at which density estimates are required. Density estimates for root-ratio values

between grid-points are obtained by linear interpolation of estimates at adjacent grid-

points. Density estimates outside the grid of 1024 points are set to zero. To display

f̂ , we superimpose it over a histogram of the data, with breakpoints determined by

the Freedman-Diaconis algorithm (Freedman and Diaconis, 1981). On the display, we

scale up f̂ so that it integrates to the same value as the area under the histogram.

Step2: Estimate the main ortholog sub-distribution about the major mode.

The goal is to estimate p0bf0b. We first estimate log[p0bf0b] and then exponentiate this

estimate. To estimate log[p0bf0b], we assume that f0b is a normal density. Parametric

modelling of p0bf0b is required in order to be able to identify it as a component of the

non-parametric mixture distribution f . When f0b is a normal density, it can be shown

that log[p0bf0b(z)] is quadratic in z. Furthermore, for z near the major mode of f ,

we have f(z) ≈ p0bf0b(z) or log[f(z)] ≈ log[p0bf0b(z)]. Thus, following Efron (2004),

log[p0bf0b] can be estimated by fitting a quadratic function to the estimate of log[f(z)],

for z near the major mode of f . We consider a grid of 200 points {zl, . . . , zu} spanning

Mf̂ ± IQR/2, where Mf̂ is the major mode of f̂ and IQR is the empirical IQR. This

grid and the associated estimates {log f̂(zl), . . . , log f̂(zu)} are used as data to which a

quadratic curve is fit by ordinary least squares. This fitted quadratic curve estimates

log[p0bf0b] everywhere and in particular in the right tail of the mixture density where

calculation of fdr’s is required.

Step3: Calculate fdr’s and find the cut-off. For z ≤ zu, the estimated fdr’s

(i.e. the proportion of orthologs) are set to 1. For zu < z ≤ zmax + 3b, the estimated

fdr’s are the minimum of one and the expression in equation (2.2), computed using
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the estimated f(z) and p0bf0b(z). For z > zmax +3b, the estimated fdr is set to 0. The

methods of estimating f and p0bf0b do not enforce the constraint that p̂0bf0b(z) ≤ f̂(z).

For estimating fdr, the constraint becomes an issue for zu < z < zmax + 3b such that

p̂0bf0b(z) > f̂(z) = 0. For these z, we set f̂(z) = p̂0bf0b(z) and fdr to be one.

The cut-off to detect a gene pair as unusually diverged is determined according to

the target probability for paralogs (i.e. 1−fdr). Multiple target probabilities can be

considered. For example, if 60% is set as the target probability, then the 60% cut-off

is estimated by the smallest z-value at which 1 − fdr(z) = 60%. Therefore, genes at

the cut-off are estimated to have at least 60% chance of being unusually diverged.

Step4: Report the square-root ratio values with cut-offs. For each gene, the

conditional probability of being unusually diverged given its square-root ratio value z

(i.e. 1−fdr(z)) may be estimated. With multiple target probabilities provided by the

user, each gene may be classified into a group based on the corresponding cut-offs.

For example, group 0 includes the genes whose square-root ratios are less than all

cut-offs (null genes), and group 1 includes genes whose square-root ratios fall between

the first and second cut-offs, and so on.

The steps outlined above were implemented in an R function OL.locfdr() de-

scribed in Appendix C.



Chapter 3

Simulation study

We conducted a simulation study to evaluate the performance of OL.locfdr. One

question of interest was how performance depends on the overlap of the ortholog and

paralog distributions. The greater the overlap, the harder it should be to distinguish

orthologs from paralogs. The idea behind Ortholuge is that, for outgroups of sufficient

evolutionary distance from the ingroups, paralog ratios will tend towards values of one

or more but that ortholog ratios will tend towards values less than one. For outgroups

that are closer to the ingroups, ortholog ratios will tend more towards one so that

the ortholog distribution overlaps more with the paralog distribution. We therefore

considered several species sets that have the same ingroups but outgroups of varying

distance. Another question of interest was how performance depends on the fit of the

assumed normal distribution to the true ortholog distribution. Specifically, the right

tail of the ortholog distribution is assumed to behave like the right tail of a normal

distribution. Thus, if the assumed normal distribution is lighter-tailed than the true

ortholog distribution, the estimated fdr’s are expected to be lower than the true fdr’s,

and the estimated cut-off will tend to be lower than it should be. By contrast, if the

assumed normal distribution is heavier-tailed than the true ortholog distribution, the

17
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estimated cut-off will tend to be higher than the true cut-off. We therefore considered

species sets with ortholog distributions that were lighter- or heavier-tailed than the

assumed normal distributions.

To describe the operating characteristics of our procedure, we defined bias in two

ways. The first definition of bias is the expected difference between the estimated and

true proportion of orthologs at a fixed location. We examined this type of bias over

a range of locations. The second definition of bias is the expected difference between

the estimated and true 50% cut-off, separating probable non-SSD orthologs (paralogs)

from orthology uncertain.

3.1 Available data sets

To evaluate the procedure under realistic conditions, we were provided several species

sets from the Brinkman lab (personal communication with M. Whiteside). As shown

in Table 3.1, there were 6 species sets with the same ingroup species, Escherichia

coli and Salmonella Typhimurium, but with outgroups of varying evolutionary dis-

tances from the ingroups (see dIO column of the table). These outgroups were

Yersinia pestis, Haemophilus influenzae, Vibrio cholerae, Pseudomonas aeruginosa,

Xanthomonas campestris, and Burkholderia pseudomallei. Also, there were 2 species

sets with ingroup species Pseudomonas putida and Pseudomonas syringae but with

different outgroup species, P. aeruginosa and E. coli.

Each species set had a number of associated data sets derived from analyzing the

protein sequences for genes. First, there was a basic data set with all the RBH genes

for the two ingroups and the outgroup. Second, there was a true ortholog subset of

the basic data set, identified by Lerat et al. (2003), provided as a candidate for the

ortholog distribution. Next there were four true-negative (TN) data sets generated by

knocking out the RBH from the ingroups and replacing it with either the next-best
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RBH or the next-best BLAST hit. These TN data sets were provided as candidates

for the paralog distribution and were

• a TN subset of the basic data set generated by knocking out the ingroup1 (I1)

RBH and replacing it with the next-best RBH. If the next-best BLAST hit

was not an RBH the gene was dropped. We label this data set TNbasicI1.

• a TN subset of the basic data set generated by knocking out the ingroup2 (I2)

RBH and replacing it with the next-best RBH. We label this data set

TNbasicI2.

• a TN subset of the true ortholog data set generated by knocking out the

ingroup1 RBH and replacing it with the next-best BLAST hit. We label this

data set TNorthologI1.

• a TN subset of the true ortholog data set generated by knocking out the

ingroup2 RBH and replacing it with the next-best BLAST hit. We label this

data set TNorthologI2.

The last two TN data sets generated from the true ortholog data set used the

next-best BLAST hit rather than the RBH because imposing reciprocity of BLAST

hits leads to too few genes (e.g. 5 out of 156 for species set 8). However, the resulting

TNortholog data sets generated without imposing the RBH criterion had ratios shifted

towards larger values than the TNbasic data sets generated with the RBH restriction

(Figure 3.1). The TNbasic data set rather than the TNortholog data set was chosen

to represent paralogs because its ratios were closer to the ortholog distribution. As

shown in Table 3.1, the basic data sets all have over a thousand genes. The true

ortholog and TNbasic subsets were extracted from the basic data set and so have a

smaller number of genes. The data sets TNorthologI1 and TNorthologI2 have the least

number of genes because they were extracted from the true ortholog data sets.
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Figure 3.1: Histograms of
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ratio1 from two TN data sets for species set 8.
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3.2 Design of simulations

We simulated square-root ratios from mixtures of ortholog and paralog distributions

estimated from real data. We fit the null distribution, f0, from the true ortholog data

set and alternative distributions, f11 and f12, from the TNbasicI1 and TNbasicI2 data

sets, respectively. The method for fitting distributions to the data sets is explained

in the next section. These data sets were considered as samples from the underlying

ortholog and paralog distributions. Because the data sets contained small numbers

of samples (Table 3.1), they do not give an accurate picture of each distribution,

particularly in the tails. To obtain a less discrete representation of the underlying

distributions, we fit a density curve to our samples and then simulated from the

estimated densities rather than resampling from the data sets.

We simulated a data set of 5000 square-root ratios according to the proportion

p1 of the mixture distribution, f , contaminated with paralogs, such as p1 = 5% and

p1 = 25%. The mixture density was f = (1 − p1)f0 + p1f1, where the composition

of the paralog density f1 was determined as below, depending on which ingroup was

knocked out:

• f1 contains 100% ingroup1 (I1) knockouts, i.e. f1 = f11;

• f1 contains 50/50 I1/I2 knockouts, i.e. f1 = (f11 + f12)/2;

• f1 contains 100% ingroup2 (I2) knockouts, i.e. f1 = f12.

To obtain a sample from a distribution of 50/50 I1/I2 knockouts, we randomly sampled

ratios from the I1 knockout paralog distribution, f11, with chance 0.5 whenever it was

time to sample from f1 in the simulation. The rest of the ratios for paralogs were

sampled from the I2 knockout paralog distribution, f12.

For each simulated data set, we ran the OL.locfdr procedure to estimate
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1. the proportion of orthologs at a set of fixed points with proportions assumed to

be less than 1 and

2. the 50% cut-off.

We compared our results for each simulated data set with the true fdr (i.e. the ex-

pected proportion of orthologs) and the true 50% cut-off as explained in Section 3.6.

Estimates of bias are averages over 5000 simulated data sets.

3.3 Obtaining the ortholog and paralog densities

Our goal was to obtain estimates of f0 from the true ortholog data set and estimates of

f11 and f12 from the TNbasicI1 and TNbasicI2 data sets, respectively. We fit density

curves as described in Section 2.2, Step 1. Figure 3.2 shows the histograms from

species set 8 for ratio1 and the fitted distributions superposed. The results from

ratio2 are similar (not shown), except the characteristics of f11 and f12 are swapped.

To simulate from the resulting densities, we reasoned as follows. A Gaussian

kernel density estimator, f̂G, based on n data points, is an equally-weighted mixture

of n normal densities where the ith density, i = 1, . . . , n, has mean equal to the

ith data point and standard deviation equal to the kernel bandwidth b. A Gaussian

kernel density estimator with reflection about 0 is then f̂(z) = f̂G(z) + f̂G(−z) for

z ≥ 0. Thus, to sample a point from an estimated density, we (i) randomly sampled

a data point, (ii) randomly sampled from a normal distribution with mean equal to

the sampled data point and standard deviation equal to b, and (iii) took the absolute

value of the result. Steps (i) and (ii) sample from f̂G(z), while step (iii) reflects any

negative support of f̂G(z) to above zero.
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Figure 3.2: Histograms of
√

ratio1 for the data sets true ortholog, TNbasicI1, and
TNbasicI2 of species set 8. The superimposed lines indicate the fitted distributions.
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3.4 Overlap between the ortholog and paralog dis-

tributions

We defined q as the proportion of f coming from f1 in a critical region (l, u], taken to

be Mf ± IQR/2, where Mf is the major mode of f . The critical region was used to

estimate f0b from a known f . The overlap measure, q, was obtained by

q =

∑
zi∈(l,u] f1(zi)p1∑

zi∈(l,u] f(zi)
,

where the zi’s are a set of 200 grid points spanning (l, u]. The overlap measure was

computed for each proportion p1 and composition of f1 described in Section 3.2. As

an example, Figure 3.3 shows how f1 contributes to f in the critical region and how

this contribution affects q in species set 7 when f1 is 100% I1 knockouts.

Contamination of major mode. A key assumption of OL.locfdr procedure is

that there is no paralog contamination near the major mode of the mixture distri-

bution, in the critical region used to fit the ortholog distribution. The values of the

overlap measure q in Table 3.2 quantify departures from this assumption. Most of the

values indicate very low contamination but there are a few cases that stand out.

For example, there are two interesting cases of extreme contamination in the sense

that the major mode is due to paralogs rather than orthologs. Both cases involve

species set 1 and the high mixing proportion p1 = 25%: ratio1 for 100% I1 knockouts

(q = 0.909) and ratio2 for 100% I2 knockouts (q = 0.955). In both these cases, the

major mode is due to paralogs because f1 is much more concentrated relative to f0,

as shown in Figure 3.4. The essentially complete contamination of the major mode

clearly invalidates the use of the OL.locfdr procedure. We therefore eliminated species

set 1 from further investigation.
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Another interesting set of cases comes from species set 7 when p1 = 25%. For cases

such as ratio1 with 100% I1 knockouts (q = 0.467) or ratio2 with 100% I2 knockouts

(q = 0.446), the majority of the probability mass near the major mode of the mixture

distribution can be attributed to orthologs, but the location of the major mode is

the location of the major mode of the paralog distribution instead of the major mode

of the ortholog distribution (Figure 3.5). This is true for configurations of 50/50%

I1/I2 knockouts with p1 = 25%. We therefore excluded species set 7 from further

consideration. In such cases, we expect that the assumed normal density fit to the

major mode of the mixture distribution f in the critical region actually reflects the

paralog distribution f1; hence it is shifted to the right compared to the true p0f0, with

the critical region covering 1, as shown in Figure 3.6. In the critical region, the height

of f is similar to the height of the fitted p0f0 and is substantially greater than the

height of true p0f0. As a consequence, for z near 1, the true proportion of orthologs,

computed as p0f0/f , is less than 100% (e.g. 50% for species set 7). By contrast, the

estimated proportion is 100% for z less than the upper limit of the critical region.

Since the estimated proportion of orthologs is larger than the actual proportion, the

cut-offs for declaring paralogs tend to be too large.

As shown in Figure 3.7 for ratio1, the ortholog distribution overlaps much more

with the paralog distributions in species set 7 than in species set 8. This suggests

that the outgroup for species set 7 is evolutionarily closer to the ingroups than the

outgroup for species set 8. If an outgroup is evolutionarily close to the ingroups,

then, for orthologs, the numerator d12 of the distance ratios tends to be close to the

denominator dIO, drawing the ortholog ratios closer to the paralog modal value (of

one or more). Also, the figure shows that the paralog distribution f11 for species set

7 is much more concentrated than f11 for species set 8. It seems that the closer the

outgroup is to the ingroups, the more a paralog distribution tends to be concentrated

near 1. We do not expect that OL.locfdr will be applied to such species sets because
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Table 3.2: Proportion of f in the critical region that comes from f1, q

Species Ratio1 Ratio2

set f1 composition 5% paralogs 25% paralogs 5% paralogs 25% paralogs

1
100% I1 knockouts 0.001 0.909 0.002 0.019
50/50 I1/I2 knockouts 0.001 0.017 0.003 0.019
100% I2 knockouts 0.002 0.016 0.004 0.955

2
100% I1 knockouts 0.002 0.013 0.002 0.013
50/50 I1/I2 knockouts 0.001 0.011 0.001 0.010
100% I2 knockouts 0.001 0.009 0.001 0.007

3
100% I1 knockouts 0.001 0.008 0.002 0.013
50/50 I1/I2 knockouts 0.001 0.009 0.002 0.012
100% I2 knockouts 0.001 0.010 0.002 0.010

4
100% I1 knockouts 0.001 0.007 0.001 0.009
50/50 I1/I2 knockouts 0.001 0.006 0.001 0.005
100% I2 knockouts 0.001 0.005 0.000 0.000

5
100% I1 knockouts 0.001 0.011 0.001 0.011
50/50 I1/I2 knockouts 0.001 0.008 0.001 0.007
100% I2 knockouts 0.000 0.004 0.000 0.002

6
100% I1 knockouts 0.001 0.008 0.001 0.011
50/50 I1/I2 knockouts 0.001 0.006 0.001 0.006
100% I2 knockouts 0.000 0.003 0.000 0.000

7
100% I1 knockouts 0.020 0.467 0.005 0.036
50/50 I1/I2 knockouts 0.012 0.297 0.027 0.286
100% I2 knockouts 0.005 0.033 0.047 0.446

8
100% I1 knockouts 0.003 0.023 0.003 0.020
50/50 I1/I2 knockouts 0.002 0.019 0.002 0.015
100% I2 knockouts 0.002 0.015 0.002 0.012
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future versions of Ortholuge will automatically select an outgroup based on species

divergence that is close enough so that not too many genes are lost but far enough

so that the numerator distance is sufficiently smaller than the denominator distance,

and ortholog ratios are shifted to the left of 1. The proposed method to screen

candidate outgroups in Ortholuge involves checking if the major mode of the mixture

distribution plus the interquartile range of the square-root ratio1 or ratio2 values

covers 1. If so, the outgroup is considered to be too phylogenetically close to the

ingroups to be analyzed by OL.locfdr.

3.5 Species sets for the simulation study

Species sets 1 and 7 were excluded from the simulation study because, as discussed

in the previous section, they lead to simulation configurations in which the major

mode of the mixture distribution is due to the paralog distribution rather than to the

ortholog distribution.

From the remaining species sets, we chose species sets 2, 4, 6 and 8. Species set

8 was chosen because it is the only one with ingroups P. putida and P. syringae.

Species sets 2, 4 and 6 were chosen based on how well the right tail of the ortholog

distribution is fit by the normal curve. OL.locfdr assumes that the right tail of the

ortholog distribution is well-approximated by the normal distribution that can be

fit about its major mode. To assess the normality of the right tail of the ortholog

distribution, we proceeded as follows.

We adapted the method described in Step 2 of Section 2.2 to fit a normal sub-

density to the true ortholog distribution, over a critical region centered at Mf0 ,

the major mode of the ortholog distribution. Specifically, for a grid of 200 points

z1, . . . , z200 spanning Mf0 ± IQR/2, we fit a quadratic curve to the (zi, log[f0(zi)])

pairs for i = 1, . . . , 200, exponentiated this quadratic, and extrapolated to the right
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tail of f0. The best-fitting normal sub-densities were superposed against the ortholog

densities for species sets 2 through 6 and species set 8 in Figures 3.8 (ratio 1) and 3.9

(ratio 2). For species set 2 a normal curve is well-fitted to the ortholog distribution

for both ratios, so we expect the true proportion of orthologs to be similar to the

estimated proportion in the right tail. Species set 4 is an example for which the right

tail of the ortholog distribution is heavier than the assumed normal tail, for both

ratios. In this case, we expect the true proportion of orthologs to be bigger than the

estimated proportion in the right tail. By contrast, species set 6 is an example for

which the right tail of the ortholog distribution is lighter than the assumed normal

tail, for both ratios. In this case, we expect the true proportion of orthologs to be

smaller than the estimated proportion in the right tail. Therefore, we considered

species sets 2, 4, 6 and 8 for the simulation study.

3.6 Computing bias

3.6.1 Bias over a fixed set of locations

We compared the true fdr (i.e. the expected proportion of orthologs) to the expected

estimated fdr over a fixed set of points in the support of the mixture distribution

f . The fixed set of points was defined to be 200 equi-spaced points in the support

of f . For each simulation replicate, we obtained estimated fdr’s using OL.locfdr as

described in Section 2.2, Step3. The expected estimated fdr’s were estimated by these

averages, taken over 5000 replicate data sets. To determine the true fdr, we took the

fitted distributions and mixing proportions used to simulate data and computed the

true proportion of orthologs at each of the 200 equi-spaced points, z1, . . . , z200, as

p0f0(zi)/f(zi), for i = 1, . . . , 200.
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Figure 3.8: The true and fitted ortholog distributions around the major mode of the
true ortholog distribution, Mf0 , for ratio1. The fitted normal distribution is fit to f0.
The critical region used to fit the ortholog distribution is highlighted on the horizontal
axes and is Mf0 ± IQR/2.
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Figure 3.9: The true and fitted ortholog distributions around the major mode of the
true ortholog distribution, Mf0 , for ratio2. The fitted normal distribution is fit to f0.
The critical region used to fit the ortholog distribution is highlighted on the horizontal
axes and is Mf0 ± IQR/2.
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3.6.2 Bias of the estimated 50% cut-off

We computed bias as the expected difference between the estimated 50% cut-off and

the true 50% cut-off. For each simulated data set we ran the OL.locfdr procedure to

find an estimated 50% cut-off ẑc. The true cut-off zc was estimated by the smallest

z-value at which true fdr(z) = 50%. Estimates of bias are averages of the differences

between ẑc and zc over 5000 replicate data sets.



Chapter 4

Results and Discussion

4.1 Bias over a fixed set of locations

We compared the true fdr and simulation estimates of the expected estimated fdr at

a fixed set of locations. Figure 4.1 illustrates this comparison for species set 4 with

ratio1 as a function of z. The results for species sets 2, 4 (ratio2), 6, and 8 are shown

in Appendix D (Figures D.1-D.7). The horizontal axes start at Mf + IQR/2, where

Mf is the major mode of the mixture distribution, rather than from zero, because

we assume that there are 100% orthologs at values less than this starting point. For

species set 4 and p1 = 25%, the second column of Figure 4.1 shows that the estimated

fdr is greater than the true fdr for all the locations, indicating that OL.locfdr has a

tendency to under-estimate the paralog proportions. When p1 = 5%, the estimated

fdr tends to be smaller than the true fdr at lower ratio values and larger than the true

fdr at higher ratio values. This is because a normal sub-distribution fit to the major

mode of f̂ will tend to have a lighter right tail than p0f0 for lower ratio values but

then, for higher ratio values, will switch over to having a heavier right tail. Lower

ratio values correspond to lower proportions of paralogs. Focussing on the results

38
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for lower ratio values we see that OL.locfdr has a tendency to over-estimate lower

paralog proportions. However, as the ratio values increase, so that the true paralog

proportion is greater than 0.5, OL.locfdr tends to under-estimate the higher paralog

proportions. In the figure, the true proportion of orthologs (solid curve) does not

approach zero smoothly. The lack of smoothness is due to an abrupt drop of the true

ortholog distribution near zero as shown in Figure 4.2 (right panel).

4.2 Bias of the estimated 50% cut-off

We also measured the bias by the expected difference between the estimated 50%

cut-off (ẑc) and true 50% cut-off (zc). Table 4.1 shows this measure of bias for species

sets 2, 4, 6 and 8 at each combination of the ratios, proportions of paralogs and

compositions of f1. For example, for species set 4, the biases are all positive when

p1 = 25%. As mentioned in the previous section, when p1 = 25%, the estimated fdr

tends to be greater than the true fdr for all z values. Hence any estimated cut-offs

for declaring paralogs tend to be greater than the true cut-offs, including the 50%

cut-off. By contrast, the biases for simulated data sets containing p1 = 5% paralogs

are negative indicating that ẑc tends to be to the left of zc. These results for p1 = 5%

can not be predicted from Figure 4.1, as we next discuss.

From Figure 4.1 and Figures D.1-D.7, some idea of the bias can be obtained from

the difference in z values at which the dotted line, indicating a proportion of orthologs

of 0.5, crosses the curves of the estimated and true fdr’s. For example, for species set

4 when p1 = 25% (Figure 4.1, top right panel), the true fdr is 0.5 at zc ≈ 0.53 and

the mean estimated fdr is 0.5 at z ≈ 0.57. The positive bias of 0.044 in Table 4.1

for species set 4 with 100% I1 knockouts, ratio1 and p1 = 25% can be approximated

by the width of the dotted line between the two curves in the top right panel of

Figure 4.1, as 0.57 − 0.53 = 0.04 > 0. This is only a rough guide, however, because
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the z value at which the mean estimated fdr is 0.5 is not necessarily equal to the mean

of the estimated cut-off ẑc. As an example of when this rough guide fails, consider

species set 4, ratio1 and p1 = 5%. Even though the left panels of Figure 4.1 suggest

biases that are positive or near zero, the actual biases of the estimated cut-offs are

negative.

One question of interest was how the performance of the method is affected by

contamination around the major mode of f . Such contamination should influence the

estimation of p0f0. We can regard the overlap measure q as an indication of the amount

of such contamination and the bias of ẑc as an indication of the performance. The

plot of the bias of ẑc versus q is shown in Figure 4.3 and has no obvious trends. This

is not unexpected because, for all the species sets considered in the simulation study,

the contamination of the critical region is minimal. This minimal contamination does

not appear to have much, if any, effect on the performance of the method.

Another question of interest was how performance depends on the fit of p̂0bf0b

to the right tail of p0bf0b. Since p0bf0b appears in the numerator of the fdr in equa-

tion (2.2), the quality of the estimated fdr’s depends directly on the quality of p̂0bf0b.

OL.locfdr estimates p0bf0b by fitting a normal sub-distribution to the major mode of

f̂ . Thus, some idea of the information for estimating p0bf0b can be obtained by fitting

a normal sub-density p0bφ0b to the major mode of f : conceptually,

p̂0bf0b
estimates−→ p0bφ0b

approximates−→ p0bf0b.

The sub-density p0bφ0b is obtained by a method similar to Step2 in Section 2.2. Briefly,

consider a grid zl . . . zu of 200 equi-spaced points spanning Mf ± IQR/2, where Mf

is the major mode of f . To obtain log[p0bφ0b], we used the fact that log[p0bφ0b(z)]

is quadratic in z when φ0b is a normal density, and f(z) ≈ p0bf0b(z) or log[f(z)] ≈

log[p0bf0b(z)] for z near the major mode of f . Thus, we obtained log[p0bφ0b] by fitting
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a quadratic function to log f near the major mode of f . Then the resulting log(p0bφ0b)

was exponentiated to give the sub-density p0bφ0b. We then compared p0bφ0b to the true

p0f0(z) for z > l; this comparison was performed for various f1 and p1 combinations

described in Section 3.2.

For species set 4, p0bf0b is compared with the assumed normal sub-distribution, as

illustrated in Figure 4.4 for ratio1 when f1 contains 100% I1 knockouts. The other

compositions of f1 give similar results (not shown); Appendix E has the results for

other species sets. When p1 = 5%, the zoomed-in plots in the bottom panel of the

Figure 4.4 show that the assumed normal sub-distribution, p0bφ0b, is lighter-tailed

than the right tail of the true p0bf0b. A consequence of having the estimated ortholog

distribution fall below the true ortholog distribution is that the estimated proportion

of orthologs (i.e. estimated fdr’s) will be lower than the true proportion of orthologs

(i.e. true fdr’s), so that the estimated cut-off will be lower than it should be. Since

we define the bias as the difference between the mean estimated 50% cut-off (¯̂zc) and

true 50% cut-off (zc), a light tail of p0bφ0b relative to p0bf0b leads to negative bias for

this species set. By contrast, when p1 = 25%, p0bφ0b is heavier-tailed than the right

tail of p0bf0b, leading to positive bias.

In general, if the estimate p0bφ0b, obtained by direct fitting of the true mixture

density f , is lighter-tailed than the right tail of the true p0bf0b, we would expect that

ẑc would tend to be lower than it should be. By contrast, if p0bφ0b is heavier-tailed

than the right tail of p0bf0b, we would expect that ẑc would tend to be higher than zc.

However, for a few cases it does not hold. For example, for species set 2 with ratio2

and p1 = 25% (Figure E.2, right panels), p0bφ0b is lighter-tailed than the right tail of

the true p0bf0b around zc, but the ¯̂zc is greater than the true zc. The same is true

for species set 8 with ratio2 and p1 = 25% shown in Figure E.7, right panels. Such

cases may be caused by the low probability mass in the right tail of f and the small

number of genes falling in the right tail for a gene list of length 5000. We compare
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p0bf0b with p0bφ0b fit to the true f . Conceptually, the true f is obtained from a gene

list of infinite length. However, when estimating the fdr for a simulated data set, we

fit p0bf0b to f̂ obtained from a list of 5000 genes sampled from the true f . Therefore,

as the number of sampled genes increases, the behavior of the bias should conform

better to how well the right tail of the ortholog distribution fits the right tail of the

assumed normal distribution. Additional simulation results for gene lists of length

200,000 seem to bear this out (results not shown).
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Figure 4.4: The true ortholog sub-distribution (solid curve) for ratio1 in species set
4 when f1 contains 100% I1 knockouts. The fitted ortholog sub-distribution (dashed
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panels. The true 50% cut-off, zc, is indicated by a solid vertical line. The average of
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dot-dashed line. Results are shown only for the critical region and right tail of the
distributions. The bottom panels are zoomed-in versions of the top panels.
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Conclusions

Ortholuge identifies RBH-predicted orthologs with atypical genetic divergence through

phylogenetic distance ratios. The former Ortholuge method for declaring genes with

atypical divergence is computationally-expensive because it relies on transformed true-

negative gene lists that require alignment and calculation of phylogenetic distances.

To address this problem, we propose an alternate statistical procedure, OL.locfdr,

that does not require simulation and alignment of true-negative genes, and calcula-

tion of their phylogenetic distances. Instead, our approach distinguishes orthologs

from paralogs directly from the data, thereby saving computational time.

Recently, a coding error was discovered in the implementation of the Ortholuge

iterative true-negative analysis for determining cut-offs. Second-best BLAST hits

rather than the intended RBH were being introduced as true negatives. After cor-

recting this error, the number of genes that could be transformed into true negatives

was drastically reduced (M. Whiteside, personal communication). The algorithm has

therefore been modified to introduce all possible true-negatives in a single step, and

the computational time has been cut significantly. This new non-iterative version of

the algorithm has a similar computational time to our approach, but appears to be

48
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less reliable. For example, in ongoing investigations of similar ingroup pairs (e.g. pair

I1-I2a and pair I1-I2b, for closely related I2a and I2b), our approach produces cut-off

values that are consistent from one pair to the next, as expected by the investigators.

By contrast, Ortholuge can produce discrepant cut-off values for some pairs.

We determine the cut-off for declaring paralogs by modifying the local false-

discovery rate (fdr) method of Efron (2004) to estimate the proportion of paralogs

in the mixture distribution at a particular ratio value. By simulation, we assess and

understand the performance of our proposed method using realistic data. We com-

pute the overlap measure, q, between the ortholog and paralog distributions in the

critical region used to estimate the ortholog distribution, and see how q affects the

performance of the method. We measure the performance by bias or the expected

difference between the estimated and true proportion of orthologs and between the

estimated and true 50% cut-off.

OL.locfdr makes several assumptions. One assumption is that the major mode of

the mixture distribution of square-root ratios is away from zero. The assumption is

reasonable since, for highly similar ingroup species with a major mode is at zero, an

investigator will determine orthologs using other approaches such as whole genome

alignment. Another assumption is that the paralog distribution has very little mass

in the critical region used to fit the ortholog distribution, near the major mode of the

mixture distribution. Departures from this assumption could lead to poor estimation

of the ortholog distribution. For species sets we considered (2, 4, 6, and 8), the depar-

tures are negligible, however, as indicated by very small values of the overlap measure

in Table 3.2. As shown in Figure 4.3, for these low levels of overlap, there is no obvious

effect of increasing overlap on the performance of OL.locfdr. Finally, we assume that

the main ortholog sub-distribution, f0b, is normal. As shown in Figure 3.8 and 3.9,

the overall bell-shaped ortholog distributions, compared to the normal distributions

fit to f0, indicate that the normality assumption is a reasonable approximation for
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the species sets considered. However, their right tails can be heavier- or lighter-than-

normal. This non-normal distortion of the true f0 in the right tail contributes to the

bias of the procedure, computed, for example, as the expected difference between the

estimated and true 50% cut-off (Table 4.1).

In general, OL.locfdr performance depends on the fit of the assumed normal distri-

bution to the true ortholog distribution. In comparing the ortholog distribution fit to

the data to its real counterpart, the paralog probabilities of interest determine where

to focus. For example, for higher paralog probabilities, such as those used to classify

probable paralogs, the focus would be on the tail of the true distribution. Specifically,

if the fitted normal distribution has less probability mass than the true ortholog distri-

bution in the tails, OL.locfdr is conservative in the sense that it will over-estimate the

proportion of paralogs. For lower paralog probabilities, such as those used to classify

orthology uncertain, the focus would be more towards the centre of the true ortholog

distribution. Specifically, if the fitted normal distribution has less probability mass

than the true ortholog distribution in this more central region, OL.locfdr will again

over-estimate the proportion of paralogs.

We wish to point out some issues regarding the quality of the true-ortholog data

sets used to obtain the true f0. First, these data sets are small (Table 3.1), and so there

is a large amount of sampling variability. Second, and perhaps more importantly, the

data sets mostly consist of genes that are easily determined to be true orthologs, such

as those with square-root ratios less than 1. Thus, there is potential for selection bias

such that large ratios may be under-represented.

Fulton et al. (2006) classified the genes lying at or above the 50% cut-off as prob-

able paralogs. If our estimated cut-off is higher than the true cut-off, we would

misclassify some paralogs as orthologs. By contrast, if the estimated cut-off is lower

than the true cut-off, we would misclassify some ortholog as paralogs. Future simula-

tion studies could be undertaken in which the performance of OL.locfdr is evaluated
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based on the numbers of misclassified paralogs and orthologs in a data set.

For the species sets we have examined, the minimal overlap of the paralog dis-

tribution into the critical region used to fit the ortholog distribution does not affect

the performance of OL.locfdr. Another direction for future research would be to con-

struct artificial species sets with increased and systematically varying contamination

of the critical region. These artificial species sets would enable a more satisfactory

investigation of how the performance of the method is influenced by contamination

in the critical region.

For all the species sets we have examined, the square-root transformation of the

raw ratio data yields mixture distributions with major modes that can be approxi-

mated by a normal distribution. We do not rule out that, for other species sets, other

ratio transformations besides square-root might be more appropriate. Assuming that

the data come from a Box-Cox or power-normal family of distributions (Freeman

and Modarres, 2006), an alternative to a transformation chosen a priori is to use data

about the major mode to select a normalizing transformation. For example, one could

fit by ordinary least squares a quadratic curve to the logarithm of a kernel density es-

timate based on ratios raised to the power of λ, for those ratios falling in some critical

region. This fitting could be repeated for each power λ in a list of candidates (e.g.

1/2, 1/3, 1/4). Then one could select the λ that gives the “best fitting” quadratic,

where fit could be judged by the residual sum of squares. Potential problems with

such an approach include the possibility that ratio data from orthologs may not be

adequately approximated by a normal for any power, and questions about the valid-

ity of using the data to select the transformation and then treating it as known for

subsequent inference (see for example Chen et al., 2002 for a discussion of this issue in

the context of linear models). For all the data sets that we investigated, a square-root

transformation appeared to be reasonable.



Appendix A

BLAST Overview

This overview of BLAST is based on the descriptions by Wheeler and Bhagwat (2007).

BLAST (basic local alignment search tool) is an algorithm to compare a query nu-

cleotide or protein sequence with a database of sequences in order to identify sequences

in the database that are similar to the query (Altschul et al., 1990). Comparisons

are done by forming “local” pairwise alignments; i.e., by aligning just those segments

of the sequences that match well. Local alignment is useful because many query se-

quences have domains, active sites, or other motifs that have local but not global

regions of similarity to other proteins. Also, databases typically have fragments of

DNA and protein sequences that can be locally aligned to a query. Because sequence

is an important factor determining functional information, BLAST can be used to

predict gene function and some general features about gene evolution. The program

is available on the web on the National Center for Biotechnology Information website

(http://ncbi.nlm.nih.gov/BLAST).

In BLAST, each comparison of the local pairwise alignments is given a score re-

flecting the degree of similarity between a given sequence in the database and a query.

The higher the score, the greater the degree of similarity. The score is computed by
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assigning a value to each aligned pair of letters and then summing these values over the

length of the alignment. For protein alignment, the score of the match is determined

using a “substitution matrix” M containing values M [i, j] reflecting the probability

that amino acid i mutates into amino acid j for all pairs of amino acids. Likely sub-

stitutions have positive values and unlikely substitutions have negative values. For

nucleotide alignment, an exact match has a score of +2 and a non-exact match has

a score of −3. BLAST adds a negative penalty for having a gap in an alignment.

Extension of the gap has a lesser penalty than introduction of a gap.

There are three algorithmic steps in BLAST (Figure A.1). Initially, the query

sequence is segmented into “words” with a fixed length W , which is chosen by the

user. Typically, W is a default value of 3 for protein and 11 for DNA. The second

step is scanning a sequence in the database that contains a word of length W that

can match with the query sequence word. For nucleotide-to-nucleotide searches, the

match must be exact; for protein-to-protein searches, the match must achieve a score

of at least T , according to the protein substitution matrix. Lastly, when a word match

is found, BLAST extends both forward and backward from the match to produce a

high-scoring segment pair or HSP. The extension continues until the accumulated

total score of the HSP drops by a certain amount. Scores are calculated from scoring

matrices along with gap penalties. The HSPs with scores above S, specified by the

user, are reported.

The threshold parameter T dictates speed, specificity, and sensitivity of the search.

When T is increased, the speed and specificity of the search is increased, but fewer

matches are generated, and so distantly related database matches may be missed.

When T is decreased, the search proceeds slowly, but many more word matches are

evaluated, and thus sensitivity is increased.
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Figure A.1: Schematic of “The BLAST Search Algorithm,” taken from National Cen-
ter for Biotechnology Information website (http://www.ncbi.nlm.nih.gov/Education/
BLASTinfo/BLAST algorithm.html). In the first step a query sequence is analyzed
with a given word size (e.g., W = 3), and a list of words matching a query word (e.g.,
PQG) is compiled that attains a threshold score (e.g., T = 13). In this example, eleven
words are shown along with their scores; nine of these are equal to or greater than
T (i.e., neighborhood words), and two are below. In the second step, a database is
searched to find entries that match the compiled word list. In the third step, the match
(e.g., PMG) is extended in both directions to obtain a HSP. The sequence alignment
shown here has three rows. The first and third rows are the query and the database
sequences, respectively. Numbers at the ends of the alignment denote the position of
the first and last amino acid in a line within the respective sequence. The second row
shows the degree of similarities between these two sequences. For protein, identical
residues are indicated by the capital letter of the amino acid. Similar, nonidentical
residues with positive alignment scores are indicated with plus signs. Alignments with
a zero or negative scores are indicated with a space.

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/BLAST_algorithm.html
http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/BLAST_algorithm.html


Appendix B

Proportion of paralogs in the

transformed mixture

Fulton et al. (2006) describe a method for classifying orthology based on transforming

the original mixture distribution f(z) of distance ratio z. To set the classification cut-

off value for the distance ratios they use the proportion of transformed ratios that

come from a known true-negative distribution fT (z) as a proxy for the proportion of

paralogs in f(z). In this appendix, we show that this approximation may lead to 50%

cut-off values that are too high when the mixing proportion of paralogs, p1, is greater

than 1/6. Let f0(z) and f1(z) denote the distribution of ortholog and paralog ratios,

respectively, and let p0 and p1 = 1− p0 denote the corresponding relative frequencies

of orthologs and paralogs in the mixture. The mixture density f is

f(z) = p0f0(z) + p1f1(z).

The proportion of orthologs and paralogs in f at a given ratio value z are

Pr(ortholog | z) =
p0f0(z)

f(z)
and Pr(paralog | z) =

p1f1(z)

f(z)
,
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respectively. If the true-negative ratios can be regarded as a random sample from the

distribution f1 of paralogs, then transforming a proportion pT (e.g. pT = 0.25 as in

Fulton et al. ) of the original data to true-negatives will result in a sample from the

“transformed mixture” density

fT (z) = pT f1(z) + (1− pT )f(z). (B.1)

The proportion of true-negatives in the transformed mixture fT at a given ratio value

z is then

Pr(true-negative | z) =
pT f1(z)

fT (z)
.

The orthology classifications of Fulton et al. are based on the z-values at which the

proportion of true-negatives in fT are 0.10 and 0.50. One can view their cut-offs

as proxies for cut-offs based on the proportions p1f1(z)/f(z) of paralogs in f . Their

proportion pT f1(x)/fT (z) may be used as a proxy because p1f1(z)/f(z) is a monotone

increasing function of pT f1(z)/fT (z):

p1f1(z)

f(z)
= p1

1− pT

pT

pT f1(z)

(1− pT )f(z)

(B.1)
= p1

1− pT

pT

pT f1(z)

fT (z)− pT f1(z)

= p1
1− pT

pT

pT
f1(z)
fT (z)

1− pT
f1(z)
fT (z)

= b
s(z)

1− s(z)
, (B.2)

where b = p1(1 − pT )/pT and s(z) = pT f1(z)/fT (z). Since bs/(1 − s) is mono-

tone increasing in s for s between 0 and 1, p1f1(z)/f(z) is monotone increasing in

pT f1(z)/fT (z). Consequently, large values of pT f1(z)/fT (z) will imply large values
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of p1f1(z)/f(z) and we may reasonably classify as possible paralogs genes whose ra-

tio values coincide with substantial proportions pT f1(z)/fT (z) of true-negatives in

fT . However, without the unknown relative frequency p1 of paralogs in f , we cannot

translate the proportion of true-negatives in fT into the desired proportion of paralogs

in f . Figure B.1 depicts the relationship between the proportion of paralogs in the

original mixture and the proportion of true-negatives in the transformed mixture for

pT = 0.25, as in Fulton et al., and for p1 = 0.05, 0.15 and 0.25, spanning the range

of plausible values of p1 (M. Whiteside, personal communication). The proportion of

paralogs in the original mixture varies substantially by p1 for the 0.5 cut-off used by

Fulton et al. to separate “orthology uncertain” from “probable paralog”. For example,

the proportion of paralogs can be less than 0.5 at the cut-off (p1 = 0.15 and 0.05).

However, the proportion can also be greater than 0.5 (e.g. p1 = 0.25), in which case

paralogs will be missed; in fact, by solving equation (B.2) for p1, we find that paralogs

will tend to be missed at the 0.5 cut-off for any p1 > 1/6. In contrast, the proportion

of paralogs in the original mixture is always less than 0.1 for the 0.1 cut-off used by

Fulton et al. to separate “probable ortholog” from “orthology uncertain”.
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Figure B.1: Proportion of paralogs in the mixture at a given ratio value as a function
of the proportion of true-negatives in the transformed mixture at the same ratio value.
The relationship depends on the proportion of transformed genes pT and the relative
frequency p1 of paralogs in the mixture. Throughout, pT = 0.25 is used, as in Fulton
et al. Curves for p1 = 0.05, 0.15 and 0.25 are shown. The surrogate values 0.1
and 0.5 used by Fulton et al. to classify orthology are indicated on the horizontal
axis, and the corresponding values of the proportion of paralogs in the mixture are
indicated by horizontal dashed lines (true-negative-based cut-off = 0.1) or dot-dashed
lines (true-negative-based cut-off = 0.5) for different values of p1.
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Sample call to OL.locfdr() with

outputs

The steps outlined in Section 2.2 were implemented in an R function OL.locfdr()

with the following arguments:

1. dat: a data frame with gene identifiers (ingroup1, ingroup2, outgroup) and pair

of distances (d12, dIO) for the particular ratio of interest. For example, if ratio1

is of interest, dIO = d1O.

2. target.prob: a vector of probability thresholds for calling a gene pair unusually

diverged (= 1− fdr).

3. small.dist: a threshold for small dIO. Gene pairs determined to be unusually

diverged that are based on a dIO < small.dist will be flagged as potentially

unreliable. Default is 0.05.

4. do.plot: a logical indicator. If TRUE (default), a histogram is plotted.

5. main: a title for the histogram.
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6. quant.probs: probabilities whose quantiles determine the range of data to be

used when estimating the ortholog distribution about Mf̂ , the major mode of

the estimated mixture distribution f̂ . Default is the 25th and 75th percentiles.

Range is Mf̂ ± quantile range/2.

7. show.range: logical, defaulting to FALSE. If set to TRUE, the range of data used

to estimate the ortholog distribution about the major mode is shown on the

histogram. Ignored if do.plot=FALSE.

8. paralogs: a list of “in-paralogs” (genes that have diverged due to a gene dupli-

cation event after a speciation event) with the same format as dat. In-paralogs

are not orthologs and are not used to estimate fdr’s. Their estimated values of

1-fdr (returned in the output component paralog.list) are considered to be a

measure of their divergence. Default is NULL.

A sample call to the function applied to the Burkholderia ratio1 data, along with

selected text output is given below; the graphical output is shown in Figure C.1.

R> OL.locfdr(dat=dat, target.prob=c(0.1,0.5), small.dist=0.05, do.plot=TRUE,

main=NULL, quant.probs=c(0.25,0.75), show.range=TRUE)

$target.prob

[1] 0.1 0.5

$cutoff

[1] 0.7178072 0.8359213

$ortholog.list

ID_I1 ID_I2 ID_O d12 dIO (denom) root.ratios prob.nSSD groups small.dIO

290 Bamb_6504 Bcen_4915 BPSS1710 0.000010 0.919308 0.003298143 0.0000000000 0

2775 Bamb_5497 Bcen_4595 BPSS1893 0.000010 0.240483 0.006448487 0.0000000000 0

3171 Bamb_2964 Bcen_2301 BPSL0387 0.000010 0.142128 0.008388034 0.0000000000 0

.

..
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3525 Bamb_2476 Bcen_1818 BPSL1006 0.023187 0.036141 0.800980971 0.2607967190 1 **

3097 Bamb_0865 Bcen_0527 BPSL2557 0.030341 0.047221 0.801580891 0.2617774722 1 **

1748 Bamb_2895 Bcen_2225 BPSL0461 0.051073 0.079250 0.802779085 0.2656017938 1

.

..

322 Bamb_0277 Bcen_2749 BPSL3203 0.018578 0.018486 1.002485281 0.9967364145 2 **

1985 Bamb_2867 Bcen_2193 BPSL0516 0.030708 0.030529 1.002927354 0.9967781919 2 **

1880 Bamb_0264 Bcen_2762 BPSL3216 0.063811 0.062566 1.009900484 0.9972836200 2

.

..

$paralog.list

NULL

The text output of the function OL.locfdr() is a list. The first component is

target.prob, a vector of probability thresholds for calling a gene pair unusually

diverged, which is supplied as the argument target.prob. The second component

is cutoff, a vector of cut-offs such that genes with square-root ratios greater than

cutoff[i] have at least target.prob[i] chance of being unusually diverged. The

third component of the list is ortholog.list. This is a data frame containing a list

of genes sorted on the square-root ratio values (root.ratios), from lowest to highest.

It includes gene identifiers (ID_I1, ID_I2, and ID_O) of ingroup1, ingroup2, and out-

group and their phylogenetic distances, d12 and dIO. The component ortholog.list

also includes groups, which is a classification of genes based on the cut-offs. For this

example, group 0 includes genes with root.ratios less than all cut-offs, and group 1

includes those with root.ratios between the 10% cut-off (0.718) and the 50% cut-off

(0.836). Genes with root.ratios greater than the 50% cut-off (0.836) are classified

as group 2. The column prob.nSSD is the estimated probability of being unusually

diverged (1− fdr) for the gene. Genes with dIO considered too small to yield reliable

results are indicated by asterisks in the column of small.dIO. The criterion for “too

small” depends on the argument small.dist. The last component of the list re-

turned by OL.locfdr is paralog.list which is a data frame with the same format as



APPENDIX C. SAMPLE CALL TO OL.locfdr 62

ortholog.list, but for in-paralogs passed in through the argument paralogs. These

in-paralogs are assigned (1-fdr)’s calculated from the data in the argument dat. Their

assigned (1-fdr)’s are considered to be a measure of their divergence.

As an example of the graphical output of the function OL.locfdr(), Figure C.1

shows a histogram of the square-root ratios with the estimated mixture distribution

superimposed and vertical lines indicating cut-offs. For this example, a dashed line

denotes the 10% cut-off and a dotted line denotes the 50% cut-off. The histogram

shades bars in proportion to the estimated frequency of unusually diverged genes

at the bin centre for the bar. For example, a half-shaded histogram bar means we

estimate about half the genes in that bin to be non-SSD.
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Figure C.1: Graphical output of OL.locfdr for the Burkholderia ratio1 data. The
estimated mixture distribution is superimposed on a frequency histogram. Histogram
bars are shaded in proportion to the estimated frequency of unusually diverged genes.



Appendix D

Proportion of orthologs as a

function of z

As explained in Section 4.1, we compared the true fdr and estimated fdr at a fixed

set of locations. The results for species sets 2, 4 (ratio2), 6, and 8 are shown here.
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Figure D.1: Proportion of orthologs as a function of z for ratio1 in species set 2. The
horizontal axes start at Mf + IQR/2. The ortholog proportion of 0.5 is indicated in
a dotted horizontal line with the true 50% cut-off zc.
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Figure D.2: Proportion of orthologs as a function of z for ratio2 in species set 2. The
horizontal axes start at Mf + IQR/2. The ortholog proportion of 0.5 is indicated in
a dotted horizontal line with the true 50% cut-off zc.
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Figure D.3: Proportion of orthologs as a function of z for ratio2 in species set 4. The
horizontal axes start at Mf + IQR/2. The ortholog proportion of 0.5 is indicated in
a dotted horizontal line with the true 50% cut-off zc.
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Figure D.4: Proportion of orthologs as a function of z for ratio1 in species set 6. The
horizontal axes start at Mf + IQR/2. The ortholog proportion of 0.5 is indicated in
a dotted horizontal line with the true 50% cut-off zc.
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Figure D.5: Proportion of orthologs as a function of z for ratio2 in species set 6. The
horizontal axes start at Mf + IQR/2. The ortholog proportion of 0.5 is indicated in
a dotted horizontal line with the true 50% cut-off zc.
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Figure D.6: Proportion of orthologs as a function of z for ratio1 in species set 8. The
horizontal axes start at Mf + IQR/2. The ortholog proportion of 0.5 is indicated in
a dotted horizontal line with the true 50% cut-off zc.
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Figure D.7: Proportion of orthologs as a function of z for ratio2 in species set 8. The
horizontal axes start at Mf + IQR/2. The ortholog proportion of 0.5 is indicated in
a dotted horizontal line with the true 50% cut-off zc.



Appendix E

True and fitted ortholog

distributions

As explained in Section 4.2, we compared the p0bφ0b, obtained from direct fitting of

the true mixture density f , with the true p0bf0b in the right tail. The results for

species sets 2, 4 (ratio2), 6, and 8 are shown here.
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Figure E.1: The true ortholog sub-distribution (solid curve) for ratio1 in species set
2 when f1 contains 100% I1 knockouts. The fitted ortholog sub-distribution (dashed
curve) is obtained from the mixture density f , evaluated over a critical region defined
by Mf ± IQR/2; this critical region is highlighted on the horizontal axes in the top
panels. The true 50% cut-off, zc, is indicated by a solid vertical line. The average of
the estimated 50% cut-offs, ¯̂zc over the simulation replicates is indicated by a vertical
dot-dashed line. Results are shown only for the critical region and right tail of the
distributions. The bottom panels are zoomed-in versions of the top panels.
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Figure E.2: The true ortholog sub-distribution (solid curve) for ratio2 in species set
2 when f1 contains 100% I1 knockouts. The fitted ortholog sub-distribution (dashed
curve) is obtained from the mixture density f , evaluated over a critical region defined
by Mf ± IQR/2; this critical region is highlighted on the horizontal axes in the top
panels. The true 50% cut-off, zc, is indicated by a solid vertical line. The average of
the estimated 50% cut-offs, ¯̂zc over the simulation replicates is indicated by a vertical
dot-dashed line. Results are shown only for the critical region and right tail of the
distributions. The bottom panels are zoomed-in versions of the top panels.
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Figure E.3: The true ortholog sub-distribution (solid curve) for ratio2 in species set
4 when f1 contains 100% I1 knockouts. The fitted ortholog sub-distribution (dashed
curve) is obtained from the mixture density f , evaluated over a critical region defined
by Mf ± IQR/2; this critical region is highlighted on the horizontal axes in the top
panels. The true 50% cut-off, zc, is indicated by a solid vertical line. The average of
the estimated 50% cut-offs, ¯̂zc over the simulation replicates is indicated by a vertical
dot-dashed line. Results are shown only for the critical region and right tail of the
distributions. The bottom panels are zoomed-in versions of the top panels.
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Figure E.4: The true ortholog sub-distribution (solid curve) for ratio1 in species set
6 when f1 contains 100% I1 knockouts. The fitted ortholog sub-distribution (dashed
curve) is obtained from the mixture density f , evaluated over a critical region defined
by Mf ± IQR/2; this critical region is highlighted on the horizontal axes in the top
panels. The true 50% cut-off, zc, is indicated by a solid vertical line. The average of
the estimated 50% cut-offs, ¯̂zc over the simulation replicates is indicated by a vertical
dot-dashed line. Results are shown only for the critical region and right tail of the
distributions. The bottom panels are zoomed-in versions of the top panels.
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Figure E.5: The true ortholog sub-distribution (solid curve) for ratio2 in species set
6 when f1 contains 100% I1 knockouts. The fitted ortholog sub-distribution (dashed
curve) is obtained from the mixture density f , evaluated over a critical region defined
by Mf ± IQR/2; this critical region is highlighted on the horizontal axes in the top
panels. The true 50% cut-off, zc, is indicated by a solid vertical line. The average of
the estimated 50% cut-offs, ¯̂zc over the simulation replicates is indicated by a vertical
dot-dashed line. Results are shown only for the critical region and right tail of the
distributions. The bottom panels are zoomed-in versions of the top panels.
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Figure E.6: The true ortholog sub-distribution (solid curve) for ratio1 in species set
8 when f1 contains 100% I1 knockouts. The fitted ortholog sub-distribution (dashed
curve) is obtained from the mixture density f , evaluated over a critical region defined
by Mf ± IQR/2; this critical region is highlighted on the horizontal axes in the top
panels. The true 50% cut-off, zc, is indicated by a solid vertical line. The average of
the estimated 50% cut-offs, ¯̂zc over the simulation replicates is indicated by a vertical
dot-dashed line. Results are shown only for the critical region and right tail of the
distributions. The bottom panels are zoomed-in versions of the top panels.
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Figure E.7: The true ortholog sub-distribution (solid curve) for ratio2 in species set
8 when f1 contains 100% I1 knockouts. The fitted ortholog sub-distribution (dashed
curve) is obtained from the mixture density f , evaluated over a critical region defined
by Mf ± IQR/2; this critical region is highlighted on the horizontal axes in the top
panels. The true 50% cut-off, zc, is indicated by a solid vertical line. The average of
the estimated 50% cut-offs, ¯̂zc over the simulation replicates is indicated by a vertical
dot-dashed line. Results are shown only for the critical region and right tail of the
distributions. The bottom panels are zoomed-in versions of the top panels.
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