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Abstract 

Simple yet effective cylindrical transmit and receive coils for low frequency magnetic reso 

nance imaging (MRI) can be fabricated from a sine-phi distribution of windings. This thesi 

introduces the novel concept of an actively-shielded transmit coil. This coil produces a uni 

form oscillating magnetic field (a "B1 field") transverse to the bore of a cylindrical volum 

(the patient volume) yet at the same time produces very little magnetic field outside of thi 

region. In practice, this allows one to minimize undesirable inductive coupling betweei 

the B1 coil and the myriad of other coils (Bo, gradient, shim) that are needed to implemen 

MRI. Exact analytical solutions are derived for active shielding of the elementary build 

ing blocks of typical B1 coils. Specifically, solutions for a single straight wire, a completl 

current loop, and a sine-phi current distribution on the surface of an infinite cylinder ar~ 

derived. Following this, the results of an experimental study examining the magnetic field 

produced by actively shielded B1 coils is presented. The concepts described in this thesi 

are expected to be useful for emerging applications in low field nuclear magnetic resonance 

and magnetic resonance imaging. 
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Chapter 1 

Introduction 

This thesis is concerned with the design of a new type of coil that is expected to be useful 

for magnetic resonance imaging in very low magnetic fields. Specifically, it is a coil that 

can be used to produce a uniform oscillating magnetic field transverse to the axis of a 

cylinder and at the same time produce very little field outside of this region. In the parlance 

of nuclear magnetic resonance it is a B1 coil; that is, a coil that produces the oscillating 

magnetic field (the "B1 field") that is used to manipulate nuclear spins. The novel feature of 

the particular coil described in this thesis is that it is the first B1 coil known to incorporate 

active shielding. By design, the magnetic field produced by this coil is tailored to fall off 

rapidly as one moves away from the region of high field homogeneity. In effect what has 

been done is to bring together for the first time two principles in the design of coils that 

produce tailored magnetic fields. The first of these is the fact that a perfectly homogeneous 

magnetic field can be produced transverse to the axis of an infinite cylinder (or in fact an 

extrusion of any ellipsoid [l]) by imposing a surface current density that varies as sin(cp). 

This concept is illustrated in Fig. 1.1. The second is that the magnetic fields produced by a 

coil can in principle be perfectly shielded (i.e. forced to be identically zero) beyond some 

distance by the imposition of an appropriate current density outside of the region of primary 

interest. This concept is commonly used in the design of shielded superconducting magnets 

and gradient coils for magnetic resonance imaging. 

The reminder of this chapter sets the stage for the thesis. First, a brief introduction 

to low field magnetic resonance is given to motivate the need for the coil described in 

this thesis. This is followed by a brief discussion of the design of coils that incorporate 
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Current Flow 
Around Cylinder 

Figure 1.1 : Approximation of a sine-phi current distribution by a network of loops. 

active shielding. Several of the key theoretical concepts introduced in this thesis can be 

found in the article "Active Shielding of Cylindrical Saddle-shaped Coils: Application to 

Wire-wound RF Coils for Very Low Field NMR and MRI" by Christopher Bidinosti, Igor 

Kravchuk and Michael Hayden. At the time of writing, this article has been accepted for 

publication in the Journal of Magnetic Resonance [2]. Some of the experimental results 

presented in this thesis appear in the Proceedings of the 12th Meeting of the International 

Society for Magnetic Resonance in Medicine. 



CHAPTER 1 .  INTRODUCTION 

1.1 Magnetic resonance imaging 

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are powerful 

diagnostic tools with numerous scientific applications, medical imaging being perhaps the 

most important. They make it possible to visualize a wide variety of tissue characteristics 

and to monitor biological functions. In recent years, there have been significant advances 

in the development of practical gas phase MRI, particularly for investigation of gas-filled 

lung tissue. In effect this field started in 1994 when, using 1 2 9 ~ e  gas polarized far beyond 

thermal equilibrium, a group of researchers from Princeton University were able to acquire 

an image of the gas-filled lungs of a mouse [3]. Since that time, a host of similar techniques 

have been used to image human lungs in vivo, promising the potential development of many 

new diagnostic applications. 

Conventional MRI requires a large static magnetic field Bo in order to polarize a collec- 

tion of nuclear spins. In thermal equilibrium at temperature T the number of spins oriented 

parallel and antiparallel to the Bo field (Nu, and Ndown) are related to one another via a 

Boltzmann factor 

where p is the nuclear magnetic moment and k is Boltzmann's constant. At room tempera- 

ture, the ensemble nuclear polarization for a spin f system 

Nup - Ndown P =  = tanh (g ) 
Nup + Ndown 

is very small even in large magnetic fields 3. For example, in a typical medical MRI 

apparatus operating at B = 1.5 T, the polarization of H atoms is PH = 5 ppm. However, 

NMR and MRI signal amplitudes depend on the total nuclear magnetization of a sample. 

The more nuclei that are present in a given sample, the easier it is to detect a signal. The 

concentration of H nuclei associated with water molecules in living tissue is about 100 

molesll. The corresponding polarization density clearly gives rise to signals that are readily 

detected with good signal-to-noise ratio. 

The situation for pulmonary imaging is different. Because of the lung's low tissue 

density (which leads to a reduced signal intensity) and because of field gradients induced 
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by magnetic susceptibility differences between gas and tissue (which limits resolution and 

causes distortion), the lungs are perhaps the most difficult organ to image. Moreover, if one 

tries to imagine acquiring an image of thermally polarized gas inside the lungs, the situation 

is challenging [l 1, 121. The concentration of nuclei in an atomic gas at room temperature 

and atmospheric pressure is 0.04 molar, a factor of 2,500 less than the concentration of 

protons in living tissue. The corresponding thermal equilibrium polarization density at 

1.5 T is too low to be easily detected using conventional MRI techniques. 

Gases with nuclear polarization far in excess of thermal equilibrium values can be pre- 

pared using optical pumping methods. These techniques, which involve transferring the 

spin angular momentum of circularly polarized light to the nuclei of atoms like 3 ~ e  or 

I2'xe, were developed by A. Kastler during the 1950's (1966 Nobel Prize in Physics). In 

effect, these methods enable one to enhance the nuclear polarization of certain noble gases 

by many orders-of-magnitude without the need for an intense magnetic field. For example, 

nuclear polarizations as high as 85% have been obtained for 3 ~ e  at room temperature. The 

result of optical pumping is a highly non-equilibrium yet (in the right environment) long- 

lived nuclear polarization. As a consequence, fewer gas atoms are required to produce the 

same NMR or MRI signal response. For example, the polarization density of a gas of 50% 

polarized 3 ~ e  at room temperature and atmospheric pressure is about one hundred times 

greater than the polarization density of protons in living tissue in a 1.5 T magnetic field. 

A direct consequence of using optically-polarized gases in MRI experiments is that a 

large static magnetic field is not required. All that is needed is a clearly defined quantization 

axis. Typically this can be achieved using a - 2 mT field for polarized gas MRI (as opposed 

to 1-3 Tesla for conventional high-field MRI). In turn, the Larmor frequency of the gas 

atoms ends up being extraordinarily low by conventional MRI standards, perhaps 100 kHz 

as opposed to many tens of Mhz. At first glance this would appear to be of enormous 

benefit as coilhesonator designs are much simpler in the quasistatic limit (dimensions << 
wavelength). 

One complication that does arise, however is that it becomes difficult to use conven- 

tional passive shielding techniques to isolate a B1 coil from the myriad of gradient and 

shim coils that one needs to implement MRI. Ordinarily a B1 coil/resonator operating at 

100 MHz in an MRI system is surrounded by a thin Faraday shield. The thickness and 

geometry of this shield are chosen so that it effectively shields the B1 field at the Larmor 
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frequency but at the same time is almost transparent to gradient fields that might be switched 

at frequencies as high as a few tens of kHz. This natural separation of frequency scales is 

no longer an option when one considers low frequency MRI. The Larmor frequency of 

precessing nuclear spins can very easily end up being comparable to (or lower than!) the 

characteristic switching frequencies of gradient fields. Clearly, an alternate approach to the 

design of shielded B1 coils suitable for this low field, low frequency regime is required. 

1.2 Active shielding of coils 

Passive shielding of RF coils is widely used in high-frequency NMR and MRI applications 

where a conducting cylinder of sufficient thickness will support the induced surface current 

(i.e. eddy current [5]) flow needed to contain B1 fields. It becomes problematic in low-field, 

low-frequency NMR and MRI if the necessary thickness of the passive shield increases 

beyond a few millimeters. For example, in the kHz frequency range, a passive shield made 

of aluminum needs to be about d = 10 mm thick [9] if one requires d >> 6, where 6 is 

the skin depth of the metal1. Low-field, low-frequency NMR and MRI thus require new 

approaches to the design of shields for B1 coils. 

The problem of shielding the magnetic field produced by low-frequency coils generally 

requires the use of active rather than passive shields [8,9]. This approach has been applied 

widely to the design of gradient coils [lo, 61, but not previously to B1 coils. 

The design of an active shield is determined from a knowledge of the current that would 

be induced on a thick conducting surface placed at the location of the desired shield. This 

current is in turn linked to the current configuration of the RF coil via its magnetic field 191. 

In other words, once the magnetic field B1 is known on the surface of the shield, a surface 

current density F(cp,z) can be calculated from the boundary condition 

where gl (g2) is the magnetic field on the inside (outside) of the surface, and ii is a unit 

'while d >> 6 is often quoted as a necessary condition for effective shielding (particularly in elemen- 

tary textbooks on Electricity and Magnetism), it is not a general requirement. Much thinner shields can be 

constructed. The interested reader should consult reference [7]. 
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vector normal to the surface. Normally one is interested in having 2& = 0 for effective 

shielding. Knowing the surface current density F(cp,z )  that is necessary for & = 0, the 

problem becomes one of trying to produce a reasonable approximation to it so that I& is 

sufficiently small. 

A common form of B1 coil is a saddle-shaped coil. The magnetic fields produced by 

such (unshielded) coils have been studied previously by many authors [13, 14, 15, 16, 17, 

18, 19, 20, 211. Using any of these results, an appropriate shielding current density could 

be calculated using Eq. 1.3. 

The approach used in this thesis follows the somewhat more advanced and general meth- 

ods introduced by Turner and Bowley in an article entitled "Passive Screening of Switched 

Magnetic Field Gradients" [9]. Their method of analysis leads to exact and general rela- 

tionships for shield surface currents in terms of coil parameters, which can in turn be used 

to design actively driven shields. Their discussion was restricted to problems involving 

current distributions on the surface of concentric cylinders, although in principle it could 

be generalized to concentric ellipses. The present discussion is likewise restricted to con- 

centric cylinders as in many situations this tends to be a more practical geometry for coil 

construction. 

1.3 Outline of thesis 

The reminder of this thesis is structured as follows. In chapter 2 the main theoretical 

concepts underlying active shielding of coils are outlined. The approach is similar to the 

methodology introduced by Turner and Bowley [9] for the design of shielded gradient coils. 

These methods are successively applied to the elementary building blocks of low field B1 

coils. Specifically, analytic solutions are derived for the current distributions required to 

perfectly shield a single straight wire, a complete current loop, and a sine-phi current distri- 

bution on the surface of an infinite cylinder. Discrete approximations to these current dis- 

tribution based on a finite number of current-carrying wires are also presented. In chapters 

3 and 4 the design of a prototype shielded B1 coil is described and a series of measurements 

characterizing its performance are summarized. Finally, chapter 5 summarizes the work 

described in this thesis and discusses avenues for future exploration. 



Chapter 2 

Theory: active shielding 

In order to eliminate the undesired influence of magnetic fields produced by induced cur- 

rents flowing in conducting structures located in the vicinity of RF coils, one needs to 

reduce the magnetic field produced by the coil to zero beyond some finite radius. A sys- 

tematic theoretical approach to this problem was developed by R. Turner and R. M. Bowley 

[9] in the context of shielding the magnetic fields produced by gradient coils for MRI ap- 

plications. Their work is described in the first part of this chapter. The remainder of the 

chapter is devoted to examples and extensions of Turner and Bowley's ideas that ultimately 

lead to the design of an actively-shielded cylindrical coil for i1 field generation. 

2.1 R. Turner and R. M. Bowley's analysis 

Turner and Bowley [9] begin their analysis by assuming that all currents flow on the surfaces 

of two coaxial cylinders of radii p = a and p = b, where a < b. It is thus natural to use 

cylindrical coordinates that reflect the symmetry of the system. The z axis is taken to lie 

along the axis of the cylinders as shown in Fig. 2.1. 

With the assumptions that the current on the inner cylinder (p = a) and the current 

induced in the shield (p = b) are confined to their surfaces, the radial part of the current 

density can be represented by a Dirac S-function. That is, the general expression for currents 

can be written as 

:= $(z, cp)S(p - a)  +f' (z ,  cp)S(p - b )  (2.1) 
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Figure 2.1 : Coordinate system and surfaces on which currents are constrained to flow. 

where describes the surface current density on the inner cylinder and 1 describes the 

surface current density on the outer cylinder. 

The magnetic field produced by these currents can be written in terms of the vector 

potential 2, which in cylindrical coordinates has components Ap,  Aq and A, given by: 

where Jonly has z and cp components and must satisfy the continuity equation 
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A further constraint, associated with the goal of eliminating the magnetic field for p > b, is 

that the radial component of the magnetic field should be zero on the surface of the outer 

cylinder: 

B p = O .  (2.6) 

The crux of Turner and Bowley's approach to the analytic treatment of these equations 

lies in a sequence of three steps. First, they introduce a Green's function expansion for the 

factor - appearing in Eqs. 2.2 through 2.4. Next, they identify terms in this expan- 
17-21 * 8 

sion with Fourier transformations of the currents F(z, q)  and f(z, q) appearing in Eq. 2.1. 

Finally, using the constraints Eqs. 2.5 and 2.6 they establish expressions for the Fourier 

transforms of the current density on the outer cylinder that completely eliminate the mag- 

netic field beyond the outer cylinder (p 2 b). These steps are illustrated below. 

The Green's function expansion of A in cylindrical coordinates (see for example the 
(7-I-1 

textbook by J.D.Jackson [22]) is: 

1 m 

--- - = / dkexp[im(q - cp')] exp[ik(z - z')] lm (kp') K, (k$) 
1 -  r xm=-m -m 

(2.7) 

where p<(p>) denotes the lesser (greater) of p and p', and I,(z) and Km(z) are modified 

Bessel functions of the first and second kind, respectively. The Fourier transformed currents 

on the inner and outer cylinders are: 

where fp ,  f;, FF and FF are the components of l a n d  F. The components of 2 for p > b 

are thus: 
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dkexp(imcp) exp(ikz) Km(kp) [bl, (kb)Am(k) + dm (ka) F: (k)] (2.14) 

The boundary condition that Bp = 0 at p = b implies: 

and thus, when Eqs. 2.14 and 2.12 are substituted into Eq. 2.15 one obtains: 

This equation can be simplified using the requirement that currents must be continuous. In 

cylindrical coordinates this implies: 

and 

Consequently, the Fouri 

and 

(2.1 8) 

er transformed currents must satisfy: 

kb 
f t ( k )  = -;f?(k) (2.19) 

ka 
F t ( k )  = - - F: (k) . 

m 
Equation 2.16 can be simplified using the identity 
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which can be derived using the recurrence relations for Bessel functions (see for example 

the book by M. Abramowitz and I.A. Stegun [23]). Finally, by combining expressions 2.16 

through 2.21 Turner and Bowley obtained the following elegant expressions relating the 

Fourier transformed current densities on the inner and outer cylinders respectively: 

a21h (ka) 
fp(k) = -FF(k) b2B(kb) 

and 
aIh (ka) 

f;(k) = -F;(kIm 

That is, given an arbitrary current density on the inner cylinder (p = a), Eqs. 2.22 and 2.23 

enable one to calculate the current density on the outer cylinder (p = b) that is needed to 

completely eliminate the magnetic field for p > b. The use of these remarkable expressions 

is illustrated in the following sections. 

2.2 Complete current loop 

As a simple example, consider a current I flowing in the azimuthal direction and constrained 

to a loop of radius p = a centered at z = zl, as shown in Fig. 2.2. In the notation of the 

previous section this implies: 

F , = O  (2.24) 

and 

F,+,=IS(Z-21) . 

Making use of Eq. 2.1 1, we find: 

and therefore 

which gives 

a I; (ka) 
frn(k) = -I---- 

,+, b 1; (kb) exp(-ik~l)&rn,o 

a 1  ka 
f:(k) = -I-- '( ) exp(-ikzl) 

b I' (kb) 
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Figure 2.2: Current loop of radius p = a centered at z = zl. 

The inverse Fourier transform of Eq. 2.28 gives the shielding current fq(z) on p = b re- 

quired to eliminate g for p > b : 

a result that has not previously been reported. 
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Note here that, once we know the shielding current density fq ( z ) ,  the total current flow- 

ing on the outer cylinder can be obtained: 

- 
" I; (ka )  

- -17 dk-6(k)  
b -, 1; ('4 
aI6 (ka )  

Evaluation of the limit in Eq. 2.30 (see Appendix A) gives 

and thus 

IA(ka) - a 
lim- - - 
k-o I;(kb) b 

in complete agreement with the result obtained by Turner and Bowley (see Eq. 25 of refer- 

ence [9]). 

2.3 Sine-phi surface current distribution on an infinite cylin- 

der 

It is a well known fact that a perfectly homogeneous transverse magnetic field can be 

generated inside a cylindrical volume using an infinitely long surface current of the form 

Fz = sin(cp) flowing on the cylinder surface in the longitudinal (or z )  direction (see [4], [6] 

or [I]). This sine-phi distribution forms the conceptual basis for transverse B 1  field genera- 

tion in many NMR and MRI applications. Our interest is in determining the corresponding 

shielding current distribution fz(cp,z) that eliminates the magnetic field for p > b. The 

geometry of this problem is summarized in Fig. 2.3. 
To begin, consider the infinitely long current distribution 



CHAPTER 2. THEORY ACTIVE SHIELDING 

Figure 2.3: Sine-phi current distribution F Z ( q , z )  on a cylinder of radius a,  and the corre- 

sponding shielding current distribution fz(cp, z )  on a cylinder of radius b. 

Fq(z, 9 )  = 0 (2.34) 

restricted to the cylinder with p = a .  The Fourier transform of this current sheet is: 

m F, ( k )  = -im.n16(k)6m?+1 . (2.35) 

Making use of Eq. 2.22, the Fourier transformed shielding current distribution 

a2 I; (ka)  
f r ( k )  = -im.nI- -6(k)6,,+1 

b2 I,/,, (kb)  
is obtained. The inverse transform of Eq. 2.36 gives the shielding current distribution: 
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from which 

and finally 

Comparing this result for the shielding current distribution fz(cp,z) with the original sine- 

phi current distribution Fz(z,<p) (Eq. 2.33) it is evident that they have the same angular 

dependence, but flow in opposite directions. The magnitude of the central field scales as 

1 - a2/b2.  

2.4 Analytic approach for shielding two infinitely long wires 

Consider the case of two infinitely long wires Ia and I P  carrying the same current I but 

flowing in opposite directions parallel to the z-axis of a cylindrical coordinate system. Let's 

arrange them so that the wires are at the positions p = a and cpl = 0 and q32 = n as shown 

in Fig. 2.4. In effect these wires form a rectangular current loop for which the return paths 

have been moved to z &=. 

Clearly the total z-component of the current 

Iz = I: -I! (2.40) 

Rowing on the surface of the cylinder at p = n is zero. The individual currents I:@) can be 

associated with current densities J ~ ( P )  such that 

In the context of Turner and Bowley's analysis we infer: 
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Figure 2.4: An infinitely long system of two current-canying wires parallel to but offset 

from the axis of a cylindrical coordinate system. 

and 

and thus 

I 
UP) = FP(rn) +@(rn)  = ;[6(rn) -6(rn+n)] . 

The 9-component of F (9) is 
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Fq(cp) = 0 . 

Fourier transformation of F: gives us: 

Substitution of Eq. 2.46 into Eq. 2.22 yields 

a Ik  (ka) pm (k) = -I - ------ 6 (k) 
2.xb2 Ik  (kb) 

Finally, inverse Fourier transformation of Eq 2.47 gives a z-directed "shielding" current 

density at p = b 

Performing this integral, one finds 

and since [23] 

I; (x) = I l ,  (x) 

for modified Bessel functions of any integer order m [23], Eq. 2.49 becomes 

In order to proceed further we have evaluate Eq. 2.51 in the limit k --+ 0. As shown in 

Appendix A 

and Appendix B 



CHAPTER 2. THEORY: ACTIVE SHIELDING 

lim ---- = 
k-0 Ih (kb) 

Note that the latter equation is valid for any integer rn # 0 . 
With these results in hand, fF(cp) can be rewritten. Substitution of Eqs. 2.52 and 2.53 

into Eq. 2.5 1 leads to 

A similar procedure to that outlined above yields: 

Now, since the total shielding current is 

Equation 2.57 represents the exact analytical solution for the surface current fz(cp) on the 

outer cylinder that completely eliminates the magnetic field produced by two line currents 

flowing in the opposite direction in the region p > b. 

The analysis presented above suggests that the shielding current density fP(cp) (or 

fP(cp)), associated with the current la on the wire at position p = a and cp = 0 (or I P  on 

the wire at p = a and cp = n ), ought to give the appropriate solution for shielding a single 

current carrying wire. However, we emphasize that this line of reasoning is faulty. To jus- 

tify this assertion, consider a region where p >> a and b. The sum of the magnetic field 

produced by a current flowing in a wire and its corresponding shielding current should give 

+ 0 for p > b. This in turn implies through Ampere's circuital law that the current I: = I 

in the wire and the integrated shielding current density fF(cp) must sum to zero. Clearly 

this is not the case since 
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The question of how to find the shielding current density f;(cp) for a single current 1; is 

considered in the next section. 

2.5 Analytic approach to shielding a single long straight 

wire 

It is not possible to apply the Turner and Bowley formulas (Eqs. 2.22 and 2.23) to the 

problem of a single infinitely long straight wire (see Fig. 2.5). The reason for this is subtle, 

but important to understand. 

Implicit in Turner and Bowley's analysis is the requirement that the current satisfy the 

equation of continuity 

at all points in space. A single straight current-carrying wire necessarily requires a source 

and a sink of charges, even if they are located far from the region of interest. That is, the 

current satisfies an expression of the form 

a~ v i= - - [6(z - z0) - 6(z  + z~)],,,, 
at 

(2.60) 

and hence formulas 2.22 and 2.23 are not valid. Nevertheless, elements of Turner and 

Bowley's analysis can be applied to this problem, as outlined below. 

First, it is clear that the general solution for the shielding current density for a single 

infinitely long wire at p = a and (P = 0 can not be a function of either p or z. That is, the 

general solution f,(z, p ,  (P) can only be a function g of argument (P: 
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Figure 2.5: An infinitely long current-carrying wire parallel to but offset from the axis of a 

cylindrical coordinate system. 

Second, if one considers the shielding current distribution for two parallel wires (Eq. 2.57, 

reprinted here) 

it is clear that the angular dependence of the shielding current for a wire at p = a and cp = 0 
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is completely described by 

From this, we infer that 

Finally, since the total magnetic field produced by the current flowing in the wire and the 

shielding current flowing on p = b must go to zero as p + =J, the integrated current flowing 

on p = b must be equal to -I (Ampere's circuital law). That is 

from which we infer 

In other words, a current density g , ( q )  described by Eq. 2.67 will completely eliminate the 

magnetic field produced by a current I, flowing in a wire at p = a < b and q = 0 in the 

region p > b. 



Chapter 3 

Development of a prototype shielded BI 

coil 

Cylindrical saddle-shaped coils (see Fig. 3.1) or variations thereof can be used for B1 field 

production in NMR. For these coils, if the length of the coil I >> 2a, where a is the radius 

of the coil, the contribution of the azimuthal current elements to the magnetic field in the 

central region of interest ( z  = 112) is small. It will thus be a good approximation to say 

that the magnetic field near z = 112 is induced mostly by the current flowing in the axial 

segments of the coil. This means that as long as the condition I >> 2a is satisfied, the 

field is reduced to a function of two coordinates (p, 9) and Eq. 2.64 (the shielding current 

distribution g,(cp) for an infinitely long straight wire obtained in the previous chapter) can 

be employed. 

In this chapter numerical calculations are performed for (i) the magnetic fields produced 

by a long straight wire surrounded by a cylindrical shield, (ii) an array of 10 saddle shaped 

coils arranged to give a discrete approximation to a sin-phi current distribution, and (iii) a 

practical implementation of an active shield for the array of saddle-shaped coils. The goal 

of this exercise is to check for accordance with the analytic expressions derived in Chapter 

2. The chapter ends with a description of a prototype coil that was built in order to test its 

shielding efficacy. 
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Figure 3.1 : The geometry of a cylindrical saddle-shaped coil pair, with length I .  The current 

I produces a transverse magnetic field along the y-direction. 

3.1 Numerical calculation of the magnetic field produced 

by an infinitely-long shielded wire 

The geometry of an infinitely long wire surrounded by (but offset from the axis of) a cylin- 

drical conducting shield is relatively simple yet at the same time sufficiently complex to be 

used as a starting point for performing a numerical check of the accuracy of the derivations 

presented in Chapter 2. The procedure is straightforward. The appropriate shielding current 

distribution (Eq. 2.67) is first broken down into filamentary current segments and then, a 
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vector sum of the magnetic field produced by each of these segments is performed. While 

this calculation may seem elementary, particularly after the exact analytic result has already 

been given, in practical terms it was a very important step in building up confidence that 

our derivations were correct. 

For the purpose of numerical calculations, all parameters (i.e. magnetic fields, currents, 

distances) were written in a non-dimensional form. To illustrate how calculations were set 

up, let us consider Fig. 3.2. This figure shows the cross section of two concentric cylinders 

Figure 3.2: The inner current Iwiw flowing in the z direction is placed at xi = a and y ,  = 0 

while the shielding current density flowing parallel to the z-axis is spread over the surface 

of the outer cylinder at r = b. 
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of radii a and b .  The current distribution on the inner cylinder consists of an infinitely 

long straight wire carrying current Iwi,  placed at xi = a and y, = 0. The shielding current 

density Iz(cp) is distributed over the surface of the outer cylinder at p = b .  Both currents 

flow parallel to the z-axis which is perpendicular to the page. Knowing the formula for the 

shielding current density fz(cp) (Eq. 2.67, reproduced here for convenience) 

l (  .) the normalized shielding current Ii = for each arc segment dli = bdqi for the outer 

cylinder (see Fig. 3.2) can be written: 

Note here, we assume that each current segment Ii is infinitely long and parallel to the 

z-axis. 

The magnetic fields Bwi,(xly) produced by Iwi, and Z ~ ( X , ~ )  produced by Ii can be 

summed to find the total field 

at any point ( x , y )  using the expression for the magnetic field produced by an infinitely 

long wire. By increasing the number n of segments dl i  into which the shielding current 

distribution is split we can increase the accuracy of calculations. Note also that we define 

the total relative magnetic field at any point to be 

The program written to perform these calculations is presented in Appendix C. Figure 3.3 

shows the relative value of the shielding current density fz(cp) for the case a l b  = 314. Fig- 

ure 3.4 shows the corresponding relative magnetic field ( / (&enrer~  for n=100 shielding 

current segments. We can clearly see that beyond the outer shielding cylinder, the total 

magnetic field produced by the current Iwire and the shielding currents li is (B;~, I = 0 within 
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cp rad. 

Figure 3.3: Relative value of the shielding current for the case of one wire, with a/b = 3/4. 

Beyond the outer shielding cylinder (p > b), the magnetic field produced both by current - 
IwiR and shielding currents f ( c p )  is (Btor( = 0. 

the accuracy of the numerical calculations. This is in agreement with the analytical result 

presented in Chapter 2. 
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Figure 3.4: Relative value of the magnetic field BIBcewer for a single shielded wire located 

such that a l b  = 314 and the number of shielding current segments n = 100. Beyond the 

outer shielding cylinder, the magnetic field produced by the currents is I@, 1 = 0. 

3.2 Numerical calculation of the magnetic field produced 

by a discrete (20 wire) approximation to a sine-phi cur- 

rent distribution 

There are a number of challenges associated with producing uniform B1 fields in MRI 

systems. Some approaches to the construction of suitable coils were briefly mentioned 

in Chapter 1. Previous authors have emphasized that the construction of a coil having a 

nonuniform sheet current would be very difficult to achieve. In practice, one chooses to 

approximate a surface current distribution F ( q )  using an appropriate distribution of some 



CHAPTER 3. DEVELOPMENT OF A PROTOTYPE SHIELDED B1 COIL 2 8 

number of line currents I((pi). Two well known examples of this are the "sine-phi" coil and 

the birdcage coil, both of which approximate the field of a uniformly magnetized cylinder 

through an arrangement of evenly spaced conducting wires that run along the z-axis of the 

magnet. The current amplitude required in each wire is determined by its angular position 

(pi, and must be set to Iwiw sin((pi): for the sine-phi coil this is achieved by using a separate 

current source for each value Iwiw sin(qi); for the birdcage coil operating at resonance, its 

circuit is such that the phase of the current Iwim flowing in each rung is proportional to (pi 

and as a consequence the correct distribution of current is met at any instant in time. 

A third possibility is to have all wires carry the same in-phase current /Ii[ = Iwi, but to 

vary their angular separation so as to best approximate I(q) as illustrated in Fig. 1.1. If 

we construct a coil using an even number of wires 2n, the optimal angular positions cpi for 

these wires can be set by requiring: 

and 

where r((p) represents the radius of the surface on which the sine-phi current flows. In 

practice, one only needs to perform this iterative calculation for the first n/2 wires within 

a single quadrant; all other wire positions are then determined by symmetry requirements, 

with n wires at &(pi and n wires at &(180•‹ - (pi). For the case of a cylinder, where r(q) = r 

and I(cp) - sin((p), Eqs. 3.5 and 3.6 simplify to: 

91 = arccos (1 - :) 
and 

For a cylindrical coil with 2n = 20 wires, Eqs. 3.7 and 3.8 yield the following angles for 

the first quadrant: 
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Numerical calculations of the magnetic field were performed for the particular arrange- 

ments of 20 wires described above, in a manner analogous to that described in the previous 

subsection. The Fortran program for this calculation is presented in Appendix D. The re- 
sult of the calculation is summarized in Fig. 3.5, which shows the relative magnetic field 

as a function of position. The magnetic field in the central region of the coil (ie. 

Figure 3.5: Relative value of magnetic field (Z/~,,,I for a B1 coil consisting of 20 wires. 

The field is homogeneous and directed along the x-axis in the central region. 

p < a) is very homogeneous. An active shield for this particular 20-wire coil is described 

in the following section. 
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3.3 Geometry for a practical shielded cylindrical B1 coil 

As shown in section 2.5 and illustrated in section 3.1, the magnetic field produced by a 

current Iwim flowing along a wire on the surface of a cylinder at p = a can be made iden- 

tically zero for p > b by causing an appropriate current density f ( c p )  to flow on a cylinder 

at p = b. Once the positions of 20 wires, each carrying current JIil = Iwiw and placed on 

the inner cylinder of a B1 coil have been defined as described in section 3.2, the necessary 

shielding current density on an outer cylinder fiot(q) is simply 

where i identifies a particular wire associated with the B1 coil, and h(cp) is the shielding 

current density on the outer cylinder corresponding to that wire. Using the formula for the 

shielding current density for an infinitely long current f,(cp) (Eq. 2.67), the total shielding 

current density Jot (q) can be written 

where cpi has the meaning outlined in the previous section (see Eq. 3.9). 

A program was written (see Appendix E) to calculate the angular dependence of the 
&or (x,v) continuous shielding current density hOr(cp) and the relative magnetic field - for an 
l ~ c e m e r  1 

array of 20 wires arranged as described in section 3.2. The results of calculations performed 

by setting a lb  = 415 and restricting m to values m 5 100 are shown in Fig. 3.6 and Fig. 

3.7. Comparison of Fig. 3.7 with Fig. 3.5 clearly illustrates the efficiency of the shield. 

As was the case in coming up with a discrete approximation to a sine-phi current dis- 

tribution, we are interested in a discrete approximation to the shielding current distribution 

hot (9) shown in Fig. 3.6. Some additional practical constraints that need to be considered 

are: 

1. The wires associated with the B1 coil and the wires associated with the shield 

should carry the same in-phase current Iwi,. This elliminates the need for multiple 

power supplies and guarantees that inadvertent fluctuations in currents are common 

to the coil and the shield. 
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Figure 3.6: Shielding current density f,,(cp) (relative units) for a 20-wire B1 coil, with 

a/b = 415. 

2. The wires associated with the B1 coil and those associated with the shield should 

be as close as possible in order to maximize the volume inside the B1 coil. Clearly, 

the field would be zero everywhere if the separation between the coils is reduced to 

zero, and so some level of compromise is required. 

To satisfy these conditions, let us consider the shielding current density f,(cp,z) for a B1 
coil based on a continuous sine-phi current distribution (i.e. Eq. 2.39 reproduced here for 

convenience): 

For a 20-wire approximation, the current density 

and consequently 
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Figure 3.7: Relative magnetic field for a shielded 20 wire BI coil, for the case of 
I ~ c c m c r  1 

a lb  = 415 and 5000 shield wires. 

On the other hand, f,(q z) must satisfy 

and so n, a, and b must be inter-related such that 

a 
1 OIwire - = nIWire 

b 
(3.16) 

where n is some integer number (n < lo), and a and b are the p-coordinates of the inner and 

outer cylinders. Using Eq. 3.16 and taking into account the conditions outlined above, the 



CHAPTER 3. DEVELOPMENT OF A PROTOTYPE SHIELDED B1 COIL 33 

ratio of the radii of the inner (p = a)  and outer (p = b )  cylinders was chosen to be a lb  = 415 

for which the total number of shielding wires m = 2n = 16. 

Once n and a l b  are chosen, the final step in defining the geometry of a shield is to 

calculate the angular positions cpfhiefd at which shielding wires should be placed. As was 

described in section 3.2, we require the shield wires to satisfy 

and 

where hot ( c p )  is the current distribution plotted in Fig. 3.7 

first quadrant 

(3.18) 

This calculation yields for the 

All other wire positions are given by symmetry requirements, with 8 wires at *(pfhiefd and 

8 wires at f (180' - cpfhie id) .  

3.4 Numerical calculation of the magnetic field for a shielded 

B1 coil 

The previous section outlined the design of a practical shielded cylindrical B1 coil. A 

numerical calculation of the field produced by such a coil was performed in a manner anal- 

ogous to that outlined in sections 3.1 and 3.2. The relevant code is presented in Appendix F. 

Figure 3.8 shows the relative magnitude of the field ~ & , ~ l /  lB,,,,l produced by this coil. 

The spikes corresponding to the wire positions have been truncated in order to emphasize 

that the central field is homogeneous and that the field outside the coil (i.e. p > b)  is sharply 

attenuated. These results confirm that the geometry described in section 3.3 is suitable for 

construction of a prototype shielded B1 coil. 
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Figure 3.8: Absolute value of m 

2 

,agnetic field 131 / I B ~ L , ~  for a 20-wire B1 coil shielded by 

an additional 16 wires. 

3.5 Description of a prototype shielded B1 coil 

The shielded B1 coil described below and shown in Fig. 3.9 was designed to fit inside a 

solenoidal low-field MRI magnet with an inner diameter w 55 cm. The outer radius of 

the shielding B1 coil was thus selected as b = 27 cm and in turn a = ( 4 / 5 ) b  = 21.6 cm. 

The angular positions of the wires Ti and cpihie'd are as defined in sections 3.2 and 3.3. 

The frame of the coil was made from pressed wood in order to be both non-magnetic and 

non conducting. The length of the coil was set to I = 1.55 m, which is longer than the 

length of the magnet. A single contiguous wire was wound on the frame in order to form 

the appropriate current paths for the 20-segment inner B1 coil and the 16-segment outer 

shield. A break was inserted so that the inner (B1 coil) and outer shielding coil could be 
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driven (engaged) independently if desired. Experiments to characterize the magnetic field 

produced by this prototype shielded B1 coil are described in the next chapter. Note that 

the flat surface located both inside and outside of the coil at mid-height corresponds to the 

plane over which these measurements were performed. 

Figure 3.9: The prototype shielded 20 wire B1 coil 



Chapter 4 

Experiments: active shielding 

The results presented in Chapter 2 of this thesis were in effect derived from first princi- 

ples. There is no reason to doubt their validity beyond some inadvertent mathematical 

error. Given the apparent agreement between these analytic expressions and the numeri- 

cal computations presented in Chapter 3, it is very unlikely that an error was introduced. 

Nevertheless, it is only through the construction and characterization of a prototype that a 
full evaluation of an actively shielded BI  coil can be performed. In this chapter, the mag- 

netic field produced both inside and outside of the coil described at the end of Chapter 3 is 

measured and compared with numerical calculations. 

First, a technique for measuring an oscillating magnetic field is described, then this 

technique is applied to the measurement of the field produced by the prototype shielded 

B1 coil. Three cases are considered: First, the oscillating magnetic field produced by the 

prototype shielded BI coil is characterized in free space. Next, the influence of conducting 

objects with the potential to perturb the homogeneity of the field inside the coil is examined. 

Finally, the prototype is inserted into the bore of a low-field MRI system in order to evaluate 

the effective inductive decoupling between the B1 coil and the numerous other coils present 

in this complex environment that results from the use of the shield. 
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4.1 Measurement techniques, devices and regimes 

As described in Chapter 1, Larmor frequencies f = associated with very-low field MRI 

applications are typically in the range 10 to 300 kHz. The measured inductances of the 

inner (LB,) and outer (Lshield) windings of the prototype B1 coil are of order 100 pH. The 

corresponding reactances XL = OL are of order 100 Q at 6.1 = 100 kHz. The resistance of 

the coil R = 1.0 Q. So, we expect that when an oscillating emf 

E = cos (a t )  (4.1) 

is applied across the coil, a current 

will flow. If is of order 1 V then we expect I. 2 10 mA. This current generates a 

magnetic field 

inside the coil. For a sine-phi coil with N = 20 wires, BY is approximately twenty times 

greater than the field produced at distance a from an infinitely long wire. That is, 

which for a = 0.3 m and l o  = 10 mA gives BY = 0.1 pT. 

To detect this field, the emf induced in a coil can be used. The particular coil used here 

consists of n = 40 turns of wire with a radius r = 10 mm. The magnetic flux @(r) through 

the receiver coil due to the 21 field is 

when the coil normal is parallel to the field. This generates an emf 

d@ 0 2 0 Ceceiver (t) = -n- = nB1 nr asin(at)  = EreCeiv,, sin(ar). 
dt 
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across the receiver coil. Using the values BY = 0.1 pT and r = 10 mm, the emf across 

the receiver coil should be about 10 mV at 100 kHz. That is an alternating emf = 1 V 

applied across the prototype B1 coil should generate an emf 'EECeiver - - 10 mV across the 

receiver coil. For the purpose of measuring this emf, a lock in amplifier is convenient and 

has the advantage that accurate measurements may be made even when the signal of interest 

is obscured by noise sources that are many thousands of times larger in amplitude [24]. 

Lock-in amplifiers use a technique known as phase-sensitive detection to measure the 

amplitude and phase of a component of a signal at a specific reference frequency. Noise 

signals at frequencies other than the reference frequency are rejected and do not influence 

the measurement. The particular lock-in amplifier used in these experiments (Stanford 

Research model SR830) generates an internal reference signal Vref sin(oreft + emf) that 

can also be used to drive the B1 coil. Then, the SR830 amplifies the signal of interest (in 

our case the emf induced in the pickup coil) and multiplies it by the reference signal using 

two phase sensitive detectors (PSD). The output of a PSD is proportional to the product of 

two sine waves 

(4.8) 
In other words, the PSD outputs two AC signals, one at the difference frequency (usig - 

oref) and the other at the sum frequency (usig + oref). If the PSD output is fed through 

a low pass filter, the higher-frequency component of the signal is removed. If oref equals 

osig, the difference frequency component will be a DC signal and the filtered PSD output 

will be 

If the second PSD multiplies the signal by the reference oscillator signal shifted by 90" (i.e. 

Vref ( t )  = Vref sin(wreft + @ref + 90")) the DC component of the signal will be 
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Once we have these two signals (i.e. VpsD oc Vsig C O S ( ~ ~ ~ ~  - eref)  and VPSD2 = Vsig - 

Oref) we can calculate Vsig: 

I 

vsig oc (V~SD + vj5'D2 ) (4.11) 

and the phase difference 0 = (eSig - €Iref) between the signal under investigation and the 

reference signal: 

Measurements were performed at a frequency of 100 kHz, where the freespace wavelength 

of electromagnetic radiation is h = 3 km. This is long enough that the total length of wire 

used in fabricating the prototype B1 coil (L = 60 m) is only 2% of h, and thus we expect 

the current flowing in each rung of the coil to be in phase. 

At this point the only remaining question is how to orient the plane of the receiver 

coil perpendicular to the oscillating magnetic field at every point at which the field is to 

be measured. In general, one could rotate the receiver coil until maximum in the detected 

signal is observed, at which point the direction of the normal to the plane of the receiver 

coil would be parallel to the magnetic field. This procedure is time consuming and requires 

that many (different) angles be measured accurately. 

A simple and less time consuming method for measuring the zl (x, y) field is summa- 

rized in Fig. 4.1. It is very easy to orient the receiver coil in the same direction for any 

(x7y) coordinate in the region of interest and thereby measure the projection of zl (x,y) on 

this direction. Once projections of al (x,y) on two axes 2 and x" oriented at an angle of 

let's say 30" with respect to each other are measured, the original Bl (x,y) vector can easily 

be determined. For example, if the projection of zl (x, y) on the 2-axis is Bd(x,y) and the 

projection of z1 (x,y) on the 2'-axis is Bd/(x,y) (see Fig 4.1) then 
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Figure 4.1 : The calculation of i1 (x, y) using projections of the field onto two axes x' and i' 
oriented at an angle of 30" with respect to each other. 

where a and p are the angles between Bl (x, y) and the two coordinate systems and a + P = 

30" by construction. From this 

and 

In practice this procedure gives very small (< 0.5%) random errors in the determination of 

IB1 (x, y) I and gives (x, y) independent of an absolute determination of the angle between 

the normal to the plane of the receiver coil and the true direction of the oscillating magnetic 

field. It has been used for all of the experiments described in the following sections. 
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4.2 Characterization of the magnetic field produced by the 

prototype shielded BI coil 

Measurements of the magnetic field produced both inside and outside of the prototype coil 

were first performed in free space (i.e. far from perturbing objects) in the plane z = 1/2 

where I is the length of the coil (see Fig. 3.9). The B1 coil was driven with 5 V, 100 kHz 

signal and the emf induced in the receiver coil was measured in two orientations 30' apart 

as described in section 4.1. 

Figure 4.2: Relative magnitude of the field produced by the prototype B 1  coil in free space 

when the shield is engaged (ON). Results are shown for the first quadrant only for the 

sake of clarity. Note the logarithmic scale. The value of BCent, used here is taken from 

measurements performed with the shield OFF (see Fig. 4.3) to properly show the influence 

of the shield. 
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The measured relative magnitude of the magnetic field & (x, y) is plotted in Figs 4.2 and 

4.3 for the cases when shield is "ON" and "OFF". Several features of these plots are worth 

Figure 4.3: Relative magnitude of the field produced by the prototype B1 coil in free space 

when the shield is disengaged (OFF). Results are shown for the first quadrant only for the 

sake of clarity. Note the logarithmic scale. 

noting. First, the central field is clearly very homogeneous. The maximum deviation of the 

field from a constant value is 1.5 % and 1.3 % within a distance a / 2  of the origin when the 

shield is ON and OFF, respectively. This compares to a maximum deviation of 1.3 % and 

1.1 % for the same two cases predicted by the numerical calculations presented in Chapter 

3. Second, the attenuation of the field outside of the coil is much more rapid when the 

shield is engaged, as expected. The level of attenuation is in agreement with the numerical 

calculation presented in Chapter 3. And finally third, the magnitude of the central field is 
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attenuated by a factor 0.646 when the shield is engaged. This compares favorably with the 

value a2/b2 = 0.64 expected from theory for an infinitely long coil. 

Although only results from the magnitude of (x, y) are plotted, the uniformity of the 

measured field direction is equally impressive. The maximum deviation of the direction 

of the field from a constant value over the same region is 0.5 f 0.1 degrees and 0.8 k 0.1 

degrees for the shielded and unshielded cases, respectively. 

4.3 Influence of external objects on the internal magnetic 

field homogeneity 

To illustrate the effectiveness of the active shield, the following experiment was performed. 

A large copper plate measuring 1.5 m x 1 m was placed near the B1 coil (see Fig. 4.4). 

The distance between the coil and the copper plate was set to a = 5 cm. The time-varying 

currents flowing in the rungs of the B1 coil generate image currents in the copper plate; 

these image currents in turn influence the magnetic field produced inside the B 1  coil. The 

emf induced across the receiver coil was measured as a function of position as described 

previously, both with the shield engaged (ON) and disengaged (OFF). Table 4.3 gives the 

measured relative deviation of the field 

from the central value B1 (0) along the x-axis of Fig. 4.4. The same data are plotted in 

Fig. 4.5. Also shown in this figure are values of A(x) measured in the absence of the copper 

plate. 

From these data we conclude that the currents induced in the copper plate by the 

B1 field disturb the field inside the unshielded coil by a significant amount ( A E ~ ~ ~ ' ~ ~ ~  - 
in f reespace 

&UZX z 14%). On the contrary, the B1 field generated by the shielded coil is almost 

the same whether or not the copper plate is present ( ~ 2 ' ~ ~ ~  - 
Ain&eespace 

z 0.3%), which 

is in good agreement with our expectations. 
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A(x) in (%) A(x) in (%) 
shielding OFF shielding ON 

Table 4.1 : Relative deviation A(x) (in %) of the magnetic field along the x-axis of Fig. 4.4 

when the copper plate is in position. Data are shown for the cases where the shielding is 

disengaged (left) and engaged (right). 
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Figure 4.4: The geometry of the experiment used to the test the influence of a perturbing 

conducting body (a copper plate) on the homogeneity of the internal magnetic field. 

4.4 Characterization of the prototype & coil in a low field 

MRI magnet 

The experiment described in section 4.3 demonstrates the immunity of the shielded B 1  coil 

to the perturbing influence of external conducting bodies. However, the true test of shield- 

ing effectiveness is to place the coil inside a low-field MRI magnet, comprising several 

dozen coils for producing magnetic fields and fields gradients as well as significant lengths 

of copper tubing for water cooling of the magnet. The design of the particular magnet used 

for this test is such that all of these coils are confined to an 8 cm thick shell with an inner 

diameter of 55 cm; in other words, the MRI magnet presents a complex environment con- 

sisting of numerous conducting bodies, all of which are in close proximity to the B1 coil 

(see Fig. 4.6). 
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Figure 4.5: Relative deviations A(x) (in %) of the magnetic field along the x-axis of Fig. 4.4 

when the copper plate is in position. Data are also shown for the case when the copper plate 

is removed (shielded coil in free space). 
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Measurements were performed in a manner analogous to the method described previ- 

ously. Data for the relative deviation A(x, y) of the field from the central value are reported 

in tables 4.2 (unshielded) and 4.3 (shielded) and are plotted in Figs. 4.7 (unshielded) and 

4.8 (shielded) for a drive frequency of 100 kHz. The difference between these two data 

sets is clear. The spread in measured values of A(x,y) is significantly larger when the ac- 

tive shielding is disengaged. This is a direct reflection of the complex inductive coupling 

between the B1 coil and the MRI magnet. 

Engaging the active shield reduces this coupling by attenuating the oscillating magnetic 

fields produced outside of the central region. There is still a finite spread in measured values 

of A(x,y) evident in Fig. 4.8, however this can be attributed to the intrinsic homogeneity of 
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Figure 4.6: Geometry of the experiment to characterize the homogeneity of B1 fields inside 

a low-field MRI magnet. The B1 field is directed along the y-axis. 
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1 OFF I x=-8cm 1 x=-4 cm 1 0 I x=Ocm I x=8cm I 

Table 4.2: Relative deviation A(x) (in %) of B1 from the central value measured in the plane 

z = 1/2 when the prototype coil is placed inside the MRI magnet. These data correspond to 

the case where the active shield is disengaged (OFF). 

Table 4.3: Relative deviation A(x) (in %) of Bl from the central value measured in the plane 

z = 1/2 when the prototype coil is placed inside the MRI magnet. These data correspond to 

the case where the active shield is engaged (ON). 
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the fields produced by the B1 coil as calculated in Chapter 3. Further evidence of shielding 

effectiveness is seen in the symmetry of the measured fields. The data for B1 shown in Fig. 

4.8 reflect the symmetry one expects for a finite length cylindrical sine-phi B1 coil with 

azimuthal return paths, while the data shown in Fig. 4.7 do not. 

Figure 4.7: Relative deviation A(x,y)  of the B1 field from its central value as measured for 

the plane z = 1/2 in Fig. 4.6. These data correspond to the case where the active shield has 

been disengaged. 



CHAPTER 4. EXPERIMENTS: ACTIVE SHIELDING 

Figure 4.8: Relative deviation A(x,y)  of the B1 field from its central value as measured for 

the plane z = 112 in Fig. 4.6. These data correspond to the case where the active shield is 

engaged. 



Chapter 5 

Discussion 

This thesis describes a combined theoretical and experimental study that examines the ap- 

plication of active shielding techniques to the design of transmit (or B1) coils for low field 

magnetic resonance imaging. Exact analytic expressions are derived for the current density 

required to shield the magnetic field produced by a number of elementary coil configura- 

tions. Using these analytic results, a prototype shielded B1 coil based on a sine-phi current 

distribution was designed and a numerical simulation of the magnetic field it generates was 

performed. The results of this simulation clearly show that the active shield does indeed 

sharply attenuate the magnetic field outside of the coil while at the same time retaining the 

homogeneity of the field produced by the sine-phi B1 coil. Based on this numerical model, 

a prototype shielded B1 coil was constructed and the actual magnetic field it produces was 

characterized. A key aspect of this experimental work was a series of tests intended to char- 

acterize the immunity of the coil to perturbation from external environmental factors such 

as the presence of conducting bodies. 

Ordinarily, passive techniques are used for shielding in NMR and MRI experiments. 

However, in the low frequency regime these can be awkward to implement. This thesis 

provides a set of mathematical and conceptual tools for designing actively shielded coils, 

and demonstrates their utility for low field (low frequency) NMR and MRI as an alternate 

to passive shielding. The significance of this work is that it demonstrates that actively- 

shielded B1 coils do indeed attenuate the influence of external conducting objects (that are 

necessarily present) on the homogeneity of the magnetic field inside the coil. Actively 

shielded coils remain useful and straightforward to design as long as one remains in the 
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quasistatic limit. At higher frequencies phase shifts associated with the finite wavelength 

of electromagnetic radiation complicate the design process. 

A natural extension of the ideas presented in this thesis would be the design of B1 coils 

with an elliptical (rather than cylindrical) cross section. This modification would more 

closely reflect the symmetry of human lungs and might improve the decoupling of the B 1  

coil from a Bo magnet by increasing the distance between the two. While such an extension 

is technically feasible, the resulting equations are less likely to be as intuitively instructive 

as those obtained for cylindrical coils. 

Apart from low field MRI, another example of a situation where actively-shielded B 1 

coils are proving useful is for a new experiment to search for the electric dipole moment 

of the neutron with unprecidented sensitivity 1251. This experiment, which will involve a 

complex simultaneous manipulation of neutron and 3 ~ e  spins, requires that an extremely 

homogeneous sine-phi coil be operated in a cryogenic environment. The combined require- 

ments of high field homogeneity and low power dissipation (i.e. eddy current heating) make 

this experiment an ideal candidate for an actively-shielded B1 coil. 
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I; &a) 
0( ) ask* 0 Evaluation of I ,  ,, 

We wish to evaluate 

1; (ka) lim - 
k-10 1; (kb) ' 

From the recurrence formulas for 1; ( e.g. [23] ) 

I; ( z )  = 1- 1 ( 2 )  

Thus we are interested in 

I; (W 1- 1 (ka) lim - = lim ---- 
k-10 I; (kb) k-10 I- I (kb) ' 
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Writing Im(z) as an infinite series ( e.g. [23])  

leads to 

- - (ka/2)-'  (ka/2)' + ( k a / q 3  

J T O )  
+ 

r ( i )  2172) (A.8) I=O 

for m = - 1 and z  = ka. Substitution of Eq. A.8 into Eq. A.6 and keeping in mind that 

-+ 0 gives m 
( W 2 ) '  + ( k ~ / 2 ) ~  

I#a) - r(l) 2172) ..* 
lim - - lim 
k + ~  ~ ; ( k b )  k+O (kb12)' + (kb12)3 

1 7 1 )  2 1 - ( 2 ) - . .  

and thus 

Ih(ka) - a 
lim - - - 
k - + o  Zh (kb) b  ' 

(A. 10) 
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Evaluation of C(ka)  as k -+ 0, for m # 0 44 (kb) 

We wish to evaluate 

for Iml > 0. Writing 

1; Pa)  lim - 
k-0 I:, (kb) 

(x) as an infinite series (see for e.g. 

and differentiating with respect to the argument x yields 

Substitution of Eq. B.3 into B. 1 gives 

and, finally 
1; ( k 4  lim ----- - 

k-10  I:, (kb) 

Note, that this result is valid only for m # 0. The corresponding result form = 0 is presented 

in Appendix A. 
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Perfectly -shielded wire 

Listed below is the Fortran program used to calculate ~g/8~1 for a perfectly-shielded wire. 

The shielding current distribution is constrained to a cylindrical surface of radius b that is 

parallel to but offset from the wire by a distance a < b. Once the variables a and b are 

defined, the program calculates the dimensionless ratio I B ; ~ ~  (x, y) 1 /lgo(x, Y) I where Bo (x, y) 

is the magnetic field at point (x,y) due to the wire alone and B;~, (x, y) is the sum of the field 

due to the wire and the shield. The results are stored in an array of size dimxdim (in this 

case 101 x 101). The central entry in the array (in this case 51,51) is associated with the 

coordinate (x = 0, y = 0). The program saves the array of (Byot (x, y) ( /(Bo(x,y)l values in 

the file "fort.1" and the shielding current distribution f (<pi) in the file "fort.2". 

real+B Currnt, Eield(1001.1001.21, AbsH IlOOl, 10011 

real.8 a,b,alfa,c,d,ph~,r,cosa,sina,dR,Cur(lOO~ 

integer dim 

c Define parameters 

dim-101 

a-30. 
b-40. 

nil00 

Currnt-0.0 

C 

do i-1,1001 

do j-1,1001 

Fieldli.], 11-0. 

Field(i, j.21-0. 

AbsHli, jl-0. 

c vrite(r,r)Eieldli, j,l),FieldIi. j.1). AbsHli, jl 

enddo 

enddo 

c Calculating the Eleld f r o m  the shielding current Start 

do k-l,n 

phick. ( (2.3.141592651 /nl 

dR-(b.2..3.14159265)/n 

Currnt=l./l2.r3.14159265*bl 

do 1-1.100 
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Currnt-Currnt*l1./(3.14159265)l-lla+r1)/~b~~ 

+ (l+l)l )+cosll+ph~) 

enddo 

Cur lk) -Currnt 

urite(2, + )  Currnt 

do i=l,dim 

do j-1, din 
dm(( (dim-1)/2.)-i) -~bd-o/2.)-i)-(b+cos(phi-((~+3.1415~0~1phi-~~2~3.141592651 . /(Z.nl ) I )  
c=( ( (dim-1) /2.)- j)-(b.sin(phi-( (2*3.l4159265) 

/ 12.n))) 
r-sqrt ((c*.2) + ld**ZI ) 

cosa-c/r 

sina-d/r 

Write(.,.)d,c, ' I-', r,' cosa-',cosa,sina 

Fieldli, j, 1)-Fieldli, j, 1) + 

I ( (Currnt*dR)/r) .cosa) 
Fieldli, j,2)-FieldliFieldli.j.2)3Fieldor j,Z)+ 

I ((Currnt.dR)/r)*sina) 
enddo 

enddo 
write(.,*) 'phi-',phi 

C r i-,,i, r j d ,  j, 

enddo 
c Calculating the Field from the shielding current Finished 

c Cslculatrng the Field from the wire on central cylinder 

Current-1. 

do i=l,dim 

do j=l,dim 

d=(( (dim-1)/2.) -i)-a 

c=(((dim-1)/2.)-11 

r-sqrt I (c..Z)+Id-.2) I 
cosa-c/r 

sina-d/r 

c Write(*, .)d,c,' r-'.r,' cosa-',cosa, sina 

Field(i, j, ll=Field(i, j,l)+llCurrent/r)+co~a) 

Eield(i, >.21-Field(i, j,Z)+ I(Current/r).sina) 
c write(., .) 'phi-',phi 

c ' i=',irr I- ' ,  j, 

enddo 

enddo 

c Calculating the Field from the wire on central cylinder 

c Finished. 

c Calculating Absolute value of the Field. Start 

do i-1,dim 

do j-1,dim 

AbsH(i, j)-sqrt(lField(i, j,1)..2) 

+ (Fieldti, j,2)*.2)) 

lf(AbsH1i. j).gt.O.ll AbsHli, j)-0.1 

c if IabsIFieldli, j.1)) .gt.0.25) Fieldli, j,l)=0.25 

c if (abs(F~eld(i, j.2)) .gt.0.25) Field(i, j.2)-0.25 

enddo 

enddo 

c Calculating Absolute value of the Field. Finished 

c Printout results for Field. Start 

do i-1,dirn 

writell, 555) IAbsH li, j), j-1,dir.) 

c writel3.555) lField(i, j.2). j=l,dim) 
555 FORMAT~10000~lx.FZ0.15)~ 

enddo 

write(2.555) ~Curlil,i=l,lOO) 

c printout results for Field. F~nlshed 

stop 

end 
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Discrete sine-phi B1 coil 

- 4 

Listed below is the Fortran program used to calculate \BIBo\ for a discrete (20-wire) sine- 

phi B1 coil. Once the variable a (the radius of the cylinder on which 20 wires are placed) is 

defined, the program calculates the dimensionless ratio IB& ( x ,  y ) l / l $ o l  and stores the result 

in an array of size dimxdim (in this case 101 x 101). The central entry in the array (in this 

case 51,51) is associated with the coordinate (x = 0, y = 0). The program saves the array 

of IB;, (x ,  y )  ( / ( ~ o ( x , y )  I values in the file "fort. 1 ". 
real.8 Current, Field(l001.1001,Z). AbsH(1001.1001) 

real.8 a,b,alEa,c,d.phi,r,coaa,sina,dR, Io 

integer dim 

Define parameters 

10-1. 

dim=l01 

a-30. 

b-40. 

n-500 

Current-0.0 

do 1=1,1001 

do j=1,1001 

Fieldli, j,l)-0. 

Eieldli, j,2)=0. 

AbsHli, j)-0. 

c write(-,-IEieldIi, j,l) ,Fieldli, j , l ) ,  AbsHli, jl 

enddo 

enddo 

c First quadrant Started 

d=(((dim-1)/2.)-i)-~aa~o~~~(6.28~25.84)/360.111 

c=(((dim-1)/2.)-1)-la*sinU i6.28.25.84ll~6O.Il) 

r-sqrc ( lc+-2l+ld..2) 1 
cosa=c/r 

srna-d/r 
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Fleld(i, j, 11 =Field li, j,ll+ ((Io/r) -COsal 

Field(i, j, 2)-Field(i, j.Z)+((Io/r) .sinal 

d = l (  ~ d i ~ - ~ l / 2 . ~ - i ) - ~ a ~ c o s ~ ( ~ 6 . 2 8 ~ 4 5 . 5 7 ~ 1 3 6 0 . ~ ~ ~  
5-11 (d~m.-1)/2.)-])-1a~5in(116.28~45.571/360.1)1 
r=sqrtl(c..Z)+ld-~2)) 

cosa-c/r 

sina=d/r 

Writel., .)d.c,' ==',I,' cosa-',cosa,sina 

sina-d/r 

Write (., .ld,c,' r-',I,' cosa-', cosa,sina 

Field(i, j, l)=Field(i,], lI+l(Io/r).casa) 

Field(i, j,2l=Fieldli, j, 2)+(11o/r) .sins) 

d-(l(dim-1)/2.)-il-~a~cosl1(6.2B.72.54l/36O.l~l 

c - ( ~ l d i m - 1 ) / 2 . l - j ) - ~ a ~ s ~ n ~ ~ ~ 6 . 2 8 ~ 7 2 . 5 4 1 / 3 6 0 . ~ ~ l  

r=sqrt(lc..2)+(d..2)) 

cosa-c/r 
slna-d/l 

Write ( a ,  .)d,c, ' r=',r, ' coaa-',cosa, sina 

Fieldli, j.1)-Field(i, j,l)*((Io/r)~cosa) 

Field (i, j,Z)=Field(i, j,Z)r((Io/r) rsinal 

d=(((dim-1)/2.)-i)-(a.cosl((6dp(((dis-1)/2.)-i)-o/28~84.26)/36O.~)) 

~=l((dim-1)/2.l-j)-~a~sin(l~6.28~84.26)/360.))) 

r-sqrt llc..2l+ld~~2)) 

cosa-c/r 

sina=d/r 
Wrlrel., .)d,c,' r-',r, ' cosa=',cosa,sina 

c First Quadranr finished 

c Second Quadrant Scarred 

d-(((dim-1)/2.~-i)-la~cosl(~6.28~~180.-25.84))/360.))) 

c-l(~dim-1)/2.)-jl-la~sin(((6cco/2.)-j)-(a.sin(((6.28.(18o.-22B-l18O.-25.84ll/36O.~~~ 

r-sqrt ((c..2)t (d..2)) 

cosa-c/r 

sina-d/r 

c Write (., .)d, c, ' I-', r, ' cosa=' , cosa, sina 

Fieldli, j.1)-Fieldli, j, l)+ ((Io/r) .cosa) 

Field(r, j.2)-Fieldli, j,2)+ I (Io/rl .sins) 
d-I(~dim-1)/2.)-i)-laacos((~6.28~ (l80.-45.57))/360.)1) 

c-11(dim-11/2.)-j1-1a~sin~1(6.28~1180.-45.57~~/360.1~~ 

r=sqrt 1 (c*.21 t (d..2)) 
cosa-c/r 

slna-d/r 

c Write I., .)d,c,' ==',I, ' COS~-',CO~~, sin3 
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sina-d/r 
c Write I+, .Id,=, ' r=',rr8 ~ 0 5 . 3 - '  ,cosa, szna 

Fieldli, j,ll=Fieldli, j,l)t( lIo/r).cosa) 
Fieldci, j,2I=Fieldli, j,21+( fIo/rI -51na) 

d - ( ( l d i m - 1 ) / 2 . ) - i l - ~ a ~ ~ 0 s l ~ l 6 . 2 8 ~  [l8O.-72.~4l]/~6O.ll) 

c-( I ldim-1l/2.)-]l-(a*sin(( 16.28. 1180.-72.54))/360. ) H  
r-sqrt I lc.-2l+ Id.-21 I 
cosa=c/r 

sina-d/r 

c Write 1.. -1d.c.' r=',r,' cosa=',cosa, sina 

Fieldli, ;, ll-Fieldli, j,ll+ I ~Io/r)~cosa] 
Fleldli, j,21=FieldliFleld(i,j.2)-Field(i.j.2)torsina) jj2l+iIIolr)rsinal 

d=(((d~m-l1/2.)-il-(a~cos(( (6.28-(180.-84.26))/360.)) I 
c-(~(din-11/2.)-jl-(a~sinl~l6628~~l8O.-84.26~~/36O.~l~ 

r-sqrt (lc.*2l+(d*.2)) 
cosa=c/r 

sina-d/r 

C Write(*,*)d,c,' r-',r,' cosa=',cosa,sina 

Fieldli, j, 11-F~eld(i, j,ll+l lIo/r) *cosal 
Fieldli, j,2)-Field(ifield(i.j,2)-field(i.j.2)10.sina) jj2]+(IIo/~).sina) 

c Second Quadrant finished 

c Third Quadrant Started 

d=(( (dim-1)12.)-i)-(a~c0s(~(6.28~(180.+25.84)]/360.11~ 

c-~~~dim-11/2.1-j)-(a~sin(1(6.28*l180.+25.84~~/360.~1~ 

r=sqrt(lc**2)+1d.*2)) 

cosa-c/r 

sina=d/r 

write I.. *)d,c,' r-',I, ' cosa=',cosa,sina 
Fieldli, j, 11-Fieldli, j, l)+ll-Io/r) .cosa) 

Fieldli, ;,Z)=Fleldli, j.21t ll-Io/~l~sina~ 

d-~l~d~m-1)/2.l-il-~ad-o/2.)-i)-(arcos(((6.28.(180.11~0slll6.28~l18O.+45.57~~/36O.lll 

c=((~dim-1)/2.)-))-la~~in~~I6.28~l180.+45.57) 1 /36O.) 1) 
r-sqrtl(c..2ltld.*2)1 

cosa=c/r 

sina-d/r 
Wrltel*, .ld,c,' r=',r,' cosa-',cosa,sina 

Fieldli. j, l)=Fieldli, j,l)t I(-Io/r].cosa) 

Fieldli, j,21-Field(iFieldli.j.2)FField(i.j.2)to.sina) jj21t [I-Io/r)*sina) 
d=1(~dim-11/2.~-~1-~aa~0s[1l6.288~180.+60.]1/360.~11 

c=l11dim-1)/2.1-j1-~a~sin11i6.28*1180.+60.1)/360.))1 

r-sqrt I lc..2lt (d..2l) 

cosa-c/r 
sina=d/r 

Write I-, *ld,c, ' r- '  .I, ' cosr-' , cosa, sina 
Fieldlr. j. 1)-Field(i, ),1lt I 1-Io/rl *cosa) 
Field~i,),2l=FieldliField(i.).2)=Field(i.j.2)to.sina) j,21+((-Io/r)*sina) 

d-l1ld~m-1)/2.1-i1-1a*~os1~l6.28~l180.+72.54~1/360.~11 

~=llldim-ll/2.l-~l-la~sinlll6.28~l180.+72.54)l/360.l)) 

r-sqrt I (c..2l+Id*.2)1 
cosa-c/r 

sina=d/r 

Write 1.. -ld,c,' r=', I,' cosa=', cosa, sina 

Fieldli, j,l)=Fieldli, j,l)+ 11-Io/rl *cosal 

Fieldii, j.2)-Field(l,], 2)+ I(-Io/r)-sina) 

d=ll ldin-11/2.l-i1-(arcos( ((6.28. l180.+84.26)1/360.1) I 
c-il(dlm-11/2.1-;1-~a~s1n1~16.28*~180.+84.2611/360.11 I 
r=sqrt lic.*2)t (de.2)) 

cosa=c/r 

sina=d/r 

Write ( a ,  .Id, c, ' r=', r, ' cosa=' , cosa, sina 
Fieldfl, j, ll=F~eldfi.j,l)t I(-Io/rl.cosal 
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Field(i. j,ZI=Field(i, j, 21+( (-Io/rI*s~na) 

c Third QuadranL Finished 

c Fourth Quadrant Started 

sina=d/r 

Write(., -1 d, c, ' r~', r ,  ' cosa-' , cosa, sina 
Field(i, j, ll=Field(i,j,l)+( (-Iolr) .cosa) 

Fieldli, j,2)=Fleld(i, j,21+ ( I-Io/r) *sins) 

d ~ ~ ~ l d i m - 1 ~ / 2 . 1 - i l - l a a ~ 0 ~ l ~ l 6 . 2 8 ~ l 3 6 0 . - 4 5 . 5 7 ~  )/36O.))l 

c-((ldim-1)/2.)-jl-(a.sin(( (6.28*l36O.-15.57Il/36O.))) 

r-sqrt (lc..2I+(d.*2) I 
cosa=c/r 

sina=d/r 

Writel*, .)d,c,' r=',r,' cosa-',cosa,sina 
Fieldii, j, 11-Fieldli, j, l)+(l-Iolr) .cosa) 

Fieldli. j,2l=Field(i,],2)+( (-Io/r)+sina) 
d-~((dim-1)/2.)-i]-(aa~0s(~~6.2E~l360.-60.~~1360.1~~ 

c-l~~dim-11/2.1-]!-(a~sinl~l6.28~l360.-60.1~/360.~1~ 

r-sqrtl(c*.21+(d..2)1 

cola-c/r 

sina=d/r 

cosa-clr 

sina-d/r 

Write(+, *)d.c,' r=',r,' cosa-',cosa,sina 

Field(i. j.11-Field(i, j, l)+l(-Ia/r) *cosa) 

Fieldli, j,2)=Field(i, 3,21* ((-1oIrI -3ina) 
d-(((dim-1) /2.1-iI-(a*cos(l(6.28* (360.-81.26) )/36O.) ) )  

c-(l~dlm~-1)12.)-])-~a-sinl~16.28*l360.-84.26]1/360.))1 

rssqrt I (c**2l+(d**2)) 
cosa-clr 
sina-d/r 

c Fourth Quadranc Finished 

enddo 

endda 

c Calculaclng Absolute Value of the Field 
do i-1,dim 

do j-1, dim 

AbsH(i, jl-sqrt((Field(i, j,l)r.Z)t(field(i, j,21.+2)1 

if (AbsH(i, j) .gt.l.) AbsH(1, j)-1.0 

enddo 

enddo 

c Prlntout resulcs for Fleld Start 

do r=l,dlm 

vrlte (1.5551 lAbsH(1, 31, 7x1  ,d1m) 

555 FOWAT(I0000(1x.F20.151 ) 

enddo 
c Prlntout results for Fleld. F~nrshed 

SLOP 

end 



Appendix E 

Finely-discretized current distribution 

+ -+ 
Listed below is the Fortran program used to calculate JB/Bo/ for a discrete (20 wire) sine- 

phi B1 coil shielded by a finely-discretized current ftot(qi)dli, where 0 < i < 5000 (see 

Eq. 3.1 1). Once the variables a and b (the radii of inner and outer cylinders on which the 

currents flow) are defined, the program calculates the dimensionless ratio I B ; ~ ~  (x,  y )  1 /]go 1 
and stores the results in an array of size dimxdim (in this case 121 x 121). The central 

entry in the array (in this case 61,61) is associated with the coordinate (x = 0,  y = 0). The 

program saves the array of IB;,, (x, y )  ( / I I ? ~ ~ J  values in the file "fort. 1 ". 
real.8 Current, F~eld(1001.1001.21, AbsHl1001, 10011 

real78 a.b.alfa, c,d,phi,r,cosa.sina,dR, 1o.Currnt.Cu 

rnteger drm 

c Define parameters 

10-1. 

dime121 

a-40. 

c Field for 20 ulres. Start 

do l=l,dlm 

do 3'1,dlm 
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First quadrant Started 

d ~ l l l d i m - 1 ) / 2 . ~ - i ) - l a ~ c o s ~ ~  l(2.3.14159265) 
.25.841/360.))) 

c=(lldrm-1l/2.)-j)-~a~sin(((~2-3.14159265) . *25.84)/360.)1) 
r-sqrt ( (c**2)+ (d*.2) ) 

cosa=c/r 

sina-d/r 

Fieldli, j. 1)-Field(i, j,l)+((Io/r)~cosa) 

Fieldli, j.2)-Field(i, j,2)+ ( [Iolr) *sins) 

Fieldli, j,l)=Fieldli, j,l)+l lIo/r) *cosa) 

Fieldli, 1.2)-Field(i, j,2)+111o/r1 rsina) 

d-ll(dim-1~/2.)-i)-laa~0~l lll2~3.14159265) 

r60.)/360.))) 

c=(lldim-1l/2.~-j)-(a~.in~l 112r3.141592651 . *60.1/360.))) 
I-sqrt (Ic**2)+(d*.Z)) 

caea-c/r 

sina-d/r 

Writel*, - )  d,c. ' r=', r,' cosa=', casa, sina 

I - ' ,  cosa, slna 

Fleldli, j,l)=F~eldli, j, 1) +((Io/r)+casa) 

Fieldli, j.2)-Fieldli, j,2) + (  (Io/r).sina) 

d=l( (dim-1)/2.)-i)-(a-cosl 1 ( 12-3.141592651 - -84.26)/360.))) 

c-1 ((dim-1) 12.)-j)-(a-sin I l l  IZ-3.14l59265) 
* .84.26)/360.))) 

r-sqrt (lc*-2)+(d--2)) 

caea=c/r 

eina=d/r 

Write I.,-)d,c, ' r-', r, ' cosa-' ,cosa,sina 

Fieldli. j.l)=Field(i, j,l)+l(Io/r)*cosa) 

Fieldli, j,Z~-Field~i,],2)+1~Io/r)~sina) 

c First Quadrant finished 

c Second Quadrant Started 
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cosa=c/r 

slna=dlr 

Wr~te(., .)d,c.' r=', r,' cosa-', cosa.sina 

Field(i, j, 1)-Field(i, j,l)t((Io/r)rcosa) 

Fieldli, j,2)-Fieldli, j,2)+llIo/rl~slna) 

d=l((dim-1)/2.]-i)-(a.coslll 12.3.14159265) . .(180.-45.57))/360.))) 

c-(l(dim-1)/2.)-j)-la~sinI~ll2~3.141592651 

+ . 1180.-45.57)1/360.))) 
r-sqrt (lc..2)+ ld..2)) 

cosa=c/r 

s ~ n a = d / r  

Write 1.. .)d,c,' T-', r , '  cosa=', coSa,sina 

d-(((dim-1)/2.)-i)-(a.cosl~ll2.3.141592651 . -1180.-60.~1/360.~11 
c-(1 (dim-l1/2.)-j)-(a+sin(U IZ.3.l41592651 - .(180.-60.11/360.))) 

r-sqrt l lc..2) t ld*.2) ) 

cosi-c/r 

sina=d/r 

Wrlte (., .)d,c, ' r=',r, ' cosa-',cosa,sina 

d=llIdim-1)/2.1-i)-(a~cosl~~~2-3.14:592651 . -1180.-72.54))/360.))1 
c-(((dim-1)/2.)-j)-(aasin(~ll2.3.14159265) . +l180.-72.54)1/360.))) 
r-sqrt ( lc..2)+ (d..2)) 

casa-c/r 

sina-d/r 

Writel., *ld,c,' r=',r,' cosa-',cosa, sina 

Field(i, j, 1)-Field(i, j,l)+(~Iolrl .cosa) 

Fieldli, j,2)=Fieldli, j j 2 ~ + ~ l I o / r 1  .sins) 

d-l((dim-1l/2.)-il-la~cosl(L(2r3.14159265l . . ll8O.-84.26)l/36O.lIl 
c=l~ldi~-l~/2.l-j)-la~sinlll(2~3.l4l59265~ . *l180.-84.2611/360.1)) 
I-sqrt ((c.*2l+(d..2)) 

cosa=c/r 

slna-d/r 

Write 1.. .Id.c,' r-',r, ' cosa-',cosa, slna 

c Second Quadrant finlshed 

t Third Quadrant Started 

dm(( (d~v.-1)/2.)-ll-la.cosl (1 (2.3.14159265) . +(180.~25.84))/360.))) 

C - I  ((dim-1)/2.)-;l-la+s1n( (lIZ-3.14l59265) . r(180.+25.8411/360.))) 

r-sqrtl (c.*Z)+(d--2)) 

casa=c/r 

srna=d/r 

c Wrire 1.. .)d,c,' r-', r,' cosa-',cosa. sina 
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d-((~dim-1)/2.)-i)-~ad-o/2.)-i)-(a+cos((((2.3.1415926~0s~(~~2~3.141592651 . + (180.+45.57)1/360.))) 

c-(i(dim-1)/2.)-jl-(arsin~(~(2~3.14159265) 

+ r (180.+45.57))/360.) 1) 

r-sqrt i (c.*2) +(d**2) I 
cosa-c/r 

sina-d/r 

Write(., .) d,c, ' r-' . r, ' cosa-', cosa.sina 

Fieldli, ,,I)-Fleldii, j , l ~ t ~ ~ t - l . ~ I o ~ / ~ ~ ~ c o s a ~  

Field(i, j,2)=Fieldil, j,2)+(t 1-l..Io)/r).sina) 

d-(((dim-1)/2.I-i)-(a*cos((((~Z-3.141592651 

* r(l80.+72.54))/360.)I) 

c-(1 (dim-1)/2.)-j)-(a-sin( (((2.3.14159265) . . (180.+72.54))/360.))) 
r-sqrt (lc..2)+(d-.2)) 

cosa-c/r 

sina-dlr 

Write(., .)d,c,' r=',r, ' cosa-',cosa, sina 

c Third Quadrant Finished 

c Fourth Quadrant Started 

d - ~ ~ ~ d ~ m - 1 1 / 2 . ) - i ) - ~ a a ~ 0 s l ( ( ( 2 ~ 3 . 1 4 1 5 9 2 6 5 ~  . (360.-25.84))/360.))) 
c=l((din-1)/2.)-j)-Ia.sin((1(2~3.141592651 

+ (360.-25.84))/360.))) 

I-sqrt ((c*-2l+id-.2)) 

cosa=c/r 

sina=d/r 

c Write (., .)d. c. ' I-',=,' cosa-' ,cosa, sina 
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d=(((dim-1)/2.)-i)-(a.cos((((2r3.14159265) 

*(360.-45.57))/360.))) 

c = ( (  (dlm-1)/2.)-j)-(a+sin((((2.3.14159265) 

+ . (360.-45.57))/360.))) 
r-sqrt ((c..2) t (d.*2)) 

cosa-c/r 

sina-d/r 

Write (., *)d,c, ' r = ' , r .  ' cosa-' .cosa,sina 

d=(((dim-l)/2.)-i)-(aacos ( ( 1  (2.3.14159265) 

+ .(360.-72.54))/360.))) 

c- ( ((dlm-1)/2.)-j)-(aasinl ( (  (2.3.14159265) 

(360.-72.54) )/36O.l)) 

r-sqrt( (c..2)+(d.*2) ) 

cosa-c/r 

slna-d/r 

Write(., + )  d, c,' r=', r, ' casa=' , cosa, sina 

c Fourth Quadrant Finlshed 

enddo 

enddo 

c Calculare Field from shield -- 

c 20 Chris's currents 

c Currnt=20..(1./(2..3.14159265+b)) 

Currnt-0.0 
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Cu-Currnt *dR 
write(2.r) Cu . phi 
cu-0.0 

do i-1,dirn 

do j=l,dim 

d-I( ldim-1)/2.)-i)-(b+cos(phi- 

((2+3.14159265)/12.n)))) 

c-(((dim-1)/2.l-j)-lb*sin(phi- 

I (2.3.14159265)/ 12.n)))) 

r-sqrt 1 (c*-2) t (d**2) 1 
cosa=c/r 

sina=d/r 

Write(., .)d, c,' r-', r,' cosa-', cosa, sina 

Fieldli, j.1)-Fieldli, j, 1)t lli1~C~rrnttdR~/r)-cosa~ 

Fieldli, j,2)-Fieldci, jj2Ii (((1-Currnt*dR)/r)*sina) 

enddo 

enddo 
write I-, * I  'phi-'.Phi 

C , i=, ,if, j-',j, 
enddo 

c Flnished Calculating Field fror. shield 

c Calculating Absolute Value of the Field 

do i-1,dim 

do j=l, dim 

AbsH(i, j)=sqrt( lField(~, jj11**2)t (Fleldli, j,2)**2)1 

if lAbsHli,)l .gt.2.1 RbsH(i, j)-2.0 

enddo 

enddo 

c Printout re9ult~ for F~eld. Start 

do l=l,din 

urite(1.555) (AbsHli, j )  ,]=l,dim) 

555 FOWIT~10000~lx,F20.15)) 

enddo 

c Printout results for Field. Finlshed 

stop 

end 



Appendix F 

Coarsely -discretized current 

distribution 

Listed below is the Fortran program used to calculate \i/go\ for a discrete (20 wire) sine-phi 

B1 coil shielded by a coarsely-discretized (16 wire) current distribution. Once the variables 

a and b (the radii of inner and outer cylinders on which the currents flow) are defined, 

the program calculates the dimensionless ratio JB;,~ (x, y )  l / l&~  and stores the results in an 

array of size dimxdim (in this case 121 x 121). The central entry in the array (in this case 

61,61) is associated with the coordinate (x = 0, y = 0). The program saves the array of 

(B;,~(x, y ) ~ / ~ g o ~  values in the file "fort.1" 

real-8 Current, f ield~1001,1001,2). AbsH(1001.1001) 

real-8 a,b,alfa,c,d,phi,r,~~~a,sina,dR, Io,Currnt,Cu 

integer dim 

c Define parameters 

10-1. 

dim-21 

a-5.4 

c 50.+sqrt (4.15.) 

b-6.75 

"-360 

Current-0.0 

Cui-rnt-0 .O 

cu-0.0 

do i-1,1001 

do ]=I, 1001 

Fieldli.).l)=O. 

Field(i.1.2)-0. 

AbsHIl, j)-0. 

c urite(.,*lFieldli, j, 1),Fieldl1, j,l), AbsHIi.]) 

enddo 

enddc 
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c Calculation of the field for 20 wires. Start 

do i=l,dirn 
do j-1, dim 

c First quadrant Started 

d-(((dim-1)/2.)-i)-(a-cos( 1((2*3.14159265) 

*45.57)/360.))) 
c=( ((dim-1)/2.)-j)-(a+sin( (I 12.3.14159265) 

*45.57)/360.)1) 

r=sqrt ((c*-2l+ld**2)) 

casa-c/r 

sina-d/r 

Write(*, *Id, c, ' r- ' ,  r, ' casa-', cosa, sina 
Field(i, j,l)=Eield(i, j,l)+ ((Io/r) *cosa) 

Field(i, j,Z)=Field(i, j,Z)+ ((1011) .slnal 

cosa-c/r 

sina=d/r 

Write(-, *)d.c,' r-', r, ' cosa=', cosa, sina 

Field(i, j.1)-Fleld(1, j,l)+( (Io/r) ecosa) 

Field(i, j.2)-Fieldll,j,2) i((Io/rbsina) 

d=(((dim-1)/2.)-i)-(a.cas(((((2.3.14159265) 

-72.54)/360.))) 

c=(( (dim-1) /2.)-j)-(=*sin([ ((2-3.14159265) 

*72.541/360.))) 

r-sqrt I lc..2)+(d**2)) 
cosa-c/r 

sina-d/r 

Write(*, .)d,c,' r=' ,r, ' cosa-', cosa,sina 

Fieldli, j. 1)-Eield(i, j,l)+( (Io/r) .cosa) 

Field(1, j.2)-Field(i, j,2)+( (Io/rI*s1na) 

d=( ((dim-1) 12.)-i)-(a*cos(( I (223.l4159265) 
*84.26)/360.) ) I  
c=((ldim-1)/2.)-j)-(a.sin((((2.3.14159265) 

*84.26)/360.1 ) )  

r-sqrt ((c*-Z)+(d**Z) 1 
cosa-c/r 

sina=dlr 

Write(*, .)d,c,' r- ' ,  I,' cosa-',cosa, sina 

Field(i, j, 1)-Field(i, j,l)+( (Io/rl .cosa) 

Eield(i, j.2)-Fleld(i, j,2)+( (lo/=) -slna) 

c First Quadrant flnished 

c Second Quadrant Started 
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c-(( (dlm-l)/2.)-])-(a*sin( 1 ((2~-0/2.)-))-(a.sin(1((2r3.11159263.l4l5926~) . e(180.-25.84))/360.)1) 
r=eqrt ( lc..Z) t (d*.2) ) 

cosa=c/r 

sina=d/r 

Write(., .)d,c,' r=', r,' cosa-',cosa,sina 

Field(i. j,l)=Fleld(i, j,l)+ I (Io/r) *cosa) 
Fieldli, j,Z)=Fieldli, j,Z)+ ((Io/r)rsina) 

Field(i, j.1)-Field(i,],l)+l~Io/r).cosa) 

Fieldli, j,2)=Fieldli, j,2)+1 [Io/r).sina) 

d-(((dim-l)/2.)-l)-(a.cosl~ l(Z.3.lW265) . * (180.-60.))/360.))) 

c-(1 I d i m - 1 1 / 2 . ) - j ) - ( a . s i n ~ 2 . 3 . 1 4 1 5 9 2 6 5 )  

*1180.-60.))/360.)11 

I-sqrt ( Ic..21+ (d.-2) ) 

cosa-clr 

aina-d/r 

Write(r,.)d,c, ' r=',r, ' cosa-',cosa,sina 

d-(((din-1)/2.)-i)-(a~cosI~ll2~3.14159265~ . . (100.-72.54))/360.1)) 
= = ( I  (dim-1)/2.)-j)-(a.sin((((2.3.14159265) . r(l80.-72.54))/360.))) 
r=sqrt (lc..2)i(d..ZI) 

cosa-c/r 

sina-dlr 

Write I*, .)d,c,' r-', I, ' cosa-' ,cosa, sina 

d=(((drm-1)/2.)-r)-(a~cos~1~~2~3.14159265~ . .1180.-84.26))/360.))) 
c=~((dirn-l)/2.)-j)-~aas~nI I lI2.3.14159265) 

r . 1180.-84.26))/360.))) 
r-sqrt ((c**21+Id..2)) 

cosa-c/r 

sina-d/r 
Write(*. .)d,c, ' r-',r, ' cosa=', cosa,sina 

c Second Quadrant finished 

c Third Quadrant Starred 
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r-sqrt I lc.*2)+fd.-2)) 
casa=c/r 

slna=d/r 
Write(+,-1d.c. ' r=', r,' cosa=',cosa,sina 

Fieldli,], ll=Eieldii,j,l~tfll-l.*Iol/r~*cosa~ 

Fieldli, j,2)=F~eldli, j,2)t Ill-l.*Iol/rl~sinal 

d-f I (dim-l)/2.)-i)-(a.coQ( I 1  (2*3.14159265) 
-f180.+45.57)1/360.))) 

c=(lldim-1~/2.)-jl-(a+sinlll~2~3.14159265)*f18O.+45.57)~/36O.ll1 

r-sqrt lfc**2l+ld..2H 

cosa-c/r 

sina-d/r 

Writel., *ld,c,' r=',r, ' cosa=',cosa, sina 

Eield(1, j, ll=Fieldli, j,l)+ I( 1-1, *Iol/r) *cosal 

Fieldli, j, 21-Fieldli, ],2)+(f 1-1. -Io)/rl*sinal 

d-f f fdim-11/2.I-~l-(a~cos( I f  l2*3.14159265) . f180.+60.11/360.1)) 
c-I1 (din-11 /2.1-j)-(a.sin1 I 1  I2.3.1415926Sl 
t 1180.+60.)1/360.) )I 

r-sqrt I lc*w2l+(d..2)) 
cosa-c/r 

sina=d/r 

Write It, r)d,cIr r=', r, ' cosa-',cos.a,sina 

d-llfdim-1)/2.l-il-la~co5f 1112~3.14159265) . (180.+72.5411/360.) ) )  

c=l((dim,-11/2.)-jl-(aasinl 1112+3.14159265) 

~1180.+12.54)1/360.)~) 

r=sqrt I lc*.2l+id..2) 
cosa-c/r 

sina-d/r 

Write I., .ld,c,' r-', 1,' cosa-',cosa, sina 

Fieldli, ,,I)-Fieldli, j, ll+[f(-l.~Iol/r)~cosal 

Fieldfi,j,2l-Eield~l,j,2l +(I I-l.*Io)/rl~sinal 

d-(I ldrm-1)/2.l-i)-(a*co5f (lI2.3.14159265l 

* 1180.+84.26)1/360.))) 

c-(I (dim-1)/2.)-jl-(a.sln1 (ll2-3.l4159265) 

1180.+84.2611/360.)ll 

r-sqrt llc-~21+fd*.2)1 

cosa-c/r 

sina-d/r 

Write(., .)d,c,' r-', r,' cosa-',cosa,sina 

Fieldli, j,ll=Fieldli,], 1l+f 11-l.*Io)/rl~cosal 

Field[i,j,2l=Fieldfi, j,21+1 (I-l.~Iol/r].sina] 

c Third Quadrant Finished 

c Fourth Quadrant Started 



APPENDIX E COARSELY -DISCRETIZED CURRENT DlSTRlB UTION 

d=l((dim-lI/2.)-~)-(a.cos((((2.3.14159265) . .(360.-45.57))/360.))) 
c=((ldim-1)/2.)-j)-(a*5In(((l2*3.14159265) . .l360.-45.5711/360.))) 
r-sqrt ((c*.2)+(d**2)) 

cosa=c/r 

sina=d/r 

Wrlte I*, *I d,c, ' r-',r,' cosa-', c0sa.sin.a 

d=(((dim-1)/2.1-il-(a.cas(((l2.3.14159265) 

+ .(360.-60.))/360.))) 

c-((ldim-1) 12.)-1)-(a.slnl (I (2.3.l4159265) 

*l360.-60.1)/360.))) 

r-sqrt ((c..2)rld+*2)) 

cosa-c/r 

slna-d/r 

Write(., *)d,c.' r='. r,' cosa-', cosa,sina 

d-(((dim-1)/2.)-i)-(a.casl (((2-3.141592651 

+ + (360.-72.541)/360.1)) 

c=(((dim-l]/2.)-~l-~a-~in((( 12-3.14159265) 

*(360.-72.54)1/360.))) 

r-sqrt I (c**2)+(d..2)) 
cosa-c/r 

slna-d/r 

Write (., * )  d. c, ' r=' , r, ' cosa-' , COSa, sina 

d-(((dlm-1)/2.)-il-(a.cos((((2*3.14159265] . (360.-84.261)/360.)1) 

C-I( (dim-1) /2.)-j)-(a*sln((( (2+3.14159265) . (360.-84.26))/360.))) 

T-sqrt I (~..2)+(d.f2) 1 
casa=c/r 

sina-d/r 

Write (a, -ld,c, ' r=',r,' cosa=',cosa,slna 

c Fourth Quadrant Finlshed 

c Calculate Fleld frot shield --- 16 wires 

c Shield Flrst quadrant Started 
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d=(lldim-1)/2.1-i)-~b~cos((~~2~3314159265~ . *51.1/360.) 1 1  
c=((ldin-l)/2.)-j)-(b.sin11((2-3.141592651 - *51.)/360.))) 

r-sqrt 1 (c.r2l+ld+-2)) 

cosa-c/r 

sina-d/r 

Writel*, .)d,c,' r=',r.' cosa-',cosa.sina 

Fieldli, j, 1)-Field(i, ,,I)+ ~ l - l . ~ I o / r ~ ~ c o s a ~  

Fieldli, j,2l=Eield(i, j,2)+((-1. .Io/r).sina) 

c Shield First Quadrant fin~shed 

c Shield Second Quadrant Started 

d=l((dim-1)/2.~-i~-(b-cas((l(2.3.14159265) - . ( 1 8 0 . - 5 1 . ~ ~ / 3 6 0 . ~ ) ~  

c=( ~ ~ d ~ m - 1 ~ / 2 . ~ - j l - ~ b r s i n l ( 1 i 2 - 3 . 1 4 1 5 9 2 6 5 ~  . -1180.-51.)1/360.11) 
r=sqrt ((c..2I+ld+*2)) 

cosa=c/r 

slna=d/r 

Write I + ,  .Id, c. ' r-' , r. ' cosa-' , cosa, slna 

Field(i, j,l)=Field(l, 1, I)+((-1. ~ I o / r ) ~ c o s a l  

Fieldli, j.Z)=Field(i, j,2)+ ((-l.*Io/r) Wsinal 
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d - ( ~ l d i m - 1 1 / 2 . 1 - i l - ~ b * ~ o ~ l ~ ~ ~ 2 * 3 ~ 1 4 1 5 9 2 6 5 1  

~~180.-68.I1/36O.l~1 
c=(( Idim-ll 12.)-jl-(b-sin((((2*3.14159265) 

* (180.-68.ll/36O.lll 

r-sqrt ((c*.2l+ (d*-21 1 
cosa-c/r 

sina=d/r 

Write I., .ld,c,' r-',I,' cosa-' ,cosa,sina 

d=(((dim-1)/2.1-1)-(b.cos((l (2.3.14159265) - ~l180.-83.111360.1l1 

c-(((dim-1)/2.l-jl-(b*s1n~~l~2~3.141592651 . .(180.-83.~l/360.lll 
r-sqrt (lc..2l+(d*.2) I 
cosa-c/r 

sina=d/r 
Write (., .Id.=, ' r-' ,r,' cosa-',cosa,sina 

c Shield Second Quadrant finished 

c Shield Third Quadrant Started 

d-~(~dim-1)/2.l-i)-(h~cosI~~~2~3.14159265l 

+ *(180.+28.l1/360.lll 

c-(((dirn-1l/2.)-j)-(b.sin((((2.3.141592651 - *(180.+28.l1/360.) I) 

r-sqrtl(c..2l+(d..2ll 

cosa-c/r 

slna-d/r 

Write 1.. .)d,c, ' r-', r,' cosa-' ,cosa, sina 

Fieldli, j, 1)-Field(i, j, ll+(((Io)/r) .cosal 

Fleld(i, j.21-Field(i, jj21t ((IIo)/rl.sinal 

d=((~dim-11/2.l-iI-(b.cos(l((2.3.14159265) . .(180.+51.ll/36O.)ll 
c=(((dim-ll/2.)-jI-(b.sinl l((2.3.14159265) 

.(l80.+51.ll/360.lIl 

r-sqrc((c*.2l+(d..2)) 

cosa-c/r 

eina-d/r 

Write(-, *)d,c,' r-',r, ' cosa=',cosa. sina 

d=l (ldim-1l/2.l-il-(b.cos( I lI2.3.l415926Sl . .~180.+68.Il/360.~11 
~=(((dim-ll/2.I-jl-(b.sin( l(12.3.14159265) . ~~180.+68.lI/360.)l1 
r-sqrt((c*~2ltld~-2ll 

cosa=c/r 

sina-dlr 

Write(., -1d.c.' r- ' ,  r,' cosa=', cosa, sina 

Fieldli, j,ll=Fieldli, j, ll+ I llIol/rl.cosal 
Field(i, j,2)-Field(1~ jj21+ I (lIol/rl.~ina) 
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c Shleld Third Quadrant Finished 

c Shield Fourth Quadrant Started 

Fieldli, j,l)=Field(i, j,l)+l f (10) /T) .cosa) 
Fieldll. j.Z)=Fieldfi, j,Z] +If fIol/r] e s l n a )  

d=(((din-l)/2.)-i)-(b.cos((((2.3.14159265) . *f360.-51.))/360.)11 
c=(((dirn-1)/2.)-j)-(b.sin(W2.3.141592651 . .(360.-51.1)/360.))) 
r=sqrt(fc**2)+fd..2)) 

cosa=c/r 

sina=d/r 

Write (., .)d,c,' ==',I, ' cosa-' ,cosa,sina 

Fieldfi, j, ll=Field(i, j,l)+ ~ 1 o ) l r )  .cosal 

Fieldli, j,2l=~ieldli,j,2l+l~lIol/rl~slna~ 

d-(((dia-1)/2.)-i)-(b~cos(1((2~3.141592651 

*1360.-68.11/360.1)1 

c-1 ((dim-1)/2.)-])-(b.sinf I f  (2*3.lql5926SI . t(360.-68.))/360.))) 
r=sqrt ((c*t21+fd**2)) 

cosa-c/r 

slna-d/r 

Write I * ,  .Id, c.' r- '  ,I,' cosa-' , cosa, sina 

d-(( (dim-1)/2.)-i)-(b.cos( I 1  (2.3.l4lS9265] 
~(360.-83.11/360.1)) 

c-(( (d~m-1)/2.)-jl-Ib.sin(f1(2.3.141592651 

.(360.-83.1)/360.111 
r-sqrt I (c.-21 +Id..21 I 
cosa-c/r 

sina=d/r 

Write(+, +ld,c,' I=' . r ,  ' cosa-', cosa, sina 

c Shield Fourth Quadrant Finlshed 

c Finlshed Calculate Field from shield finished 16 vlres 
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enddo 

enddo 

c  C a l c u l a t i n g  A b s o l u t e  V a l u e  o f  t h e  F i e l d  

d o  i -1 ,d im 

d o  j = i , d i m  

AbsH (i, j l - s q r t  I ( F i e i d ( i ,  j, 1 )  - * Z I + ( F i e l d ( i ,  j , 2 1  - - 2 ) )  

i f ( A b s H ( 1 .  j l . g t . 1 . 2 )  A b s H ( i , j l - 1 . 2  
enddo 

e n d d o  

c FINISHED C a l c u l a t ~ n g  A b s o l u t e  V a l u e  o f  t h e  F i e l d  

c  P r i n t o u t  r e s u l t s  f o r  F i e l d .  S t a r t  

d o  i-1,dirn 

w r i c e l l . 5 5 5 )  l A b s H l i , ~ l ,  j= l ,dxm) 

555 FORNATll0000~lx,F20.15l~ 

e n d d o  

c  P r i n t o u t  r e s u l t s  f o r  F i e l d .  F i n i s h e d  

s t o p  

e n d  
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