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Abstract

The work of Dixmier in 1977 and Moeglin in 1980 show us that for a prime ideal P in the

universal enveloping algebra of a complex finite-dimensional Lie algebra the properties of

being primitive, rational and locally closed in the Zariski topology are all equivalent. This

equivalence is referred to as the Dixmier-Moeglin equivalence. In this thesis we will study

skew Laurent polynomial rings of the form C[x1, . . . , xd][z, z
−1; σ] where σ is a C-algebra

automorphism of C[x1, . . . , xd]. In the case that σ restricts to a linear automorphism of the

vector space C + Cx1 + · · · + Cxd, we show that the Dixmier-Moeglin equivalence holds

for the prime ideal (0).
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Chapter 1

Introduction

The motivation for this thesis has its origins in the study of algebraic geometry. Let k be

an algebraically closed field, let X ⊆ An be an affine algebraic variety, let

J = {f ∈ k[x1, . . . , xn] such that f vanishes on X}

and let O(X) = k[x1, . . . , xn]/J be the coordinate ring of X . Then there is a bijective

correspondence between the points of X and the maximal ideals in O(X) and a bijective

correspondence between the irreducible subvarieties of X and the prime ideals of O(X).

Thus we obtain information about X from the maximal and prime ideals of the coordinate

ring. This correspondence can be extended to some classes of noncommutative algebras,

where the role of affine varieties is played by some category and one obtains information

by studying the set of all prime ideals of the algebra A, which we denote by Spec(A).

The correct noncommutative analogue of the set of maximal ideals is the set of (left)

primitive ideals. An ideal P of a ring R is said to be primitive if it is the annihilator of

a simple (left) R-module M . In Proposition 2.1.6 we will show that in a ring R every

primitive ideal is prime. Then in Remark 2.1.9 we will show that in a commutative ring

an ideal is primitive if and only if it is maximal. However, the original motivation for the

study of primitive ideals comes from representation theory.

Let G be a real Lie group and let L be the complex Lie algebra of G. We will give a

precise definition of a Lie algebra in Section 2.4, but for now we can think of a complex Lie

algebra as a complex vector space L with a binary operation [·, ·] : L×L → L called a Lie

bracket that is not necessarily associative. Finding the finite-dimensional representations

1



CHAPTER 1. INTRODUCTION 2

of G is almost entirely equivalent to finding the finite-dimensional representations of L.

The problem of finding the representations of L can be transformed into a problem of

associative algebra by passage to the universal enveloping algebra U(L) of L (cf. Dixmier

[7]). Since it is often difficult to find all irreducible representations of an algebra, as an

intermediate step, Dixmier proposed that one should determine the primitive ideals and

then for each primitive ideal P , try to find the irreducible modules whose annihilator is P .

We will see that the definition of a primitive ideal can be cumbersome and it is often

difficult to determine the primitive spectrum, the set of all primitive ideals, from the defini-

tion alone. Dixmier proposed two different approaches, one algebraic and one topological,

to characterize the primitive ideals in universal enveloping algebras. Let k be a field and let

A be a k-algebra. The algebraic approach involves determining which prime ideals of A are

rational. Again, we will provide a more precise definition in Section 2.4, but for now we

can interpret the definition of a rational prime as a prime ideal P ∈ A such that the center

of A/P is algebraic over the base field k. The topological approach involves determining

which prime ideals are locally closed in Spec(A), that is, where Spec(A) is equipped with

the Zariski topology and a prime P is said to be locally closed if it is the intersection of an

open and closed set in Spec(A).

Dixmier [8] and Moeglin [26], in 1977 and 1980 respectively, used the notions of ra-

tional and locally closed to prove that in the universal enveloping algebra of a complex

finite-dimensional Lie algebra the conditions for which P is primitive, rational and locally

closed are equivalent. This equivalence is referred to as the Dixmier-Moeglin equivalence.

In 1980, Irving and Small [17] extended this result to finite-dimensional Lie algebras over

arbitrary fields of characteristic zero. These results have motivated others to try to find a

Dixmier-Moeglin equivalence for other rings. In 2000, Goodearl and Letzter [12] showed

that the Dixmier-Moeglin equivalence is satisfied in certain quantized coordinate rings. We

will give an example of a quantized coordinate ring in Example 2.2.3. In 2006, Goodearl

[11] showed that certain Poisson algebras satisfy the Dixmier-Moeglin equivalence as well.

Our work lies in the study of skew Laurent polynomial rings. Let A be a k-algebra

and let σ be a k-algebra automorphism of A. Then we can form the skew Laurent poly-

nomial ring A[z, z−1; σ] by defining addition in the usual way and defining multiplication

by za = σ(a)z for a ∈ A. We will study skew Laurent polynomial rings in greater de-

tail in Section 2.2. The following result of Bell, Rogalski and Sierra [3] pertaining to
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skew Laurent polynomial rings and the Dixmier-Moeglin equivalence is stated in Theo-

rem 2.4.26 as follows. Let k be an uncountable algebraically closed field of characteristic

zero, let A be a finitely generated commutative k-algebra and let σ be an automorphism of

A. If dim(A) ≤ 2 and GKdim(A[z, z−1; σ]) < ∞ then A[z, z−1; σ] satisfies the Dixmier-

Moeglin equivalence. We will study GK dimension, short for Gelfand-Kirillov dimension

and denoted GKdim(A) for a ring A, in greater detail in Section 2.3, but for now we can

interpret GK dimension as the noncommutative analogue of Krull dimension. We will see

in Theorem 2.3.10 that if k is a field and A is a finitely generated commutative k-algebra

then in fact, the Krull dimension and GK dimension of A are the same.

The following motivating result of Zhang relating GK dimension and skew Laurent

polynomial rings is stated in Theorem 2.3.15 as follows. Let A be a commutative k-algebra

such that the field of fractions of A is a finitely generated field extension of k, and let σ

be a k-algebra automorphism of A with skew Laurent polynomial ring A[z, z−1; σ]. Then

GKdim(A[z, z−1; σ]) = GKdim(A)+1 if and only if there is a finite-dimensional subspace

W of A such that σ(W ) = W and W generates A as a k-algebra. We say A[z, z−1; σ] has

low growth if GKdim(A[z, z−1; σ]) = GKdim(A) + 1.

Let A = C[x1, . . . , xd] be the polynomial ring over C and let σ be a C-algebra automor-

phism of A. We will give a structure theorem for all low growth skew Laurent polynomial

rings according to the Jordan form of the matrix representation of σ in Theorem 3.1.8. We

will use Theorem 3.1.8 to obtain a Dixmier-Moeglin equivalence for the prime ideal (0) for

low growth skew Laurent polynomial rings in Chapter 4.

In Section 2.5 we show that the skew Laurent polynomial ring C[x, y][z, z−1; σ] where

σ is the Hénon map given by

σ(x) = y + 1− ax2 and σ(y) = bx for a, b ∈ C

is an example of a skew Laurent polynomial ring which does not satisfy the Dixmier-

Moeglin equivalence if certain conditions are placed upon a and b.

In Chapter 5 we use Theorem 3.1.8 to determine the transcendence degree of the center

of the quotient division ring of A[z, z−1; σ] over C where the quotient division ring is

the noncommutative analogue of the field of fractions. Finally, we give a short list of

conjectures for future work.



Chapter 2

Preliminaries

2.1 Ring theory

In this section we will cover the necessary ring theoretic background material which we

will use for the remainder of the paper. Most of these definitions and results are standard

and are included for completeness.

Definition 2.1.1. A ring R is called simple if the only two sided ideals are (0) and R.

Example 2.1.2. The ring Mn(C) of n × n matrices with complex entries is simple. To

show this we will follow the proof in Lam [21, Example 3.1]. First let R be a ring and let I

be a two-sided ideal of Mn(R). Then I = Mn(J) with J a two-sided ideal of R. If J is an

ideal of R then Mn(J) is an ideal of Mn(R). Now suppose I is any ideal in Mn(R), and let

S be the set of all the (1, 1)-entries of matrices in I . It is easy to verify that S is an ideal in

R, and we are done if we can show that I = Mn(S). For any matrix M = (mij) we have

the identity

EijMEkl = mjkEil, (2.1)

where the set {Eij} denotes the matrix units. Assume M ∈ I . If we let i = l = 1, (2.1)

shows that mjkE11 ∈ I , and so mjk ∈ S for all j, k. Hence I ⊆ Mn(S). Conversely, take

any (aij) ∈ Mn(S). If we show that ailEil ∈ I for all i, l, then (aij) ∈ I from (2.1). Let

M = (mij) ∈ I such that ail = m11. Then, for j = k = 1, (2.1) gives

ailEil = m11Eil = Ei1ME1l ∈ I.

4
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Thus I = Mn(S) is a two-sided ideal of Mn(R). Since C is a field, the only (two-sided)

ideals of C are (0) and C and therefore the only two-sided ideals of Mn(C) are (0) and

Mn(C). Hence Mn(C) is simple.

Definition 2.1.3. A ring R is said to be a left primitive ring (or for short a primitive ring),

if there exists a left maximal ideal M such that if xR ⊆ M then x = 0. Alternatively, we

define a primitive ring to be a ring for which there exists a faithful simple left R-module.

That is, there exists a left R-module M such that RM 6= (0), the only submodules of M

are (0) and M and for r ∈ R if rM = (0) then r = 0. An ideal I of R is a left primitive

ideal (shortly, primitive ideal) of R if R/I is a primitive ring.

Definition 2.1.4. An ideal P in a ring R is said to be a prime ideal if P 6= R and for ideals

I, J ⊆ R, if

IJ ⊆ P then I ⊆ P or J ⊆ P .

A ring R is said to be a prime ring if (0) is a prime ideal.

Example 2.1.5. Let D be a division ring. Suppose D has a nonzero left ideal, I ⊆ D.

Since I 6= (0), there exists a nonzero element a ∈ I . Let 1 be the identity in D. Every

nonzero element in D is left-invertible, so there exists a−1 ∈ D such that a−1 · a = 1. Thus

D has only two ideals, D and (0), so D is simple.

Let M = D be a left D-module. Since every nonzero element of D has a left inverse,

the only submodules of M are (0) and M . For all r ∈ D if rM = (0) then r = 0 since D

has no zero divisors. Thus D has a faithful simple module and is therefore a primitive ring.

Suppose that I, J are two ideals of D and that IJ ⊆ (0). Since D has no zero divisors

this implies I = (0) or J = (0) and hence I ⊆ (0) or J ⊆ (0). Thus (0) is a prime ideal

and D is a prime ring. We generalize this example in the following proposition.

Proposition 2.1.6. If R is a simple ring then it is primitive. If R is a primitive ring then it

is prime.

Proof. Suppose R 6= (0) is a simple ring and R is not primitive. Let M be a maximal left

ideal and let M = R/M be a left R-module. Since M is maximal, M is simple. Suppose

rM = (0) and r 6= 0. Then rR ⊆ M and hence RrR ⊆ RM = M. Thus RrR is a

proper two-sided ideal and so r = 0, a contradiction.
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Now suppose R is primitive but not prime. Let I, J 6= (0) be two-sided ideals of R such

that IJ = (0). Since R is primitive it has a faithful simple R-module M . Thus IM, JM 6=
(0), so IM = JM = M . Hence M = I(JM) = (0)M = (0), a contradiction.

Example 2.1.7. The ring T = End V of all linear transformations of a countably infinite-

dimensional vector space V over a division ring D is an example of a ring which is primitive

and prime but not simple. Let I be the set of linear transformations Ti ∈ T such that im(Ti)

is a finite-dimensional subspace of V . We have that I 6= (0) and I is proper since V is

infinite-dimensional. Let T1, T2 ∈ I then im(T1 + T2) ⊆ im(T1) + im(T2) which is finite-

dimensional. Let S ∈ T then im(T1S) ⊆ im(T1) and im(ST1) ⊆ Sim(T1), both of which

are finite-dimensional. Hence I is a proper nonzero ideal of T .

T is primitive since for any nonzero vector v ∈ V, Tv = V and thus V is a simple

T -module. V is faithful because 0 ∈ T is the only linear transformation which sends all

vectors of V to 0 ∈ V .

Example 2.1.8. A commutative domain D which is not a field is an example of a ring

which is prime but not primitive. Since D is a domain there are no zero divisors and (0)

is a prime ideal of D. Hence D is a prime ring. Let a be a nonzero element of D such

that a is not a unit. Then aD is a principal, nontrivial ideal of D, so D is not simple. Now

suppose that D is primitive. Then D has a faithful simple module M . Thus M = D/M
for some maximal two-sided ideal of D. If M 6= (0) then there exists a nonzero x ∈ M.

Then xD ⊆M so D/M is not faithful, a contradiction.

Remark 2.1.9. Let R be a commutative ring, let I be an ideal of R and let S = R/I be the

quotient ring of I in R. Then I is a primitive ideal if and only if it is maximal. Suppose

I is maximal then if xS ⊆ I then x = 0 and thus I is primitive. Suppose I is a primitive

ideal then S has a faithful simple module M . Thus M = S/M for some maximal idealM
of S. Since MM = 0 it follows that M = 0 and if (0) is a maximal ideal of S then S is a

field and thus I is a maximal ideal of R.

Definition 2.1.10. A prime ring R is special if there exists a non-nilpotent element r ∈ R

such that for every nonzero ideal I of R, rn ∈ I for some n ∈ N.
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Example 2.1.11. We will show that C[[x]] is a special ring. If I is a nonzero proper ideal

then we can pick a nonzero a ∈ I . Then a =
∑∞

i=m aix
i with am 6= 0 for some m > 0. Let

b =
∞∑
i=1

am+i

am

xi−1.

Then a = amxm(1 + bx). Hence

xm = aa−1
m

∞∑
i=0

(−1)i(bx)i ∈ I.

So every nonzero ideal contains a power of x. Thus C[[x]] is a special ring.

Definition 2.1.12. Let k be a field and let A be a k-algebra. Let f be a noncommutative

nonzero polynomial in k{x1, x2, . . . , xd}, the free algebra over k in the noncommutative

variables x1, . . . , xd for some d. If f(a1, . . . , ad) = 0 for all a1, . . . , ad ∈ A then A is said

to be a polynomial identity algebra or P.I. algebra.

Example 2.1.13. The ring of 2 × 2 matrices M2(R) over the commutative ring R is a P.I.

ring. Let A,B ∈ M2(R), then the trace of AB −BA = 0. By the Cayley-Hamilton Theo-

rem every matrix satisfies its own characteristic polynomial. The characteristic polynomial

of a 2× 2 matrix A is λ2 − tr(A)λ + det(A). Hence (AB −BA)2 = − det(AB −BA)I2

and thus (AB − BA)2 is a scalar matrix and is therefore in the center of M2(R). Hence

(AB −BA)2 commutes with every matrix C ∈ R. Thus the relation

(AB −BA)2C − C(AB −BA)2 = 0

holds for all A,B, C ∈ M2(R). Hence M2(R) is a P.I. ring.

Definition 2.1.14. Let R be a ring. An element a ∈ R is said to be normal if aR = Ra.

Remark 2.1.15. In any ring R we have that 0 and any unit are normal elements as well as

any central elements. We will give an example of a nonzero normal element which is not a

unit or central in Chapter 3.
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2.2 Skew polynomial rings

This section concerns skew polynomials over a commutative ring A, in an indeterminate

z. If we let σ be an automorphism of A then we can construct the following ring A[z; σ].

An element in A[z; σ] can be written as
∑

i aiz
i with ai ∈ A and it is understood that the

summation runs over a finite sequence of nonnegative integers i. We define addition in the

usual way (∑
i

aiz
i

)
+

(∑
i

biz
i

)
=

∑
i

(ai + bi)z
i,

and we define multiplication by

za = σ(a)z.

We summarize this in the following definition.

Definition 2.2.1. Let A be a ring and let σ be an automorphism of A. Suppose that

(a) R is a ring containing A as a subring.

(b) z is an element of R.

(c) R is a free left A-module with basis {1, z, z2, . . .}.
(d) za = σ(a)z for all a ∈ A.

If R = A[z; σ] satisfies (a)-(d) then R is said to be a skew polynomial ring over A.

If we invert z then we obtain the following ring which will be our main interest for the

remainder of this paper.

Definition 2.2.2. Let A be a ring and let σ be an automorphism of A. Then we can form

the skew (twisted) Laurent polynomial ring A[z, z−1; σ]. This is the ring of Laurent poly-

nomials
m2∑

n=−m1

anz
n an ∈ A, m1,m2 ∈ N

with multiplication given by za = σ(a)z and z−1a = σ−1(a)z−1 for all a ∈ A.

The remainder of this section will be devoted solely to the study of skew Laurent poly-

nomial rings. Most of the definitions and results we present are standard, whenever this is

not the case references are given.
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Example 2.2.3. Consider the following example from Goodearl and Warfield [13, Example

1O]. Let k be a field and let k∗ be the multiplicative group of nonzero elements in k.

Let q ∈ k∗. Then the k-algebra Oq((k
∗)2) is the quantized coordinate ring of (k∗)2 with

generators defined to be x, x−1, y, y−1 such that

xx−1 = x−1x = yy−1 = y−1y = 1, xy = qyx.

We will show that Oq((k
∗)2) = k[y, y−1][x, x−1; σ] where our commutative ring A =

k[y, y−1] is an ordinary Laurent polynomial ring and σ is an automorphism of A given by

σ(y) = qy.

Since Oq((k
∗)2) is a k-algebra it is closed under addition and multiplication so every

element inOq((k
∗)2) is of the form

∑
i,j∈Z cijy

ixj where cij ∈ k and the powers of y appear

before the powers of x by applying the identity xy = qyx. Thus elements of this form can

also be written as
∑

i∈Z cix
i where ci is an element in the Laurent polynomial ring k[y, y−1]

and σ is the automorphism of A given by σ(y) = qy. Thus Oq((k
∗)2) is equal to the skew

Laurent polynomial ring k[y, y−1][x, x−1; σ].

Example 2.2.4. Let A = C[x] and let σ be the automorphism of A given by σ(x) = x + 1.

Then the ring A[z, z−1; σ] is a skew Laurent polynomial ring. We will return to this example

later in this section.

Example 2.2.5. Let A = C[x, y] and let σ be the automorphism of A given by σ(x) =

y + 1 − ax2 and σ(y) = bx for a, b ∈ C∗. Then the ring A[z, z−1; σ] is a skew Laurent

polynomial ring. The automorphism σ is called the Hénon map which we will study in

greater detail in Section 2.5.

Definition 2.2.6. Let A be a ring and let σ be a ring automorphism of A. An ideal I of A

is said to be σ-stable if I = σ(I).

Proposition 2.2.7. Let A be a commutative ring and let σ be a ring automorphism of A

with infinite order. Then there is a bijection between the two-sided ideals of A[z, z−1; σ]

and the σ-stable ideals of A given by

I ⊆ A[z, z−1; σ] → I ∩ A

and

I ⊆ A → IA[z, z−1; σ].
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Proof. We have that the two-sided ideals A and (0) of A[z, z−1; σ] are σ-stable ideals of A.

So, let I be a proper nonzero σ-stable ideal of A and let

J =
∞∑

k=−∞
Izk.

Since A[z, z−1; σ] is closed under addition we need only consider an element a ∈ A[z, z−1; σ]

of the form a = aiz
i for some i ∈ Z. Then

aJ = aiz
i ·

∞∑

k=−∞
Izk =

∞∑

k=−∞
aiz

iIzk =
∞∑

k=−∞
aiσ

i(I)zi+k ⊆
∞∑

k=−∞
Izi+k = J.

Ja =
∞∑

k=−∞
Izk · aiz

i =
∞∑

k=−∞
Iσk(ai)z

k+i ⊆
∞∑

k=−∞
Izi+k = J.

Thus J is a proper nonzero two-sided ideal of A[z, z−1; σ].

Conversely, suppose J is a proper nonzero two-sided ideal of A[z, z−1; σ]. Pick
∑d

i=0 aiz
i ∈

J with ad 6= 0 and d minimal. If d = 0 then we have a0 6= 0 ∈ J . Thus J ∩ A is a proper

nonzero ideal of A. Since J is a two-sided ideal,

σ(J ∩ A) = z−1(J ∩ A)z ⊆ J ∩ A and J ∩ A = zσ(J ∩ A)z−1 ⊆ σ(J ∩ A),

we have that σ(J ∩ A) = J ∩ A. Hence J ∩ A is a proper, nonzero σ-stable ideal of A.

Suppose d > 0 and that a0 + a1z + · · ·+ adz
d ∈ J . Then for all x ∈ A,

x(a0 + a1z + · · ·+ adz
d)− (a0 + a1z + · · ·+ adz

d)σd(x)

(xa0 − a0σ
d(x)) + (xa1 − a1σ

d−1(x))z + · · ·+ (xad − adσ
0(x))zd ∈ J. (2.2)

Since σ0(x) = x, this has degree d−1. By the minimality of d, (2.2) must be equal to zero.

Hence xa0 − a0σ
d(x) = 0 for all x ∈ A. We may assume that a0 6= 0, otherwise

(a0 + a1z
1 + · · ·+ adz

d)z−1 = a1 + · · ·+ ad−1z
d−1 ∈ J.

This contradicts the minimality of d. Thus xa0 = a0σ
d(x) for all x ∈ A. Since A is a

commutative domain and a0 6= 0, x = σd(x) for all x ∈ A. This means that σd is the

identity, a contradiction.
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Proposition 2.2.8. Let A be a commutative ring and let σ be a ring automorphism of A.

Then the skew Laurent polynomial ring A[z, z−1; σ] is a Polynomial Identity ring if and

only if σ has finite order.

Proof. We refer the reader to Brown and Goodearl [5, Theorem I.14.1].

Proposition 2.2.9. If A is a commutative Noetherian ring and σ is a ring automorphism of

A then an ideal I of A is σ-stable if and only if σ(I) ⊆ I .

Proof. If I is σ-stable then σ(I) = I implies σ(I) ⊆ I . If σ(I) ⊆ I then we have that I ⊆
σ−1(I) ⊆ σ−2(I) ⊆ · · · . Since A is a commutative Noetherian ring there exists a m ∈ Z
such that σ−m(I) = σ−(m+1)(I). This implies that σm+1(σ−m(I)) = σm+1(σ−(m+1)(I)).

Hence σ(I) = I and I is σ-stable.

While Proposition 2.2.9 might appear obvious, we have that the Noetherian hypothesis

is necessary, which is demonstrated in the following example.

Example 2.2.10. Let A = C[xn : n ∈ Z] and let σ be an automorphism of A such that

σ(xi) = xi+1. Then I = (x0, x1, x2, . . .) has the property that σ(I) ⊆ I but is not σ-stable

since x0 6∈ σ(I).

Definition 2.2.11. Let A be a ring and let σ be a ring automorphism of A. If (0) and A are

the only σ-stable ideals then A is said to be a σ-simple ring.

Proposition 2.2.12. Let A be a commutative domain and let σ be a ring automorphism

of A. Then the skew Laurent polynomial ring A[z, z−1; σ] is simple if and only if A is

σ-simple.

Proof. Suppose A[z, z−1; σ] is simple and that A is not σ-simple. Then there is a proper

nonzero σ-stable ideal contained in A. From Proposition 2.2.7 we have that this gives us a

proper nonzero two-sided ideal of A[z, z−1; σ], a contradiction.

Conversely, suppose A is σ-simple and that A[z, z−1; σ] is not simple. Then there exists

a proper nonzero two-sided ideal J ⊆ A[z, z−1; σ]. Pick
∑d

i=0 aiz
i ∈ J with ad 6= 0 and d

minimal. If d = 0 then from Proposition 2.2.7 we obtain the proper nonzero σ-stable ideal

J ∩ A ⊆ A, a contradiction.
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If d > 0 then from Proposition 2.2.7 we have that σd is the identity. Thus let a be a

nonzero, non-unit in A and let u = a ·σ(a) ·σ2(a) · · ·σd−1(a). Then σ(u) = u and I = (u)

is a proper nonzero σ-stable ideal, a contradiction.

Example 2.2.13. Let A = C[x] and let σ be the C-algebra automorphism of A given

by σ(x) = x + 1. We will show that A[z, z−1; σ] is simple. By Proposition 2.2.12 it is

enough to show that A is σ-simple. Assume A is not σ-simple. Then there exists a proper

nonzero ideal I ⊆ A. A is a PID so every ideal is of the form (p(x)) where p(x) ∈ C[x].

Let a(x) be a nonzero element in (p(x)) 6= (0) with minimal degree d. If d = 0 then

a(x) is a unit in A and hence (p(x)) is not proper, a contradiction. So let d > 0 and let

a(x) = adx
d + ad−1x

d−1 + · · ·+ a0. Since I is σ-stable,

σ(a(x))− (a(x)) =
(
ad(x + 1)d + ad−1(x + 1)d−1 + · · ·+ a0

)− (adx
d + · · ·+ a0)

= ad(d)xd−1 + · · ·+ (ad + ad−1 + · · ·+ a1) ∈ I.

Since ad 6= 0 we have that σ(a(x)) − (a(x)) 6= 0. Thus we have an element of smaller

degree in I , a contradiction. Thus A is σ-simple.

Definition 2.2.14. Let A be a commutative ring and let σ be a ring automorphism of A. A

is said to be a σ-primitive ring if there exists a maximal ideal of A that contains no nonzero

σ-stable ideal.

Definition 2.2.15. Let A be a commutative ring and let σ be a ring automorphism of A. A

σ-stable ideal P ⊆ A is said to be σ-prime if for all the σ-stable ideals I, J ∈ A, if

IJ ⊆ P then I ⊆ P or J ⊆ P.

If (0) is a σ-prime ideal of A then A is a σ-prime ring.

Theorem 2.2.16. Let A be a commutative ring and let σ be a ring automorphism of A. If

A is a σ-simple ring then A is σ-primitive. If A is a σ-primitive ring then A is σ-prime.

Proof. If A is σ-simple then the only σ-stable ideals of A are (0) and A. Hence the only

σ-stable ideal contained in any maximal ideal is (0). Thus A is σ-primitive. Now assume A

is σ-primitive but not σ-prime. Then there exist σ-stable ideals I and J such that IJ ⊆ (0)

but I 6⊂ (0) and J 6⊂ (0). LetM be a maximal ideal in A that contains no nonzero σ-stable

ideals. Then we have that IJ ⊆ (0) ⊆ M with I 6⊂ M and J 6⊂ M since I and J are

σ-stable ideals, but M is a prime ideal, a contradiction.
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Example 2.2.17. From Example 2.2.13 we know that the ring A[z, z−1; σ] with A = C[x]

and σ(x) = x+1 is simple and that A is σ-simple. Hence A is also σ-primitive and σ-prime

by Theorem 2.2.16.

Example 2.2.18. An example of a ring which is σ-prime but not prime is given in Mc-

Connell and Robson [25, Example 10.6.5].

Definition 2.2.19. Let A be a commutative ring and let σ be a ring automorphism of A. We

say that A is σ-special if it is σ-prime and there exists a regular element a ∈ A such that, for

every nonzero σ-prime ideal I of A, there exists an n such that aσ(a)σ2(a) · · ·σn(a) ∈ I .

The following are all results of Jordan [18, 19].

Proposition 2.2.20. Let A be a commutative Noetherian domain and let σ be an automor-

phism of A. Then A[z, z−1; σ] is special if and only if A is σ-special.

Proof. We refer the reader to Jordan [19, Lemma 2.7(i)].

Theorem 2.2.21. Let A be a commutative Noetherian ring with a ring automorphism σ of

infinite order then A[z, z−1; σ] is primitive if and only if A is σ-primitive or σ-special and

σ has infinite order.

Proof. We refer the reader to Jordan [19, Theorem 4.3].

Remark 2.2.22. In Chapter 4 and Chapter 5 we will prove the existence of skew Lau-

rent polynomial rings which are primitive but not simple and from Proposition 2.2.12 and

Theorem 2.2.21 this gives us the existence of skew Laurent polynomial rings which are σ-

primitive but not σ-simple. Since we will be working with skew Laurent polynomial rings

without zero divisors the results of Chapter 4 and Theorem 2.2.21 also give us the existence

of skew Laurent polynomial rings that are σ-prime but not σ-primitive.

Proposition 2.2.23. Let A be a commutative Noetherian domain which is affine over an

uncountable field k and let σ be a k-automorphism of A. If A is σ-special then A is σ-

primitive.

Proof. We refer the reader to Jordan [19, Proposition 2.9].
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Example 2.2.24. The ring of formal power series A = C[[x]] we considered in Example

2.1.11 is an example of a ring which is σ-prime and σ-special but not σ-primitive. We have

that x is a non-nilpotent element such that for every nonzero ideal I of A, xn ∈ I for some

n ∈ N. Let σ be the C-automorphism of A such that σ(x) = 2x. We have that A is σ-prime

since A has no zero divisors. Since I is an ideal 2(n(n−1)/2)xn ∈ I . We have that

2(n(n−1)/2)xn = xσ(x)σ2(x) · · · σn−1(x) ∈ I.

In particular, this holds for all σ-prime ideals so A is σ-special. Since every maximal ideal

is σ-stable A is not σ-primitive.

Example 2.2.25. A ring which is σ-primitive but not σ-special is given in Jordan [18,

Example 2].

2.3 Gelfand-Kirillov dimension

In this section we will provide the basic definitions and introductory results pertaining to

Gelfand-Kirillov dimension with the goal of proving the final result, Theorem 2.3.15, which

relates GK dimension and skew Laurent polynomial rings. This material predominantly

comes from the book by Krause and Lenagan [20].

Definition 2.3.1. Let k be a field and let A be a finitely generated k-algebra. We say that a

finite-dimensional subspace V of A is a generating subspace if 1A ∈ V and every element

of A is a k-linear combination of products of elements of V .

Suppose 1A ∈ V and that V is spanned by a1 = 1, a2, . . . , am. Let V n denote the

subspace spanned by all monomials in a1, . . . , am of length n for n ≥ 1. Then there is an

ascending chain of subspaces

k = V 0 ⊆ V 1 ⊆ V 2 ⊆ · · · ⊆ V n ⊆ · · · ⊆
∞⋃

n=0

V n = A

with dimk(V
n) < ∞, for all n ∈ N. Thus if A is finite-dimensional then A = V n for some

n.
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Definition 2.3.2. Let φ be the set of all functions f : N → R+ which are eventually

monotone increasing and positive valued. For f, g ∈ φ we have the relation f ≤∗ g if

there exists an m ∈ N such that f(n) ≤ g(mn) for all but finitely many n ∈ N. We have

the equivalence relation f ∼= g if f ≤∗ g and g ≤∗ f . For f ∈ φ, the equivalence class

G(f) ∈ φ/ ∼= is called the growth of f .

We define the function dV (n) to be the dimension of V n over k, dimk(V
n). However,

dV (n) appears to depend on the choice of V . We will show in the following proposition

that the choice of finite-dimensional generating subspaces does not affect the growth of

dV (n).

Proposition 2.3.3. Let k be a field and let A be a finitely generated k-algebra with finite-

dimensional generating subspaces V and W . If dV (n) and dW (n) denote the dimensions

of
∑n

i=0 V i and
∑n

i=0 W i, respectively, then G(dV ) = G(dW ).

Proof. Since A =
⋃∞

n=0(V
0 + · · · + V n) =

⋃∞
n=0(W

0 + · · · + W n), there exist positive

integers s and t such that W ⊆ ∑s
i=0 V i and V ⊆ ∑t

i=0 W i. Thus dW (n) ≤ dV (sn) and

dV (n) ≤ dW (tn). Hence dV
∼= dW .

This brings us to the definition of Gelfand-Kirillov dimension.

Definition 2.3.4. Let k be a field, let A be a finitely generated k-algebra and let V be a

generating subspace of A. Then the Gelfand-Kirillov dimension of A is defined to be

GKdim(A) = lim sup
n→∞

log dimk(V
n)

log n
= lim sup

n→∞
logn(dV (n)).

Next we will compute the GK dimension of several algebras. The first example has

infinite GK dimension.

Example 2.3.5. Consider the free algebra A = C{x, y} on two generators. Then V =

C⊕ Cx⊕ Cy is a generating subspace for A, and

dV (n) = dimC

(
n∑

i=0

V i

)
= 1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1.

Thus

GKdim(A) = lim sup
n→∞

log(2n)

log n
= ∞.
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Example 2.3.6. Consider the Weyl algebra A = C[x, y]/(xy − yx − 1) and let V be the

generating subspace spanned by the images of 1, x and y ∈ A. The relation xy = 1 + yx

allows us to express any monomial of degree n in x and y as a linear combination of

monomials of the form xiyj with i+j ≤ n. So a basis for V n is given by {xiyj | i+j ≤ n}.

For each 1 ≤ k ≤ n there are k+1 different monomials of the form xiyj such that i+j = k.

Thus the number of monomials with i + j ≤ n is
n∑

k=1

(k + 1) =
n(n− 1)

2
+ n =

n2 + n

2
.

Thus

GKdim(A) = lim sup
n→∞

log((n
2
)(n + 1))

log(n)
= lim sup

n→∞

log(n)− log(2) + log(n + 1)

log(n)
= 2.

Next we will compute the GK dimension of a finitely generated commutativeC-algebra.

However, first we will give the analogous definition of dimension for commutative rings

which we define as the Krull dimension below.

Definition 2.3.7. The k-algebra A has Krull dimension m if there exists a chain of prime

ideals P0 ( P1 ( · · · ( Pm of length m and there is no chain of greater length. If there

exists a chain of prime ideals of A of arbitrary length then the Krull dimension is said to be

infinite.

For prime ideals in general we have the following definition.

Definition 2.3.8. Let R be a ring and let P be a prime ideal. The supremum over all d of

chains of prime ideals,

P0 ( P1 ( · · · ( Pd = P,

is called the height of P .

The height of a prime ideal is not always finite. We demonstrate this in the following

example.

Example 2.3.9. Consider the polynomial ring in infinitely many variables,C[x1, x2, x3, . . .]

with the prime ideal P = (x1, x2, x3, . . .). We have the following chain of ideals

(x1) ( (x1, x2) ( · · · ( (x1, x2, . . . , xd) ( · · · ( (x1, x2, x3, . . .) = P.

Hence P has infinite height. The ring C[x1, x2, x3, . . .] has infinite Krull dimension as well.
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Theorem 2.3.10. Let k be a field and let A be a commutative k-algebra. Then

(a) GKdim(A) is either infinite or a nonnegative integer.

(b) If A is finitely generated, then GKdim(A) is equal to the Krull dimension of A.

Proof. We refer the reader to Krause and Lenagan [20, Theorem 4.5].

Example 2.3.11. Let A = C[x1, . . . , xd]. We know that

(0) ( (x1) ( · · · ( (x1, . . . , xd),

is a chain of prime ideals of length d in A. Hence the Krull dimension of A is greater than

or equal to d.

We have that V = C⊕Cx1⊕· · ·⊕Cxd is a generating subspace of A. So a basis of V n

is given by all monomials xi1
1 · · · xid

d where i1 + · · · + id ≤ n. The number of monomials

xi1
1 · · ·xid

d with i1 + · · ·+ id ≤ n is
(

n+d
d

)
and

(
n + d

d

)
∼ nd

d!
as n →∞.

Thus

GKdim(A) = lim sup
n→∞

log(nd

d!
)

log n
= lim sup

n→∞

d log(n)

log(n)
− log(d!)

log(n)
= d.

From Theorem 2.3.10 we have that the Krull dimension of A is d as well.

Finally, we provide the following characterization of possible values of the GK dimen-

sion of a k-algebra.

Theorem 2.3.12. Let k be a field and let A be a finitely generated k-algebra. Then the

possible values for the GK dimension of A are {0} ∪ {1} ∪ [2,∞].

Proof. We have that GKdim(A) = 0 if and only if every finitely generated subalgebra of

A is finite-dimensional (cf. Krause and Lenagan [20]). Krause and Lenagan [20, Proposi-

tion 1.4] gives us that GKdim(A) ≥ 1 for any algebra containing an infinite dimensional

finitely generated subalgebra of A. A result of Bergman [4] which is also shown in Krause

and Lenagan [20, Theorem 2.5] gives us that there is no algebra A with a GK dimension

strictly between 1 and 2, Krause and Lenagan [20, Theorem 2.9] states that for every real

number r ≥ 2 there exists a two generator algebra A = k{x, y}/I for some ideal I with
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GKdim(A) = r. Finally, we showed that a finitely generated k-algebra can have infinite

GK dimension in Example 2.3.5.

We now consider the GK dimension of skew Laurent polynomial rings.

Proposition 2.3.13. Let k be a field, let A be a finitely generated k-algebra and let σ be a

k-algebra automorphism of A. Then GKdim(A[z, z−1; σ]) ≥ 1 + GKdim(A).

Proof. Let V be a generating subspace of A. Then W = V ⊕ kz ⊕ kz−1 is a generating

subspace of A[z, z−1; σ]. We have that V n ⊆ W n and kzi ⊆ W n for 1 ≤ i ≤ n. Thus

V n ⊕ V nz ⊕ · · · ⊕ V nzn ⊆ W 2n.

Hence dimk(W
2n) ≥ dimk(V

n)(n + 1). Thus we have that

GKdim(A[z, z−1; σ]) = lim sup
n→∞

log(dimk(W
n))

log(n)
≥ lim sup

n→∞

log(dimk(W
2n))

log(2n)

≥ lim sup
n→∞

log(dimk(V
n)) + log(n + 1)

log(n)

= lim sup
n→∞

(
log(dimk(V

n))

log(n)
+ 1

)
= GKdim(A) + 1.

Now we will look at when we have a strict equality in Proposition 2.3.13.

Definition 2.3.14. Let A be a k-algebra over an algebraically closed field k and let σ be a k-

algebra endomorphism of A. We say that σ is locally algebraic if every finite-dimensional

k-vector subspace of A is contained in a σ-stable generating subspace of A.

Theorem 2.3.15. Let A be a commutative k-algebra such that the field of fractions of A is

a finitely generated field extension of k, and let σ be a k-algebra automorphism of A with

skew Laurent polynomial ring A[z, z−1; σ]. Then GKdim(A[z, z−1; σ]) = GKdim(A) + 1

if and only if σ is locally algebraic.

Proof. We refer the reader to Zhang [28, Theorem 1.1].

Theorem 2.3.15 shows us that skew Laurent polynomials form an interesting subclass

of rings of which to study the GK dimension. We give this subclass the following special

name.
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Definition 2.3.16. Let A be a commutative k-algebra and let σ be a k-algebra automor-

phism of A with skew Laurent polynomial ring A[z, z−1; σ]. We say that A[z, z−1; σ] has

low growth if GKdim(A[z, z−1; σ]) = GKdim(A) + 1.

Next we will give an example of a skew Laurent polynomial ring which does not have

low growth. However, first we will need the following result about the GK dimension of

the group algebra C[G] of a nilpotent group G.

Theorem 2.3.17. (Bass-Guivarc’h) Let G be a finitely generated nilpotent group with

lower central series

{1} = Gd ⊆ · · · ⊆ G2 ⊆ G1 = G

such that the quotient group Gk/Gk+1 is a finitely generated abelian group. Then

GKdim(C[G]) =
∑

k≥1

k rank(Gk/Gk+1),

where rank(Gk/Gk+1) denotes the largest number of independent and torsion free elements

of the abelian group.

Proof. We refer the reader to Bass [1] and Guivarc’h [14].

Example 2.3.18. Let A = C[x±1, y±1] and let σ be an automorphism of A defined by

σ(x) = x and σ(y) = xy. Consider the skew Laurent polynomial ring A[z, z−1; σ] and let

G be the group generated by x, y and z. Then [x, y] = [x, z] = 1 and [y, z] = x−1, where

[g, h] = g−1h−1gh.

If we let u = z, v = y−1 and w = x−1 then G = 〈x, y, z〉 = 〈u, v, w〉 is the Heisenberg

group with relations [u,w] = [v, w] = 1 and [u, v] = w. Then G1 = G, G2 = [G,G] =

〈w〉 and G3 = [G,G2] = {1}. Thus G is a nilpotent group with lower central series

{1} ⊆ 〈w〉 ⊆ G with G/〈w〉 ∼= Z2 by [9, Theorem 6.1.8] and 〈w〉/{1} ∼= Z. Then by the

Bass-Guivarc’h formula in Theorem 2.3.17

GKdim(G) = 1 rank(G/G2) + 2 rank(G2/G3) = 1 rank(Z2) + 2 rank(Z) = 4.

From the remark before 11.5 in Krause and Lenagan [20] we have that C[G] = A[z, z−1; σ]

and GKdim(C[x±1, y±1]) = 2. Thus GKdim(A) = 2 and GKdim(A[z, z−1; σ]) =

GKdim(A) + 2.
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2.4 The Dixmier-Moeglin equivalence

We begin this section by stating the celebrated result proved independently by J. Dixmier

and C. Moeglin in [8] and [26] respectively.

Theorem 2.4.1. Let L be a complex finite-dimensional Lie algebra and let U(L) be its

enveloping algebra and let P be a prime ideal of U(L). Then the following are equivalent.

1. P is rational.

2. P is locally closed in Spec(U(L)).

3. P is primitive.

We will spend the remainder of this section providing the basic definitions and back-

ground necessary in order to understand the statement of the Dixmier-Moeglin equivalence

for universal enveloping algebras and we will give examples of Dixmier-Moeglin equiva-

lences for other rings. We will use this background in Chapter 4 to determine when we will

obtain a Dixmier-Moeglin equivalence for low growth skew Laurent polynomial rings. We

start with defining an universal enveloping algebra. To define this, we need to define a Lie

algebra.

Definition 2.4.2. A Lie algebra L is a vector space over a field k with a multiplication

which is usually termed a Lie bracket [·, ·] such that for x, y, z ∈ L and c ∈ k we have

1. [x, y] = −[y, x],

2. [[x, y], z] + [[z, x], y] + [[y, z], x] = 0,

3. [x + cy, z] = [x, z] + c[y, z],

4. [x, y + cz] = [x, y] + c[x, z].

Example 2.4.3. The algebra L = Mn(C) of n × n matrices over C is a Lie algebra with

Lie bracket [X,Y ] = XY − Y X for X,Y ∈ Mn(C).

Note that a Lie algebra is not associative in general, meaning [[x, y], z] 6= [x, [y, z]].

Definition 2.4.4. Let T be the tensor algebra of the vector space L. Let

T = T 0 ⊕ T 1 ⊕ · · · ⊕ T n ⊕ · · · ,
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with T n = L⊗ L⊗ · · · ⊗ L (n times) where the product in T is tensor multiplication. Let

J be the two-sided ideal of T generated by the tensors

x⊗ y − y ⊗ x− [x, y],

with x, y ∈ L. The (unique) associative algebra T/J is the universal enveloping algebra

of L which we denote by U(L).

We next define a rational prime. To define this we need to define a quotient division

ring. In commutative ring theory, if A is a Noetherian domain one can invert the nonzero

elements to form the field of fractions. We have the following analogous definition in the

noncommutative case.

Definition 2.4.5. Let R b a ring. The classical left quotient ring of R is the left ring of

fractions for R with respect to the set of all regular elements in R.

We are interested in the case where the quotient ring of R is also a division ring. We

need the following definition of a left Ore domain.

Definition 2.4.6. Let R be a domain. If the nonzero elements of R form a left Ore set, that

is, for each nonzero x, y ∈ R there exists r, s ∈ R such that rx = sy 6= 0. Then R is a left

Ore domain.

Proposition 2.4.7. (Ore) Let R be a ring. R has a classical left quotient ring which is a

division ring if and only if R is a left Ore domain.

Proof. We refer the reader to Goodearl and Warfield [13, Theorem 6.8].

Proposition 2.4.8. Every left Noetherian domain is a left Ore domain.

Proof. We refer the reader to Goodearl and Warfield [13, Corollary 6.7].

Proposition 2.4.7 and Proposition 2.4.8 show us that if A is a Noetherian domain then

one can invert the regular elements of A to form a quotient division ring, which we denote

Fract(A).

Definition 2.4.9. Let k be a field and let A be a Noetherian k-algebra. A prime ideal P of

A is rational provided the center of Fract(A/P ) is an algebraic extension of k.
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Since we have already defined a primitive ideal in Section 2.1 it only remains to define

a locally closed prime. To do this we will need the following topological background.

Definition 2.4.10. A subset L of a topological space X is said to be locally closed if there

exists an open set U , containing L, such that L is closed in U . Equivalently, L is locally

closed if and only if it is an intersection of an open set and a closed set in X .

Definition 2.4.11. The prime spectrum of a ring R, denoted Spec(R), is the set of all prime

ideals of R.

The topology we will be using for the remainder of this paper is the following.

Definition 2.4.12. Let R be a ring. The Zariski topology on Spec(R) is constructed by

taking the Zariski-closed sets to be

V (I) = {P ∈ Spec(R) | I ⊆ P} for any ideal I

and the Zariski-open sets to be

W (I) = {P ∈ Spec(R) | I 6⊆ P}.

Alternatively, when we are using the Zariski topology on Spec(R), we can interpret the

definition of locally closed in terms of rings.

Definition 2.4.13. Let R be a ring. A prime ideal P of Spec(R) is locally closed in Spec(R)

if P is a locally closed point of Spec(R), where R is equipped with the Zariski topology.

Next we will give equivalent conditions for a prime to be locally closed.

Lemma 2.4.14. A prime ideal P in a ring R is locally closed in Spec(R) if and only if the

intersection of all prime ideals properly containing P is an ideal properly containing P .

Proof. We will follow the proof in Brown and Goodearl [5, Theorem II.7.7]. Let J be

the intersection of all prime ideals properly containing P . Suppose P ( J , then P ∈
V (P ) ∩W (J) from Definition 2.4.11. Suppose there exists Q 6= P ∈ V (P ) ∩W (J). If

Q ∈ V (P ) then P ( Q. Thus Q is an ideal that properly contains P and hence J ⊆ Q.

This implies Q 6∈ W (J). Hence V (P ) ∩W (J) = {P} and so {P} is an intersection of an

open set W (J) and a closed set V (P ) in R. Thus P is locally closed.
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Suppose P is locally closed. Then there exist ideals I1, I2 ∈ R such that V (I1) ∩
W (I2) = {P}. Then P ∈ W (I2) and I2 ( P . Since P ⊆ J , I2 ( J . Thus P ( I2 + P ⊆
J .

We require the following definition to prove Lemma 2.4.16.

Definition 2.4.15. Let R be a ring and let P be a prime ideal of R. The ideal P is said to

be minimal over an ideal I if there are no prime ideals strictly contained in P that contain

I .

Lemma 2.4.16. (Noether) Let R be a Noetherian ring. Then there are only finitely many

minimal primes over a given ideal I ⊆ R.

Proof. We follow the proof in Eisenbud [10, Exercise 1.2]. Suppose I ⊆ R is an ideal such

that there are infinitely many prime ideals containing I minimal with respect to inclusion.

Since R is Noetherian, among the collection of all such I there is one that is maximal with

respect to this property. We will denote this ideal J . The ideal J is not prime so there exist

f, g 6∈ J such that fg ∈ J . Let P be a prime minimal over J . Then either f ∈ P or g ∈ P .

So either P is minimal over (J, f) or (J, g). Thus either (J, f) or (J, g) is contained in

infinitely many minimal primes, a contradiction.

Proposition 2.4.17. Let k be an uncountable field and let A be a prime Noetherian, count-

ably generated k-algebra with the descending chain condition on prime ideals. A has

finitely many height one primes if and only if (0) is locally closed.

Proof. Suppose A has finitely many height one primes, {P1, . . . , Pn}. Let I = P1P2 · · ·Pn.

If I = (0) then Pi = (0) for some i since (0) is a prime ideal, but then Pi ⊆ (0) which

contradicts the assumption that Pi is a height one prime. Thus I 6= (0). Since we are

assuming that A has the descending chain condition on prime ideals every nonzero prime

ideal of A contains a height one prime. Then we have that {(0)} = Spec(A) \V (I), which

is an open set. Spec(A) is a closed set so {(0)} = (Spec(A) \ V (I)) ∩ Spec(A). Hence

{(0)} is an intersection of an open and closed set so (0) is locally closed.

Suppose (0) is locally closed in Spec(A). From Proposition 2.4.14 there exists an ideal

J ⊆ A such that (0) ( J where J is the intersection of all height one prime ideals. So

J is contained in all height one primes and by Lemma 2.4.16 there are only finitely many
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primes minimal over J . Thus there are only finitely many height one primes in A.

Now we will give results relating rational, primitive and locally closed prime ideals.

However, first we need to define the noncommutative Nullstellensatz, which requires the

definition of a Jacobson ring.

Definition 2.4.18. A Jacobson ring is a ring R in which the intersection of all left maximal

ideals of R/P is (0) for all prime ideals P in R.

In commutative algebra the Nullstellensatz over an algebraically closed field k can be

stated as follows. Let I be an ideal over A = k[x1, . . . , xn], let I(V (I)) be the ideal of all

polynomials in A which vanish on the affine variety of I and let rad(I) denote the radical

of I . Then I(V (I)) = rad(I). In noncommutative algebra we have the following analogue

of the commutative Nullstellensatz.

Definition 2.4.19. Let A be a Noetherian k-algebra. A satisfies the Nullstellensatz over k

if A is a Jacobson ring and the endomorphism ring of every irreducible left A-module is

algebraic over k.

The following theorem shows how the commutative Nullstellensatz can be used to char-

acterize maximal ideals.

Theorem 2.4.20. Let k be an algebraically closed field and let A = k[x1, . . . , xn]. Then

every maximal ideal of A is of the form Mp = (x1 − a1, . . . , xn − an) for some p =

(a1, . . . , an) ∈ An. In particular the points of An are in one-to-one correspondence with

the maximal ideals of A.

Proof. Let M be a maximal ideal of A. Since every prime ideal is radical we have that

I(V (M)) = M by the Nullstellensatz. If p ∈ V (M) then M ⊆ Mp. Since M is as-

sumed to be maximal M = Mp. The correspondence follows immediately.

From Remark 2.1.9 we know that in a commutative ring primitive and maximal ideals

are equivalent. So Theorem 2.4.20 also give us a characterization of the primitive ideals

of polynomial rings over algebraically closed fields. However, in the noncommutative case

we have the following implications.
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Lemma 2.4.21. Let A be a Noetherian k-algebra satisfying the Nullstellensatz over k.

Then for all prime ideals of A, the following implications hold:

P is locally closed in Spec(A)⇒ P is primitive ⇒ P is rational.

Proof. We will follow the proof in Brown and Goodearl [5, Lemma II.7.11]. Let P be

a locally closed prime of A and let {Pi | i ∈ I} be the set of all primitive ideals of

A containing P . Since A satisfies the Nullstellensatz, A is a Jacobson ring and thus the

intersection of maximal ideals of A/P is (0). Suppose ∩i∈IPi = Q ) P . Every maximal

ideal in A/P is a primitive ideal containing P . Thus the intersection of all maximal ideals

of A/P would not be zero. Hence ∩i∈IPi = P . By Lemma 2.4.14, the Pi can not all

properly contain P otherwise ∩i∈IPi ) P . Thus some Pi = P , so P is primitive.

The proof of P is primitive implies P is rational is given in Brown and Goodearl [5,

Lemma II.7.13].

Remark 2.4.22. An example of a ring where P is rational but not primitive is given in

Irving [16] and an example of a ring where (0) is primitive but not locally closed is given

in Lorenz [23].

The following Proposition is a useful way to determine whether a ring satisfies the

Nullstellensatz.

Proposition 2.4.23. If k is an uncountable field and R is a countably generated k-algebra

then R satisfies the Nullstellensatz over k.

Proof. This can be found in McConnell and Robson [25, Corollary 9.1.8].

Definition 2.4.24. Let k be a field and let A be a Noetherian k-algebra. If for all prime

ideals of A the following three conditions: P is locally closed in Spec(A), P is primitive

and P is rational are equivalent then A is said to satisfy the Dixmier-Moeglin equivalence.

Example 2.4.25. From Brown and Goodearl [5, Corollary II.8.5] we have that the example

we considered in Example 2.2.3, the quantized coordinate ring of (k∗)2, Oq((k
∗)2) as well

as other quantized coordinate rings satisfy the Dixmier-Moeglin equivalence. Goodearl and

Letzter give other examples in [12].
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We have shown in Example 2.2.3 that Oq((k
∗)2) = k[y±1][x, x−1; σ] where σ is the

automorphism of k[y±1] given by σ(y) = qy is a skew Laurent polynomial ring. We also

have that this ring satisfies the Dixmier-Moeglin equivalence from the following theorem

by Bell, Rogalski and Sierra [3].

Theorem 2.4.26. Let k be an uncountable algebraically closed field of characteristic zero

and let A be a finitely generated commutative k-algebra. Let σ be an automorphism of

A. If dim(A) ≤ 2 and GKdim(A[z, z−1; σ]) < ∞ then A[z, z−1; σ] satisfies the Dixmier-

Moeglin equivalence.

Proof. We refer the reader to Bell, Rogalski and Sierra [3, Theorem 1.1].

In the following section we will give an example of a skew Laurent polynomial ring

which does not satisfy the Dixmier-Moeglin equivalence and in Chapter 4 we will show

that low growth skew Laurent polynomial rings satisfy the Dixmier-Moeglin equivalence

for the prime ideal (0).

2.5 The Hénon map

In this section we will consider the Hénon map which is of interest to the study of dynamical

systems. We will show that the Hénon map is an example of an automorphism of C2 which

has a countably infinite set of periodic points and no σn-stable curves. We will show that the

skew Laurent polynomial ring C[x, y][z, z−1; σ] is an example of a ring which is primitive

but (0) is not locally closed in Spec(C[x, y][z, z−1; σ]) and hence the Dixmier-Equivalence

is not satisfied.

Definition 2.5.1. The Hénon map is defined to be the map

σ : C[x, y] → C[x, y]

σ(x) = y + 1− ax2 σ(y) = bx,

in terms of polynomial rings or

τ : C2 → C2

τ((x0, y0)) = (y0 + 1− ax2
0, bx0)
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in terms of affine space where a, b are nonzero complex numbers.

Bedford and Smillie use the notion of topological entropy and maximal entropy for

polynomial diffeomorphisms in studying the dynamics of the Hénon map. The background

necessary to explain these results goes beyond the scope of this thesis but the interested

reader can find them in Bedford and Smillie [2].

Proposition 2.5.2. Let σ : C[x, y] → C[x, y] be the Hénon map defined above. Then σ is a

C-algebra automorphism.

Proof. The Hénon map can be composed into the following three maps:

φ1((x, y)) = (x, 1− ax2 + y),

φ2((x, y)) = (bx, y),

φ3((x, y)) = (y, x).

such that (φ3 ◦ φ2 ◦ φ1)(x, y) = (1− ax2 + y, bx) = σ. The inverses of these maps are the

following,

φ−1
1 ((x, y)) = (x, y − 1 + ax2),

φ−1
2 ((x, y)) = (

1

b
x, y),

φ−1
3 ((x, y)) = (y, x).

where σ−1 = (φ−1
1 ◦ φ−1

2 ◦ φ−1
3 )(x, y) = (1

b
y, x − 1 + ay2

b2
). Since an inverse exists, the

Hénon map is an automorphism.

Theorem 2.5.3. Let a, b ∈ R and let τ : C2 → C2 be defined as in Definition 2.5.1. If

a > (5+2
√

5)(1+|b|)2
4

then the set {(x0, y0) ∈ C2 | τn((x0, y0)) = (x0, y0) for some n ∈ N} is

countably infinite.

Proof. Devaney and Nitecki show in [6] that if a > (5+2
√

5)(1+|b|)2
4

then τ will have maximal

entropy and Bedford and Smillie show in [2, Theorem 1] that the set of fixed points of τn

if τ has maximal entropy is exactly dn elements where d is the algebraic degree of τ and

d ≥ 2. Since τ has algebraic degree 2, τn has exactly 2n fixed points. Thus the set of

periodic points is
∞⋃

n=1

{(x, y) ∈ C2| τn((x, y)) = (x, y) and for 1 ≤ j < n, τ j((x, y)) 6= (x, y)},
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which is a countable union of finite sets and hence countable.

The following two standard background results, Theorem 2.5.4 and Theorem 2.5.5 will

be necessary to prove the final result of this section.

Theorem 2.5.4. (Krull’s height theorem) Let A be a Noetherian ring and let I =

(a1, . . . , an) be a proper ideal generated by n elements of R. If P is a minimal prime ideal

that is minimal over I then P has height at most n.

Proof. We refer the reader to Matsumura [24, Theorem 13.5].

Theorem 2.5.5. Let A be a Noetherian domain. A is a unique factorization domain if and

only if every height one prime ideal is principal.

Proof. We will follow the proof found in Matsumura [24, Theorem 20.1]. Suppose that A

is a UFD and that P is a height one prime ideal. Let a be a nonzero element of P . Since

A is a UFD we can express a as a product of prime elements a = p1 · · · pd. Since P is a

prime ideal at least one pi ∈ P . If pi ∈ P then (pi) ⊆ P . However, (pi) is a nonzero prime

ideal and P has height one. Thus (pi) = P and P is principal.

Conversely, suppose A is Noetherian with every height one prime ideal principal. Since

A is Noetherian, every nonzero element a ∈ A which is not a unit can be written as a

product of finitely many irreducibles. Hence to prove A is a UFD it suffices to show an

irreducible element a is a prime element. Let P be a minimal prime containing (a). Then

by Krull’s height theorem, the height of P is one. Thus we can write the ideal P as (b).

Thus there exists a unit c in A such that a = cb. Since a is irreducible (a) = (b) = P , and

thus a is a prime element.

Before we can prove Lemma 2.5.8 we need the following result from Smith [27].

Theorem 2.5.6. Let k be a field of characteristic zero and let A = k[x, y]. Let τ, π be

automorphisms of k[x, y] such that

τ(x) = αx + ω(y) and τ(y) = µy + ν

and

π(x) = y and π(y) = x,
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for α, µ, ν ∈ k and ω(y) ∈ k[y] such that ω(y) has degree d ≥ 2. Let σ = π ◦ τ . If

σ(f) = λf for some f ∈ k[x, y], λ ∈ k then f ∈ k.

Proof. We refer the reader to (cf. Smith [27]).

Remark 2.5.7. If k = C, α = 1, ω(y) = 1− ay2, µ = b and ν = 0. Then

(π ◦ τ)(x) = π(x + 1− ay2) = y + 1− ax2

and

(π ◦ τ)(y) = π(by) = bx.

Then σ is the Hénon map.

Lemma 2.5.8. Let A = C[x, y] and let σ : A → A be defined as in Definition 2.5.1. Then

there are no height one σn-stable prime ideals in A.

Proof. Let I be a nonzero, principal σn-stable ideal of A. Then I = (f) with f ∈ A such

that f is not a unit. Thus σn(f) = λf for some λ ∈ C∗. Let

g = fσ(f)σ2(f) · · · σn−1(f).

Since σ is an automorphism, units are mapped to units. Thus σ(f) is not a unit since f is

not a unit. Inductively, σi(f) is not a unit for all i ∈ N. A is a domain so a finite product of

non-units is again a non-unit. Thus g is not a unit and g is nonzero.

We have

σ(g) = σ(fσ(f) · · · σn−1(f)) = σ(f)σ2(f) · · · σn−1(f)σn(f)

= λfσ(f) · · · σn−1(f) = λg.

From Theorem 2.5.6 we have that g ∈ C∗, a contradiction. A is a UFD so by Theorem

2.5.5 every height one prime ideal must be principal and the result follows.

Proposition 2.5.9. Let a, b ∈ R, let A = C[x, y] and let σ : A → A and τ : C2 → C2

be defined as in Definition 2.5.1. If a > (5+2
√

5)(1+|b|)2
4

then (0) is not locally closed in

Spec(A[z, z−1; σ]).
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Proof. From Theorem 2.5.8 there are no σn-stable height one primes in A. Thus any σn-

stable nonzero prime ideal must be height two and correspond to a σn-stable maximal ideal.

From Theorem 2.5.3 there are a countably infinite number of τn-stable points p ∈ C2. This

corresponds to a countably infinite number of σn-stable maximal ideals Mp of A.

For each σn-stable maximal ideal Mp we can form the σ-stable ideal In defined by

In = ∩n−1
j=0 σj(Mp). Let f be a nonzero element of Mp. Then fσ(f) · · ·σn−1(f) ∈ In

since σj(f) ∈ σj(Mp). Then fσ(f) · · ·σn−1(f) is a nonzero element of In so In 6= (0).

Now suppose J1, J2 are σ-stable ideals of A such that J1J2 ⊆ In ⊆Mp. SinceMp is prime

either J1 ⊆Mp or J2 ⊆Mp. Without loss of generality assume J1 ⊆Mp. Since J1 is σ-

stable σj(J1) = J1 and thus J1 ⊆ ∩n−1
j=0 σj(Mp) = In. Hence In is σ-prime so there exists a

prime ideal P ∈ A[z, z−1; σ] such that In = P ∩A by Proposition 2.2.7. By Theorem 2.5.3

for every n ∈ N there exists a σn-stable maximal ideal and thus a corresponding σ-prime

ideal In. Hence there are a countably infinite number of distinct prime ideals in A[z, z−1; σ]

corresponding to each σ-prime ideal In.

Let Pn ∈ A[z, z−1; σ] be a prime ideal such that In = Pn ∩ A and suppose that Pn is

not minimal over (0). Then there exists a Jn ∈ A such that (0) ( Jn ( ∩n−1
j=0 σj(Mp). So

there must be a nonzero σn-stable prime ideal properly contained in Mp. This ideal would

have to be height one. By Proposition 2.5.8 there are no height one σn-stable prime ideals

of A so Pn must be minimal over (0). So we have a countably infinite number of minimal

primes over (0) and by Lemma 2.4.16 there can only be finitely many minimal primes over

(0). By Proposition 2.4.17 (0) is locally closed in Spec(A[z, z−1; σ]) if and only if there

are finitely many height one primes in A[z, z−1; σ], a contradiction.

Proposition 2.5.10. Let a, b ∈ R, let A = C[x, y] and let σ : A → A and τ : C2 → C2 be

defined as in Definition 2.5.1. If a > (5+2
√

5)(1+|b|)2
4

then A[z, z−1; σ] is a primitive ring.

Proof. From Proposition 2.5.3 we have countably many τn-stable points in C2. Thus there

are uncountably many points which are not periodic. Let p ∈ C be a point which is not

periodic. This point corresponds to a maximal idealMp ⊆ A such that σj(Mp) = Mτ j(p).

Suppose there exists a nonzero σ-stable ideal I ⊆ Mp. Then for all j ∈ Z we have that

I = σj(I) ⊆ σj(Mp) = Mτj(p). Hence I ⊆ ⋂
j∈ZMτj(p) = J . There exists a surjective
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map φ : A/J → ⋂N
j=1 A/Mτ j(p) and by the Chinese remainder theorem we have that

N⋂
j=1

A/Mτ j(p)
∼= A/Mτ1(p) ⊕ · · · ⊕ A/MτN (p),

an N -dimensional vector space. Since this map is surjective for all N ∈ N, A/J has infinite

dimension over C. Thus J has infinite codimension.

By Lemma 2.4.16 there can only be finitely many minimal primes over J and hence

only finitely many minimal primes over I . We will denote them P1, . . . , Pk. If all Pi are

height two primes then there would only be finitely many maximal ideals over J . We

showed that J has infinite codimension, a contradiction. Hence at least one Pi is height

one. Without loss of generality we can assume that P1 has height one. We have that I ⊆ Pi

and since I is σ-stable we have that σ(I) ⊆ Pi. Thus σ must permute the prime ideals

P1, . . . , Pk and hence for some 1 ≤ n ≤ k we have that σn(P1) = P1. Then P1 is a σn-

stable height one prime. By Proposition 2.5.8 there are no σn-stable height one primes, a

contradiction.

From Proposition 2.5.9 and Proposition 2.5.10 we can conclude that the skew Laurent

polynomial ring A[z, z−1; σ] does not satisfy the Dixmier-Moeglin equivalence.

Corollary 2.5.11. Let a, b ∈ R, let A = C[x, y] and let σ : A → A and τ : C2 → C2 be

defined as in Definition 2.5.1. If a > (5+2
√

5)(1+|b|)2
4

then GKdim(A[z, z−1; σ]) = ∞.

Proof. This follows directly from Proposition 2.5.10, Proposition 2.5.9 and Theorem

2.4.26.



Chapter 3

Structure theory for low growth skew
Laurent polynomial rings

3.1 Structure theory for low growth skew Laurent poly-
nomial rings

In this section we will consider the skew (twisted) Laurent polynomial ring,

C[x1, . . . , xd][z, z
−1; σ] where σ is a C-algebra automorphism of C[x1, . . . , xd].

Let A = C[x1, . . . , xd] and let σ : A → A be a C-algebra automorphism of A. We

assume that the (d+1)-dimensional vector space V = C⊕Cx1⊕· · ·⊕Cxd has the property

that σ(V ) = V . Then σ is a C-linear automorphism of V such that for 1 ≤ i, j ≤ d,

σ(xi) = bi +
d∑

j=1

cijxj, and σ(1) = 1,

for some cij ∈ C. Thus the matrix of σ relative to the basis {1, x1, . . . , xd} is the (d + 1)×
(d + 1) matrix

Mσ =




1 b1 . . . bd

0 c11 . . . cd1

0 c12 . . . cd2

...
...

...
...

0 c1d . . . cdd




.

32
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The matrix Mσ is similar to a matrix in Jordan form. Let this matrix be denoted

Jσ =




J1(λ1)

J2(λ2)
. . .

Jk(λk)




.

where we let λi be the eigenvalue of the Jordan block Ji(λi) with λk = 1 and we let the

size of each Jordan block be mi. So we have that
∑k

i=1 mi = d + 1. Then A[z, z−1; σ] is a

skew Laurent polynomial ring.

Let G denote the multiplicative group generated by λ1, . . . , λk where each λi ∈ C∗
with λi an eigenvalue of Mσ. Then G is a finitely generated abelian group and hence

G ∼= Zr ⊕ T , with T a finite abelian group.

Definition 3.1.1. A subspace W of V is σ-irreducible if W cannot be decomposed as a

direct sum W1 ⊕W2 of proper σ-stable subspaces of W .

Example 3.1.2. Suppose we have the skew Laurent polynomial ring A = C[x, y][z, z−1; σ]

where σ is a C-algebra automorphism of A defined by σ(x) = x + y and σ(y) = y + 1.

Then the matrix of σ relative to the basis {1, x, y} is the matrix in Jordan form

Mx =




1 1 0

0 1 1

0 0 1


 .

Now consider the polynomial f =
(

y
2

)− x = 1
2
y2 − 1

2
y − x ∈ C[x, y].

σ(f) =
1

2
(y + 1)2 − 1

2
(y + 1)− (x + y) = f.

Thus f is fixed by σ. We have that f =
(

y
2

)− x and x =
(

y
2

)− f so C[f, y] ⊆ C[x, y] and

C[x, y] ⊆ C[f, y] so the two rings are equal.

Suppose that W = C⊕Cf⊕Cy. Let W1 = Cf and W2 = C⊕Cy. Then σ(W1) = W1

and σ(W2) = W2. Thus W1 and W2 are σ-stable subspaces of W so W is not σ-irreducible.

Our main goal is to prove a structure theorem for skew polynomial rings. This is The-

orem 3.1.8, which appears at the end of this section. To prove Theorem 3.1.8 we will need

the following results Lemma 3.1.3, Proposition 3.1.5, Lemma 3.1.6 and Theorem 3.1.7.
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For Lemma 3.1.3 and Theorem 3.1.7 let A = C[y1, . . . , yd] be a finitely generated C-

algebra, let V = C ⊕ Cy1 ⊕ · · · ⊕ Cyd and let σ be a C-algebra automorphism of A such

that σ(V ) = V and the matrix of σ relative to the basis {1, y1, . . . , yd} is similar to Jσ. Let

the group of eigenvalues of Jσ be G = 〈λ1, . . . , λk〉.
Let e = y1 · · · yd and suppose that σ(yi) = λiyi. We have that every element of

A[z, z−1; σ] is of the form
∑m2

i=−m1
aiz

i for some m1,m2 ∈ N and ai ∈ A. Since every λi

is nonzero we have

e

m2∑
i=−m1

aiz
i =

m2∑
i=−m1

aiz
iσ−i(e) =

m2∑
i=−m1

ai(λ1 · · ·λd)
−izie ∈ A[z, z−1; σ]e

and
m2∑

i=−m1

aiz
ie =

m2∑
i=−m1

aiσ
i(e)zi = e

m2∑
i=−m1

ai(λ1 · · ·λd)
izi ∈ eA[z, z−1; σ].

Hence eA[z, z−1; σ] ⊆ A[z, z−1; σ]e and A[z, z−1; σ]e ⊆ eA[z, z−1; σ] so e is a normal

element.

Now let S = {en|n ≥ 0} be the multiplicative set of nonnegative powers of e in

A[z, z−1; σ]. Since A is a commutative ring with 1 and e is not nilpotent, e becomes a unit

in S−1A. Then the ring S−1A is the localization of A at S and we define the ring

Ae[z, z
−1; σ] := S−1A[z, z−1; σ] = C[y±1

1 , . . . , y±1
d ][z, z−1; σ].

This gives us the inclusion map A ↪→ Ae.

Lemma 3.1.3. Let A = C[y1, . . . , yd] be a finitely generated C-algebra and let σ be a C-

algebra automorphism of A such that σ(V ) = V and the matrix of σ relative to the basis

{1, y1, . . . , yd} is similar to Jσ with all Jordan blocks of size one. If G is torsion free then

there exists a normal element e ∈ A and we have that

Ae[z, z
−1; σ] ∼= C[u±1

1 , . . . , u±1
m ][z, z−1; σ][t±1

1 , . . . , t±1
d−m],

such that σ(ui) = µiui and µ1, . . . , µm generate a free abelian group of rank m.

Proof. Since every Jordan block of Jσ is of size one and G = 〈λ1, . . . , λk〉 such that

λk = 1 we must have that k = d + 1. Also we must have that V has a basis consisting of

eigenvectors of Jσ. Let y1, . . . , yd, yd+1 = 1 be this basis. Then σ(yi) = λiyi with λi ∈ C∗.
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We can identify Zd with the group generated by y±1
1 , . . . , y±1

d under multiplication and

by assumption we have that G = 〈λ1, . . . , λk〉 is torsion free. Then we have the surjective

map

φ : Zd → G given by φ(yi) = λi for 1 ≤ i ≤ d.

Since G is free we have that the short exact sequence

0 → ker φ → Zd → G → 0

splits. Therefore there exists a section s : G → Zd such that φ ◦ s is the identity on G and

Zd = ker φ⊕ s(G).

Let m be the rank of G and let µ1, . . . , µm be a basis for G. We have that ker φ ∼= Zd−m,

so let t1, . . . , td−m be a basis for ker φ. We have that each ti = y
αi,1

1 · · · yαi,d

d for some

αi,j ∈ Z with i ≤ d and

σ(ti) = σ(y
αi,1

1 · · · yαi,d

d ) = λ
αi,1

1 · · ·λαi,d

d y
αi,1

1 · · · yαi,d

d = y
αi,1

1 · · · yαi,d

d = ti.

So each ti is σ-fixed.

Since Zd = ker φ ⊕ s(G) we have that t±1
i , . . . , t±1

d−m, s(µ1)
±1, . . . , s(µm)±1 is a basis

for 〈y±1
1 , . . . , y±1

d 〉. If we let ui = s(µi) then we have that

Ae[z, z
−1; σ] = C[y±1

1 , . . . , y±1
d ][z, z−1; σ]

= C[t±1
1 , . . . , t±1

d−m, u±1
1 , . . . , u±1

m ][z, z−1; σ]

= C[u±1
1 , . . . , u±1

m ][z, z−1; σ][t±1
1 , . . . , t±1

d−m].

such that σ(ui) = µiui and µ1, . . . , µm generate a free abelian group of rank m.

We demonstrate this case in the following example.

Example 3.1.4. Let A = C[y1, y2] and let σ be C-algebra automorphism of A given by

σ(yi) = λiyi such that λi is not a root of unity and λ2
1 = λ2. Then the matrix of σ relative

to the basis {1, y1, y2} is the matrix in Jordan form

Mλ =




λ1 0 0

0 λ2 0

0 0 1


 ,
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and G = 〈λ2〉 since λ2
2 = λ1. If we let e = y1y2 then Ae[z, z

−1; σ] = C[y±1
1 , y±1

2 ][z, z−1; σ].

Now consider the rational function f :=
y2
1

y2
∈ Ae. We have that

σ(f) = σ

(
y2

1

y2

)
=

λ2
1y

2
1

λ2y2

=
y2

1

y2

= f.

Thus f is fixed by σ.

As above we can identify Z2 with the group generated by y±1
1 , y±1

2 under multiplication.

Then we have the surjective map

φ : Z2 → G given by φ : yi 7→ λi.

We have the relation (λ1)
2(λ2)

−1 = 1 so ker φ is nontrivial. This relation corresponds to f

so f is a basis for ker φ. Since G is free, the short exact sequence

0 → ker φ → Z2 → G → 0

splits and there exists a section s : G → Z2 such that s(λ2) = y2 and Z2 = ker φ ⊕ s(G).

Then f±1, y±1
2 is a basis for 〈y±1

1 , y±1
2 〉 and

Ae[z, z
−1; σ] = C[f±1, y±1

2 ][z, z−1; σ] = C[y±1
2 ][z, z−1; σ][f±1].

Let A = C[w1, . . . , wm−1] be a finitely generated C-algebra with m > 2 and let σ be

a C-algebra automorphism of A such that σ(w1) = w1 + 1 and σ(wi) = wi + wi−1 for

2 ≤ i ≤ m − 1. Then we can represent σ by the m × m matrix relative to the basis

{1, w1, . . . , wm−1} as

M1 =




1 1

1 1
. . . . . .

1 1

1




.

Proposition 3.1.5. Let A = C[w1, . . . , wm−1] be a finitely generatedC-algebra with m > 2

and let σ be a C-algebra automorphism of A such that the matrix of σ relative to the basis

{1, w1, . . . , wm−1} is the m×m matrix M1 with skew Laurent polynomial ring A[z, z−1; σ].

Then for 2 ≤ k ≤ m− 1 the polynomial

p =

(
w1

k

)
+

k−1∑
i=1

(−1)i wi+1

k − 1

(
w1 − (i + 1)

k − (i + 1)

)
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is σ-fixed.

Proof. For this proof we will make use of Pascal’s rule,
(

n
k

)
+

(
n

k+1

)
=

(
n+1
k+1

)
.

σ(p) = σ

((
w1

k

)
+

k−1∑
i=1

(−1)i wi+1

k − 1

(
w1 − (i + 1)

k − (i + 1)

))

=

(
w1 + 1

k

)
+

k−1∑
i=1

(−1)i wi+1 + wi

k − 1

(
w1 − i

k − (i + 1)

)

=

(
w1 + 1

k

)
− w1

k − 1

(
w1 − 1

k − 2

)
− w2

k − 1

(
w1 − 1

k − 2

)

+
k−1∑
i=2

(−1)i wi+1 + wi

k − 1

(
w1 − i

k − (i + 1)

)

=

(
w1

k

)
− w2

k − 1

(
w1 − 1

k − 2

)
+

w2

k − 1

(
w1 − 2

k − 3

)

+
k−1∑
i=2

(−1)i wi+1

k − 1

((
w1 − i

k − (i + 1)

)
−

(
w1 − (i + 1)

k − (i + 2)

))

=

(
w1

k

)
− w2

k − 1

(
w1 − 2

k − 2

)
+

k−1∑
i=2

(−1)i wi+1

k − 1

(
w1 − (i + 1)

k − (i + 1)

)

=

(
w1

k

)
+

k−1∑
i=1

(−1)i wi+1

k − 1

(
w1 − (i + 1)

k − (i + 1)

)
= p.

Proposition 3.1.5 gives us that every Jordan block of size m ≥ 2 with eigenvalue 1 has

m− 2 σ-fixed elements. We will denote them as follows. For 1 ≤ k ≤ m− 2 let

vk :=

(
w1

k + 1

)
+

k−1∑
i=1

(−1)i wi+1

k

(
w1 − (i + 1)

k − 1

)
+ (−1)k wk+1

k
. (3.1)

Lemma 3.1.6. If we define vk as above then the rings A = C[w1, . . . , wm−1] and B =

C[w1, v1, . . . , vm−2] are equal.

Proof. We will show that A ⊆ B and B ⊆ A. Since w1 ∈ A ∩ B to prove this lemma it

suffices to show that vk ∈ A for 1 ≤ k ≤ m− 2 and wi ∈ B for 2 ≤ i ≤ m− 1. From the

equations in (3.1) for 1 ≤ k ≤ m− 2 we have that vk can be written as a polynomial in A.

Thus B ⊆ A.
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We will show by induction starting with i = 2 that each variable wi can be expressed

as some polynomial fi(w1, v1, . . . , vi−1) ∈ B. Setting i = 2 in (3.1) gives v1 =
(

w1

2

)− w2,

which we can rearrange to get w2 =
(

w1

2

)− v1 = f2. Now assume that for all i ≤ s that wi

can be represented as an element in B which we will denote by fi. From our equations in

(3.1) we have,

vs :=

(
w1

s + 1

)
+

s−1∑
i=1

(−1)iwi+1

s

(
w1 − (i + 1)

s− 1

)
+

(−1)sws+1

s
, (3.2)

and by our assumption, for i ≤ 2, wi can be written as fi. Thus (3.2) becomes

vs =

(
w1

s + 1

)
+

s−1∑
i=1

(−1)ifi+1

s

(
w1 − (i + 1)

s− 1

)
+

(−1)sws+1

s
,

which after rearranging gives

ws+1 = s(−1)s

(
vs −

(
w1

s + 1

)
−

s−1∑
i=1

(−1)ifi+1

s

(
w1 − (i + 1)

s− 1

))
,

which is an element in B. By Proposition 3.1.5, m − 2 such vk’s exist. Hence for 2 ≤
i ≤ m − 1, wi can be represented by a corresponding fi(w1, v1, . . . , vi−1) ∈ B. Hence

A ⊆ B.

Theorem 3.1.7. Let A = C[x1, . . . , xd] be a finitely generated C-algebra and let σ be a

C-algebra automorphism of A such that σ(V ) = V and the matrix of σ relative to the

basis {1, x1, . . . , xd} is similar to Jσ. If G is torsion free then there exists a normal element

e ∈ A such that

Ae[z, z
−1; σ] ∼= C[y±1

1 , . . . , y±1
m ][z, z−1; σ][t±1

1 , . . . , t±1
p ],

where d = m + p and all the Jordan blocks of Jσ are of size one or

Ae[z, z
−1; σ] ∼= C[y±1

1 , . . . , y±1
m , x][z, z−1; σ][t±1

1 , . . . , t±1
p ],

where d = m + p + 1 and Jσ has at least one Jordan block of size two or more and

σ(yi) = λiyi, σ(x) = x + 1 and λ1, . . . , λm generate a free abelian group of rank m.
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Proof. We have that V = C⊕Cx1⊕· · ·⊕Cxd can also be expressed as V = V1⊕· · ·⊕Vk

where each Vi corresponds to Ji(λi) and the size mi of Ji(λi) equals the dimension of Vi.

The case where all the Jordan blocks of Jσ are of size one is proved in Lemma 3.1.3 so

now we will show the case where at least one Jordan block of Jσ is of size two or more.

We will prove this case by induction on the number of Jordan blocks. First we will show

that the theorem holds for one Jordan block V1 ⊆ V of size m. Then we will show that

the theorem holds for j + 1 Jordan blocks V1 ⊕ · · · ⊕ Vj+1 ⊆ V where j + 1 ≤ k by first

considering the case where j + 1 = k and then considering the case where j + 1 < k.

Now we will show that the theorem holds for one Jordan block V1 ⊆ V . Let V1 have

dimension m and let {y0, . . . , ym−1} be a basis for V1 such that for some λ ∈ C∗, σ(y0) =

λy0 and σ(yi) = λyi + yi−1 for 1 ≤ i ≤ m−1. Thus the matrix of σ|V1
relative to the given

basis is the m×m matrix in Jordan form

Mσ|V1
=




λ 1

λ 1
. . . . . .

λ 1

λ




.

Then we have the C-subalgebra

A1 = C[y0, . . . , ym−1] ⊆ A.

We may assume that dim(V1) ≥ 2 since the case where dim(V1) = 1 is proved in

Lemma 3.1.3. We have that the normal element y0 is an eigenvector of V1 so we can let

e = y0 and form A1e [z, z
−1; σ] by localizing A1 at S = {en|n ≥ 0} to give

A1e [z, z
−1; σ] = C[y±1

0 , y1, . . . , ym−1][z, z
−1; σ].

We can make the substitution wi = λiyi

y0
for 1 ≤ i ≤ m− 1. Then

σ(w1) = σ

(
λy1

y0

)
=

λ(λy1 + y0)

λy0

=
λy1

y0

+ 1 = w1 + 1,

and for 2 ≤ i ≤ m− 1

σ(wi) = σ

(
λiyi

y0

)
=

λi(λyi + yi−1)

λy0

=
λiyi

y0

+
λi−1yi−1

y0

= wi + wi−1.
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Since the substitution above only involves inversion of y0 we have that the rings

C[y±1
0 , y1, . . . , ym−1] and C[y±1

0 , w1, . . . , wm−1] are equal. From Proposition 3.1.5 and

Lemma 3.1.6 we have that

A1e [z, z
−1; σ] = C[y±1

0 , w1, . . . , wm−1][z, z
−1; σ]

= C[y±1
0 , w1, v1, . . . , vm−2][z, z

−1; σ]

= C[y±1
0 , w1][z, z

−1; σ][v1, . . . , vm−2].

Since v1, . . . , vm−2 are σ-fixed and central elements are normal we can let e′ = y0v1 · · · vm−2

and form Ae′ [z, z
−1; σ] by localizing A1 at S = {(e′)n|n ≥ 0} to give

Ae′ [z, z
−1; σ] = C[y±1

0 , w1][z, z
−1; σ][v±1

1 , . . . , v±1
m−2].

The result follows with Ae := Ae′ , x := w1, ti := vi and p := m− 2.

Now assume that the theorem holds for i ≤ j Jordan blocks and let W = V1⊕ · · · ⊕ Vj

such that each Vi is σ-stable and σ-irreducible. Let Mσ|W
be the matrix in Jordan form with

j Jordan blocks by restricting σ to W and let B ⊆ A be the C-subalgebra generated by W .

Then there exists an e ∈ B that is normal such that we can form Be[z, z
−1; σ] by localizing

B at S = {en|n ≥ 0} to give

Be[z, z
−1; σ] ∼= C[y±1

1 , . . . , y±1
m ][z, z−1; σ][t±1

1 , . . . , t±1
q ],

where dim(W ) = m + q and all the Jordan blocks of Mσ|W
are of size one or

Be[z, z
−1; σ] ∼= C[y±1

1 , . . . , y±1
m , x][z, z−1; σ][t±1

1 , . . . , t±1
q ],

where dim(W ) = m + q + 1 and Mσ|W
has at least one Jordan block of size two or more

and σ(yi) = λiyi and σ(x) = x + 1 such that λ1, . . . , λm generate a free abelian group of

rank m.

Now we will show that the theorem holds for j + 1 Jordan blocks. Suppose first that

j + 1 = k and dim(Vj+1) = n. Since the k-th Jordan block of Jσ has an eigenvalue of one,

{1, w1, . . . , wn−1} is a basis for Vj+1 and the matrix of σ|Vj+1
relative to the given basis is

the n× n matrix M1 with σ(w1) = w1 + 1 and σ(wi) = wi + wi−1 for 2 ≤ i ≤ n− 1.

If n = 1 then Vj+1 is generated by {1} so Ae[z, z
−1; σ] = Be[z, z

−1; σ]. If n ≥ 2 then

by Proposition 3.1.5 and Lemma 3.1.6 we have that

C[w1, w
±1
2 . . . , w±1

n−1] = C[w1, v
±1
1 , . . . , v±1

n−2].
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Since v1, . . . , vn−2 are σ-fixed and central elements are normal we can let e′ = ev1 · · · vm−2

and form Ae′ [z, z
−1; σ] by localizing A at S = {(e′)n|n ≥ 0}. This gives us that

Ae′ [z, z
−1; σ] ∼= Be[w1][z, z

−1; σ][v±1
1 , . . . , v±1

n−2].

If Mσ|W
has all Jordan blocks of size one then

Ae′ [z, z
−1; σ] ∼= C[y±1

1 , . . . , y±1
m , w1][z, z

−1; σ][v±1
1 , . . . , v±1

n−2, t
±1
1 , . . . , t±1

q ],

and the result follows with Ae := Ae′ , x := w1 and p := q + n− 2. If

Be[z, z
−1; σ] ∼= C[y±1

1 , . . . , y±1
m , x][z, z−1; σ][t±1

1 , . . . , t±1
q ],

we have that σ(x) = x + 1 and σ(w1) = w1 + 1. Let t0 := x− w1 and let e′′ = e′t0. Then

we have that t0 is σ-fixed and e′′ is normal so we can form Ae′′ [z, z
−1; σ] by localizing A at

S = {(e′′)n|n ≥ 0}. This gives us that

Ae′′ [z, z
−1; σ] ∼= C[y±1

1 , . . . , y±1
m , x][z, z−1; σ][t±1

0 , v±1
1 , . . . , v±1

n−2, t
±1
1 , . . . , t±1

q ],

and the result follows with Ae := Ae′′ and p := q + n− 1.

Now suppose j + 1 < k and let {y0, . . . , yn−1} be a basis for Vj+1. Then the matrix of

σ|Vj+1
relative to the given basis is the n× n matrix Mσ|Vj+1

such that σ(y0) = λj+1y0 and

σ(yi) = λj+1yi + yi−1 for 1 ≤ i ≤ n− 1.

Consider the group H = 〈λ1, . . . , λm, λj+1〉. H is a subgroup of G and hence a free

abelian group. Let {µ1, . . . , µr} be a basis for H where r = m or m + 1. Let Aj+1 ⊆ A be

the C-subalgebra generated by W ⊕ Vj+1.

As above we have that

C[y±1
0 , y1, y

±1
2 , . . . , y±1

n−1] = C[y±1
0 , w1, w

±1
2 , . . . , w±1

n−1] = C[y±1
0 , w1, v

±1
1 , . . . , v±1

n−2].

We can let e′ = ey0v1 · · · vm−2 and since e is normal we can form Be′ ⊂ Ae by localizing

Aj+1 at S = {(e′)n|n ≥ 0}. It follows from Lemma 3.1.3, Proposition 3.1.5 and Lemma

3.1.6 that if Mσ|W
has all Jordan blocks of size one then we have

Be′ [z, z
−1; σ] ∼= Be[y

±1
0 , w1, v

±1
1 , . . . , v±1

n−2][z, z
−1; σ]

∼= C[u±1
1 , . . . , u±1

r , w1][z, z
−1; σ][v±1

1 , . . . , v±1
n−2, t

±1
1 , . . . , t±1

q ],
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such that σ(ui) = µiui and µ1, . . . , µr generate a free abelian group of rank r, and the result

follows.

If Mσ|W
has at least one Jordan block of size two or more then we have

Be′ [z, z
−1; σ] ∼= Be[y

±1
0 , w1, v

±1
1 , . . . , v±1

n−2][z, z
−1; σ]

∼= C[u±1
1 , . . . , u±1

r , x][z, z−1; σ][v±1
1 , . . . , v±1

n−2, t
±1
0 , t±1

1 , . . . , t±1
q ],

such that σ(ui) = µiui and u1, . . . , ur generate a free abelian group of rank r and t0 is

defined as in the j + 1 = k case and the result follows.

For Theorem 3.1.8 let n ∈ N and let the matrix in Jordan form similar to the matrix

of σn relative to the basis {x1, . . . , xd} be denoted Jσn . Let A[zn, z−n; σn] be a subring of

A[z, z−1; σ] and let G = 〈λ1, . . . , λk〉 be as above.

Theorem 3.1.8. Let A = C[x1, . . . , xd] be a finitely generated C-algebra and let σ be a

C-algebra automorphism of A. There exists an n ∈ N and a normal element e ∈ A such

that

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m ][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

where d = m + p and all the Jordan blocks of Jσn are of size one or

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m , x][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

where d = m + p + 1 and Jσn has at least one Jordan block of size two or more and

σn(yi) = λn
i yi, σ

n(x) = x + 1 and λn
1 , . . . , λ

n
m generate a free abelian group of rank m.

Proof: Let σ be a C-algebra automorphism of A = C[x1, . . . , xd]. Suppose the group of

eigenvalues of Mσ generated by λ1, . . . , λk is not torsion free. We have that G ∼= Zr ⊕ T

with

T = ⊕s
i=1Z/niZ for some ni, s ∈ N.

Let n = lcm(n1, . . . , ns). Then 〈λn
1 , . . . , λ

n
k〉 is now a torsion free abelian group. If G is

already a torsion free abelian group then n = 1. Since σn is a C-algebra automorphism of

A the subring A[zn, z−n; σn] ⊆ A[z, z−1; σ] satisfies the hypotheses of Theorem 3.1.7 so

there is a normal element e ∈ A, such that Ae can be formed by inverting powers of e and

we have that
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A[z, z−1; σ]

⊆

A[zn, z−n; σn] ↪→ Ae[z
n, z−n; σn],

where

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m ][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

if all the Jordan blocks of Jσn are of size one or

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m , x][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

if Jσn has at least one Jordan block of size two or more and σn(yi) = λn
i yi, σ

n(x) = x + 1

and λn
1 , . . . , λ

n
m generate a free abelian group of rank m and the result follows.



Chapter 4

A Dixmier-Moeglin equivalence for skew
Laurent polynomial rings

Our goal for this chapter is to use the structure theorems of low growth skew Laurent

polynomial rings, Theorem 3.1.7 and Theorem 3.1.8 from the previous chapter, to show

that low growth skew Laurent polynomial rings have a Dixmier-Moeglin equivalence.

4.1 Simplicity of certain skew Laurent polynomial rings

For this section we will let A1 = C[y±1
1 , . . . , y±1

m ] and let A2 = C[y±1
1 , . . . , y±1

m , x] To prove

the Dixmier-Moeglin equivalence we will first have to prove the following result about the

simplicity of A1[z, z
−1; σ] and A2[z, z

−1; σ].

Proposition 4.1.1. Let σ : A2 → A2 be theC-algebra automorphism given by σ(x) = x+1

and σ(yi) = λiyi where λ1, . . . , λm ∈ C∗ generate a free abelian group of rank m. Let σ̂

denote the restriction of σ to A1. Then A1[z, z
−1; σ̂][t±1

1 , . . . , t±1
p ] and

A2[z, z
−1; σ][t±1

1 , . . . , t±1
p ] are simple if and only if p = 0.

Proof. We first handle the A2[z, z
−1; σ][t±1

1 , . . . , t±1
p ] case. Assume p = 0 and that

A2[z, z
−1; σ] is not simple. Then we have that A2 is not σ-simple by Proposition 2.2.12. For

the ring C[y1, . . . , ym, x] let us fix a lexicographical monomial order x > y1 > · · · > ym.

We write m <lex m′ if m is smaller than m′ in the monomial order.

44
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Let I be a proper nonzero σ-stable ideal of A2. Then I ∩C[y1, . . . , ym, x] is nonzero as

well by clearing denominators. Let a ∈ I ∩C[y1, . . . , ym, x] 6= (0) be the nonzero element

with the smallest possible leading monomial in the monomial ordering. Let yi1
1 · · · yim

m xt

denote this leading monomial. Then

a = yi1
1 · · · yim

m xt +
∑

cj1,...,jm,s · yj1
1 · · · yjm

m xs,

where the sum is over all monomials such that yj1
1 · · · yjm

m xs <lex yi1
1 · · · yim

m xt. We have

that σ(a) − λi1
1 · · ·λim

m a ∈ I and the coefficient of yi1
1 · · · yim

m xt in σ(a) − λi1
1 · · ·λim

m a is

zero. If σ(a) − λi1
1 · · ·λim

m a is nonzero then we have found an element in I with a smaller

leading monomial in the monomial ordering, a contradiction.

If t > 0 we have that

σ(a) =
t∑

n=1

(
t

n

)
λi1

1 · · ·λim
m yi1

1 · · · yim
m xt +

∑
cj1,...,jm,sλ

j1
1 · · ·λjm

m yj1
1 · · · yjm

m (x + 1)s.

If ci1,...,im,n = 0 for n < t then the monomial yi1
1 · · · yim

m xn will have a nonzero coefficient

in σ(a) − λi1
1 · · ·λim

m a = 0, a contradiction. If ci1,...,im,n 6= 0 for some n < t then let

n′ be the maximal n such that ci1,...,im,n′ is nonzero. Then we have that the coefficient of

yi1
1 · · · yim

m xn′ in σ(a)− λi1
1 · · ·λim

m a is
(

t

n′

)
λi1

1 · · ·λim
m + ci1,...,im,n′λ

i1
1 · · ·λim

m − ci1,...,im,n′λ
i1
1 · · ·λim

m 6= 0,

a contradiction.

If t = 0 we have that

σ(a)− λi1
1 · · ·λim

m a =
∑

cj1,...,jm,s(λ
j1
1 · · ·λjm

m − λi1
1 · · ·λim

m )yj1
1 · · · yjm

m .

If σ(a)− λi1
1 · · ·λim

m a = 0 then λj1
1 · · ·λjm

m = λi1
1 · · ·λim

m for all yj1
1 · · · yjm

m <lex yi1
1 · · · yim

m .

Since λ1, . . . , λm is a free abelian group of rank m it must be the case that jk = ik for

1 ≤ k ≤ m. Thus a has only one term, yi1
1 · · · yim

m , which is a unit in A1 and I is not a

proper ideal, a contradiction.

Note that if t = 0 then a ∈ I ∩C[y±1
1 , . . . , y±1

m ]. Thus the argument above shows that if

p = 0 then A1[z, z
−1; σ̂][t±1

1 , . . . , t±1
p ] is simple.

Let A1[z, z
−1; σ̂][t±1

1 , . . . , t±1
p ] and A2[z, z

−1; σ][t±1
1 , . . . , t±1

p ] be simple and assume

p > 0. Consider tp − a with a ∈ C∗. Then σ(tp − a) = tp − a and σ̂(tp − a) = tp − a
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so (tp − a) is a proper nonzero σ-stable ideal of A2[t
±1
1 , . . . , t±1

p ] and a proper nonzero σ̂-

stable ideal of A1[z, z
−1; σ̂][t±1

1 , . . . , t±1
p ]. Thus A1[t

±1
1 , . . . , t±1

p ] and A2[t
±1
1 , . . . , t±1

p ] are

not σ̂-simple and σ-simple respectively and the result follows from Proposition 2.2.12.

4.2 A Dixmier-Moeglin equivalence for skew Laurent poly-
nomial rings

For all of this section we will assume that A = C[x1, . . . , xd] is a finitely generated C-

algebra and that σ is aC-algebra automorphism of A. We will let Jσn be the (d+1)×(d+1)

matrix in Jordan form that is similar to the matrix Mσn relative to the basis {1, x1, . . . , xd}
such that the group of eigenvalues of Jσn , 〈λn

1 , . . . , λ
n
k〉, is torsion free. Then from Theorem

3.1.8 of the previous chapter we know there is an n ∈ N and a normal element e ∈ A such

that Ae can be formed by inverting powers of e and we have that

A[z, z−1; σ]

⊆

A[zn, z−n; σn] ↪→ Ae[z
n, z−n; σn],

where

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m ][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

if all the Jordan blocks of Jσn are of size one or

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m , x][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

if Jσn has at least one Jordan block of size two or more and σn(yi) = λn
i yi, σ

n(x) = x + 1

and λn
1 , . . . , λ

n
m generate a free abelian group of rank m.

In this section we will determine for what σ do we have that (0) is a primitive, locally

closed and rational prime in each of A[z, z−1; σ], A[zn, z−n; σn] and Ae[z
n, z−n; σn]. As

before we let A1 = C[y±1
1 , . . . , y±1

m ] and let A2 = C[y±1
1 , . . . , y±1

m , x].

Remark 4.2.1. We have that C is an uncountable field and A[z, z−1; σ], A[zn, z−n; σn] and

Ae[z
n, z−n; σn] are all finitely generated Noetherian C-algebras. Thus they all satisfy the

Nullstellensatz by Proposition 2.4.23.
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Theorem 4.2.2. Let Ae[z
n, z−n; σn] be as above. Then the following are equivalent.

1. Ae[z
n, z−n; σn] ∼= A1[z

n, z−n; σn] or Ae[z
n, z−n; σn] ∼= A2[z

n, z−n; σn].

2. Ae[z
n, z−n; σn] is simple.

3. Ae[z
n, z−n; σn] is primitive.

4. (0) is a rational prime.

5. (0) is locally closed in Spec(Ae[z
n, z−n; σn]).

Proof. Since A1[z
n, z−n; σn] ⊆ A1[z, z

−1; σ] and A2[z
n, z−n; σn] ⊆ A2[z, z

−1; σ]. It fol-

lows from Proposition 4.1.1 that (1) ⇔ (2) .

(2) ⇒ (3) This follows from 2.1.6.

(3) ⇒ (4) If Ae[z
n, z−n; σn] is primitive then (0) is a primitive ideal and hence a rational

prime by Lemma 2.4.21.

To prove (4) ⇒ (1), we will prove the contrapositive. Assume Ae[z
n, z−n; σn] 6∼= A1[z

n, z−n; σn]

or 6∼= A2[z
n, z−n; σn]. By Theorem 3.1.7 and Theorem 3.1.8 we have that

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m ][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

if all the Jordan blocks of Jσn are of size one or

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m , x][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

if Jσn has at least one Jordan block of size two or more. This means that p must be

nonzero and hence Ae has a σn-fixed element tp ∈ Ae. Thus tp is in the center of

Fract(Ae[z
n, z−n; σn]/(0)) and is transcendental over C. Hence (0) is not a rational prime.

(5) ⇒ (3) This follows from Lemma 2.4.21.

(2) ⇒ (5) If Ae[z
n, z−n; σn] is simple then the only prime ideal of Ae[z

n, z−n; σn] is (0).

Hence Ae[z
n, z−n; σn] does not have any height one primes and thus (0) is locally closed

in Spec(Ae[z
n, z−n; σn]) by Proposition 2.4.17.

We can now extend this equivalence to the case without the localization at e.

Theorem 4.2.3. Let Ae[z
n, z−n; σn], Jσn and A[zn, z−n; σn] be as above. Then we have

that the following are equivalent.

1. The eigenvalues of Jσn form a free abelian group of rank m and

Ae[z
n, z−n; σn] ∼= A1[z

n, z−n; σn],
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if Jσn has all Jordan blocks of size one or

Ae[z
n, z−n; σn] ∼= A2[z

n, z−n; σn],

if Jσn has exactly one Jordan block of size two and the rest of size one.

2. A[zn, z−n; σn] is primitive.

3. (0) is a rational prime in A[zn, z−n; σn].

4. (0) is locally closed in Spec(A[zn, z−n; σn]).

Proof. (1) ⇒ (4) If (1) is true then by Theorem 4.2.2, Ae[z
n, z−n; σn] is simple. Sup-

pose P is a proper nonzero prime ideal of A[zn, z−n; σn]. P must contain a unit in the

ring Ae[z
n, z−n; σn] otherwise it would be a nonzero proper ideal of Ae[z

n, z−n; σn] which

would contradict the simplicity of Ae[z
n, z−n; σn]. Since e is a product of the eigenvectors

y1, . . . , yk of Jσn , a unit in Ae[z
n, z−n; σn] which is not a unit in A[zn, z−n; σn] is of the

form u = er = (y1 · · · yk)
r for some r ∈ N. Thus u ∈ P for some r ∈ N. Since P is a

prime ideal and e is a normal element at least one of the yr
i must be in P and hence yi ∈ P

for some 1 ≤ i ≤ k. Hence every prime ideal is contained in some (yi), all of which are

height one primes. Since there are only k of these prime ideals A[zn, z−n; σn] must have

only finitely many height one primes. Hence by Proposition 2.4.17, (0) is locally closed in

Spec(A[zn, z−n; σn]).

(4) ⇒ (2) ⇒ (3) This follows from Lemma 2.4.21.

(3) ⇒ (1) We will prove the contrapositive. Assume (1) is not true, by Theorem 3.1.7 and

Theorem 3.1.8 we have that

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m ][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

where all the Jordan blocks of Jσn are of size one or

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m , x][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

where Jσn has at least one Jordan block of size two or more. This means that p must be

nonzero and hence Ae has a σn-fixed element tp ∈ Ae. We also have that tp is an element

of Fract(A[zn, z−n; σn]/(0)). Thus tp is in the center of Fract(A[zn, z−n; σn]/(0)) and is

transcendental over C. Hence (0) is not a rational prime of A[zn, z−n; σn].
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Note that in the last proof if n = 1 then we would have that the equivalence holds for

A[z, z−1; σ], the desired result of this chapter. However this is not necessary. To show this

we will need Theorem 4.2.4, a result of Letzter, and we will need to consider the three

properties of the Dixmier-Moeglin equivalence for a ring R and prime ideal P which we

will denote:

(A) P is left primitive.

(B) P is rational.

(C) P is locally closed in Spec(R).

Theorem 4.2.4. (Letzter) Let k be a field and let R be a Noetherian k-algebra with finite

GK-dimension. Let S be a finite free extension of R and let P be a prime ideal of R. Then

we have the following two results:

(1) If R has either of the properties ((A) implies (B)) or ((B) implies (A)), then S has the

same property.

(2) R has the property ((A) implies (C)) if and only if S does.

Proof. (1) is proved in [22, Corollary 1.5] and (2) is proved in [22, Theorem 2.3] and [22,

Theorem 2.4].

Theorem 4.2.5. Let Ae[z
n, z−n; σn], A[zn, z−n; σn], A[z, z−1; σ] and Jσn be as above. Then

we have that the following are equivalent.

1. The eigenvalues of Jσn form a free abelian group of rank m and

Ae[z
n, z−n; σn] ∼= A1[z

n, z−n; σn],

if Jσn has all Jordan blocks of size one or

Ae[z
n, z−n; σn] ∼= A2[z

n, z−n; σn],

if Jσn has exactly one Jordan block of size two and the rest of size one.

2. A[z, z−1; σ] is primitive.

3. (0) is a rational prime in A[z, z−1; σ].

4. (0) is locally closed in Spec(A[z, z−1; σ]).
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Proof. We have that A[z, z−1; σ] is a finite free extension of A[zn, z−n; σn]. Since

A[zn, z−n; σn] has the property that if (0) is a primitive ideal then (0) is locally closed in

Spec(A[zn, z−n; σn]), from Theorem 4.2.4.2 this property also holds in A[z, z−1; σ]. Since

A[zn, z−n; σn] has the property that if (0) is a rational ideal then (0) is a primitive ideal,

from Theorem 4.2.4.1 this property also holds in A[z, z−1; σ]. From Theorem 4.2.3 (0) is a

rational ideal in A[zn, z−n; σn] if and only if (1) is true. Since we have that (4) ⇒ (2) ⇒ (3)

by Lemma 2.4.21 as before, the result follows.



Chapter 5

Applications of the Dixmier-Moeglin
result

5.1 Transcendence degree

In this section we will use the results of the previous chapter to determine for which A and

for which σ the skew Laurent polynomial ring A[z, z−1; σ] is simple. We will also deter-

mine the transcendence degree of the center of the quotient division ring of A[z, z−1; σ].

Remark 5.1.1. Let n ∈ N. Since Jσn is similar to (Jσ)n the Jordan blocks of Jσn and Jσ

have the same size. Therefore it is no loss of generality to replace σ by σn for our uses in

this chapter in determining the size of the Jordan blocks.

Theorem 5.1.2. Let d > 0, let A = C[x1, . . . , xd] be a finitely generated C-algebra and

let σ be a C-algebra automorphism of A such that the matrix of σ relative to the basis

{1, x1, . . . , xd} is similar to the matrix in Jordan form, Jσ. The skew Laurent polynomial

ring A[z, z−1; σ] is simple if and only if A = C[x] and Jσ =

(
1 1

0 1

)
.

Proof. We proved the reverse direction of this proof in Example 2.2.13. If A[z, z−1; σ] is

not primitive then it can not be simple. From Theorem 4.2.5 we have that A[z, z−1; σ] is

primitive if and only if there exists an n ∈ N such that (Jσ)n has at most one Jordan block

of size two and the rest of size one and hence Jσn has at most one Jordan block of size two

51
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and the rest of size one. If Jσn has an eigenvalue other than one or an eigenvalue of one that

does not correspond to the eigenvector 1 then there exists a y ∈ A such that σ(y) = λy.

Then (y) is a σ-stable ideal, so A[z, z−1; σ] is not simple. Thus Jσn has only one Jordan

block and it is of size two since d > 0. Thus A = C[x] and from Remark 5.1.1 it follows

that Jσ =

(
1 1

0 1

)
.

To determine the transcendence degree of the center of the quotient division ring of the

ring A[z, z−1; σ] we will need the following definitions.

Definition 5.1.3. A subset S of a field ` is algebraically independent over a subfield k if

the elements of S do not satisfy a non-trivial polynomial equation with coefficients in k.

Definition 5.1.4. The transcendence degree of a field extension `/k is the largest cardinal-

ity of an algebraically independent subset of ` over k. We denote this as tr.degk(`).

Let A = C[x1, . . . , xd] be a finitely generated C-algebra and let σ be a C-algebra au-

tomorphism of A such that the matrix of σ relative to the basis {1, x1, . . . , xd} is similar

to the matrix in Jordan form, Jσ. Let each Jordan block of Jσ, Ji(λi) have size mi for

1 ≤ i ≤ k and let χ : Ji(λi) → N be such that χ(mi) = 1 if mi ≥ 2 and χ(mi) = 0 if

mi = 1. Then we have the following theorem.

Theorem 5.1.5. Let A = C[x1, . . . , xd] be a finitely generated C-algebra and let σ be a

C-algebra automorphism of A such that the matrix of σ relative to the basis {1, x1, . . . , xd}
is similar to the matrix in Jordan form, Jσ. Then

tr.degC(Z(Fract(A[z, z−1; σ]))) =
k∑

i=1

(mi − 1)χ(mi) + k −m− 1.

Proof. First we will show that

tr.degC(Z(Fract(A[z, z−1; σ]))) ≥
k∑

i=1

(mi − 1)χ(mi) + k −m− 1.

From Theorem 3.1.8 we have an n ∈ N such that the subring A[zn, z−n; σn] ⊆ A[z, z−1; σ]

has a normal element e ∈ A such that Ae can be formed by inverting powers of e and we

have that
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A[z, z−1; σ]

⊆

A[zn, z−n; σn] ↪→ Ae[z
n, z−n; σn],

where

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m ][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

if all the Jordan blocks of Jσn are of size one or

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m , x][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

if Jσn has at least one Jordan block of size two or more and σn(yi) = λn
i yi, σ

n(x) = x + 1

and λn
1 , . . . , λ

n
m generate a free abelian group of rank m.

From Remark 5.1.1 it is no loss of generality to consider the Jordan blocks of Jσn

instead of Jσ.

There are k eigenvalues of Jσn but the rank of the group 〈λn
1 , . . . , λ

n
k〉 = m. Following

the proof of Theorem 3.1.7 this gives us k −m algebraically independent central elements

in Fract(A[z, z−1; σ]) transcendental over C. Thus

tr.degC(Z(Fract(A[z, z−1; σ]))) ≥ k −m.

From Proposition 3.1.5 and Lemma 3.1.6 we have that for every Jordan block of size

mi ≥ 3 we obtain mi − 2 algebraically independent nontrivial central elements in

Fract(A[z, z−1; σ]) transcendental over C. Since there are k Jordan blocks in Jσn we have

that

tr.degC(Z(Fract(A[z, z−1; σ]))) ≥
k∑

i=1

(mi − 2)χ(mi) + k −m.

Following the proof of Theorem 3.1.7, if there were two Jordan blocks of size two

or more then we obtained a central element in Fract(A[z, z−1; σ]) transcendental over C
algebraically independent from any of the other nontrivial central elements. Thus

tr.degC(Z(Fract(A[z, z−1; σ]))) ≥
k∑

i=1

(mi − 2)χ(mi) +
k∑

i=1

χ(mi)− 1 + k −m

=
k∑

i=1

(mi − 1)χ(mi) + k −m− 1.
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From Theorem 3.1.7 and Theorem 3.1.8 we have that

k∑
i=1

(mi − 1)χ(mi) + k −m− 1 = p.

If

tr.degC(Z(Fract(A[z, z−1; σ]))) > p

where

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m ][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

if all the Jordan blocks of Jσn are of size one or

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m , x][zn, z−n; σn][t±1

1 , . . . , t±1
p ],

if Jσn has at least one Jordan block of size two or more then it must be the case that

tr.degC(Z(Fract(A[z, z−1; σ]))) > 0

where

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m ][zn, z−n; σn],

if all the Jordan blocks of Jσn are of size one or

Ae[z
n, z−n; σn] ∼= C[y±1

1 , . . . , y±1
m , x][zn, z−n; σn],

if Jσn has at least one Jordan block of size two or more. From Theorem 4.2.5 we have that

in this case (0) is a rational prime of A[z, z−1; σ], but if

tr.degC(Z(Fract(A[z, z−1; σ]))) > 0

then this implies that Z(Fract(A[z, z−1; σ])) has at least one nontrivial central element

transcendental over C, this contradicts the rationality of (0).

5.2 Future directions

In this section we will provide a list of conjectures based on the results of Chapter 4 for

future work in this area.
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The full Dixmier-Moeglin equivalence result for universal enveloping algebras over C
holds for any prime ideal P , but the result obtained in Theorem 4.2.5 only holds for the

prime ideal (0). The proof of Theorem 4.2.5 should be adaptable to accommodate for all

prime ideals of the finitely generated C-algebra A. This gives the following conjecture.

Conjecture 5.2.1. Let A = C[x1, . . . , xd] be a finitely generated C-algebra and let σ be a

C-algebra automorphism of A such that σ restricts to a linear automorphism of the vector

space C + Cx1 + · · · + Cxd. Then for all prime ideals P of the skew Laurent polynomial

ring A[z, z−1; σ] the following are equivalent.

1. P is a primitive ideal of A[z, z−1; σ].

3. P is a rational prime in A[z, z−1; σ].

4. P is locally closed in Spec(A[z, z−1; σ]).

Also, the original Dixmier-Moeglin equivalence, Theorem 2.4.1, was obtained for uni-

versal enveloping algebras over C. In 1980 this result was extended by Irving and Small

[17] to other fields. However, the proof of Theorem 4.2.5 uses Proposition 2.4.23 and

Lemma 2.4.21 which require that the base field be uncountable. The theorem of Jordan

canonical forms for a matrix M over a field k holds assuming all the eigenvalues of M are

contained in k. This gives the following conjecture.

Conjecture 5.2.2. Let k be an uncountable field and let A = k[x1, . . . , xd] be a finitely

generated k-algebra and let σ be a k-algebra automorphism of A such that σ restricts to a

linear automorphism of the vector space C + Cx1 + · · · + Cxd and all the eigenvalues of

the matrix of σ relative to the basis {1, x1, . . . , xd} are contained in an algebraic extension

of k. Then for all prime ideals P of the skew Laurent polynomial ring A[z, z−1; σ] the

following are equivalent.

1. P is a primitive ideal of A[z, z−1; σ].

3. P is a rational prime in A[z, z−1; σ].

4. P is locally closed in Spec(A[z, z−1; σ]).

We referenced the result of Bell, Rogalski and Sierra in Section 2.4, Theorem 2.4.26.

Let k be an uncountable algebraically closed field of characteristic zero, let A be a finitely

generated commutative k-algebra and let σ be an automorphism of A. The theorem states

that if dim(A) ≤ 2 and GKdim(A[z, z−1; σ]) < ∞ then A[z, z−1; σ] satisfies the Dixmier-

Moeglin equivalence. Corollary 2.5.11 shows that the condition that the GKdim(A[z, z−1; σ])



CHAPTER 5. APPLICATIONS OF THE DIXMIER-MOEGLIN RESULT 56

be finite is necessary. Theorem 4.2.5 is a direct consequence of Theorem 2.4.26 if dim(A) ≤
2, but we have shown that the Dixmier-Moeglin equivalence holds for the prime (0) for any

d < ∞ and any C-algebra automorphism σ such that the (d + 1)-dimensional vector space

V = C⊕Cx1⊕· · ·⊕Cxd has the property that σ(V ) = V . These results can be combined

to give the following conjecture.

Conjecture 5.2.3. Let k be an uncountable algebraically closed field of characteristic zero

and let A be a finitely generated commutative k-algebra. Let σ be an automorphism of A.

If dim(A) < ∞ and GKdim(A[z, z−1; σ]) < ∞ then A[z, z−1; σ] satisfies the Dixmier-

Moeglin equivalence.
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