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ABSTRACT 

A common evidence network is a data structure that integrates evidence 

for relationships between genes from disparate data sources and across data 

types. It is an undirected weighted graph where nodes represent genes and 

edge weights are quantitative measures of confidence in the evidence linking two 

genes. We describe methods for producing edge weights for two evidence 

types: literature co-citation and similarity of Gene Ontology annotations. A tool 

was developed for identifying genes across multiple databases and consolidating 

selected annotations. Using gene synonym lists obtained from this tool, we 

extracted co-citations of genes from annotated biomedical abstracts as evidence. 

We developed a novel approach to interpreting the similarity of Gene Ontology 

terms annotated to genes. The method produces a score that quantitatively 

describes the similarity of Gene Ontology term annotations between two genes. 

We tested both methods on a set of genes sharing a common sequence feature. 
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CHAPTER 1: 

I I Investigating relations hips between genes 

Large sets of molecular biology data have become publicly available over 

the last 20 years. These include genome and protein sequences, gene 

expression, biomolecular interactions, protein structure, and biomedical literature. 

The integration and analysis of different data types from multiple data sources is 

required to bring cohesion to the vast amounts of information. At one time, 

biologists exclusively studied one gene or gene family at a time, due to the time 

and expense of laboratory techniques. The explosion of high-throughput 

experiments has resulted in a flood of data that cannot be directly absorbed or 

comprehended. To deal with this, one strategy is to develop computational tools 

that synthesize the data. 

The research field of bioinformatics is "the science of managing and 

analyzing biological data using advanced computing techniques.'" 

Bioinformatics began with the problem of identifying genes in genomic sequence 

data, and moved on to elucidating the function of gene products2. The focus is 

now shifting to the problem of fitting individual pieces of information together to 

discover how systems work as a whole3. Of particular interest is data, or 

evidence, that supports hypothesized relationships between genes4. 

A relationship between a pair of genes could be one of many kinds. The 

proteins produced by the two genes can interact in some way. If two genes 
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The Mendelian definition of a gene is a segment of DNA that, if mutated, 

causes the organism to display a change in phenotype, or physical characteristic 

of an organism. This change in phenotype must additionally be heritable; that is, 

it can be passed on to the descendents of the organism in which the mutation 

occurred. This definition encompasses segments of DNA that are not generally 

considered genes by modern molecular biologists. In part, this is because the 

Mendelian definition does not work well with sequence databases, which require 

DNA coordinates, or locations. Mostly, however, it is because many changes in 

phenotypes cannot be observed. 

Most of the genes that are researched and discussed are protein-coding 

genes. Protein-coding genes are segments of DNA that can be "read" and 

translated into proteins. Proteins are both the building blocks of an organism's 

structure, and the machinery that makes it run. The DNA reading process is 

called transcription, and results in a copy of the gene being made in RNA 

(ribonucleic acid). 

DNA and RNA molecules differ only in the sugar component of each 

nucleotide, and in the substitution of uracil (U) for thymine (T) in RNA. When a 

gene is transcribed from DNA to RNA, a protein complex called RNA polymerase 

causes the two strands of the DNA molecule to "unzip", allowing RNA 

nucleotides to pair with nucleotides on one of the DNA strands. As the RNA 

nucleotides bind to the DNA, they also bind to each other to form a single- 

stranded molecule. As the RNA strand forms, it detaches from the DNA, and the 

two strands of DNA are "zipped" back together by the RNA polymerase complex. 



The single-stranded RNA molecule is called a transcript of the gene, or 

messenger RNA. 

Unlike the DNA in chromosomes, messenger RNA can travel outside the 

nucleus of the cell. RNA transcripts are "read" by a protein-RNA complex called 

a ribosome, which sequentially translates the messenger RNA into proteins. A 

protein is a chain of amino acid molecules. There are 20 different amino acids, 

and every three nucleotides in the RNA molecule translate to a single amino acid 

that the ribosome will add to the protein at that location. Because there are four 

different nucleotide bases, there are 64 unique combinations of three 

nucleotides. We call each of these combinations a codon. There are more 

codons than amino acids, therefore multiple codons can encode for the same 

amino acid. 

1.2.1 Types of genetic diseases 

Most genes have two versions, or alleles: one from the mother and one 

from the father. These alleles may be the same or they may be different. This 

leads to the two major types of mono-genetic diseases. A given mutation 

(change in the DNA of a gene) can be recessive or dominant. When two copies 

of the disease-associated allele are required for the disease to occur, we call the 

disease recessive. In this case, individuals with only one disease-associated 

allele will not develop the disease. Recessive genetic diseases are associated 

with a loss of the normal gene function. An example of a recessive genetic 

disease is sickle cell disease. Recessive diseases caused by a disease- 



associated allele on the X chromosome, such as haemophilia, require two such 

alleles in females, but only one in males. 

A dominant genetic disease requires only one disease-associated allele, 

and can be associated with a toxic effect due to this mutated allele. The mutated 

allele produces a protein that has gained some function due to the mutation. The 

new function is toxic to the cell or its environment. This is called a gain of 

function mutation. The other type of mutation is called loss of function, where the 

mutated allele produces non-functioning proteins. In this case, only one copy 

(allele) of the gene is producing a protein that is performing the normal function. 

This means the individual will only have half of the normal amount of that protein 

in their cells, which is sometimes insufficient for the cell to remain in a healthy 

condition. 

In a dominant genetic disease, an individual with one normally functioning 

allele and one disease-associated allele will have the disease. Two examples of 

dominant genetic diseases are the polyglutamine expansion diseases discussed 

below and listed in Table la, and amyotrophic lateral sclerosis (ALS)'. Two 

questions immediately arise about dominant genetic diseases, once the gene in 

question has been identified. First, what is the normal function of the gene? 

Second, is the mutation cause a gain or loss of function, or possibly both? Both 

of these biological questions can be explored using a common evidence network. 



I .3 Motivation: Genomic Mutational Signatures (GeMS) Project 

The GeMS project'' is a collaborative initiative of the University of British 

Columbia's Bioinformatics Centre and Centre for Molecular Medicine and 

Therapeutics. This project focused on genetic diseases caused by a type of 

mutation that may occur individually in nine different human genes, causing nine 

separate associated diseases. The differences between the healthy alleles and 

the disease alleles of these genes follow very similar patterns, hence the 

"mutational signatures" project name. That is, at the mutation site, the healthy 

alleles all share a sequence characteristic that is changed in a similar fashion in 

the disease alleles. 

Butland et a1 (in preparation) scanned the human genome sequence for 

genes that had similar starting sequence characteristics to the healthy alleles of 

the nine known disease genes. This set of genes was considered a set of 

candidate disease genes. We examined patients with symptoms similar to those 

caused by one of the known diseases (Huntington disease), but who tested 

negative for mutations in the associated gene. These patients were screened for 

the mutational signature in the candidate disease genes. Bioinformatics support 

analyzed the candidate disease genes for possible functional linkages. A 

common evidence network was developed as part of the bioinformatics analyses 

for the known and candidate disease genes from the GeMS project. However, 

these tools may also be applied to any reasonably small set of genes. 



1 .XI  Polyglutamine expansion diseases 

Polyglutamine domain expansion diseases, such as Huntington disease, 

were the first disease category under consideration by the GeMS project 

researchers. Glutamine, abbreviated Gln or Q, is one of the 20 amino acids that 

make up proteins. It is encoded by the triplet codons CAG and CAA. When one 

or both of these codons are repeated sequentially, the resulting protein will 

contain a repeated stretch of glutamine amino acids. We refer to these stretches 

as polyglutamine (polyQ) domains or repeats. 

Polyglutamine domains are polymorphic in some genes. This means that 

within the normal population, there is variance in the length of a polyglutamine 

domain for a given gene. For example, in the gene that can cause Huntington 

disease, healthy individuals will have fewer than 26 CAG repeats. Individuals 

with 27-35 CAG repeats will be healthy themselves, but they may be at risk of 

having children with the disease1'. Individuals with between 36 and 40 CAG 

repeats are at risk, but may not develop the diseasel2> 13. Those with 41 or more 

repeats will get Huntington disease: the more repeats an individual has, the 

14,15 earlier in life the onset of the disease will be . 

There are nine human diseases known to be associated with a specific 

type of mutation in a gene containing a polyglutamine domain. All of these 

diseases occur when a polyglutamine domain mutates to be longer than the 

normal range. Thus, they are referred to as polyglutamine domain expansion 

diseases. The mutations that give rise to the known polyglutamine domain 

expansion diseases all involve expansions in a series of repeated CAG codons, 



sometimes interspersed with CAA codons. There is no known reason for the 

preference of CAG codons over CAA codons in the repeat expansion process. 

The location of polyQ domains in the sequences of the nine known 

disease genes does not follow any pattern. The position of the first glutamine 

amino acid in the domain ranges from 0.6% to 92% of the sequence length, with 

a considerable spread of points in between. There are no determined three- 

dimensional structures of the proteins produced by polyglutamine expansion 

disease genes. Domain structures of ATXNIq6 and H D ' ~  have been determined, 

although these structures do not include the polyglutamine domains of the 

respective proteins. A partial structure of ATXN3 has been determined through 

nuclear magnetic resonance (NMR)". The protein appears to be primarily 

globular, with a flexible tail segment from the C-terminus sequence, which 

contains the polyQ domain. Similarly, the polyQ domain of CREB-binding 

protein, a gene that is not known to be associated with disease, is in a flexible 

19,20 loop structure that binds with multiple ligands . 

All of the polyglutamine expansion diseases are neurodegenerative in 

nature. That is, they cause the death of neurons, specialized cells that make up 

nervous system tissues such as the brain and spinal cord. For example, an 

expansion in the polyglutamine domain of the huntingtin gene causes Huntington 

disease. Table 1 shows the list of known polyglutamine domain expansion 

diseases and the associated genes. 



Table I Polyglutamine domain expansion diseases 

1 Disease name / Gene name I Gene symbol 1 
I Dentatorubral pallidoluysian atrophy2' I Atrophin 1 / ATNI I 
1 Huntington disease22 I Huntingtin I HD I 
Spinal bulbar muscular atrophy 
(Kennedy disease)23 

Androgen receptor 

1 Spinocerebellar ataxia type 1 24 / Ataxin 1 I ATXNl I 
I Spinocerebellar ataxia type 225 I Ataxin 2 / ATXN2 1 

Spinocerebellar ataxia type 3 
(Machado-Joseph disease)26* 27 

Ataxin 3 

Spinocerebellar ataxia type 628 

I Spinocerebellar ataxia type 729 1 Ataxin 7 / ATXN7 1 

Calcium channel, voltage- 
dependent, PIQ type, alpha 1A 
subunit 

1 Spinocerebellar ataxia type 1 730 3' / TATA-box binding protein I TBP 1 

CACNAlA 

1.3.2 Genes with polyglutamine domains 

The single genetic link between the known polyglutamine domain 

expansion disease genes is the type of mutation that causes the diseases. An 

immediate question is whether other genes with polyglutamine domains cause 

diseases when those domains expand by mutation. The GeMS project 

considered patients with Huntington disease symptoms, but who tested negative 

for the mutation in the associated gene. The project screened these patients for 

expansions in the polyglutamine domains of a set of candidate disease genes. 

The GeMS project restricted the screening process to only those genes 

with five or more sequential CAG codons, coding for five or more glutamine 

amino acids. Appendix A, Table 20 contains the complete list of 56 candidate 

disease genes and the 9 genes known to cause disease, for a total of 65 genes 

of interest. 



CHAPTER 2: COMMON EVIDENCE NETWORK 

2.1 Gene  networks 

Building a network is a popular approach to visualizing and analyzing 

large numbers of genes and their relationships to each other3. There are many 

types of gene networks, generally based on the type of evidence for the inferred 

relationships. The standard example is a protein-protein interaction network that 

documents the experimentally verified interactions between gene products32. 

35-37 Gene regulation re~ationships~~! 34, gene co-expression data , and evolutionary 

patterns38 can also be viewed as networks. 

2.1 .I Top-down vs. bottom-up 

Most gene network projects attempt to display the relationships between 

all genes in a given genome or data set. We refer to this approach as top-down. 

These projects set a high priority on having a low number of false positive 

relationships. The trade-off is that there is often a low priority on maximizing the 

number of true positives39. Top-down projects provide valuable, high-confidence 

baseline data for researchers. However, because of the accuracy priority, true 

evidence is sometimes missed. This problem is especially acute when a network 

is based on identifying genes in the biomedical literature. For example, the 

STRING project at the European Molecular Biology Laboratory includes a text- 

mining component that does not include gene names that map to more than one 

gene4'. Because of this, many references are missed. 
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An alternate or complement to the top-down whole genome approach is to 

focus on a smaller set of genes in what we refer to as a bottom-up approach. 

Researchers choose a set of genes based on a shared feature or a biological 

question. A smaller network is constructed, based on this set of genes. The 

inclusion of as much true evidence as possible becomes a priority, at the 

expense of including false evidence. The results from a top-down network for the 

genome under study can be used as validation data. 

2.2 Common evidence network 

Thus far, we have discussed networks based on a single type of evidence. 

Information linking genes is available from multiple sources, but these are difficult 

to synthesize. By combining information from disparate sources, we gain two 

major benefits: a clearer overview of the linkages between genes of interest, and 

a sense of the information coverage for each gene. For example, certain types 

of genes are difficult to study using some types of experimental approaches, 

which may lead to systemic biases in data sources that deal with those 

experiment types. Presenting multiple types of evidence can lend credibility to a 

given relationship. 

A gene network is a graph in which we represent each gene as a node. 

Edges in the graph represent evidence common to two genes. Different types of 

evidence are represented as sets of edges that can be added and removed from 

the network for analysis or visualization. This type of graph is called a multi- 

graph, because a pair of nodes may be joined by multiple edges. Confidence in 



a given piece of evidence is quantified as a weight on the resulting edge. We call 

this data structure a common evidence network. 

2.2.1 Naturally paired and un-paired data 

For the purposes of a common evidence network, we divide gene 

annotations (evidence) into two major classifications: naturally paired, and not 

naturally paired. Naturally paired data is existing evidence linking genes or gene 

products, such as protein-protein interactions or co-expression profiles. This 

data is relatively easy to co-opt for usage in a common evidence network, 

because the relationships between genes or their products are already 

quantified. 

Most data falls into the not naturally paired category. Using data that is 

not naturally in pairs of genes requires analysis to first identify and then quantify 

relationships. This research concentrates on two sources of naturally unpaired 

data: citation of genes in medical literature, and Gene ontology5 annotations. 

Table 2 Examples of evidence for linkages between genes 

Evidence 

Co-citation in 
medical literature 

Similarity of Gene 
Ontology terms 

Documented 
protein-protein 
interactions 

TY pe 

Unpaired 

Unpaired 

Paired 

Linkage hypothesis 

Genes mentioned in the same abstract are more 
likely to be functionally linked 

Genes that are annotated with similar Gene 
Ontology terms are more likely to be functionally 
linked 

Genes with products that have experimentally 
verified protein-protein interactions are functionally 
linked; those with predicted interactions are more 
likely to be functionally linked 



2.3 Network details 

Evidence 

Gene co-expression 

We can apply a scoring function to the evidence linking two genes, to 

indicate confidence in that piece of information. The resulting value becomes a 

TY pe 
Paired 

weighted edge in the network. We can use different scoring functions to 

Linkage hypothesis 

Genes with similar microarray expression profiles 
across multiple experiments are more likely to be 
functionally linked 

calculate edge weights for different evidence types. However, we want to be 

able to compare edges resulting from different types of evidence. We refer to the 

edges from a single evidence type as a layer in the network. The scoring 

functions for all layers should result in a consistent range of edge weights. For 

this project, we chose to use the range of 0 to 1. 

2.3.1 Indirect relationships 

A researcher would begin to examine his or her genes of interest by 

building a common evidence network that contained only direct links between 

genes in that set. However, this network may not give the researcher a 

sufficiently complete picture. In the example shown in Figure 1, we see that 

including only direct links would leave genes NCOR2 and EP400 disconnected 

from the rest of the graph. By including the gene EP300, which is connected to 

many of our genes of interest, we have expanded our gene list and potentially 

gained new information. 



Figure 1 An example of a gene network 

Nodes with solid outlines represent genes in the set of immediate interest. 
Nodes with dashed outlines represent genes outside that set. 

- - - _ _ _ _ _ _ - -  

- - - _ _ _ _ _ _ _ - - - -  

We do not attempt to solve the problem of identifying indirect relationships 

for the two methods presented here, since a solution would require a top-down 

approach to identify relationships between all human genes. For the literature 

co-citation evidence, we would need to obtain a comprehensive, unambiguous 

list of all gene names to search the literature effectively for mentions of each 

gene. The Gene ontology5 similarity scoring method relies on randomly drawn 

sets of genes of the same size as the set of interest. We would need to calculate 

scores between every pair of human genes. 



CHAPTER 3: 

3.1 Sources of gene names 

We want to compare pairs of genes. To do so, we must be able to 

uniquely identify our genes of interest. Most genes have more than one 

identifier, and many identifiers are not unique to one gene. The solution to this 

gene name ambiguity problem is twofold: a set of unique primary identifiers for 

each gene in the set of interest, and an unambiguous mapping of every other 

gene identifier to a single gene. 

Researchers have been identifying human genes for many years. The 

sequencing of the genome identified many more4'. DNA and protein sequences 

42-44 for genes and their products are stored in a number of databases , where 

alphanumeric strings called accession numbers serve as sequence identifiers. In 

addition, biologists working on a specific gene assign a user-friendly symbol. 

Gene symbols historically have been assigned based on one of the following: 

A function of the gene's protein product, e.g. TBP = IATA-box 

binding erotein - 

A disease caused by the mutation of the gene or a malfunctioning 

of its protein product, e.g. HD = Huntington Disease 

A base name used for a related family of genes, e.g. FOXP2 = 

Forkhead box domain family P, type 2 - 



These human gene symbols are now sanctioned and approved by an 

international body: the Human Genome Organization (HUGO). 

3.1 .I Human Genome Organization Nomenclature Committee 

In 1979, the Human Genome Organization (HUGO) created a 

Nomenclature Committee (HGNC) to manage a standard set of gene symbols 

and descriptions for human genes45. As of May I ,  2005, the HGNC had 

approved 23,522 human gene symbols and descriptions. Each gene symbol is 

unique within the HGNC database, ~ e n e w ~ ~ .  Entries can be changed if required, 

or removed entirely if the record is a duplicate or if a hypothesized gene is shown 

to not exist. In general, once curators assign a symbol to a gene, the symbol can 

be expected to be relatively stable. The primary purpose of the HUGO 

nomenclature is to define a unique gene symbol to facilitate database searches 

and utilization. The existence of a unique, stable gene identifier list also has the 

side benefit of greatly assisting publication searches and the annotation of 

biomedical literature abstracts. 

3.2 Ambiguities 

As researchers discover more about a gene, the gene's primary or official 

symbol can change to take into account the new information. This results in 

several symbols that refer to the same gene. Additionally, we have situations 

where the same symbol can refer to multiple genes within the same species. For 

eukaryotic (organisms that have cells with a nucleus) genomes, researchers 

have found up to 5% intra-species symbol ambiguity in gene names identified in 



publications47. Nomenclatures obtained from a gene-centric database (Entrez 

~ e n e ~ ~ ,  downloaded June 1, 2005) confirm this. We found 1.3% ambiguity 

internal to the nomenclatures of Saccharomyces cerevisiae (yeast), 0.4% for 

Caenorhabditis elegans (worm), 7.5% for Drosophila melanogaster (fruit fly), 

3.3% for Mus musculus (mouse), and 4.1 % for Homo sapiens (human). This 

translated to 2.8%, 0.9%, 16.1 %, 5.79'0, and 8.9% of gene records (respectively 

by species) containing an ambiguous name. 

Many species have genes with similar functions and sequences; therefore 

researchers frequently use the same symbol for a given gene across multiple 

species. The use of annotated genomes to aid in the identification of genes in 

related, newly sequenced genomes exacerbates this problem from a text-mining 

perspective. Annotaters often give the gene in the new genome the same or 

similar symbol to its putative ortholog in the annotated genome. While this aids 

biological interpretation of the gene's function, text-mining applications parsing 

an article mentioning that gene cannot automatically identify to which species it 

belongs. Unlike sequence database references, taxonomic information is 

generally not formally or explicitly identified in biomedical abstracts. 

The human and mouse genomics communities have attempted to solve 

this problem by the use of standardized character cases. Alphabetic characters 

in officially sanctioned human gene symbols are always upper case; for mouse 

genes, only the first character is capitalized. These differences are only useful 

when attempting to distinguish between these two species, and only if authors 

adhere consistently to the standards. Even when considering case, researchers 



have found up to 14% inter-species gene symbol ambiguity across 21 eukaryotic 

species47. When the same researchers removed character case from 

consideration, the ambiguity rose to approximately 25%. Our results across the 

yeast, nematode, fruit fly, mouse, and human nomenclatures from Entrez Gene 

show 26.1% of gene records contain an ambiguous name using a case- 

insensitive comparison, and that 13.0% of gene names are ambiguous. 

3.2.1 Locating database records 

This mix of gene symbols results in two problems with gene databases. 

First, the ambiguity problem makes it difficult for researchers to identify specific 

gene records automatically, because multiple records can be returned for a given 

search symbol. For example, authors have used the gene symbol "AR" to refer 

to both the human androgen receptor gene and the human amphiregulin gene. 

Therefore, the symbol is included in database records for both of these genes, 

although it is officially only the symbol of the human androgen receptor gene. 

Second, different data sources use different symbols as primary record labels for 

genes, and contain different lists of alternate symbols. Generally, databases 

contain fields indicating the species for each gene record, restricting the problem 

to intra-species ambiguity. 

We investigated the ambiguity of human gene names in the Entrez Gene 

database (downloaded June I ,  2005). A total of 74,824 names were identified 

from the official symbol, primary symbol, and synonym fields for 32,801 gene 

records. The official symbol field contains a symbol that has been assigned by 

the nomenclature authority for the species in question. 64.1 % of human genes in 



Entrez Gene have official symbols assigned by the HGNC. The primary symbol 

is the same as the official symbol for those records having an official symbol; 

otherwise it is generally the most commonly used symbol for the gene. 

Synonyms are any other names by which that gene is referred to by scientists. 

There was no ambiguity found within the official symbol field (21,026 

distinct names). This was unsurprising as all of these official symbols were 

designated by the HGNC, which has a mandate to provide unique symbols to 

every human gene. Within the primary symbol field, 24 of the 32,775 names 

occurred more than once (<O. 1 O h  ambiguity). The synonym field contained 

higher internal ambiguity, with 2,068 of the 43,165 names (4.8%) occurring more 

than once, some over 10 times. 

Table 3 A summary of ambiguity of human gene names in Entrez Gene 

The first three columns describe an occurrence pattern for a gene name. The 
fourth column contains the number of gene names that have this occurrence 
pattern. 

*Where an official symbol exists in a gene record, the primary symbol is identical to the official 
symbol. 

Occurrences in 
official symbol field 

0 

0 

0 

Occurrences in 
primary symbol field 

0 

0 

1 

Occurrences in 
synonym field 

1 

> 1 

0 

Names with this 
occurrence pattern 

40,129 

1,926 

11,558 



We examined the overall ambiguity (both within and between fields) and 

summarized the results in Table 3. For each of the 73,696 gene names, we 

counted the number of records in which the name appeared in the official, 

primary, and synonym fields. We then counted the number of gene names 

having the same occurrence pattern across those fields. For example, the first 

row of the table says that 40,129 human gene names occurred only in the 

synonym field of one gene record each. 

When we take into account the fact that if an official symbol has been 

assigned to a gene, the primary symbol is the same as the official symbol, we 

find that 3,050 names are assigned to more than one gene (4.1% of names, 

8.9% of gene records). From Table 3, this is the sum of the number of names in 

all rows except the first, third, and seventh. The majority of the ambiguity 

between fields comes from names that are synonyms for multiple genes (second 

row of Table 3). In only 20 cases do we have an official symbol for one gene that 

is a primary symbol for another gene. 

3.2.2 Searching publications 

Another ambiguity problem becomes apparent when we consider text- 

mining applications. The identification of gene references in biomedical literature 

is a quickly growing subfield of text-mining applications. There are two major 

divisions within this subfield, based on the text source: full text articles and 

abstracts only. Abstracts are more widely available and contain a condensed 

version of information; however, they frequently do not have references to all of 

the genes mentioned in the full text of the article4'. After considering the problem 



of differentiating genes and the species from which they arise, researchers face 

the challenge of distinguishing gene symbols from English words and 

abbreviations of phrases. 

Roughly 1 % of gene symbols are ambiguous with general English 

words4'. However, some of these gene symbols are not only general, but also 

common English words. Including these gene symbols in a simple string- 

matching search of publications will result in a large number of false positive 

matches. A more subtle and potentially larger source of false positive symbol 

matches is from abbreviations of phrases. For example, "HD" is the official gene 

symbol for the huntingtin gene. It is also an abbreviation for "Hodgkin's Disease" 

and "hemodialysis", two very common terms in the biomedical literature. 



CHAPTER 4: INFORMATION GATHERING UTILITY 

4.1 Problem definition 

Molecular biologists investigating a problem often generate a list or lists of 

genes in which they are interested and wish to gather currently known 

information about these, including any commonalities. Shared information can 

shed light on the function or process under study. This information may include 

alternate symbols (synonyms), accession numbers across multiple databases, 

descriptions, publications, and functional annotations. They may want to have 

this information indexed by their chosen gene symbols. 

One of the early challenges the biologist frequently faces is to decide 

which data sources to use. Many relatively comprehensive data sources exist, 

yet none can claim to contain all of the relevant information. This could be due to 

the specialized purpose of the source, the level of data curation, the limitations of 

the data source schema, or licensing issues related to using data from other 

sources. A researcher will frequently combine data from multiple sources to 

create his or her own comprehensive set of information for a particular set of 

genes. 

This gives rise to the second and third problems. Locating the correct 

record for a gene in a given data source can be time consuming if multiple 

records match the biologist's search symbol. After locating all of the records for 



the genes of interest, the biologist must then combine the records obtained from 

each data source. 

Constant database updates and releases mean that more information 

becomes available on a regular basis. Researchers need to re-check data 

sources from time to time to ensure they have the most up-to-date information 

prior to publication. The true magnitude of the problem becomes fully apparent 

when we consider that the biologist is most likely doing all of the work manually, 

using web-based interfaces to access the various data sources. 

An application to assist researchers by automatically finding the 

information they require could become an invaluable tool. This application must 

have a simple graphical user interface. It must allow researchers to use their 

preferred data sources and their preferred versions (releases) of those data 

sources. In general, a researcher will simply use the most up-to-date release; 

however, if the project stretches over a long period of time that may span multiple 

releases from the data source, standardizing on a single release will ensure 

consistent and reproducible results. Users must be able to search for genes 

using multiple symbols to increase the likelihood of complete coverage. The 

application must additionally allow for user-mediated resolution of multiple 

matches for a gene within a data source, and for multiple symbol-to-gene 

mappings between data sources. 



4.2 User input 

The user must specify at least one gene symbol for each gene in which he 

is interested. These symbols will be used as search terms against the various 

information sources. Additionally, the user may include multiple symbols to 

improve the likelihood of locating relevant records. The user has the option of 

guaranteeing the inclusion of these symbols in the output list of gene synonyms, 

which is especially applicable in situations where a researcher wants a list of 

gene symbols and their synonyms for text mining. An expert in that research 

domain may know of gene symbols that appear primarily in older publications, 

but are not necessarily included in current information sources. 

4.3 Information sources 

The information gathering application includes parsing and searching 

modules for plain text (flat) files from three main sources: Genew, the official 

HUGO human gene name database46, UniProt, a protein-centric database5', and 

Entrez Gene, a gene-centric database4*. The information available from these 

sources is summarized in Table 4. 



Table 4 Sources of information for human genes 

1 Gene symbols I 

A tick indicates that at least some of the indicated information is available for 
the given source. For instance, a gene may have multiple UniProt accessions, 
but only the primary accession will be included in Entrez Gene. 

I Official HGNC symbol b l x l x l  

Entrez 
Gene 

Genew 
(HUGO) 

I Protein names I I X I X I  

UniProt 

Synonyms 

1 Accession numbers I 
1 NCBl GenBank x I x I x /  

I I 

X  

I EMBL Nucleotide Sequence Database b I X I X l  

X  X 

DNA Databank of Japan 

NCBl RefSeq 

UniProt (SwissProtTTrEMBL) 

Protein Information Resource (PIR) 

EnsEMBL 

GDB Human Genome Database 

4.3.1 Genew - The Human Genome Nomenclature Database 

Genew is the database of generally accepted human gene names46. 

Researchers studying the human genome have agreed to standardize human 

gene symbols and names. The Human Genome Organization (HUGO) is a 

consortium of human genomics researchers that includes the HUGO 

Nomenclature Committee (HGNC). Researchers submit proposals for gene 

symbols and longer, more descriptive names to the HGNC. The committee 

approves proposals and resolves conflicts. Approved gene symbols and names 

are included in the Genew database. Entries in the database become publicly 

26 

Gene descriptions (long names) 

Gene ontology5 terms 

Publications 

X  

X  

X  

X  

X  

X 

X  

X  

X 

X  

X  

X  

X  

X  

X  

X  

X  

X  



available upon publication of the submitter's paper. The motto of the HGNC is 

"Giving unique and meaningful names to every human gene"5'. 

Sometimes, the approved gene symbol and name change when more 

information about the gene's function becomes available. Genew records 

maintain a list of previously approved symbols and names, as well as a separate 

list of gene symbol aliases, or synonyms. Each record may also contain links to 

other databases in the form of accession numbers. 

4.3.2 Universal Protein Resource (UniProt) 

uniprot50 is a protein-centric database hosted by a consortium of 

European genome research centres, including the European Bioinformatics 

Institute, the Swiss Institute of Bioinformatics, and the Protein lnformation 

Resource (PIR), based in the United States of America. UniProt is divided into 

two main sections, based on the curation status. SwissProt contains records that 

have been manually curated from the literature or have had computational 

curation evaluated by a human. TrEMBL (translated EMBL) records have been 

computationally analyzed but have not yet been manually curated. Together, 

these records are referred to as the UniProt   now ledge base^^. 

4.3.3 Entrez Gene 

Entrez Gene is a curated database at the National Center for 

Biotechnology lnformation (NCBI) that integrates information about genes into 

tracked records with the intention of representing all genes from all organisms. It 

makes extensive use of RefSeq, a database which contains one genomic, one 



RNA, and one protein record of all such molecules known to exist53. Entrez 

Gene currently has entries from a limited number of organisms, but the intent and 

goal is to be comprehensive. Every gene record has a unique database 

identifier. The primary symbol for a human gene is its HGNC-assigned official 

symbol, if one exists. If the HGNC has not approved a symbol for a gene, its 

Entrez Gene record will have a generally accepted symbol as the primary 

symbol. The record will also include other known symbols for the gene, although 

the list will not necessarily be complete. A longer description is assigned in the 

same way: the HGNC-assigned name is given priority. 

The database covers accession numbers for sequences obtained from the 

three major sequence databases: NCBl's ~ e n ~ a n k ~ ~ ,  the EMBL Nucleotide 

Sequence   at abase^^, and the DNA Data Bank of ~ a p a n ~ ~ .  Records are shared 

across all three of these databases, and accession numbers are unique. Each 

gene record also includes its primary accession number from the UniProt 

database, if it exists. 

Entrez Gene records also include two separate lists of publications 

associated with a gene. The first is a manually curated list called Gene 

References Into Function, or GeneRIFs. For a publication to be associated with 

a gene in the GeneRlFs list, it must mention something about the function of that 

gene. The second, Gene2Pubmed, is a more general list of publications that 

simply cite the gene. Gene records also contain Gene ontology5 annotations 

obtained from the Gene Ontology Annotation   at abase^^. 



4.4 Comparison of information sources 

While the three information sources defined above contain much 

duplicated information, each also contains some unique. We examined the 

information overlap for two different types of information: genelprotein names 

and associated publications. We did not examine accession numbers as these 

are explicitly focused on the database in question. Gene Ontology annotations 

will be further explored in Chapter 6. 

The examination was limited to information associated with our 65 genes 

of interest (genes containing polyglutamine repeats). For the UniProt information 

source, we used only the human-curated (SwissProt) division. The 

computationally generated TrEMBL division frequently contained multiple records 

for the same gene. Only 52 genes were referenced in all three information 

sources. Genes that were not referenced in all information sources were 

excluded. Figure 2 and Figure 3 display the results. 



Figure 2 Information overlap for genelprotein names 

The SwissProt locus names (i.e. ANDR-HUMAN) were not included in the 
results shown here. These locus names are specific to the SwissProt 
database and are rarely if ever seen elsewhere. 

Entrez 

For gene and protein names, Entrez Gene appears to be somewhat more 

comprehensive than the other two sources. It almost fully contains the names 

from HUGO. However, Entrez Gene is certainly not complete, as evidenced by 

the 19% of names only found in SwissProt or HUGO. It is of interest to note that 

only 29% of names are found in all three information sources. One possible 

explanation for this (and the distribution of names between Entrez Gene and 

HUGO) is that SwissProt is a protein-centric database and the other two sources 

are both DNA-centric. 



Figure 3 Information overlap for associated publications 

HUGO'S Genew database does not record associated publications. The two 
sources of publication associations from Entrez Gene were compared. 
Note that most (124) of the 182 publications found exclusively outside Entrez 
Gene are annotated to a single gene (AR, or androgen receptor). 

(Gene2Pu Entrez Gene bmed) u 
Here we see that the set of GeneRlFs publications is almost completely 

contained within the Gene2Pubmed set. This is expected, as both sets are from 

the same organization. The Gene2Pubmed set is a list of general associations, 

while the GeneRlFs set is a manually curated set of associations to papers that 

specifically discuss the function of the gene in question. In general, it appears 

that the GeneRlFs set is a subset of the Gene2Pubmed gene-to-publication 

associations. Only three gene-to-publication associations are in the GeneRlFs 

set that are not also in the Gene2Pubmed set. We see that although Entrez 

Gene appears comprehensive, 11 % of the gene-to-publication associations 

occur exclusively in the SwissProt information source, demonstrating the 

increased data coverage that can be gained from combining data from multiple 

sources. 
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4.5 Applications for text-mining 

The gene names and accessions output by the information gathering 

application can be used as input for text-mining applications. We provide two 

options in the application to assist in producing a more comprehensive and 

unambiguously mapped list of gene names. First, the user can choose to check 

for gene names that map to more than one gene. The application allows the 

user to choose a single name-to-gene mapping for ambiguous names. Second, 

the user can opt to have the gene name list "padded" with variants on the output 

names. 

This "padding" involves the application of two rules. If a gene name 

contains a forward slash (e.g. ELDIOSAI), the output will include the original 

name and both components to either side of the slash (e.g. ELDIOSAI, ELD, 

OSAI). The second rule applies to names that begin with a series of 

alphabetical characters and end in a one or two digit number (e.g. SCA2). The 

application will output three variants on this type of name: with no space between 

the alphabetical characters and the number, with a single space, and with a dash 

(e.g. SCA2, SCA 2, SCA-2). These two rules cover some of the common 

variants of gene names that appear in biomedical journal articles. 



CHAPTER 5: CO-CITATION EVIDENCE 

5.1 Co-citations 

When a biomedical journal article (a citation) mentions two or more genes, 

we say that these genes are co-cited, or that a co-citation exists for these genes. 

We examined co-citations of genes in the abstracts of articles. A co-citation can 

be broken down into pairs of genes. We hypothesized that when two genes are 

co-cited, they are more likely to be functionally linked. We identified instances of 

gene names, symbols and accessions in a body of biomedical literature abstracts 

through basic string matching. The results were used to identify co-citations. 

The gene name ambiguity problem discussed above led to many false 

identifications of genes in biomedical literature. We identified the most 

commonly matched gene names and symbols, and estimated the precision of 

each of these. We evaluated the sensitivity of the application using gold 

standard lists of gene to publication associations obtained from Entrez ~ e n e ~ ~  

and the SwissProt section of uniprot5'. A scoring function based on the number 

of times two genes were cited together was used to produce an edge weight for 

evidence linking the two genes in the common evidence network. 

5.2 Input 

A comprehensive list of gene names, symbols, and accession numbers 

was assembled using the information gathering utility application described 



above, for the genes listed in Table 20 (Appendix A). A biologist familiar with the 

genes of interest augmented the names and symbols in the list. Names and 

symbols were further padded by the rules described in 4.5 above. 

Table 5 Input gene names, symbols and accession numbers 

Pre-padding numbers include only names and symbols that were identified 
directly from the databases. Post-padding indicates that names and symbols 
were added to by the rules described in 4.5 above. 

1 Total genes I 65 / 
1 Total names and symbols (pre-padding) I 628 ( 
I Total names and symbols (post-padding) 1 956 1 
/ Total accession numbers 1 1663 ( 
1 Average names and symbols per gene (pre-padding) I 9.7 1 
I Average names and symbols per gene (post-padding) I 14.7 1 
I Average accession numbers per gene 1 25.6 / 

5.2.1 MEDLINE XML 

MEDLINE is a curated bibliographic database of abstracts from biomedical 

journals55. The United States of America's National Library of Medicine 

maintains, updates, and publishes the database. It is the primary source of 

literature citations in the biomedical research field. It contains only abstracts, not 

full articles. As of May I, 2005, it contained over 15 million unique citations 

dating back to 1950. 

Users can license and download the MEDLINE database as a series of 

XML format files. XML is an acronym for "Extensible Markup Language", and is 

a data format standard published by the World Wide Web Consortium ( w ~ c ) ~ ~ .  



MEDLlNE XML is an implementation of this data format standard. Every 

November, the MEDLINE XML implementation is updated and a new baseline 

set of files is created. The following analysis uses the 2005 baseline files and 

daily updates dating to May 1, 2005. 

Curators annotate citations in MEDLINE. In addition to the standard 

bibliographic information such as author names, journal, publication date, title 

and abstract, MEDLINE citations have standard fields for summarizing the 

content of the article. Fields of particular interest for text-mining and searching 

applications are listed in Table 6. An example of a MEDLINE XML citation is 

shown in Figure 13 (Appendix B). 

Table 6 MEDLINE citation annotation fields 

Annotations for a citation are either submitted by the authors via the journal, 
or added by human curators at MEDLINE. 

I Annotation field ( Description I 
Databank accession numbers 

Gene symbols 

Chemicals 

Accession numbers of sequences mentioned in 
the article. 

Gene symbols mentioned in the article. 

Names of chemicals mentioned in the article, 
along with their registry numbers from various 
sources 

I Keywords I General terms from a controlled vocabulary 1 

5.3 Gene finding application design 

The application takes a set of gene names, symbols and accession 

numbers keyed by a primary gene symbol chosen by the user. We refer to the 

set of names, symbols, and accession numbers for a gene as its set of 

Medical Subject Headings (M~sH)~ '  - Biomedical terms from a controlled, structured 
vocabulary 



synonyms. The synonym sets for each gene are not necessarily mutually 

exclusive. All of the synonyms are used to search for matches in MEDLINE XML 

citations. 

The output of this application is a MySQL database (see Appendix C for 

the database schema). Figure 4 shows the application flow. The database is 

pre-loaded with the gene synonym sets and the MeSH vocabulary. The 

database allows a gene synonym to map to more than one gene. An optional set 

of gene descriptions can also be loaded. 

Figure 4 Flowchart of a simple text-mining application for locating references to genes 
in MEDLINE XML 
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Citation objects + 
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Once the initial data is loaded, the user can run the application in match 

finding mode. An XML parsing module reads the MEDLINE XML file. As it 

finishes reading the description of a single citation, it populates a data structure 

(a Citation object in Figure 4) with the information from that citation and informs 

the match-finding module. The match-finding module searches fields in the data 



structure for matches to gene synonyms. If it finds any, it passes the citation 

data structure and the information about those matches to a module that loads 

that information into the database. 

5.3.1 Match finder 

When the match-finding module receives a citation from the parsing 

module, it examines the title and abstract for matches to gene synonyms. In 

addition, it searches all of the five fields listed in Table 6. The text in each field is 

divided into individual words. Each word is checked against the gene synonym 

list. To handle multiple-word gene synonyms, the match-finding module 

maintains a mapping of the first word to the complete synonym. Words are 

checked against this first word list, and if a match is found, the module looks for a 

match to the remainder of the synonym. 

Table 7 Examples of gene synonym matches found in MEDLINE XML citations 

I synonym 1 Gene 1 Field I 
I TATA-box binding protein I TBP I Abstract I 

I BRN-2 I POU3F2 I Gene symbol I 

1 E3G 

CG-1 

I Huntington I HD I MeSH Heading I 
I Ataxin-I / ATXNI I Title I 

AR 

CXorf6 

Matches are recorded as a combination of the matched synonym and the 

field in which the match was found. Table 7 shows some examples of actual 

matches. When the match finder completes its search of a citation, it checks to 

Accession 

Chemical 



see if it found any matches. If so, it passes the citation and the match 

information to the database-loading module. 

5.4 Results 

The match-finding module ran on 15,936,854 XML citations. These were 

obtained from the MEDLINE 2004 baseline, plus daily updates up to and 

including May I ,  2005. The citations represented 15,284,276 unique articles 

from the biomedical literature. Table 8 shows a breakdown of the non-unique 

citations by their MEDLINE status. 

Table 8 MEDLINE status of scanned citations 

1 count I MEDLINE status 1 Description of status 1 
1 13,455,005 1 MEDLINE 1 Fully curated citation, 1965 - present 1 

1,770,731 OLDMEDLINE Added from the NLM's* print indexes, 1950- 1 1965 1 392,920 

1 96,107 1 PubMed, not MEDLINE I Non-MEDLINE records found in PubMed I 

1 222,091 

'NLM = National Library of Medicine 

In Process 

In Data Review Publisher has sent the basic information to the I NLM* 

We identified 192,681 unique articles containing at least one match to one 

of our gene names or accessions for a total of 268,707 matches. Most of the 

matches were found in the free text (title or abstract) of the citations (Table 9). 

Of the 834 gene names and 1,728 accessions used as search input, 401 names 

and 234 accessions were matched at least once. 

Basic citation information has been checked, 
additional data elements have not been added 



Table 9 Matches to gene names and accessions, by matched field 

Multiple matches to the same gene namelaccession may occur in the same 
citation. Multiple nameslaccessions may be matched in the same citation. 

Number of matches 

1 31,578 ( 30,231 1 Title I 
188,990 

22,856 1 Chemical annotation 1 

Number of articles Field in XML citation where match 
occurred 

170,357 

5.4.1 Sensitivity analysis 

The first analysis for any text-mining application is to examine the 

sensitivity of the method. Sensitivity, or recall, is the proportion of all true 

matches that are correctly identified to the total number of matches (Equation 1). 

In general, the complete set of true matches is not known. To estimate 

sensitivity, therefore, we use a known subset of true matches, referred to as a 

gold standard. The gold standard is often a manually curated list. We estimated 

sensitivity using three overlapping datasets: Entrez Gene References Into 

Function (GeneRIFs), Entrez Gene PubMed links, and Uniprot's SwissProt 

Pubmed links (Figure 3 above). Recall that these datasets consist of gene-to- 

publication associations, where an association exists if the publication is relevant 

to that gene. 

Abstract 

- 

22,309 

594 

475 

1 24 

21,506 

550 

287 

124 

- 

Medical Subject Heading (MeSH) term 

Gene symbol annotation 

Accession annotation 

Keyword annotation 



Equation 1 Sensitivity (recall) 

TP = # of true positives, FN = # of false negatives 

L 1 

Sensitivity = 
TP + FN 

Table 10 Match finder sensitivity analysis results 

The number of unique articles for each column is in brackets following the 
number of matches. In some cases, the number of articles with missed 
matches plus the number with correct matches exceeds the total number of 
articles. This is because some articles referring to more than one gene had 
some matches that were missed and some that were correctly identified, 
resulting in the article being counted twice. The merged dataset is the union 
of the three overlapping sets from different sources. 

GeneRlFs 

- - - 

*The number of genes with at least one gene-to-publication assocation in the dataset. 

Gene2Pubmed 

SwissProt 

Merged 

We examined all 100 of the articles listed as containing matches that were 

not correctly identified by the match finder module. Of these, 26 were large-scale 

Genes* 

43 

genomics papers that did not provide any specific information about the genes in 

question. These were responsible for 106 of the missed matches. A further 80 

matches in 74 papers were missed because the genes in question were not 

specifically mentioned in the title, abstract, or other annotated fields. 

64 

52 

64 

The majority of these papers described protein families, protein complexes 

and protein-protein interactions. It is likely that the specific genes were 

Publication 
associations 

588 

(576) 

1,471 

(1,331) 

388 

(340) 

1,656 

(1,506) 

False 
negatives 

6 

(6) 

166 

(86) 

6 1 

(27) 

186 

(100) 

True 
positives 

582 

Sensitivity 

98.98% 

(570) 

1,305 

(1,251) 

327 

(31 5) 

1,470 

(1 ,41 3) 

88.72% 

84.28% 

88.77% 



mentioned only in the full text, which is outside the scope of the match-finding 

module. In several cases, it appeared that the true match might have been 

assigned incorrectly to the gene in question, as the abstract referred to a closely 

related gene. 

5.4.2 Specificity analysis 

We assessed the specificity of each gene name/accession, to determine 

how much confidence we could have in a match. Specificity, or precision, is the 

number of true matches against the total number of matches (Equation 2). We 

can think of specificity as a measure of confidence. Since we had 635 gene 

names and accessions that were matched at least once, and 192,681 recorded 

gene-to-publication links, it was infeasible to check every gene name/accession 

and every match. 

Equation 2 Specificity (precision) 

TP = # of true positives, FP = # of false positives 

Instead, we estimated the specificity of each gene name by manually 

examining a random selection of citations in which matches have been identified. 

Before we checked every one of the 635 names and accession numbers, we 

reduced the number to examine. We assumed that matches to accession 

numbers are unambiguous, since accession numbers are unique by design. 

Genomic accession numbers, however, may indicate large chunks of DNA 



sequence containing multiple genes. These are therefore potentially ambiguous. 

This left us with 401 gene names. We further broke down the problem by 

examining the fields that were matched (Table 11). 

Table 11 Number of gene names found each matched field in XML 

I Unique names 1 Field in XML citation where match occurred 

I 390 1 Abstract 

I 289 1 Title 

1 138 1 Chemical annotation 

1 72 ( Gene symbol annotation 

I 12 1 Medical Subject Heading (MeSH) term 

The four names that matched in the Accession field of the XML citations 

translated into only three articles. Three gene names (CACNAIA, EA2, SCAG), 

all synonyms of a single gene, are contained in the Accession field of a single 

citation. In this case, the database that is being referred to is Online Mendelian 

Inheritance in Man (oMIM)~~, which uses gene names or symbols as its 

accessions. The other gene name (NP), incorrectly matched to two separate 

accession numbers in the RefSeq curated protein format ("NP-" followed by 9 

digits). 

6 

4 

For gene names matching in the Keyword and MeSH term fields, we 

examined the terms that might have given rise to the matches (Table 12). It 

appeared that longer, more specific gene names were more likely to be 

accurately matched. The exception in this table was the name "TFIID", which 
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Keyword annotation 

Accession annotation 



refers to a well-known, long-studied gene59. We therefore assumed that gene 

names consisting of multiple words, or those that are fully spelled out, are 

unambiguous. There were 88 such names, reducing the total under examination 

to 311. 

Table 12 Gene name matches in Keyword and MeSH term fields 

Field 

Keyword 

-- 

MeSH 

Gene name I Matched string(s) Correct? 

AR 

BI 

NASA Experiment Number AR- 
002 

bi GUANIDE DERIVATIVES 

CAP 

Huntington@)  ise ease^ 
MINK 

Yes 

No 

No 

Androgen receptors 

CAP 

Complex* 

Cervical Cap* 

Huntington Disease* 

MINK# 

Androgen Receptors 

Cervical Cap* 

RNA Cap* 

Huntington Disease I Huntington Disease* 

No 

Yes 

NO 

NOD 

Machado-Joseph Disease 

MINK 

1 Inbred NOD Mice* 

Rubenstein-Taybi Syndrome 1 Rubinstein-Taybi Syndrome 

Machado-Joseph Disease* 

 ink*' 

Yes 

Yes 

No 

TATA binding protein I TATA binding protein* Yes 

TATA box binding protein I TATA box binding protein* Yes 

I Transcription Factor TFIID* Yes 

*Variants represented with a single string 
"0th "Huntington Disease" and "Huntington's Disease" matched in the Keyword field 
?he animal, of the Mustela genus 



We continued to reduce the problem by looking at the number of matches 

to each gene name, and assuming that only names with a very large number of 

matches are likely to be ambiguous. We considered only the 31 1 single-word or 

abbreviated gene names, and did not consider the matches we have manually 

checked for the Accession, Keyword, and MeSH term fields. This resulted in a 

distribution of match counts as in Figure 5. 

Figure 5 Distribution of match counts after removing manually identified false positive 
matches 
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The distribution above shows clearly that a very few gene names have 

extremely high match counts, while most names have very few, and are therefore 

less likely to be problematically ambiguous. We identified the gene names with 

over 1,000 matches (26 names, or the top 8.3%). For each of these names, we 

drew a random sample of 20 citations from those that were matched, and 



manually verified the citations for evidence that the matched string was in fact a 

gene name. 

Table 13 Specificity estimates for gene names with over 1,000 matches 

The first column is the number of matches that were found in MEDLINE 
citations for the gene name in that row. The second column is the number of 
unique citations represented by these matches. The third column is the 
number of matches divided by the unique citations. The fourth column is the 
gene name in question, and the fifth is the primary gene symbol to which this 
gene name is mapped. The sixth column is the number of correct matches for 
that gene name out of a random sample of 20, and the last is the resulting 
specificity estimate. 

Matches 

49,417 

18,899 

Unique 
citations 

45,011 

13,733 

13,084 

I I I I I I 

15,557 

9,279 

6,737 

Matches 
per citation 

1.10 

12,196 

10,628 

6,730 

6,450 
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Of note, there are only a few gene names that actually showed evidence 

of ambiguity. Of the 26 gene names investigated, four had no false positives and 

16 had all false positives in their respective samples. The large number of gene 

names with all false positives in their samples combined with the very small 

sample size could simply mean that the names are synonymous with common 

terms in biomedical literature. 
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1,056 

5.5 Scoring co-citations 

To score the linkage between two genes from their co-citations, we used 

the mutual information measure (Equation 3), a standard scoring function for 

measuring the degree of similarity between lists of items associated with a pair of 

objectss0. The mutual information measure takes into account some of the 

The results of the specificity estimates are shown in Table 13. The higher 

the average number of matches per citation, the higher the likelihood that the 

match is to something important in the paper. That is, the string is frequently 

matched in multiple fields for a given individual citation. The five gene names 

with the highest average number of matches per citation are in the top six with 

the highest specificity estimates (CBP, RUNX2, CBFAI,  TFIID, and IRS-1). 
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ambiguity and low specificity of some of the gene names as discussed above, 

without actually measuring the specificity of each name individually. It can also 

be translated directly into a score for the common evidence network, as it ranges 

from 0 to 1. 

Equation 3 Mutual information measure 

PA, Pe = Proportion of citations associated with genes A and B, respectively 
PAB = Proportion of citations associated with both genes A and B 
Proportions are the number of citations of interest divided by the total number 
of citations scanned by MEDLINE. 

Adapted from Alako et a1 2005~' 

We consider only citations that have matches for more than one gene. 

This helps to reduce the number of false positive hits that might otherwise skew 

the data. It also has the effect of reducing the scores for genes that are co-cited 

with many other genes, and thus are likely better studied. This is of interest for 

biologists who are interested in discovering speculative or poorly studied linkages 

between genes. 



Figure 6 Co-citation network 

Nodes in diamonds are known disease genes. An edge indicates the genes 
are mentioned together in at least one citation. 

PRKCBPI u 
A total of 3,220 citations had matches for more than one gene (for a total 

of 5,245 pairwise co-citations). This number was small enough that a 

combination of automated searching and manual examination sufficed to identify 

false positives. Only 1,042 citations (2,949 pairwise co-citations) remained after 

this process was complete, with matches for 228 unique gene names and 

accessions covering 49 of the 65 genes of interest. Figure 6 shows the resulting 

network. 



The majority of the 2,949 pairwise co-citations are between pairs of known 

disease genes (2,183). A further 375 pairs have one member as a known 

disease gene. The remaining 391 are between pairs of genes that are not known 

to cause disease. 

5.6 Comparison to other biomedical literature-mining tools 

Text mining of biomedical literature is currently a topic of great interest in 

the bioinformatics community6'. The results of the first BioCreAtlvE (Critical 

Assessment of Information Extraction in Biology) challenge were presented at a 

conference in March 2 0 0 5 ~ ~ .  Two tasks were set to competitors: identifying gene 

names in abstracts, and functionally annotating genes cited in an abstract. The 

first task was further divided into two sub-tasks: to identify mentions of genes in 

sentences from MEDLINE abstracts, and to map these names to unique genes. 

Since we are primarily interested in the co-occurrence of genes in the literature, 

we reviewed the results of the first task only, and concentrated on the second 

sub-task. 

The first sub-task was a pure text-mining information extraction problem. 

Pre-tokenized text was analyzed to identify references to genes and entities 

related to genes (e.g. domains or binding sites), with no reference to a synonym 

list. Post-competition analysis showed that the tokenization boundaries were an 

important factor in correct identification of gene-related names. F-scores 

(Equation 4) of over 80% were reported for this sub-task". 



Equation 4 Harmonized mean (F-score) of sensitivity and specificity 

An F-score is a combined measure of accuracy. 

2 x Sensitivity x Specrficity 
F - score = 

Sensitivity + Spec ficity 

Of more interest to finding co-citations of genes, the second sub-task 

provided a gene synonym list and did not include the identification of gene- 

related entities, only genes and their products64. The task inputs were three sets 

of abstracts from MEDLINE, one for each of three model organisms (yeast, 

mouse, and fruit fly)65. A list of gene names was provided for each organism. 

The inputs were obtained from publication-to-gene association lists available 

from the model organism This meant that the problem of 

disambiguating gene names synonymous across different organisms could be 

mostly ignored for these tools. 

Three of the eight teams that submitted systems for this task have 

published their tools. All three commented on the influence of a comprehensive 

69-71 gene synonym list and the problems with ambiguous gene names . One team 

implemented a string matching method for comparison69. It achieved an 

estimated sensitivity of 86.1 % for identifying fruit fly genes and 58.3% for mouse. 

However, the specificity for each of these organisms was only 3.3% and 15.1 %, 

respectively. This reflects our low specificity estimates for some of the most 

frequently matched human gene names. 

F-scores of over 90% were reported for some of the submitted tools64. For 

comparison, the F-score for our results, prior to manual pruning, was 68.8%. We 

based our specificity estimate on the manually pruned results (56.2%), and our 



sensitivity estimate on the combined gene-publication associations from all three 

of the databases (88.8%). This result shows that string matching, which is the 

simplest of gene identification methods, can provide valuable information to 

researchers, given a comprehensive synonym list and a secondary source of 

evidence (i.e. requiring more than one gene occurring in an article). 

5.6.1 STRING 

STRING (Search Tool for the Retrieval of hteracting GenesIProteins) is a 

top-down protein network project that includes a text-mining component40. It 

uses gene names obtained from SwissProt and organism-specific resources 

such as HUGO to identify instances of genes in biomedical literature. The 

search method is not described; however, as a component of an evidence 

network project, it provides a useful comparison for our co-citation evidence. 

We were able to identify 63 of our 65 genes of interest in the STRING 

database, release 6.0. The two missing genes did not have any matches in 

citations with any other genes. STRING contained 846 gene-to-publication 

associations for our genes of interest, with the condition that each publication 

was associated with two or more of those genes. This represented 307 citations. 

STRING contained co-citations for only 21 of the genes from the list. Of interest, 

one of the known disease genes (ATXN2) is found in the STRING database, but 

it is never matched in the list of co-citations, although names of this gene do 

appear in some of the citations that contain references to more than one of the 

other genes in the list. This is because the most commonly used name for this 

gene, SCA2, is also a name for another gene, and the STRING literature co- 



citation tool only included names that could be unambiguously mapped to a 

single gene (L.J. Jensen, personal communication, June 9, 2005). 

Thirty-three of the STRING co-citations were not included in the manually 

pruned list. One citation had been removed during manual pruning because it 

was referring to a different pair of genes, although using the same names as a 

pair of our genes of interest. In a second case, the STRING application had 

incorrectly identified the gene name hSKCa3 as referring to the CACNAIA gene. 

Ours had correctly mapped hSKCa3 to the KCNN3 gene. Both CACNAIA and 

KCNN3 were in our list of genes of interest. A further three cases involved the 

mis-mapping (by STRING) of the BiP gene name to the CACNAIA gene. The 

remaining 28 cases all involved the mis-identification of the PCQAP gene by 

STRING. It was not clear why this occurred. 

There were no cases where STRING had identified valid co-citations and 

our text-mining application had not. However, our method involved manual 

intervention to remove false positive matches to gene names in text, and 

STRING'S method did not. If we use our manually pruned list as a standard, and 

we compare the STRING results to the results of our text-mining application prior 

to manual examination, it is clear that STRING has much higher specificity 

(96.4% vs. our 56.2%). 

Higher specificity comes at a cost of lower sensitivity: only 39.5% of our 

manually verified matches were automatically identified by STRING. This only 

includes matches in citations entered before January 1, 2005, which was the cut- 

off date for MEDLINE citations in STRING release 6.0. If we use this sensitivity 



estimate, STRING'S text-mining results had an F-score of 56.0%. This is lower 

than our result of 68.8%. However, we suspect the STRING sensitivity result 

would be much higher if the algorithm had consistently identified the ATXN2 

disease gene, which was mentioned frequently together with the other disease 

genes and accounts for 44.1 % of our co-citation pairs. 



CHAPTER 6: 

6.1 Gene Ontology 

The Gene Ontology (GO) project addresses the problem of biologists 

using multiple terms to describe the same concept5. This problem is another 

manifestation of the same root situation that gives rise to ambiguity in gene 

names: the evolution of vocabulary with increased information. The Gene 

Ontology is a controlled vocabulary of terms linked by defined relationships. It 

covers three categories of molecular biology terms: biological process, cellular 

component, and molecular function. 

Each GO term consists of an identifier, the term itself, and a descriptive 

definition. Collaborating databases create mappings of gene products to GO 

terms. Annotators assign the most specific GO terms possible to a gene product. 

Specific in this case means the most refined description of the concept the 

annotator can assign to the gene. For example, if an annotator knew the gene's 

product is localized to the nucleolus, he would assign the GO term "nucleolus" for 

the gene's cellular component description, rather than "nucleus", because the 

nucleolus is a more specific location description. The relationships of those GO 

terms to more general terms imply the assignment of the general terms to that 

gene product. The evidence used for annotation varies from strictly 

computational to papers read by human curators. Table 21 in Appendix D 

contains the list of evidence types for annotations. 



Note that GO terms are annotated to the products of genes, not to the 

genes themselves. We consider the GO terms annotated to the product(s) of a 

gene as annotated to that gene. 

6.1 .I Relationships between GO terms 

Defined relationships connect all GO terms in a graph. There are two 

types of relationships. The most common relationship is "is a". When term A "is 

a" child of term B, term A is a specialization of term B. The other major 

relationship is "part of". This relationship is especially common in the cellular 

component category, and means exactly what it says. For example, the term 

"membrane" (GO:0016020) is "part of' the term "cell" (GO:0005623). According 

to the Gene Ontology website, every term in the ontology will eventually be linked 

to the root node of its category via "is a" relationships7*. 

The relationships between GO terms create a graph, with each GO term 

represented as a node, and each relationship represented as a directed edge 

from child to parent. (This research does not distinguish between "is a" and "part 

of' relationships.) Many biologists refer to this graph as a hierarchy. Strictly 

speaking, this is incorrect, because GO terms may have multiple parents. For 

example, in the biological process category, the term "potassium ion transport" 

(GO:0006813) is a child of both "monovalent inorganic cation transport" 

(GO:0015672) and "metal ion transport" (GO:0030001). This means that the GO 

term relationships define a directed acyclic graph (DAG), not a hierarchy, which 

is a more specialized form of a directed acyclic graph in which nodes may have 

only a single parent. 



6.2 Methods of analyzing GO term annotations 

6.2.1 Overrepresentation analysis 

The most popular method of GO term annotation analysis is 

overrepresentation. Ten different published tools and two unpublished web- 

73-84 based tools can conduct this type of analysis . To begin, the researcher 

chooses a set of GO terms. Given a gene set of interest, the researcher counts 

the number of genes that are annotated to each of the chosen GO terms, or to a 

descendent of one of those terms. For a baseline comparison, the researcher 

also counts the number of annotations from a larger set of genes (generally the 

entire set of known genes for the species under consideration). 

The null hypothesis is that the genes of interest will be distributed among 

the chosen GO terms in the same proportions as the baseline set. With 

correction for multiple testing, the researcher can calculate a p-value for this null 

hypothesis. GO terms with p-values below a threshold are considered to be 

overrepresented for the genes of interest. 

Multiple testing corrections impose limits on the number of terms that can 

be used, so the researcher may only select a subset of the entire ontology. This 

means that the choice of GO terms for the analysis is subjective and potentially 

biased. Across all three GO categories, there are 28 terms one level down from 

the roots and 536 terms two levels down. At one level down, there are already 

terms without children: if analysis is done for terms two levels down, it should 

include childless terms at the first level down. 



The GO annotations themselves are biased towards better-studied genes 

and pathways. Statistically significant overrepresentations can occur simply 

because the set of all current annotations is not fully representative. It must be 

noted that this problem will likely affect all types of analyses. Another general 

problem of note is the possibility of annotation error. Most importantly, for the 

purposes of building a common evidence network, overrepresentation analysis 

does not result in information that connects pairs of genes. 

A recent paper by Cheng et aP5 claims to describe a Gene Ontology 

graph-based metric for measuring similarity between pairs of GO terms. 

However, the scoring system they describe is dependent only on the graph 

location of the lowest common ancestor GO term for the pair of terms in question 

(see 6.4.2 for lowest common ancestor definition), and not on the relationship of 

those two terms to their lowest common ancestor. This means that we can 

assign a score to every GO term independently, based on its graph location. 

Terms above an arbitrary threshold score, which additionally do not have any 

ancestor terms with scores above that threshold, are chosen as labels for the 

subgraph below them. Genes are clustered by assignment to the groups defined 

by their annotated GO terms (genes may belong to multiple clusters), and the 

resulting clusters are analyzed for overrepresentation. Thus, we can view this 

method as an extension of overrepresentation analysis that incorporates a novel 

selection system for which terms to use as categories. 



6.2.2 Partially ordered sets 

We can view the GO DAG and the genes annotated to its terms as a 

group of partially ordered sets (posets). Each set is composed of the genes 

annotated to a single term. The partial ordering arises from the directed edge 

relationships between terms in the DAG. Josyln et aa6 described an algorithm 

based on poset theory that takes a list of genes and attempts to produce the best 

description of that set using GO terms. 

Like in overrepresentation analysis, this method results in labelling groups 

of genes rather than pairs of genes. Unlike the aforementioned, it allows the use 

of all terms in the ontology. Therefore, the results of this method could be 

compared with the clustered results of a pairwise method. However, the authors 

have not provided a publicly available implementation of their method. 

6.3 Data source 

In order to compare the similarity of GO annotations for our gene set to a 

background distribution, we chose to use a single data source. We obtained GO 

annotations from the Entrez Gene database48. UniProt's manually curated 

SwissProt database also contains GO annotations5'. However, for our 65 genes 

of interest, the annotations from Entrez Gene almost completely contain the 

annotations from SwissProt. 

6.4 Comparing GO annotations of genes 

Our goal is a quantitative measure of evidence linking a pair of genes. We 

can treat the similarity of GO term annotations for two genes as evidence for 



some type of relationship between them. Assuming a set of genes has been 

annotated with GO terms, we therefore want to determine a quantitative measure 

of how similar those annotations are between pairs of genes. It becomes 

apparent that the relationships between GO terms, while useful, do not imply any 

quantitative assignment of specificity to each level in the graph. To illustrate, 

examine the subgraph of the molecular function category shown in Figure 7. 

The terms "oxygen transporter activity" and "protein binding" are the same 

number of edges down from the root of the graph, but the first term is the most 

specific term in that branch, while the second has more levels below it. This 

problem of differing specificity between terms at the same depth is most apparent 

at deeper levels of the graph, or between very divergent branches. This implies 

that one cannot compare different branches using an analysis method based 

solely on the depth of terms, because concepts on different branches become 

more refined at different rates. 

Certain subgraphs of GO are very well defined and have many levels of 

refinement because research groups interested in that area have participated in 

the ontology development process. Other areas have received less attention. 

However, the problem of varying levels of concept specificity cannot be solved 

only by filling in the more poorly defined areas of the GO. This is because some 

concepts will always require more levels of refinement than others. Consistent 

analysis will require a measure of GO term specificity that incorporates 

information about the local structure of the graph. 



Figure 7 A subgraph of the Gene Ontology molecular function category 

The "transporter activity" branch becomes more specific more quickly than 
the "binding" branch. 

I molecular function I 

oxygen transporter 
activity 

I I 

protein binding r - - - - ' 7  
transporter activity 

- - 

transcription factor 
binding 

binding 

transcription 
cofactor activity 

T t 

transcription 
activity 

6.4.1 Specificity of a GO term 

Nodes in the GO graph at the same depth can have very different degrees 

of specificity. We cannot measure specificity exactly; however, we can make an 

approximation, as long as the limitations of that approximation are understood. 

Table 14 summarizes some potential specificity measures and their limitations. 

All of the measures that include the descendents of a term share the general 

limitation that terms with poorly defined (thus smaller and shallower) descendent 

subgraphs will have the same score as terms with well-defined truly small, 



shallow subgraphs. The last measure appears to have the most reasonable 

limitations, given that we know the Gene Ontology is incomplete. 

Table 14 Measures of GO term specificity 

Measure 

Maximum depth of term 

Maximum path length to a leaf 
node descendent of this term 

Number of descendents below 
this term 

Average length of paths to leaf 
node descendents of this term 

Limitations 

Does not say anything about how much more specific 
this term could be 

A single very long path will have too much influence 
No inclusion of information about the path(s) from the 
root to this term 

Broad and shallow subgraphs will have the same 
score as narrow and deep subgraphs 
No inclusion of information about the path(s) from the 
root to this term 

No inclusion of information about the path(s) from the 
root to this term 

6.4.2 Distances between two GO terms 

For a common evidence network, we need a quantification of the 

relationships in the GO graph that connect terms annotated to a pair of genes. 

We make the simplifying assumption that distances between GO terms in the 

graph are comparable. We define a lowest common ancestor of two nodes A 

and B as an ancestral node that has the minimum number of edges to each of A 

and 6. Recall that multiple paths with different numbers of edges are possible 

because of multiple parents. Therefore, it is also possible that there exist 

multiple such lowest common ancestors. 



Figure 8 Measuring distances between annotated GO terms 

Gene 1 has been annotated with GO term A, and Genes 2 and 3 have been 
annotated with GO term B. GO term B is the lowest common ancestor 
annotation for Genes 2 and 3. GO term D is the lowest common ancestor 
annotation for both Genes 1 and 2, and for Genes 1 and 3. 
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In Figure 8, we illustrate the lowest common ancestor concept and its 

application to gene annotations. We can now measure the distance between the 

annotations for these genes based on the distances to the lowest common 

ancestor of each pair. Note that because of the possibility of multiple parents for 

a node in the GO graph, we will frequently see multiple lowest common 

ancestors for a given pair of GO terms. It is also possible that the distances from 

each descendent term to each lowest common ancestor could be different, 

resulting in the need to choose a single lowest common ancestor or combine the 

results from multiple lowest common ancestors. 
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Table 15 Distances between GO terms for example in Figure 8 

6.4.3 Similarity of GO terms 

Once we have calculated the distances between annotated GO terms for 

a given pair of genes, we need to describe a function that will quantify the 

similarity between each pair of GO terms. This score will help us to compare the 

levels of similarity between GO annotations for different pairs of genes. A nai've 

approach is to look at the reciprocal of the sum of the two distances to the lowest 

common ancestor, as in Equation 5. 

In the fourth column, we have the distance from the first gene to the lowest 
common ancestor and the distance from the second gene to the lowest 
common ancestor. The distances are separated by a colon for clarity. 

Equation 5 A simple scoring function for two GO terms 

A,B = GO terms 
C = A lowest common ancestor of A and B 
IX,YI = The number of edges between GO terms X and Y in the GO graph, plus 
one to avoid division by zero 

Gene pair 

Genes 1 & 2 

Genes 1 & 3 

Genes 2 & 3 

This function does not differentiate between situations where the two GO 

Lowest common 
ancestor 

GO term D 

GO term D 

GO term B 

Annotated GO terms 

GO terms A & B 

GO terms A & B 

GO terms B & B 

terms in question are equally distant from the lowest common ancestor and those 

Distances to lowest 
common ancestor 

2 :  1 

2 :  1 

0:O 

where one term is much closer. However, a new problem presents itself when 

we separate the effects of the two branch lengths to the lowest common 



ancestor. If we have multiple lowest common ancestors, there is the potential 

that they will have different branch lengths. We must either choose one lowest 

common ancestor or somehow combine scores from multiple ancestors into a 

single result. Choosing one lowest common ancestor is the simpler solution. A 

simple criterion is to choose the most specific lowest common ancestor. 

A more appropriate function will include factors to handle the different 

branch lengths and the total distance between the two terms, such as the 

function described in Equation 6. For a given total distance between two 

annotated GO terms through a lowest common ancestor, this function will put 

heavier weight onto paths with more evenly balanced distances. It will also put 

lower weight onto paths where terms are farther apart in the tree. 

Equation 6 A scoring function for measuring the similarity of two GO terms, using the 
relative distances from annotated GO terms to a lowest common ancestor 

See Equation 5 for descriptions of A, B, and C. 
The first factor is the reciprocal of the sum of the two distances, as in 
Equation 5. The second factor is the minimum ratio of the two distances. 

1 
x 1 + ~ ~ ~ ( A , c I , I B , c ~ }  Score = 

1 + IA, CI + IB, C I  1 +  maxi^, cI, IB, cI} 

Both of these functions lack a factor for the specificity of the lowest 

common ancestor. As discussed in 6.4.1, specificity cannot truly be measured, 

but only approximated. We consider the inclusion of a factor for the average 

path length to a descendent term from the lowest common ancestor in Equation 

7. We use the reciprocal of the average path length because we want to 

increase the score as the average path length decreases. 



Equation 7 A scoring function for measuring the similarity of two GO terms, including a 
factor for the specificity of the lowest common ancestor 

See Equation 6 for a description of the first two factors. 
Li = leaf node descendent of the lowest common ancestor C 
The denominator of the third factor is the number of leaf node descendents of 
the lowest common ancestor C, and the numerator is the sum of path lengths 
from each leaf node descendent to C. Thus, the third factor is the reciprocal 
of the average path length from a leaf node descendent to the lowest common 
ancestor. 

1 
x l+rninf iA,C~,~B,~~} ~ + I { L , ]  Score = x 

1 + IA,C~+ IB,cI 1  + rnax!A,~~,~B,~lf  1 + CIL,,CI 

6.4.4 Similarity of GO term annotations for genes 

A single gene can have multiple GO term annotations in the same 

category (cellular component, molecular function, or biological process), and thus 

share multiple distinct lowest common ancestors with other genes. Therefore, 

our function needs to take into account multiple sets of distances arising from all 

possible pairs of GO terms annotated to each gene in a pair. We could sum the 

scores for each pair of GO terms; we could take the average; we could take the 

maximum score; or we could allow multiple scores for each gene pair. 

Combining the scores will favour genes with multiple links with more 

general lowest common ancestor terms over those with fewer links with more 

specific lowest common ancestor terms. For example, if two genes share only 

one identical GO term annotation, that pair could score less than two genes that 

share multiple distant annotations. Outputting all of the scores is also more 

useful for analysis, as individual scores can be combined later if the researcher 

wishes, whereas combined scores cannot be broken down into their component 

parts. 



6.4.5 Score distributions 

Given a pair of genes, their GO term annotations, and a comparison 

scoring function, we can calculate the scores for each pair of GO terms. We now 

want to know how significant those scores are. To find out, we want to measure 

the scores against a background distribution. We can then normalize a given 

score by mapping it to its percentile in the distribution. There are two possible 

sources for such a distribution: the set of all pairs of GO terms, or the set of all 

pairs of genes from some background set. The remainder of this section 

assumes we are discussing a single category of terms from the ontology. 

The scores resulting from the set of all pairs of GO terms provide a 

background distribution that quantifies the graph structure. If we measure the 

score for a pair of GO terms annotated to a pair of genes against this distribution, 

we are measuring distances regardless of how gene annotations are actually 

distributed within that structure. The total number of genes assigned to a given 

node in the graph does not influence its weight in the distribution. Additionally, 

we are potentially including data from the GO graph that is not relevant to the 

background set of genes. For example, the GO graph contains vocabulary for 

plants that will never be applied to genes from animal organisms. 

Because we chose to obtain GO annotations solely from Entrez Gene, the 

background set for our 65 polyglutamine domain genes is the set of all human 

protein-coding genes from that database. The list of these genes and their 

annotated GO terms was obtained from Entrez Gene on April 29, 2005. This 



snapshot of Entrez Gene contains records for 25,370 human protein-coding 

genes. Of these, 15,277 have GO annotations. 

We examined the similarity of the level of annotation detail for our set of 

genes compared to the entire data set. We took a random sample of 65 from the 

set of human protein-coding genes, and did this 100 times. 

Table 16 compares the annotations for the random samples to those for 

our genes of interest and to the complete set of annotations from Entrez Gene. It 

is immediately obvious that our genes of interest are much better annotated than 

the average random sample. Across all categories, there are fewer genes 

without any annotations. 

When we look at only those genes that actually have GO term 

annotations, we see that our set of interest has approximately the same (within 2 

standard deviations) average number of annotations per term as the random 

samples. As a control, we also compared the average GO terms per gene for 

the random samples to the averages over the entire Entrez Gene data set. The 

statistics for the random samples are virtually identical to those for the whole set, 

which gives confidence that the random samples are representative of the set. 



Table 16 Comparing random samples of GO annotations for protein-coding genes to 
our genes of interest. 

We used 100 random samples of 65 genes obtained from the Entrez Gene 
database downloaded April 29,2005. The standard deviation of the values 
over the random samples is given in brackets for those cells. 

Number of genes 
with no GO 
annotations 

Average GO terms 
per gene 

Average GO terms 
per gene with at 
least one 
annotation 

nla Cellular 

/ PolyQ 

function 
nla 

/ PolyQ 

Biological All 

Random 

nla 

I PolyQ 

It was infeasible to calculate the scores for all pairs of genes in the data 

set; therefore, we used the random samples and combined the results. For each 

pair of genes within each random sample, we considered the score for each pair 

of GO terms annotated to those two genes. This takes into account both a 

measurement against the GO graph structure and the relative distribution of 

genes among nodes in that graph. The score distributions are shown in Figure 9. 



Figure 9 Estimated score distributions for pairs of Gene Ontology annotations 

Scores were calculated from 100 randomly selected sets of 65 genes and 
combined. We used Equation 7 to calculate the score distributions. 

Cellular component Molecular functlon 

Score 

Biological process 

Score 

Score 

For each of the three categories of the Gene Ontology, we estimated the 

9gth percentile of the score distribution for a group of 65 randomly selected genes 

using the median of that value across the 100 random samples (Table 17). The 

median was preferred to the mean as an estimator due to the high variance of 

estimates across the random samples. In particular, the distribution of the 

estimator for the molecular function category had a long tail towards the higher 



values. We chose to use a higher percentile to result in a stricter evaluation of 

the utility of the score function. 

Table 17 Estimated 9gth percentile of score distributions 

We used Equation 7 to calculate the score distributions. 

I Category I Minimum I Median I Maximum 1 
I Cellular component 1 0.262195 1 0.303665 1 0.483871 / 
1 Molecular function I 0.1 12442 1 0.280657 1 1 .OOOOOO 1 
I Biological process I 0.068735 / 0.175160 1 0.281553 1 

6.5 Results 

We applied Equation 7 to score the relationships between GO term 

annotations for pairs of genes from our list of interest (genes encoding 

polyglutamine-domains with CAG repeats). Pairs of annotations scoring above 

the estimated 9gth percentile were retained. Only one pair was above the score 

cut-off for the cellular component category, so we did not consider this category 

any further. 

There were 468 gene pairs with scores above the cut-off in the biological 

process category, representing 42 genes. Likewise, there were 355 pairs for 46 

genes in the molecular function category. Table 18 and Table 19 summarize the 

lowest common ancestor terms that gave rise to these links. The tables include 

all links above the cut-off, not only the highest-scoring link for each pair of genes. 

This ensures that we can evaluate all of the potentially interesting linkages. 
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I Term ID I Term definition I Number 1 

GO:0003714 

GO:0004386 

GO:0004402 

GO:0004674 

We created graphs for the molecular function and biological process 

categories where each node represented a single gene, and weighted edges 

represented pairs of GO term annotations and their scores. We applied a simple 

visual clustering algorithm that assigns shorter lengths to edges with higher 

weights. The resulting graphs were labelled with the GO terms that best 

described each cluster, based on the groupings in Table 18 and Table 19. Note 

that not all of the terms from the tables are used in the graphs, as this is visually 

too complex. 

GO:0005509 

GO:0016563 

GO:0030374 

transcription corepressor activity 

helicase activity 

histone acetyltransferase activity 

protein serinelthreonine kinase activity 

of genes 

2 

2 

2 

2 

calcium ion binding 

transcriptional activator activity 

ligand-dependent nuclear receptor transcription coactivator 
activity 

2 

2 
- 

2 



Figure 10 Gene clusters based on scored relationships between annotated GO terms - 
biological process 

protein amino acid phosphorylatio 

- 



Figure 11 Gene clusters based on scored relationships between annotated GO terms - 
molecular function 

ion binding 

nding 

I binding 



CHAPTER 7: DISCUSSION 

7.1 Summary of results 

The original goal of this research was to produce a network of evidence 

supporting relationships between genes, based on co-citation of genes in 

biomedical literature abstracts. The network was to link genes containing 

polyglutamine repeats as defined by the Genomic Mutational Signatures project. 

Indirect, or off-by-one, relationships were to be included if possible. The co- 

citation evidence was to form the first layer of edges in a network that would 

integrate multiple sources of evidence, called a common evidence network 

(Chapter 2). 

7.1 .I Gene name ambiguity 

Exploration of biomedical text-mining literature and our first attempts at 

building a co-citation network brought an underlying problem to light. We found 

ambiguity of gene names within species, between species, with disease names, 

abbreviations of biomedical terms, and with the English language (Chapter 3). 

These ambiguities caused two problems. First, we needed a comprehensive list 

of gene names and accessions, all mapped to their respective genes. However, 

no individual gene- or protein-centric database had a complete list for all of the 

genes on our list of interest. 



We built an application to identify gene records in three selected 

databases: Entrez ~ e n e ~ ~ ,  ~ w i s s ~ r o t ~ ~ ,  and HUGO ~ e n e w ~ ~ .  It can be 

extended by adding modules to read and extract information from new 

databases. The application searches these databases using one or more names 

for each gene, and allows the user to resolve instances where more than one 

gene record matches a given name (Chapter 4). It extracts gene names, 

descriptions, accessions, associated publications, and annotated Gene Ontology 

terms from each gene record and outputs text files in a simple format for each 

information type. For each gene and a given information type, the data is 

combined into a single output line. 

7.1.2 Co-citation evidence 

The second problem was to resolve ambiguities detected by our text- 

mining application. The purpose of this application was to uniquely identify gene 

mentions in biomedical citations (Chapter 5). Given the comprehensive synonym 

list from our information gathering utility application, we exactly matched gene 

names and accessions in the abstract, title, and various curated annotations for 

each citation. An examination of the synonyms with the most matches showed 

generally very low specificity (precision) estimates when we considered all 

192,681 citations with at least one match. In contrast, we estimated between 

84.28% and 98.98% sensitivity (recall) based on three separate gene-to- 

publication association lists. 

We found only 3,022 citations (5,245 pairwise co-citations) with matches 

to at least two distinct genes. Of these, 1,042 (2,949 pairwise co-citations) were 



manually validated as containing correct matches. A citation was removed from 

this list if it was found to contain incorrect matches that resulted in less than two 

distinct genes being associated with that citation. From these results, we 

estimated a specificity of 56.22% for the automated system when co-citation is a 

requirement. This gave an F-score (combined sensitivity and specificity) of 

68.8%, which compared favourably with the co-citation results using the STRING 

application40. STRING had specificity of 96.4% and sensitivity of 39.5% for an F- 

score of 56.0% on the same set of genes. 

We noted that the whole genome, top-down approach used by the 

STRING project placed greater emphasis on specificity, and did not include gene 

names that mapped to more than one gene. One gene name that was not 

included by STRING accounted for 44.1% of the co-citation pairs found in our 

manually validated set. The STRING co-citation pairs were a proper subset of 

our results; we did not miss any of the matches they found. We conclude that a 

sensitivity-focused, bottom-up approach centred on a relatively small set of 

genes has the potential to fill in gaps in the results of specificity-focused, top- 

down whole genome approaches. 

The manually validated co-citation pairs were scored using the mutual 

information measure. By using only the co-citation results, this measure assigns 

higher scores to pairs of genes that occur rarely in pairs, but tend to occur 

together. It assigns lower scores to genes that commonly occur in pairs, such as 

the known ataxia disease genes. Scores range between 0 and 1, and are thus 

directly usable as edge weights in a common evidence network. 



7.1.3 Gene Ontology evidence 

During the course of this project, the GeMS team began examining its set 

of polyglutamine repeat containing genes for similarity of Gene ontologya7 terms. 

They approached the problem using overrepresentation analysis provided by the 

GoMiner tool76. The depth limitations of this type of analysis led us to explore 

methods for pairwise comparison of the GO terms annotated to a set of genes 

(Chapter 6). We designed a novel scoring system based on a measure of the 

specificity of the path linking two GO terms in the GO DAG. Significant scores 

were considered to be those above the 9gth percentile of a bootstrapped score 

distribution based on samples of the same size as that of the gene set of interest. 

All three GO categories (biological process, molecular function, and 

cellular component) were considered as separate layers of evidence. This was 

partly because some genes have annotations in one category but not others, but 

mostly because the three categories are not comparable. We found only one 

gene pair from our test set of genes that had a score over the 9gth percentile in 

the cellular component category, therefore we did not continue analysis for that 

category. We normalized all scores from the biological process and molecular 

function categories to the range of 0-1 for use as edge weights in a common 

evidence network. 

7.2 Future work 

A common evidence network is only as useful as the data on which it is 

based. The more layers of accurate data that can be incorporated, the more 

complete the network becomes, and the more potential use it has as an 
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interpretive tool of use to scientists. A relationship between two genes 

connected by multiple low-weight edges may be worth further investigation. We 

propose the inclusion of more evidence types and the inclusion of more genes 

through indirect linkages (as discussed in 2.3.1 above) as a means to increase 

confidence in more weakly supported putative relationships. 

The integration of multiple evidence types into a single network is the end 

goal of this research. It is not enough to simply layer the results of each 

evidence type together. We will need tools and methods for visualizing and 

analyzing a common evidence network. Open source graph visualization tools 

such as cytoscape6 and osprey7 can be adapted for this purpose. It is possible 

to write additional software modules for clustering and other analysis methods. 

These modules can be directly incorporated into the aforementioned visualization 

tools. 

7.2.1 Additional data 

Two naturally paired evidence types are obvious candidates for layers in a 

common evidence network: protein-protein interactions and gene co-expression. 

If two proteins interact, the research hypothesis is that they perform some 

biological function together. Data from protein-protein interaction databases is 

readily available for public use88-93. Some groups have begun to integrate data 

from across multiple databases4', 94. Of particular interest for networks focusing 

on human genes, interactions of human proteins can be predicted based on 

interactions of the corresponding proteins found in model organisms such as 

mouse, fruit fly, or wormg5. A quantitative measure for interaction confidence 



could be related to the experiment type, including its classification as high- or 

low-throughput. 

Gene expression experiments measure the relative amounts of mRNA 

produced by genes in a cell at a given moment in time. Genes with similar 

changes in expression levels across multiple cell conditions are said to be co- 

expressed. The hypothesis is that genes with similar changes in expression are 

similarly regulated339 34. Gene expression data is frequently noisy due to the 

limits of the experimental techniques involvedg6. Confidence in a linkage grows 

with the number of sets of experiments in which a pair of genes is considered co- 

expressed. A quantitative measure of the co-expression linkage between two 

genes could be based simply on the number of experiment sets in which the co- 

expression is seeng7. 

7.2.2 Gene Ontology clustering and graph visualization tool 

A particularly useful visualization module would specifically target the 

results of the Gene Ontology analysis to automatically produce graphs such as 

Figure 10 and Figure 11. The clustering algorithm used for those graphs is 

based on spring tension. Higher edge weights equate to higher spring tension 

between two genes, drawing them together. The graph reaches equilibrium 

when the spring tensions are balanced. We propose a modification to this 

method that considers the relationships between the GO terms corresponding to 

edge labels. 



Figure 12 Example output from proposed Gene Ontology cluster visualization tool 

(Edges not shown) 

regulation of transcription from I RN* plymerase ll pmmXn 

1 transcription 

Recall that the lowest common ancestor between two GO terms is the 

primary factor in the equation scoring the relationship between those terms. We 

can label the resulting edge not only with the weight that comes from the score, 

but also with the lowest common ancestor GO term. Consider a cluster of genes 

in which a small core group is linked by GO term A, and a peripheral group is 

linked by GO term B, where term A is a descendent of term B. Additionally, 

genes in the core group are linked to genes in the peripheral group by term B. A 

visually appealing cluster algorithm would place the core group in the centre of 

the cluster, labelling it by term A, place the genes in the peripheral group around 

those in the core group, and label the entire group by term B (Figure 12). 

The tool would need to be aware of the relationships between the subset 

of Gene Ontology terms that are in use as edge labels. It would start with genes 



linked by GO terms that do not have any descendents as edge labels in the 

graph, and work upwards in the GO DAG. Some form of conflict resolution would 

be required for cases where genes belong to multiple groups. 

7.3 Conclusion 

The goal of this research was to describe a data structure to represent 

evidence for relationships between genes, and to design methods for obtaining 

some types of evidence and measuring confidence in that evidence. A network 

is an appropriate data structure. Existing visualization and analytic tools can be 

applied, and new types of evidence can be added. This type of bottom-up 

approach is targeted towards small lists of genes focused around a specific 

biological question. Methods for adding evidence types can therefore favour 

sensitivity over specificity, as opposed to top-down, whole genome approaches. 

To add evidence, we first needed to identify gene records in databases. 

We found that the ambiguity of gene names was an underlying issue, requiring a 

tool for extracting and collating information from gene records from multiple 

databases. We developed a method to gather evidence based on co-citations in 

biomedical abstracts. The co-citation method compares favourably to other 

published tools. We presented a novel approach to quantifying the similarity of 

Gene Ontology terms annotated to a pair of genes. We tested both methods on 

the list of human polyglutamine domain containing genes. 



APPENDIX A: CANDIDATE DISEASE GENES 

Table 20 Genes of interest (candidate and known disease genes) 

The gene symbol and name shown are the official approved symbols and 
names from the Human Genome Organization Nomenclature Committee, 
where available. 

Gene symbol 1 Gene name 

AR* androgen receptor (dihydrotestosterone receptor; testicular feminization; 
spinal and bulbar muscular atrophy; Kennedy disease) 

ARID1 B I AT rich interactive domain 1 B (SWI1 -like) 

I rich interactive domain 38 (BRIGHT- like) 

ASCLI 1 achaete-scute complex-like 1 (Drosophila) 

ATXN2* 1 ataxin 2 

ATN 1 * 

ATXN 1 * 

ATXN3* I ataxin 3 

dentatorubral-pallidoluysian atrophy (atrophin-1) 

ataxin 1 

BAlAPl I BAl 1 -associated protein 1 

BMP2K 

BRD4 

CACNA1 A* I calcium channel, voltage-dependent, PIQ type, alpha 1A subunit 

BMP2 inducible kinase 

bromodomain containing 4 

C140RF4 

C90RF43 

chromosome 14 open reading frame 4 

chromosome 9 open reading frame 43 

CREBBP I CREE? binding protein (Rubinstein-Taybi syndrome) 

CHERP 

CIZI 

CXORF6 1 chromosome X open reading frame 6 

calcium homeostasis endoplasmic reticulum protein 

CDKNlA interacting zinc finger protein 1 

DCPl B I DCPI decapping enzyme homolog 6 (S. cerevisiae) 

EP400 

FOXP2 

KCNN3 I potassium intermediatelsmall conductance calcium-activated channel, 

E1A binding protein p400 

forkhead box P2 

HD* 

I RS? 

-- - - -- 

huntingtin (Huntington disease) 

insulin receptor substrate 1 



1 subfamily N, member 3 

K I M 1  817** I KIM181 7 protein 

MED12 I mediator of RNA polymerase II transcription, subunit 12 homolog (yeast) 

KIAA2018 

MAML2 

MAML3 

- - 

MEF2A MADS box transcription enhancer factor 2, polypeptide A (myocyte enhancer 
factor 2A) 

K IM20 18 

mastermind-like 2 (Drosophila) 

mastermind-like 3 (Drosophila) 

MINK1 I misshapen-like kinase 1 (zebrafish) 

MLL2 1 myeloidllymphoid or mixed-lineage leukemia 2 

MNI I meningioma (disrupted in balanced translocation) 1 

NCOA3 I nuclear receptor coactivator 3 

rnuclear receptor coactivator 6 

NCOR2 I nuclear receptor co-repressor 2 

N FAT5 ( nuclear factor of activated T-cells 5, tonicity-responsive 

NUMBL 1 numb homolog (Drosophi1a)-like 

PAXlPl L I PAX transcription activation domain interacting protein 1 like 

PHLDAI I pleckstrin homology-like domain, family A, member 1 

PCQAP 

PHCI 

PC2 (positive cofactor 2, multiprotein complex) glutaminelQ-rich-associated 
protein 

polyhomeotic-like 1 (Drosophila) 

POU6F2 I POU domain, class 6, transcription factor 2 

POLG 

POU3F2 

PRDMIO 

polymerase (DNA directed), gamma 

POU domain, class 3, transcription factor 2 

1 PR domain containingl 0 

PRKCBPI I protein kinase C binding protein 1 

RAI 1 1 retinoic acid induced 1 

RUNX2 I runt-related transcription factor 2 

SOCS7 1 suppressor of cytokine signaling 7 

SATB I 

SMARCA2 

ST6GALNAC5 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-l,3)-N- 
acetylgalactosaminide alpha-2,6-sialyltransferase 5 

special AT-rich sequence binding protein 1 (binds to nuclear matrix/scaffold- 
associating DNA's) 

SWIISNF related, matrix associated, actin dependent regulator of chromatin, 
subfamily a, member 2 

TBP* TATA box binding protein 



transcription factor EB 
- - -  - - 

THAP domain containing 1 1 

trinucleotide repeat containing 15 

I TNRC4 1 trinucleotide repeat containing 4 1 

I TNS / tensin 1 

- - -  

TNRC6A 

TNRC6B 

trinucleotide repeat containing 6A 

trinucleotide repeat containing 6B 

* Known polyglutamine expansion disease gene 
** No HGNC-approved symbollname available 

ZNF161 

ZNF384 

zinc finger protein 161 

zinc finger protein 384 



APPENDIX B: MEDLINE XML EXAMPLE 

Figure 13 An example of a MEDLINE XML citation 

Displayed fields are those contained in the citation data structure produced by 
the XML parsing module. Some fields have been condensed for the purposes 
of display. The original citation does not contain the Genesymbol or 
Accession fields. These were manually added. 

<MedlineCitation Status="MEDLINEW> 
<PMID>12881722</PMID> 
<DateCreated>2003-08-29</DateCreated> 
<DateCompleted>2003-09-25</DateCompleted> 
<DateRevised>2004-11-17</DateRevised> 
<Article> 

<ArticleTitle>Huntingtin interacts with REST/NRSF to modulate the transcription of 
NRSE-controlled neuronal genes.</ArticleTitle> 
<Abstract> 

<AbstractText>Huntingtin protein is mutated in Huntington disease. We 
previously reported that wild-type but not mutant huntingtin stimulates 
transcription of the gene encoding brain-derived neurotrophic factor (BDNF; 
ref. 2). Here we show that the neuron restrictive silencer element (NRSE) is 
the target of wild-type huntingtin activity on BDNF promoter 11. Wild-type 
huntingtin inhibits the silencing actlvity of NRSE, increasing transcription 
of BDNF. We show that this effect occurs through cytoplasmic sequestering of 
repressor element-l transcription factor/neuron restrictive silencer factor 
(REST/NRSF), the transcription factor that binds to NRSE. In contrast, 
aberrant accumulation of REST/NRSF in the nucleus is present in Huntington 
disease. We show that wild-type huntingtin coimmunoprecipitates with REST/NRSF 
and that less immunoprecipitated material is found in brain tissue with 
Huntington disease. We also report that wild-type huntingtin acts as a 
positive transcriptional regulator for other NRSE-containing genes involved in 
the maintenance of the neuronal phenotype. Consistently, loss of expression of 
NRSE-controlled neuronal genes is shown in cells, mice and human brain with 
Huntington disease. We conclude that wild-type huntingtin acts in the 
cytoplasm of neurons to regulate the availability of REST/NRSF to its nuclear 
NRSE-binding site and that this control is lost in the pathology of Huntington 
disease. These data identify a new mechanism by which mutation of huntingtin 
causes loss of transcription of neuronal genes.</AbstractText> 
</Abstract> 

<DatabankList> 
<Databank> 

<DatabankName>GENBANK</DatabankName> 
<AccessionNumberList> 

<AccessionNumber>NP~002102</AccessionNumber> 
<AccessionNumber>NP~0017OO</AccessionNumber> 
<AccessionNumber>NP~OO5603</AccessionNumber> 

</AccessionNumberList> 
</Databank> 

</Databanklist> 
<PublicationTypeList> 

<PublicationType>Journal Article</PublicationType> 
</~ublication~~~eList> 

</Article> 
<MedlineJournalInfo> 

<MedlineTA>Nat Genet</MedlineTA> 
<NlmUniqueID>9216904</NlmUniqueID> 

</MedlineJournalInfo> 
<ChemicalList> 

<Chemical> 
<RegistryNumber>O</RegistryNumber> 
<NameOfSubstance>Brain-Derived Neurot 

</Chemical> 
<Chemical> 

<RegistryNumber>O</RegistryNumber> 

rophic Facto 

<NameOfSubstance>Huntingtin protein, human</NameOfSubstance> 
</Chemical> 
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<Chemical> 
<RegistryNumber>O</RegistryNumber> 
<NameOfSubstance>Nerve Tissue Proteins</NameOfSubstance> 

</Chemical> 
<Chemical> 

<RegistryNumber>O</RegistryNumber> 
<NameOfSubstance>Nuclear Proteins</NameOfSubstance> 

</Chemical> 
<Chemical> 

<RegistryNumber>O</RegistryNumber> 
<NameOfSubstance>Repressor Proteins</NameOfSubstance> 

</Chemical> 
<Chemical> 

<RegistryNumber>O</RegistryNumber> 
<NameOfSubstance>Transcription Factors</NameOfSubstance> 

</Chemical> 
<Chemical> 

<RegistryNumber>O</RegistryNumber> 
<NameOfSubstance>transcription factor REST</NameOfSubstance> 

</Chemical> 
</ChemicalList> 
<GeneSymbolList> 

<GeneSymbol>HD</GeneSymbol> 
<GeneSymbol>NRSE</GeneSymbol> 
<GeneSymbol>REST</GeneSymbol> 
<GeneSymbol>BDNF</GeneSymbol> 

</GeneSymbolList> 
<MeshHeadingList> 

<MeshHeading> 
<DescriptorName MajorTopicYN="N">Animals</DescriptorName> 

</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Brain-Derived Neurotrophic 
Factor</DescriptorName> 
<QualifierName MajorTopicYN="Y">genetics</QualifierName> 

</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Cell Line</DescriptorName> 
</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="Y">Gene Expression Regulation</DescriptorName> 
</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Humans</DescriptorName> 
</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Huntington Disease</DescriptorName> 
<QualifierName MajorTopicYN="N">genetics</QualifierName> 

</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Mice</DescriptorName> 
</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="NW>Mice, Knockout</DescriptorName> 
</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Nerve Tissue Proteins</DescriptorName> 
<QualifierName MajorTopicYN="N">genetics</QualifierName> 
<QualifierName MajorTopicYN="Y">physiology</QualifierName> 

</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Neurons</DescriptorName> 
<QualifierName MajorTopicYN="Y">physiology</QualifierName> 

</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Nuclear Proteins</DescriptorName> 
<QualifierName MajorTopicYN="N">genetics</QualifierName> 
<QualifierNarne MajorTopicYN="Y">physiology</QualifierName> 

</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Promoter Regions (Genetics)</DescriptorName> 



</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN-"N">Rats</DescriptorName> 
</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Rats, Sprague-Dawley</DescriptorName> 
</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Repressor Proteins</DescriptorName> 
<QualifierName MajorTopicYN="Y">genetics</QualifierName> 
<QualifierName MajorTopicYN="N">physioIogy</QualifierName> 

< /MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Research Support, Non-U.S. 
Gov't</DescriptorName> 

</MeshHeading> 
<MeshHeading> 

(DescriptorNarne MajorTopicYN="N">Silencer Elements, 
Transcriptional</DescriptorName> 

</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Transcription Factors</DescriptorNarne> 
<QualifierName MajorTopicYN="Y">genetics</QualifierNarne> 
<QualifierName MajorTopicYN="N">physiology</QualifierNarne> 

</MeshHeading> 
<MeshHeading> 

<DescriptorName MajorTopicYN="N">Transcription, Genetic</DescriptorName> 
</MeshHeading> 

</MeshHeadingList> 
</MedlineCitation> 



APPENDIX C: DATABASE SCHEMA 

Figure 14 Database schema for text-mining application 

Cherrlel Gene Genesynonym 
9 chemgl-id: INT 9 gene-gene-synonym-id: INT 

V gene-id: INT (FK) 
V gene-d: INT 

0 regbby-number: VARCHAR(15) 0 priima~~~ymbol: VARCHAR(20) 
0 name-of-substance: VARCHAR(150) gene-~on~m-id:  INT (FK) w- 

9 Mion-id: INT (FK) 

V ctatian-id: INT (FK) 
9 gene-synonym-id: INT (FK) 

Utatbn-DatabankRecord 
9 atation-databank-record-id: INT 
9 atation-ld: INT (FK) 
9 databank-id: INT (FK) 
0 accession-number: VARCHAR(12) 

0 medhed: INT 

Keyword 

0 major-topic-yn: SOUL O date-completed: DATE 
0 owner: VARCHAR(5) 0 date-revised: DATE 

Q citation-id: INT (FK) 

MeshHeading Meshsynonym - 
V mesh-heading-mesh-synonym-id: INT 



APPENDIX D: GENE ONTOLOGY EVIDENCE TYPES 

Table 21 Types of evidence for GO term annotations 

lnferred by curator (IC) 

lnferred from direct 
assay (IDA) 

lnferred from electronic 
annotation (IEA) 

lnferred from 
expression pattern 
(1 EP) 

lnferred from genetic 
interaction (IGI) 

lnferred from mutant 
phenotype (IMP) 

Description 

To be used for those cases where an annotation is not 
supported by any evidence, but can be reasonably inferred by 
a curator from other GO annotations, for which evidence is 
available. 

Enzyme assays 

In vitro reconstitution (e.g. transcription) 

lmmunofluorescence (for cellular component) 

Cell fractionation (for cellular component) 

Physical interactionlbinding assay (sometimes appropriate 
for cellular component or molecular function) 

Annotations based on "hits" in sequence similarity 
searches, if they have not been reviewed by curators (curator- 
reviewed hits would get ISS) 

Annotations transferred from database records, if not 
reviewed by curators (curator-reviewed items may use NAS, 
or the reviewing process may lead to print references for the 
annotation) 

Transcript levels (e.g. Northerns, microarray data) 

Protein levels (e.g. Western blots) 

"Traditional" genetic interactions such as suppressors, 
synthetic lethals, etc. 

Functional complementation 

Rescue experiments 

Inference about one gene drawn from the phenotype of a 
mutation in a different gene 

Any gene mutationlknockout 

0verexpression1ectopic expression of wild-type or mutant 
genes 

Anti-sense experiments 

RNAi experiments 

Specific protein inhibitors 



Evidence type Description 

lnferred from physical 
interaction (IPI) 

lnferred from sequence 
or structural similarity 
(ISS) 

Non-traceable author 
statement (NAS) 

No biological data 
available (ND) 

Inferred from reviewed 
computational analysis 
(RCA) 

2-hybrid interactions 

Co-purification 

Co-immunoprecipitation 

lonlprotein binding experiments 
- - 

Sequence similarity (homologue oflmost closely related to) 

Recognized domains 

Structural similarity 

Southern blotting 

Protein features, predicted or observed (e.g. 
hydrophobicity, sequence composition) 

Database entries that don't cite a paper (e.g. UniProt 
Knowledgebase records, YPD protein reports) 

Statements in papers (abstract, introduction, or discussion) 
that a curator cannot trace to another publication 

Used for annotations to "unknown" molecular function, 
biological process, or cellular component. 

Predictions based on large-scale protein interaction 
experiments 

Predictions based on integration of large-scale datasets of 
several types 

Text-based computation (e.g. text mining) 

Traceable author 
statement (TAS) 

Not recorded (NR) 

Source: GO Evidence Code ~ u i d e ~ '  

Anything in a review article where the original experiments 
are traceable through that article (material from introductions 
to non-review papers will sometimes meet this standard; 
discussion sections should usually be regarded with greater 
skepticism) 

Anything found in a text book or dictionary; usually text 
book material has become common knowledge (e.g. 
"everybody" knows that enolase is a glycolytic enzyme). 

Used for annotations done before curators began tracking 
evidence types (appears in SGD and FlyBase annotations). It 
should not be used for new annotations: use TAS or NAS. 
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