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ABSTRACT 

One of the benefits of an E-Learning network is to connect users to 

distributed learning repositories where they can be exposed to numerous 

learning resources. However, metadata of learning resources stored in different 

repositories are often annotated with concepts defined by different ontologies or 

classifications specific to their organizations. That makes finding information 

based on a local conceptual framework difficult. Different organizations with 

different backgrounds and target audiences may use different terms with similar 

semantics to define and describe similar learning resources. As such, using a 

keyword-based approach to find relevant information may not yield satisfactory 

results. 

In this thesis, I describe a lightweight information integration solution for 

browsing federally distributed metadata without incurring expensive schema 

matching or semantic mapping. I present experiments on real-world data that 

validate the proposed solution. Finally, I discuss how this approach can simplify 

semantic mapping and enhance browsing experience in a distributed repository 

network. 
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CHAPTER 1 : INTRODUCTION 

With the advance of the Internet and rapid developments in E-learning, 

more and more institutions are joining to form distributed learning networks to 

provide their users with access to resources from different learning repositories. 

This creates pressure for institutions to provide an efficient way to organize the 

huge volume of learning materials located in different repositories. The 

classification has to be flexible and robust enough to deal with variation in 

conceptual frameworks of dispersed audiences in order to answer distributed 

retrieval requests. Currently, the use of metadata and ontologies to formalize 

semantics of concepts in the E-learning domain does not completely resolve the 

problem of interoperability in a federated environment. Metadata are descriptive 

indexing labels used to describe the characteristics and content of learning 

objects. They are used to facilitate searching, management and assembling of 

learning content. Ontology, on the other hand, is to define the set of vocabularies 

to describe the metadata for each particular concept. However, in a federated 

environment, keywords-based search on metadata elements could not guarantee 

the discovery of all relevant information. This is because linguistic variation in 

metadata makes direct querying with keywords sometimes ineffective even with 

the ontology to control the vocabularies used to describe the metadata. 

Obviously, it is almost impossible to expect that two institutions would use exactly 

the same keywords and classifications to describe the same learning resource. 



Therefore, it is very unlikely that using a keyword-based retrieval system could 

return all relevant documents, or more precisely, semantically relevant 

documents in a federated learning network. In addition, descriptions used in 

metadata to define and classify learning resources may not be in the same 

standardized format across a learning network [1][2]. Hence, finding related 

information on a topic from heterogeneous sources is very challenging. This is a 

long-standing problem of information integration [3, 41. Currently, active research 

is underway to provide efficient and effective solutions for a global view of 

information from distributed sources. Information integration aims to transform 

heterogeneous data sources into a single global homogeneous database and to 

provide a unified view of these data for future query processing purposes [5]. 

1.1 Thesis Statement 

The research question of this thesis is to explore the use of a lightweight 

semantic mapping strategy to browse in a federated network of repositories for 

semantically relevant metadata with the use of WordNet. This research 

integrates a number of techniques in information retrieval, information integration 

and data mining to achieve semantic mappings among different metadata 

repositories in a cooperative network environment, in order to allow users to 

browse by semantically similar concepts. 

The central thesis of this research is to explore the use of semantic 

signatures in WordNet terms to enhance relevance of federated browsing in a 

collaborative repository network. This ultimate goal encompasses a number of 

objectives. First, we would like to establish experimentally the benefit of using 



WordNet as a mediated schema to construct semantic signatures for semantic 

mapping. Secondly, we would also like to investigate the use of linguistic 

heuristics to select the appropriate senses to construct a "good" semantic 

signature to represent a concept in the classification schema. Finally, we would 

like to demonstrate the relative merit contributed by semantic signature mapping 

by comparing the result of federated browsing using semantic signatures against 

another widely used keyword-based browsing. 

1.2 Thesis Organization 

The rest of this thesis is structured as follows: 

Chapter 2 Related Works 

This chapter summarizes the major concepts in lnformation Retrieval, 

lnformation Integration, Ontologies, WordNet, and E-learning metadata. It builds 

an intellectual foundation for subsequent chapters, and identifies works that this 

research relates to. 

Chapter 3 Challenges of Semantic Mapping 

This chapter illustrates the research problem, as a motivation, in semantic 

mapping with examples. It presents various research and technical challenges 

that we are facing in semantic mappings. It includes a brief review of several 

popular approaches in semantic mapping. 

Chapter 4 Browsing with Semantic Signature 

This chapter introduces the concept of a semantic signature to represent a 

concept in the classification schema or ontology and describes how it is 



constructed with WordNet terms. It also further illustrates the idea of using 

semantic signatures to facilitate semantic mapping to enable concept browsing in 

a distributed collaborative learning network. A semantic signature indexing tool 

will also be displayed as a realization of the signature browsing approach. 

Chapter 5 Evaluation and Interpretation 

The utility of the semantic mapping using WordNet signature is evaluated 

in a specific verification domain, namely, that of the E-learning metadata 

browsing by concept. A set of assumptions, dataset description, experimental 

results and their evaluations will be discussed in detail. 

Chapter 6 Conclusion 

This chapter summarizes the major contributions of this work and provides 

future directions of this research. 



CHAPTER 2: 

This chapter will highlight the main concepts in lnformation Retrieval, 

lnformation Integration, Ontologies, WordNet, and E-learning. They provide 

important background information to understand the content and approaches 

adopted in this thesis. 

2.1 lnformation Retrieval 

lnformation retrieval is usually used as a generic term to cover the study of 

systems for indexing, searching, and recalling data, particularly text or other 

unstructured forms. Specifically, it deals with the representation, storage, 

organization of, and access to information items [6]. Unlike data retrieval, 

information retrieval is not a database querying. Databases work with highly 

structured information. The data model of a specific database determines the 

possible queries a user can ask. Usually the form of the query will have to follow 

the data model. A database is used where exact matching is demanded. On the 

other hand, information retrieval models use highly ambiguous queries and 

include some amount of fuzziness as the user defines the search query. 

The key notion of information retrieval is that relevance is defined in terms 

of similarity. This assumes that if a document is similar to a query it is relevant. 

Similarity in turn can be defined in several ways, depending on the type of the 

information. For text retrieval, similarity is usually measured in the overlap of the 



words used in both query and document [7]. A document could be anything from 

a title, to an abstract, to a full-text paper. Information retrieval is a "broad 

interdisciplinary field of research that draws on many other disciplines such as 

cognitive psychology, linguistics, information science and computer science"'. In 

this thesis, information retrieval is limited to text retrieval as the experiment is 

carried on with text-based learning resource metadata. 

2.1 .I Text Retrieval 

Text retrieval can be separated into two distinct phases: indexing and 

matching [6]. The indexing phase is concerned with extracting keywords and 

estimating their relevance to the document in which they occur, and finally 

indexing the document with a set of representative keywords. The matching 

phase calculates the similarity of query terms against the index terms. A 

document is relevant to a query if they are similar. Many approaches determine 

the similarity of a query to a document based on the words that are used. A 

common assumption in the information retrieval community is that documents 

can be treated as a "bag-of-words". In this view, a document is treated as an 

unordered set of words. As such, determining whether a document is relevant to 

a given query is simply reduced to looking up the query words in the document 

index. The more query words that are overlapped with index words, the more 

relevant the document. 

1 Definition of information retrieval from Wikipedia 
http://en.wikipedia.org/wiki/lnformation-retrieval 



2.1.2 Vector Space Model 

The vector space model is a popular data model to represent a document 

for computational manipulation. It enables logical operations to be performed on 

the documents. It is a commonly used technique in text retrieval [7, 81. In this 

model, each document is broken down into a word frequency table representing 

n-dimensional weighted vectors. Each word is a dimension in Euclidean space. 

Let T = { t l ,  t2, . . . , tl') denote the set of terms in the collection of documents. 

Then we can represent the terms df in document d, as a vector ; = (x, , x2 , . . . 

, x,,) with: 

where t i  represents the frequency of term ti in document d, . Combining all 

document vectors creates a document-term matrix. An example of such a matrix 

is shown in Figure 2.1. 

Figure 2.1 Document term matrix 

dl d2 d3 ..... dn 

Each dimension in the document vector corresponds to the term frequency of a 

key term. In addition, weight can be added to each term based on its importance 

to distinguish the document category. There are a number of term-weighting 

schemes; however, the most widely used one is called Term Frequency-Inverse 



Document Frequency (TFIDF) [9]. This scheme assigns a weight to each term in 

a given document. The weight increases in proportion to the number of times the 

term occurs in the document, but is offset by a term itself, which devalues terms 

common in the overall corpus. Mathematically, it can be expressed as follows: 

where: yj = weight of term ti in document d j  

gj = frequency of term ti in document d j  

N = number of documents in corpus 

dJ; = number of documents containing ti 

The TFIDF weighting scheme is a broadly recognized method to select most 

representative keywords to represent a category of documents in document 

classification [lo]. The advantages of the vector space model include ranked 

results of the retrieved documents, the possibility to enter free text, and not 

requiring a strict matching of the documents. The ranked results are ordered 

using the distance of a document vector to the query vector. Such an ordering 

represents the similarity of a document to the query. Free text search eliminates 

the use of difficult query languages as in the Boolean model. The matching is not 

strict, in the sense that a query containing multiple words will also retrieve 

documents where not all words are present [I I]. 

In order to retrieve document relevant to a user query, we calculate the 

similarity between the query vector and document vector based on a distance 

function. A common similarity measure, known as the cosine measure, 



determines the degree of closeness between the document vectors and the 

query vector is frequently used [7]. Precisely, the similarity between a document 

vectord and a query vector g is defined as: 

where djqi is the standard vector dot product 
14 

between document vector and 

normalization factor to discard 

the effect of document length on the overall similarity score. 

2.2 Information Integration 

While early databases were usually self-contained, it is now generally 

recognized that there is a great value in taking information from various 

geographically separated sources and making them work together as a whole 

[12]. This is particularly true in situations that call for high-level collaboration to 

share information such as in a research network and an E-learning network. We 

acknowledge that a vast amount of information is stored in distributed data 

sources. The physical distance is usually not a major problem but rather the 

difference in their logical representation (semantics). Indeed, a global view of 

cohesive information is not easy to obtain when information is not only stored in 

different databases operated with different DBMS, but also they usually come in 

different structures, .represented in different data models and expressed with 

linguistic variations. These differences pose problems for distributed searching 



using free text because of the variations in query keywords. Therefore, an 

effective information integration strategy is important to glue distributed 

information to form complete and coherent information that is consistent with a 

local users' semantics. 

Information integration has long been identified as a central problem of 

distributed multi-database systems, which are required to provide interoperability 

among an array of information repositories [4]. Specifically, information 

integration refers "to the problem of merging, coalescing and transforming 

autonomous heterogeneous data sources into a single global homogeneous 

database and providing a unified view of these data for future query processing 

purposes" . In order to perform semantic integration of heterogeneous 

information, it is necessary to form one or more integrated schemas expressed in 

some common data model. Detailed discussion on semantic mapping of 

heterogeneous sources can be found in Section 3. 

2.2.1 Federated Collaborative Network 

Distributed storage systems come in different flavours. Based on specific 

requirements and applications within organizations, these could be a tightly- 

coupled distributed database systems controlled by a centralized DBMS or it can 

be a loosely-coupled federated system in which each component database has 

high autonomy controlling its degree of participation in the federation [13]. In 

summary, two important aspects of federated systems can be noted: 

2 Source: http://www.cs.ubc.ca/-ycai/Academics/projects~files/infointeg.htmI 



Heterogeneity. Federated systems could have a high degree of 

differentiation in their various data sources. Each component data 

source may run on different hardware, use a different 

communication network, and have a different DBMS to manage 

their data repositories. They may also have different query 

languages, different query capabilities, and even different data 

models [14]. Apart from these structural heterogeneity differences, 

semantic heterogeneity may also occur in each component data 

source in which the intended use of same or related words would 

be different, or different words in fact carry the same semantic 

interpretation. This creates various technical difficulties when 

integrating information from heterogeneous data sources. 

Autonomy Typically, a data source has existing organizational 

requirements to fulfil and target users to serve. It is important, 

therefore, that the operation of the source is not affected and it 

remains independent when it is brought into a federation [5, 141. In 

particular, the way the data source processes requests for data 

should not be affected by the execution of global queries against 

the federated system. In addition, all the design and execution 

decisions will remain with local authority. A component data source 

can participate in more than one federated system. 

In this thesis, we focus on a variant of a federated system called a 

federated collaborative network. It can be described as a federated network 



where each participating data repository dedicates minimum resources to provide 

an extra layer of consolidation to ensure the semantic consistency and quality of 

delivered information. This is a working model adopted in several emerging areas 

ranging from the knowledge management communities, bioinformatic research 

networks to E-learning networks [I 51. Under this model, a number of participating 

organizations would join to form a community or even a cluster of communities in 

order to share their resources and information with a goal to minimize 

development effort to provide richer content to users in each community. 

Although this thesis primarily focuses on the discussion of the E-learning 

repository network, we believe that the validity of the methodology described in 

this thesis can be easily extended to other collaborative networks with minimum 

modification. The detailed model of E-learning repository network will be 

discussed later in this section. Despite some differences between federated 

collaborative networks, they all share similar design as below. 

Figure 2.2 Federated collaborative network 



In this simplified view, a federated collaborative network is a kind of loosely 

coupled federated system that explicitly requires the use of wrappers to provide 

an intermediary between different component data sources. In the network, 

participating data sources have total control over the data they manage. They 

have access control rules to allow partial and controlled sharing of their data. Yet 

there is no centralized control in a federated system, it usually provides users 

with a single global interface to access data sources in the federation. The whole 

federated system is transparent to users who are treated as local users who can 

indirectly access a distant database. 

2.3 Ontology 

In theory, ontology can be defined as a specification of a conceptualization 

[16]. More formally, ontology is a formal representation of a set of concepts, 

properties of concepts, and relations between concepts that are possible in a 

specified domain of knowledge [I 71. Practically, ontology provides a vocabulary 

whose terms are precisely defined by a body of knowledge or facts in some 

domain. However, it is important to remember that "it is not the vocabulary as 

such that qualifies as an ontology, but the conceptualization that the terms in the 

vocabulary are intended to capture" [I 71. Further, ontology also defines semantic 

relationships like "type-or' and "is-a" between terms using formal modelling 

techniques, in general taken from logic-based specification formalisms such as 

description logics or predicate calculus. Ontology starts from precisely defined 

simple concepts that are universally accepted such as "Thing" or "Entity" and 

then leads to concepts with narrower scope and more specifications. Concepts in 



ontology are interconnected by means of a set of semantic relationships. A 

general structure of a portion of an ontology shown in figure 2.3 defines that 

"Automobile" that subsumes "Snowmobile" because it logically implies that 

snowmobile is a kind of automobile. Three kinds of semantic relationships are 

commonly used to create ontology: they are specialization (is-a), instantiation 

(instance-of), and component membership (part-of). 

Figure 2.3 An example of simplified domain ontology 

Automobile 

- - - - - ~nstance-of - - 
Wheel Tire .... - - 

John's 
Ferrari 

The is-a relation is used to represent specialization. A concept represented by C, 

is said to be a specialization of the concept represented by C, if C, is a kind 

of C, . The instance-of relation denotes concept instantiation. If an instance I ,  is a 

type of concept C, , the interrelationship between them corresponds to an 

instance-of denoted by a dotted line. For example, "John's Ferrarl' is an instance 

of "Sport car". A concept represented by C j  is part-of a concept represented by 

C, if C, has a C, (as a part) or C,is a part of Cj . For example, "Wheel' is part of 

concept "Sport car". These semantic relationships permit the construction of 

ontologies with richer structure than plain hierarchy commonly found in 

taxonomies. The ontologies enable programs to deduce knowledge by combining 

different concepts and examining their semantic relationships. Ontology can be 



constructed in two ways, domain dependent and generic. The former provides a 

small number of fine grain concepts while the latter provides a large number of 

coarse concepts. WordNet is an example of a generic ontology that will be 

discussed shortly. 

2.3.1 Why are ontologies important? 

Given their solid foundation built from logical formalism, ontologies find 

their roles in many areas of artificial intelligence applications, information 

systems, knowledge engineering and computational linguistics. First, ontology 

provides us with a set of logical axioms to account for the intended semantics of 

a vocabulary used to describe facts, beliefs, hypotheses, and phenomena about 

the world or in a specific domain [18]. The set of axioms is usually stated in the 

form of first-order logic where vocabulary terms are the predicates while the 

object and relations are the variables. As an example, if G(x, y)is the predicate 

representing "x greater thanv ", then the sentence "9 is greater than 6" can be 

expressed as G(9,6) . Recall from figure 2.3 that the ontology describes a 

hierarchy of concepts related by "Type or' subsumption relationships; in more 

sophisticated cases, suitable axioms are added in order to express other 

relationships between concepts and to constrain their intended interpretation 

[19]. Formal axioms can clarify conceptual confusion by limiting the intended 

meaning of a vocabulary, and the linked relations between concepts in a domain. 

As such, factual knowledge in a relevant domain can be represented in logical 

symbols and be understandable by computers. Computers can then make logical 

inferences by operating on the existing facts and axioms. Moreover, with a 



domain ontology that specifies the intended semantics of concepts, the ontology 

enables knowledge sharing and reuse with others who share similar needs for 

knowledge representation in that domain. By extension, ontology also facilitates 

the information integration process from heterogeneous sources in a particular 

domain in which specific concepts are defined by well-formed logical syntax and 

by their semantic category. In summary, the merit of ontologies can be attributed 

to their capability to provide an explicit specification of shared conceptualization 

of knowledge in a world that we wish to represent for some purpose, and to 

facilitate communication between people, organizations, or between information 

systems. 

2.4 WordNet 

WordNet is a widely recognized online lexical reference system, 

developed at Princeton University, whose design is inspired by "current 

psycholinguistic theories of human lexical memory. English nouns, verbs, 

adjectives and adverbs are organized into synsets (synonym sets), each 

representing one underlying lexical concept that is semantically identical to each 

other'' [17, 20, 211. Synsets are interlinked via relationships such as synonymy 

and antonymy, hypernymy and hyponymy (Subclass-Of and Superclass-Ot), 

meronymy and holonymy (Part-Of and Has-a) [21]. Each synset has a unique 

identifier (ID) and a specific definition. A synset may consist of only a single 

element (sense term), or it may have many elements all describing the same 

concept. Each element in a particular synset's list is synonymous with all other 

elements in that synset. For example, the synset {World Wide Web, WWW, Web} 

16 



represents the concept of a computer network consisting of a collection of 

internet sites. In this context, 'World Wide Web', 'WWW' and 'Web' are 

considered carrying the same meaning in English. For cases where a single word 

has multiple meanings (polysemy), multiple separate and potentially unrelated 

synsets will contain the same word. Considering that the word 'Web' can have 7 

multiple meanings as a computer network, entanglement, spider web and etc, 

they all contain the word "web. In Figure 2.4, we would see the word 'Web' will 

appear in different synset lists offered by WordNet to characterize the concept 

'Web'. From an ontological perspective, WordNet is not only a lexical dictionary 

but also a generic linguistic ontology that carries both semantic and syntactic 

information of words as well as organizing them in a hierarchical taxonomic 

structure linked by semantic 

Figure 2.4 WordNet senses for word 'Web' 

The noun web has 7 senxs (first 3 from tagged texts) 

1. (1) web -- ('an intricate network suggesdng somerhulg that was formed by Ivearulg or 
( mtmrearmg, "the nees cast a delicate web of shadows or7a the lawfl 

2 .  (1) neb, entanglmmt -- (XI mmcate trap that entanges or ensnares its v ~ t ~ n )  
3 .  (1) vane. web -- (the flattened weblike p a  of a feather consisting of a senes of barbs on ather 

s~de of the shaft\ 
4. network. web -- (an interconnected system of things or people: "he owned a network of shqsq; 

"reWment me-ant droppmg our of a whole nehvork of people who had hen part of my life". 
"tangled in a web of cloth") 

( 7. web -- (membrane connectmg the toes of some aquatlc h d r  and mammals) 
One synset for 

The verb web has. I sense (no senses from tagged texts) 'web' 

1. web. net -- (consmct or form a web. as if by sveawng) 

relationships [20]. In WordNet, noun synsets are related to each other through 

hypernymy (generalization), hyponymy (specialization), holonymy (whole of) and 



meronymy (part of) relations. As mentioned previously, these semantic relations 

are used to link concepts together in an ontology for a domain. As shown in 

Figure 2.5, the word 'turtle' is semantically related to other words in the biology 

domain in WordNet. In summary, WordNet has evolved from an original idea to 

Figure 2.5 Simplified portion of WordNet on term of 'turtle' 

Living thing 

1.. 
Animal 

1nverteb;ate 

A' 

f i  (is-a) 

create an online dictionary and thesaurus that is machine readable and 

reasonable, to become a major language and concept lexical database that 

provides support for cross disciplinary research from natural language 

processing tasks, such as information retrieval, information extraction, word 

sense disambiguation to text mining, document summarization and others. 

2.5 E-learning 

E-learning has been a topic of increasing interest in recent years. 

Promoted by many E-learning experts, information technologists and even the 

governments, it is seen as a plausible solution to meet the educational 

challenges in today's growing demand for high quality education by providing 

learners with learning resources anywhere and anytime. Originated from 



computer-based training (CBT), E-learning attempts to provide a dynamic and 

non-linear learning environment where learners can control their pace of learning 

and organize their learning processes to adapt to their own needs in the subject 

area. E-learning is often perceived as a group effort, where content authors, 

instructional designers, multimedia technicians, teachers, trainers, database 

administrators, and people from various other areas of expertise come together 

to serve a community of learners3. Compared to traditional learning in which the 

instructor plays the intermediate role between the learner and the learning 

material, the learning scenario in E-learning is completely different: instructors no 

longer completely control the delivery of material and learners have a possibility 

to combine learning material from various sources on their own. Thus, the 

content of the learning materials is independent from the course curriculum. 

However, despite the time or expense put into creating advanced E-learning 

materials, they are useless, unless they can be searched and discovered easily. 

This is especially true as the volume and types of learning content increase. If 

the learning resources delivered do not meet learner's expectations and 

requirements, this could lead to frustration in learners and reduce the number of 

E-learning users. Without a broad base of learners, it is difficult to justify the large 

investment in E-learning technology. On the other hand, lacking an interoperable 

platform to enable institutions to share learning resources, even in a collaborative 

network, each member must invest a great amount of cost and effort to develop 

useful learning resources. This could be a problem for many institutions as they 

struggle to allocate economic resources between traditional learning and E- 



learning development. In order to achieve the vision of E-learning society, we 

need to create a cost effective E-learning environment. In other words, learning 

resources must be easily searchable by learners based on their learning 

requirements, and discovered by instructors for re-development and adaptation 

for their changing needs. In this way we can lower the cost as well as reduce the 

time of learning resource development, and more importantly be able to deliver 

learning resources to target users in a most efficient way. This is the reason to 

prompt the growth of collaborative learning environments. Collaborative learning 

is a full-featured and, flexible cooperative learning system (network) established 

to enable teachers to reuse the learning resources, deliver and manage e- 

learning resources easily and efficiently across different locations in the network. 

Very often, a collaborative learning network is formed by several learning 

institutions that share similar learners and teaching goals. To facilitate the 

communications between institutions and to support the search for learning 

resources while maintaining autonomy in developing their own learning 

resources and curriculum, metadata is frequently used to describe learning 

resources for the purpose of easy searching and indexing. 

2.5.1 What is metadata? 

Metadata is data about data or information about information. It is 

structured data that describes the characteristics of a resource. A typical 

metadata record is an XML file consisting of a number of pre-defined elements, 

information like keywords, category, title, description, author, location, page- 

length, ISBN, and so on, representing specific attributes of a resource. To avoid 



confusion and enable exchange, we use a metadata schema to define the syntax 

and semantics of each metadata element. Furthermore, metadata are often 

annotated by ontology or taxonomy. With ontology, the classifications of 

metadata are controlled by concepts or classes. With taxonomy, the 

classifications of metadata are organized by categories or nomenclatures. In the 

E-learning domain, metadata is the information-age term for information (e.g. 

index card) that librarians traditionally have used to classify learning resources 

and other print documents. The main purpose of the use of metadata in E- 

learning is for managing and accessing learning resources in a systematic way. 

In addition, the use of metadata promotes sharability of learning resources in a 

distributed environment because it provides a common nomenclature enabling 

learning resources to be described in a common way4. It also serves as a good 

foundation to aggregate learning resources from distributed sources. Until 

recently, three popular metadata standards were used to describe E-learning 

resources: they are IEEE LOM, ARIADNE and IMS. However, IEEE LOM has 

became the metadata standard in the E-learning community. One of the major 

purposes of all meta-models is to define how learning materials can be described 

in an interoperable way [I]. All the metadata elements necessary to describe a 

resource can be classified into several categories, each offering a distinct view 

on a resource. For example, the IEEE LOM standard specifies the following 

metadata categories and elements: 

general - groups all context-independent features; 

- lifecycle - groups features related to the lifecycle of the resource; 

4 Learning Technology Standards Observatory: http://www.cen-Itso.netlUsers/main.aspx?put=322 



meta-metadata - groups the data elements describing the metadata; 

technical - groups data elements describing the technical features; 

educational - groups educational and pedagogic data elements; 

= rights - groups data elements pertaining to the conditions of use; 

relation - groups data elements that describe the linkage between resources; 

annotation - groups data elements that allow comments on the educational use; 

classification - groups data elements that describe the position of the resource in an 
existing classification system. 

2.5.2 Is metadata always better? 

The purpose of metadata is to describe resources in a standardized 

structural format for managing and searching resources systematically. In reality, 

with different metadata standards, different elements may be used or the same 

element would carry different meaning in the metadata. Coupled with that, most 

standards lack a formal semantics to explicitly control the meaning of the 

elements. This obviously will create problems of incompatibility between 

disparate and heterogeneous metadata descriptions or schemas across domains 

[I]. To illustrate, two different authors may describe semantically identical 

concepts in different terms according to their different points of view. Author X 

may use terms like network, protocol or web to describe the concept "Internet" 

while author Y would describe the same concept using other terms like link, http 

or WWW. Many organizations solve this problem by developing ontology to 

specify the meaning of vocabularies used in the metadata, and limit the 

mappings from terms of the domain vocabularies to concepts in the ontology. 

However, this only solves the problem of semantic discrepancy in metadata 

description in a single institution. This is because when metadata are widely 

distributed across a collaborative network in which each learning resources 



repository has total autonomy to use its own ontology to annotate metadata, it is 

very difficult to coerce other members to adopt each other's ontology to annotate 

their metadata. Therefore, at the end interoperability requires repositories to 

develop various ontology mapping strategies in order to have a shared- 

understanding about the meaning of each other's metadata and in turn to allow 

them to find semantically related learning resources. This not only makes the 

search process very inefficient but also requires important procedures to be 

performed to create semantic mappings between ontologies before distributed 

metadata can be shared between institutions. Therefore, using metadata does 

not completely solve the interoperability problem without a true semantic 

understanding of those metadata in a distributed environment. 



CHAPTER 3: CHALLENGES IN SEMANTIC MAPPING 

This chapter illustrates the research problem, as a motivation, with 

examples in situations where semantic mapping is demanded. It presents a brief 

overview of semantic mapping techniques and reviews the research challenges 

that many semantic researchers are facing. A set of current approaches in 

semantic mapping will be discussed. 

3.1 Research problem 

Regardless of the progress of information and communication 

technologies, the challenges remain on how to integrate information from 

heterogeneous data sources [22]. Semantic mapping is one of the most active 

research topics in information integration to help provide an interoperability policy 

for people to share information in a distributed environment [23, 241. In fact, 

"semantics-based technologies will be an essential part of all interoperability 

solutions in the very near future" [25]. The scenarios that follow will reveal 

situations where information communication will not be possible without robust 

semantic mapping between distributed data sources. 

3.1.1 Semantic mapping scenarios 

Scenario I :  

Imagine a learner L1 associated with the repository R1 looking for learning 

resources related to the topic of how to find a good bass musical instrument, L1 



sends out a request "search for bass" to remote repositories Rp and R3 

respectively. However, the returned results from R2 and R3 are mixed with many 

irrelevant resources related to catching a bass (fish). This problem occurs 

frequently when the concepts are defined by different domain ontologies with 

different sets of vocabularies carrying different intended meanings. 

Scenario 2 

Imagine that the same learner L1 sends out a distributed request for 

learning resources on topic "advanced database"; however, since the same topic 

is in remote repositories annotated by the concept "database system If' in 

remote repositories so it is labelled differently. Therefore, in a concept-based 

search, learning resources defined by concept "database system IT will not be 

returned for request of "advanced database7' even though the two concepts are 

actually semantically equivalent. 

From these simple scenarios, one can easily see that without a proper 

semantic mapping between ontologies in heterogeneous data sources, it is still 

difficult to find learning resources based on local conceptual definitions. This 

problem cannot be solved even with the fact that institutions have their own 

ontologies to define vocabularies used to describe metadata of learning 

resources. This research focuses on providing a light-weighted semantic 

mapping between distant metadata from heterogeneous repositories in a 

collaborative E-learning network, and enabling learners to browse for 

semantically related learning resources by topics. 



3.2 Semantic mapping 

Semantic mapping can be described as the mapping task to identify 

common concepts and to establish semantic relationships between 

heterogeneous data models in the same domain of discourse [26]. Since in 

modern knowledge systems semantics is mostly represented in ontological 

constructs, we will use the term semantic mapping interchangeably with ontology 

mapping in this discussion. To express ontology mapping in a mathematical 

expression, it can be written as mapping ontology 01 = (CI, AI) to 0 2  = (C2, A2) by 

a function f : CI + C2 to semantically related concept CI to concept C2 such that 

A2 I= ~ ( A I )  of which all interpretations that satisfy axioms in 0 2  also satisfy 

axioms in01 [24]. For example, if the concept agent (CI ) is defined in 01 by a set 

of properties as <broker, travel agent and officer> with axioms as <part-of 

agency, is-a individual, is-a organization and type-of communicator> (ignoring 

other attributes and cardinality for the sake of simplicity), it is possible to map it to 

a concept representative ( C2 ) defined in 0 2  with a set of properties as 

<government agent, client, spokesperson and advisor> and having axioms as 

<part-of government, is-a person, and is-a expert>. This assumes that all the 

semantic interpretations of CI will be respected by C2 in the domain of discourse 

when executing logical inference operation on C2. 

3.3 Challenges in Semantic mapping 

Based on the scenarios above, the challenges in semantic mapping can 

be briefly summarized as follows: 



( 1 )  Conceptual incongruence 

As pointed out in the previous chapter and exemplified again with 

scenarios in section 3.1, different ontologies are constructed to specify 

different conceptualization of their domains of discourse. Since we know 

that an ontology is an abstract model of how people think about things in a 

particular domain, it is natural to expect that the set of properties and 

attributes that are used to define the concept during the process of 

building the ontology will largely be affected by not only the domain 

knowledge, conceptual bias and personal viewpoint but also the purpose 

of the application's use of the ontology [27]. These various objectives and 

factors would often influence the development of the ontology resulting in 

different ontologies describing the same domain of discourse. Therefore, 

it is hard to rely on descriptions or properties of concepts defined locally to 

find semantically equivalent resources in a distant location. The "bass" 

may be defined by properties and attributes to codify a concept for musical 

instrument in local ontology; however, the concept with the same name 

could very well be defined as a kind of fish in a distant ontology. Thus, if 

we solely rely on the match of the ontology labels to retrieve semantically 

related resources, the relevance of the result will sometimes be lowered. 

(2) Linguistic variation 

The linguistic variations that humans used to describe information make it 

difficult for a computer to recognize the intended meaning of the text. This 

is because of the ambiguous nature of human language. The ambiguity 



can be attributed to several levels of linguistic variation. Here they are 

limited to lexical and semantic variation only because they are the 

dominant causes of ambiguity in text analysis with ontology [28, 291. 

Lexical variation deals with multiple words having the equivalent meaning 

while semantic variation relates to a single word having multiple distinct 

meanings (homonym) based on different context. As an example, "car", 

"motorcar" and "locomotive" could refer to similar concept "automobile" 

while the word "bat" could have quite different meanings in a baseball 

game broadcast and in a zoology magazine. Because of this, it is 

dangerous to rely on the match of the values on properties and attributes 

to do semantic mapping. This logically rules out the simple use of keyword 

search and associative text mining to find all possible semantically 

relevant concepts. 

(3) Language divergence 

It would be less problematic if there was only one ontology language to 

express and construct a domain ontology. In reality, there are a number of 

options in terms of languages and tools to build ontology. DAML+OIL 

(DARPA Agent Markup Language + Ontology Interchange Language) is a 

combination of two languages to enable the specification of facts and 

operation of logical inference. DAML is an extension of Resource 

Description Framework (RDF). In fact, it is using the RDF triples to define 

concepts and their associated semantic relationships. Similarly, OIL can 

be expressed as an extension of RDF. OIL combines more widely used 



modelling primitives from frame-based languages and formal semantics 

and logical reasoning capabilities from descriptive logic. It attempts to 

provide more expressivity to the language to model knowledge in 

ontology. On the other hand, there is OWL (Web Ontology Language) 

created by W3C for publishing and sharing data using ontologies on the 

Internet. It is derived from the DAML+OIL language so it is also an 

extension of RDF constructs. OWL comes with three versions: Lite, DL 

and Full. They provide different levels of complexity and functionality for 

modelling different ontologies [30][31]. It contains additional expressive 

primitives and vocabulary to define richer semantic relationships. Due to 

the divergence in ontology languages, it adds another layer of 

consideration when performing semantic mappings between ontologies 

built from different languages. One would need to use business logic in a 

program to identify information where possible mapping could be provided 

because values could be stored differently with diverse language 

constructs. Complex mapping such as 1 to n, n to 1 or even n to n could 

make the mapping task very complicated. 

(4) Trade-off on computational complexity and ease of use 

We recognize that we can provide robust semantic mapping between 

specific domain ontologies with moderately high accuracy. However, it 

would take quite some time to develop and implement the mapping due to 

the complexity of many mapping algorithms. Besides, very often the 

systems based on those mapping algorithms require a fair amount of 



human (domain expert) intervention to control the mapping process which 

may not be desirable in some situations [32]. Furthermore, the mapping 

relations will need to be re-examined and modified when new concepts 

are added or new relationships are established in the ontology. Therefore, 

it would be costly for organizations and inefficient in terms of time to 

develop the mapping tools to provide interoperability between ontologies 

for some particular application use. In this view, for most applications, they 

need to weigh the accuracy of the mapping against the cost and time to 

provide such a mapping. Then again, most researchers in semantic 

mapping agree that it is still out of our grasp to provide generic mapping in 

domain independent ontology with current mapping paradigms [25]. 

3.4 Review of current approaches 

This section presents a brief overview of two approaches on semantic 

mapping. It is by no mean an extensive review of every detail of these 

approaches. This only serves to give the audience a general idea of these 

approaches in order to illustrate different strategies in semantic mapping. The 

two selected approaches are GLUE and MAFRA. The former is a system that 

employs machine-learning techniques to find ontology mappings with the use of 

probabilistic multiple learners while the latter uses a declarative representation of 

mappings as instances in a mapping ontology defining bridging axioms to encode 

transformation rules. 

(i) GLUE 



This is a semantic mapping system that employs machine learning 

techniques to find mappings between two ontologies. With two domain 

ontologies, for each concept in one ontology GLUE claims to find the most 

similar concept in the other ontology [23]. There are a number of features 

distinct GLUE from other similar mapping systems. First, unlike most 

mapping systems that only incorporate single similarity function to 

determine if two concepts are semantically related, GLUE utilizes multiple 

similarity functions to measure the closeness of two concepts based on 

the purpose of the mapping. The intuition behind the multiple similarity 

functions is to take advantage of the mapping requirement to relax or limit 

the choice of corresponding concepts. For instance, based on the 

requirement of the application the task of mapping the concept "associate 

professor" can be satisfied by similarity criteria "exact", "most-specific- 

parent" or "most-general-child" similarity criteria to find "senior lecturer", 

"academic staff" or "John Cunningham" respectively. This gives GLUE 

flexibility to find semantic mappings between ontologies. The similarity 

measure that is employed by GLUE is the joint probability distribution. 

More precisely, it is Jaccard coefficient: 

Jaccard - Sim(A, B )  = P ( A  n B )  
P ( A  U B )  

Second, GLUE applies a multi-strategy learning approach to use certain 

information discovered by different classifiers during the training process. 

This approach divides the classification process into two phases. First, a 



set of base classifiers is developed to classify instances of concepts on 

different attributes with different algorithms. Then, the prediction of these 

base classifiers, assigned with different weights representing their 

importance on overall accuracy, is combined to form a meta-learner. 

Finally, the classification is determined by the result from the meta-learner. 

As an instance, one base learner can exploits the frequency of words in 

the name property using a Naive Bayes learning technique while another 

base learner can use pattern matching on another property using a 

Decision Tree Induction technique. At the end, the meta-learner will gather 

all the results to form the final prediction. Using multiple classifiers, GLUE 

intends to increase the accuracy of the overall prediction. Third, GLUE 

incorporates label relaxation techniques into the matching process to 

boost the matching opportunity based on features of the neighbouring 

nodes. Generally, the relaxation labelling iteratively makes use of 

neighbouring features, domain constraints and heuristic knowledge to 

assign the label of the target node. 

Overall, according to the results of the experiment performed in [23], the 

accuracy rate of ontology mapping ranges from 66 - 97%. However, 

based on the observation to achieve this accuracy, a lot of processing in 

terms of time and effort to implement the strategy is needed to achieve 

this accuracy. Remember that in order to find similarity between different 

concepts, GLUE needs to compute a set of similarity functions and 

determine which one to use on what constraints. Therefore, to map all 



concepts from 01 to 0 2  , the total number of calculations is 

roughly4l01ll02l, where l0il is the number of concepts in ontologyOi [23]. 

Moreover, the relaxation labelling technique is sometimes susceptible to 

converge to local maxima and the converging condition is still not well 

known yet. Finally, GLUE will also be confused by linguistic ambiguity that 

prevents it from distinguishing similar concepts like "networking" from 

"communication devices". 

(ii) MAFRA 

MAFRA (Mapping FRAmework) is another ontology mapping methodology 

that prescribes "all phases of the ontology mapping process, including 

analysis, specification, representation, execution and evolution1' [33]. It 

uses the declarative representation approach in ontology mapping by 

creating a Semantic Bridging Ontology (SBO) that contains all concept 

mappings and associated transformation rule information. In this model, 

given two ontologies (source and target), it requires domain experts to 

examine and analyze the class definitions, properties, relations and 

attributes to determine the corresponding mapping and transformation 

method. Then, all accumulated information will be encoded into concepts 

in SBO. Therefore, SBO serves as an upper ontology to govern the 

mapping and transformation between two ontologies. Each concept in 

SBO consists of five dimensions: they are Entity, Cardinality, Structural, 

Constraint and Transformation. During the process of ontology mapping, 

software agent will inspect the values from two given ontologies under 



these dimensions and execute the transformation process when 

constraints are satisfied. The internal processes of MAFRA include: Lift 

and Normalization, Similarity, Semantic Bridging, Execution and 

Postprocessing. The details of each stage will not be discussed here and 

please refer to [33, 341 for complete references. 

One of the most innovative aspects of MAFRA is the use of SBO to 

process ontology mappings. However, MAFRA heavily relies on domain 

experts to predetermine the mapping relations between two ontologies. 

This process could be very tedious and error-prone. On the other hand, 

when the number and variant of concepts grow in the ontology, it would 

require modification in the SBO to correct the mapping specification. By 

extension, when the number of concepts in ontology is very large, it 

becomes impractical to examine all the classes to find out the mapping 

relations. 



CHAPTER 4: BROWSING WITH SEMANTIC SIGNATURE 

This chapter first introduces the concept of semantic signature used to 

represent a class of concepts and describes how it is constructed with WordNet 

word senses. Then, it further develops the idea of using a semantic signature to 

facilitate semantic mapping and demonstrate how a semantic signature can be 

employed in concept browsing in a distributed collaborative learning network. 

In a collaborative learning network, institutions commonly organize their 

metadata according to their fixed viewpoints without taking a global perspective 

or dispersed users' interests into account. Coupled with that, as previously 

pointed out in Chapter 3, various technical difficulties in semantic mapping 

between independent ontologies make it difficult for traditional keyword-based or 

label-matching-based retrieval in a distributed learning environment to yield 

satisfactory results that are consistent with users' perceptions which are often 

based on local ontological concepts. 

To overcome the problems with different conceptual views represented in 

the local ontologies, a unifying global semantic view can be considered as a 

potential solution. To assist distributed learning repositories to organize and 

manage their metadata in compliance with a global semantic view, it is 

worthwhile to explore the use of a semantic-based search of learning object 

metadata by category across different repositories to enhance browsing 

experience in a collaborative learning environment. In this work, the aim is not to 



invent a new word sense disambiguation algorithm but to extend and combine 

existing techniques in semantic mapping, information integration and text 

retrieval with word sense disambiguation. The goal is to create a semantic 

mapping strategy using WordNet for cross-repository metadata browsing in a 

distributed learning network. The result can be used to prove the feasibility and 

merit of applying semantic-based indexing on metadata for providing an 

interoperable searching platform in repository networks. 

4.1 Semantic Signature Definition 

A semantic signature in the concept browsing context can be defined as a 

logical grouping of representative word senses for a class of metadata. In 

essence, it is a semantic representation of an ontological concept with important 

WordNet senses with respect to context in which the concept is used. To 

formalize the concept of semantic signature, it can be written as follows: 

Where: 

Sig(c) = semantic signature for class c 

DSj  = set of document senses for class c 

BS, = set of best senses BS, in document d ,  

T = all keywords in document d j  

Fav = selection function to find best sense 

WS(t)  = set of WordNet senses for term ti 

To explain briefly, the semantic signature of a class of metadata is built from a 

set of important document senses from all metadata records belonging to a 



particular class. In turn, document senses are generated from a collection of best 

WordNet senses for all representative keywords for a particular document. 

4.2 Why use Semantic Signature? 

Before delving into the details of creating a semantic signature, it is 

worthwhile to clarify the rational proposition for use of this semantic rich 

representation. The use of a semantic signature is mainly motivated by three 

observations. First, metadata for learning resources are generally encoded into 

semi-structured XML documents (e.g. IEEE LOM or DS) with a set of predefined 

elements. The content of these metadata elements is textual in nature. However, 

due to the ambiguity problem of the free text, this makes syntactic-based 

keyword search ineffective to retrieve semantically relevant metadata. This 

problem cannot be completely resolved even with the vocabulary of the metadata 

content that may have been defined with concepts in a local ontology. It is 

because the definition for similar concepts in distributed repositories could vary 

from ontology to ontology due to conceptual differences. Therefore, it is natural to 

expect that the set of vocabulary used will also vary morphologically. Thus, it is 

believed to be better to develop a unified semantic representation scheme to 

denote a class of metadata independent on a local ontology to facilitate 

distributed semantic retrieval. This situation is exemplified with the case in Figure 

4.1 that shows that the concept Biology 101 maybe defined with vocabulary 

ccellular biology, living thing, animal, planb in a local ontology while concept 

Introductory Biology I maybe defined with vocabulary <cell, organism, fauna, and 

flora> in another distant ontology. Both label-matching and keywords-based 



mapping would not be able to tell if Biology 101 is in fact conceptually equivalent 

to Introductory Biology I. However, if a WordNet signature were able to wrap both 

geographically separated concepts into a semantic representation, it would 

enable semantic mapping to understand Biology 101 is indeed conceptually like 

Introductory Biology I because the property Living thing is a child of Organism 

and Flora is synonymous with Plant, and there are other semantic relationships 

connecting 

Figure 4.1 Semantic vs. syntactic matching in different ontologies 
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these two concepts. In this regard, when looking at theses two concepts at a 

semantic level, they are very similar. Hence, semantic representation can be 

used as a key to discover ostensibly unrelated concepts in distant repositories. 

Second, the use of WordNet to derive the semantics of word term 

originate from another important observation that given the topic of a text, there 

is a high probability that most of the words are closely related semantically to 

other words used to describe the topic. For example, in a metadata document 

about organic chemistry, it can be expected that many words related to 



compound, molecule, bonding etc will be found. According to [35, 361, when 

mapping a set of closely related words to WordNet, the returned word senses will 

be concentrated in an area of high conceptual density with minimum conceptual 

distance. Therefore, if this hypothesis is correct, then the use of WordNet sense 

to serve as classifying feature may generate good results compared to the use of 

keywords because the semantic signatures for similar conceptual topics will be 

expected to share many common word senses. Then, a distance function can be 

employed to measure the closeness between semantic signatures to distinguish 

one class from another. 

Third, recent advancements in WordNet make it a popular tool for word 

sense disambiguation or for semantic rendering in Natural Language Processing 

research community [36-40][41]. In this case, WordNet can be easily utilized as a 

mediatory source for providing lexical information to replace keywords 

representation in most text retrieval approaches. Therefore, to combine 

techniques from text retrieval with semantic mapping, it is plausible to produce a 

semantically rich signature to characterize a class of metadata. As a result, 

semantic-based categorical searching can be realized by matching signatures 

rather than relying on matching vocabularies in potentially different ontologies. 

The mediatory approach to provide semantic mapping is believed to be most cost 

effective since it is not algorithms dependent like the machine learning approach 

and human expert dependent like some ontology mapping methods. 

To summarize, the major thrust of using the semantic representation of a 

category of metadata is to avoid the drawbacks of keywords-based retrieval as 



mentioned before, and more important to enable the retrieval of semantically 

related metadata to enhance the relevance of the result without resorting to 

complicated semantic mapping algorithms. 

4.3 Building Semantic Signatures with WordNet senses 

The generation of a semantic signature for a class of metadata is divided 

into three distinct phases. In what follows, the general architecture of the 

methodology will be illustrated and then each phase will be discussed in detail 

together with illustrating examples. 

4.3.1 General Methodology 

In devising a methodology for creating a semantic signature for better 

browsing of distant metadata semantically, the methodology relies heavily on the 

following assumptions: 

The aggregates of all semantic information from all metadata records 

annotated by a concept are a good semantic representation of that 

concept. In fact, metadata is a semantic description of an instance of a 

concept in ontological framework. 

It is assumed that semantic information of a class can be approximated 

by the set of important word senses from all metadata for the class. 

Besides, semantic word senses specific to the context can be found 

through WordNet for terms extracted from metadata. 



Finally yet importantly, it assumes that the local semantic signature for a 

class of metadata is similar to signatures for metadata of semantically 

equivalent concepts in distant repositories. 

The methodology uses a k-Nearest Neighbour (kNN) search algorithm [8] to 

classify semantically relevant concepts in distant repositories based on local 

semantic signatures. The instances (metadata) of concepts in a local repository 

serve as the training dataset. Based on semantic features of local metadata, 

semantic signatures for each class of concepts are formed. Assuming remote 

repositories create signatures for their concepts in a similar way, to find 

semantically relevant concepts in distant repositories, a distance function is 

defined and used to measure closeness between query signature and semantic 

signatures for concepts in distant repositories. Eventually, the metadata 

annotated with the k most similar classes of concepts related to the query 

signature will be retrieved from remote repositories. 

The core of this methodology depends on a good semantic representation 

of underlying concepts in WordNet word senses. To discover a semantic 

signature of metadata for concepts, a signature generation module is developed. 

As shown in Figure 4.2, the module contains four phases. Phase I is called Word 

Extraction. In this phase, representative features will be extracted from the 

metadata document. Phase II is called Document Preprocessing. In this phase, 

irrelevant information will be eliminated and all non-noun words will be removed. 

Phase Ill is called Document Vector Sensitization. In this phase, all the 



representative keywords will be used as a seed to find the corresponding word 

senses from WordNet. 

Figure 4.2 Semantic Signature Generation Framework 
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Phase IV is called Sense Selection Strategy (s'). In this phase, the best word 

sense to represent each word term will be selected among all senses. 

4.3.2 Signature Generation in Action 

Phase I: Word Extraction 

At first, the input of metadata will presumably be in IEEE LOM format. 

Otherwise, all metadata will be transformed to comply with the standard using the 

XSLT transformer. Then, adapted from the Edmundsonian paradigm [42], 

content from <Title> and <Description> elements will be extracted to represent 

the whole metadata document (and indirectly, the learning object itself). It is 

believed that the content from these two elements carry important weight as a 

cue phrase to be able to represent the whole document [43]. This view seems 

reasonable in the case of learning object metadata because other elements like 



publication date, ISBN or format do not bear good semantic information to signify 

the category of the metadata. 

Phase II: Document Preprocessinq 

The condensed metadata with only the <Title> and <Description> 

elements will be subjected to cleaning in this phase to remove all stopwords, 

punctuation information, numerical values and irregular symbols. Next, all non- 

noun words will be removed using a part-of-speech tagger except some 

commonly used phrasal words which carry a special sequence for specific 

intended meaning. For example, the word "artificial" in the phrase "artificial 

intelligence" will be preserved to retain the special meaning of the binary phrase 

in the branch of "computer science". The reason that this approach only uses 

nouns as the base keywords is according to [44, 451, long phrases are not easily 

disambiguated compared to single noun terms and binary noun terms. Through 

previous experiments in [45], it has been shown that in some situations the 

accuracy of using phrases as distinguishing features for document classification 

in fact will not necessarily be higher. On the other hand, it is believed that the use 

of noun carries good salient expression to serve as distinguishing feature for 

doing text classification [46]. 

Phase II I: Document Vector Sensitization 

After all irrelevant information has been eliminated, the physical metadata 

document will be projected into the vector space model. The document vector 

becomes the logical representation of the physical metadata. Next, most 

significant terms across all document vectors are selected using TFlDF weighting 



scheme (Chapter 2) to represent a category of metadata. After that, each word 

term with a TFlDF score higher than the threshold is sent to WordNet to retrieve 

the corresponding word senses and its definition. The threshold is determined by 

a trial and error approach since there is no standard way to determine the best 

threshold in the TFlDF approach. It is a well-known disadvantage for this method 

[lo, 471. The rule of thumb is to find a threshold that can cleanly separate 

relevant and irrelevant data. A single word term could have multiple word senses 

retrieved as in Figure 4.3. The word "search" can be mapped to WordNet senses 

as <hunting, hunb, <lookup and <investigation>. With such mappings, a single 

word term can be denoted by a triple construct in the form (T. S, D) where T is the 

original word term, S is the synset of T and D is the definition of T. Take the word 

term "search" 

Figure 4.3 Word term to WordNet sense mapping 

Vector Sensitization 

Word term { Corresponding 
word senses 

as an example; after the sensitization, it becomes (search - {hunting. hunt) = "the 

activity of looking thoroughly in order tojind something or someone" ( T F I D F  0.623101)) in 

triple construct. The triple construct format will be used to substitute the original 

word term in the master document vector. However, since a single word term 



could be mapped to different word senses through WordNet, and each word 

sense is represented in a synset that may have multiple synonymous terms, the 

length of the vector will grow considerably. This problem will be addressed in the 

next phase. 

Phase IV: Sense Selection Strateay (s3 ) 

This is the last, and the most crucial phase in this method. It is to choose 

the best word sense among all retrieved word senses from WordNet to represent 

the word term. As stated, a word term can be mapped to multiple WordNet 

senses. In such cases, after the sensitization procedure the dimensionality of the 

vector will grow significantly. Imagine that a word term "lighf' can be mapped to 

15 WordNet noun senses "visible light", "light source", "luminosity", "lighting", etc. 

The growth ratio is 15 times in this case. With such a high dimension, it will not 

only negatively affect the efficiency of the similarity computation but more 

seriously many of the senses are actually noise that does not carry actual 

meaning of the word in the context of a document. Including irrelevant senses will 

distort the semantic representation of the signature and lower the accuracy in a 

similarity calculation when finding similar classes of metadata using signature 

matching. On the other hand, from the semantic knowledge standpoint, WordNet 

senses only provide the lexical information of the word term but not the 

contextual information to determine how meanings are clarified in a specified 

context [46]. Without that, the semantic signature is just a bigger collection of 

keywords and would have little use in identifying the class of metadata based on 

a semantic relevance in the signature. Therefore, it is necessary to find a way to 



reduce the dimension and select only the sense that conveys the main idea of 

the word from the author's perspective. 

To select the best sense to represent a word term, a contextual-based 

Senses Selection Strategy called s3 is applied on retrieved word senses. The 

strategy is based on the assumption that the local contextual information of a 

document serves as a good hint to choose the best sense to represents the 

actual meaning of the word term. The s3 approach can be summarized in the 

following algorithm: 

Steps of alqorithm: 
(Calculate the best senses for class C,) 

For each metadata document D E Cl 
Get the list of synsets for each word term T ,  E D 
For each synset Syn, of the word term T ,  

For each sense term Si E Syn, 

1 Compute associative frequency af for Si to 

other senses S, E Synk, Synk G Tk and T ,  # Tk 

1.1 Find the sense Sl with highest score 
Max (af) 

1.2 If (Max(af) < 1) then go to 2 otherwise 
stop and return Sl 

2 Compute associative frequency af for S, to 

k-order parent senses PSk E P(SynJ, P(SynJ 
Tk and T,  # Tk 

2.1 Find the sense Sp with highest score 
Max ( af) 

2 . 2  I f  ( ~ a x ( a f l  < 1) then go to 3 otherwise 
stop and return Sp 



3 Return the most popular sense Sn; offered 
by WordNet 

Return the  Best Sense t o  represent  word term T, 

Aggregate all sense from all important word terms to 
represent signature of the document D 

The algorithm works in the following way. For each word sense of a word 

term, it first computes the associative frequency (an of each sense term in a 

synset to other sense terms in other synsets of other word terms in the same 

document. As shown in Figure 4.4, a document vector D, consists of three words 

say iiWindows", "OS" and "Computer". After retrieving all word senses from 

WordNet for each word, each word may contain one or more than one synsets. 

In this example, the word term "Windows" has three senses represented by three 

synsets. They are "<windowpane, windom", "<operating system, computer 

screen>" and "<framework, opening>". To find the best sense for word term 

"Windows" using strategy 1, it computes the associative frequency of each sense 

Figure 4.4 Associative frequency calculation between word senses 

Document vector D, 



in all synsets for "Windows" with other word terms' synsets. Hence, the sense 

"operating system" for word term "Windows" has a high associative frequency 

with senses like "computer device" for word term "computer" and with sense 

"operating system" for word term "OS', compared to senses like "frameworK' or 

"opening" to other word terms in the document vector with low af: Associative 

frequency is the metric used to measure the occurrence frequency of a particular 

word sense of a word term in the document. In this case, the sense "operating 

system" will be marked as most frequently occurring sense for the word term 

"windows" in strategy 1. From this, the most frequently occurring word sense will 

be used to substitute as semantic representation of the word term. 

Next, if the word sense of a word term cannot be discriminated using 

strategy 1, the algorithm generalizes the word term to the k-order parent senses. 

In this approach, the value of k is 1. In other words, it will generalize to the 

Figure 4.5 Word sense generalization to immediate (1-k) parent 

I 

Sun 

Synset 3: (sun) 
I - 

Solar system I Synset I: @system, star scheme) 

immediate parent sense. Referring to Figure 4.5, strategy 2 will use the 

immediate parent sense to compute the associative frequency against other 



senses from other word terms in the document vector. As such, in this example 

the word term "Sun" will be rolled up to its immediate parent through hypernym 

(is-a) relation in WordNet hierarchy. Then, the parent's synset will be used to 

calculate the associative frequency with respect to other word senses from other 

word terms. The reason that it uses immediate parent senses (k=l) to compute 

the associative frequency is that according to [23, 481, the most specific parent in 

a hierarchical terminology has a higher distinctive power to classify the topic. 

Essentially, following the intuition that if a word sense is generalized to higher 

order parent sense than k=l,  the generalized sense may be too general and 

becomes incoherent to local context. Then, it would not be a good feature to be 

used for the classification purpose. 

Finally, as arranged by WordNet, the word senses retrieved from WordNet 

for a particular word are a partial order set ranked by popularity in English usage. 

If the previous two strategies can not find the best sense to represent the word 

term, then the most popular sense offered by WordNet will be adopted in strategy 

3. 

At last, the best word sense will be selected based on the preferential 

order of strategy 1 > strategy 2 > strategy 3. In other words, the sense selected 

by strategy 1 will be used as the best sense over the other two strategies. The 

principle behind this preference ranking is derived from observations and the 

hypothesis that the local context is the most specific and relevant to provide 

contextual meaning of a sense for word term. Therefore, a word sense for a 

particular term can most likely be disambiguated by other local senses (strategy 



1). If it could not be resolved by this strategy, then it will compare the immediate 

parent sense to the other word senses to check if the parent sense is the most 

frequently occurring sense for the underlying word term. Eventually, it resorts to 

the most popular sense to represent the semantic meaning for a word term when 

the two strategies above could not resolve the ambiguity of the word term. 

Following the above procedures, a set of senses will become a semantic 

signature of a document. In order to generate the final semantic signature for a 

class of documents referring to a particular concept, the TFlDF scheme will be 

applied again to each word sense in all document signatures. Based on the 

score, the most relevant senses to characterize the class of metadata will be 

aggregated to form the final signature for the class as in Figure 4.6. 

metadata 6 
4.4 Federated Concept Browsing in a Repository Network 

After the semantic signatures were generated, they can be used to index 

the actual class of metadata for fast distributed browsing. A common technique in 

database indexing, the inverted file system, can be applied here. As shown in 

Figure 4.7, a collection of semantic signatures as unique identifiers representing 



concepts in a local ontology can refer to a set of metadata documents. Unlike 

normal inverted indexing, for the sake of simplicity, in the current model each 

Figure 4.7 Inverted index by Semantic Signature 

signature can only represent one class of metadata even if there may be shared 

elements among the signatures. In order to realize the semantic indexing of 

metadata of learning resources, a toolkit called Signature Generation Indexer 

(SGI) is developed to generate semantic signatures for metadata of learning 

resources. The generated semantic signatures will be used for metadata 

indexing in order to facilitate searching and retrieval of metadata. Focusing on 

the efficiency, the design of SGI is to allow users to produce semantic signatures 

for classes of learning resources metadata easily without tedious human 

interaction, or complicated implementation (see Appendix A). 

4.4.1 Browsing distant metadata with semantic signature 

In the end, the ultimate goal is to achieve semantic search on E-learning 

topics in a federated network. In a collaborative learning environment, users 

expect to be able to access all the learning resources within the learning network. 

To fulfil this anticipation, it is important to assume that all participant repositories 



in the collaborative network must employ the same strategy to index learning 

resources metadata with WordNet semantic signatures. The overall operation of 

semantic-based browsing of learning resources metadata is shown with Figure 

4.8. 

Figure 4.8 Integrated process of semantic-based browsing of metadata 
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When users initiate a query by selecting the view of a specific topic which 

is similar to a class of metadata from a local user interface, the corresponding 

semantic signature representing the topic is retrieved from the local database. 

Then, it is sent across the network to participating learning repositories. The 

query, in the form of a semantic signature, is entered into the Similarity 

Calculator in distant repositories. The Similarity Calculator is used to compute the 

similarity to topic signatures in each of the learning repositories. The cosine 

similarity [7] is adopted as a distance function, so that the more matched 

elements in signature, the higher the score is. In calculating the similarity score, 

different weights are assigned to senses from <Title> and <Description> in which 



the match in title sense makes a higher contribution to the overall score than the 

ones from the description tag. 

After all, in order to ensure the global accuracy of the result, results from 

participating remote repositories are merged and sorted in descending order 

based on the cosine similarity score. Then, the top k (k=5) topic of metadata are 

offered as an answer to local query. 



CHAPTER 5: EXPERIMENT AND EVALUATION 

The efficacy of the proposed semantic mapping strategy is tested and 

evaluated in two different settings. The primary goal of the evaluation is to 

validate the use of WordNet to provide semantic knowledge to represent 

categorical data for semantic browsing in a federated network. Secondarily, it 

evaluates the usefulness of using immediate parent concept as a substitute for 

word terms in selecting the best sense. The design of two experimental settings 

is to fulfil these objectives. 

5.1 Evaluation settings 

First, in order to test the hypothesis of using semantic signatures to enable 

semantic browsing and improve relevance, simulated distributed concept 

retrieval must be run to measure the relevance rate compared to the traditional 

keyword-based method. To replicate the distributed repositories in a collaborative 

E-learning network, three independent databases are set up. They are referred to 

as "local', "remotel" and "remote2' where the local of course denotes a local 

data source and both remote1 and remote2 denote distant data sources. A single 

master set of 2235 metadata in 8 different categories is distributed evenly in 

number and randomly in nature into the three simulated databases. The gathered 

learning resources metadata have been transformed to conform to IEEE LOM 

format. The dataset characteristics will be discussed in more detail in Section 

5.3. After the distribution, the local database contains metadata that represent 



the set of training data for the classifier. During the training phase, a kNN 

classifier will use the metadata records from the local database to learn the 

features that identify the class of metadata. It starts by extracting important word 

terms from each class of metadata and projecting them into a vector space 

model. Next, after running through the signature generation module, a semantic 

signature for each class of metadata will be produced and used to index the 

class of metadata in the database. 

The datasets in both remote1 and remote2 will be controlled to model the 

situation of potentially different ontological classification in a distributed 

environment. To simulate the effect of varied labelling of classes in different 

ontologies, the original 8 categories of metadata will be expanded to 14 

categories in remotel. The reason to have 14 categories is to allow some 

mislabelling in some classes but not all, due to the limited dataset. In an ideal 

situation, it would be better to have two large datasets that are annotated with 

two different ontologies with the known mapping. In the case of remotel, the 6 

derived categories are labelled with different class names from their respective 

sources, and metadata are reallocated to these derived categories from their 

original categories. Each newly derived category contains metadata belonging to 

the same class. To illustrate, part of the metadata from the category "computing 

science" will be distributed to derived categories "technology" and "engineering" 

respectively in remote 1. Thereby, the metadata for the concept "computing 

science" is now grouped into "computing science", "technology" and 

"engineering". Essentially, this simulates the situation that a class "computing 



scienceJ1 could be categorized differently into classes like "technology" and 

"engineering" in another repository. The same distribution principle applies on the 

remote2 database that includes 13 categories with 7 derived categories. Figure 

5.1 shows the metadata distribution in 3 separate databases diagrammatically. 

Derived classes are shaded. 

Figure 5.1 Metadata distribution in simulated distributed data sources 
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Similar to the local database, each class of metadata in remote1 and 

remote2 will be mapped to a semantic signature in WordNet senses and stored 

in a database as an index. To test the semantic-based search, a semantic 

signature representing a local concept will be sent to query the remote 

databases. Semantic similarity will be compared between query signature and 

distant signature based on the similarity function. Finally, the result of the k most 

similar concept signatures from remote databases will be studied based on the 

relevance metric. 



Second, it is relatively trivial to set up the experiment to test the 

effectiveness of using "immediate-parenf' in the hypernym relationship to replace 

word sense in generating a semantic signature. By modifying the sense 

substitution process, a semantic signature can be generated without the sense 

generalization effect. The metric that we used to test the value of "immediate- 

parenf' is different from the previous one. Instead of comparing the derived 

relevance, here we compare the raw similarity score to evaluate the effect of 

"immediate-parent" in finding the matched signature. 

5.2 Assumptions 

The experiment is carried out based on a limited set of assumptions. First, 

it is built on the belief that in a federated E-learning environment, certain 

cooperative agreements exist to govern how to provide an interoperable platform 

for participants to share data. In our case, this implies the agreement to index 

classes of metadata with WordNet semantic signatures for federated concept 

browsing. Second, it assumes that a large number of conceptually related 

metadata reside in separate repositories despite the fact that they may be 

labelled differently. These assumptions appear to be pragmatic in the context of 

a collaborative research network, at least in the scope of LOR NET^ for which an 

interoperable platform for cross-repository information integration is crucial for its 

success. 



5.3 Dataset Description 

Since there is no publicly available dataset on learning resources 

metadata that is consistent and large enough for our purpose, to conduct the 

experiment metadata are acquired through a number of different sources. Table 

5.1 shows the categories of metadata acquired and their respective sources. In 

total, 8 different categories of 2235 metadata are acquired. They are Accounting, 

Biology, Computing Science, Economics, Education, Geography, Mathematics 

and Psychology. The choice of the category is arbitrary and is solely dependent 

on the abundance. The dataset is partitioned into training and testing groups. As 

mentioned, the localdatabase stores the training dataset while remote1 and 

Table 5.1 Source and Category of Metadata 

Business Sourcc Premier Publications 
- . *  . . . .  . . .. . 

lological and Agricultural Index, 
BioMed Central Online Journals 

remote2 store the testing dataset. The class labels for all metadata are known in 

advance. Metadata are distributed randomly to training and testing groups using 

the Microsoft Excel random generator. The training group contains 723 metadata 

records (local) while the testing group contains 1512 records (remote1 and 

remote2). 

Computing Science 

Economics 

Eductrlion 

Geography 
Mcrthemalics 
psycho lo^ 

Citeseer 
American Economic Association's 
electronic database 
Educational Resource Information 
Center 
Geobase 
arXiv.org, MathSciNet 
PsycINFO, ERIC 

3 20 

353 

307 

237 
157 
164 



5.4 Metric 

In order to gauge the effectiveness of the system, three standard metrics 

in information retrieval are used in the evaluation of the system performance: 

they are Recall, Precision and F-measure [7]. Recall (R)  is defined as the number of 

relevant documents retrieved over the total number of relevant documents found 

in the collection. The Recall can measure the coverage of the system and its 

identification capability. Precision (P) is defined as the number of relevant 

documents retrieved over the total number of documents retrieved. The Precision 

is to measure the reliability of the returned result. Mathematically, they can be 

written as follows: 

I {relevant) n {retrieved) I 
P =  I {retrieved) 1 

I {relevant) n {retrieved) I 
R = I {relevant) ( 

Both precision and recall have value lying between 0 and 1. In general, the closer 

these values are to 1, the better the system is. On the other hand, the F-measure 

is a weighted harmonic mean6 of P and R which combines both the precision and 

recall into a single formula: 

6 http://en.wikipedia.org/wiki/Harmonic-mean - Harmonic mean is defined as H = n/ (l/a, t 11 
a,t..tl/a,) where a,..a, are positive real number. The harmonic mean provides the correct notion 
of average. 



where p is the relative importance given to recall over precision. In this case, 

both precision and recall are of equal importance, and therefore the factor p is 1. 

The F-measure function assumes values in the interval [0, I ]  [7]. Similar to 

precision and recall, a high value would indicate an effective system when both 

precision and recall are high. 

To measure the improvement of using sense generalization in the sense 

selection strategy, a raw similarity score will be used. The higher the score, the 

better the chance that the class will be classified correctly. 

5.5 Limitations 

A set of issues regarding the usability and performance of the 

methodology is worth mentioning here. First, the major issue would be the size of 

the training and testing dataset. The small data corpus does not satisfy the need 

of the learning algorithm to correctly form the base signature of each class and 

may influence the predictive ability of the base signature as the matching 

template. On the other hand, when more and more metadata are added to each 

class, an incremental update on the base signature of each class is needed to 

reflect new elements found in the recent metadata. However, as this is not within 

the scope of this research, it is not supported by the current implementation. 

5.6 Results 

Results from the semantic-based concept browsing are compared with the 

traditional keywords-based browsing. The keywords-based browsing is to search 

for relevant concepts based on the match of user supplied keywords with 



keywords extracted from <Title> and <Description> elements. First, 

representative keywords from elements <Title> and <Description> are extracted 

from all metadata records for each concept. Then, the most representative 

keywords to characterize the concept are selected based on the TFlDF score. 

Next, the selected keywords are used to index the respective concepts. When 

finding the relevant concepts, the keywords provided by the users are used to 

calculate the cosine similarity score against the index keywords. The top 5 most 

relevant results will be returned as the answer. These results will be compared 

against the results from semantic-based browsing. 

The precision and recall are calculated based on the top 5 results returned 

from the two remote repositories. In Table 5.2, the rows represent the concept 

categories while the columns list the results of precision, recall and F-measure 

for both semantic-based (columns 'S') and keywords-based (columns 'K') 

browsing. The average scores of semantic-based approach on precision, recall 

and F-measure are all 0.86. The average scores of keywords-based approach on 

precision, recall and F-measure are 0.54, 0.65 and 0.58 respectively. This shows 

that using a semantic signature can improve retrieval relevance in terms of recall 

and precision on E-learning topics. In most categories, the semantic based 

retrieval out performs the keywords-based retrieval. 





generalization and the cosine score without sense generalization, as well as the 

percentage change between these two scores. The cosine score with sense 

generalization ranges from 0.3448 to 0.6436 while the cosine score without 

sense generalization ranges from 0.2835 to 0.5957. The percentage change 

ranges from 1% to 88%. From Table 5.3, it has been observed that the margin of 

improvement in cosine score is larger in categories with less number of metadata 

records. On the other hand, there is negligible improvement in the cosine 

similarity score in the categories of "Accounting" and "Economics" when using 

hypernym generalization compared to cases without using generalization. The 

cosine similarity score is in fact decreased in the category of "Biology" when 

using hypernym generalization compared to cases without using generalization. 

5.7 Interpretation 

As opposed to the classical or traditional keywords-based representation, 

semantic-based indexing with WordNet senses can include more lexicon 

information than a simple syntactic approach. This implies more features will be 

added to the class signature representation. Since more features are added, this 

may also mean that more noise is included as well. Intuitively, the increased 

relevance of retrieval can be attributed to the expansion of features in class 

representation. However, different from what might be expected the precision is 

not decreased. It is suspected that due to the relatively small size of the dataset 

and 1-k hypernym generalization, the senses included in the signature are 'good' 

in terms of classification. In the category of "Biology", there is no difference in 

terms of retrieval relevance using keywords-based or semantic-based 



representation. We believe that for some classes of metadata like i~Biology", 

which are characterised by a set of specific keywords, the use of semantic 

signatures does not add extra useful information into the representation model to 

help in classifying metadata. On the other hand, using 1-k hypernym 

generalization improves the cosine similarity score in some of the categories 

while there is no significant increase on categories of "Accounting" and 

"Economics". In the category of "Biology", the cosine similarity score is actually 

decreased when using the hypernym generalization. This may be due to the 

highly specialized words used in the domain of "Biology". Thus, in this case using 

sense generalization may in fact reduce the matching possibility in similarity 

calculations. With this result, further experimentation and analysis are needed to 

fully understand the impact of sense generalization in classification of metadata. 

Therefore, combined with a good contextually based sense selection 

strategy, WordNet as a mediator can provide a source for ambiguity resolution 

and semantic information for the process of semantic browsing. Coupled with 

that, the selection of a kNN algorithm as the classifier also contributes to the 

better performance of the system. 

The kNN classifier is an instance-based classifier. The performance of 

instance-based classifiers is more dependent on sufficiency of a training set than 

it is the case with other machine learning classification algorithms. Thus, it is a 

disadvantage for kNN to have a small dataset for training and testing. A smaller 

training set implies that more terms or term combinations important for content 

identification may be missing from the training sample documents. This will 



negatively affect the performance of a classifier. Nevertheless, an ontology (e.g. 

WordNet) guided approach seems to somewhat reduce the negative influence of 

this problem. The replacement of child concepts with the parent concept through 

hypernym relationships appears to be able to discover an optimum concept set 

without adversely affecting performance. This is particularly evident in the 

classes with a small set of data. In that situation, signature-based retrieval is 

superior to the keywords-based method to a larger margin compared to the 

classes with more data. Therefore, by using hypernym generalization an 

important term that resides low in concept hierarchy may be mapped to a parent 

concept and included in the class signature for comparison, even if this term is 

not included in the training set. 



CHAPTER 6: CONCLUSION AND FUTURE DIRECTIONS 

Semantic-based concept mapping is a critical step in many data 

management systems particularly in a distributed environment. For an E-learning 

repository network to be effective, it is important to provide an interoperable 

platform for learners to access learning objects, and for instructors to discover 

semantically relevant learning objects for reuse. 

Due to the diversity of ontology in a distributed environment, it is difficult 

to use keywords-based browsing to discover semantic relevant information. To 

enable semantic browsing, in most situations a complete semantic mapping 

schema is needed to enable semantic retrieval. To provide such semantic 

mapping manually is labour intensive, time consuming and error prone. Hence, it 

is important to develop techniques to automate the mapping process. Given the 

rapid advancement in WordNet, it is interesting to see if it can be used as a 

mediator to provide enough semantics for categorical classification in the area of 

learning object metadata. In essence, it is useful for cross ontology 

communications by providing a semantic representation of ontological concepts 

with coherent WordNet senses to create correspondences between concepts. 

This work presents important reflections on the exploratory use of 

WordNet to provide semantic mapping between remote learning repositories in 

order to enable semantic-based concept browsing. 



6.1 Conclusion 

This research offers two key contributions. First, it gives a new light weight 

semantic (ontology) mapping approach to enable cross platform concept 

browsing in a federated network. Many current practices in semantic mapping 

require intensive user involvement to provide mapping information in the case of 

a complex ontology, or resort to a complicated heuristic or rule-based machine 

learning approaches that could be dataset dependent and require user input as 

well. This work shows an effective automatic mapping technique that can allow 

federated concept browsing with semantic signatures. Evident by the 

experimental results, it establishes the merit of using WordNet to provide 

semantic knowledge for metadata classification in any domain. The merits 

include the provision of the semantic representation of categorical data and 

increased semantic relevance in categorical browsing. 

Secondly, by using word sense generalization during the sense selection 

process, it was shown that it successfully reduces the dimensions in the 

semantic signature. However, the contribution of sense generalization to 

increasing the opportunity to find similar signatures by increasing the matching 

features is not conclusively supported by the experimental results. This creates 

an incentive to explore the use of other sense generalization techniques to 

improve the signature matching process. 

Although this thesis primarily focuses on the discussion of the E-learning 

repository network, we believe that the validity of the methodology described in 



this thesis can be easily extended to other collaborative networks with minimum 

modification. 

6.2 Future Directions 

As demonstrated through the evaluation with a constrained dataset, the 

use of WordNet to provide semantic referencing between different E-learning 

repositories can show moderate improvement to enhance the relevance of global 

concept browsing. However, in order to validate that the same methodology can 

be applied on other metadata or semi-structured documents, more experimental 

evidence needs to be collected on different datasets. Regarding the evaluation, it 

is believed that a larger set of testing corpus with diverse classes of metadata 

needs to be acquired. This can not only improve the effectiveness of the kNN 

algorithm but also further establish the validity of the methodology. Taking this 

mediatory approach to a broader perspective, it is perhaps useful to include 

multiple thesauruses, which could consider domain knowledge, for rendering 

semantics to word term instead of relying only on WordNet. 

In terms of fine-tuning the suggested method, there are several areas that 

could be improved. First, more vigorous natural language processing techniques 

can be utilized to extract meaningful features for sense representation. For 

example, the inclusion of other part-of-speech word terms (e.g. verbs and noun 

phrase) and noun phrases may provide sources for identifying key senses for 

semantic representation. Furthermore, the use of a local domain ontology 

combined with heuristic-based constraints may also improve the selection of 

target word terms for semantic characterization. On the other hand, using 



semantic distance in WordNet to expand the selection of other word senses as a 

substitute for the original sense should be examined to test if it can produce a 

better generalized word sense representation without lowering the precision in 

the classification. In the classification, other algorithms like Bayesian-based 

approach or ID3 can be adopted to replace the kNN. Finally, there are some 

performance improvements that can be achieved by modifying the program. 



APPENDIX A 

The Signature Generator lndexer (SGI) is implemented with the C# 

programming language. The current version is a desktop application but it can be 

easily extended to a web service. The goal of SGI is to integrate signature 

generation, document indexing and browsing capability. The signature indexes 

are stored in an inverted index database (e.g. MS Access). The similarity 

calculator is a separate module implemented in C# as well and connected to the 

index database. 

Document Cleaning Module 
A. . . % - "  - "  < , . w e.,.*,,..-#-'- --" * "'.- - * 

ff5 &mature Generatlon Indexer 

Clean all stopwords, 
punctuation, symbols 



Document Sensitization Module 

Load the document for sensltlzatmn (folder: 

] ' 1 semihze I 
Fmd the best senses 

I 1 .I eest sense 1 
Count term frequency 

1 _ 1 A  
Count inverse d a c u r m t  irewsnci. 

1 . I iDF I 

Sensitize and find the 
best senses for all 
metadata and calculate 
their TFlDF score 



Semantic Sicmature Generation Module 

Load g r o u ~  of documerts to ct eate slpnature to1 

I _l 
Enter the threshold 

J 
Create a global slonature for the catsoor, 

Generate I 

Generate the 
signature for a 
particular class 



Concept Categow Indexing Module 

Load the S~gnature 
r I I 

Load the folder wth documentis) 

I 1-l 
Enter the catemrv 

Database 

Index the concept 
with semantic 

signature 



LO Concept Browsinq Module 

Select a 
particular class 
of concept to 

browse 
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