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ABSTRACT

One of the benefits of an E-Learning network is to connect users to
distributed learning repositories where they can be exposed to numerous
learning resources. However, metadata of learning resources stored in different
repositories are often annotated with concepts defined by different ontologies or
classifications specific to their organizations. That makes finding information
based on a local conceptual framework difficult. Different organizations with
different backgrounds and target audiences may use different terms with similar
semantics to define and describe similar learning resources. As such, using a
keyword-based approach to find relevant information may not yield satisfactory

results.

In this thesis, | describe a lightweight information integration solution for
browsing federally distributed metadata without incurring expensive schema
matching or semantic mapping. | present experiments on real-world data that
validate the proposed solution. Finally, | discuss how this approach can simplify
semantic mapping and enhance browsing experience in a distributed repository

network.



To my dearest parents
for their utter love and infinite sacrifices. | am forever in their debt.

To my beloved wife April
for her unconditional love and support



ACKNOWLEDGEMENTS

| would like to thank my supervisory committee and my examiners. Your

input to this work has greatly improved its quality.

| would like to thank Dr. Marek Hatala, my senior supervisor, for his

support and advice during my research.

This thesis has benefited from many conversations with a number of
people over the last year. | would like to thank everyone else in the Laboratory
for Ontological Research at Simon Fraser University for all the stimulating

discussion.



TABLE OF CONTENTS

APPIrOVAL...c..eciiceirecrsimsnisniissnseneesenssss s ssssassm s s a e s sma s s e na s s s e sm st aa s pa R e R n R s e i
=Y (7 o) U iiii
(7o [0 | o ] o Y PP iv
Acknowledgements........cccieriieernicsssneierisieneiisennamnrin s s s '
Table of CoNteNtS ....qc.ccceremrmrarimmcmmmimcrreerirtrssisarnrsse e s s annnn s n e nanans Vi
LiSt Of FIQUIeS.....ccceeececmmrriicnestiinsme st ssesiessssan e s ssmmn s s ss s s ne s sme s esssasassnnsons viii
List Of TADIES ...vciiiiissienieessnnnnmmmsnnnnmmsssesssnmmsssssssemmssnniveessnenssessannsssssmansssssasanns ix
Chapter 1: Introduction..........ccccusiiminiimmmiicenmnmennn s s ss s e e 1
1.1 ThesisS StatEMENt .......vviveeieee e e 2
1.2 Thesis Organization ...........ccccooiiv i 3
Chapter 2: Related WOrkS.......couccumimiinnieensennsenescnnnnnsssssmnnnsss s s ssssenens 5
2.1 Information Retrieval .........evveeeiiiii i 5
2.1.1 Text Retrieval.........ooooiiveeiiieiiie e e 6
21.2 Vector Space Model ..o 7

2.2 Information INtegration ..........c.ccccoevmmiiiii 9
2.2.1 Federated Collaborative Network .............cccovuuiiiimmiiiininnininninieen, 10

2.3 (0] 01 (o] (oo 1V 28 SO OO P 13
2.3.1 Why are ontologies important? ... 15

2.4 LYo (o [\ =] TR 16
25 E-learning.......cooiiiiiiiie e e 18
2.5.1 What is metadata?.......cccoveeieiiiiiiie 20
252 Is metadata always better? ..o, 22
Chapter 3: Challenges in Semantic Mapping......ccoeeereinmmiiriscminsccsnnnnans 24
3.1 Research problem....... ..ot 24
3.1.1 Semantic MappPiNg SCENAMNOS ...........ociicrireeiiiiire e 24

3.2 Semantic MaPPING «...ccvveevereeeirie it e 26
3.3 Challenges in Semantic MappinNg.........cccoovvvtiininiieinnie e, 26
3.4 Review of current approaches..........ccoevviiiinininineninere s 30
Chapter 4: Browsing with Semantic Signature..........cccoecriiiirviicrnicnnnn, 35
4.1 Semantic Signature Definition............cccooo e 36
4.2 Why use Semantic Signature? ..........ccccoeviernnnninii i, 37
4.3 Building Semantic Signatures with WordNet senses.........ccccccceene.e. 40
4.3.1 General Methodology ......cceevrviieiiiieee e 40

vi



432 Signature Generation in ACHON ... 42

4.4 Federated Concept Browsing in a Repository Network.................... 50
4.41 Browsing distant metadata with semantic signature .................... 51
Chapter 5: Experiment and Evaluation............ccccmrvmricmnsriinnscnnnnsnissnnnnens 54
5.1 Evaluation settings .........coocoer e, 54
5.2 ASSUMPLIONS....uuuiiiiirriiieiererieiirreeeeereeierar s arr s e s st aaanaes 57
5.3 Dataset DescCription..........ccccevreicciriiieritii s 58
5.4 1Y, =Y (T O PRSPPSO 59
55 (]33 1 V(o] o V- PP 60
5.6 RESUIS ...t 60
5.7 INterpretation ... ......cove i 63
Chapter 6: Conclusion and Future Directions..........ccccvrrnncnncvccinernncnannen. 66
6.1 CONCIUSION ....ccceieeeeeeee et 67
6.2 Future DireCtions..........cvviiiiiiiiie e 68
APPENIX A .....ciiiirisirniiis st s s e n e e et anannae 70

vii



LIST OF FIGURES

Figure 2.1 Document term mMatriX ..........ccoeviiieiiiiiiiice et e e e e eeeenns 7
Figure 2.2 Federated collaborative network ..............cccoooriiierin i, 12
Figure 2.3 An example of simplified domain ontology ............cccccccienciiennnnnnnes 14
Figure 2.4 WordNet senses for word ‘Web' ... 17
Figure 2.5 Simplified portion of WordNet on term of ‘turtle’ ...........cccocvvveecnnennn. 18
Figure 4.1 Semantic vs. syntactic matching in different ontologies .................... 38
Figure 4.2 Semantic Signature Generation Framework ...........ccccceeevecevinnnnnnn... 42
Figure 4.3 Word term to WordNet sense mapping ......cccccceevrcccmnrrenneennessisnvnninnnns 44
Figure 4.4 Associative frequency calculation between word senses.................. 47
Figure 4.5 Word sense generalization to immediate (1-k) parent....................... 48
Figure 4.6 Aggregation of document signature to generate class signature....... 50
Figure 4.7 Inverted index by Semantic Signature.............c.ccooiiiin e 51
Figure 4.8 Integrated process of semantic-based browsing of metadata........... 52
Figure 5.1 Metadata distribution in simulated distributed data sources.............. 56

viii



LIST OF TABLES

Table 5.1 Source and Category of Metadata............cceovvveini i,
Table 5.2 Comparison on precision, recall and F-measure on concept

=] (12177 | PP PP PSPPI
Table 5.3 Comparison of similarity score using 7-k parent generalization

(o]0 I (=11 4 To] (= PP



CHAPTER 1: INTRODUCTION

With the advance of the Internet and rapid developments in E-learning,
more and more institutions are joining to form distributed learning networks to
provide their users with access to resources from different learning repositories.
This creates pressure for institutions to provide an efficient way to organize the
huge volume of learning materials located in different repositories. The
classification has to be flexible and robust enough to deal with variation in
conceptual frameworks of dispersed audiences in order to answer distributed
retrieval requests. Currently, the use of metadata and ontologies to formalize
semantics of concepts in the E-learning domain does not completely resolve the
problem of interoperability in a federated environment. Metadata are descriptive
indexing labels used to describe the characteristics and content of learning
objects. They are used to facilitate searching, management and assembling of
learning content. Ontology, on the other hand, is to define the set of vocabularies
to describe the metadata for each particular concept. However, in a federated
environment, keywords-based search on metadata elements could not guarantee
the discovery of all relevant information. This is because linguistic variation in
metadata makes direct querying with keywords sometimes ineffective even with
the ontology to control the vocabularies used to describe the metadata.
Obviously, it is almost impossible to expect that two institutions would use exactly

the same keywords and classifications to describe the same learning resource.



Therefore, it is very unlikely that using a keyword-based retrieval system could
return all relevant documents, or more precisely, semantically relevant
documents in a federated learning network. In addition, descriptions used in
metadata to define and classify learning resources may not be in the same
standardized format across a learning network [1][2]. Hence, finding related
information on a topic from heterogeneous sources is very challenging. This is a
long-standing problem of information integration [3, 4]. Currently, active research
is underway to provide efficient and effective solutions for a global view of
information from distributed sources. Information integration aims to transform
heterogeneous data sources into a single global homogeneous database and to

provide a unified view of these data for future query processing purposes [5].

1.1 Thesis Statement

The research question of this thesis is to explore the use of a lightweight
semantic mapping strategy to browse in a federated network of repositories for
semantically relevant metadata with the use of WordNet. This research
integrates a number of techniques in information retrieval, information integration
and data mining to achieve semantic mappings among different metadata
repositories in a cooperative network environment, in order to allow users to

browse by semantically similar concepts.

The central thesis of this research is to explore the use of semantic
signatures in WordNet terms to enhance relevance of federated browsing in a

collaborative repository network. This ultimate goal encompasses a number of

objectives. First, we would like to establish experimentally the benefit of using



WordNet as a mediated schema to construct semantic signatures for semantic
mapping. Secondly, we would also like to investigate the use of linguistic
heuristics to select the appropriate senses to construct a “good” semantic
signature to represent a concept in the classification schema. Finally, we wouid
like to demonstrate the relative merit contributed by semantic signature mapping
by comparing the result of federated browsing using semantic signatures against

another widely used keyword-based browsing.

1.2 Thesis Organization

The rest of this thesis is structured as follows:
Chapter 2 Related Works

This chapter summarizes the major concepts in Information Retrieval,
Information Integration, Ontologies, WordNet, and E-learning metadata. It builds
an intellectual foundation for subsequent chapters, and identifies works that this

research relates to.
Chapter 3 Challenges of Semantic Mapping

This chapter illustrates the research problem, as a motivation, in semantic
mapping with examples. It presents various research and technical chalienges
that we are facing in semantic mappings. It includes a brief review of several

popular approaches in semantic mapping.

Chapter 4 Browsing with Semantic Signature

This chapter introduces the concept of a semantic signature to represent a

concept in the classification schema or ontology and describes how it is



constructed with WordNet terms. It also further illustrates the idea of using
semantic signatures to facilitate semantic mapping to enable concept browsing in
a distributed collaborative learning network. A semantic signature indexing tool

will also be displayed as a realization of the signature browsing approach.

Chapter 5 Evaluation and Interpretation

The utility of the semantic mapping using WordNet signature is evaluated
in a specific verification domain, namely, that of the E-learning metadata
browsing by concept. A set of assumptions, dataset description, experimental

results and their evaluations will be discussed in detail.
Chapter 6 Conclusion

This chapter summarizes the major contributions of this work and provides

future directions of this research.



CHAPTER 2: RELATED WORKS

This chapter will highlight the main concepts in Information Retrieval,
Information Integration, Ontologies, WordNet, and E-learning. They provide
important background information to understand the content and approaches

adopted in this thesis.

2.1 Information Retrieval

Information retrieval is usually used as a generic term to cover the study of
systems for indexing, searching, and recalling data, particularly text or other
unstructured forms. Specifically, it deals with the representation, storage,
organization of, and access to information items [6]. Unlike data retrieval,
information retrieval is not a database querying. Databases work with highly
structured information. The data model of a specific database determines the
possible queries a user can ask. Usually the form of the query will have to follow
the data model. A database is used where exact matching is demanded. On the
other hand, information retrieval models use highly ambiguous queries and

include some amount of fuzziness as the user defines the search query.

The key notion of information retrieval is that relevance is defined in terms
of similarity. This assumes that if a document is similar to a query it is relevant.
Similarity in turn can be defined in several ways, depending on the type of the

information. For text retrieval, similarity is usually measured in the overlap of the



words used in both query and document [7]. A document could be anything from
a title, to an abstract, to a full-text paper. Information retrieval is a “broad
interdisciplinary field of research that draws on many other disciplines such as
cognitive psychology, linguistics, information science and computer science”. In
this thesis, information retrieval is limited to text retrieval as the experiment is

carried on with text-based learning resource metadata.

2.1.1 Text Retrieval

Text retrieval can be separated into two distinct phases: indexing and
matching [6]. The indexing phase is concerned with extracting keywords and
estimating their relevance to the document in which they occur, and finally
indexing the document with a set of representative keywords. The matching
phase calculates the similarity of query terms against the index terms. A
document is relevant to a query if they are similar. Many approaches determine
the similarity of a query to a document based on the words that are used. A
common assumption in the information retrieval community is that documents
can be treated as a “bag-of-words”. In this view, a document is treated as an
unordered set of words. As such, determining whether a document is relevant to
a given query is simply reduced to looking up the query words in the document
index. The more query words that are overlapped with index words, the more

relevant the document.

! Definition of information retrieval from Wikipedia
http://en.wikipedia.org/wiki/Information_retrieval



2.1.2 Vector Space Model

The vector space model is a popular data model to represent a document
for computational manipulation. It enables logical operations to be performed on
the documents. It is a commonly used technique in text retrieval [7, 8]. In this
model, each document is broken down into a word frequency table representing
n-dimensional weighted vectors. Each word is a dimension in Euclidean space.

Let T = {¢', ¢*, ..., "} denote the set of terms in the collection of documents.

Then we can represent the terms df in document d; as a vector X = (x,x, ...

, X, ) with:

i i T.
- t;ifte d;;
Lo ifrled]

where tj. represents the frequency of term ¢ in document d ;- Combining all

document vectors creates a document-term matrix. An example of such a matrix

is shown in Figure 2.1.

Figure 2.1 Document term matrix

d, d, ds ey
t |1 0 0 e |3
|2 0 0 UPR I
t, | 0 1 1 e |0

Each dimension in the document vector corresponds to the term frequency of a
key term. In addition, weight can be added to each term based on its importance
to distinguish the document category. There are a number of term-weighting

schemes; however, the most widely used one is called Term Frequency-Inverse



Document Frequency (TFIDF) [9]. This scheme assigns a weight to each term in
a given document. The weight increases in proportion to the number of times the
term occurs in the document, but is offset by a term itself, which devalues terms

common in the overall corpus. Mathematically, it can be expressed as follows:

N
Wy = tfy+ log ()

where: W, = weight of term ¢, in document d,

ff; = frequency of term ¢, in document d,

N = number of documents in corpus

df, = number of documents containing ¢,
The TFIDF weighting scheme is a broadly recognized method to select most
representative keywords to represent a category of documents in document
classification [10]. The advantages of the vector space model include ranked
results of the retrieved documents, the possibility to enter free text, and not
requiring a strict matching of the documents. The ranked results are ordered
using the distance of a document vector to the query vector. Such an ordering
represents the similarity of a document to the query. Free text search eliminates
the use of difficult query languages as in the Boolean model. The matching is not
strict, in the sense that a query containing multiple words will also retrieve

documents where not all words are present [11].

In order to retrieve document relevant to a user query, we calculate the
similarity between the query vector and document vector based on a distance

function. A common similarity measure, known as the cosine measure,



determines the degree of closeness between the document vectors and the
query vector is frequently used [7]. Precisely, the similarity between a document

vectord and a query vector ¢ is defined as:

Z:el d"q"
\/Z:=1 di2 x Z:'=| C],-2

sim(d,q) =

where Z:=l d.q, is the standard vector dot product between document vector and

query vector while \/Z'l d’ xz;l g’ is called the normalization factor to discard

the effect of document length on the overall similarity score.

2.2 Information Integration

While early databases were usually self-contained, it is now generally
recognized that there is a great value in taking information from various
geographically separated sources and making them work together as a whole
[12]. This is particularly true in situations that call for high-level collaboration to
share information such as in a research network and an E-learning network. We
acknowledge that a vast amount of information is stored in distributed data
sources. The physical distance is usually not a major problem but rather the
difference in their logical representation (semantics). Indeed, a global view of
cohesive information is not easy to obtain when information is not only stored in
different databases operated with different DBMS, but also they usually come in
different structures, represented in different data models and expressed with

linguistic variations. These differences pose problems for distributed searching



using free text because of the variations in query keywords. Therefore, an
effective information integration strategy is important to glue distributed
information to form complete and coherent information that is consistent with a

local users’ semantics.

Information integration has long been identified as a central problem of
distributed multi-database systems, which are required to provide interoperability
among an array of information repositories [4]. Specifically, information
integration refers “to the problem of merging, coalescing and transforming
autonomous heterogeneous data sources into a single global homogeneous
database and providing a unified view of these data for future query processing
purposes” 2. In order to perform semantic integration of heterogeneous
information, it is necessary to form one or more integrated schemas expressed in

some common data model. Detailed discussion on semantic mapping of

heterogeneous sources can be found in Section 3.

2.2.1 Federated Collaborative Network

Distributed storage systems come in different flavours. Based on specific
requirements and applications within organizations, these could be a tightly-
coupled distributed database systems controlled by a centralized DBMS or it can
be a loosely-coupled federated system in which each component database has
high autonomy controlling its degree of participation in the federation [13]. In

summary, two important aspects of federated systems can be noted:

2 Source: http://www.cs.ubc.ca/~ycai/Academics/projects_files/infointeg.html

10



e Heterogeneily. Federated systems could have a high degree of
differentiation in their various data sources. Each component data
source may run on different hardware, use a different
communication network, and have a different DBMS to manage
their data repositories. They may also have different query
languages, different query capabilities, and even different data
models [14]. Apart from these structural heterogeneity differences,
semantic heterogeneity may also occur in each component data
source in which the intended use of same or related words would
be different, or different words in fact carry the same semantic
interpretation. This creates various technical difficulties when

integrating information from heterogeneous data sources.

e Autonomy: Typically, a data source has existing organizational
requirements to fulfil and target users to serve. It is important,
therefore, that the operation of the source is not affected and it
remains independent when it is brought into a federation [5, 14]. In
particular, the way the data source processes requests for data
should not be affected by the execution of global queries against
the federated system. In addition, all the design and execution
decisions will remain with local authority. A component data source

can participate in more than one federated system.

In this thesis, we focus on a variant of a federated system called a

federated collaborative network. It can be described as a federated network

11



where each participating data repository dedicates minimum resources to provide
an extra layer of consolidation to ensure the semantic consistency and quality of
delivered information. This is a working model adopted in several emerging areas
ranging from the knowledge management communities, bioinformatic research
networks to E-learning networks [15]. Under this model, a number of participating
organizations would join to form a community or even a cluster of communities in
order to share their resources and information with a goal to minimize
development effort to provide richer content to users in each community.
Although this thesis primarily focuses on the discussion of the E-learning
repository network, we believe that the validity of the methodology described in
this thesis can be easily extended to other collaborative networks with minimum
modification. The detailed model of E-learning repository network will be
discussed later in this section. Despite some differences between federated

collaborative networks, they all share similar design as below.

Figure 2.2 Federated collaborative network

Unified !
_Schema _;
Wrappert Wrapper2 Wrapper3

= =5 =D

Component Component Component

Schema 1 Schema 2 Schelma 3

“Data
Source 3

Source 2
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In this simplified view, a federated collaborative network is a kind of loosely
coupled federated system that explicitly requires the use of wrappers to provide
an intermediary between different component data sources. In the network,
participating data sources have total control over the data they manage. They
have access control rules to allow partial and controlled sharing of their data. Yet
there is no centralized control in a federated system, it usually provides users
with a single global interface to access data sources in the federation. The whole
federated system is transparent to users who are treated as local users who can

indirectly access a distant database.

2.3 Ontology

In theory, ontology can be defined as a specification of a conceptualization
[16]. More formally, ontology is a formal representation of a set of concepts,
properties of concepts, and relations between concepts that are possible in a
specified domain of knowledge [17]. Practically, ontology provides a vocabulary
whose terms are precisely defined by a body of knowledge or facts in some
domain. However, it is important to remember that “it is not the vocabulary as
such that qualifies as an ontology, but the conceptualization that the terms in the
vocabulary are intended to capture” [17]. Further, ontology also defines semantic
relationships like “type-of’ and “is-a” between terms using formal modelling
techniques, in general taken from logic-based specification formalisms such as
description logics or predicate calculus. Ontology starts from precisely defined
simple concepts that are universally accepted such as “Thing” or “Entity” and

then leads to concepts with narrower scope and more specifications. Concepts in

13



ontology are interconnected by means of a set of semantic relationships. A
general structure of a portion of an ontology shown in figure 2.3 defines that
“Automobile” that subsumes “Snowmobile” because it logically implies that
snowmobile is a kind of automobile. Three kinds of semantic relationships are
commonly used to create ontology: they are specialization (is-a), instantiation

(instance-of), and component membership (part-of).

Figure 2.3 An example of simplified domain ontology

Automobile
Is-a
Sport car Truck Snowmobile .....
Part-of T=~<._ Instance-of
Wheel Tire .... T~
John's
Ferrari

The is-a relation is used to represent specialization. A concept represented by C,
is said to be a specialization of the concept represented by C, if C, is a kind
of C;. The instance-of relation denotes concept instantiation. If an instance/ is a
type of concept C,, the interrelationship between them corresponds to an

instance-of denoted by a dotted line. For example, “John’s Ferrar’ is an instance

of “Sport car’. A concept represented by C, is part-of a concept represented by
C, if C, has a C, (as a part) or C;is a part of C,. For example, “Whee is part of

concept “Sport car’. These semantic relationships permit the construction of
ontologies with richer structure than plain hierarchy commonly found in
taxonomies. The ontologies enable programs to deduce knowledge by combining

different concepts and examining their semantic relationships. Ontology can be

14



constructed in two ways, domain dependent and generic. The former provides a
small number of fine grain concepts while the latter provides a large number of
coarse concepts. WordNet is an example of a generic ontology that will be

discussed shortly.

2.3.1 Why are ontologies important?

Given their solid foundation built from logical formalism, ontologies find
their roles in many areas of artificial intelligence applications, information
systems, knowledge engineering and computational linguistics. First, ontology
provides us with a set of logical axioms to account for the intended semantics of
a vocabulary used to describe facts, beliefs, hypotheses, and phenomena about
the world or in a specific domain [18]. The set of axioms is usually stated in the
form of first-order logic where vocabulary terms are the predicates while the
object and relations are the variables. As an example, if G(x,y)is the predicate
representing “x greater thany”, then the sentence “9 is greater than 6” can be
expressed as G(9,6) . Recall from figure 2.3 that the ontology describes a
hierarchy of concepts related by “Type of’ subsumption relationships; in more
sophisticated cases, suitable axioms are added in order to express other
relationships between concepts and to constrain their intended interpretation
[19]. Formal axioms can clarify conceptual confusion by limiting the intended
meaning of a vocabulary, and the linked relations between concepts in a domain.
As such, factual knowledge in a relevant domain can be represented in logical
symbols and be understandable by computers. Computers can then make logical

inferences by operating on the existing facts and axioms. Moreover, with a

15



domain ontology that specifies the intended semantics of concepts, the ontology
enables knowledge sharing and reuse with others who share similar needs for
knowledge representation in that domain. By extension, ontology also facilitates
the information integration process from heterogeneous sources in a particular
domain in which specific concepts are defined by well-formed logical syntax and
by their semantic category. In summary, the merit of ontologies can be attributed
to their capability to provide an explicit specification of shared conceptualization
of knowledge in a world that we wish to represent for some purpose, and to
facilitate communication between people, organizations, or between information

systems.

2.4 WordNet

WordNet is a widely recognized online lexical reference system,
developed at Princeton University, whose design is inspired by “current
psycholinguistic theories of human lexical memory. English nouns, verbs,
adjectives and adverbs are organized into synsets (synonym sets), each
representing one underlying lexical concept that is semantically identical to each
other’ [17, 20, 21]. Synsets are interlinked via relationships such as synonymy
and antonymy, hypernymy and hyponymy (Subclass-Of and Superclass-Of),
meronymy and holonymy (Part-Of and Has-a) [21]. Each synset has a unique
identifier (ID) and a specific definition. A synset may consist of only a single
element (sense term), or it may have many elements all describing the same
concept. Each element in a particular synset's list is synonymous with all other

elements in that synset. For example, the synset {World Wide Web, WWW, Web}

16



represents the concept of a computer network consisting of a collection of
internet sites. In this context, 'World Wide Web', ‘WWW’ and 'Web' are
considered carrying the same meaning in English. For cases where a single word
has multiple meanings (polysemy), multiple separate and potentially unrelated
synsets will contain the same word. Considering that the word ‘Web’ can have 7
multiple meanings as a computer network, entanglement, spider web and etc,
they all contain the word “web”. In Figure 2.4, we would see the word ‘Web’ will
appear in different synset lists offered by WordNet to characterize the concept
‘Web’. From an ontological perspective, WordNet is not only a lexical dictionary
but also a generic linguistic ontology that carries both semantic and syntactic
information of words as well as organizing them in a hierarchical taxonomic

structure linked by semantic

Figure 2.4 WordNet senses for word ‘Web’

The noun web has 7 senses (first 3 from tagged texts)

L. {1) web -- (an intricate network suggesting something that was formed by weaving or

( interweaving; "the trees cast a delicate web of shadows over the lawn")

2. (1} web, entanglement -- (an intricate trap that entangles or emsnares its victim}

3. (1) vane, wel -- (the flattened weblike part of a feather consisting of a series of barbs on either
side of the shaft)

4_network, web -- (an interconnected svstem of things ot people; "he owned a network of shops”;
"retirement meant dropping out of a whole network of people who had been part of myv kife";

< ”!anzlcd ina v.eb of cloth )

thaz offer text and zraphms and sound and animation resources through the hvpertext Kaﬂaf&f

protowl}

\ 7. web (membrane connecnnc the toes of some aquatic buds and mammals)

The word web has multiple senses

One synset for
The verb web has | sense (no senses from tagged texts) ‘web’

1. web. net - {construct or form a web, as if by weaving)

relationships [20]. In WordNet, noun synsets are related to each other through

hypernymy (generalization), hyponymy (specialization), holonymy (whole of) and

17



meronymy (part of) relations. As mentioned previously, these semantic relations
are used to link concepts together in an ontology for a domain. As shown in
Figure 2.5, the word ‘turtle’ is semantically related to other words in the biology

domain in WordNet. In summary, WordNet has evolved from an original idea to

Figure 2.5 Simplified portion of WordNet on term of ‘turtie’
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create an online dictionary and thesaurus that is machine readable and
reasonable, to become a major language and concept lexical database that
provides support for cross disciplinary research from natural language
processing tasks, such as information retrieval, information extraction, word

sense disambiguation to text mining, document summarization and others.

2.5 E-learning

E-learning has been a topic of increasing interest in recent years.
Promoted by many E-learning experts, information technologists and even the
governments, it is seen as a plausible solution to meet the educational
challenges in today's growing demand for high quality education by providing

learners with learning resources anywhere and anytime. Originated from



computer-based training (CBT), E-learning attempts to provide a dynamic and
non-linear learning environment where learners can control their pace of learning
and organize their learning processes to adapt to their own needs in the subject
area. E-learning is often perceived as a group effort, where content authors,
instructional designers, multimedia technicians, teachers, trainers, database
administrators, and people from various other areas of expertise come together
to serve a community of learners®. Compared to traditional learning in which the
instructor plays the intermediate role between the learner and the learning
material, the learning scenario in E-learning is completely different: instructors no
longer completely control the delivery of material and learners have a possibility
to combine learning material from various sources on their own. Thus, the
content of the learning materials is independent from the course curriculum.
However, despite the time or expense put into creating advanced E-learning
materials, they are useless, unless they can be searched and discovered easily.
This is especially true as the volume and types of learning content increase. If
the learning resources delivered do not meet learner's expectations and
requirements, this could lead to frustration in learners and reduce the number of
E-learning users. Without a broad base of learners, it is difficult to justify the large
investment in E-learning technology. On the other hand, lacking an interoperable
platform to enable institutions to share learning resources, even in a collaborative
network, each member must invest a great amount of cost and effort to develop
useful learning resources. This could be a problem for many institutions as they

struggle to allocate economic resources between traditional learning and E-

% http://ifets.ieee.org/discussions/discuss_march2003.htm|
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learning development. In order to achieve the vision of E-learning society, we
need to create a cost effective E-learning environment. In other words, learning
resources must be easily searchable by learners based on their learning
requirements, and discovered by instructors for re-development and adaptation
for their changing needs. In this way we can lower the cost as well as reduce the
time of learning resource development, and more importantly be able to deliver
learning resources to target users in a most efficient way. This is the reason to
prompt the growth of collaborative learning environments. Collaborative learning
is a full-featured and, flexible cooperative learning system (network) established
to enable teachers to reuse the learning resources, deliver and manage e-
learning resources easily and efficiently across different locations in the network.
Very often, a collaborative learning network is formed by several learning
institutions that share similar learners and teaching goals. To facilitate the
communications between institutions and to support the search for learning
resources while maintaining autonomy in developing their own learning
resources and curriculum, metadata is frequently used to describe learning

resources for the purpose of easy searching and indexing.

2.5.1 What is metadata?

Metadata is data about data or information about information. It is
structured data that describes the characteristics of a resource. A typical
metadata record is an XML file consisting of a number of pre-defined elements,
information like keywords, category, title, description, author, location, page-

length, ISBN, and so on, representing specific attributes of a resource. To avoid
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confusion and enable exchange, we use a metadata schema to define the syntax
and semantics of each metadata element. Furthermore, metadata are often
annotated by ontology or taxonomy. With ontology, the classifications of
metadata are controlled by concepts or classes. With taxonomy, the
classifications of metadata are organized by categories or nomenclatures. In the
E-learning domain, metadata is the information-age term for information (e.g.
index card) that librarians traditionally have used to classify learning resources
and other print documents. The main purpose of the use of metadata in E-
learning is for managing and accessing learning resources in a systematic way.
In addition, the use of metadata promotes sharability of learning resources in a
distributed environment because it provides a common nomenclature enabling
learning resources to be described in a common way®. It also serves as a good
foundation to aggregate learning resources from distributed sources. Until
recently, three popular metadata standards were used to describe E-learning
resources: they are IEEE LOM, ARIADNE and IMS. However, IEEE LOM has
became the metadata standard in the E-learning community. One of the major
purposes of all meta-models is to define how learning materials can be described
in an interoperable way [1]. All the metadata elements necessary to describe a
resource can be classified into several categories, each offering a distinct view
on a resource. For example, the IEEE LOM standard specifies the following

metadata categories and elements:

= general - groups all context-independent features;

= lifecycle - groups features related to the lifecycle of the resource;

* Learning Technology Standards Observatory: http://www.cen-ltso.net/Users/main.aspx?put=322
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» meta-metadata - groups the data elements describing the metadata;

= technical - groups data elements describing the technical features;

= educational - groups educational and pedagogic data elements;

= rights - groups data elements pertaining to the conditions of use;

= relation - groups data elements that describe the linkage between resources;

= annotation - groups data elements that allow comments on the educational use;

» classification - groups data elements that describe the position of the resource in an
existing classification system.

2.5.2 Is metadata always better?

The purpose of metadata is to describe resources in a standardized
structural format for managing and searching resources systematically. In reality,
with different metadata standards, different elements may be used or the same
element would carry different meaning in the metadata. Coupled with that, most
standards lack a formal semantics to explicitly control the meaning of the
elements. This obviously will create problems of incompatibility between
disparate and heterogeneous metadata descriptions or schemas across domains
[1]. To illustrate, two different authors may describe semantically identical
concepts in different terms according to their different points of view. Author X
may use terms like network, protocol or web to describe the concept “Internet”
while author Y would describe the same concept using other terms like link, htip
or WWW. Many organizations solve this problem by developing ontology to
specify the meaning of vocabularies used in the metadata, and limit the
mappings from terms of the domain vocabularies to concepts in the ontology.
However, this only solves the problem of semantic discrepancy in metadata
description in a single institution. This is because when metadata are widely

distributed across a collaborative network in which each learning resources
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repository has total autonomy to use its own ontology to annotate metadata, it is
very difficult to coerce other members to adopt each other's ontology to annotate
their metadata. Therefore, at the end interoperability requires repositories to
develop various ontology mapping strategies in order to have a shared-
understanding about the meaning of each other's metadata and in turn to allow
them to find semantically related learning resources. This not only makes the
search process very inefficient but also requires important procedures to be
performed to create semantic mappings between ontologies before distributed
metadata can be shared between institutions. Therefore, using metadata does
not completely solve the interoperability problem without a true semantic

understanding of those metadata in a distributed environment.
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CHAPTER 3: CHALLENGES IN SEMANTIC MAPPING

This chapter illustrates the research problem, as a motivation, with
examples in situations where semantic mapping is demanded. It presents a brief
overview of semantic mapping techniques and reviews the research challenges
that many semantic researchers are facing. A set of current approaches in

semantic mapping will be discussed.

3.1 Research problem

Regardless of the progress of information and communication
technologies, the challenges remain on how to integrate information from
heterogeneous data sources [22]. Semantic mapping is one of the most active
research topics in information integration to help provide an interoperability policy
for people to share information in a distributed environment [23, 24]. In fact,
“semantics-based technologies will be an essential part of all interoperability
solutions in the very near future” [25]). The scenarios that follow will reveal
situations where information communication will not be possible without robust

semantic mapping between distributed data sources.

3.1.1 Semantic mapping scenarios
Scenario 1:
Imagine a learner L associated with the repository Ry looking for learning

resources related to the topic of how to find a good bass musical instrument, L,
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sends out a request “search for bass’ to remote repositories R, and Rgs
respectively. However, the returned results from R, and R3 are mixed with many
irrelevant resources related to catching a bass (fish). This problem occurs
frequently when the concepts are defined by different domain ontologies with

different sets of vocabularies carrying different intended meanings.
Scenatrio 2:

Imagine that the same learner L, sends out a distributed request for
learning resources on topic “advanced database’; however, since the same topic
is in remote repositories annotated by the concept “database system I’ in
remote repositories so it is labelled differently. Therefore, in a concept-based
search, learning resources defined by concept “database system II’ will not be
returned for request of “advanced database” even though the two concepts are

actually semantically equivalent.

From these simple scenarios, one can easily see that without a proper
semantic mapping between ontologies in heterogeneous data sources, it is still
difficult to find learning resources based on local conceptual definitions. This
problem cannot be solved even with the fact that institutions have their own
ontologies to define vocabularies used to describe metadata of learning
resources. This research focuses on providing a light-weighted semantic
mapping between distant metadata from heterogeneous repositories in a
collaborative E-learning network, and enabling learners to browse for

semantically related learning resources by topics.
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3.2 Semantic mapping

Semantic mapping can be described as the mapping task to identify
common concepts and to establish semantic relationships between
heterogeneous data models in the same domain of discourse [26]. Since in
modern knowledge systems semantics is mostly represented in ontological
constructs, we will use the term semantic mapping interchangeably with ontology
mapping in this discussion. To express ontology mapping in a mathematical

expression, it can be written as mapping ontology O1=(C, 4i) 10 O2=(C>, 42) by
a function f:Ci - C2 to semantically related concept Ci to concept C: such that
42 E f(41) of which all interpretations that satisfy axioms in O: also satisfy

axioms in01[24). For example, if the concept agent (C1) is defined in O: by a set
of properties as <broker, travel agent and officer> with axioms as <part-of
agency, is-a individual, is-a organization and type-of communicator> (ignoring
other attributes and cardinality for the sake of simplicity), it is possible to map it to
a concept representative ( C.) defined in O: with a set of properties as
<government agent, client, spokesperson and advisor> and having axioms as
<part-of government, is-a person, and is-a expert>. This assumes that all the
semantic interpretations of C: will be respected by C: in the domain of discourse

when executing logical inference operation onC-.

3.3 Challenges in Semantic mapping
Based on the scenarios above, the challenges in semantic mapping can

be briefly summarized as follows:
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(1) Conceptual incongruence

As pointed out in the previous chapter and exemplified again with
scenarios in section 3.1, different ontologies are constructed to specify
different conceptualization of their domains of discourse. Since we know
that an ontology is an abstract model of how people think about things in a
particular domain, it is natural to expect that the set of properties and
aftributes that are used to define the concept during the process of
building the ontology will largely be affected by not only the domain
knowledge, conceptual bias and personal viewpoint but also the purpose
of the application’s use of the ontology [27]. These various objectives and
factors would often influence the development of the ontology resulting in
different ontologies describing the same domain of discourse. Therefore,
it is hard to rely on descriptions or properties of concepts defined locally to
find semantically equivalent resources in a distant location. The “bass’
may be defined by properties and attributes to codify a concept for musical
instrument in local ontology; however, the concept with the same name
could very well be defined as a kind of fish in a distant ontology. Thus, if
we solely rely on the match of the ontology labels to retrieve semantically

related resources, the relevance of the result will sometimes be lowered.
(2) Linguistic variation

The linguistic variations that humans used to describe information make it
difficult for a computer to recognize the intended meaning of the text. This

is because of the ambiguous nature of human language. The ambiguity
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can be attributed to several levels of linguistic variation. Here they are
limited to lexical and semantic variation only because they are the
dominant causes of ambiguity in text analysis with ontology [28, 29].
Lexical variation deals with multiple words having the equivalent meaning
while semantic variation relates to a single word having multiple distinct
meanings (homonym) based on different context. As an example, “car’,
“motorcar’ and “locomotive” could refer to similar concept “automobile”
while the word “bat’ could have quite different meanings in a baseball
game broadcast and in a zoology magazine. Because of this, it is
dangerous to rely on the match of the values on properties and attributes
to do semantic mapping. This logically rules out the simple use of keyword
search and associative text mining to find all possible semantically

relevant concepts.
(3) Language divergence

It would be less problematic if there was only one ontology language to
express and construct a domain ontology. In reality, there are a number of
options in terms of languages and tools to build ontology. DAML+OIL
(DARPA Agent Markup Language + Ontology Interchange Language) is a
combination of two languages to enable the specification of facts and
operation of logical inference. DAML is an extension of Resource
Description Framework (RDF). In fact, it is using the RDF triples to define
concepts and their associated semantic relationships. Similarly, OIL can

be expressed as an extension of RDF. OIL combines more widely used
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modelling primitives from frame-based languages and formal semantics
and logical reasoning capabilities from descriptive logic. It attempts to
provide more expressivity to the language to model knowledge in
ontology. On the other hand, there is OWL (Web Ontology Language)
created by W3C for publishing and sharing data using ontologies on the
Internet. It is derived from the DAML+OIL language so it is also an
extension of RDF constructs. OWL comes with three versions: Lite, DL
and Full. They provide different levels of complexity and functionality for
modelling different ontologies [30][31]. It contains additional expressive
primitives and vocabulary to define richer semantic relationships. Due to
the divergence in ontology languages, it adds another layer of
consideration when performing semantic mappings between ontologies
built from different languages. One would need to use business logic in a
program to identify information where possible mapping could be provided
because values could be stored differently with diverse language
constructs. Complex mapping such as 1 to n, n to 1 or even n to n could

make the mapping task very complicated.
(4) Trade-off on computational complexity and ease of use

We recognize that we can provide robust semantic mapping between
specific domain ontologies with moderately high accuracy. However, it
would take quite some time to develop and implement the mapping due to
the complexity of many mapping algorithms. Besides, very often the

systems based on those mapping algorithms require a fair amount of
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human (domain expert) intervention to control the mapping process which
may not be desirable in some situations [32]. Furthermore, the mapping
relations will need to be re-examined and modified when new concepts
are added or new relationships are established in the ontology. Therefore,
it would be costly for organizations and inefficient in terms of time to
develop the mapping tools to provide interoperability between ontologies
for some particular application use. In this view, for most applications, they
need to weigh the accuracy of the mapping against the cost and time to
provide such a mapping. Then again, most researchers in semantic
mapping agree that it is still out of our grasp to provide generic mapping in

domain independent ontology with current mapping paradigms [25].

3.4 Review of current approaches

This section presents a brief overview of two approaches on semantic

mapping. It is by no mean an extensive review of every detail of these

approaches. This only serves to give the audience a general idea of these

approaches in order to illustrate different strategies in semantic mapping. The

two selected approaches are GLUE and MAFRA. The former is a system that

employs machine-learning techniques to find ontology mappings with the use of

probabilistic multiple learners while the latter uses a declarative representation of

mappings as instances in a mapping ontology defining bridging axioms to encode

transformation rules.

(i) GLUE
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This is a semantic mapping system that employs machine learning
techniques to find mappings between two ontologies. With two domain
ontologies, for each concept in one ontology GLUE claims to find the most
similar concept in the other ontology [23]. There are a number of features
distinct GLUE from other similar mapping systems. First, unlike most
mapping systems that only incorporate single similarity function to
determine if two concepts are semantically related, GLUE utilizes multiple
similarity functions to measure the closeness of two concepts based on
the purpose of the mapping. The intuition behind the multiple similarity
functions is to take advantage of the mapping requirement to relax or limit
the choice of corresponding concepts. For instance, based on the
requirement of the application the task of mapping the concept “associate
professor’ can be satisfied by similarity criteria “exact”, “most-specific-
parent” or “most-general-child” similarity criteria to find “senior lecturer’,
“academic staff’ or “John Cunningham” respectively. This gives GLUE
flexibility to find semantic mappings between ontologies. The similarity
measure that is employed by GLUE is the joint probability distribution.

More precisely, it is Jaccard coefficient:

P(4B)

Jaccard — Sim(A,B) =
P(AUB)

Second, GLUE applies a multi-strategy learning approach to use certain
information discovered by different classifiers during the training process.

This approach divides the classification process into two phases. First, a
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set of base classifiers is developed to classify instances of concepts on
different attributes with different algorithms. Then, the prediction of these
base classifiers, assigned with different weights representing their
importance on overall accuracy, is combined to form a meta-learner.
Finally, the classification is determined by the result from the meta-learner.
As an instance, one base learner can exploits the frequency of words in
the name property using a Naive Bayes learning technique while another
base learner can use pattern matching on another property using a
Decision Tree Induction technique. At the end, the meta-learner will gather
all the results to form the final prediction. Using multiple classifiers, GLUE
intends to increase the accuracy of the overall prediction. Third, GLUE
incorporates label relaxation techniques into the matching process to
boost the matching opportunity based on features of the neighbouring
nodes. Generally, the relaxation labelling iteratively makes use of
neighbouring features, domain constraints and heuristic knowledge to

assign the label of the target node.

Overall, according to the results of the experiment performed in [23], the
accuracy rate of ontology mapping ranges from 66 — 97%. However,
based on the observation to achieve this accuracy, a lot of processing in
terms of time and effort to implement the strategy is needed to achieve
this accuracy. Remember that in order to find similarity between different
concepts, GLUE needs to compute a set of similarity functions and

determine which one to use on what constraints. Therefore, to map all
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concepts from O: to O: , the total number of calculations is

roughly 401|02|, where |0i|is the number of concepts in ontologyO: [23].

Moreover, the relaxation labelling technique is sometimes susceptible to
converge to local maxima and the converging condition is still not well
known yet. Finally, GLUE will also be confused by linguistic ambiguity that
prevents it from distinguishing similar concepts like “networking” from

“communication devices”.
(i) MAFRA

MAFRA (Mapping FRAmework) is another ontology mapping methodology
that prescribes “all phases of the ontology mapping process, including
analysis, specification, representation, execution and evolution” [33]. It
uses the declarative representation approach in ontology mapping by
creating a Semantic Bridging Ontology (SBO) that contains all concept
mappings and associated transformation rule information. In this model,
given two ontologies (source and target), it requires domain experts to
examine and analyze the class definitions, properties, relations and
attributes to determine the corresponding mapping and transformation
method. Then, all accumulated information will be encoded into concepts
in SBO. Therefore, SBO serves as an upper ontology to govern the
mapping and transformation between two ontologies. Each concept in
SBO consists of five dimensions: they are Entity, Cardinality, Structural,
Constraint and Transformation. During the process of ontology mapping,

software agent will inspect the values from two given ontologies under
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these dimensions and execute the transformation process when
constraints are satisfied. The internal processes of MAFRA include: Lift
and Normalization, Similarity, Semantic Bridging, Execution and
Postprocessing. The details of each stage will not be discussed here and

please refer to [33, 34] for complete references.

One of the most innovativé aspects of MAFRA is the use of SBO to
process ontology mappings. However, MAFRA heavily relies on domain
experts to predetermine the mapping relations between two ontologies.
This process could be very tedious and error-prone. On the other hand,
when the number and variant of concepts grow in the ontology, it would
require modification in the SBO to correct the mapping specification. By
extension, when the number of concepts in ontology is very large, it
becomes impractical to examine all the classes to find out the mapping

relations.
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CHAPTER 4: BROWSING WITH SEMANTIC SIGNATURE

This chapter first introduces the concept of semantic signature used to
represent a class of concepts and describes how it is constructed with WordNet
word senses. Then, it further develops the idea of using a semantic signature to
facilitate semantic mapping and demonstrate how a semantic signature can be

employed in concept browsing in a distributed collaborative learning network.

In a collaborative learning network, institutions commonly organize their
metadata according to their fixed viewpoints without taking a global perspective
or dispersed users’ interests into account. Coupled with that, as previously
pointed out in Chapter 3, various technical difficulties in semantic mapping
between independent ontologies make it difficult for traditional keyword-based or
label-matching-based retrieval in a distributed learning environment to vyield
satisfactory results that are consistent with users’ perceptions which are often

based on local ontological concepts.

To overcome the problems with different conceptual views represented in
the local ontologies, a unifying global semantic view can be considered as a
potential solution. To assist distributed learning repositories to organize and
manage their metadata in compliance with a global semantic view, it is
worthwhile to explore the use of a semantic-based search of learning object
metadata by category across different repositories to enhance browsing

experience in a collaborative learning environment. In this work, the aim is not to
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invent a new word sense disambiguation algorithm but to extend and combine
existing techniques in semantic mapping, information integration and text
retrieval with word sense disambiguation. The goal is to create a semantic
mapping strategy using WordNet for cross-repository metadata browsing in a
distributed learning network. The result can be used to prove the feasibility and
merit of applying semantic-based indexing on metadata for providing an

interoperable searching platform in repository networks.

4.1 Semantic Signature Definition

A semantic signature in the concept browsing context can be defined as a
logical grouping of representative word senses for a class of metadata. In
essence, it is a semantic representation of an ontological concept with important
WordNet senses with respect to context in which the concept is used. To

formalize the concept of semantic signature, it can be written as follows:

Sig(c) = UDS/‘ = UBSd,. BS, = Max{Fav(d, s),{teT|s e WS(t)}}
J=1 i=l
Where:
Sig(c) = semantic signature for class ¢
DS, = set of document senses for class ¢
BS, = set of best senses BS,; in document d,
T = all keywords in document 4,

Fav = selection function to find best sense

WS(t) = set of WordNet senses for term ¢,

To explain briefly, the semantic signature of a class of metadata is built from a

set of important document senses from all metadata records belonging to a
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particular class. In turn, document senses are generated from a collection of best

WordNet senses for all representative keywords for a particular document.

4.2 Why use Semantic Signature?

Before delving into the details of creating a semantic signature, it is
worthwhile to clarify the rational proposition for use of this semantic rich
representation. The use of a semantic signature is mainly motivated by three
observations. First, metadata for learning resources are generally encoded into
semi-structured XML documents (e.g. IEEE LOM or DS) with a set of predefined
elements. The content of these metadata elements is textual in nature. However,
due to the ambiguity problem of the free text, this makes syntactic-based
keyword search ineffective to retrieve semantically relevant metadata. This
problem cannot be completely resolved even with the vocabulary of the metadata
content that may have been defined with concepts in a local ontology. It is
because the definition for similar concepts in distributed repositories could vary
from ontology to ontology due to conceptual differences. Therefore, it is natural to
expect that the set of vocabulary used will also vary morphologically. Thus, it is
believed to be better to develop a unified semantic representation scheme to
denote a class of metadata independent on a local ontology to facilitate
distributed semantic retrieval. This situation is exemplified with the case in Figure
4.1 that shows that the concept Biology 101 maybe defined with vocabulary
<cellular biology, living thing, animal, plant> in a local ontology while concept
Introductory Biology | maybe defined with vocabulary <cell, organism, fauna, and

flora> in another distant ontology. Both label-matching and keywords-based
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mapping would not be able to tell if Biology 101 is in fact conceptually equivalent
to Introductory Biology I. However, if a WordNet signature were able to wrap both
geographically separated concepts into a semantic representation, it would
enable semantic mapping to understand Biology 101 is indeed conceptually like
Introductory Biology | because the property Living thing is a child of Organism

and Flora is synonymous with Plant, and there are other semantic relationships

connecting
Figure 4.1 Semantic vs. syntactic matching in different ontologies
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these two concepts. In this regard, when looking at theses two concepts at a
semantic level, they are very similar. Hence, semantic representation can be

used as a key to discover ostensibly unrelated concepts in distant repositories.

Second, the use of WordNet to derive the semantics of word term
originate from another important observation that given the topic of a text, there
is a high probability that most of the words are closely related semantically to
other words used to describe the topic. For example, in a metadata document

about organic chemistry, it can be expected that many words related to
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compound, molecule, bonding etc will be found. According to [35, 36], when
mapping a set of closely related words to WordNet, the returned word senses will
be concentrated in an area of high conceptual density with minimum conceptual
distance. Therefore, if this hypothesis is correct, then the use of WordNet sense
to serve as classifying feature may generate good results compared to the use of
keywords because the semantic signatures for similar conceptual topics will be
expected to share many common word senses. Then, a distance function can be
employed to measure the closeness between semantic signatures to distinguish

one class from another.

Third, recent advancements in WordNet make it a popular tool for word
sense disambiguation or for semantic rendering in Natural Language Processing
research community [36-40][41]. In this case, WordNet can be easily utilized as a
mediatory source for providing lexical information to replace keywords
representation in most text retrieval approaches. Therefore, to combine
techniques from text retrieval with semantic mapping, it is plausible to produce a
semantically rich signature to characterize a class of metadata. As a result,
semantic-based categorical searching can be realized by matching signatures
rather than relying on matching vocabularies in potentially different ontologies.
The mediatory approach to provide semantic mapping is believed to be most cost
effective since it is not algorithms dependent like the machine learning approach

and human expert dependent like some ontology mapping methods.

To summarize, the major thrust of using the semantic representation of a

category of metadata is to avoid the drawbacks of keywords-based retrieval as
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mentioned before, and more important to enable the retrieval of semantically
related metadata to enhance the relevance of the result without resorting to

complicated semantic mapping algorithms.

4.3 Building Semantic Signatures with WordNet senses

The generation of a semantic signature for a class of metadata is divided
into three distinct phases. In what follows, the general architecture of the
methodology will be illustrated and then each phase will be discussed in detail

together with illustrating examples.

4.3.1 General Methodology
In devising a methodology for creating a semantic signature for better
browsing of distant metadata semantically, the methodology relies heavily on the

following assumptions:

¢ The aggregates of all semantic information from all metadata records
annotated by a concept are a good semantic representation of that
concept. In fact, metadata is a semantic description of an instance of a

concept in ontological framework.

e It is assumed that semantic information of a class can be approximated

by the set of important word senses from all metadata for the class.

¢ Besides, semantic word senses specific to the context can be found

through WordNet for terms extracted from metadata.
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e Finally yet importantly, it assumes that the local semantic signature for a
class of metadata is similar to signatures for metadata of semantically

equivalent concepts in distant repositories.

The methodology uses a k-Nearest Neighbour (kNN) search algorithm [8] to
classify semantically relevant concepts in distant repositories based on local
semantic signatures. The instances (metadata) of concepts in a local repository
serve as the training dataset. Based on semantic features of local metadata,
semantic signatures for each class of concepts are formed. Assuming remote
repositories create signatures for their concepts in a similar way, to find
semantically relevant concepts in distant repositories, a distance function is
defined and used to measure closeness between query signature and semantic
signatures for concepts in distant repositories. Eventually, the metadata
annotated with the k most similar classes of concepts related to the query

signature will be retrieved from remote repositories.

The core of this methodology depends on a good semantic representation
of underlying concepts in WordNet word senses. To discover a semantic
signature of metadata for concepts, a signature generation module is developed.
As shown in Figure 4.2, the module contains four phases. Phase | is called Word
Extraction. In this phase, representative features will be extracted from the
metadata document. Phase Il is called Document Preprocessing. In this phase,
irrelevant information will be eliminated and all non-noun words will be removed.

Phase Ill is called Document Vector Sensitization. In this phase, all the
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representative keywords will be used as a seed to find the corresponding word

senses from WordNet.

Figure 4.2 Semantic Signature Generation Framework
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Phase IV is called Sense Selection Strategy (S*). In this phase, the best word

sense to represent each word term will be selected among all senses.

4.3.2 Signature Generation in Action

Phase I: Word Extraction

At first, the input of metadata will presumably be in IEEE LOM format.
Otherwise, all metadata will be transformed to comply with the standard using the
XSLT transformer. Then, adapted from the Edmundsonian paradigm [42],
content from <Title> and <Description> elements will be extracted to represent
the whole metadata document (and indirectly, the learning object itself). It is
believed that the content from these two elements carry important weight as a
cue phrase to be able to represent the whole document {43]. This view seems

reasonable in the case of learning object metadata because other elements like
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publication date, ISBN or format do not bear good semantic information to signify
the category of the metadata.

Phase Il: Document Preprocessing

The condensed metadata with only the <Title> and <Description>
elements will be subjected to cleaning in this phase to remove all stopwords,
punctuation information, numerical values and irregular symbols. Next, all non-
noun words will be removed using a part-of-speech tagger except some
commonly used phrasal words which carry a special sequence for specific
intended meaning. For example, the word “artificial” in the phrase “artificial
intelligence” will be preserved to retain the special meaning of the binary phrase
in the branch of “computer science”. The reason that this approach only uses
nouns as the base keywords is according to [44, 45], long phrases are not easily
disambiguated compared to single noun terms and binary noun terms. Through
previous experiments in [45], it has been shown that in some situations the
accuracy of using phrases as distinguishing features for document classification
in fact will not necessarily be higher. On the other hand, it is believed that the use
of noun carries good salient expression to serve as distinguishing feature for

doing text classification [46].
pi WD LV Sensitizali

After all irrelevant information has been eliminated, the physical metadata
document will be projected into the vector space model. The document vector
becomes the logical representation of the physical metadata. Next, most

significant terms across all document vectors are selected using TFIDF weighting
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scheme (Chapter 2) to represent a category of metadata. After that, each word
term with a TFIDF score higher than the threshold is sent to WordNet to retrieve
the corresponding word senses and its definition. The threshold is determined by
a trial and error approach since there is no standard way to determine the best
threshold in the TFIDF approach. It is a well-known disadvantage for this method
[10, 47]. The rule of thumb is to find a threshold that can cleanly separate
relevant and irrelevant data. A single word term could have multiple word senses
retrieved as in Figure 4.3. The word “search” can be mapped to WordNet senses
as <hunting, hunt>, <lookup> and <investigatior>. With such mappings, a single
word term can be denoted by a triple construct in the form (7, S, D) where T is the
original word term, S is the synset of T"and D is the definition of 7. Take the word

term “search’

Figure 4.3 Word term to WordNet sense mapping
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as an example; after the sensitization, it becomes (search — {hunting. hunt} = “the

activity of looking thoroughly in order to find something or someone” (TFIDF 0.623101)) in
triple construct. The triple construct format will be used to substitute the original

word term in the master document vector. However, since a single word term
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could be mapped to different word senses through WordNet, and each word
sense is represented in a synset that may have multiple synonymous terms, the
length of the vector will grow considerably. This problem will be addressed in the

next phase.

Phase IV: Sense Selection Strategy (S*)

This is the last, and the most crucial phase in this method. It is to choose
the best word sense among all retrieved word senses from WordNet to represent
the word term. As stated, a word term can be mapped to multiple WordNet
senses. In such cases, after the sensitization procedure the dimensionality of the
vector will grow significantly. Imagine that a word term “lighf’ can be mapped to
15 WordNet noun senses “visible light”, “light source”, “luminosity”, “lighting”, etc.
The growth ratio is 15 times in this case. With such a high dimension, it will not
only negatively affect the efficiency of the similarity computation but more
seriously many of the senses are actually noise that does not carry actual
meaning of the word in the context of a document. Including irrelevant senses will
distort the semantic representation of the signature and lower the accuracy in a
similarity calculation when finding similar classes of metadata using signature
matching. On the other hand, from the semantic knowledge standpoint, WordNet
senses only provide the lexical information of the word term but not the
contextual information to determine how meanings are clarified in a specified
context [46]. Without that, the semantic signature is just a bigger collection of
keywords and would have little use in identifying the class of metadata based on

a semantic relevance in the signature. Therefore, it is necessary to find a way to
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reduce the dimension and select only the sense that conveys the main idea of

the word from the author's perspective.

To select the best sense to represent a word term, a contextual-based
Senses Selection Strategy called S’ is applied on retrieved word senses. The
strategy is based on the assumption that the local contextual information of a
document serves as a good hint to choose the best sense to represents the
actual meaning of the word term. The $° approach can be summarized in the

following algorithm:

Steps of algorithm:
(Calculate the best senses for class C))

For each metadata document D e C,
Get the list of synsets for each word term T, € D
For each synset Syn, of the word term T,
For each sense term §; € Syn

1 Compute associative frequency af for Si to
other senses S, € Syn,, Syn, ¢ T, and T, # T,

1.1 Find the sense §, with highest score
Max (af)

1.2 If (Max(af) < 1) then go to 2 otherwise
stop and return §,

2 Compute associative frequency af for §, to
k-order parent senses PS, € P(Syn), P(Syn) <
T, and T, = T,

2.1 Find the sense Sp with highest score
Max (af)

2.2 If (Max(af) < 1) then go to 3 otherwise
stop and return Sp
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3 Return the most popular sense § offered
by WordNet

Return the Best Sense to represent word term T,

Aggregate all sense from all important word terms to
represent signature of the document D

The algorithm works in the following way. For each word sense of a word
term, it first computes the associative frequency (af) of each sense term in a
synset to other sense terms in other synsets of other word terms in the same
document. As shown in Figure 4.4, a document vector D4 consists of three words
say “Windows”, “OS” and “Computer”. After retrieving all word senses from
WordNet for each word, each word may contain one or more than one synsets.
In this example, the word term “Windows” has three senses represented by three
synsets. They are “<windowpane, windows", “<operating system, computer
screen>" and “<framework, opening>". To find the best sense for word term

“Windows” using strategy 1, it computes the associative frequency of each sense

Figure 4.4 Associative frequency calculation between word senses
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in all synsets for “Windows” with other word terms’ synsets. Hence, the sense
“operating system’” for word term “Windows” has a high associative frequency
with senses like “computer device” for word term “computer’ and with sense
“operating system” for word term “OS’, compared to senses like “framework’ or
“opening’ to other word terms in the document vector with low «f. Associative
frequency is the metric used to measure the occurrence frequency of a particular
word sense of a word term in the document. In this case, the sense “operating
system” will be marked as most frequently occurring sense for the word term
“windows” in strategy 1. From this, the most frequently occurring word sense will

be used to substitute as semantic representation of the word term.

Next, if the word sense of a word term cannot be discriminated using
strategy 1, the algorithm generalizes the word term to the k-order parent senses.

In this approach, the value of k is 1. In other words, it will generalize to the

Figure 4.5 Word sense generalization to immediate (1-k) parent
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Solar system Synset 1: ((star)system, star scheme)

immediate parent sense. Referring to Figure 4.5, strategy 2 will use the

immediate parent sense to compute the associative frequency against other
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senses from other word terms in the document vector. As such, in this example
the word term “Sur” will be rolled up to its immediate parent through hypernym
(is-a) relation in WordNet hierarchy. Then, the parent's synset will be used to
calculate the associative frequency with respect to other word senses from other
word terms. The reason that it uses immediate parent senses (k=1) to compute
the associative frequency is that according to [23, 48], the most specific parent in
a hierarchical terminology has a higher distinctive power to classify the topic.
Essentially, following the intuition that if a word sense is generalized to higher
order parent sense than k=1, the generalized sense may be too general and
becomes incoherent to local context. Then, it would not be a good feature to be

used for the classification purpose.

Finally, as arranged by WordNet, the word senses retrieved from WordNet
for a particular word are a partial order set ranked by popularity in English usage.
If the previous two strategies can not find the best sense to represent the word
term, then the most popular sense offered by WordNet will be adopted in strategy

3.

At last, the best word sense will be selected based on the preferential
order of strategy 1 > strategy 2 > strategy 3. In other words, the sense selected
by strategy 1 will be used as the best sense over the other two strategies. The
principle behind this preference ranking is derived from observations and the
hypothesis that the local context is the most specific and relevant to provide
contextual meaning of a sense for word term. Therefore, a word sense for a

particular term can most likely be disambiguated by other local senses (strategy
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1). If it could not be resolved by this strategy, then it will compare the immediate
parent sense to the other word senses to check if the parent sense is the most
frequently occurring sense for the underlying word term. Eventually, it resorts to
the most popular sense to represent the semantic meaning for a word term when

the two strategies above could not resolve the ambiguity of the word term.

Following the above procedures, a set of senses will become a semantic
signature of a document. In order to generate the final semantic signature for a
class of documents referring to a particular concept, the TFIDF scheme will be
applied again to each word sense in all document signatures. Based on the
score, the most relevant senses to characterize the class of metadata will be

aggregated to form the final signature for the class as in Figure 4.6.

Figure 4.6 Aggregation of document signature to generate class signature
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4.4 Federated Concept Browsing in a Repository Network

After the semantic signatures were generated, they can be used to index
the actual class of metadata for fast distributed browsing. A common technique in
database indexing, the inverted file system, can be applied here. As shown in

Figure 4.7, a collection of semantic signatures as unique identifiers representing
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concepts in a local ontology can refer to a set of metadata documents. Unlike

normal inverted indexing, for the sake of simplicity, in the current model each

Figure 4.7 Inverted index by Semantic Signature
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signature can only represent one class of metadata even if there may be shared
elements among the signatures. In order to realize the semantic indexing of
metadata of learning resources, a toolkit called Signature Generation Indexer
(SGI) is developed to generate semantic signatures for metadata of learning
resources. The generated semantic signatures will be used for metadata
indexing in order to facilitate searching and retrieval of metadata. Focusing on
the efficiency, the design of SGI is to allow users to produce semantic signatures
for classes of learning resources metadata easily without tedious human

interaction, or complicated implementation (see Appendix A).

4.41 Browsing distant metadata with semantic signature

In the end, the ultimate goal is to achieve semantic search on E-learning
topics in a federated network. In a collaborative learning environment, users
expect to be able to access all the learning resources within the learning network.

To fulfil this anticipation, it is important to assume that all participant repositories
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in the collaborative network must employ the same strategy to index learning
resources metadata with WordNet semantic signatures. The overall operation of
semantic-based browsing of learning resources metadata is shown with Figure

4.8.

Figure 4.8 Integrated process of semantic-based browsing of metadata
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When users initiate a query by selecting the view of a specific topic which
is similar to a class of metadata from a local user interface, the corresponding
semantic signature representing the topic is retrieved from the local database.
Then, it is sent across the network to participating learning repositories. The
query, in the form of a semantic signature, is entered into the Similarity
Calculator in distant repositories. The Similarity Calculator is used to compute the
similarity to topic signatures in each of the learning repositories. The cosine
similarity [7] is adopted as a distance function, so that the more matched
elements in signature, the higher the score is. In calculating the similarity score,

different weights are assigned to senses from <Title> and <Description> in which
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the match in title sense makes a higher contribution to the overall score than the

ones from the description tag.

After all, in order to ensure the global accuracy of the result, results from
participating remote repositories are merged and sorted in descending order
based on the cosine similarity score. Then, the top k (k=5) topic of metadata are

offered as an answer to local query.
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CHAPTER 5: EXPERIMENT AND EVALUATION

The efficacy of the proposed semantic mapping strategy is tested and
evaluated in two different settings. The primary goal of the evaluation is to
validate the use of WordNet to provide semantic knowledge to represent
categorical data for semantic browsing in a federated network. Secondarily, it
evaluates the usefulness of using immediate parent concept as a substitute for
word terms in selecting the best sense. The design of two experimental settings

is to fulfil these obijectives.

5.1 Evaluation settings

First, in order to test the hypothesis of using semantic signatures to enable
semantic browsing and improve relevance, simulated distributed concept
retrieval must be run to measure the relevance rate compared to the traditional
keyword-based method. To replicate the distributed repositories in a collaborative
E-learning network, three independent databases are set up. They are referred to
as “local’, “remote1” and “remote2’ where the local of course denotes a local
data source and both remote1 and remoteZ2 denote distant data sources. A single
master set of 2235 metadata in 8 different categories is distributed evenly in
number and randomly in nature into the three simulated databases. The gathered
learning resources metadata have been transformed to conform to IEEE LOM
format. The dataset characteristics will be discussed in more detail in Section

5.3. After the distribution, the Jocal database contains metadata that represent
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the set of training data for the classifier. During the training phase, a kNN
classifier will use the metadata records from the local database to learn the
features that identify the class of metadata. It starts by extracting important word
terms from each class of metadata and projecting them into a vector space
model. Next, after running through the signature generation module, a semantic
signature for each class of metadata will be produced and used to index the

class of metadata in the database.

The datasets in both remote1 and remote2 will be controlled to model the
situation of potentially different ontological classification in a distributed
environment. To simulate the effect of varied labelling of classes in different
ontologies, the original 8 categories of metadata will be expanded to 14
categories in remote1. The reason to have 14 categories is to allow some
mislabelling in some classes but not all, due to the limited dataset. In an ideal
situation, it would be better to have two large datasets that are annotated with
two different ontologies with the known mapping. In the case of remote1, the 6
derived categories are labelled with different class names from their respective
sources, and metadata are reallocated to these derived categories from their
original categories. Each newly derived category contains metadata belonging to
the same class. To illustrate, part of the metadata from the category “computing
science” will be distributed to derived categories “technology” and “engineering’
respectively in remotei1. Thereby, the metadata for the concept “computing
science” is now grouped into “computing science”, “technology’ and

“engineering’. Essentially, this simulates the situation that a class “computing
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science” could be categorized differently into classes like “technology’ and
“engineering’ in another repository. The same distribution principle applies on the
remote2 database that includes 13 categories with 7 derived categories. Figure
5.1 shows the metadata distribution in 3 separate databases diagrammatically.

Derived classes are shaded.

Figure 5.1 Metadata distribution in simulated distributed data sources
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Similar to the local database, each class of metadata in remote?1 and
remote2 will be mapped to a semantic signature in WordNet senses and stored
in a database as an index. To test the semantic-based search, a semantic
signature representing a local concept will be sent to query the remote
databases. Semantic similarity will be compared between query signature and
distant signature based on the similarity function. Finally, the result of the k most
similar concept signatures from remote databases will be studied based on the

relevance metric.
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Second, it is relatively trivial to set up the experiment to test the
effectiveness of using “immediate-parent’ in the hypernym relationship to replace
word sense in generating a semantic signature. By modifying the sense
substitution process, a semantic signature can be generated without the sense
generalization effect. The metric that we used to test the value of “immediate-
parent’ is different from the previous one. Instead of comparing the derived
relevance, here we compare the raw similarity score to evaluate the effect of

“immediate-parent’ in finding the matched signature.

5.2 Assumptions

The experiment is carried out based on a limited set of assumptions. First,
it is built on the belief that in a federated E-learning environment, certain
cooperative agreements exist to govern how to provide an interoperable platform
for participants to share data. In our case, this implies the agreement to index
classes of metadata with WordNet semantic signatures for federated concept
browsing. Second, it assumes that a large number of conceptually related
metadata reside in separate repositories despite the fact that they may be
labelled differently. These assumptions appear to be pragmatic in the context of
a collaborative research network, at least in the scope of LORNET?® for which an
interoperable platform for cross-repository information integration is crucial for its

Success.

® http://www.lornet.org/
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5.3 Dataset Description

Since there is no publicly available dataset on learning resources
metadata that is consistent and large enough for our purpose, to conduct the
experiment metadata are acquired through a number of different sources. Table
5.1 shows the categories of metadata acquired and their respective sources. In
total, 8 different categories of 2235 metadata are acquired. They are Accounting,
Biology, Computing Science, Economics, Education, Geography, Mathematics
and Psychology. The choice of the category is arbitrary and is solely dependent
on the abundance. The dataset is partitioned into training and testing groups. As

mentioned, the local database stores the training dataset while remote 7 and

Table 5.1 Source and Category of Metadata

‘Number of
s e e o | metadata - -
Accounting Business Source Premier Publications 382
Biology Biological and Agricultural Index, 315

BioMed Central Online Journals
Computing Science | Citeseer 320
American Economic Association’s

Economics electronic database 353

Education Educational Resource Information 307
Center

Geography Geobase 237

Mathematics arXiv.org, MathSciNet 157

Psychology PsycINFO, ERIC 164

remote2 store the testing dataset. The class labels for all metadata are known in
advance. Metadata are distributed randomly to training and testing groups using
the Microsoft Excel random generator. The training group contains 723 metadata

records (local) while the testing group contains 1512 records (remote? and

remote2).
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5.4 Metric

In order to gauge the effectiveness of the system, three standard metrics
in information retrieval are used in the evaluation of the system performance:
they are Recall, Precision and F-measure [7]. Recall (R) is defined as the number of
relevant documents retrieved over the total number of relevant documents found
in the collection. The Recall can measure the coverage of the system and its
identification capability. Precision (P) is defined as the number of relevant
documents retrieved over the total number of documents retrieved. The Precision
is to measure the reliability of the returned result. Mathematically, they can be

written as follows:

P | {relevant} N {retrieved} |

| {retrieved} |

_|{relevant} {retrieved}|

R
| {relevant} |

Both precision and recall have value lying between 0 and 1. In general, the closer
these values are to 1, the better the system is. On the other hand, the F-measure
is a weighted harmonic mean® of P and R which combines both the precision and

recall into a single formula:

_(B*+2.0)xPxR
~ (BxP)+R

® http://en.wikipedia.org/wiki/Harmonic_mean - Harmonic mean is defined as H = n/ (1/a; + 1/

a)+..+1/a,) where a,..a, are positive real number. The harmonic mean provides the correct notion
of average.
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where g is the relative importance given to recall over precision. In this case,
both precision and recall are of equal importance, and therefore the factor g is 1.

The F-measure function assumes values in the interval [0, 1] [7]. Similar to
precision and recall, a high value would indicate an effective system when both

precision and recall are high.

To measure the improvement of using sense generalization in the sense
selection strategy, a raw similarity score will be used. The higher the score, the

better the chance that the class will be classified correctly.

5.5 Limitations

A set of issues regarding the usability and performance of the
methodology is worth mentioning here. First, the major issue would be the size of
the training and testing dataset. The small data corpus does not satisfy the need
of the learning algorithm to correctly form the base signature of each class and
may influence the predictive ability of the base signature as the matching
template. On the other hand, when more and more metadata are added to each
class, an incremental update on the base signature of each class is needed to
reflect new elements found in the recent metadata. However, as this is not within

the scope of this research, it is not supported by the current implementation.

5.6 Results
Results from the semantic-based concept browsing are compared with the
traditional keywords-based browsing. The keywords-based browsing is to search

for relevant concepts based on the match of user supplied keywords with
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keywords extracted from <Title> and <Description> elements. First,
representative keywords from elements <Title> and <Description> are extracted
from all metadata records for each concept. Then, the most representative
keywords to characterize the concept are selected based on the TFIDF score.
Next, the selected keywords are used to index the respective concepts. When
finding the relevant concepts, the keywords provided by the users are used to
calculate the cosine similarity score against the index keywords. The top 5 most
relevant results will be returned as the answer. These results will be compared

against the results from semantic-based browsing.

The precision and recall are calculated based on the top 5 results returned
from the two remote repositories. In Table 5.2, the rows represent the concept
categories while the columns list the results of precision, recall and F-measure
for both semantic-based (columns ‘S’) and keywords-based (columns ‘K’)
browsing. The average scores of semantic-based approach on precision, recall
and F-measure are all 0.86. The average scores of keywords-based approach on
precision, recall and F-measure are 0.54, 0.65 and 0.58 respectively. This shows
that using a semantic signature can improve retrieval relevance in terms of recall
and precision on E-learning topics. In most categories, the semantic based

retrieval out performs the keywords-based retrieval.
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Table 5.2 Comparison on precision, recall and F-measure on concept retrieval

Precision Recall F-measure

Category

Acconnting 1.00 0.67 1.00 0.75 1.00 "1
Biologv 0.75 0.75 0.75 073 0.75 073
Compiting Sct 1.00 0.50 1.00 (50 1.00 0.50
Econonnc 1.00 0.75 1.00 0.75 1.00 0.86
Edhcation 1.00 0.50 1.00 07s 1.00 045
Geograplny 0.75 0.30 0.75 050 0.75 0 50
Mathematics 0.67 0.33 0.67 0.30 0.67 040
Psvchology 0.67 0.33 0.67 0.67 0.67 044
Average 0.86 0.54 0.86 0.65 0.86 0.58

S = Signature-based retrieval
K = Keywords-based retrieval

Table 5.3 Comparison of similarity score using 7-k parent generalization on remote1

Cosine score with Cosine score wio

Category sense sense Percentage

generalization generalization | change (%)
Acconmimg (132 0.5037 0498~ 1
Biology (92) 0.3448 0.3516 -1
Compuring Science (102; 0.3722 0.3139 10
Econoniec 11474 0.0086 0.5957 2
Educarion (39; 0534 0.283% 38
Geograpln ¢SS 0.3273 03625 43
Mathemeiiics 38 0.6436 0.3452 36
Psveliology 163 04513 03219 41

Table 5.3 shows the results of the experiment evaluating the contribution of the
process of sense generalization. In Table 5.3, the rows represent the results for

each category while the columns represent the cosine score with sense
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generalization and the cosine score without sense generalization, as well as the
percentage change between these two scores. The cosine score with sense
generalization ranges from 0.3448 to 0.6436 while the cosine score without
sense generalization ranges from 0.2835 to 0.5957. The percentage change
ranges from 1% to 88%. From Table 5.3, it has been observed that the margin of
improvement in cosine score is larger in categories with less number of metadata
records. On the other hand, there is negligible improvement in the cosine
similarity score in the categories of “Accounting’ and “Economics” when using
hypernym generalization compared to cases without using generalization. The
cosine similarity score is in fact decreased in the category of “Biology’ when

using hypernym generalization compared to cases without using generalization.

5.7 Interpretation

As opposed to the classical or traditional keywords-based representation,
semantic-based indexing with WordNet senses can include more lexicon
information than a simple syntactic approach. This implies more features will be
added to the class signature representation. Since more features are added, this
may also mean that more noise is included as well. Intuitively, the increased
relevance of retrieval can be attributed to the expansion of features in class
representation. However, different from what might be expected the precision is
not decreased. It is suspected that due to the relatively small size of the dataset
and 1-k hypernym generalization, the senses included in the signature are ‘good’
in terms of classification. In the category of “Biology’, there is no difference in

terms of retrieval relevance using keywords-based or semantic-based
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representation. We believe that for some classes of metadata like “Biology’,
which are characterised by a set of specific keywords, the use of semantic
signatures does not add extra useful information into the representation model to
help in classifying metadata. On the other hand, using 1-k hypernym
generalization improves the cosine similarity score in some of the categories
while there is no significant increase on categories of “Accounting’ and
“Economics”. In the category of “Biology’, the cosine similarity score is actually
decreased when using the hypernym generalization. This may be due to the
highly specialized words used in the domain of “Biology”. Thus, in this case using
sense generalization may in fact reduce the matching possibility in similarity
calculations. With this result, further experimentation and analysis are needed to

fully understand the impact of sense generalization in classification of metadata.

Therefore, combined with a good contextually based sense selection
strategy, WordNet as a mediator can provide a source for ambiguity resolution
and semantic information for the process of semantic browsing. Coupled with
that, the selection of a kNN algorithm as the classifier also contributes to the

better performance of the system.

The kNN classifier is an instance-based classifier. The performance of
instance-based classifiers is more dependent on sufficiency of a training set than
it is the case with other machine learning classification algorithms. Thus, it is a
disadvantage for kNN to have a small dataset for training and testing. A smaller
training set implies that more terms or term combinations important for content

identification may be missing from the training sample documents. This will
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negatively affect the performance of a classifier. Nevertheless, an ontology (e.g.
WordNet) guided approach seems to somewhat reduce the negative influence of
this problem. The replacement of child concepts with the parent concept through
hypernym relationships appears to be able to discover an optimum concept set
without adversely affecting performance. This is particularly evident in the
classes with a small set of data. In that situation, signature-based retrieval is
superior to the keywords-based method to a larger margin compared to the
classes with more data. Therefore, by using hypernym generalization an
important term that resides low in concept hierarchy may be mapped to a parent
concept and included in the class signature for comparison, even if this term is

not included in the training set.
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CHAPTER 6: CONCLUSION AND FUTURE DIRECTIONS

Semantic-based concept mapping is a critical step in many data
management systems particularly in a distributed environment. For an E-learning
repository network to be effective, it is important to provide an interoperable
platform for learners to access learning objects, and for instructors to discover

semantically relevant learning objects for reuse.

Due to the diversity of ontology in a distributed environment, it is difficult
to use keywords-based browsing to discover semantic relevant information. To
enable semantic browsing, in most situations a complete semantic mapping
schema is needed to enable semantic retrieval. To provide such semantic
mapping manually is labour intensive, time consuming and error prone. Hence, it
is important to develop techniques to automate the mapping process. Given the
rapid advancement in WordNet, it is interesting to see if it can be used as a
mediator to provide enough semantics for categorical classification in the area of
learning object metadata. In essence, it is useful for cross ontology
communications by providing a semantic representation of ontological concepts

with coherent WordNet senses to create correspondences between concepts.

This work presents important reflections on the exploratory use of
WordNet to provide semantic mapping between remote learning repositories in

order to enable semantic-based concept browsing.
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6.1 Conclusion

This research offers two key contributions. First, it gives a new light weight
semantic (ontology) mapping approach to enable cross platform concept
browsing in a federated network. Many current practices in semantic mapping
require intensive user involvement to provide mapping information in the case of
a complex ontology, or resort to a complicated heuristic or rule-based machine
learning approaches that could be dataset dependent and require user input as
well. This work shows an effective automatic mapping technique that can allow
federated concept browsing with semantic signatures. Evident by the
experimental results, it establishes the merit of using WordNet to provide
semantic knowledge for metadata classification in any domain. The merits
include the provision of the semantic representation of categorical data and

increased semantic relevance in categorical browsing.

Secondly, by using word sense generalization during the sense selection
process, it was shown that it successfully reduces the dimensions in the
semantic signature. However, the contribution of sense generalization to
increasing the opportunity to find similar signatures by increasing the matching
features is not conclusively supported by the experimental results. This creates
an incentive to explore the use of other sense generalization techniques to

improve the signature matching process.

Although this thesis primarily focuses on the discussion of the E-learning

repository network, we believe that the validity of the methodology described in
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this thesis can be easily extended to other collaborative networks with minimum

modification.

6.2 Future Directions

As demonstrated through the evaluation with a constrained dataset, the
use of WordNet to provide semantic referencing between different E-learning
repositories can show moderate improvement to enhance the relevance of giobal
concept browsing. However, in order to validate that the same methodology can
be applied on other metadata or semi-structured documents, more experimental
evidence needs to be collected on different datasets. Regarding the evaluation, it
is believed that a larger set of testing corpus with diverse classes of metadata
needs to be acquired. This can not only improve the effectiveness of the kNN
algorithm but also further establish the validity of the methodology. Taking this
mediatory approach to a broader perspective, it is perhaps useful to include
multiple thesauruses, which could consider domain knowledge, for rendering

semantics to word term instead of relying only on WordNet.

In terms of fine-tuning the suggested method, there are several areas that
could be improved. First, more vigorous natural language processing techniques
can be utilized to extract meaningful features for sense representation. For
example, the inclusion of other part-of-speech word terms (e.g. verbs and noun
phrase) and noun phrases may provide sources for identifying key senses for
semantic representation. Furthermore, the use of a local domain ontology
combined with heuristic-based constraints may also improve the selection of

target word terms for semantic characterization. On the other hand, using
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semantic distance in WordNet to expand the selection of other word senses as a
substitute for the original sense should be examined to test if it can produce a
better generalized word sense representation without lowering the precision in
the classification. In the classification, other algorithms like Bayesian-based
approach or ID3 can be adopted to replace the kNN. Finally, there are some

performance improvements that can be achieved by modifying the program.
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APPENDIX A

The Signature Generator Indexer (SGI) is implemented with the C#

programming language. The current version is a desktop application but it can be

easily extended to a web service. The goal of SGI is to integrate signature

generation, document indexing and browsing capability. The signature indexes

are stored in an inverted index database (e.g. MS Access). The similarity

calculator is a separate module implemented in C# as well and connected to the

index database.
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Document Sensitization Module
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Semantic Signature Generation Module
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Concept Category Indexing Module
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LO Concept Browsing Module
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