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Abstract

Placental pathologists diagnose disease based on examining the placenta. It is hypothesized

that poor blood vessel coverage may be detrimental to fetal development and may lead to low

birth weight. In this project, geometrical measures of the placental structure are computed

based on the total area of vessels and the vessel coverage on an important part of the placenta

known as the chorionic plate. Vessel coverage is measured by the average of the distance

from every point on the chorionic plate of the placenta to the closest vessel. The distance

is computed using the fast sweeping method for the eikonal equation. These measures are

studied for correlation with birth weight. Additionally, various image processing techniques

are investigated for use on digital placental images.

Keywords:

Medical images, placental pathology, eikonal equation, distance function, scientific comput-

ing
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Chapter 1

Introduction

1.1 General Background

Medical research has shown that problems during the development of human fetuses may

be associated with diseases in later life, including heart disease, stroke, diabetes, and hy-

pertension [Bar97]. Researchers are trying to understand more about this connection by

studying the placenta.

Recently, placental pathologists have examined more detailed geometric information

on the placenta with the goal of relating this information to risk factors for later health.

Specifically, branching of the blood vessels on the placenta may be an indication of increased

risk factor for diseases in the fetus related to growth of blood vessels (multiple sclerosis) or

neurons (schizophrenia) [RP07].

1.1.1 Biological Background

The placenta plays an important role in fetal development. It is the medium that transports

oxygen and nutrients between the mother and the fetus.

A normal placenta is rounded in shape, which is the result of growing uniformly outward

from the umbilical cord. However, the placenta develops differently into an irregular shape

for various reasons in roughly one third of all pregnancies [YSS+08]. This irregularity is

often associated with lower birth weight of the placenta and this could potentially be a

factor in diagnosing health risks for the future [YSS+08].

Macroscopically, when viewed from the side as in Figure 1.1, the placenta consists of

1
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chorionic plate
umbilical cord

basal plate

blood vessels

villus

1

Figure 1.1: Cross-sectional view of a placenta.

two surfaces: the top surface which has the umbilical cord attached is called the chorionic

plate, and the bottom surface, known as the basal plate [GNS+08].

The space between the chorionic and basal plates is filled with the maternal blood. The

blood from the fetus circulates through the umbilical cord and travels through progressively

finer tree structure of blood vessels in the placenta. When the fetal blood reaches the villi,

nutrients are exchanged with the maternal blood.

1.1.2 Computer Assisted Pathology

Pathology is the macro- and microscopic study of cells and tissues in order to determine

the cause and etiology of a disease or outcome. Placental pathology is the study of the

pathology of placenta and in particular how it relates to the fetus.

The process of interpreting the size, shape and consistency of the placenta and its func-

tional parts is often restricted to well trained pathologists [SV90]. This process is time

consuming and may be rather subjective in the sense discussed in Section 5.1. We ex-

plore the use of digital image processing techniques to assist pathologists in interpreting,

denoising, and analyzing geometric properties of the placenta.

Computer assisted diagnosis is the “application of computer programs designed to assist

the physician in solving a diagnostic problem” [HNF08]. For example, [ACI98] presented

how computers can help physicians to diagnose of pediatric rheumatic diseases.

We would like to help pathologists make diagnoses by providing computer output as
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a tool to provide insight. We call this “computer assisted pathology”. Ideally, computer

assisted pathology would use digital images of placentas to improve detection and inter-

pretation of blood vessel coverage, segmentation of vessels, and eventually even automatic

suggestion of diagnoses for consideration by a trained pathologist. In this document, one

particular aspect of computer assisted pathology is considered: the determination of pla-

cental blood vessel coverage.

1.2 Introduction to the Problem

The birth weight and age of the placenta is related to the birth weight of the fetus [SMT+05].

Beyond these factors, we investigate how information about the shape of the placenta re-

lates to the birth weight or other fetal properties. The geometry of the placenta, size and

vasculature (blood vessel) coverage may be useful indicators.

The main blood vessel branches are connected to the umbilical cord, see Figure 1.1. As

the fetus and the placenta develop, these blood vessels grow and branch off into smaller

vessels. The environment in which this happens can influence growth so that some blood

vessels do not form or form incorrectly. In this case, the blood vessels may fail to provide

adequate coverage of the placenta.

The distribution of blood vessels influences the work that must be done by the heart of

the fetus in pumping blood through the placenta. The net nutrition to the fetus is equal to

the amount transferred across the placenta minus the amount of energy expended by the

fetus to pump the blood to and from the placenta. In order to help understand the fetal

environment we study the structure of the blood vessels.

The placenta is a three dimensional object, and one could study the geometric properties

such as the vasculature in 3D. For practical considerations and because the important su-

perficial vessels appear earlier in the development, we consider two 2D problems. The first

is looking at the chorionic plate only, and the second is to study cross sectional histology

slides of the placenta. These two problems correspond to the available digital images.

1.2.1 Problem on the Chorionic Plate

While Figure 1.1 showed a side view, if we look down at a placenta from above, we see

the chorionic plate, for example see Figure 1.2 where the blood vessels appear as a faint

tree structure of connected curves of various thickness. Figure 1.3 is a schematic version of
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Figure 1.2 where the blood vessels have been manually traced by a trained pathologist. The

question addressed in this project is the blood vessel coverage on the chorionic plate. This

problem will be developed further in the remainder of this document.

Figure 1.2: Top view of a placenta. The umbilical cord has been detached and placed next
to the placenta. A penny and a ruler appear for scale.

Figure 1.3: Schematic top view of a placenta with blood vessels manually traced.

1.2.2 Problem on Histology Slide

A histology slide is the result of slicing the placenta in Figure 1.1 from top to bottom, and

then photographing the cross sectional image under a light microscope. The fetal blood
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vessels and the connective tissue surrounding them are captured as blobs. The tissue is

dyed so that different types of structures have different colors. The connective tissue forms

light pink blobs while fetal blood vessels appear as smaller red blobs within pink ones. Cell

nuclei appear as small blue dots (see Figure 1.4). Pathologists are interested in the relative

sizes, quantities, and irregularities of the blobs and amount of white space in these images.

(a) 2-D Cross section placenta slide (b) Individual villous

Figure 1.4: Placenta histology slides.

This project focuses on explaining and solving the problem of computing the blood

vessel coverage of the chorionic plate. The problem about the analysis of histology slides is

discussed in the MITACS Summer School in Industrial Mathematics report [ABD+08].



Chapter 2

Coverage of the Chorionic Plate

2.1 Problem Setting

Figure 2.1 is an schematic illustration of a chorionic plate of the placenta. We would like to

have a measure for the vessel branching and coverage properties on it. This measure should

tell us how well or poor the vessels coverage is, which can then perhaps be related to the

overall access to nutrition for the fetus.

Vessels

Placenta

Figure 2.1: Sample vessels on a chorionic plate.

Two basic measurements of blood vessels are used:

1. Total vessel length.

2. Average distance from any point on the chorionic plate to the nearest blood vessel.

6
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b

good coverage

b

poor coverage

Figure 2.2: Limitation of total vessel length measure. These two images have the same total
vessel length but the left one has better coverage.

The first approach is plausible, however from Figure 2.2 we can see a potential difficulty:

only measuring the total length of the blood vessel does not capture differences in position for

the same vessel length. Thus this project focuses mostly on the second approach. However

the total length of the vessels will be used in scaling our later measurements as described

in Section 4.4.

2.2 Distance to Blood Vessels

The idea is to calculate the distance u(~x) from any point ~x inside the placenta to the nearest

vessel, take an average inside the placenta, then normalize to image scale. For example, we

can use the average distance divided by the largest distance from the edge of the placenta.

This will give us a number between 0 and 1. A smaller number indicates better blood vessel

coverage.

2.2.1 The Eikonal Equation

In order to compute the distance, one approach is to study the eikonal equation with appro-

priate boundary conditions. The eikonal equation is a first-order Hamilton-Jacobi equation

[Eva98] which can be solved numerically by various techniques. Several of these techniques

will be discussed in Chapter 3.

The eikonal equation with speed 1 is

|∇u| = 1, (2.1)
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b

b

~x

u(~x)
{

Vessels

Placenta

Figure 2.3: Distance to the nearest vessel.

where u : Ω ∈ R2 → R, and |∇u| is the length of the gradient,
√

u2
x + u2

y.

Intuitively u represents distance because the solution to (2.1) has unit change in u for

unit change in any spatial direction. The boundary conditions for the eikonal equation can

used to specify values for u on a set of points Γ. The set Γ need not be the boundary of the

domain Ω and in our case it will be in the interior of the domain.

In one dimension, the distance to a fixed point x0 is |x−x0|, and it is clear from Figure 2.4

that because the slope of the function is ±1, this function is indeed a solution of the eikonal

equation. Note from the figure that the solution of the eikonal equation is not smooth and in

general may have discontinuous first derivatives. Here the boundary condition is u(x0) = 0.

b

x0

x

u(x)

Figure 2.4: Distance function in 1D.
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In two dimensions, where

∇u =

[
ux

uy

]
,

the eikonal equation is √
u2

x + u2
y = 1. (2.2)

This will be the form we make use of in this document.



Chapter 3

Numerical Implementation

Our goal is to numerically solve the eikonal equation |∇u| = 1, with u = 0 on the blood

vessels where the solution u represents distance.

Some techniques include the algebraic Newton method [HT05], fast marching method

[Set99], upwinding finite difference schemes with artificial time, iterative schemes such as

Jacobi and Gauss-Seidel, and the fast sweeping method [TCOZ03]. This chapter explains

in detail the artificial time, Jacobi, Gauss-Seidel, and the fast sweeping methods.

[GK06] compared the fast sweeping and fast marching methods, and concluded that the

fast marching method is faster for problems with complicated obstacle geometry. However,

the fast sweeping method is considerably simpler to implement. The boundary of the chori-

onic plate can be thought as an obstacle, and in most of the images, it is reasonably close to

convex. The complexity of the image is in the vessel structure, and this poses no difficulty

for fast sweeping method. Therefore, in this study, it is expected that fast sweeping will

perform reasonably well and fast marching is not implemented.

3.1 Numerical Schemes

Because we are working with a digital image consisting of a grid of pixels, it makes sense

to use a cartesian grid. We discretize the spatial domain with grid spacing ∆x in the x-

direction and ∆y in y-direction, and for the time-dependent problem in Section 3.1.1, we

discretize the temporal domain with grid spacing ∆t.

Let xi,j denote the grid points of the computational domain, and Ui,j denote the numer-

ical solution at xi,j . The digital image is I × J pixels so i = 1 . . . I and j = 1 . . . J .

10
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3.1.1 Artificial time

We explain this method first because it is easier to implement, later we explain some faster

methods. Begin by introducing a time dependence,

ut = 1−
√

u2
x + u2

y,

which at steady state will agree with (2.2). This can be solved numerically in time by using

the Forward Euler method. Note that because information in the solution travels along

characteristic curves [Eva98], it is advantageous to use upwinding for the spatial derivatives.

To obtain this, we use the max function and first-order differences to approximate ux and

uy:

|Ux| = max
(
−Ui+1,j − Ui,j

∆x
,−Ui−1,j − Ui,j

∆x
, 0
)

,

|Uy| = max
(
−Ui,j+1 − Ui,j

∆y
,−Ui,j−1 − Ui,j

∆y
, 0
)

,

where |Ux| and |Uy| are discrete approximations to the derivatives of u at xi,j . Then the

Forward Euler method gives

Un+1
i,j = Un

i,j + ∆t

(
1−

√
|Ux|2 + |Uy|2

)
.

We used ∆t = 1
2∆x. Initially, we set U0

i,j to the initial conditions as discussed in Section 3.3.

After each time-step, we set Ui,j = 0 on the vessels Γ and Ui,j = 200 on the placenta

boundary. Results are shown in Chapter 4.

3.1.2 Iterative methods

Here, we implement several iterative methods by using the Jacobi and the Gauss-Seidel

iterations [BF00]. These approaches solve the eikonal equation (2.2) directly without intro-

ducing artificial time.

We begin by describing a discretization of equation (2.2) by following the approach of

[Zha05]. For each i ∈ {2, . . . , I − 1} and j ∈ {2, . . . , J − 1}, we solve the coupled system of

nonlinear equations[
(Ui,j −min(Ui−1,j , Ui+1,j))

+]2 +
[
(Ui,j −min(Ui,j−1, Ui,j+1))+

]2
= (∆x)2 = 1, (3.1)
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where

(x)+ =

x, x > 0

0, x ≤ 0.

At the boundaries of the computational domain, use[
(U1,j − U2,j)

+]2 +
[
(U1,j −min(U1,j−1, U1,j+1))+

]2
= 1, at left boundary i = 1,[

(UI,j − UI−1,j)
+]2 +

[
(UI,j −min(UI,j−1, UI,j+1))+

]2
= 1, at right boundary i = I,[

(Ui,1 −min(Ui−1,1, Ui+1,1))+
]2

+
[
(Ui,1 − Ui,2)+

]2
= 1, at bottom boundary j = 1,[

(Ui,J −min(Ui−1,J , Ui+1,J))+
]2

+
[
(Ui,J − Ui,J−1)+

]2
= 1, at top boundary j = J.

Jacobi iteration

To solve these coupled nonlinear equations, we consider the iterative Jacobi scheme. Initially,

Ui,j = 0 on the boundary Γ consisting of the blood vessels, and Ui,j ≥ 0 elsewhere. The

basic idea of Jacobi iteration is that given a current approximation to the solution Uold
i,j for

all i, j, we solve for a improved approximation Unew
i,j . Then we set Uold

i,j = Unew
i,j for all i, j

and repeat until |Uold
i,j − Unew

i,j | is smaller than a specified tolerance.

For each iteration, we know Uold
i,j for all i, j over all points xi,j , and we solve[(

Unew
i,j −min(Uold

i−1,j , U
old
i+1,j)

)+
]2

+
[(

Unew
i,j −min(Uold

i,j−1, U
old
i,j+1)

)+
]2

= 1, (3.2)

for i ∈ {2, . . . , I − 1}, j ∈ {2, . . . , J − 1},

for Unew
i,j in terms of the known Uold

i,j values. The problem of solving (3.2) for Unew
i,j is much

easier than the original (3.1) because Unew
i,j for each i, j is decoupled from all the other i, j

equations.

For each i, j, we solve equation (3.2) by following the approach of [Zha05]. We note

that the equation

[(x− a)+]2 + [(x− b)+]2 = 1,

can be written as

[max((x− a), 0)]2 + [max((x− b), 0)]2 = 1. (3.3)

By considering 4 cases separately: (1) x− a > 0 and x− b > 0, (2) x− a > 0 and x− b < 0,
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(3) x− a < 0 and x− b > 0, (4) x− a < 0 and x− b < 0, we find equation (3.3) has solution

x =

min(a, b) + 1, |a− b| ≥ 1,

a+b+
√

2−(a−b)2

2 , |a− b| < 1.

It does not matter what order we sweep through the points xi,j because each Unew
i,j is

determined independently from the Uold
i,j . To start the iteration, we use the initial guess

from Section 3.3.

Gauss–Seidel iteration

The initial set up for Gauss–Seidel iteration is the same as Jacobi iteration, the mostly

significant difference is that there is only one copy of the matrix U , and we always use the

most up-do-date neighbouring values to compute Unew
i,j .

One way to view Gauss–Seidel is that when solving for Unew
i,j in the i, jth equation, we

may use a new value for some of the neighboring equations, say Unew
i−1,j and Unew

i,j−1, because

we may have already computed them. Instead of using the old values, we use these new

values, solving[(
Unew

i,j −min(Unew
i−1,j , U

old
i+1,j)

)+
]2

+
[(

Unew
i,j −min(Unew

i,j−1, U
old
i,j+1)

)+
]2

= 1, (3.4)

for i ∈ {2, . . . , I − 1}, j ∈ {2, . . . , J − 1}.

In order to reuse the solution technique for (3.2), it is important to have the values for

Unew
i−1,j and Unew

i,j−1 before trying to solve for Unew
i,j , thus the order in which we sweep through

the points xi,j can effect the solution. Here we have chosen to sweep the whole domain from

i = 1 : I, j = 1 : J : this guarantees that we will have the values for Unew
i−1,j and Unew

i,j−1.

3.1.3 Fast Sweeping method

The main improvement of the fast sweeping method [TCOZ03] is to not only use Gauss-

Seidel iterations, but also alternate the sweeping orders. First, we sweep through the domain

using one iteration of Gauss-Seidel as described above. For the next iteration, we use a

different sweeping pattern.

Information in the solution of the eikonal equation travels along characteristics [Eva98].

At least one of the sweeping directions will be ideal for the characteristics in a particular
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region of the domain. When the sweeping direction is aligned with the characteristics,

that sweep can update large areas of the domain with an accurate solution. This explains

the small number of iterations observed for the fast sweeping method in Figure 3.2 and

Section 4.1.

In 1D, there are 2 sweeping patterns: counting upwards from i = 1 to I and then

downwards from i = I down to 1. These can be denoted in “Matlab style notation” as

i = 1 : I and i = I : −1 : 1. In 2D, there are 4 sweeping patterns shown below and in

Figure 3.1. After finishing the fourth pattern, we begin again with the first. The 4 sweeping

patterns are

1. i = 1 : +1 : I, j = 1 : +1 : J ,

2. i = I : −1 : 1, j = 1 : +1 : J ,

3. i = I : −1 : 1, j = J : −1 : 1,

4. i = 1 : +1 : I, j = J : −1 : 1.

Figure 3.2 shows contour plots of an example by using the fast sweeping method to

compute the distance from every point inside the ellipse to the cross-shaped object.

3.2 Boundary Conditions

There are two boundary conditions we are dealing with, one is the blood vessels, another is

the boundary of the computational domain, which is a rectangle in our case.

Another complication is that we only care about the distance from every point on the

chorionic plate to the nearest vessel, even though in theory we can find the distance for every

point on the image, we can (and should) neglect the distance information from outside the

chorionic plate. In order to deal with this, in our algorithm, we set the distance on the edge

of the chorionic plate to be high enough (we used 200 in the code) and because information

travel outwards from the lower value, at the end, we simply ignore the distance value higher

than the edge value, i.e. 200.
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(a) i = 1 : +1 : I, j = 1 : +1 : J. (b) i = I : −1 : 1, j = 1 : +1 : J.

(c) i = I : −1 : 1, j = J : −1 : 1. (d) i = 1 : +1 : I, j = J : −1 : 1.

Figure 3.1: Illustration of sweeping directions.
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(a) Domain.
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(c) 2nd iteration.
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(e) 4th iteration.

Figure 3.2: 2D example of the fast sweeping method applied to an image (a). Boundary
conditions of u = 0 are applied to the “+” sign in the interior of the ellipse. Each sweep
roughly updates one quadrant. Distance is displayed using contours.
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3.3 Initial Conditions

As initial conditions for the artificial time or initial guesses for the iterative schemes, we set

Ui,j = 0 on blood vessels, Ui,j = 200 on the boundary of the chorionic plate and Ui,j = 400

elsewhere.

3.4 Stopping Conditions

The stopping condition here is that when the L∞ error between the solution and the previous

solution is less than a certain tolerance or threshold; in our computations, we use 10−10.



Chapter 4

Results

In this chapter, we compare the numerical schemes for computing distance described in

Chapter 3 on a 1D example problem and our placental images. We compute various geo-

metric estimates of vascular coverage based on our distance computation. Some preliminary

correlation with birth weight is performed.

4.1 Comparison of Numerical Schemes in 1D

We begin by computing the distance to a single point in one dimension. We compare the

different schemes based on how fast they solve this problem.

Figure 4.1, 4.2, 4.3, and 4.4 illustrate a 1D example of using the artificial time, Jacobi

iteration, Gauss-Seidel iteration, and fast sweeping method respectively to compute the

distance to a point x0 = 50 on a domain x ∈ [0, 100].

In Figure 4.3, we note that the distance to the right of x0 = 50 is computed in essentially

just one iteration: this motivates the fast marching method and indeed we see in Figure 4.4

that the fast sweeping method needs only 2 iterations.

Table 4.1 shows that the fast sweeping method takes less iterations and less time to

compute distance than Jacobi and Gauss-Seidel iterations. Here distance is computed to a

point x0 = 5000 in a domain of x ∈ [0, 10000].

18
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(f) 191th iteration.

Figure 4.1: Example of computing distance using artificial time in 1D.
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(f) 50th iteration.

Figure 4.2: Example of computing distance using Jacobi iteration in 1D.
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(f) 49th iteration.

Figure 4.3: Example of computing distance using Gauss–Seidel iteration in 1D.
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(c) 2nd iteration.

Figure 4.4: Example of computing distance using the fast sweeping method in 1D.

Num. of iteration Time (s)
Artificial time 10752 24

Jacobi 5001 3
Gauss-Seidel 5000 3
Fast-sweeping 4 0.02

Table 4.1: Comparison of numerical schemes in 1D.
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4.2 Comparison of Numerical Schemes in 2D

From Table 4.2, we see that the fast sweeping method performs the best for the problem of

finding distance on the chorionic plate.

Num. of iteration Time (s)
Artificial time 885 67

Jacobi 158 7
Gauss-Seidel 154 7
Fast-sweeping 8 0.5

Table 4.2: Comparison of numerical schemes in 2D.

4.3 Distance on the Chorionic Plate

Figure 4.5 and 4.6 show the plot of distance for two particular placenta images.

As discussed in Chapter 5, it is difficult to automatically identify the blood vessels. We

currently rely on marking or segmentation done manually by a pathologist, as explained in

Section 5.1. Thus, our main focus in this Chapter is on the calculation done for the vessel

coverage.

4.4 Geometric Analysis

We use the fast sweeping method to numerically solve the eikonal equation

|∇u| = 1,

with boundary condition u = 0 on the blood vessels Γ. As described in Chapters 2 and 3,

this computation gives u, the distance from every point on the placenta to the closest vessel.

We then take the mean of all distance values to obtain the mean distance. From this, we

compute measures for vasculature coverage.

We then explore different normalizations such as scaling by the largest diameter of

the placenta, by the circumference of the placenta, or by the square root of the placental

area. These give us a non-dimensional number generally between 0 and 1. These values
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(a) Sample image with traced vessels. (b) Contour plot of distance.

(c) Color plot of distance in 2D. (d) Color plot of distance in 3D.

Figure 4.5: Plot of distance to the nearest vessel with good coverage.

may indicate the quality of the blood vessel coverage, where smaller numbers mean better

coverage. See Section 4.5 where the measures are correlated with birth weight.

The various specific measures we consider are described next.

Mean distance Mean distance is calculated by solving the eikonal equation by one of the

methods described above and then averaging over all points inside the chorionic plate.

We denote this as

ū = meanx(u(x)).
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(a) Sample image with traced vessels. (b) Contour plot of distance.

(c) Color plot of distance in 2D. (d) Color plot of distance in 3D.

Figure 4.6: Plot of distance to the nearest vessel with poor coverage.

Measure 1 (M1) Mean distance divided by the maximum diameter D of the chorionic

plate

M1 =
ū

max(D)
.

Measure 2 (M2) Mean distance divided by the square root of the chorionic plate area A

M2 =
ū√
A

.

Measure 3 (M3) Mean distance divided by the chorionic plate area over the maximum
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diameter of the chorionic plate

M3 =
ū

A/ max(D)
.

Relative Branching Coverage (RBC) We notice that these resulting geometric mea-

sures are difficult to compare directly; we are generally not interested in the actual

value of the measure but rather the value relative to that of images of other placentas.

Thus we divide the value of the measure for each image by the average of this measure

over all sample images. The result is a non-dimensional number around 1. If it is 1,

it means that the vessel coverage is average; if it is below 1, it means the coverage is

better than average. Finally if it is larger than 1, the coverage is worse than average.

For example, for mean distance we call this relative branching coverage

RBC =
ū

meansamples(ū)
.

Relative Area of the Vessel (RAV) Just because two images give the same measure-

ment (based on average distance), does not mean they are equally well-covered. The

image with less vessels is covering more area per vessel. Thus we penalize measures

according to the total amount of vessels. We define the relative area of the vessel by

finding the ratio of total vessel area V to the area of the chorionic plate.

RAV =
V

A
.

Relative Branching Efficiency (RBE) We define the relative branching efficiency as

the “relative branching coverage” times the “relative area of the vessel”.

RBE = RBC× RAV.

Energy Budget (EB) We also define the energy budget as the “relative branching cover-

age” plus a constant multiple of the “relative area of the vessel”

EB = RBC +
1
5

RAV.

We note that all of the above measures are non-dimentional. In the next section, we

explore the relation between these simple measures and birth weight.
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4.5 Data Analysis

The available sample images have been grouped into three different categories: normal birth

weight, high birth weight and low birth weight with roughly 40 cases in each category.

The variables we are interested in are the measure M that we described in section 4.4

and the birth weight BW of the fetus. Is there a relationship between these two variables?

To answer this question, we need to perform a correlation study.

Due to patient confidentiality, we can not present the raw data here. Therefore, in this

section, we will describe the method and result with mock fetal birth weight. The real data

suggests there is a statistically significant correlation between our measures and the birth

weight, as discussed in Section 4.5.3.

4.5.1 Correlation Study

The relationship between the measure M1 and the birth weight BW of the fetus can be

measured by the correlation coefficient r, which indicates the strength of the relationship

(see e.g., [DWC04]).

Given n pairs of observations (xi, yi), for i = 1 . . . n, where xi ∈M1 and yi ∈ BW . Let

x̄ denote the mean of the measure M1, and ȳ denote the mean of the birth weight of the

fetus,

x̄ =
x1 + x2 + · · ·+ xn

n
=
∑n

i=1 xi

n
,

ȳ =
y1 + y2 + · · ·+ yn

n
=
∑n

i=1 yi

n
.

Define

Sxx =
n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i −

(
∑n

i=1 xi)2

n
,

Syy =
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

y2
i −

(
∑n

i=1 yi)2

n
,

Sxy =
n∑

i=1

(xi − x̄)(yi − ȳ) =
n∑

i=1

xiyi −
(
∑n

i=1 xi)(
∑n

i=1 yi)
n

.

The correlation coefficient r is then computed by

r =
Sxy√
SxxSyy

.
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The value |r| indicates the strength of the linear association between the two variables.

The most positive relationship is identified when r = 1, which means all (xi, yi) lie on

a straight line with positive slope, and the most negative relationship is identified when

r = −1, which means all (xi, yi) lie on a straight line with negative slope. There is less

correlation between the variables when r is closer to zero.

4.5.2 Correlation Example

Given a sample of 43 placenta images, the measure M1 was computed. Mock birth weight

(BW ) was generated as

BWi = aM1i + b + Xi

where a, b specify a given linear relationship between Measure 1 (M1) and birth weight

BW . Noise is added using Xi, an independent and identically-distributed random variable

from a normal distribution with mean zero and standard deviation 0.05. Table 4.3 shows

43 samples with a = −2.3 and b = 6.5.

M1 BW

0.0222 6.4122
0.0261 6.4164
0.0309 6.4042
0.0208 6.4236
0.0380 6.3232
0.0464 6.3250
0.0331 6.3919
0.0289 6.5005
0.0248 6.4591
0.0284 6.4368
0.0299 6.5055

M1 BW

0.0275 6.4535
0.0249 6.4698
0.0254 6.4126
0.0176 6.4914
0.0313 6.3788
0.0211 6.4788
0.0296 6.3754
0.0219 6.5015
0.0130 6.4112
0.0292 6.3773
0.0203 6.4303

M1 BW

0.0165 6.4779
0.0172 6.4860
0.0212 6.4089
0.0148 6.5096
0.0253 6.4523
0.0214 6.5453
0.0202 6.3878
0.0273 6.3890
0.0229 6.3939
0.0235 6.4489
0.0211 6.5008

M1 BW

0.0283 6.5548
0.0180 6.4706
0.0221 6.4530
0.0242 6.3932
0.0217 6.4611
0.0290 6.4136
0.0145 6.4821
0.0172 6.4807
0.0212 6.5241
0.0408 6.3948

Table 4.3: M1 values and mock BW data.

Figure 4.7 shows a scatter plot of the mock data. The straight line indicates the lin-

ear best fit. The r value -0.54882 shows a statistically significant correlation between the

Measure 1 and mock birth weight.
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Figure 4.7: Scatter plot of M1 and mock BW.

4.5.3 Correlation of Real Data

The birth weight data is not presented here for reasons of patient confidentiality. However,

Table 4.4 shows a preliminary correlation study between our measures and fetal birth weight.

We note statistically significant correlation between RBC and BW and between EB and BW.

On the other hand RBE is not correlated with BW. This is a preliminary result based on

a sample of 43 placentas corresponding to normal birth weights. Research and analysis on

abnormally low and high birth weights is ongoing.

relative
branching
coverage

relative
branching
efficiency

energy bud-
get

birth
weight

-.424 .019 -.378

Table 4.4: Correlation Study on real data.
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Image Segmentation

We can perform the calculations described in Chapter 3 when we have a simple ideal image

like Figure 2.1. From a true digital image of a placenta (e.g., Figure 1.2), it is not easy

to obtain information such as vessel location Γ, which we need to apply the boundary

conditions. Currently, we rely on a trained technician to analyze and segment the images

by hand.

We investigate capturing the blood vessels automatically by applying de-noising and

segmentation techniques on the chorionic plate. Basic tools for image processing include

de-blurring, de-noising, segmentation and others [AK06].

5.1 Manual Segmentation

A pathologist or a trained technician uses digital image manipulation software [GT] to trace

the blood vessels, umbilical cord attachment point, boundary of the placenta, the penny, and

some marker points on the ruler. Each of these features is marked with a different unique

color which can then be located by our code. This manual segmentation is expensive, and

the geometric information which have been obtained may not be objective in the sense of not

being reproducible by another individual. That is, for a large sample size of many images,

the same technician would likely have to trace all of the images to avoid bias.

30
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5.2 De-blurring

De-blurring is a process to enhance a blurry image by sharpening it. One idea is to use an

unsharp mask, which essentially subtracts the blurred image from the original one [GW02].

Figure 5.1 shows an example of de-blurring using an unsharp mask. In Figure 5.2, de-

blurring is applied to a placenta image and the image did not get clearer, but instead some

noise was introduced. This is probably because the image was not blurry to begin with.

Figure 5.1: Left: example blurry image. Right: de-blurred image by performing an unsharp
mask. Example image by Pincel3D, Creative Commons licensed.

5.3 De-noising

Noise is typically random values from some distribution added to some of the pixels in an

image. In Figure 5.3, noise has been deliberately added to the image and then de-noising

applied using one possible technique called a median filter [GW02], which replaces the value

of a pixel by the median of the gray levels in the neighborhood of that pixel.

However from Figure 5.4 we can see that our original image is already clear enough,
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Figure 5.2: Top row: original image (left), de-blurred image by performing an unsharp mask
(right). Bottom row: zoomed in versions of above.
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Figure 5.3: Left: sample noisy images (“salt and pepper” noise [GW02] artificially added to
each RGB channel). Right: de-noised image by performing median filter. Example image
by Pincel3D, Creative Commons licensed.
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after we apply de-noising, it did not change much except some small reflection effects from

the camera flash were removed and the image was blurred slightly.

Figure 5.4: Top row: original image (left), de-noised image by performing median filter
(right). Bottom row: grey scaled versions of above.

5.4 Segmentation

The idea of segmentation is to find (“mark”) different objects in an image. In our image, we

can easily visually spot a placenta, a penny, a ruler etc, and it should be relatively straight-

forward to automatically segment these objects. However a more challenging problem would

be to segment out the vessels because visually it is less clear which parts of the image are

the vessels and which are the chorionic disc. Indeed, this task may requires expert knowl-

edge from a trained pathologist. Currently, the manual segmentation is done by human

operator, ideally it could be combined with automatic approaches to make an interactive
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segmentation. The following sections outline several techniques that might be useful.

5.4.1 Active Contours (Snakes) Method

The active contour (snakes) method [KWT88] uses gradient information to find the edges of

the objects. Based on intensity, we partition the image by calculating the gradient for every

pixel on the image. The gradient is a vector at each pixel which points in the direction of

the greatest intensity change. The magnitude of the gradient reflects how fast the intensity

changes near each pixel. Figure 5.5 shows the gradient magnitude can clearly indicate the

edge of the penny and placenta, but does not seem to give enough information about the

vascular structure. Thus, we expect this method will not work well.

Figure 5.5: Left: edge detected from the original grey scaled image. Right: edge detected
from de-noised grey scaled image.

5.4.2 Active Contours without Edges

An alternative approach to segmentation is “active contour without edges” [CV01] which

does not directly rely on gradient information. However the algorithm as given in [CV01] is

intended to segment out objects which have both insides and outsides. The vessel structure

is made of curves, thus it does not have this property. We do not expect this method to

work well for the placenta images. Indeed, Figure 5.6 shows the segmentation has done a

reasonable job of identifying the chorionic plate, the umbilical cord and the penny. However,

no useful information about the blood vessels can be seen.
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Figure 5.6: Left: grey scaled image. Right: active contours without edges applied to the
left image. Computation performed using the code of Luke Tian [Tia].

One possibility for future study is to look for algorithms for segmenting tree-like struc-

tures consisting of curves.

5.5 Shape-from-shading

The idea of shape-from-shading is to recover three-dimensional information about shape

from a two dimensional black-and-white image. This is not a well-posed problem but [RT92]

introduced the “viscosity solution” approach which is very interesting. We implemented the

algorithm following [RT92] and some results are shown in Figure 5.7.

From Figure 5.7, we can see the position of the penny (small cone in the front right

corner of (a)) and the placenta appears as a “mountain”, but we can not see any useful

information about the vessels. Thus, shape-from-shading does not seem to be suitable for

getting vessel information from our current placenta images. It works better on images

containing objects of the same material, where the shade on the image is only effected by

the lighting sources from the camera flash [RT92]. However, that is not the case here, the

placenta images we study are made up of different materials with different colours.
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(a) (b)

Figure 5.7: Left: shape from shading applied to the original image. Right: shape from
shading only applied to the placenta.
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Conclusions

A model was implemented for measuring the branching properties of the blood vessels of

the placenta on the chorionic plate. The model is based on computing the distance from any

point of the placenta to the nearest blood vessel. Using this model, we showed preliminary

evidence of correlation between chorionic plate blood vessel geometry and the birth weight

of infants.

The images were first traced manually by a pathologist. This provided an outline of

the chorionic disc and the location of the major blood vessels. The process also identified

a penny and markings on a ruler for use in scaling the images. Computing the distance u

from every point in the chorionic plate was performed by numerically solving the eikonal

equation |∇u| = 1 on a 2D domain consisting of the irregularly shaped chorionic plate.

Boundary conditions imposed u = 0 on the blood vessels themselves. Several numerical

approaches for solving the eikonal equation were evaluated including time-dependent and

iterative methods. The fast sweeping technique [TCOZ03] turned out to be particularly

efficient and straightforward to implement. The computed distance was then averaged in

various ways to obtain measurements of the blood vessel coverage. These measurements

were made non-dimensional by scaling based on the diameter of a penny appearing in most

images.

Several approaches for the automatic tracing (segmentation) of the blood vessels on pla-

cental images were investigated. The placental images had no obvious errors from noise and

thus denoising was deemed unnecessary. Edge detection techniques based on the gradient of

the image were unreliable due to lack of contrast between the blood vessels and surrounding

tissue. Shape from shading [RT92] was also not effective, likely because of the presence of

38
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both texture and colour information in the images. Currently we rely on human to trace or

pick out the vessels, and we would like this to be automated or semi-automated. Thus the

automatic segmentation problem warrants further investigation.

To summarize, in consultation with a pathologist, we successfully developed and im-

plemented simple metrics for vasculature coverage of the chorionic plate. Specific medical

results using our measures will appear in [Sal08] and [HLOS].



Bibliography

[ABD+08] Morten Andersen, David Belanger, Radina Droumeva, Jenny Li, Gilbert Moss,
and Gabriela Palau. Quantifying clinically significant features of placental histol-
ogy images: a method. Technical report, MITACS Summer School in Industrial
Mathematics, August 2008.

[ACI98] Balu H. Athreya, May L. Cheh, and Lawrence C. Kingsland III. Computer-
assisted diagnosis of pediatric rheumatic diseases. Pediatrics, 102(4):e48, Octo-
ber 1998.

[AK06] Gilles Aubert and Pierre Kornprobst. Mathematical Problems in Image Process-
ing: Partial Differential Equations and the Calculus of Variations, volume 147
of Applied Mathematical Sciences. Springer-Verlag, second edition, 2006.

[Bar97] David J.P. Barker. Maternal nutrition, fetal nutrition, and disease in later life.
Nutrition, 13(9):807–813, September 1997.

[BF00] Richard L. Burden and J. Douglas Faires. Numerical Analysis. Brooks Cole,
seventh edition, 2000.

[CV01] Tony F. Chan and Luminita A. Vese. Active contours without edges. IEEE
Transactions on Image Processing, 10(2):266 – 277, Feburary 2001.

[DWC04] Shirley Dowdy, Stanley Wearden, and Daniel Chilko. Statistics for research.
Wiley, third edition, 2004.

[Eva98] Lawrence C. Evans. Partial Differential Equations, volume 19 of Graduate Stud-
ies in Mathematics. American Mathematical Society, 1998.

[GK06] P.A. Gremaud and C.M. Kuster. Computational study of fast methods for the
eikonal equation. SIAM Journal on Scientific Computing, 27(6):1803, 2006.

[GNS+08] Steven G. Gabbe, Jennifer R. Niebyl, Joe Leigh Simpson, Henry Galan, Laura
Goetzl, Eric R.M. Jauniaux, and Mark Landon. Obstetrics: Normal and Problem
Pregnancies. Elsevier, fifth edition, 2008.

[GT] The GIMP Team. GIMP - the GNU Image Manipulation Program.

40



BIBLIOGRAPHY 41

[GW02] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice
Hall, 2002.

[HLOS] Danielle Haas, Jenny Li, Adam Oberman, and Carolyn Salafia. Computational
placental pathology: Using placental geometry to assess placental function. In
preparation.

[HNF08] Health on the Net Foundation. http://debussy.hon.ch/cgi-bin/HONselect?
browse+E01.158, 2008. Accessed 2008-10-07.

[HT05] Shu-Ren Hysing and Stefan Turek. The eikonal equation: numerical efficiency
vs. algorithmic complexity on quadrilateral grids. In Algoritmy, pages 22–31,
2005.

[KWT88] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour
models. International Journal of Computer Vision, 1(4):321–331, January 1988.

[RP07] Sabine Raab and Karl H. Plate. Different networks, common growth factors:
shared growth factors and receptors of the vascular and the nervous system.
Acta Neuropathologica, pages 607–626, May 2007.

[RT92] Elisabeth Rouy and Agnès Tourin. A viscosity solutions approach to shape-from-
shading. SIAM Journal on Numerical Analysis, 29(3):867–884, June 1992.

[Sal08] Carolyn Salafia. Chorionic vascular branching affects placental efficiency and
birth weight independent of placental weight, 2008. 16th World Congress for the
study of hypertension in pregnancy.

[Set99] James A. Sethian. Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge University Press, 1999.

[SMT+05] Carolyn M. Salafia, Elizabeth Maas, John M. Thorp, Barbara Eucker, John C.
Pezzullo, and David A. Savitz. Measures of placental growth in relation to birth
weight and gestational age. American Journal of Epidemiology, 162(10):991–998,
2005.

[SV90] Carolyn M. Salafia and Anthony M. Vintzileos. Why all placentas should be
examined by a pathologist in 1990. American Journal of Obstetrics and Gyne-
cology, 163(4):1282–93, October 1990.

[TCOZ03] Richard Tsai, Li-Tien Cheng, Stanley Osher, and Hong-Kai Zhao. Fast sweeping
algorithms for a class of Hamilton-Jacobi equations. SIAM Journal on Numerical
Analysis, 41(2):673–694, 2003.

[Tia] Luke Tian. Master’s thesis, Simon Fraser University. In preparation.



BIBLIOGRAPHY 42

[YSS+08] Michael Yampolsky, Carolyn M. Salafia, Oleksandr Shlakher, Danielle Haas,
Barbara Eucker, and John Thorp. Modeling the variability of shapes of a human
placenta. Placenta, 29(9):790–797, September 2008.

[Zha05] Hongkai Zhao. A fast sweeping method for eikonal equations. Mathematics of
Computation, 74:603–627, 2005.


