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Abstract

This thesis demonstrates the applicability of hypergraphs to philosophical problems. I employ and

enrich the theory of transverse hypergraphs, the colouring theory of hypergraphs, and the novel

harmonic theory of hypergraphs. I also demonstrate that the relationship between the latter two

theories is one of logical duality.

Because this thesis consists of a number of distinct articles, each representing a thematically

diverse application of hypergraph theory to philosophy, it is difficult to speak of a unifying thread,

except insofar as I may explain the general modus operandi in highly schematic terms.

To that end, common to all of the articles is the exemplification of the following: A problem is

given whereby there is a collection of objects and a question has arisen as to whether these objects

stand in a particular relationship to one another. I use hypergraphs to represent the objects. A key

feature of the objects is then modelled using either chromatic or harmonic number, or the notion of

a transverse hypergraph. Lastly, properties of, or relations between chromatic number, harmonic

number, or the notion of a transverse hypergraph, are shown to entail a solution to the problem.

The main results in this thesis are summarized as follows: (1) It is possible to design a non­

statistical polling technique which forms the basis of a representative political system. (2) The

conditions under which a malfunction of a technical system is identical with its diagnosis can be

characterized using equivalent maximality and minimality conditions on harmonic and chromatic

number. (3) An axiomatization exists of extent of Wittgenstein's notion of family resemblance.

(4) Taxonomic properties of identity can be discerned by exploring the mathematical relationship

between diachronicity and synchronicity. (5) A new axiomatization of a class of weakly aggregative

modal logics can be found by dualizing chromatic number, and exploiting harmonic number. (6)

Completeness for classes of weakly aggregative and non-normal modal logics can be simplified by

dualizing neighborhood semantics. (7) There is a relevant inference relation which is dual to the

paraconsistent n-forcing relation, and which can be represented a..c; a restriction of the classical f-.
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Introduction

0.1 Preamble

0.1.1 Topic

This monograph consists of a selection of articles which demonstrate the utility of applying the

mathematical theory of hypergraphs to various philosophical problems. The part of this theory

with which we will be mainly concerned, the harmonic theory of hypergraphs, is unique to this

thesis, and evolved from a joint study of well developed theories in graph theory, in particular, the

colouring theory of graphs and the theory of transverse graphs.

Why hypergraphs? Successes in this particular intersection of mathematics with philosophy have

for the most part been restricted to mathematical logic. They include (a) the development of a

rule of inference which, in contrast to classical logic, enables one to draw non-arbitrary conclusions

from an inconsistent collection of premises [20][7], (b) the development of a class of weak modal

logics, and a non-standard semantical framework for modal logic [18][19][6][5] (cf. also [8]), (c) a

proof that the K n modal logics are complete with respect to the class of all (n + 1)-ary relational

frames [1][23]' and (d) a simplification of the completeness proof for the K n logics [14].

Here, in addition to considering issues which are mainly, prima facie, and ut nunc, of logical

interest, I widen the purview of philosophical hypergraphics, including within its domain questions

and topics of a more central philosophical character. Below, I briefly, and as non-technically as

possible, sketch the content of the articles included in this thesis. To that end, it will be useful to

introduce some important theorems, as well as some terminology which is common to the articles,

notwithstanding minor notational deviations which occur among them.
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0.1.2 Rationale

One could question the rationale for this thesis on the basis that, properly construed, mathematics

has little or no role in non-logical philosophy-that mathematical philosophy is mathematics if

anything, and not philosophy at all. But this r5tises the thorny issues of what the purpose of

philosophy is, or should be, and of what philosophy is, in the first place. What Einstein and Infeld

say of physics is also a plausible view of what the aim of philosophy should be. They write that an

important part of the purpose of physics is to "raise new questions, new possibilities, to regard old

problems from a new angle"(p. 92)[4].

Constricting the angle from which a problem is viewed has the effect of polarizing the light that

one sheds on it. Any answer to the problem formulated from this perspective will lie in the same

dimly lit corner within which the problem is first formulated. Einstein and Infeld note, "[t]he

formulation of a problem is often more essential than its solution, which may be merely a matter

of mathematical or experimental skill." (p. 92) [4] But the point is that broadening the angle from

which a problem is viewed has the advantage of dispersing a greater spectrum of light; it therefore

has the potential to generate greater intellectual illumination.

This is a basic issue of good intellectual, and therefore, ideally, academic, hygiene. It is not to

the benefit of philosophy, or any academic discipline, to restrict the angles from which we view

problems to acute, rather than oblique ones. Orthogonal approaches should be valued too. By

broadening the arcs which subtend various philosophical problems, this thesis demonstrates that

philosophy has much to gain by including the theory of hypergraphs and its methods within its

framework.

Indeed, many of the questions which were asked by the philosophers of antiquity now have

solutions in mathematics and physics. As Russell notes:

Zeno was concerned, as a matter of fact, with three problems, each presented by mo­

tion, but each more abstract than motion, and capable of a purely arithmetical tr·eatment.

These are the problems of the infinitesimal, the infinite, and continuity. To state clearly

the difficulties involved, was to accomplish perhaps the hardest part of the philosopher's

task. This was done by Zeno. From him to our own day, the finest intellects of each

generation in turn [tried to solve] the problems, but achieved, broadly speaking, noth­

ing. In our own time, however, three men-Weierstrass, Dedekind, and Cantor-have

2



not merely advanced the three problems, but have completely solved them. The so­

lutions, for those acquainted with mathematics, are so clear as to leave no longer the

slightest doubt or difficulty....Of the three problems, that of the infinitesimal was solved

by Weierstrass; the solution of the other two was begun by Dedekind, and definitely

accomplished by Cantor. (p. 64) [17] [emphasis mine]

From the fact that a problem is first formulated in philosophy, narrowly conceived, it doesn't

follow that that is where we should remain in order to find its solution, or even merely a possible

solution-one of what are perhaps many. Inasmuch as logic is a branch of philosophy, philosophical

problems often have multiple solutions. This is because, for example, a theorem can often be proved

in a variety of ways. If distinct proofs are distinct solutions then clearly there are philosophical

problems with multiple solutions. To take an example from physics, Kaku observes that:

...Einstein's equations gave new insights into such ancient questions [as], is there an end

to the universe? If the universe ends with a wall, then can we ask the question, what lies

beyond the wall? .. [O]ne might state that the universe is infinite in three dimensions.

There is no brick wall in space that represents the end of the universe; a rocket sent

into space will never collide with some cosmic wall. However, there is the possibility

that the universe might be finite in four dimensions. (If it were a four dimensional ball,

or hypersphere, you might conceivably travel completely around the universe and come

back to where you started. In this universe, the farthest object you can see with a

telescope is the back of your head.)(pp.137-8)[1l]

Here again it can be seen that the answers to questions that are philosophical in origin, regarding

the finiteness of the universe in this case, can be profitably sought by employing tools that are com­

mon to other domains of inquiry, for example, the tools of physics (and mathematics, particularly

cosmic topology). The main purpose of this monograph is to show that the theory of hypergraphs

is another such tool.

0.2 Hypergraphs

0.2.1 Terminology

Consider the kinds of graphs that children learn to read in secondary school, for example, two­

dimensional space graphs, which consist of two axes, a vertical y-axis, representing distance, and

3



an intersecting horizontal x-axis, also representing distance, with points plotted in various places

between the two axes. To each point 'Y there corresponds a pair of numbers (tI, v) which tells us

that if we were to draw a straight line through position u on the x-axis, perpendicular to the x-axis,

and a straight line through position v on the y-axis, perpendicular to the y-axis, then the two lines

would intersect exactly at point 'Y. Considered in this way, a graph is just a collection of pairs

(tI, v) whose elements are ordered. But now what happens if we add a z-axis, as is required, for

example, in representations of three-dimensional space? Then our graph can be represented as

a collection of triples. In fact for any finite number n (n ~ 2) we can say that a graph can be

represented as a collection of n-tuples1 whose elements are ordered. For convenience, let us refer

to the collections of which a graph consists as its edges. Then, generalizing this tendency towards

higher dimensionality, rather than requiring that all edges of a graph have the same number of

elements, that is, the same width, we can allow the width of edges to vary. We can also choose to

disregard the order of the elements of the edges, and we can allow that the edges are infinitely wide,

and that there are infinitely many of them. In this way we obtain a kind of 'hyper-dimensional'

graph, or a hypergraph, which reduces, in the case where all of its edges are pairs, to the notion of

a graph which is common in the mathematical theory called graph theory. Thus, a hypergraph is

a collection of collections of numbers or variables, or more simply still, a collection of collections.

For the most part we will be considering finite collections of finite collections, but we allow for

the existence of infinite hypergraphs, that is, hypergrahs which are either infinitely long, or which

contain at least one edge that is infinitely wide. A finite hypergraph is one that is composed of a

finite collection of finite collections.

One drawback of the notion of a hypergraph is that we lose the comparatively easy visual repre­

sentation of the graphs of graph theory. But there are other representations. In the case where all of

the edges of a hypergraph are pairs, as occurs for instance with {{I, 2}, {2, 3}, {3, 4}, {4, 5}, {5, I}},

we may draw Figure 0.2.1. The dots represent what are called the vertices of the hypergraph~these

are just the elements of the edges. A line between two vertices represents that there is an edge

which is composed of them. This is a standard visual representation of a graph in graph theory.

Since the order of the vertices appearing in an edge is irrelevant to such graphs, 2 their positions

with respect to one another may vary. That is, there are an indefinitely large number of distinct

visual representations, following the conventions noted here, of any particular hypergraph which

1 A 2-tuple is a pair, a 3-tuple is a triple, a 4-tuple is a quadruple, etc.

2Graphtheorists distinguish between directed graphs and graphs: a graph is essentially a collection of pairs; a
directed graph is a collection of pairs in which the order of the elements matters.
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happens to consist exclusively of pairs.

1

2[;

.. .. 3
4

Figure 0.2.1: A representation of a graph.

When we move to hypergraphs that are not graphs (of graph theory), visual representations are

more difficult. Let H be the hypergraph {{I, 2}, {I, 3}, {I, 4}, {2, 3, 4}}. Then because at least one

edge of H is a triple, we can no longer use the convenient representation common in graph theory

without generating an ambiguity. To see this, consider Figure 0.2.2. Here we indicate that an edge

comprises some collection of vertices by drawing a membrane around exactly those vertices. Notice

that if we replace the membrane enclosing 2,3 and 4 with lines connecting these vertices, our repre­

sentation would fail to distinguish between the single edge {2, 3, 4} and a collection of smaller edges

consisting of pairs. A different kind of visual representation, of the same hypergraph, is depicted

in Figure 0.2.3. For the most part this is our preferred representation, although we occasionally

use a combination of the two styles. Here, a commonality among edges can be represented by a

repetition of the common vertex, where vertices are now represented by their numeric labels. One

advantage of the former style of representation, depicted in Figure 0.2.2, is that intersections among

edges are more easily visualized. It is for this reason that we use a combination of the two methods,

depending on which aspect(s) of a hypergraph we intend to make most salient in an illustration. For

example, in Figure 0.2.4, the edges of the hypergraph H are not necessarily disjoint; the illustration

is intended to depict the fact that the collection C has at least one vertex in common with every

element of H.

Now that we have the notion of a hypergraph in hand, we can study its properties. One of

the properties which is of fundamental importance to my research has to do with what are called

the colourability properties of a hypergraph. It will be convenient in what follows to abbreviate

5



Figure 0.2.2: A representation of a hypergraph.

C 1 2

~

C 1 3 ~

C 1 4 ~
C 2 3 4 ~

Figure 0.2.3: Another representation of a hypergraph

'hypergraph' to 'graph': there is no danger of ambiguity in doing so since every graph (of graph

theory) is a hypergraph, and if it is specifically a graph whose members are all pairs which is

intended by 'graph', then I add the appendix '(of graph theory)' to indicate this.

0.2.2 q-Colourability

Where q is some positive integer, a q-colouring of a graph is an assignment of each vertex to exactly

one of q colours. Given a q-colouring of a graph H, we can ascertain things about its edges in

relation to the q-colouring. For instance, of a given edge we can say whether all of its vertices are

assigned to the same colour. If a graph H is such that there is a q-colouring of it where no edge has

all of its vertices assigned to the same colour-that is to say, where no edge is monochrome-then

6



H

~c

Figure 0.2.4: A combination of visual styles.

we say that H is q-colourable; otherwise we say that H is q-uncolourable. The chromatic number

of a graph H, denoted 'X(H)', is the smallest integer q such that H is q-colourable; if there is no

number q such that H is q-colourable then we stipulate that the chromatic number of H is oo-an

arbitrarily high value.

For example, let H = {{I, 2}, {2, 3}, {3, 4}, {4, 5}, {5, In. Then X(H) = 3. This is because, since

H has an odd number of vertices which are arranged in a cycle, H is not 2-colourable. But it is

easy to see that by the addition of a third colour we can obtain a colouring which leaves no edge

monochrome. For instance, assign vertices I and 3 to yellow, 2 and 4 to red, and 5 to green.

Alternatively, let H consist of the single 'unit' edge {l}. Then X(H) = 00 since whenever the

single vertex of H, I, is assigned to a colour, some edge of H is monochrome.

0.2.3 q-Harmonicity

In addition to speaking of the colourability properties of a graph, we can talk about its intersectival

properties; we refer to these as its harmonic properties. The harmonic properties of graphs con­

stitute a hitherto largely unstudied class of properties of graphs in contrast to the well-entrenched

theory of chromatics. A collection of edges of a graph is said to have a non-empty intersection

when there is some vertex which appears in every edge in the collection; otherwise we say that

the intersection of the collection is empty. We say that for a positive integer q, a graph is q-wise

7
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intersecting if and only if every collection of q edges from the graph has a non-empty intersecticffi.

The harmonic r/.'Umber of a graph H, indicated by ''T/(H)', is the smallest positive integer q such

that H is not q-wise intersecting; if H happens to be q-wise intersecting for every positive integer

q, then we say that 'T/(H) is oo~again, an arbitrarily high value. If'T/(H) > q then we say that H

is q-harrnonic.

For example, let H = {{I,2,3},{I,2,4},{I,3,4},{2,3,4}}. Then 'T/(H) = 4 because the inter­

section of H is empty while every triple of edges of H has a non-empty intersection. To understand

why every triple of edges has a non-empty intersection, notice that should a triple of edges have

an empty intersection, then the collection of vertices omitted by the edges of the triple would be

identical to the collection consisting of the totality of the graph's vertices; but this is impossible

because the graph itself consists of the collection of all triples of vertices, and thus a triple of edges

can omit at most three of the four vertices of the graph.

To take another example, let H = {{I, 2, 3}, {I, 2, 4}, {I, 3, 4}}. Then 'T/(H) = 00. This is because

the intersection of H is non-empty, and thus there is no smallest integer q for which there is an

q-tuple of edges of H having an empty intersection.

0.2.4 Logical Duality

One of the fundamental contributions of this monograph to the theory of hypergraphs is the ob­

servation that harmonic number and chromatic number are logically dual~logically dual in the

sense in which the and, or conjunction, represented by 1\, of logic is dual to the or, or disjunction,

represented by v, of classical, propositional, logic. To define the meaning of "duality" precisely,

we need to interpret 1\ and V. Where the letters p and q represent arbitrary sentences, and 'T'

represents 'true' and 'F' represents 'false', recall that the truth table for V is:

p V q

T T T

T T F

F T T

F F F

8
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And the truth table for 1\ is:

P 1\ q

T T T

T F F

F F T

F F F

Given this truth functional interpretation of V and 1\, they can be said to be logically dual in the

following sense: by interchanging all occurrences of T's with F's and conversely, in either table, we

obtain exactly the other, modulo the order of the rows.

It is possible to extend the above truth tables so that we can interpret disjunctions of n-terms

(n 2 2) and also n-termed conjunctions. We say that a disjunction is true just in case at least one

of its disjuncts is; a conjunction is true just in case each of its conjuncts is. As a consequence of

this convention, we can treat graphs as if they were sentences. For, let the vertices of a graph H be

themselves sentences. Then we can conjoin the elements of the edges of H to form some number

of conjunctions, which we may then disjoin. Call the result of such an operation performed on H,

"vI\H". The dual operation thus yields I\vH, and vl\H and I\vH are accordingly dual.

Now the transverse graph of a graph figures crucially in our description of the duality of chromatic

and harmonic number. To define this we need the notion of a cover for a graph. A cover for a graph

is a collection of its vertices that has a non-empty intersection with every edge of the graph. A

minimal cover for a graph is a cover for a graph that is not a proper superset of any of the graph's

covers. The transverse (hyper)graph for a graph H, T H, is the collection of all minimal covers for

H. As VI\H and I\vH are dual, derivatively we can understand Hand TH as duals. This is because

vl\H is equivalent to, that is, is true (false) under exactly the same circumstances as, I\V T H, and

similarly for I\vH and VI\TH. To see why this is so, consider the circumstances under which vl\H is

true: VI\H is true exactly when at least one of the edges of H has all of its elements true. But every

edge of H has a non-empty intersection with every edge of T H (this follows straightaway from the

definition of a transverse graph as a collection of covers). Therefore making all of the elements of

some edge of H true makes at least one element of every edge of T H true, thereby making I\vTH

true as well. Now consider how to make I\VTH true-this can be accomplished only by making at

least one element of every edge of T H true, that is, by making all of the elements of some cover,

9



call it c, for T H true. But c contains some edge of H, for suppose not: then some minimal cover

for H has an empty intersection with c, which is impossible, since c is a cover for T H. Similar

reasoning demonstrates the equivalence of I\vH and VI\TH. But consequently, given that V!\H and

I\vH are dual, NTH is dual to I\VH, and VI\TH is dual to vl\H. It is in this sense that we say

that Hand T H are dual. Therefore, we may conclude that chromatic number is dual to harmonic

number because we have the following:

Theorem 0.2.1. For any graph H, X(H) = q if and only ifry(TH) = q.3

Theorem 0.2.1 is important for two reasons: first, it demonstrates a relationship between the

novel harmonic theory of graphs and the well-established theory of chromatics for graphs; second,

it is integral to many of the results proved later on in the monograph.

0.3 Contents

0.3.1 Democratic Harmonics

The first selection, Democratic Harmonics, consists of an employment of k-harmonic graphs in

the construction of a dynamic system of electoral representativeness. Jennings and Schotch have

shown the utility of k-uncolourable graphs when it comes to formalizing non-arbitrary inference from

inconsistent premise sets [20]. Here I show how this application can be extended to the dual political

context in which elected officials form policies which represent incohesive interest groups. By

exploiting k-harmonic graphs, a non-statistical model for a polling technique is designed whose aim

is to preserve electoral representativeness through deliberative legislative processes. In this respect

the technique is dynamic, in addition to marking a departure from conventional, statistically-based

models of representation. In political science, the formalisms for modelling representativeness tend

to be drawn primarily from the theories of games, social choice and multi-dimensional geometries,

with a focus on such issues as the equilibria of competing strategies. In contrast, this article uses a

theory of graphs to model potential and desirable transfers of information among groups of elected

officials.

3Since Theorem 0.2.1 is proved in several locations in the remainder of this monograph, for simplicity·s sake we
omit its proof here.
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0.3.2 Self-dual Malfunctions

In Self-dual Malfunctions, I consider the question whether there is any problem, or malfunction in

a system, which is identical to the solution for this problem. A word here is in order about what

is meant by "problem" and by "solution". Diagnostic problems require a differentiation between

normally and abnormally behaving system components. Reiter's system of diagnosis from first

principles [15] is an approach to diagnostics in which a problem can be said to be, roughly speaking,

the collection of all minimal lists of system components the members of which it is inconsistent to

suppose are functioning normally, in the presence of an observation of the system and a description

of the system's normal behaviour. A solution consists of the collection of all minimal lists of system

components which it is consistent to suppose the members of which are faulty while the other

components are not. In this article, characterizing the class of malfunctions for which a problem is

identical to its solution is shown to be reducible to characterizing the conditions under whieh, for

an arbitrary graph H whose vertices are sentences,

IHI le;1 IHI led

V1\ j ~F= 1\ Vj.
i=1 j=1 i=1 j=1

&_--

Alternatively, this class of malfunctions can be characterized in terms of a maximality condition of

harmonic number for graphs, in addition to an original maximality condition on chromatic number,

as well as an equivalent minimality condition. In this way, characterizing the relationship between

problems and their solutions contributes to a general theory of logical, and in particular, self, duality,

as well as demonstrating how the harmonic theory of graphs can be applied to such a theory.

0.3.3 An Axiomatization of Family Resemblance

In An Axiomatization of Family Resemblance, inspired by Rosch and Mervis' seminal investigation

into Wittgenstein's notion of family resemblance [16], Jennings and Nicholson collaboratively pursue

the question whether extent of family resemblance can be axiomatized. Jennings further suggests

that by invoking concepts from the harmonic theory of graphs it is possible to give a measure of the

closeness of family resemblance, and to make precise the idea of a composite likeness. Nicholson's

results in this paper confirm these suggestions, and include a completeness proof for extent of family

resemblance which exploits the harmonic theory of graphs.

Family resemblance was introduced by Wittgenstein in [24] as part of an account of what consti-

tutes possession of a general term, and what is required for its correct use. The cognitive significance

11
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of this account is documented by Rosch and Mervis in [16]. For Wittgenstein, as for Rosch and

Mervis, what constitutes possession of a general term is not that one can identify some feature

which is shared by all and only instances of the term; in place of such essentialist doctrines they

argue that instances of a term are united by way of a network of similarities or intersections-this

network is called the family resemblance of a concept. To take the example that Wittgenstein does,

consider the general term "games": there is no single feature which is common to all games, unless

it is a feature which is shared by some things which are not games. Therefore, it is not because we

understand that there is something essentially game-like that enables us to use the term "game"

correctly; instead, what accounts for something being a game is that it participates in the network

of similarities possessed by all games-that is, it shares a family resemblance with other games.

Using a generalization of the harmonic number of a graph to model the family resemblance of a

concept, Nicholson shows that for any positive integer m, for any general term possessing any level

of family resemblance strictly greater than m, there is a taxonomical representation of the term

whereby each subordinate taxon has family resemblance strictly greater than m. This is significant

from a philosophical point of view because it shows that there is a taxonomic representation of

any general term which is complete with respect to the notion of family resemblance envisaged by

Wittgenstein.

0.3.4 On the Duality of Synchrony and Diachrony: A Dynamic Theory

of Identity

In On the Duality of Synchrony and Diachrony: A Dynamic Theory of Identity, I use graphs

to define a theory of identity which explains the relationship between diachronic and synchronic

perspectives of an individual. Specifically, drawing on the duality of a graph and its transverse

graph, a notion of weak duality emerges; I show that it is in this way that diachronicity and

synchronicity are related.

This bifurcated representation of identity is useful for several reasons: First, it suggests how we

can apply a weakened version of Leibniz's Principle of the Indiscemibility of Identicals (namely,

that if x and yare identical then x has a property l5 if and only if y has (5). On the wider notion, that

an entity at one time differs in one property from an entity at a second time does not entail that

the two entities are not identical. Second, by invoking the theory of harmonics for graphs, I obtain

well-defined measures of inter- and intra-personal resemblance. Third, the theory of identity can

be applied to issues of gender identity in relation to personal identity. By invoking the chromatics

12



of graphs, I show that given a certain degree of richness in our taxonomy of the kinds of properties

an individual can possess, if the collection of an individual's behaviors in his or her social settings

is sufficiently cohesive, and there is an appropriate relation of duality between her or his synchronic

and diachronic representations, then it is possible that some social role in which she or he engages

will witness him or her behaving in both of two differently gendered ways-at the same time, no

less.

0.3.5 Harmonics for Hypergraphs

In Harmonics for Hypergraphs, Jennings, Nicholson, and Sarenac take up a strictly logical aspect

of philosophical hypergraphics, and show that there is a truth function which, modulo some simple

propositional transformations, is capable of generating all of the graphs of harmonic number strictly

greater than n. In particular, the truth function is called 'n over n + 1', and is denoted by 'n~l '.

Where [n + 1] denotes a set {1,2, ... ,n + I} of n + 1 formulae (n 2: 1), n~l (1,2, ... ,n + 1) is the

sentence N (fn~ll), where for any integer i 2: 1, ([nt l]) denotes the set of all i-tuple subsets of

[n + 1]. Thus for example, t(l, 2, 3, 4) = (1 V 2 V 3) 1\ (1 V 2 V 4) 1\ (1 V 3 V4) 1\ (2 V3 V 4).

As an application of this result we prove the following: that for each n 2: 1, every sentence which

is valid with respect to the class of all (n +1)-ary relational frames is provable as a theorem in the

modal system K n , whose axioms and rules are:

[RN] : f- ex :::} f- Oex

[RM] : f- ex ---+ f3 :::} f- Oex ---+ Of3

[RPL] : f-PL ex :::} f- ex

[MP] : f- ex and f- ex ---+ f3 :::} f- f3

[U5j : f- ex and f3 is a substitution instance of ex :::} f- f3

[Kn] : f- 0Pl 1\ ... 1\ 0Pn+l ---+ O_n_(Pl, ... ,Pn+d
n+l

(0.3.1)

(0.3.2)

(0.3.3)

(0.3.4)

(0.3.5)

(0.3.6)

.._--

(n + 1)-ary relational semantics are a generalization of the usual binary relational semantics for

modal logic and represent the diagonalization restriction of the much more general algebraic work

of Jonnson and Tarski in [9] and [10]. An (n+ 1)-ary relational frame is a pair (U,R) where U is a

non-empty set and R ~ un+l is an (n + 1)-ary relational defined on U. The truth condition for 0

on models defined on these structures, devised by Schotch and Jennings [19][18][6], is given:
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In this paper, Jennings is responsible for framing the logical completeness problem as a functional

completeness problem of n-harmonics, and Nicholson and Sarenac collaborated on a solution to the

latter. Nicholson formulated both problems as part of a general, introductory, study of the theory

of n-harmonics with applications to the theory of graphs more generally: by couching a portion of

Berge's work on tranverse graphs [2] in the language of harmonicity, and introducing a maximality

condition on harmonicity, Nicholson shows how to characterize the class of graphs which are identical

to their transverse graphs--or which are, in other words, self-dual-using the language of harmonic

number.

0.3.6 A Dualization of Neighborhood Structures

In A Dualization of Neighborhood St/U,ctures I simplify a result which is analogous to the complete­

ness result of Harmonics for Hypergraphs by detouring around the functional completeness result

pertaining to harmonic number which is therein exploited. I do this by using transverse graphs to

alter the collection of structures of which the logical result is proved. Essentially this is done by

augmenting the definition of a neighborhood, minimal, or Scott-Montague [21][13], model (found

in [22] under the name 'neighborhood model', and in [3], under 'minimal model'; d. also [12]) to

incorporate the notion of a transverse graph in the truth condition assigned to the modal operator

O. In particular, the condition is:

PiO,6 iff 11,611 9Jl is a transversal for 1t(x),

where 11,611 9Jl
is the set of points in the model 9J1 at which ,6 is true, and 1t(x) is a graph assigned

to x. A central virtue of this approach is that I obtain a simplified completeness proof-simplified,

because it avoids a proof of chromatic compactness-for the K n modal logics, whose axioms and
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rules are:

[RN] : ~ 0: => ~ Do:

[RM] : ~ 0: -+ (3 => ~ Do: -+ 0(3

[RPL] : ~PL 0: => ~ 0:

[MP] : ~ 0: and ~ a -+ (3 => ~ (3

[US] : ~ a and (3 is a substitution instance of a => ~ (3

[Kn ] : ~ 0PI A ... A 0Pn+l -+ 0_2_(PI, ···,Pn+l)
n+l

(0.3.7)

(0.3.8)

(0.3.9)

(0.3.10)

(0.3.11)

(0.3.12)

where n~l (PI, ... , Pn+r) is the sentence Vl$i<j$n+l Pi A Pj' An additional virtue of this approach

is that it enables a determination result for a denumerable sequence of non-normal logical systems.

This is significant from a philosophical perspective for two reasons: First, non-normal logics have

deontic motivations inasmuch as they do not impose infinite sets of obligations. A logic is normal

when Oa is a theorem whenever 0: is a theorem. Thus, if 0 represents 'it is obligatory that', then

in any deontic logic with an infinite number of theorems there is an infinite number of obligations. 4

Second, if we read 0 as a necessity operator, then the existence of determined non-normal modal

logics marks a conceptual divergence between logical validity and its classical, Aristotelian account.

According to the classical account, an argument is valid when it is necessary that if the premises

are true then the conclusion is true. But there are non-normal logics in which there are logically

valid conditionals whose 0 formulae are not theorems. This raises the philosophical question of

how theoremhood in such systems should be understood, or alternatively, the question of what the

o operator represents in such systems.

0.3.7 On Imploding: the Logic of (In)Vacuity

In the final selection, On Imploding: the Logic of (In) Vacuity, I explore an inference relation de­

finable using the harmonic number of graphs. In classical logic, if q is a tautology, then q may

be inferred from any and every sentence p. Roughly, this is because if q must be true, then it is

4It is important to note, however, that the absence of normality does not guarantee the absence of an infinite
number of obligations. Although the absence of normality is necessary, it is not sufficient for this end. What we
really need is the rule:

(0.3.13)

Jennings has suggested that what we really want is a variety of connexivist implication, which is a restriction of
classical logic to contingencies.
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impossible for p to be true while q is false, and therefore inferring q from p will always preserve

truth~that is, necessarily, our conclusion q will be true if our premise p is. Nevertheless, some

critics of classical logic maintain, it is not always correct to infer q from p in such circumstances.

Take, for example, the case where q is irrelevant to p; contrary to the dictates of classical logic,

according to these critics we ought to think that there is something wrong with the following kind

of argument:

2. Therefore, either a square is a rectangle or it is not.

But consequently, we have to adopt a perspective somewhat distinct from, or at least narrower

than, that of classical logic. This article presents one such approach. It begins with the idea

common to Preservationist Logic(s) that there are other properties besides truth that we might

want permissible inference to preserve. One of these properties is the absence of informational

vacuity. Notice that since it is impossible to falsify the conclusion expressed by (2), (2) says very

little, if anything, about the world. If we require that a conclusion we draw conveys at least as much

information as our premise, then the inference from (1) to (2) is outlawed as fallacious. The question

is then, "How can we construct a system of inference general enough to satisfy this constraint for

any argument whatsoever?" In this article, by exploiting the theory of harmonics, and restricting

ourselves to arguments with singleton premise sets, we present one solution. We also prove that the

collection of inferences which are correct in relation to this new schema comprise a sub-collection

of the inferences which are correct in classical logic. That is to say, the logic we introduce can be

seen as a restriction of classical inference to a variety of relevant inference.
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Chapter 1

Democratic Harmonics

D. Nicholson l

Abstract

This article implements the duals of k-uncolourable hypergraphs in the construction of a dy­

namic system of electoral representativeness. Jennings and Schotch have shown the utility of

k-uncolourable hypergraphs when it comes to formalizing non-arbitrary inference from inconsistent

premise sets [6]. Here it is shown how this application can be extended to the dual political context

in which elected officials form policies which represent incohesive interest groups. By exploiting k-

harmonic graphs, a non-statistical model for a democratic polling technique is designed whose aim

is to preserve electoral representativeness through deliberative legislative processes. In this respect

the technique is dynamic, in addition to marking a departure from conventional, statistically-based

models of representation. In political science, the formalisms for modelling representativeness tend

to be drawn primarily from theories of games, social choice and multi-dimensional geometries, with

a focus on such issues as the equilibria of competing strategies. In contrast, this article uses a

theory of hypergraphs to model potential and desirable transfers of information among groups of

elected officials.

1This work first appeared under the title Political Incoherence: An Application of k-uncoloumble Hypergmphs to
the Theory of Democmcy, in Proceedings of the International Conference on Artificial Intelligence. (H.R. Arabnia,
Ed.), vol. 2, e.S.R.E.A. Press, June 2001, pp 888-894. Permission to reprint the article was granted by C.S.R.E.A.
press.
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demes

---1 a transversal s for the set of demes

Figure 1.1.1: A transversal s for the set of demes

1.1 Introduction

It is trite political theory that the integrity of a democracy can be safeguarded only insofar as

the representativeness of its governing bodies can be ensured. In general, the less representative a

legislature is, the more opportunity there exists for private interest groups to affect public policy for

the purpose of furthering their own aims. Arguably, the democratic changes in Athens of 462 B.C.

were designed to stop this kind of dilution of the sovereignty of the popular assembly, the ekklesia,

by requiring the random selection of a 500 membered body, the boule, whose main function was

to oversee what matters were to appear for debate in the public forum [2]. The idea was that

each of the local demes, the constituent villages of Attica, was to supply a number of bouleutai

to the boule which was considered proportionate to the size of its population. Thus, as the boule

began to be characterized by a preponderance of wealthy and familially-related members, we find

historical evidence that ways had been discovered to circumvent the randomness of the selection

procedure. Nevertheless, in theory we can say that the boule represented the Athenian electorate,

since it consisted of a randomly selected transversal for the hypergraph H of its demes. (See Figure

1.1.1.)

Definition 1.1.1. A hypergraph H is any finite non-empty set of finite non-empty sets e, where

U;~ll ei E H, abbreviated 'uH', is the set of vertices of H, and the elements of H are said to be its
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edges.

Definition 1.1.2. Let H be a hypergraph, and let s be a set. Then s is a transversal for H iff

'tie E H, s n e # 0.

In contrast to the ancient Athenian system, modern democracies elect what amounts to the

transversal of constituencies of which their governing body mainly consists. But, unless wealth

selects uniquely for competence, it is arguable that one consequence of this contrast is that modern

democracies tend to favour less representative governments, in that wealthier citizens are more

likely to popularize their views among an electorate, and are therefore more likely to gain access

to governing positions. Mind you, it's probably false that lack of membership in a group entails

an inability to represent that group's interests, but in any case, the extent to which a legislature

does not possess an efficient medium for the dissemination of incohesive electoral preferences does

seem to suggest a kind of measure for the representativeness of its policies. One could also include

such factors as a penchant for sophistry, bickering, and miscommunication on the part of officials

among those which tend to dilute representativeness. In effect, what these remarks suggest is that

mere "rep-by-pop,,2 is an insufficient basis for the construction of a democratic legislative process~

that there is a kind of dynamic representativeness, which really ought to be preserved through a

legislature's deliberations.

To illustrate, we suggest a "top-down" revision of standard democratic legislative structures,

as opposed to a "bottom-up" analysis which focuses on the way that representatives are selected.

To that end, a level of divisiveness will be introduced which can be used to measure the relative

difference between the number of mutually incohesive political perspectives among an electorate

with respect to some issue, and the number of possible outcomes for that issue which are being

debated in a legislative house. The point is that if the size of the former variable is significantly larger

than that of the latter, then any policy formed as a result of such debate is to that extent potentially

lacking in responsiveness to the public will. And, as a policy tends to lack in responsiveness to

the public will, so too does its representativeness of the public will tend to diminish. Indeed, as

when for example a single party dominates the legislature, not only is doubt thereby cast upon

the representativeness of its decisions, but the putative democratic virtue of public political debate

is rendered moot...---especially within a system in which party members cannot with impunity fail

to "toe the party line". Unless the voices of dissent within an electorate are heard and echoed in

the legislature, there is no difference, for practical purposes, between a legislature composed of a

20r , "representation by population" .
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transversal of constituencies, and a legislature selected to favour the members of the parties whose

platforms favour the status quo. In this way, the structure of a legislative system-specifically, those

aspects of its structure which pertain to the dissemination of views about possible outcomes for

issues being debated-may negatively affect its representativeness. Therefore, a democratic scheme

may be judged better or worse accordingly as it serves or does not serve to diminish such effects.

Suggestively, there appears to be a dual structural similarity between the political phenomenon

under discussion and the preservationist treatment of classical inference from inconsistent premise

sets: Preservationist logicians have shown that by measuring what is called the level of coherence of

a set ~ of sentences, it is possible to restrict inferences from ~ to those sentences which, when added

to ~, do not necessarily trivialize the resulting set, and in fact preserve the level of coherence of ~ [6].

In particular, the inference relation employed is called "n-forcing". Similarly, one could argue, so too

ought we to try to minimize the difference between the number of competing political perspectives

in an electorate, and the number of vessels provided in the legislature for the representation of

these perspectives, by preserving the number of competing political perspectives in the form of the

number of outcomes for an issue that are being debated. For although arbitrary inference from an

inconsistent database is classically permissible, it doesn't follow that any such inference ought to

be made. 3 Similarly, that a policy is decided upon by a democratically formed body does not entail

that the policy itself is representative, in the sense that it was formed as a result of political debate

in which the various, potentially dissenting, faces of the public will have had voice.

The preservationist strategy exploits the notion of what in the logic literature [6] [4] has been

called a k-tmce-----an object which for our purposes we can understand simply as a k-uncoloumble

hypergmph.

Definition 1.1.3. Let ~ be a set, and let k be a positive integer. Then the set of k-partitions of

~, IIk(~), is the set {{Cl' ... ,cd I U~=l Ci = ~ and Ch n Ci = 0 (1 ::::; h < i ::::; k)}. The chromatic

number of a hypergraph H, X(H), is then defined:

{

min k E Z+ : 371" E IIduH) : Ve E H, c E 71", e Cl c
X(H) :=

00

if this limit exists;

otherwise.
(1.1.1)

~--

If a hypergraph H is such that X(H) > k for some k 2: 1, then we say that H is k-uncolourable; H

is k-colourable, else.

3Notwithstanding that some, or even all, inferences from an inconsistent database might be permissible.
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Definition 1.1.4. Let I: be a set of sentences. Then the coherence level of I:, l(I:), is defined: .

{

min k E Z+ : ::In E IIdI:) : "ic E n, c 1/ ..1
l(I:) :=

00

if this limit exists;

otherwise.
(1.1.2)

1-

Definition 1.1.5. Let I: be a set of sentences, let a be a sentence, and let n E Z+. Then I: n-forces

a, I: [f- n a, iff::lH <;;; p(I:): X(H) > n, and "ie E H, e f- a.

It is easy to see that the closure under n-forcing of a set I:, where l(I:) = n, has a coherence level

no greater than n; the teleology of n-forcing is to minimize the difference between the coherence

level of the input and that of the closure of the input under level-forcing. But a structure that

is dual to this scheme seems to be exactly what we should want in a democratic political system:

conceptualizing the input to a democratic process as an electorate, and the output as the members

of a legislative body who effectively represent the interests of their constituents, we should want the

divisiveness of the output to be at least as great as that of the input. Whence the polling technique

presented in this article: it exploits a class of objects called k-harmonic hypergraphs, which are dual

to k-uncolourable hypergraphs. This approach represents a departure from the kinds of formal

strategies conventionally used in political science; there, the formalisms tend to be drawn primarily

from theories of games, social choice and multi-dimensional geometries, with a focus on such issues

as the equilibria of competing strategies. In contrast, this article uses a theory of hypergraphs to

model potential and desirable transfers of information among groups of elected officials.

1.2 k-Harmonic Hypergraphs

We establish the lemmas required to provide a logically dual characterization of k-uncolourability

for hypergraphs.

Definition 1.2.1. Let H be a hypergraph. Then the transverse hypergraph TrH for H is the set of

all minimal transversals for H.

Definition 1.2.2. Let H be a hypergraph whose vertices are sentences. Let V/\ H be the result of

first conjoining the vertices in elements of H, and then disjoining the resultant conjunctions. Then

v/\H is the formulation of H, and the corresponding sentence /\vH (interchanging all occurrences of

v and /\ in the preceding sentence) is the dual formulation of H.

Theorem 1.2.1. "iH, TrTrH <;;; H [5].
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Proof. Let e E TrTrH. Suppose that e rt H. Since each edge f of H is a transversal for TrH, 'it

follows that "If E H, e ~ f. But therefore, ::Ig E TrH such that 9 n e = 0, which is impossible since

e E TrTrH.

Definition 1.2.3. Let H be a hypergraph. Then H is simple if "Ie, f E H, e 1; f.

Theorem 1.2.2. VH, H is simple onlU if H = TrTrH [1].

D

Proof. By Theorem 1.2.1 it follows that TrTrH ~ H. To show that H ~ TrTrH if H is simple,

assume that H is simple, and let e E H. Then e is a transversal for TrH. If e rt TrTrH then ::If C e

such that f E TrTrH. But TrTrH ~ H (Theorem 1.2.1) and thus H is not simple, contrary to

assumption. Whence H ~ TrTrH.

Corollary 1.2.3. VH,I= /\VH +-+ V/\TrH, and F /\VTrH +-+ v/\H.

Proof. The result can be proved using Theorem 1.2.1.

D

D

Corollary 1.2.3 illustrates a sense in which for any hypergraph H, Hand TrH are logically dual

to one another: since N Hand V\ H are dual (in the sense in which V and /\ are logical duals)

Corollary 1.2.3 entitles us to assert that N Hand N TrH are dual, as well as V\ Hand V\ TrH.

Consequently, using the notion of a transverse hypergraph, we may devise a notion which is dual to

k-uncolourability. We introduce this dualized notion as an independent class of objects, and then

establish duality with the class of k-uncolourable hypergraphs.

Definition 1.2.4. Let H be a hypergraph, and let k E Z+. By "(~)" we denote the set of all

k-tuple subsets of H, and we say that H is k-wise intersecting if VB E (~), nB -=f- 0. The harmonic

number of a hypergraph H, 7](H), is then defined:

{

min k E Z+ : H is not k-wise intersecting
7](H) :=

00

if this limit exists;

otherwise.
(1.2.1 )

If a hypergraph H is such that 17(H) > k for some k 2: 1, then we say that H is k-harmonic; H is not

k-harmonic, else.

The following theorem illustrates the sense in which k-harmonic hypergraphs are dual to k­

uncolourable hypergraphs:

Theorem 1.2.4. VH,7](H) > k {:} x(TrH) > k.
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Proof.

[=}] Suppose that x(TrH) = j :s: k. Then:37r E IIj(UH) such that "Ie E TrH, Vc E 7r, e g; c.

Let B = {UH - c ICE 7r}. Then Vb E B, b is a transversal for TrH. But nB = 0. Therefore

for some h :s: j, there is an h-tuple of edges of TrTrH with an empty intersection. That is,

'I}(TrTrH) :s: h :s: j :s: k. But TrTrH ~ H (Theorem 1.2.1). Whence 'I}(H) :s: k. Therefore 'I}(H) > k

only if x(TrH) > k.

[¢=] Suppose that 'I}(H) = j :s: k. Then there is a j-tuple of edges of H, {el, ... ,ej} such that

n{el, ... , ej} = 0. Let 6 = {UH - ei 11 :s: i :s: j}. Then Vd E 6, "Ie E TrH, e g; d because "Ie E H, e

is a transversal for TrH. Therefore from 6 one may construct a partition 7r E IIj(UH) such that

"Ie E TrH, Vc E 7r, e g; c. Therefore x(TrH) :s: j :s: k. Therefore x(TrH) > k only if'l}(H) > k.

o

1.3 A Democratic Polling Scheme

Assume that the nation's electorate is divided into constituencies in some conventional way. Assume

further that each constituency elects to a legislative body (call it Parliament) some number of

representatives proportionate to its population. While Parliament is thus composed of a cross­

section of eligible voters, the question still remains as to whether or not the decisions made by

Parliament adequately represent the public will. In cases where Parliament is dominated by a

single party, the answer to this question is often argued to be "no". Consequently, it is sometimes

argued, when a single party does hold a majority of the seats in the legislative assembly, political

debate is moot.

Intuitively, one way around this alleged difficulty is to add an extra layer of structural complex­

ity to the decision-making which occurs in Parliament, by reiterating the "transversal-formation"

process by which elected officials essentially gain entry to the house in the first place. In this way,

if it is a cross-section of Parliament which ends in shaping the legislative process, the predominance

of the occurrence of the members of a single party in Parliament may not entail its domination of

policy formation. But to design such an elaboration of the usual democratic scheme, we have to

decide at least two things:

• where, structurally speaking, the re-iteration of the transversal-formation is to occur, and

• what is the hypergraph of which a transversal will be formed?
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One possible solution is as follows:

1. Define the level of divisiveness of Parliament (P) with respect to an issue I, d[(P), as the

least k E Z+ such that ::J7r E IId~) such that Vc E 7r, "Ix, y E c, x and y favour the same

possible outcome with respect to I. At least initially, the level of divisiveness of the electorate

should be smaller than or equal to the level of divisiveness of Parliament.

2. Form a Parliamentary k-harmonic hypergraph H, where UH = P, and where k is set to

d[(P). This is a decomposition of Parliament into IHI Parliamentary committees, every k­

tuple collection of which having at least one member of Parliament in common.

3. Stipulate that debate over the issue I is to occur within the Parliamentary committees, after

which each member of Parliament will cast a single vote. This stage is called the initial vote.

Note that where d[(UH) = j for this stage, the initial vote induces a j-partition 7r of uH such

that Vc E 7r, "Ix, y E c, x and y agree about I.

4. Form TrH, and if e E TrH is a subset of some cell of 7r, count each of the initial votes of the

elements of e together as a single vote. This stage is called the final vote. In fact, these are

the only votes that directly affect the final decision about the issue under consideration. We

thereby stipulate that all and only members' initial votes will be counted each time their vote

is identical with the initial vote of every other member of an element of TrH in which they

happen to mutually appear.

Using the theories of k-harmonic hypergraphs and k-uncolourable hypergraphs, we now describe

how and why it is that this particular scheme achieves the democratic virtues adduced above. To

this end, the first question to consider is perhaps the most basic: "Why k-harmonic hypergraphs?"

In general, it is because a k-harmonic hypergraph is k-wise-intersecting. Consequently, if k > 1,

then "Ie E H, e is a transversal for H. I.e., His self-r·epresentative. So by decomposing Parliament into

a k-harmonic hypergraph where k = d[(UH) > 1, we decompose a large representative body into a

set of smaller ones which, because they are smaller, provide more fertile ground for effective debate

and communication without preventing any single member of Parliament from communicating with

any other.4 Moreover, since it follows that TrH is k-uncolourable if His k-harmonic (Theorem 1.2.4),

we have that ::Je E TrH such that "Ix, y E e, x and y agree about I. One advantage of the scheme

is therefore that some final vote will be counted.

4 At least indirectly.
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This is, however, peripheral to the main advantage of a polling scheme designed in this way,

namely its structural enforcement of the democratic virtue of inter-interest group debate and con­

sensus. For on this scheme the voting power of individual members of Parliament is filtered to the

elements of a set TrH of representative samples from Parliament, anyone of which may contain

members of competing parties. In this way, that a single party controls a majority of Parliamentary

seats, does not entail that it has the ability to dominate the legislative process for the purposes

of its own agenda. Indeed, because the structures which have legislative power may contain mem­

bers of competing parties, it is in the interest of members of competing parties who appear in the

same parliamentary committees to arrive at consensus; else they risk losing their legislative power

altogether. To illustrate this point, we exploit the restriction of a hypergraph.

Definition 1.3.1. Let H be a hypergraph; let S ~ uH. Then the restriction of H to S, H[S], is the

hypergraph whose edge set is {e E Hie ~ S}.

Theorem 1.3.1. VH, His k-uncoloumble only if "Ie E TrH, H[e] is (k - l)-uncoloumble.

Proof. Let e E TrH. If H[e] is (k - l)-colourable then 371"" E IIk-1(e) such that "If E H[e], Vc E

7I"",f g c. But "If E H,f g UH - e. Therefore, 371""'(= 71"" U {UH - e}) E IIk(uH) such that

"Ie E H, Vc E 71""', e g c. That is, X(H) :::; k. 0

Thus, if H is a parliamentary k-harmonic hypergraph, then we have that "Ie E H, if d[(e) :::; k -1,

then the members of some subset e' of e such that e' E TrH will mutually agree on some possible

outcome for I, and consequently, some subset of e will have its final vote counted. But more than

that, it would seem that as d[(e) decreases, the more likely it is that the number of subsets e' of e

which have their final votes counted increases. To understand this, consider that if d[(e) = 1, then

"Ie' E (TrH)[e], the members of e' have their final votes counted at least once. Or, if d[(e) = n, and

it turns out that x((TrH)[e]) :::; n, then it is possible that no subsets e' of e with e' E TrH will be

such that their members will have their final votes counted. Thus, by exploiting various properties of

k-harmonic hypergraphs, it seems possible to design a legislative system imbued with a structural

incentive for its constituent committees to reduce their respective levels of divisiveness. Vertex­

critical k-harmonic hypergraphs therefore seem to be particularly helpful in this context, given that

we have: if H is a vertex-critical k-harmonic hypergraph (k > 1), then "Ie E H, x((TrH)[e]) = k.
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1.3.1 Vertex Criticality

Definition 1.3.2. A hypergraph H is a verte.T-critical k-harmonic hypergraph if H is a simple

k-harmonic hypergraph, and 'tIx E uH,::3j ::; k,::3B E (7) : nB = {:r}.

Definition 1.3.3. A hypergraph H is k-vertex critical if X(H) > k, and 'tI5 C UH,5 i- 0 =?

X(H[5]) ::; k.

Theorem 1.3.2. A hypergraph H is a vertex-critical k-hamwnic hypergraph {o} TrH is k-vertex

critical.

Proof.

[=?] Assume that H is a vertex-critical k-harmonic hypergraph. Then by Theorem 1.2.4, x(TrH) >

k. We want to show that 'tI5j=0 C UH, x((TrH)[5]) ::; k. Let 5#0 C UH be arbitrary. Let x E 5.

Since H is a vertex critical k-harmonic hypergraph, ::3j ::; k, ::3B E (~) such that nB = {x}. But

'tie E TrH,'tIb E B,e rz. uH - b. Therefore x((TrH)[UH - {x}]) ::; j::; k, and so by the downward

monotonieity of colourability, x((TrH)[5]) ::; k.

[-¢=] Assume that TrH is k-vertex critical. Then 1](H) > k by Theorem 1.2.4. We want to show

that 'tIx E UH, ::3j ::; k, ::3B E (~) such that nB = x. But since TrH is k-vertex critical, we know

that'tlx E UH, 37r E IlduH - {x}) such that 'tie E TrH,'tIc E 7r,e rz. c. But then n{UH - c I

c E 7r}(= C) = {x} and 'tid E C,::3e E H such that e ~ d. Further, n{e E H I ::3d E C such that

e ~ d}(= D) = {x}; otherwise, since'tlf E TrH,'tIg E {UH - e leE D},f rz. g, it follows that

x(TrH)::; k, contrary to our initial assumption. Therefore nD = {x}.

D

Theorem 1.3.3. If H is simple, k-vertex critical and IHI 2: 2, then 'tie E TrH, x(H[e]) = k.

Proof. Assume that H is k-vertex critical. Then X(H) > k. But therefore, 'tie E TrH, x(H[e]) > k-1

(Theorem 1.3.1). Now suppose that x(H[e]) > k. Since H is simple and IHI 2: 2, UH - e i- 0.

Therefore H is not k-vertex critical if x(H[e]) > k, because x(H[e]) > k. Whence x(H[e]) ::; k and

thus x(H[e]) = k. D

Theorem 1.3.4. If H is a vertex-critical k-hamwnic hypergraph and k > 1 then 'tie E H, x((TrH)[e]) =

k.

Proof. Assume that H is a vertex-critical k harmonic hypergraph where k > 1. Then TrH is k­

vertex critical (Theorem 1.3.2). Moreover, ITrHI 2: 2; for otherwise, H = {{xd, ... , {xm }} for
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some m 2 1, in which case k = 1. But then Ve E TrTrH, x((TrH)[e]) = k (Theorem 1.3.3). But

H = TrTrH since H is simple (Theorem 1.2.2). Whence Ve E H, x((TrH)[e]) = k. 0

1.3.2 Saturation

A saturated k-harmonic hypergraph is one that is in a certain sense maximal with respect to

harmonic number. Therefore, in addition to vertex-critical hypergraphs, saturated k-harmonic

hypergraphs, because they are maximally self-representative, also seem well-suited to the application

we are considering, relative to harmonic number strictly greater than k. Moreover, on the practical

side of things, it is a theorem that Vk > 1, Vj > k, there is a saturated k-harmonic hypergraph with j

vertices. Because of this theorem, and particularly the algorithmic structure of its proof, a "random­

hypergraph-generator" which decomposes Parliament into a saturated harmonic hypergraph of the

appropriate level and size would not be too inefficient to implement. We don't go into details of the

computational complexity of such a procedure, but simply point out that once an isomorphism class

of any particular hypergraph is known, it remains only to enumerate randomly the IU HI members

of Parliament in order to decompose the legislature appropriately [3]. We close with the formalism

necessary to establish these latest results.

Definition 1.3.4. A hypergraph H extends a hypergraph H', H~H, if H ~ H' and Ve E H- H', Ve' E

H',e ~ e'.

Definition 1.3.5. A hypergraph H is a saturated k-harmonic hypergraph if H is a simple k-harmonic

hypergraph, and VH' ~ H, if H' is simple then H' is not k-harmonic.

Theorem 1.3.5. Vk > 1, Vj > k, ?JH such that H is a saturated k-harrnonic hypergraph with j

vertices.

Proof We begin by defining a procedure which given any saturated k-harmonic hypergraph G

having j vertices and at least two edges, generates a saturated k-harmonic hypergraph H with j + 1

vertices (1 < k < j): Let e E TrG be arbitrary. Let x be a vertex not appearing in uG. Let

f = uG - e, and let G' be G U {f U {x}}. Further if 9 E G' and ?JB E (k~l) such that 9 E Band

nB = e, then replace 9 E G' with 9 U {x} to obtain the hypergraph Gil. Then Gil is simple and

k-harmonic: That Gil is simple follows from the fact that a new vertex x was added to f, and if x

is added to any other edge 9 E G then e ~ g; thus if f U {x} ~ 9 U {x} then 9 = uG, contrary to

the simplicity of G.
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That Gil is k-harmonic can be seen in the following way: Since 7](G) > k, to prove that 1](G") > k

it suffices to show that 'VB E (G" - k~~{ x} }), nB n (f U {x}) i- 0; so, suppose not. Then nB ~ e.

But, in that case nB = e. For suppose that nB C e. Let nB = b. Then 'Vg E TrG, 'Vd E

{b} U {UG - b' I b' E B}, 9 ~ d. That is, TrG is k-colourable, which contradicts our supposition

that G is k-harmonic, given Theorem 1.2.4. So nB = e. But if nB = e, 'then by construction, x is

added to every element of B. That is, x E nB, which is absurd since x rf- e. Whence 7](G") > k.

Now to obtain a k-saturated graph H from Gil, extend Gil using elements of 5J(UG") in such a way

so as to preserve simplicity and k-harmonicity. We can say that if H is the largest simple hypergraph

such that H extends Gil, and 7](H) > k, then H is a saturated k-harmonic hypergraph having j + 1

vertices. 'Whence, given a saturated k-harmonic hypergraph with j vertices, and having at least 2

edges, we may construct one with j + 1 vertices. But as 'Vk > 1, there are saturated k-harmonic

hypergraphs with k + 1 vertices, namely, the set of all k-tuple subsets of a (k + I)-membered set,

our theorem follows straightaway.

o
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Chapter 2

Self-dual Malfunctions

D. Nicholson

Abstract

In this article, we use a maximality condition on the harmonic number of a hypergraph to derive an

original maximality condition on chromatic number. We also show the relevance of these conditions

to Reiter's theory of diagnosis from first principles [12]' by using them, and a related minimality

condition on chromatic number, to characterize the class of self-dual system malfunctions. Char-

acterizing the class of self-dual malfunctions reduces to characterizing the conditions under which,

for an arbitrary finite hypergraph H == {e1' ez, ... , ei, ... , em} whose vertices are sentences,

Iml le,l Iml led

V1\ O:j =H= 1\ VO:j.

i=l j=l i=l j=l

This research illustrates the applicability of the theory of harmonics for hypergraphs to diagnostic

theory, as well as to a general theory of logical duality.

2.1 Introduction

Diagnostic problems require a differentiation between normally and abnormally behaving system

components. But given a malfunction in a system, two kinds of diagnostic questions can be asked.

First,
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1. What went wrong? That is, which component(s) is (are) misbehaving?

And second,

2. \\Thy is it broken? Or, which components are responsible for the problem?

Pretheoretically, one might assume that the answers to these questions coincide. But this assump-

tion results in an expectation which can be responsible for mistaken or missed diagnoses. Such

is the case, for example, when the signs of a disease are confused with the disease itself. Given

an observation of psychopathology, for instance, one could cite the elements of the nervous system

responsible for regulating brain chemicals in response to 1. But to assume that this answer is ade-

quate with respect to 2 risks missing a diagnosis of an underlying anatomical condition, such as a

tumour, which is causing the pathology. Reiter's model of diagnosis in a technical system, a form

of diagnosis from first principles [12], is an environment in which the nature of this fallacy is made

plain. Using this model, an appropriate answer to 1 is the set of all minimal lists of system compo-

nents the members of which it is inconsistent to suppose are functioning normally, in the presence

of an observation of the system and a description of the system's normal behaviour. An adequate

answer to 2 consists of the set of all minimal lists of system components which it is consistent to

suppose the members of which are faulty while also supposing that the other components are not.

In this article, characterizing the class of system malfunctions for which the answers to 1 and 2 are

identical is shown to be reducible to characterizing the conditions under which, for an arbitrary

finite hypergraph H = {el' ez, ... , ei, ... , em} whose vertices are sentences,

m le;1 m le;.1

V1\ {Xj =H= 1\ V{Xj.

i=lj=l i=l j=l

Consequently, because of the duality of 1\ and V, characterizing the relationship between answers to

1 and 2 contributes to a general theory of logical duality. Alternatively, the class of malfunctions for

which the answers to 1 and 2 are identical can be characterized in terms of a dual formulation of a

maximality measure of chromatic number for hypergraphs. This fact demonstrates the applicability

of the harmonic theory of hypergraphs both to diagnosis from first principles as well as to a general

theory of logical duality.
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2.1.1 Applications

In this article we focus on the system of diagnostics known as 'diagnosis from first principles'. As

Reiter notes, there are two divergent approaches in the literature. He writes:

In the first approach, often referred to as diagnosis from first principles, one begins

with a description of some system-a physical device or real-world setting of interest,

say-together with an observation of the system's behaviour. If this observation con­

flicts with the way the system is meant to behave, one is confronted with a diagnostic

problem, namely, to determine those system components which, when assumed to be

functioning abnormally, will explain the discrepancy between the observed and correct

system behaviour. For solving this diagnostic problem from first principles, the only

available information is the system description, i.e. its design or structure, together

with the observation(s) of the system behaviour. In particular, no heuristic information

about system failures is available, for example, of the kind "When the system exhibits

such and such aberrant behaviour, then in 90% of these cases, such and such compo­

nents have failed." Notable examples of approaches to diagnostic reasoning from first

principles are [4][5][G][7][1O][11].

Under the second approach to diagnostic reasoning, which might be described as the

experiential approach, heuristic information plays a dominant role. The corresponding

diagnostic reasoning systems attempt to codify the rules of thumb, statistical intuitions,

and past experience of human diagnosticians considered experts in some particular task

domain. The structure or design of the corresponding real world system being diag­

nosed is only weakly represented, if at all. Successful diagnoses stem from the codified

experience of the human expert being modeled, rather than from what is often referred

to as "deep" knowledge of the system being diagnosed. A notable example of such an

approach to diagnosis from experience is the MYCIN system [2]. [12]

Here we take the first approach, and, using Reiter's theory in particular, we tacitly focus on

technical systems representable in a language which satisfies the following conditions:

1. every sentence has exactly one of two values upon interpretation, and

2. the set of constants of the language includes 1\, V, and " which are given their usual Boolean

interpretations.
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Accordingly, this theory has the potential to accommodate a wide range of diagnostic problems.

Reiter notes that

time varying digital hardware have[sic] natural representations in a temporal logic [9] and

this might form the basis for a diagnostic reasoning system for these devices. Similarly,

time varying physiological properties are central to certain kinds of medical diagnosis

tasks [13]. Database logic has been proposed for representing many forms of databases

[8] so that violation of database integrity constraints might profitably be viewed as

a diagnostic reasoning problem with database logic providing the system description

language [12].

2.2 Conflict Sets and Diagnoses

As defined in [12], a technical system S is a pair (SD, COMP = {Cl,""Cn }), where SD is a

set of sentences describing a system, and COMP is a finite set of components. For any system

S, SD describes how the system normally behaves. Introducing the set OBS, a finite set of

sentences representing an observation of S, and given a unary predicate 'AB', interpreted "is

behaving abnormally", a determination that S is malfunctioning, given OBS, is a determination

that

This statement is a representation of the fact that the system is faulty. Typically, however, when

confronted with a malfunction, concern is focused on (minimal) sets of components which are

behaving abnormally. Whence a conflict set l for (S,OBS) is a set e ~ COlvfP such that:

OBS u SD U {--.AB(c) ICE e} 1-.1,

and a minimal conflict set is a conflict set e such that \:jfee,

OBS u SD U {--.AB(c) ICE J} 1f.1.

But from merely having identified a least set of such "problematic" components in a system that

is behaving badly, where a problem is represented as a logical inconsistency, it does not follow

lThe notion of a conflict set is due to de Kleer [5J.
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that one has identified a least set e of components for which the assumption that each member of

e is behaving abnormally, and every component in COM P - e is behaving normally, resolves the

problem.

To illustrate, let S be a system with components C1,C2,C3,C4, and let OBS be an observation of

a malfunction, which is consistent with a consistent system description SD. Suppose further that

{ C1 , C2} and {C3, C4} are the minimal conflict sets for the malfunction. Then we have:

OBS U SD U {-,AB(cI), -,AB(C2)} f-- .-L

OBS u SD u {-,AB(C3), -,AB(C4)} f-- .-L

(2.2.1)

(2.2.2)

But there are four sets of components such that the assumption that each member is behaving

abnormally, while every other component is not, is consistent, namely, {C1,C4},{C1,C3},{C2,C3},

and {C2,C4}. In other words, and taking the set {c1,cd as an example, we have:

and

OBS u SD U {AB(cI)} U {-,AB(C2), -,AB(C3), -,AB(C4)} f-- .-L

OBS U SD U {AB(C4)} U {-,AB(cI), -,AB(C2), -,AB(C3)} f-- .-L

OBS U SD U {-,AB(C1), -,AB(C2), -,AB(C3), -,AB(C4)} f-- .-L.

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

Thus the notion of a (minimal) conflict set, by itself, is insufficient for diagnosing a malfunction,

where, intuitively speaking, a diagnosis is a conjecture that certain of the components are faulty,

and the others are not [12]. Specifically, a diagnosis for (S,OBS) is a minimal set e ~ COMP

such that:

OBS U SD U {AB(c) ICE e} U {-,AB(c) ICE COMP - e} Ii.-L.

Given a malfunction in a system, and the set of all minimal conflict sets for it, the paramount

diagnostic question is therefore: How does one generate the set of all diagnoses? As shown in

[12], this problem is reducible to that of generating the transverse hypergraph T H for an arbitrary

hypergraph H.
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2.3 Hypergraphs and Transverse Hypergraphs

If V#0 is a set and E = {C1' C2, ... , ei, ... } ~ 2v then the pair (V, E) is a hypergraph H with V the

vertex set of Hand E the set of edges of H. Since for most purposes V can be taken to be Ui=l ei,

abbreviated 'UH', H can be identified with E, and we can refer to the edges of H by speaking of

its elements. If Ve, f E H, e 1; f, then H is a simple hypergraph. If H is a hypergraph and 5

is a set then 5 is a transversal for H if 5 has a non-empty intersection with every edge of H. A

minimal transversal for H is a transversal for H which is not a proper superset of any transversal.

The transverse hypergraph of H, T H, is the set of all minimal transversals for H.

Proposition 2.3.1. A set e is a diagnosis for (5, OB5) iff COMP - e is a maximal subset of

COAIP which is not a superset of any conflict set.

Proof. The result is proved in [12]. o

Theorem 2.3.2. If H is the set of all minimal conflict sets for (5, OB5), then THis the set of

all diagnoses [Adapted from [12]].

Proof. Assume that H is the set of all minimal conflict sets for (5,OB5). Then the set of relative

complements of T H -edges with respect to COMP is the set of all maximal subsets of COMP

which are not supersets of any conflict sets. Therefore, from Proposition 2.3.1 it follows that TH

is the set of all diagnoses for (5,OB5). o

Theorem 2.3.2 exemplifies the relevance of the theory of transverse hypergraphs to diagnosis

from first principles. In what follows, this connexion is further exploited in the formulation of

independent and dual characterizations of the class of system malfunctions for which the set of all

minimal conflict sets is identical to the set of diagnoses.

2.3.1 Logical Duality

The transverse hypergraph of a hypergraph is its dual. To demonstrate this we formulate hyper-

graphs as sentences. We assume in what follows that all hypergraphs are finite, that is, they have

finite vertex sets.

If the vertices of a hypergraph H are sentences, then the V-formulation of H, FV(H), is defined:

IHlleil
F V (H) := V I\. Ctj E ei

i=l j=l
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and the A-formulation of H, FA(H), is defined

IHlleil
FA(H) := 1\ Vex) E e;.

;=1 )=1

Lemma 2.3.3. VH, e E H, ~f E TTH such that e 2 f, VH, TTH <;;;: H, and VH, if H is simple

then H = TTH.

Proof. Let H be a hypergraph. Since every edge of H is a transversal for T H we have 'Ie E H, ~f E

TTH such that e 2 f.

Suppose that e E TTH, but that e tf- H. Since every edge of H is a transversal for TH,

'If E H, e ~ f. Therefore every element of H has an element that is not a member of e. So

~f E TH such that f n e = 0, which is impossible because e E TTH. Whence VH, TTH <;;;: H.

Assume now that H is simple, and let e E H. We know that e is a superset of some minimal

transversal f for TH. Suppose that e ::J f. Because H is simple, and because TTH <;;;: H,

V9 E H, f ~ g. So every element of H possesses an element that is not in f. Therefore ~g E T H

such that 9 n f = 0, which is impossible because I E TTH. Whence e = I, and H <;;;: TTH if His

simple. Consequently, H = TTH if H is simple.

D

Theorem 2.3.4. VH,FV(H) =jl= FA(TH) and PA(H) =jl= PV(TH).

Proof. Theorem 2.3.4 is easily proved using Lemma 2.3.3. D

Now pv (H) is dual to FA (H). The notion of duality which is meant here is not just the familiar

one from Church [3] whereby one obtains what he calls the principal dual of a sentence by replacing

each occurrence of a connective with its dual, where the dual of a connective may be obtained by

interchanging all occurrences of 1's and D's in its truth table. Thus, V and A are dual, and therefore

pV (H) and pA (H) are principal duals. By 'duality' we mean to extend the notion of duality in

Church, which is specific to connectives, to entire formulae, so that one formula, ex, is dual to

another, {3, iff ex is equivalent to the truth function obtained by interchanging all occurrences of l's

and D's in the truth table for {3. Whence we have the following principle of duality:

Proposition 2.3.5. If a sentence ex is dual to a sentence {3, and ex is truth functionally equivalent

to a sentence 5, and {3 is truth functionally equivalent to a sentence /, then 5 is d'ual to /.

Using Theorem 2.3.4 and Proposition 2.3.5 we have:
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Theorem 2.3.6. VH,FV(H) is dual to FV(TH) and FI\(H) is dual to FI\(TH).

Theorem 2.3.6 illustrates the sense in which Hand TH are dual, for any hypergraph H. In this

sense of duality, the chromatic n'umber of a hypergraph can be said to be dually expressed as its

harmonic number,

If n is a positive integer, let '[n]' abbreviate '{I, 2, ... , n}', Then if H is any hypergraph, a function

f : uH ---> [n] is an n-colouring of H (n 2: 1) if Ve E H, ~x, Y E e : f(x) =I- f(y). That is, a function

f : uH ---> [n] is an n-colouring of H if it assigns a colour to every vertex in such a way that no

edge is monochrome.

The chromatic number- of H, X(H), is defined:

{

min n E Z+: there is an n-colouring of H
X(H) :=

00

if this limit exists;

otherwise.

If X(H) ::::; n then H is n-colourable; else H is n-uncolourable. An n-chromatic hypergraph is one

whose chromatic number is n.

For any hypergraph H, the harrnonic number of H, 1](H), is defined:

{

min n E Z+ : ~G E (H) : nG = 0 if this limit exists;
1](H) := n

00 otherwise,
(2.3.1 )

where (~) is the set of all n-tuple subsets of H, and for any hypergraph G, 'nG' abbreviates

'ni =l gi E G'. If 1](H) = n then H is n-hamwnic.

Theorem 2.3.7. VH, n 2: 1, X(H) = n ¢:> 1](TH) = n.

Proof. It is sufficient to show that VH, m 2: 0, X(H) > m iff 1](TH) > m. To that end:

[==>] Assume that 1](TH) ::::; m. Then ~l ::::; m, ~A E (Tn such that nA = 0. Let B = {UH - a I a E

A}. Then B induces an l-colouring of H. Therefore X(H) ::::; m.

[-¢=] Assume that X(H) ::::; m. Then ~l ::::; m such that there is a function f : uH ---> [l] such that

Ve E H,Vi E [l],e r£. {x E uH I f(x) = i}. Let A = {{x E uH I f(x) = i} liE [l]}. Let

B = {UH - a I a E A}. Then Vb E B, b is a transversal for H. Further, nB = 0. Therefore

~k ::::; l, ~C E (T/!) such that Vc E C, ~b E B, c ~ band nC = 0. Whence 1](TH) ::::; m.

o
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2.4 Self-duality

For a simple hypergraph H, the identity of Hand TH, or, the self-duality of H, can be expressed

as the truth functional equivalence of the dual sentences F V (H) and F/\ (H). That is,

Theorem 2.4.1. VH, if H is simple then H = T H {:} F V(H) =11= F/\ (H).

Proof. Assume that H is simple.

[=}] Suppose that H = TH. Suppose that FV(H) is true on some valuation v. Then F/\(TH) is

true on v (Theorem 2.3.4), in which case, since H = TH, F/\(H) is true on v.

Suppose now that F/\(H) is true on v. Then F/\(TH) is true on v. But then FV(H) is true on

v as well (Theorem 2.3.4).

[~] Assume that F V(H) is truth functionally equivalent to F/\ (H). Let e E H. Suppose that every

element of e is true on some valuation v. Then F/\(H) is true on v, so e is a transversal for H.

Therefore "3f E TH such that e ":2 f. Now let e E TH, and and suppose that every element of e

is true on some valuation v. Then FV(TH) is true on v. So F/\(H) is true on v (Theorem 2.3.4),

and thus F V (H) is true on v, by assumption. Whence"3f E H such that e ":2 f. So every edge of

H contains an edge of T H, and every edge of T H contains an edge of H. Therefore since both H

and T H are simple, H = T H. o

Because of Theorems 2.4.1 and 2.3.2, we may call a system malfunction for which the set of

all minimal conflict sets is identical to the set of all diagnoses a self-dual malfunction. Because

of Theorem 2.4.1, by characterizing the class of self-dual malfunctions in terms of chromatic and

harmonic properties we demonstrate an application of the theories of harmonics and chromatics to

a general theory of logical duality.

In [1], Berge shows that if H is a simple hypergraph, then H = T H iff H is pairwise intersecting

and 2-uncolourable, i.e., iff X(H) > 2 and ry(H) > 2. More specifically we can show:

Theorem 2.4.2. VH, if H is simple then H = TH {:} either H = {{x}} or X(H) = ry(H) = 3.

To prove this theorem we require the notion of a partition of a set: Let n be a positive integer,

and let S be a set. Then the set of n-partitions of S, IIn(S) is defined:

n

IIn(S):= {7r = {Cl,""Cn} I Vi,] (1:::; i <]:::; n),c; nCj = 0 and UC; = S}
;=1
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Proof. Let H be simple.

[=?] Assume that H = TH, and that 't/x E UH,H i= {{x}}. Then ry(H) > 2 because every

edge of H is a transversal for H. Also, X(H) > 2 else there is a 2-partition 7f of H such that

't/C E 7f, e E H, e Cl c, in which case each c E 7f is a transversal for H, in which case 3A E (~)

such that nA = 0, contrary to ry(H) > 2. Now since H = T H, 't/e E H, x E e,3A E (~) : e E A

and nA = {x}. Moreover, since 't/x E uH,H i= {{x}},IHI ~ 2 because ITHI > 2. Let e E H be

arbitrary, and let x E e. Then 3f E H : x rf- f. Otherwise {x} E T H, contrary to the simplicity of

H. :. ry(H) = 3. But then X(TH) = 3 (Theorem 2.3.7, Lemma 2.3.3), in which case X(H) = 3.

[¢::] Assume that X(H) = ry(H) = 3. Let e E H. Since ry(H) > 2, e is a transversal for H, so 3f ~ e

such that f E TH. Suppose that fee. Since X(H) > 2, ry(TH) > 2 (Theorem 2.3.7). Therefore f

is a transversal for TH. So 3g ~ f such that 9 E TTH. But TTH ~ H (Lemma 2.3.3). Therefore

9 E H, contrary to the simplicity of H. Whence e = f and H ~ TH.

Now let e E TH. Since ry(TH) > 2 (Theorem 2.3.7), e is a transversal for TH. So exists f ~ e

such that f E H, since TTH ~ H (Lemma 2.3.3). Suppose that fee. Then 3g E TTH such that

9 n f = 0. But H = TTH (Lemma 2.3.3). Whence ry(H) :::: 2, contrary to the assumption that

ry(H) = 3. Therefore e = f and TH ~ H. Consequently, H = TH.

Lastly, suppose that H = {{x}}. Then trivially H = TH. Therefore H = TH. o

l.

In fact, the class of hypergraphs identical to their transverse hypergraphs can be characterized

independently of chromatic properties by exploiting a maximality condition imposed on harmonic

number. This class can also be characterized chromatically, independently of harmonic properties,

by dualizing the harmonic maximality condition.

2.4.1 Harmonic Maximality

If H is n-harmonic then H is maximally n-harmonic if for any set S such that 't/e E H, S f. e, it

follows that ry(H U {S}) < n.

Theorem 2.4.3. Let H be simple. Then H = T H {:} either H = {{x}}, for some x, or H is

maximally 3-harmonic.

Proof. Assume that H is simple.
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[=}] Assume that H = TH and that H # {{x}}, for any x E uH. Let 5 be such that "Ie E H,5""J. e:

Then ~f E T H( = H) : f n 5 = 0.... 'fI(H U {5}) ::::: 2. But from Theorem 2.4.2 we have 1](H) = 3.

Whence H is maximally 3-harmonic.

[~] Assume that H is maximally 3-harmonic. Let e be in H. Then since 'fI(H) > 2, ~f s:;; e such

that f E TH. Suppose fee. Then 'fI(H U {J}) = 'fI(H), which is absurd by the maximality of H

with respect to 'fl. Whence H s:;; T H.

Now let e E TH. Then by the maximality of H, ~f E H such that e ";2 f. If e J f then, since

'fI(H) > 2, e is not a minimal transversal for H . ... TH s:;; Hand H = TH.

If H = {{x}} then trivially H = TH. Thus we may conclude that H = TH.

o

2.4.2 Chromatic Minimality

Self-dual malfunctions can be characterized independently of harmonic properties by dualizing

harmonic maximality, by means of which we obtain a minimality condition on chromatic number.

If 5 is a set and n is a positive integer, the set of n-decompositions of 5, b.n(5) is:

n

b.n (5):= {J = {d1, ... ,dn } I Ud i = 5}.
i=l

If Hand G are hypergraphs then G defeats H if "Ie E H,g E G,e g; g. Thus, "In 2: 1,H,X(H) > n

iff VJ E b.n(UH), J does not defeat H. If H is n-chromatic then H is minimally n-chromatic if

"Ie E H, ~J E b.n- 2 (UH - e) such that J defeats H. In other words, a hypergraph H is minimally

n-chromatic if X(H) = n and "Ie E H, deleting the vertices of e from H results in a hypergraph G

with X(G) = n - 2. Lov8,sz is reputed to have conjectured that if a graph (of graph theory)2 G is

minimally n-chromatic then its edge set comprises the set of all pairs from an n-membered set [14]

(p. 191).

Theorem 2.4.4. VH,n 2: 1, H is minimally n-chromatic iffTH is maximally n-harmonic.

Proof.

[=}] Assume that H is minimally n-chromatic, for some n 2: 1. We have TH is n-harmonic using

Theorem 2.3.7. Now let 5 be a set such that "Ie E TH, 5 ~ e. Then ~f E TTH such that 5nf = 0.

2 A graph (of graph theory) is a hypergraph whose edges are pairs.
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But TTH c,;:; H (Lemma 2.3.3). So f E H. Since H is minimally n-chromatic, 36 E ~n-2(UH - n
such that 6 defeats H. Let A = {uH - did E 6}. Then where m :::; n - 2, 3B E (T,;:) : Va E

A, 3b E B : a :? b. But S n nB = 0. Therefore 3C E (TH~{S}), where I :::; n - 1, such that nC = 0.

Therefore 1](TH u {S}) < n, whence THis maximally n-harmonic.

[{:::] Assume that TH is maximally n-harmonic. We have H is n-chromatic using Theorem 2.3.7.

Let e E H. Since THis maximally n-harmonic, 1](TH u {(UH) - e}) < n. Therefore where

m :::; n-2, 3A E (T,;:) : nAn((uH) -e) = 0. Let B = {(UH) -a Ia E A}. Then B E ~m((UH) -e)

and B defeats H. Therefore 36 E ~n-2((UH) - e) : 6 defeats H. Therefore H is minimally n-

chromatic. o

Theorem 2.4.5. VH, if H is simple then H = TH {:} either H = {{x}} for some x, or H is

minimally 3-chromatic.

Proof. Let H be simple.

[=}] Assume that H = T H. Then either 3.T : H = {{x}}, or H is maximally 3-harmonic (Theorem

2.4.3). If H is maximally 3-harmonic then TH is maximally 3-harmonic, whence H is minimally

3-chromatic (Theorem 2.4.4).

[{:::] Assume that either H = {{x}}, for some x, or H is minimally 3-chromatic. If H is minimally

3-chromatic then TH is maximally 3-harmonic (Theorem 2.4.4). Therefore TH = TTH = H

(Theorem 2.4.3 and Lemma 2.3.3). 0

2.4.3 Chromatic Maximality

Although chromatic minimality appears to be a minimality condition, for simple hypergraphs it is

equivalent to a maximality condition. Chromatic maximality yields another characterization of the

class of self-dual malfunctions.

If G and Hare hypergraphs then G subsumes H, G;;;J H, if Ve E G,3f E H : e :? f; G properly

subsumes H, G::::J H, if G ;;;J H, and G -=I- H. If H is a hypergraph and n is a positive integer, then

H is maximally n-chromatic if His n-chromatic and VG ::::J H, if G is simple then X(G) < n.

Theorem 2.4.6. VH, if H is simple then H is minimally n-chromatic {:} H is maximally n­

chromatic.
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Proof. Let H be simple.

[=}J Assume that H is minimally n-chromatic. Let G be any simple hypergraph such that G:=J H.

Now if G :=J H then either G c H or 3g E G, hE H : g :> h. Suppose that G c H. Let e E H - G.

Since H is minimally n-chromatic, 36 E 6..n -2(UH -e) : 6 defeats H. Therefore 6U{ e} E 6..n -l (uH)

and 6 U{e} defeats G, in which case x(G) :::; n -1. So suppose that 3g E G, h E H : g :> h. Since H

is minimally n-chromatic, 36 E 6..n -2(UH - h) : 6 defeats H. Therefore 6 U {h} E 6..n -l(UH) and

6 U {h} defeats G. Where 6 U {h} = {h, d1 , d2 , .•. , dn - 2 }, let 6' be the result of adding any elements

of uG - uH to dn - 2. Then 6' defeats G, in which case X(G) :::; n - 1. Therefore H is maximally

n-chromatic.

[-¢=oj Assume that H is maximally n-chromatic. Suppose that H is not minimally n-chromatic.

Then 3e E H such that Y6 E 6.. n -2(UH - e), 6 does not defeat H. Notice that 36 E 6..n - 1(UH) : 6

defeats H - {e}; else since H - {e} is simple and H - {e} :=J H, H is not maximally n-chromatic.

Let A = {d E 6 I 6 E 6..n -l(UH), 6 defeats H - {e} and e ~ d}. Let G = H - {e} U TTA. Then

X(G) ::::: n, G is simple, and G :=J H, in which case H is not maximally n-chromatic:, contrary to

assumption. Therefore H is minimally n-chromatic. 0

Theorem 2.4.7. YH, if H is simple then H = TH {o} either H = {{x}} for some x, or H is

maximally 3-chromatic.

Proof. Assume that H is simple.

[=}J Assume that H = TH. Then using Theorem 2.4.5, H = {{x}} for some x or H is minimally

3-chromatic. Therefore either H = {{x}} or H is maximally 3-harmonic, given Theorem 2.4.6.

[-¢=oJ Assume that either H = {{x}}, for some x, or H is maximally 3-chromatic. If H is maximally

3-chromatic then H is minimally 3-chromatic: (Theorem 2.4.6). But if H is minimally 3-chromatic

or H = {{x}}, then H = TH (Theorem 2.4.5). Thus H = TH.

o

2.5 Conclusion

In this article we have shown a relationship between Reiter's theory of diagnosis from first principles

and the harmonic theory of hypergraphs. In particular, we have shown that a malfunction for a

system (S, OBS) is self-dual iff the set H of all of its minimal conflict sets is either identical to the
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unit set of a unit set, or is maximally 3-harmonic. Furthermore, we have shown that the harmoni{:

maximality of a transverse hypergraph THis dual to both the chromatic minimality and maximality

of the hypergraph H. Thus, self-duality can also be characterized in terms of a minimality condition

on chromatic number, as well as a maximality condition. Future, hypergraphic, research in this

area is suggested by the following questions:

1. Is Lovasz' conjecture, as reported in [14] (p. 191), true? That is, if a graph G is minimally

n-chromatic then is it the case that G is the complete graph on n vertices? Dually, this

question amounts to:

2. If a hypergraph H is maximally n-harmonic, then is H the set of all (n - I)-tuple subsets of

an n-membered set?

3. Is it the case that 'Vn 2: 1, 'Vp 2: n, there is a maximally n-harmonic (minimally (maximally)

n-chromatic) hypergraph having p vertices?

4. How many maximally n-harmonic (minimally (maximally) n-chromatic) hypergraphs are

there having a vertex set of size p (p 2: n 2: I)?
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Chapter 3

An Axiomatization of Family

Resemblance

D. Nicholson and R.E. Jennings l

Abstract

We invoke concepts from the theory of hypergraphs to give a measure of the closeness of family

resemblance, and to make precise the idea of a composite likeness. It is shown that for any positive

integer m, for any general term possessing any extent of family resemblance strictly greater than

m, there is a taxonomical representation of the term whereby each subordinate taxon has an extent

of family resemblance strictly greater than m.

3.1 The Basic Idea

The idea of family resemblance was introduced by Wittgenstein [3] as an ingredient of his account

of what constitutes possession of a concept, and what is required for the application of a general

term. The account is intended to be more satisfactory than corresponding accounts that rely upon

the apprehension of essential properties:

IThis work is to appear in the Journal of Applied Logic. Permission to include this article was granted by both
R.E. Jennings and by the publisher of the journal.
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chess solitaire tic-tac-toe basketball ball

a collection of collections

Figure 3.1.1: The family of games.

I

IlL

66. . . . Consider for example the proceedings we call games. . .if you look at them

you will not see something that is common to all, but similarities, relationships, and a

whole series of them at that... look for example at board games with their multifarious

relationships. Now pass to card-games; here you find many correspondences to the first

group, but many common features drop out, and others appear. When we pass next to

ball games, much that is common is retained, but much is lost.-Are they all 'amusing'?

Compare chess with noughts and crosses. Or is there always winning and losing, or

competition between players? In ball games there is winning and losing, but when a

child throws his ball at the wall and catches it again, this feature has disappeared. . .

And the result of this examination is: we see a complicated network of similarities

overlapping and criss-crossing: sometimes overall similarities, sometimes similarities of

detail.

67. I can think of no better expression to characterize these similarities than "family

resemblances"; for the various resemblances between members of a family: build, fea­

tures, colour of eyes, gait, temperament, etc. etc. overlap and criss-cross in the same

way.-And I say 'games' form a family. [3]

A family, as Wittgenstein envisaged the notion, can be represented as a collection of collections of

properties or attributes, satisfying unspecified intersection requirements. (See Figure 3.1.1.) We
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may assume that the properties in question are pairwise-independent, that is, that for pairs of these

properties, having the one does not entail having the other. Of course there may well be properties

shared by all the members of a family, for biological families, the property of being a biological item

or having a common ancestor would be one such, but this property, even if it is not entailed by

other properties of the collection, does not seem to be part of Wittgenstein's conception. If Rosch

and Mervis have got it right [2], the problem with such properties is that not that they are shared

by every member of the family, but that they are shared with members of other distinct families

to the same extent. And if Wittgenstein had in mind to explicate what he took to be a common

notion, then the research reported in [2] would seem to bear him out. At any rate, there are good

grounds for restricting our attention to families F having the property that all pairs of properties

in uF are independent. Wittgenstein:

But if someone wished to say: "There is something common to all these constructions­

namely the disjunction of all their common properties"-I should reply: Now you are

playing with words. One might as well say: "Something runs through the whole thread­

namely the continuous overlapping of those fibres". [3], para. 67.

Again, one must not try to be more precise than we have been in the general account as to what

these intersection requirements are, since the collection of families is itself a family. One family

might be characterized by one intersection property, another by another. In what follows, therefore,

we cannot claim to do justice to the vagueness of the general notion: in the nature of the case there

could never be grounds for a claim that one had.

In [2], Rosch and Mervis confirm the hypothesis that "members of categories which are considered

most prototypical are those with most attributes in common with other members of the category

and least attributes in common with other categories" [2]. Accordingly, [2] represents the first

empirical documentation of the existence in natural language categories of such general structural

relationships as Wittgenstein posits. They write:

[W]e viewed natural semantic categories as networks of overlapping attributes; the basic

hypothesis was that members of a category come to be viewed as prototypical of the

category as a whole in proportion to the extent to which they bear a family resemblance

to (have attributes which overlap those of) other members of the category. [2] [emphasis

ours]
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This notion of the extent, or level as we sometimes say, of family resemblance is what this paper

is about. Wittgenstein's account suggests, and Rosch and Mervis's confirms, that there is a logic of

categories and general terms which resists conventional essentialist representation. This raises the

question of whether there is an adequate non-essentialist formal representation. In this article, we

propose a model of category structure that is intended to approximate what Wittgenstein, and Rosch

and Mervis, have in mind; it is such that any concept, possessing any extent of family resemblance

above a certain degree can be represented as a taxon, in a hierarchy of concepts, subordinating

only taxa which also possess an extent of family resemblance above this degree. To show this we

introduce a derivational system consisting of a base set of properties together with a collection of

rules for generating taxa. Along the way we show how to define a measure of closeness of family

resemblance, and we illustrate the relationship between family resemblance and the mathematical

theory of hypergraphs by making precise the notion of a composite likeness.

3.2 Its Realization

A collection of objects, X forms a family, F, in virtue of some set, P, of properties, such that

\Ix E X, 3P' ~ P : \lr.p E P', r.px. But typically, the application of the term family requires that P

be sufficiently small in relation to X, that q-tuples of objects (0 < q :::; IX!) of X share properties

from P. Hence the informal notion of family resemblance, the physically apparent harmoniousness

of families, drawn, as it were, from a restricted palette of features. Informally, on this account, a

family is represented as a collection of collections of properties that, to some extent, overlap. The

harmoniousness of a family lies in the character of this overlap.

Definition 3.2.1. Let P be a set of properties. Then a set F is a family on P if F p0 ~ 2P and

of/. F (See Figure 3.1.1).2

A word is in order about the consistency of this set-theoretic conception of a family with Wittgen­

stein's view of the indeterminacy of concepts. There are at least two aspects of this indeterminacy;

one is that some concepts are "unbounded"; a second, related, issue involves cases which are not

clearly instances of a general term [3]. There is a difference between a collection with indetermi­

nately many members, and a collection in which membership is indeterminate. A set, however, is

typically construed as being a collection for which both membership and cardinality are fixed.

2Reference to P is omitted when context is sufficiently disambiguating.
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Part of this apparent incongruity can be resolved by allowing the set P of properties to be indef-

initely large. In this way the size of a family may be indefinite, and the issue of the boundaries of

a concept needn't for practical purposes arise. As for the second kind of indeterminacy, apparently

pertaining to vagueness, the model we present is intended as a discrete approximation of a poten-

tially continuous phenomena, as, for example, a binomial distribution can be used to approximate a

normal distribution, and therefore the model shouldn't be expected to replicate exactly the natural

continuity of general terms.

Now as 'family resemblance' refers to a pattern of intersections among the members of a family,

there are two dimensions along which the general notion may be analyzed, and which our account

must make salient if it is to be adequate with the respect to the notion envisaged by Wittgenstein.

In addition to the frequency with which an overlap of attributes between items occurs, one can

speak of the thickness of the overlap, or the number of elements of which the overlap is comprised.

This latter quality can be expressed as a generalization of the former, which we measure using the

harmonic number of a family.

Definition 3.2.2. If S is a set and q is a positive integer, we write '(~)' for the set of all q-tuple

subsets of S. If F is a family then the harmonic n'umber of F, ry(F), is defined:

{

min n E Z+ : 39 E e) :n9 = 0
ry(F) := n

00

If ry(F) > n then we say that F is n-harmonic.

For example, let

if this limit exists;

otherwise.
(3.2.1 )

F= {{1,2},{1,3},{2,3}}

Then ry(F) = 3. This is because every pair of elements of F has a non-empty intersection while

there is a triple of edges, namely, F itself, whose intersection is empty. Another family whose

harmonic number is 3 is the following:

{{1,2},{1,3},{1,4},{2,3,4}}

Note that if a finite family :F is such that nF = 0, then for some positive integer m where

2 ::=; m ::=; IFI, ry(F) = m, and if nF =I- 0 then ry(F) = 00.
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Definition 3.2.3. A family F is trivial if nF -=I- 0.

For example, {{ 1}} is trivial, as is the family {e S;;; Z+ 1 8 E e}.

Proposition 3.2.1. 'VF, [F is not trivial {:? 'Vx E UF,3e E F: e S;;; uF - {x}].

Generalizing n-harmonics we have:

Definition 3.2.4. If F is a family and n is a positive integer, the n(-harmonic) saturation nwnber

of F, un(F), is defined:

un(F) := min m 2': 1 : 3k E [n], 39 E (~) : 1n 91 < m

where for any positive integer n, '[n]' abbreviates '{1,2, ... ,n}'. If un(F) > m then F is m n-

(harmonically) saturated.

The idea behind the n-saturation number of a family F is this: Informally, let the thickness (thin­

ness) of a k-tuple be the size of its intersection. Then the n-saturation number of F is 1 larger

than the thickness of the thinnest k-tuple of F for all k E [n]. It can be seen to follow from this

informal reading of 'un(F)' that if un (F) > m 2': 1 then for each k E [n] (n 2': 1), every k-tuple

subset of F is at least m thick. The converse is also true:

Proposition 3.2.2. 'VF,n 2': I,m 2': 1, [un(F) > m {:? 'Vk E [n],'V9 E (~), In912': m].

For example, consider the following families:

F1 ={{1,2},{1,3},{2,3}}

F2 ={{1,2,4},{2,3,5},{3,4,1},{4,5,2},{5,1,3}}

F3 ={{1, 2, 3}}

F4 ={{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}}

If n = 1 then un(FI) = 3,un(F2) = 4 = Un(F3), and Un(F4) = 5. In addition we have u2(FI) =

2, u2(F2) = 2, u2(F3) = 4,U2(F4) = 4, 0'3 (F2) = 1, u3(F4) = 3,U4(F1 ) = 1 = u5(F4), and u4(F4) =

2.

Immediate from the definitions of harmonic number and harmonic saturation, the next proposi-

tion illustrates the sense in which m n-saturation is a generalization of n-harmonicity:

Proposition 3.2.3. 'VF, n 2': 1, [1](F) > n {:? un(F) > 1].
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The following theorem asserts that if :F is a non-trivial n-harmonic family, :F is rn n-saturate'd

only if, for all k E [n], the thickness of k-tuples of :F increases as k decreases.

Theorem 3.2.4. V:F, n ~ 1, m ~ 1, [if:F is not trivial then [lTn(:F) > rn =} Vi, V9 E (n-:J In 91 ~

i + 1 (0 ::; i ::; n - 1)]].

Proof. Assume that :F is not trivial and that lTn(:F) > rn ~ 1. Let i be arbitrary (0::; i ::; n - 1).

Suppose that 9 E (n-:J is such that 1n 91 < i + 1. Let n9 = {Xl, X2, ... , xd(h ::; i). Let

:J = {U:F - {xm } 1rn E [h]}. From Proposition 3.2.1, since:F is not trivial, Ve E :J, 3f E:F: f s;:; e.

But n(Q U:J) = 0. :. 3g E [(n - i) + 11,] n [n], 3'H E (~) such that 9 s;:; 'Hand n'H = 0. :. 7)(F) ::; n,

which is absurd, given Proposition 3.2.3.

o

The notions of harmonic number and harmonic saturation represent two dimensions in terms

of which extent of family resemblance can be analysed. One, corresponding to harmonic number,

refers to the frequency with which attributes are shared among the members of a family; the second,

corresponding to harmonic saturation, pertains to the extent to which attributes are shared, relative

to a given frequency. As a result of its dyadic character, there are some families which are apparently

not comparable with respect to family resemblance. Consider the case, for example, where a family

:Fl has a lower harmonic number than a family :F2 while for some k ~ 1, every k-tuple subset of

:Fl is thicker than all, or even most, k-tuple subsets of :F2 . For example, let

:F2 ={{1,2,3,4},{1,2,3,5},{1,3,4,5},{2,3,4,5},{1,2,4,5}}.

Then TI(:Fd = 4 and 0"3(:Fd > 3, and 7)(:F2 ) = 5, while 0"3(:F2 ) = 3. Because of the inherent

vagueness of 'family resemblance' it would seem that prima facie we have no grounds for saying of

either family that it possesses a greater (lesser) degree of family resemblance than the other, nor

that their respective levels of family resemblance are equal. Such considerations suggest that if

we are to measure family resemblance, then our gauge should be relativized to a given frequency.

Accordingly we propose:

Definition 3.2.5. For a family :F and positive integer n, the n-resemblance of:F is lTn(:F)·

Proposition 3.2.5. V:F, n ~ 1,1 ::; lTn(:F) ::; IU:FI + 1. If:F is not trivial then lTn(:F) ::; 1U:Fl·

52



Proof. Suppose that CJn(F) > Iu FI + 1. Then Vk E [n], every k-tuple of F is at least IU FI + 1

thick, which is absurd. Now suppose that F is not trivial, and let CJn(F) > IU Fl. Then Vk E [n]'

every k-tuple subset of F is at least IU FI thick. But this can be so only if IFI = 1, in which case

F is trivial, contrary to supposition.

Using harmonic saturation we can define a relation of closeness of family resemblance:

o

Li............•..;~ .•........•...•...
I . ~.

I ... '

I·

r .
l

Definition 3.2.6. A family F more closely n-resembles 91 than 92 if CJn(F U 91) > CJn(F U92)'

Thus, for example, where

F ={{5, 3, 4}, {6, 3, 4}}

91 ={{6,5,1,2,3},{6,5,1,2,4},{1,3,4},{2,3,4}}

92 ={{1,2,3},{1,2,4},{1,3,4},{2,3,4}}

F more closely 3-resembles 91 than 92 because CJ3(F U9d = 2 and CJ3(F U 92) = 1. Also, F more

closely 2-resembles 91 than 92 since CJ2(F U 91) = 3 and CJ2(F U 92) = 2. However, F does not

more closely I-resemble 91 than 92 since CJ1 (F U 91) = CJ1 (F U 92) = 4.

Alternatively, we can define a measure for the similarity of families with respect to family resem-

blance:

Definition 3.2.7. Let F 1 and F2 be families. Then F1 d-n-resembles F2 {o} CJn(F1 U F2) >

For instance, let

F1 ={{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}}

F2 ={{1,2,3},{1,2,4},{1,3,4},{2,3,4}}.

Then CJ3(F1) = 3, CJ3(F2) = 2, and CJ3(F1 U F2) = 2. Therefore the least value of d such that F 1

d-3-resembles F2 is 1. In general, the higher the least value of d is, the greater the degree with

which F 2 attenuates the n-resemblance of F 1 when the two families are juxtaposed. To take another

example, let

F1 ={{1,2,5,6},{3,4, 7,8}}

F2 ={{1,2,3,4},{2,3,4,5}}
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Then 3 is the least value of d such that F2 d-2-resembles F 1 because (J2(F1 UF2 ) = 1 and (J2(F2) = 4,'

while F 1 0-2-resembles F2 because (J2(Fd = 1.

The preceding example shows that d-n-resemblance is not symmetrical. If d-n-resemblance were

taken to model exactly our conversational understanding of 'resemblance' this result is surprising.

But no mathematical theory of any interest is as particular as the instances that motivate it.

There is no such theory, for even if no such cases ever arose in conversational uses this would

demonstrate only that conversational features were particular instances of the general case. Much

as the absence of the so-called paradoxical inferences from conversational uses of if. .. then... does

not of itself demonstrate that the conditional cannot be modelled by the material :>. In any case,

non-symmetry does constrain conversational uses. It is an historical non-symmetry in the structure

of the verb (re-semble) itself. In general, the observance of non-symmetry serves conversationally

to mark the distinction between originals and their (sometimes later) simulacra. Compare

1. He looks like his father.

2. *His father looks like him.

1. He resembles Napoleon.

2. *Napoleon resembles him.

3.3 Composite Families

In literature, the term composite is applied to fictional characters who comprise traits of numerous

source figures. In our account of family resemblance we apply the term to what could be regarded

as the formal counterpart of such a fictional character. The idea of a composite, mathematically

realized, is the lynch pin connecting the study of families as conceived by Wittgenstein and empiri­

cally studied by Rosch and Mervis to the well-established mathematical theory of hypergraphs. In

fact, save that for local purposes we understand P as a set of properties, the language of families

in our account could yield its place to the language of hypergraphs, and the harmonics of families

could be understood abstractly as defining hitherto unstudied properties of hypergraphs. In fact,

the fundamental features that ground the idea of a family are dual to the characteristics that define

one of the principal mathematical interests in hypergraphs: the properties relating to chromaticity.
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'--------- a family :F------~

Figure 3.3.1: A composite

a composite of F

Definition 3.3.1. A set c is a composite of a family F iff "ie E F, c n e =I- 0 (see Figure 3.3.1); cis

a minimal composite of F iff c is a composite of F and no proper subset of c is a composite of F.

The composite family qF) of F, which may be written 'CF', is the set of all minimal composites

of F.

Proposition 3.3.1. "iF, [CC(F) ~ F], and ["ie E F,3f E CC(F) : e :2 fl.

Definition 3.3.2. If F is a family and m is a positive integer, a function f : uF -+ [m] is an

m-colouring of F if"ie E F,k E [m],e g; {x E uF I f(x) = k} (see Figure 3.3.2). If there is an

m-colouring of F then we say that F is m-colourable; F is m-uncolourable, else. The chromatic

number of F, X(F), is defined:

{

min m E ;:z+ : F is m-colourable
X(F) :=

00

if this limit exists;

otherwise.
(3.3.1)

The chromatic number of a family can also be defined in terms of the set of decompositions of

its union.

Definition 3.3.3. Let S be a set and m a positive integer. The set of m-decompositions of S,

~m(S), is defined:

m

~m(S) := {O = {d1 , ... , dm} I Udi = S}
i=l
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rn = 3

UF

1 2 3

Proposition 3.3.2. VF, Vm 2: 1, [X(F) > m (o} V8 E ~m(uF), 3d E 8, e EF: e ~ d].

Definition 3.3.4. Let F be a family and S a subset of uF. The restriction of F to S, F[S], is

the family defined:

F[S] := {e E Fie ~ S}

Theorem 3.3.3. VF, n 2: 1, m 2: 1, [O"n(F) > m {o}. VS, lSI < m ~ X((C(F)[UF - S])) > n].

Proof. Let F be an arbitrary family, and let m and n be arbitrary positive integers.

[~] Let S ~ uF be such that lSI < m and C(F)[UF - S] is n-colourable. Then 38 E ~n(UF - S)

such that Ve E C(F), Vd E 8, e ~ d (Proposition 3.3.2). Let 0 = {UF - did E 8}. Then Vg E O,g

is a composite of C(F), and no = S. Therefore 3k E [n], 3.:1 E (CCkFJ) : n.:1 ~ S. But CC(F) ~ F

(Proposition 3.3.1). Therefore O"n(F) :::; m.

[¢] Let O"n(F) = k :::; m. Then 3j E [n], 30 E G) :In 01 < k :::; m. Let 8 = {UF - gig EO}.

Then 8 E ~j(UF - nO). But Ve E C(F)[UF - no], Vd E 8, e ~ d (Proposition 3.3.1). Therefore

C(F)[UF - no] is n-colourable (Proposition 3.3.2). But In 01 < m. Therefore 3S ~ uF : lSI < m

and X(C(F)[UF - SJ) :::; n. 0

For the case m = 1, what Theorem 3.3.3 amounts to in the presence of Proposition 3.2.3 is

the assertion that n-harmonicity in a family is equivalent to the n-unc:olourability of its composite

family. If m 2: 1 then Theorem 3.3.3 asserts that the n-unc:olourability of a composite family is

preserved under the deletion of fewer than m elements from uF if F is m n-harmonic:ally saturated.
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I dogs

domestic animals

cats fish pigs cows goats

Figure 3.4.1: The family of domestic animals.

3.4 Taxonomic Hierarchies

Rosch and Mervis documented the cognitive significance of distinct families within more generic

groupings of items [2]. As an example, the family of 'pets' lies within, or is subordinated by, the

more general category of 'domestic animals', a category which also comprises families of otherwise

subordinated non-human creatures. Similarly, the concepts 'dog', 'cat', 'rabbit' are members of the

superordinating category 'pets'. (See Figure 3.4.1.)

For Rosch and Mervis, as for Wittgenstein, what accounts for the subordination of a concept

within a more general category is not that there is some single criterion possessed by all and only

members of the category, but rather that there is a network of shared attributes, or intersections.

This network is the family resemblance of the category, whose extent we have represented using the

concept of the n-resemblance of a family F, which refers to (In(F), the n-saturation number of F.

Now granted that subordinate categories inherit the extent of family resemblance of superor­

dinating ones, is it true that for every category, with any level of family resemblance, there is a

taxonomic representation which preserves this fact? (See Figure 3.4.2. The arrows represent the

superordination relation.) Below, we show one way that a subordination relation can be structured

so that this is answered affirmatively.

Definition 3.4.1. A taxon is a taxonomic group of any rank, including all the subordinate groups;

it is any group of organisms or populations considered to be sufficiently distinct from other such
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Figure 3.4.2: A tree of families.

groups to be treated as a separate unit. The (taxonomic) rank of a taxon is its position in a

hierarchy of classification. [1]

To formalize what is meant by the rank of a taxon, we employ the notion of an m-n-derivation.

Intuitively, this can be understood analogously to a proof in a logical system, substituting hyper­

graph and set-theoretic operations for rules of inference. Essentially we take iterations of these

operations to structure the subordination relation among taxa. The system as a whole will be

shown to be sound and complete with respect to n-resemblance strictly greater than m :::: 1.

Definition 3.4.2. Let F and g be families. If every element of F is a superset of an element of g,

then F subsumes g, written 'F;;:;I g', or 'g r:;;; F'.

Proposition 3.4.1. Vm:::: 1, n :::: 1, VF, g, [if O"n(F) > m and g ;;:;I F then O"n(Q) > m].

Given our intention to devise a system which is sound with respect to n-resemblance, Proposition

3.4.1 licenses the following rule 'upward subsumption':

[i;;:;l]: given F, if g ;;:;I F, obtain g (3.4.1)

Definition 3.4.3. Let S = F 1,F2 , ... ,F;, ... ,Fq be a sequence of q families (1 < q), and let T be

a set. Then if n :::: 1, Tn-covers S if 3{F1 , ... ,Fn } E (~) such that Vi E [n], 3e E F; : T 2
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e; T minimally n-covers S if Tn-covers S, and no proper subset of Tn-covers S. We writ'e

'~(F 1, F 2, ... , F q ), for the set of all minimal n-covers of S.

Theorem 3.4.2. 't:/m 2: 1,71, 2: 1, for any sequence 91, ... ,Qn+1 of families, if for each i E [71, + 1]'

O"n(9i) > m, then O"n(n~l (91, ... ,9n+d) > m.

Proof. Let O"n(n~1(91, ... ,9n+1)) = k:S; m. Then:Jj E [n],F E (n~l(Qlj ...gn+ll): InFI < m. By

definition, each e E F is a superset of an element from every member of some n-tuple subset of

91, ... ,9n+1' By a pigeonhole argument, :Ji E [71, + 1] such that 't:/e E F, :Jf E Qi: e :2 f. So if

O"n(9i) > m then In FI 2: m: a contradiction. Whence:Ji E [n + 1], O"n(9i) :s; m. D

Because n~l preserves n-resemblance strictly greater than m 2: 1 (Theorem 3.4.2), in addition

to rule [1:]], we also therefore have 'n over n + 1':

n 71,
[--]: Given 91, ... ,9n+l, obtain --(91, ... ,9n+d (71, 2: 1).
n+l 71,+1

(3.4.2)

Our final rule is intended to license type-raising for m-tuples from a base set P of properties:

(3.4.3)

Definition 3.4.4. If 71, 2: 1 and m 2: 1, an m-n-derivation of a family F from a set P is a finite

sequence of families on P, ending with F, where each family is obtained either from preceding ones

by an application of [n~l] or [1:]], or from P by an application of [m].

Theorem 3.4.3. 't:/F, n 2: 1, m 2: 1, there is an m-n-derivation of F ==> O"n(F) > m.

Proof. It is sufficient to prove that [n~l] and [1:]] preserve n-resemblance strictly greater than

m, and that 't:/X1,X2"",Xm E P,O"n({{X1,X2, ... ,Xm }}) > m. We have already shown the former

(Proposition 3.4.1 and Theorem 3.4.2); the latter follows from the fact that if {Xl, ... ,Xm } ~ P,

D

Theorem 3.4.4. 't:/F, n 2: 1, m 2: 1, O"n(F) > m ==> there is an m-n-derivation of:F.

Proof. Let m 2: 1 and n 2: 1 be arbitrary. Let F be an arbitrary family on a set P of properties

such that O"n(F) > m. We induce on IFI. For the basis, let IFI :s; n. Then In FI 2: m. Let

{X1,''''Xm } ~ n:F. Then F:] {{X1,""Xm }}, Therefore there is an m-n-derivation of F from P

using [m] and an application of [1:]].

59



Now let IFI 2: n + 1. Where {el' ... , en+d ~ F, define:

Fi := F - {ei} (iE[n+1])

Then Vi E [n + 1]' un(Fi ) > m, by the downward monotonicity of n-resemblance strictly greater

than m. The hypothesis of induction therefore allows us to assert that for each i E [n + 1], there

is an m-n-derivation of F i from P. But Ve E F, e is an n-cover for F I , F2 , ... , Fn+l . Therefore

F;;;;I n~l (FI ,F2 , •.. ,Fn+d· Whence, there is an m-n-derivation of F from P, namely, the sequence

consisting of the m-n-derivation of F I , followed by the m-n-derivation of F2 , •.. , followed by the

m-n-derivation of Fn +l , followed by an application of n~l' and terminated by an application of

[i;;;;l].

With the notion of an m-n-derivation in hand, we may now speak of the rank of a taxon.

o

Definition 3.4.5. The rank of a family F, relative to a given m-n-derivation 1) of a family 9,

P'D(F), is the position of Fin 1).

We also introduce the notion of a proper (m-n- )derivation to distinguish between useful and

irrelevant applications of rules. We shall not have occasion here to provide a comprehensive analysis

of relevance with respect to derivations, and rely on what is, we hope, a shared prima facie intuition

with the reader.

Definition 3.4.6. An m-n-derivation 1) = (QI, 92, ... ,9i, ... ,9q ) of a family 9q (q 2: 1) is proper if

Vi E [q], 1) - (Qi) is not an m-n-derivation of 9q .

Evidentally, Theorem 3.4.4 may be restated in terms of proper derivations. Definition 3.4.6

enables us to formalize a concept of taxonomical subordination.

Definition 3.4.7. A family F m-n-subordinates a family 9 iff there is a proper m-n-derivation of

F in which 9 appears.

Theorem 3.4.5. VF, m 2: 1, n 2: 1, un(F) > m =* 3q 2: 1: there is a representation of F as a

taxon of rank q where F m-n-subordinates only taxa of n-resemblance strictly greater than m.

Proof. Theorem 3.4.5 is immediate from the fact that VF, if un(F) > m then there is a proper

m-n-derivation 1) of F such that V9, if 9 is in 1) then un(Q) > m (Theorems 3.4.3 and 3.4.4). 0
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3.5 Resemblance Revisited

The notion of resemblance inherent in Definition 3.2.6 suggests an ordering of families which is

distinct from the subordination ordering described in Section 3.4. Let the notation:

x <y z

denote that z more closely resembles y than x does, where x,y and z are now families. Then we can

ask such questions as: Is there a property ¢ such that Vy, <y has ¢? Properties like transitivity,

irrefiexity, antisymmetry, connectivity, etc., seem like natural candidates for interrogation in this

context.

It also seems natural to ask whether, for a given application, the notion of resemblance captured

by Definition 3.2.6 is adequate. This suggests that we ask questions about different relations

of resemblance. In this paper we have explicitly considered only two: 'resembles more closely

than', and 'd-n-resembles'. Implicitly, however, our paper suggests a broad array of measures of

resemblance. We can say, e.g., that two families resemble one another to the extent to which they

possess the same proof complexity (as this is defined is Section 3.4). Alternatively, harmonic number

can be used as a measure of resemblance; we can say that F 1 resembles F 2 iff ",(F1 ) = ",(F2). In

this way we can talk about the equivalence class of families that resemble a given family F, where

we define [F]7) := {Q I ",(F) = ",(Q)}. A similar point can be made about subsumption, defined in

Definition 3.4.2. Let S(Q) be the set {F I F i;;;; Q}, and say that Q < F iff S(Q) c S(F). Then if

Q < F it follows that Q i;;;; :F.

In the general case, although it is difficult to say of what exactly it is that resemblance between

families, for a given context, consists, at the very least we can say that it is some kind of overlapping,

or sharing, of properties, or attributes. Supposing that we could define this quality of 'overlapping',

and measure it, we could then compare it vis-a-vis pairs of families. In turn this would enable us

to define a relativized ternary relation, so to make sense of the notion of 'more closely resembles

than'.

For example, where x,y, and z are families, we could say whether or not overlap(y, x) <

overlap(y, z), and we could define:

x <y z iff overlap(y,x) < overlap(y,z).
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The same questions would then arise regarding the ordering this ternary relation imposes on thB

collection of families, and the properties of this ordering.
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Chapter 4

On the Duality of Synchrony and

Diachrony: A Dynamic Theory of

Identity

D. Nicholson l

Abstract

In this paper we provide an analysis of the relationship between diachrony and synchrony, which

entails a dynamic extensional mereological theory of identity. By 'extensional mereological' we

mean that it is assumed that an individual, at any given time, is the sum of the properties and

relations which he or she instantiates; by 'dynamic' we mean that change is incorporated as a

fundamental part of the theory of identity which is proposed. In what follows, the theory of

hypergraphs, particularly the theory of transverse hypergraphs, is used to prove that the relationship

between diachrony and synchrony is one of 'weak duality'. What is meant by 'duality' here (strong

duality), stems from the duality between the logical operators 'or' and 'and' of propositional logic.

Furthermore, by invoking a quasi-Leibnizian identity principle, viz., that no distinct properties of

the same kind are possessed by an individual at any specific time, an intermediate duality between

IThis work is to appear in the Proceedings for the 2007 International Conference on Artificial Intelligence and
Pattern Recognition. Permission to include the article was granted by the publisher.

63



diachronic and synchronic perspectives is represented. It is also proved that there is a subclass of

individuals whose diachronic and synchronic perspectives are strongly dual. Then, by exploiting

the harmonic theory of hypergraphs, it is shown how to devise well-defined measures of inter-

and intra-personal resemblance. Lastly, using the colouring theory of hypergraphs, we consider

an application to gender identity. It is proved that given a certain richness in our taxonomy of

properties, if the collection of an individual's behaviours in his or her respective social settings is

sufficiently cohesive, and there is an appropriate relation of duality between his or her synchronic

and diachronic representations, then it is possible that some social role in which he or she engages

will witness him or her behaving in both of two differently gendered ways-at the same time, no less.

4.1 Introduction

Accounting for change in a single individual over time is a common obstacle for identity theorists.

To what extent must something change in order to become something else? To what extent must

someone change in order to become someone else? The questions are related but not identical.

Prima facie, if Leibniz's Principle of the Indiscemibility of Identicals 2 is right, then if I'm the same

person I was six years ago, I should have all and only the properties I did then. But, as many would

claim, the fact that I do not does not entail that I am a different person. For example, although

I have a few more grey hairs on my head, I'm still the person I was in 2001, modulo other more

or less trivial changes. Apparently, the crux of what appears to be a conflict between Leibniz's

principle-as applied to the (dis)continuity of personhood through time-and our intuitions about

personal identity, has to do with which properties of a person we are to take as being constitutive

of personal identity; for clearly, not all properties which we apply to persons are strictly relevant to

their identities as persons. There are some properties which are, seemingly, more (or less) relevant

to the preservation of personhood than others.

Each of us is familiar enough with the cognitively devastating effects of Alzheimer's Disease to

know that we possess attributes whose loss renders questionable whether we continue to imbue the

corporeal vessel with which we began this life. 3 Or, to take a less extreme example, consider the

issue of gender. If an individual, say a male, changes his legally assigned gender, without making

other changes, we probably wouldn't hesitate to consider him the same person as he was prior to

2The principle is: If x and yare identical entities, then x has a property 8 if and only if y has 8.

3No dualism about mental states is intended by this language. The theory to follow is neutral about the nature
of mental states.
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the change. But what if he adopts a so-called feminine lifestyle, and modifies his body by taking·

estrogen supplements and having genital surgery, etc. Some people might argue that he has become

a different person. Certainly prior to 1930 in Canada it would seem natural that many people would

think that gender is partially constitutive of personal identity, because an individual undergoing

such changes would effectively be losing his personhood by doing so, from a legal perspective. 4

What we seem to have then, is that there are some properties which are clearly relevant to the

preservation of personal identity through time, there are some which are clearly not relevant, and

there are some which are clearly relevant in some contexts, but not necessarily all. This suggests

a relativized continuum of relevance--that whether or not some property is relevant to the conser-

vation of personal identity can in some, if not all, contexts be a matter of degree. Considerations

such as these suggest what appears to be the more basic question:

To what extent must a collection of properties be preserved in order for an entity to preserve its

identity through time?

For presumably, e.g., merely changing one's legal status vis-a-vis gender is not sufficient for trans-

forming one's personal identity into another. But what if the legal change is accompanied by

dramatic biological changes, including any cognitive alterations which may accompany exposure to

unusually high doses5 of (biologically opposite) sex hormones?

To take another example, some argue that an unmedicated schizophrenic who is experiencing

psychosis can become another person. That is to say, the individual demonstrates such dramatic

changes to his or her personality that we are no longer willing to identify him or her with his or

her prior (or healthy) self. But how ill must he or she be in order for this transformation to take

place? As with many illnesses, the onset of psychosis, its signs and symptoms, can be gradual.

In what follows we employ hypergraphic tools in the construction of a dynamic theory of identity,

that is, one which incorporates change as a fundamental part of its structure, by simultaneously

incorporating diachronic and synchronic perspectives on an individual. The theory is not restricted

4In Canada, women were not legally recognized as 'persons' until 1930 [2].

5'Unusual' relative to those not undergoing sex changes, or taking hormones for (other?) medical reasons such as
prostate or breast cancer, for instance. (Whether trans-genderism or transsexualism is a medical issue is controversial
among those undergoing sex changes, notwithstanding that gender dysphoria, or gender identity disorder, is classified
as a psychiatric condition by the Diagnostic and Statistical Manual of Mental Disorders:

"Gender Identity Disorder" (GID) is a diagnostic category in the Diagnostic and Statistical Manual of
Mental Disorders (DSM), published by the American Psychiatric Association. The DSM is regarded as
the medical and social definition of mental disorder throughout North America and strongly influences
the[sic] The International Statistical Classification of Diseases and Related Health Problems published
by the World Health Organization. GID currently includes a broad array of gender variant adults and
children who mayor may not be transsexual and mayor may not be distressed or impaired. [1])

65



to personal identity, but it can be instructive to keep this in mind as a special subcase. One virtue of

applying hypergraphs in this way is that we obtain a mathematical measure of the degree to which

an entity resembles other entities, including itself at an earlier time. This is useful, moreover, not

only because it suggests a solution to the dilemma posed by Leibniz's Principle, but also because

it lays theoretical groundwork for a concept of identity with potential applications in the social

sciences. To illustrate this we consider the question of gender and its relationship to personal

identity.

4.2 Dual VIews

Whereas diachronicity refers to change over time, a synchronic image is a representation at a

single time. Thus, a snapshot is roughly synchronic, and a video recording which lasts for some

non-empty non-singleton interval is diachronic. The first issue we consider can be framed by the

following question: "What is the relationship between synchronic and diachronic views of the same

individual?" The theory of hypergraphs is used to explain this relationship.

4.2.1 A Formal Model

A hypergraph H, is a non-empty family of non-empty sets {el' ez, ... , ei, ... }. Each set ei is called an

edge of H, and the collection of elements of edges of H is called the set of vertices of H. Hypergraphs

can be infinite, or finite; a finite hypergraph has only finitely many vertices; an infinite hypergraph

has either infinitely many edges, or an edge which is infinitely long. It will be convenient to

abbreviate hypergraph to graph. We'll begin with a formal definition of a synchronic perspective of

an individual I. For any given moment in time, or instant, as we'll call it, s, we call the property

function, PI (s) the set of properties of I, at instant s, and we let "f be a set of instants. Then the

instance graph for I, relative to "f, viz., 'E')'(I)', is just PI["(J, that is, it is the graph:

(4.2.1)

Where context allows we drop subscripts and reference to a particular individual I. An instance

graph E then, can be construed as a set of synchronic images, the edges of which may be ordered

in accordance with the parameter "f, where "f determines how many, and which, such images are to

be given. (See Figure 4.2.1.) For convenience we sometimes refer to the edges of E by 'instants',
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r= {s,t,u, ... }

'Pr(s) c:: =:::>
'Pr(t) c= =:>
'Pr(u) c:::= =:>

E,(I)
0 0

0 0 J0 0

Figure 4.2.1: The instance graph for individual I.

where confusion with the elements of r is unlikely to be significant. We also stipulate that for

each pair of instants sand t in r, there is a function p, : 'P(s) -. 'P(t) such that J1(a) = (3 only

if a and (3 are properties of the same kind. Nothing more is meant by this, however, than is

required to ensure that, in effect, each edge of E displays a complete picture of the individual,

relative to the selected parameters. In other words, we stipulate that each kind of property which

is available for representation is in fact represented in every instant of E. For example, if 'P(s)

includes the individual's gender, then so would 'P(t)~the property kind in this case being gender.

Two properties can be thought of as being of the same kind, if they have been grouped together as

such under some selected rubric. 6

We now show how to relate a diachronic picture of an individual I to the instance graph E for I.

Let K, be the set {1rl' 1r2, •.. , 1rt, ... } of distinct kinds of properties instantiated in the edges of

instance graph E, and define a function (J' from K, to the power set of vertices of E, where for each

t (1 ::; t):

(4.2.2)

6When clean snow melts, it becomes colourless, This might be thought to constitute a counterexample to the
proposed schema, but not if we allow for a kind of 'negative' property, which indicates the absence of any instance
of a given property kind, We could, for example, call it 'non',
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K={7rS ,7rf,7rl1 , ••• }

U(7rS ) c: ~

U( 7rt) c: :=::>
U(7rl1 ) c: =:::>

II,,(I)
0 0

0 0 J0 0

Figure 4.2.2: The property graph for individual I.

In effect U sorts the properties instantiated in instants of E into distinct kinds which are named in

K. And the property graph for individual I relative to K is the graph:

(4.2.3)

(See Figure 4.2.2.) Again, we drop subscripts and reference to I when context allows, and speak

simply of the property graph II. A property graph II = {k1 , k2 , ... } then, can be understood as a

set of diachronic images of an individual, relative to single kinds of properties-diachronic in the

sense that the elements of an edge k of II can be ordered using a temporal ordering of the set "f,

thereby providing an image of the change a property kind trt undergoes across the instants in E,

ordered similarly.

4.2.2 (Weak) Duality

The relationship between an instance graph E and its corresponding property graph II, can be

explained mathematically by utilizing the notion of the dual of a graph: Where H is any graph, a

cover for H is a set e with a non-empty intersection with every edge of H; a minimal cover e for H

is a cover for H such that Vfee, f is not a cover for H. The dual of H, Hd
, is the set of all minimal

covers for H. If e is a cover for a graph H then we also say 'e covers H'.
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Proposition 4.2.1. VH, tl'd ~ H. [4, 3]

Proof. Let e E Hdd
. Suppose that e tf- H. Note that Vf E H, f is a cover for Hd

. Therefore,

Vf E H,e II f, else e is not a minimal cover for Hd. But then:Jg E Hd such that gne = 0, which is

impossible if e E Hdd
. Whence e E H. o

For any H, Hand Hd are said to be dual because of a correspondence between Hand Hd
,

respectively, and pairs of logically dual formulae of propositional logic-logically dual in the sense

in which the V and 1\ truth functions of propositional logic are dual to one another, viz., that from

the graph of one, one may obtain the other's graph, modulo the order of the rows, by interchanging

all 1's and D's. In the same way, letting the vertices of a graph H be sentences, we may say that

IHI lepi IHI lepl

V1\ X q E ep E H is dual to 1\ VX q E ep E H.
p=1 q=1 p=1 q=1

But since for any graph G, Gdd ~ G (Proposition 4.2.1), it follows that

IHI lepl IHdl lerl

V 1\ X q E ep E H =j 1= 1\ VX s E er E Hd
, and

p=1q=1 r=1s=1

IHdllerl IHI le,,1

V1\ X s E er E H
d =j 1= 1\ Vx q E ep E H.

r=1 s=1 p=1 q=1

Therefore

IHI lepl IHdl lerl

V1\ X q E ep E H is dual to V1\ X s E er E Hd
.

p=1 q=1 r=1 s=1

And similarly,

IHI le,,1 IHdlle,·1

1\ VX q E ep E H is dual to 1\ VX s E er E Hd
.

p=1q=1 r=1s=1

Whence we say that Hand Hd are dual in this strong sense of logical duality.
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E o
o
o

ei E E

Figure 4.2.3: Weak duality

But by thus replacing truth-functional equivalence with entailment in Conditions 4.2.5 and 4.2.6,

we obtain a sense of weak duality for graphs. We also thereby obtain a description of the logical rela­

tionship between an instance graph E and its corresponding property graph IT. Graph-theoretically

weak duality between hypergraphs amounts to the condition that every edge of either is a cover for

the other; in other words, if Hand G are graphs then Hand G are weakly dual if and only if:

\:Ie E H, 3f E Gd
: e :;2 f and \:If E G, 3e E Hd : f :;2 e.

(See Figure 4.2.3.) If Hand G are graphs then H is dual to G if and only if H = Gd
.

Proposition 4.2.2. \:IH, G, if H is dual to G then Hand G are weakly dual.

(4.2.9)

Proof. Assume that H is dual to G-Le., assume that H = Gd
. Let e E H. Then e covers G. Now

let f E G. Then \:Ig E Gd
, g n f # 0. I.e., f covers Gd

, in which case f covers H, by our initial

assumption. o

Note that just because a graph H is dual to a graph G, it doesn't follow that G is dual to H.

For example, let H = {{1,3},{1,4},{2,3},{2,4}}, and let G = {{1,2},{3,4},{1,2,3,4}}. Then

H = Gd
, but G # Hd

. Symmetry of duality does obtain, however, if we restrict our attention to

simple graphs. A graph H is simple if no two distinct edges e, f, belonging to H are such that
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e ~ f.

Proposition 4.2.3. VH, G, if Hand G aTe simple, then H = c;1 ¢:} G = 1-f.

Proof. Suppose that Hand G are simple.

[:::?] Assume that H = Gd
. Let e E G. Then e covers Gd

, in which case e covers H. Suppose that

3f such that fee and f E Hd . Then f E Gdd
, by substitution into our assumption. So f E G

(Proposition 4.2.1), which contradicts our supposition that H is simple.

[{:::] This direction follows by symmetry.

o

Theorem 4.2.4. VH, G, Hand G are weakly dual if and only if:

IHI le,,1 IGI lerl

V1\ x q E ep E H F 1\ VX s E er E G, and
p=lq=1 r=ls=1

IGI lerl IHI le,,1

V1\ X s E er E GF 1\ Vx q E ep E H.
r=1 s=1 p=1 q=1

Proof. The result is easily demonstrated using propositional logic.

(4.2.10)

(4.2.11)

o

Theorem 4.2.5. If E is an instance graph and n the corresponding property graph then E and n

are weakly dual.

Proof. The result follows from our requirement that every instant include at least one property of

every kind.

4.2.3 An Intermediate Duality

o

Now, by invoking a quasi-Leibnizian identity principle, a different relation between E and n can be

specified vis-a-vis duality. For example, if E satisfies the condition that at any instant if properties

ex and (3 are of the same kind then they are identical, then E and n can be shown to satisfy:

E ~ nd, and (4.2.12)

(4.2.13)

That is, E and n satisfy a condition which is intermediate between weak duality and duality

simpliciter. The condition is quasi-Leibnizian only because it is similar to a generalization of a
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version of Leibniz's principle of the Identity of Indiscernibles7 stated for properties and property

kinds (and relative to instants), as opposed to entities and properties.

Theorem 4.2.6. If E is an instance graph and rr the corresponding property graph then: if for every

edge e E E, if x E e, y E e, and x i- y, then x and yare of different kinds, then, E <;;; rrd, and rr <;;; Ed.

Proof. Assume that for every edge e E E, if x E e, y E e, and x i- y, then x and yare of different

kinds. Let e E E. Then e is a cover for rr by Theorem 4.2.5. Suppose that e is not minimal; let

fee be such that f E rrd. Then by a pigeonhole argument, 3x, y E e, x i- y, and x and yare

properties of the same kind, contrary to assumption.... e E rrd, and E <;;; rrd. By parallel reasoning

it follows that rr <;;; Ed.

o

4.2.4 Duality and Potential

Although Conditions 4.2.12 and 4.2.13 do not clearly entail that rr is dual to E or conversely, we can

characterize a subclass of graphs satisfying these conditions, which are dual. Intuitively, the notion

of duality for instance graphs and their corresponding property graphs suggests an idea of maximum

actualized potential on the part of an individual. For if rr is dual to E, that is, if rr = Ed, then

given that \lH, Hdd <;;; H (Proposition 4.2.1), it follows that every minimal selection of properties of

distinct kinds is an instant of E and thus also a synchronic image of the individual I.

And similarly, if E is not dual to rr, i.e., E i- rrd, but Conditions 4.2.12 and 4.2.13 are satisfied,

then there is a minimal cover for rr which is not an instant of E-in other words, there is a way

of instantiating properties of I which I has not realized; in this way, the individual retains some

growth potential, be it for better or worse. We can make this notion of an individual's potential

precise by defining a growth parameter ~: Let E be an instance graph, and let E maximized be the

graph:

(4.2.14)

Then the growth potential of E is:

(4.2.15)

7The principle is: If entities x and yare such that for any property fJ, x has fJ iff y has fJ, then x and yare identical.
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Theorem 4.2.7. For any instance graph E with its corresponding property graph TI, if E ~ TId then

E is dual to TI if and only if ~(E) = O.

Proof. Assume that E ~ TId.

[~] Suppose that E = TId. Then E = Em, in which case IEml-IEI = ~(E) = O.

[-¢=] Let ~(E) = O. Then IEml - lEI = O. But by assumption E ~ TId. So E ~ Em, and therefore

E = Em = TId. 0

Theorem 4.2.8. For any instance graph E with its corresponding property graph TI, if E and TI are

simple then TI = Ed ~ ~(E) = O.

Proof. Assume that E and TI are simple and that E ~ TId. Assume further that TI = Ed. If E is

simple then it can be shown that E = Edd using Proposition 4.2.1. But in that case ITIdl = IEddl =

lEI, in which case ITId I - lEI = O-that is, ~(E) = O. o

Theorem 4.2.9. For any instance graph E with its corresponding property graph TI, if E ~ TId and

E and TI are simple then ~(E) = 0 ~ TI = pi.

Proof. Assume the antecedents and that ~(E) = O. Then ITIdl - lEI = O. But E ~ TId, whence

E = TId. But E and TI are simple, by assumption. Therefore TI = Ed (Proposition 4.2.3). 0

Corollary 4.2.10. For any instance graph E with its corresponding property graph TI, if E and TI

are simple and E ~ TId then TI = Ed ¢} ~(E) = O.

4.3 Harmonic number

4.3.1 A Measure of Similarity

The notion of the harmonic number of a hypergraph can be employed to define a measure of intra­

and interpersonal resemblance. If H is a graph, we say that H is m-wise intersecting, for m 2: 1,

if every m edges of H share a common element. The harmonic number of H, 'T](H), is the smallest

integer n such that H is not n-wise intersecting. For example, if H = {{I, 2}, {I, 3}, {I, 4}, {2, 3, 4}},

then 'T](H) = 3. This is because every pair of edges of H share a common element, and there is

also a triple of H-edges with an empty intersection, for instance, {{I,3},{I,4},{2,3,4}}. In the

case where H is a graph such that nH # 0, there is no finite number m such that H is not m­

wise intersecting. In such cases we use '00' to refer to a number which is arbitrarily large and set
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7](H) := 00. Since a graph is a collection of non-empty sets, the minimum harmonic number for any

graph is 2.

The harmonic number of a graph H is an expression of the internal cohesion, or cohesiveness, of

H, and, prima facie it seems reasonable to suppose that for many applications, individuals would

tend to have instance graphs exhibiting a large degree of this cohesiveness; to suppose otherwise

generates a view of identity whereby an individual changes radically from one instant to the next,

altering most or all of its properties. A similar prima facie case can be made for the union of

instance graphs drawn from various subclasses of individuals; it would seem that in many cases,

e.g., family relations, the union would exhibit harmonic number above some roughly predictable

degree.

To make these ideas more precise we can use harmonic number to define a relation of closeness

of resemblance, and of d-resemblance, or 'resemblance of degree d': Given instance graphs E1, E2 ,

and E3 , E2 more closely resembles E1 than E3 does if:

And, where d ~ 1,

E1 d-resembles E2 iff 7](E1u E2) > 7](E1) - d.

(4.3.1)

(4.3.2)

I

l

Intuitively, if E1 d-resembles E2 then d can be thought of as a measurement of how much of the

harmonic number of E1 is attenuated or lost when E1 is united with E2, the smallest value of d

satisfying the statement 'E1 d-resembles E2 ' giving the most accurate reading in this regard. In

order to deal with graphs with arbitrarily large harmonic number, we allow that d can refer to the

arbitrarily high value '00'. Thus, for example, letting E1 = Hl,2}}, and E2 = {{3,4}}, we have

7](E1U E2) = 2 > (7](Ed = (0) - 00, in which case E1 is said to oo-resemble E2.

We now state some elementary propositions regarding d-resemblance.

Proposition 4.3.1. An instance graph £1 I-resembles instance graph £2 if and onlu if 7](£1 U£2) =

7](£d·

Proposition 4.3.2. For instance graphs £1 and £2, if d ~ 7](£d - 1 then £1 d-resembles £2.

Proposition 4.3.3. For anu pair of graphs £1 and £2, there is some value d such that £1 d­

resembles £2.

Proposition 4.3.4. If an instance graph £1 d-resembles instance graph £2 then £1 (d+l)-resembles
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To find an application for d-resemblance we have only to look as far as the question of which

this article is the progeny. One may object to using Leibniz's Principle of the Indiscernibility of

Identicals in discussions of the preservation of identity through time, on the grounds that a change

in an entity's properties does not imply that it is discontinuous with itself. The principle in question

can be formulated thus:

\Ix, y[x = y =} \lo(ox {:} oy)] (4.3.3)

Using the theory of hypergraphs this statement can be reformulated to make allowances for change

through time; in particular, we can say that:

\lx,y[x = y =} E(x) d-resembles E(y)] (4.3.4)

where the value for d is chosen in accordance with standards appropriate to some particular appli-

cation.

4.3.2 Chromatic Number

Returning to the issue of the quasi-Leibnizian condition, akin to the Identity of Indiscernibles, that

no two properties of the same kind appear in the same instant,8 we now consider its relationship to

harmonic number. In fact we will show that for any instance graph E, in the event that 1](E) > 2,

this condition cannot be satisfied if the property kinds corresponding to E each have at least two

members, and if II is the dual of E. To prove this we exploit a notion logically dual to harmonic

number, viz., that of chromatic number.

If H is a graph and rn > 1, then H is rn-colourable if there is a partition of uH into rn pairwise

disjoint mutually exhaustive sets, none of which is a superset of any edge of H. Such a partition

is called an rn-colouring of H. (See Figure 4.3.1.) The chromatic number of H, X(H), is the least

integer n for which H is n-colourable. In the event that H is not n-colourable for any finite n, as,

for example, occurs with H = {{In, then we set X(H) := 00.

Lemma 4.3.5. \lH,1](H) > n {:} X(Hd ) > n. [4]

8See section 4.2.3.
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m=3

UH

C2

Figure 4.3.1: An m-colouring of H = {el' e2, e3, e4}'

Proof.

[=}] Assume that X(Hd) ::; n. Then there is an n-colouring {el, ... , en} of H d. Let {h, 00" fn} =

{UH - ei I 1 ::; i ::; n}. Then 'Vi, fi covers H d, and n{h, 00" fn} = 0 (1::; i ::; n). Therefore :3j ::; n

such that there is a j-tuple of edges of H dd with an empty intersection. But H dd ~ H (Proposition

4.2.1). Whence 1](H) ::; j ::; n.

[~] Suppose that 1](H) ::; n. Then for some j ::; n, there is a j-tuple {el, 00" ej} of edges of H

with an empty intersection. Let {h,oo.,fj} = {UH - ei 11::; i::; j}. Then U{h,oo.,fJ} = UH,

else n{el,oo.,ej} =1= 0, and 'Vg E Hd,'Vi,g g fi (1::; i::; j), else for some i, ei does not cover

H d (1::; i ::; j). Therefore, using {h,oo.,fJ} we may construct a j-colouring of H d by deleting

repetitions of vertices occurring in the elements of {h, 00" fj}. That is, X(Hd
) ::; j ::; n. 0

For any graph H and set s, the subgmph of H induced by s is the graph:

H[s]:={eEHle~s}.

Lemma 4.3.6. 'VH, n :::: 2, X( H) > n =} 'Ve E t-f, X( H[e]) > n - 1.

(4.3.5)

Proof. Assume that n :::: 2 and that X(H) > n. Let e E Hd
. Suppose that H[e] is (n -1)-colourable.

Then there is an (n - 1)-partition of e into pairwise disjoint mutually exhaustive sets {h, 00" fn- d

such that 'Vi, 'Vg E H[e],g g Ii (1 ::; i ::; n - 1). But then {h, 00" fn-l, uH - e} is an n-partition
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of UH into pairwise disjoint mutually exhaustive sets sueh that Vg E H, 9 is not a subset of any

element of the partition. Therefore H is n-eolourable, eontrary to assumption.

Theorem 4.3.7. If 'fJ(E) > 2, "If E 11,lfl 2 2, and 11 is the dual of E~i.e., 11

3e E E, 3d E 11 such that Ie n dl 22.

D

pi, then

I

I
I

I

I

I
I

I
I

I
I

\

I

Proof. Assume that 'fJ(E) > 2, "If E 11,lfl 2 2, and 11 is the dual of E. Since 'fJ(E) > 2, we have

X(Ed) > 2. So Vg E Edd
, X(Ed[g]) > 1 (Lemma 4.3.6). But Edd ~ E (Proposition 4.2.1). Therefore

3e E E,3d E Ed such that e ~ d. But by assumption, Ed = 11, and "If E 11,lfl 2 2. Whence

3e E E, 3d E 11 such that Ie n dl 2 2. D

4.4 Conclusion

To condude, let us take gender as an example of a property which is relevant to the preservation

or integrity of personal, or self-identity. Let us say that what is meant by 'the instantiation (or

preservation) of an exclusive gender' is the instantiation of some one kind of gender (i.e., to the

exclusion of other genders) at a fixed time. (Many people probably think that they satisfy this

eonstraint for all fixed times in their lives.) For the sake of argument, let us allow that an individual

can change genders over time, but let us also exclude the possibility that he or she possesses no

gender. One could then argue as follows:

The preservation of an exclusive gender is necessary for the preservation of self-identity

because humans-in order for their sense of identity to develop normally-are neces-

sarily social beings, self-identity is essentially an expression of social dimensionality-of

adopting different roles in different social settings-and at the intersection of any non­

empty collection of sets of behaviours for different social contexts we find highly specific,

and differing, gender-appropriate mores.

The point behind this passage is not so much the argument as its conclusion, and the language

in which the inference is couched. The language suggests a hypergraphic representation to which

the formalism of harmonics can be applied. Indeed, as an individual's behaviours in a social

circumstance can be encoded as a collection of properties of the individual, we can also apply the

formalism of instance graphs.

77



The question before us then, is whether exclusivity of gendered behaviour of a particular kind, .

at a fixed time, is a requirement for an associated instance graph to be repT'esentative of a single

individual.

In our consideration of the chromatics of hypergraphs we have seen that if T/( E) > 2, every

property kind has at least two elements, and the property graph II is the dual of E, then some

instant of E will include two distinct properties of the same kind (Theorem 4.3.7). We may therefore

conclude that given a certain richness in our classification schema, if the collection of an individual's

behaviours in his or her respective social settings is sufficiently cohesive, and there is an appropriate

relation of duality between her or his synchronic and diachronic representations, then it is possible

that some social role in which she or he engages will witness him or her behaving in both of two

differently gendered ways~at the same time, no less. But this is a striking result, for it lays

well-defined theoretical groundwork for theorizing about gender in terms which move beyond those

enmeshed in standard bivalent thinking about sex, whereby a person is either male, or female,

not both, and not neither. The existence of hermaphroditic, or intersexed, individuals alone should

suffice for biological evidence against this pervasive view. 9 The present result shows that we needn't

pigeonhole people into exactly one of the two categories 'male', 'female' - that adopting a broader,

well-defined theory of gender is feasible.
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Chapter 5

Harmonics for Hypergraphs

D. Nicholson, R.E. Jennings, and D. Sarenac1

Abstract

A truth-functional formulation, n~l' of the set (!n~lJ) (n E Z+) of all n-tuple subsets of an n + 1

membered set is shown to be functionally complete with respect to the formulation of the elements

of a new class of structures, the class of all (n + I)-harmonic hypergraphs. As a corollary we prove

that the system of logic defined by:

I- a =} I- Oa

I- a ---. j3 =} I- Oa ---. 0 j3

I- a ---. j3 and I- a =} I- j3

I- a and j3 is a substitution instance of a =} I- j3

where n~1(al,a2, ... ,an+l) is /\~:llVf=laf E ei,ei E (!c:: J
) , is complete with respect to the

modal logics of (n + 1)-ary relational frames. In addition we consider some hypergraph theoretic

applications of harmonic number, particularly in the domain of transversal hypergraphs.

1 Permission to include this article was granted by both R.E. Jennings and D. Sarenac.
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Figure 5.1.1: The truth condition for 0 on (n + 1)-ary relational frames.

5.1 Introduction

In this article we introduce a new class of structures, the class of (n + I)-harmonic hypergraphs,

and demonstrate a connection between this and a class of non-standard modal logics, in particular,

the logics of (n + 1)-ary relational frames. Although the conception is implicit in Jonnson and

Tarski [9, 10], recent interest in (n + 1)-ary relational frames and their modal logics stems from

Schotch and Jennings [6] [7] [12] [13]. The fundamentals of (n + 1)-ary relational semantics are a

generalization of those of Chellas [3]. If U =1= 0 and R ~ Un+\ then J= (U, R) is an (n + 1)-ary

relational frame. 9Jt = (J, V) is an (n + 1)-ary model on J if V maps the set of atoms to p(U). V

is extended to [[o]]9Jl in the usual way for Boolean connectives and to the modal connective 0 by

where [n] for any positive integer n abbreviates the set {I, 2, ... , n}. (See Figure 5.1.1.)

The introduction of (n + 1)-ary frame theory introduced numerous new questions for correspon-

dence theory, since formulae such as

81



l'\

which were trivially valid in the binary idiom have no such status in the more generalized setting;

and consistency formulae such as

[D] : Da ---> Oa and

[G] : ODa ---> DOa

that correspond to elementary classes of binary frames are not first order definable in the generalized

idiom [5] [8]. But the first reliable general completeness proof for the class of (n + 1)-ary relational

logics appeared in Apostoli and Brown [1]. A simplified proof is given in [11] (d. [14] for an

algebraic treatment). It is now known that, as supposed all along, the class of (n + 1)-ary relational

frames is completely axiomatized by the modal system K n :

[RN]: I- a =? I- Da

[RM]: I- a ---> f3 =? I- Da ---> Df3

[RPL]: I-PL a =? I- a

[U5]: I- a and f3 is a substitution instance of a =? I- f3

[MP]: I- a and I- a ---> f3 =? I- f3

where n~l (aI, az, ... , an+l) is Vi=ll\~=l af E ei for ei E ([~iJ) (for any set 5 and positive integer

n, (~) denotes the set of all n-tuple subsets of 5). Here, we replace [Knl with

where n~l (aI, az, ... , an+d is I\~:/ Vj=l af E ei, ei E (f':;J) , and prove completeness as a corollary

of the functional completeness of n~l with respect to the logical formulations of all (n+ I)-harmonic

hypergraphs.

5.2 Hypergraphs and Harmonics

If V#0 is a set and E = {el' ez, ... , ei, ...} ~ 2v then the pair (V, E) is a hypergraph H with V the

vertex set of Hand E the set of edges of H. Since for most purposes V can be taken to be Ui=l ei,

abbreviated 'UH', H can be identified with E, and we can refer to the edges of H by speaking of its
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elements. A finite hypergraph is one whose vertex set is finite. Thus, if H is a finite hypergraph then

IHI is finite and its edges are finitely long. A simple hypergraph H is one satisfying the condition

that Ve, f E H, e 1; f. For any hypergraph H, the harmonic number of H, 'f}(H), is defined:

{

min n E Z+ : ::IG E (H) : nG = 0 if this limit exists;
'f}(H) := n

00 otherwise,
(5.2.1)

where if G = {el, ... ,ei,"'} is a hypergraph, then "nG' abbreviates 'ni=l e/. We say that H is

(n + I)-harmonic if 'f}(H) = n + 1.

5.2.1 An Application to Hypergraph Theory

A hypergraph theoretic motivation for studying 'f} can be found in the work of Berge on transverse

hypergraphs [2]. If His hypergraph and S is a set then S is a transversal for H ifVe E H, Sne -=I- 0;

S is a minimal transversal for H if S is a transversal for H and no proper subset of S is a transversal

for H. The transverse hypergraph of H, TH, is the set of all minimal transversals of H.

Theorem 5.2.1. VH, TTH <;;; H.

Proof. Let H be a hypergraph, and let e E TTH. Since every edge f of H is a transversal for T H,

Vf E H,::Ig E TTH such that f ;;2 g. So suppose now that e tt H. Then every edge f of H has

an element that is not in e. Therefore, ::Ig E T H such that 9 n e = 0, which is impossible since

e E TTH. Whence e E H.

Theorem 5.2.2. VH, if H is simple then H = TTH.

o

Proof. Let H be a simple hypergraph, and let e E H. Nowe is a transversal for TH, so ::If E TTH

such that e ;;2 f· Suppose that e ::> f. Notice that since H is simple, f tt H. Also, because H is

simple, we have V9 E H, f ~ g. Therefore every element of H contains an element that is not in

f-that is, ::Ih E TH such that h n f = 0, which is impossible since f E TTH. Therefore e = f,

and H <;;; TTH. From the preceding theorem we have the converse, namely that TTH <;;; H, in

which case H = TTH, as desired. o

I

1

Berge shows that if H is a simple hypergraph then H = T H iff H is pairwise intersecting and

2-uncolourable [2]. In the language of harmonics this amounts to the claim that for a simple

hypergraph H, H = TH iff 'f}(H) > 2 and H is 2-uncolourable.
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If H is any hypergraph, and n is a positive integer, then a function f : UH - [n] is an n-colourirtg

of H (n 2: 1) if \Ie E H,3x,y E e: f(x) -=I f(y). The chromatic number of H, X(H), is defined:

{

min n E Z+: there is an n-colouring of H if this limit exists;
X(H) :=

00 otherwise.

If X(H) s: n then H is n-coloumble; else H is n-uncoloumble. An n-chromatic hypergraph is one

whose chromatic number is n.

Thus, Berge has shown that for any simple hypergraph H, H = TH iff X(H) > 2 and 7](H) > 2

[2]. More specifically we can show that \IH, if H is simple then H = T H {o} either H = {{x}}

or X(H) = 7](H) = 3. To prove this theorem we require the notion of a partition of a set, and a

lemma. To those ends, let n be a positive integer, and let S be a set. Then the set of n-partitions

of S, IIn(S) is defined:

n

IIn(S):= {7r = {Cl, ... ,cn} I\li,j (1 s: i < j s: n),ci n Cj = 0 and UCi = S}
;=1

Lemma 5.2.3. \IH, n 2: O,7](H) = n + 1 {o} X(TH) = n + 1.

Proof. It is sufficient to show that \IH, m 2: O,7](H) > m iff X(TH) > m. To that end:

[::;.] Assume that X(TH) s: m. Then there is an m-colouring of TH, so there is an m-partition 7r of

uH such that \Ie E H, \lc E 7r, e r£: c. Let A = {{(UH) - c} ICE 7r}. Then \la E A,3e E TTH such

that e s:;; a. But TTH s:;; H (Theorem 5.2.1). Therefore, \la E A,3e E H such that e s:;; a. Also,

nA = 0. Therefore 3l E [m], 3B E (~) such that nB = 0. That is, 7](H) s: l s: m.

[-<:] Assume that 7](H) s: m. Then for some l E [m], 3A E (~) such that nA = 0. Let B =

{{(UH) -a} Ia E A}. Then \Ie E TH, \lb E B,e r£: b. But B induces an l-colouring ofTH. Whence

X(TH) s: l s: m.

o

Theorem 5.2.4. \lH, if H is simple then H = TH {o} either H = {{x}} or X(H) = 7](H) = 3.

Proof. Let H be simple.

[::;.] Assume that H = TH, and that \Ix E UH,H -=I {{x}}. Then 7](H) > 2 because every

edge of H is a transversal for H. Also, X(H) > 2 else there is a 2-partition 7r of H such that
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'ric E 7r, e E H, e g; c, in which case each c E 7r is a transversal for H, in which case 3A E (~,)

such that nA = 0, contrary to 'f/(H) > 2. Now since H = T H, 'rIe E H, x E e,3A E (~) : e E A

and nA = {x}. Moreover, since'rlx E UH,H # {{x}}'IHI2': 2 because ITHI > 2. Let e E H be

arbitrary, and let x E e. Then 3f E H : x r:f. f. Otherwise {x} E T H, contrary to the simplicity of

H . .'. TJ(H) = 3. But then X(TH) = 3, using Lemma 5.2.3, in which case X(H) = 3.

[<¢=oj Assume that X(H) = TJ(H) = 3. Let e E H. Since 'f/(H) > 2, e is a transversal for H, so 3f <;;; e

such that f E TH. Suppose that fee. Since X(H) > 2, TJ(TH) > 2 (Theorem 5.2.2 and Lemma

5.2.3) f is a transversal for TH. So 3g <;;; f such that g E TTH. But TTH <;;; H (Theorem

5.2.1) g E H, contrary to the simplicity of H. Whence e = f and H <;;; TH.

Now let e E TH. Since 'f/(TH) > 2 (Theorem 5.2.2 and Lemma 5.2.3), e is a transversal for TH.

So exists f <;;; e such that f E H, since TTH <;;; H (Theorem 5.2.1). Suppose that fee. Then

3g E TTH such that g n f = 0. But H = TTH (Theorem 5.2.2). Whence 'f/(H) :s:; 2, contrary to

the assumption that 'f/(H) = 3. Therefore e = f and TH <;;; H.

Lastly, suppose that H = {{x}}. Then H = TH, trivially. Therefore H = TH. o

In fact, the class of hypergraphs identical to their transverse hypergraphs can be characterized

independently of chromatic properties by exploiting a maximality condition imposed on TJ. If H is

n-harmonic then H is maximally n-harmonic if for any set S such that 'rIe E H, S "£ e, it follows

that 'f/(H U {S}) < n.

Theorem 5.2.5. Let H be simple. Then H = TH {::} either H = {{x}}, for some x, or H is

maximally 3-harmonic.

Proof. Assume that H is simple.

[~] Assume that H = T H and that H # {{x}}, for any x E uH. Let S be such that 'rIe E H, S "£ e.

Then 3f E T H( = H) : f n S = 0.... TJ(H U {S}) :s:; 2. But from Theorem 5.2.4 we have TJ(H) = 3.

Whence H is maximally 3-harmonic.

[<¢=oj Assume that H is maximally 3-harmonic. Let e be in H. Then since TJ(H) > 2,3f <;;; e such

that f E TH. Suppose fee. Then contrary to hypothesis, H is not maximal with respect to TJ,

since TJ(H U {f}) = TJ(H). Whence H <;;; TH.

Let e E TH. Then by the maximality of H, 3f E H such that e :2 f. If e ::> f then, since

I.·...

1
TJ(H) > 2, e is not a minimal transversal for H . ... TH <;;; Hand H = TH.
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In addition to indicating a hypergraph theoretic application of T), Theorem 5.2.5 has the virtue

of yielding a logical one as well. This is because it characterizes the conditions under which the

logical formulation of a simple hypergraph is self-dual.

5.2.2 Logical Duality

If H is a finite hypergraph then H can be formulated as a truth function in any propositional

language whose connectives include V and 1\, where these are given standard, Boolean, interpre-

tations. This is because the vertices of H can be assigned propositional variables: Let V AR =

{P1,P2, ···,Pi, ... } be a denumerable set of propositional variables. Then where H is a hypergraph,

let 9 : uH -> V AR be any function such that Vi E UH, g( i) = Pi.

Now let H = {e1' ... , em} be a finite hypergraph. Then the forrnulation of H, P(H) is defined:

m leil

P(H) := 1\ VPh·
;=1 h=l

The dual formulation of H, pd(H) is defined:

m led

pd(H) := V1\ Ph·
;=1 h=l

(5.2.2)

(5.2.3)

The dual formulation of H has been so named with Church's notion of the principle dual of a

formula in mind [4]. The principle dual of a formula is obtained by replacing each occurrence of a

connective with an occurrence of the dual of the connective. The dual of a connective is obtained

by interchanging all l's and O's in its truth definition. Thus, for any finite hypergraph H, P(H)

and pd(H) are principal duals. By 'duality' however, we mean a broader notion than that in

Church; here, a formula a is dual to a formula (3 iff a is equivalent to the result of interchanging

all occurrences of 1's and O's in the truth table for (3. Whence we have the following principle of

duality:

Proposition 5.2.6. If a sentence a is dual to a sentence (3, and a is truth functionally equivalent

to a sentence 0, and (3 is truth functionally equivalent to a sentence 'Y, then 0 is dual to 'Y.

Proposition 5.2.6 enjoined with the following theorem suggests that for any finite hypergraph H,
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there is a sense in which we can think of H and its transverse hypergraph T H as being dual. Since

we are now dealing with truth functional formulations of hypergraphs, in this section we restrict

our attention to finite hypergraphs.

Theorem 5.2.7. 'v'H, F(H) =11= Fd(TH) & Fd(H) =11= F(TH).

Proof. Theorem 5.2.7 is easily proved using Theorem 5.2.1.

Corollary 5.2.8. 'v'H, Fd(TH) is dual to Fd(H), and F(H) is dual to F(TH).

o

I

l

Corollary 5.2.8 illustrates the sense in which Hand TH, for arbitrary H, are dual. In the same

vein, chromatic number is dual to harmonic number. For Theorem 5.2.2 and Lemma 5.2.3 entail:

1. an (n + I)-chromatic simple hypergraph is the transverse hypergraph of an (n + I)-harmonic

hypergraph, and

2. an (n + I)-harmonic simple hypergraph is the transverse hypergraph of an (n + I)-chromatic

hypergraph.

This suggests that our interest in hypergraphs runs dual to one of the principal mathematical

interests in hypergraphs, namely, that pertaining to chromatic number.

With an eye towards proving completeness for the modal system Kn with respect to the class of

(n + 1)-ary relational frames, we now show that the truth function n~l is complete with respect to

the formulations of all (n + I)-harmonic hypergraphs.

5.2.3 Functional Completeness

For a set {aI, 0'2, ... , O'n+d of formulae, and a positive integer n, the truth function n~l is defined:

We intend to prove that if L: is an arbitrary non-empty set of formulae closed under n~l and

propositional implication, then L: contains the formulation of every finite hypergraph H such that

r,(H) > nand uH ~ L:. As a corollary it follows that implication enjoined with n~l is complete

with respect to the formulation of transverse hypergraphs of finite n-uncolourable hypergraphs-a

fact which is to playa prominent role in the completeness proof for Kn.
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We induce on IHI. For the basis, let IHI be 1. Then where H = {e = {PI,P2, ... ,pd},F(H) ~

PI V P2 V ... V Pk; thus F(H) E 2: since e ~ 2: (using f- P ---. P V q).

Now let IHI = t 2" 1. Suppose that t < n + 1. Then nH =I 0, else T)(H) ::; n. Let Pi be in nH.

Then f- Pi ---. F(H), whence F(H) E 2:.

Assume t 2" n + 1. Where {el, e2, ... , en+l} is a subset of H, define:

Hi := H - {e;} (1::; i ::; n + 1)

Then T)(Hi ) > n for each i (1 ::; i ::; n + 1), in which case F(Hi ) E 2:. Now for any pair

i,j (1 ::; i =I j ::; n + 1), Hi U H j = H; therefore F(Hi ) /\ F(Hj ) ~F F(H), and there­

fore f- Fd( ([F(f;)])) ---. F(H). But f- n~l (F(Hd, F(H2), ... , F(Hn+l)) ---. F d((IF(f;}])). Whence

f- n~l (F(HI), F(H2)' ... , F(Hn+I )) ---. F(H), in which case F(H) E 2:, and we have:

Theorem 5.2.9. If a non-empty set 2: of formulae is closed under implication and n~l' then VH,

if uH is a finite subset of 2: and T)(H) > n, then F(H) E 2:.

5.3 Completeness

Theorem 5.2.9 is pivotal in the following proof that the system Kn:

[RN]: f- a => f- Da (5.3.1)

[RAI]: f- a ---. f3 => f- Da ---. Df3 (5.3.2)

[RPL]: f-PLa =>f-a (5.3.3)

[US] : f- a and f3 is a substitution instance of a=> f- f3 (5.3.4)

[AIP]: f- a and f- a ---. f3 => f- f3 (5.3.5)

[Kn] :
n

(5.3.6)f- Dal/\ Da2/\ ... /\ Dan+l ---. D--(al,a2, ... ,an+d
n+1
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eompletely axiomatizes the logies of (n + 1)-ary relational frames. We begin by defining a eanonieal

model 9J1 = (~, V), where ~ = (U, R) is the eanonieal frame defined as follows:

U is the set of all maximal K n -eonsistent sets, and

R is a subset of U n+1
, where'tlx E U, 'tI(Yl' ... , Yn) E Un,

RXYl···Yn iff {Yl' ···,Yn+d induees an n-deeomposition of {o: 19J1 Fx oo:}.

(5.3.7)

(5.3.8)

(5.3.9)

Let' 0 (x)' denote the set {o: I 9J1 Fx oo:}. Our aim is to prove the fundamental theorem:

'tIx E U, 0:, 9J1 Fx 0: {::} 0: E x. (5.3.10)

The proof is by an induetion on the eomplexity of 0:, and we omit all but the hardest ease, viz., to

show that Op 'i x=? 9J1 ~x op.

Assume that Op 'i x. By the definition of R, it is suffieient to prove

(5.3.11)

For in that ease, there is an x-related n-tuple of points Yl, Y2, ... , Yn, none of whieh is in [[plf"', and

thus 9J1 ~x Op, as desired. Moreover, to prove 5.3.11, it is suffieient to prove:

'til: c o(x), if l: is finite, then 371' E IIn(l:): 'tic E 7r,cU {-.p} I7K" ..1. (5.3.12)

Otherwise, if 5.3.12 is true, but 5.3.11 is false, then the hypergraph H whose edges eonsist of

all least finite o(x)-subsets e sueh that e U {-.p} f- K " ..1 is n-uneolourable. Chromatie number,

however, is eompaet for hypergraphs whose edges are finitely long. That is, 'tIH, if every edge of H

is finitely long, then X(H) :::; n iff 'tiC ~ H, if C is finite then X( C) :::; n.2 Therefore, there is a finite

hypergraph C ~ H sueh that X(C) > n. But then uC is a finite subset of o(x) for whieh there is

no n-partition 71' sueh that 'tic E 71', C U {-.p} 17K" ..1, whieh is absurd by hypothesis. Whenee we aim

to show that 5.3.12 is true.

2Chromatic compactness is provable using the compactness of propositional logic.
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Suppose that 5.3.12 is false-suppose that there is no n-partition 1r of ~ such that Ve E 1r,eU

{'fJ} IfK" .L Then by drawing from some cell in each n-partition of ~, we can form a simple

hypergraph H where Ve E H, e is a minimal set such that e I- K" fJ. Since H is simple, by Theorem

5.2.2, H = TTH. Accordingly, because X(H) > n, from Theorem 5.2.3 it follows that ry(TH) > n.

Whence, since uH c D(x);;60, and D(x) is closed under implication, by the functional completeness

of n~l we have F(TH) E D(x) (Theorem 5.2.9). But I- F(TH) -+ fJ (Theorem 5.2.7). So by the

presence of [RM], DfJ E x, which is absurd. QED
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Chapter 6

A Dualization of Neighbourhood

Structures

D. Nicholson

Abstract

A dualization of neighborhood semantics is introduced for the purpose of obtaining a simplified

proof that weakly aggregative modal logic is complete with respect to (n + 1)-ary relational frames.

This new class of quasi-semantic structures exploits the theory of transverse hypergraphs. Unlike

the other proofs in the literature, the one included here does not cite chromatic, or colouring,

compactness. Along the way we prove completeness for a denumerable class of non-normal modal

logics, which have deontic, as well as philosophieal logical, motivations.

6.1 Introduction

The search for a completeness proof for Jennings and Schotch's weakly aggregative modal logic

lasted for nearly twenty years (d. [4][6][3][7]) before its goal was attained in 1995 by Apostoli and

Brown in [1], and also independently, algebraieally, by Urquhart in [9]. Apostoli and Brown's proof

was subsequently simplified, in 2000, by Nieholson, Jennings and Sarenac in [5]. But both proofs

exploit the compactness of colouring for hypergraphs whose edges are finitely long. Chromatic
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compactness, also called colouring compactness, is the claim that I::jH, if H is a hypergraph then

H is k-colourable (k 2: 1) iff every finite G ~ H is k-colourable. 1 A hypergmph is a family of

sets, called edges. A hypergraph H is k-coloumble iff there is a partition of its union, called its

vertex set, into k pairwise disjoint, mutually exhaustive sets, or cells, such that no edge of H is

a subset of any cell. The simplifying thrust of Nicholson et al. in [5] raises the question whether

there is an even simpler completeness proof, one which avoids citing chromatic compactness. In this

paper an affirmative answer to this question is demonstrated, by invoking the theory of what are

dubbed hyperfmmes. The theory of hyperframes implements the theory of transverse hypergraphs

and consists essentially of a dualization of the neighborhood semantics for modal logic explored by

Segerberg in [8], and referred to as 'minimal models' by Chellas in [2].

6.2 Hyperframes

A hyperfmme ~ is pair (U, 'H) where U is a non-empty set (the universe of the frame) and 'H is a

hypergmph function from U to pp(U). Accordingly, for each x E U, 'H(x) is a hyperymph on U: a

family of subsets of U, where the subsets are called the edges of the hypergraph, and the elements of

the edges are called the vertices of the hypergraph. For each x in U, 'H(x) is called the hypergmph

on x (relative to ~). A hyperframe is thus, in essence, a neighborhood frame, as the latter is defined

in [8], for example. But a model on a hyperframe is distinct from a model on a neighborhood frame

when it comes to interpreting D.

If ~ = (U, 'H) is a hyperframe and V : Nat -+ p(U) is a valuation function, then (U, 'H, V) is a

(hyper)model9J1 on~. Truth at a point x in a model9J1 = (U, 'H, V), with respect to the language of

a standard propositional logic, is defined in the standard way for Boolean connectives. To interpret

the unary necessity operator 0, we use the notion of the tmnsversal of a hypergraph.

Definition 6.2.1. If 'H is a hypergraph on a non-empty set U, and S is a subset of U, S is a

tmnsversal for 'H iff I::j[ E 'H, S n [ -=I- 0.

It follows from this definition that 0 E 'H iff 'H has no transversals, and 'H = 0 iff, vacuously, every

subset of U is a transversal for 'H.

1Colouring compactness is provable from the compactness of propositional logic.
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Figure 6.2.1: The truth condition for 0 on hyperframes.

The truth condition for 0 is:

Px0,8 iff 11,811~ is a transversal for 1t(x).

(See Figure 6.2.1.) Introducing 0,8 as an abbreviation for -,0-,,8, we therefore have:

PxO,8 iff 3E E H(x) : 11,811~ ~ E

If 9J1 = (U, 1t, V) is a model and "v'x E U, Pi a, then a is valid on 9J1, written 'p a'; if for every

valuation function V, a is valid on (U, H, V) then a is valid on ~ = (U, H), indicated by '~ Fa'.

If a is valid on every member of a class l! of frames, then a is valid with respect to l!, 'l! Fa'.

The logic determined by the class l! of all hyperframes is axiomatized by N q,2 the system defined

by:

[RR]: f- a ---.,8 =} f- Oa ---. 0,8

[PL]: f-PLa =}f-a

[MP] : f- a ---.,8 & f- a =} f- ,8

[US] : f- a & ,8 is a substitution instance of a =} f- ,8

2The name of this system has been drawn from [3J.
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It is easy to check that N q is sound with respect to <!:; to prove completeness we use a Henhn

construction which capitalizes on the theory of transverse hypergraphs.

Definition 6.2.2. Let H be a hypergraph on a set U. A set [ ~ U is a minimal tmnsversal for H

if [ is a transversal for Hand V£' c [, [' is not a transversal for H. The tmnsverse hypergmph for

H, T(H), or just TH for convenience, is the set of all minimal transversals for H.

Proposition 6.2.1. For any hypergmph H on a set U, H = 0 iffTH = {0}, and 0 E H iffTH = 0.

Proof. [=?J Assume that H = 0. Then every subset of U is a transversal for H; but then if [ #- 0,

3£' C [ such that £' is a transversal for H. So every minimal transversal for H is empty. And,

oE TH because 0 has no proper subsets. Thus TH = {0}. [<¢=J Assume now that TH = {0}. Then

V[ E H, 0n [ #- 0. Therefore H = 0.

[=?J Suppose that 0 E H. Then \:I[ E TH, [n 0 #- 0. Whence TH = 0. [<¢=] Lastly, suppose that

TH = 0. If H = 0 then by the above reasoning 0 E TH. So H #- 0. If, then, 0 r.t H, 3['10 such that

[ E TH, which is absurd. Therefore 0 E H. 0

Definition 6.2.3. A hypergraph H is simple if V[,[' E H, [ 1- ['.

Proposition 6.2.2. For any hypergmph H on a set U, TTH ~ H. IfH is simple then H = TTH.

Proof· Let H be a hypergraph on U, and let [ E TT1i. Suppose that [ r.t H. Note that V[' E H, ['

is a transversal for TH. Therefore V[' E H, 3x E £' such that x r.t [, in which case 3£' E TH such

that [n [' = 0, contrary to the assumption that [ E TTH. Therefore TTH ~ H.

Now let [ E H, and assume that H is simple. Since [ is a transversal for TH, 3£' ~ [ such that

[' E TTH. But the above reasoning shows that TTH ~ H. Therefore, since H is simple, [' = [,

i.e., [ E TTH, whence H ~ TTH. 0

If L is a modal logic and a is a sentence, the proof set for a in L, lalL, is the set of all maximal

L-consistent sets of which a is a member. The canonical fmme for L is the structure ~L = (UL, Hd

where UL is the class of all maximal L-consistent sets of formulae, and Vx E UL,

Hdx) = T({I,lL: 0, EX}).

The canonical model for L, 9J1L, is the triple (UL, HL, VL) where VL is defined:

Vn E Nat, x E Vdn) iff Pn Ex.
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Theorem 6.2.3. Let L be any logic closed under [RR], [PL], [US] and [MPJ. Then

Proof. We show that "Ix E UL, a is true at x iff a E x. The proof is by induction on the complexity

of a. We omit all but the case for a = 0,8.

Suppose that x E 110,811. Then 11,811 is a transversal for HL(x), in which case, by the hypothesis

of induction, so is 1,81. Therefore 3[ ~ 1,81 such that [ E T(HL(x)). Whence [ E {iii: 0, E x}

(Proposition 6.2.2). So let [ = 1,1. Then 1,1 ~ 1,81 and 0, E x. But then I- , ---+ ,8, and thus

I- 0, ---+ 0,8 (by [RR]). Therefore 0,8 E x.

Suppose now that 0,8 E x. Then "I[ E HL(x),£ n 1,81 =I- 0. I.e., 1,81 is a transversal for HL(x). By

the induction hypothesis, 1,81 = 11,811. Whence x E 11 0,811. 0

Corollary 6.2.4. The system N q is determined by the class of all hyperframes.

6.3 Normal Hyperframes

The logic N q is not normal because there is at least one theorem of N q whose 0 formula is not a

theorem. E.g., I-Nq T while IfNq OT. Since there is a hypermodel 9J1 containing a point x such that

oE H(x), it follows that ([ li= OT, and hence IfNq OT (Corollary 6.2.4). By similar, dual, reasoning

there is a model9J1 containing a point x such that "la, Fx Oa, and thus Fx 01-. Hyperfrarnes therefore

provide an opportunity for the systematic investigation of non-normal logics, that is, logics that

are not closed under the rule:

[RNJ: I- a '* I- Oa (6.3.1)

Definition 6.3.1. If 3' = (U, H) is a hyperframe then 3' is normal if "Ix E U,0 if- H(x). A model

is normal if it is based on a normal hyperframe.

This is significant from a philosophical perspective for two reasons: First, non-normal logics have

deontic motivations insofar as we would like to not have an infinite number of obligations. A logic

is normal when Oa is a theorem whenever a is a theorem. Thus, if 0 represents 'it is obligatory

that', then in any deontic logic with an infinite number of theorems there is an infinite number
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of obligations.3 Second, if we read 0 as a necessity operator, then the existence of determined

non-normal modal logics marks a conceptual divergence between logical validity and its classical,

Aristotelian account. According to the classical account, an argument is valid when it is necessary

that if the premises are true then the conclusion is true. But there are non-normal logics in

which there are logically valid conditionals whose 0 formulae are not theorems. This raises the

philosophical question of how theoremhood in such systems should be understood, or alternatively,

the question of what the 0 operator represents.

Theorem 6.3.1. Let L be a logic which is closed under [RR], [RN], [US], [PL]' and [MP]. Then

the canonical hyperframe for L is normal.

Proof. Let x E UL, and suppose that 0 E 1iL(x). Then by Proposition 6.2.1, T1iL(x) = 0. But

1iL(x) = T({II'I : 01' E x}); therefore T1iL(x) = {II'I : 01' E x} = 0 (Proposition 6.2.2). I.e.,

VI', 01' rt x. But f- T, and so by [RN], f- oT, in which case oT E x, an absurdity.

6.3.1 (n + l)-ary Relational Frames and n-Bounded Hyperframes

o

An (n + 1) -ary relational frame (n 2: 1) is a pair (U, R) where U is a non-empty set and R ~ un +1.

If V is a function from Nat to p(U) then the triple (U, R, V) is an (n +1) -ary relational model based

on the frame (U, R). Truth and validity relative to (n + l)-ary relational frames and models are as

defined for hyperframes and models, with the exception that truth at a point x for 0 formulae is

defined:

where for any positive integer n, [n] denotes {I, 2, ... , n}, and ifR ~ Un+1
, then R(x) = {(Yl' ... , Yn) :

(x, Yl, ... , Yn) E R}. (See Figure 6.3.1.)

Definition 6.3.2. A hyperframe ~ = (U,1i) is n-bounded, for n 2: 1, ifVx E U, VE E 1i(x), lEI:::: n.

A model is n-bounded if it is based on an n-bounded hyperframe.

3lt is important to note, however, that the absence of normality does not guarantee the absence of an infinite
number of obligations. Although the absence of normality is necessary, it is not sufficient for this end. What we
really need is the rule:

(6.3.2)

Jennings has suggested that what we really want is a variety of connexivist implication, which is a restriction of
classical logic to contingencies.
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Figure 6.3.1: The truth condition for 0 on (n + l)-ary relational frames.

Definition 6.3.3. Let J' = (U,1i) be an n-bounded normal hyperframe, and let the relation

R ~ un+1 be defined pointwise:

R(x) := {(YI, ... , Ym, Yi, ... , Yi ) :
'-v-'

n-m times

{YI, ... ,Ym} E H(x) & 'i E [m]}

Then the (n + l)-ary relat'ional transformat'ion of J' is the (n + 1)-ary relational frame J'* = (U, R).

It is easy to see that for any model 9J1 on an n-bounded normal hyperframe there is an equivalent

(n + 1)-ary relational model. That is:

Theorem 6.3.2. For every normal n-bounded hyperframe J' = (U,1i), every model9J1* = (U, R, V)

on the (n + l)-ary relat'ional transformat'ion J'* = (U, R) of J' 'is po'intw'ise equ'ivalent to the hyper-

model9J1 = (U, H, V), that is,

Proof. The (omitted) proof is by induction on the complexity of a.
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6.4 Weakly Aggregative Modal Logic

A consequence of the theory of n-bounded normal hyperframes is a simple proof of the completeness

of the system K n with respect to the class of all (n + 1)-ary relational frames. The system K n

(n ~ 1) is defined:

[RR]: f- a ----> f3 :::} f- DO' ----> Df3

[RN]: f- a :::} f- DO'

[PL]: f-PL a :::} f- a

[MP] : f- a ----> f3 & f- a :::} f- f3

[U5] : f- a & f3 is a substitution instance of a :::} f- f3

[Kn ]: f- 00'1 1\ ... 1\ Dan+l ----> 0 V ai 1\ aj
l:Si<j:Sn+l

(6.4.1 )

(6.4.2)

(6.4.3)

(6.4.4)

(6.4.5)

(6.4.6)

K 1 is just the Kripke system K. For each n > 1, K n is weakly aggregative because it replaces

the strong aggregation principle [K](= [KID with the weaker [Kn ].

It would appear that the completeness proof herein is a simplification of the other proofs in the

literature, found in [1] and [5], as both of these rely heavily on the colouring theory of hypergraphs,

reference to which is omitted in the present proof. In particular, the previous proofs exploit colouring

compactness, the claim that if H is a hypergraph each of whose edges is finitely long, then H is

k-colourable iff every finite subgraph of H is k-colourable. In contrast, the crucial lemma used

here, in addition to Theorem 6.3.1, is that the canonical hyperframe for any logic: that includes

[Kn ] (n ~ 1) is n-bounded.

For convenience, we introduce the convention that if t l , t2, ... , tn+l are sets (n 2: 1), then

n~l (ti)iE[n+l] denotes Ul:Si<j:Sn+l t i n t j , and if 0'1, 0'2, ... , an+l are sentences then n~l (ai)iE[n+l]

represents Vl:Si<j:Sn+l ai 1\ aj.

Lemma 6.4.1. Ifn 2: 1, ifH is a hypergraph such that If£ E H, 1£1 ::; n then whenever tl, t2, ... , t n+l

are transversals for H, so is n~l (ti)iE[n+l].

Proof. Suppose that If£ E H, 1£1 ::; n and that Ifi E [n +1], ti is a transversal for H. Suppose further

that n~l (ti)iE[n+l] n £ = 0, for some £ E H. By a pigeonhole argument, :3i,j E [n + l](i =F j) such

that t i n tj n £ =F 0, which is absurd since t i n tj ~ n~l (ti)iE[n+l]. 0
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Lemma 6.4.2. Let H be a simple hypergraph such that 3n 2 1,3£ E H, 1£1 > n. Then there are

n + 1 transversals for H, t l , t2, ... , t nH , such that n~l (t i );E[ll+l] is not a transve7'sal fo7' H.

Proof. Let H be a simple hypergraph and let n 2 1 be an arbitrary integer such that for some

£ E H, 1£1 > n. Suppose that £ = {Xl, X2, ... , Xi, ... , Xn+l, ... }. Then it is possible to construct n + 1

transversals for H, t l , t2, ... , t n+l such that '<ii E [n + 1], t i n £ = {x;}; otherwise 3£' E H such that

£' c £, contrary to the assumption that H is simple. But then n~l (ti)iE[n+l] n £ = 0.

o

Theorem 6.4.3. '<in 2 1, ifL is a modal logic which is closed under [RR], [PL] , [US], and modus

ponens, then if [KnJ E L, it follows that the canonical frame for L is n-bounded.

Proof. Assume that L is a modal logic which satisfies the antecedent conditions, including that

[KnJ E L for some n 2 1. We show that '<ix E UL, '<i£ E Hdx), 1£1 ::; n. Suppose not. Let X E UL

be such that £ E Hdx) and 1£1 > n. From Lemma 6.4.2 it follows that there are n + 1 transversals

for Hdx), tl, t2, ... , tn+l, such that n~l (ti)iE[n+l] is not a transversal for Hdx). But since t i is a

transversal for Hdx) (i E [n + 1]), 3£i ~ ti such that £i E T(Hdx)), i.e., from Proposition 6.2.2,

£i E Hrl : 0')' E x}. So let £i = I')'il (i E [n + 1]), where 0')'; Ex. Since [KnJ E L, and L is closed

under uniform substitution, 0')'11\ ... 1\ O')'n+l -+ 0 n~l (')'i)iE[nH] E x. Therefore 0 n~l (')'i)iE[n+l] E

x, and thus ~L 0 n~l (')';)iE[n+l] (Theorem 6.2.3), in which case II n~l (')'i)iE[nH] II 9Jl
L is a transversal

for Hdx). But:

II n ~ 1 hi)iE[n+l]II
9Jl

L = n ~ 1 (lhill
9JlL

)iE[nH]

2
=n + 1 (hil)iE[nH]

2
= n + 1 (£i)iE[n+l]

And n~l (£i)iE[nH] ~ n~l (ti)iE[n+l]' Therefore n~l (£i)iE[n+l] is not a transversal for Hdx), which

is absurd. o

Since '<in 2 1, K n is sound with respect to the class of all normal n-bounded hyperframes (see

Lemma 6.4.1), given Theorems 6.3.1 and 6.4.3 we have:

Corollary 6.4.4. '<in 2 1, the modal system K n is determined by the class of all normal n-bo'unded

hyperframes.

In closing we have:
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Theorem 6.4.5. Vn ::::: 1, the system K n is complete with respect to the class of all (n + l)-at:1J

relational frames.

Proof. Assume that ex is valid with respect to the class of all (n + 1)-ary relational frames. Then

ex is valid on the (n + 1)-ary relational transformation of the canonical hyperframe JK
n

for K n

(Theorems 6.3.1, 6.4.3). Therefore, by Theorem 6.3.2, ex is valid on the canonical model 9J1K
n

for

K n , whence t-Kn ex. 0

Bibliography

[1] P. Apostoli and B. Brown, A solution to the completeness problem for weakly aggregative modal

logic, Journal of Symbolic Logic 60 (1995), 832-842.

[2] B.F. Chellas, Modal logic: an introduction, Cambridge, 1980.

[3] RE. Jennings and P.K. Schotch, Some remarks on (weakly) weak modal logics, Notre Dame

Journal of Formal Logic 22 (1981), 309-314.

[4] D.K. Johnston, A generalized relational semantics for modal logic, M.A. thesis, Simon Fraser

University, Burnaby, British Columbia, Canada, February 1978.

[5] T. Nicholson, RE. Jennings, and D. Sarenac, Revisiting completeness for the K n modal logics:

a new proof, the Logic Journal of the IGPL 8 (2000), no. 1, 101-105.

[6] P.K. Schotch and RE. Jennings, Inference and necessity, Journal of Philosophical Logic IX

(1980), 327-340.

[7] __ , Modal logic and the theory of modal aggregation, Philosophia 9 (1980), 265-78.

[8] K. Segerberg, An essay in classical modal logic, Uppsala, 1971.

[9] A. Urquhart, Completeness for weakly aggregative modal logic, manuscript, 1995.

101



Chapter 7

On Imploding: the Logic of

(In)Vacuity

D. Nicholson

Abstract

Jennings and Schotch introduced the K q modal systems (q ~ 1) axiomatizable by a weakening of

Scott's Rule for K. Semantically, Scott's rule in effect asserts that the set of necessities at a point

is closed under classical provability. The weakened rule asserts that the set of necessities at a point

is closed under a paraconsistent inference relation that Jennings and Schotch called q-forcing. In

this paper a corresponding question is raised about the closure conditions on the set of possibilities

at a point. This leads to a relevant inference relation, q-folding, the dual of q-forcing, which can be

defined in terms of the harmonicity of families of sets of data. This inference relation is relevant

because it preserves informational content of a set, and thereby blocks the irrelevant inference to

arbitrary sets whose members cannot all be false at the same time. It is proved that q-folding

represents a restriction of the classical provability relation.
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7.1 Introduction

It is well-known that Jennings and Schotch's paper 'On Detonating' represents an important con­

tribution to the literature of paraconsistent (and relevance) logic [7]. In it, they describe a non­

dialetheic approach to paraconsistent logic that has been called 'weakly aggregative' because ex

falso quodlibet is blocked as a result of a weakening of I\-Introduction. This weakening enables a

distinction to be made not only between such sets as

{P 1\ -,P} and

{P, -,P}

(7.1.1)

(7.1.2)

(only the former is explosive in Jennings and Schotch's system), but also between such sets as

{P, P -7 -'Q, Q} and

{P 1\ Q, -,p 1\ Q, -,Q}.

(7.1.3)

(7.1.4)

One difference between the latter two sets with respect to consistency is that it is easier to partition

the first of the two into consistent subsets. One needs to divide the second set into at least three

parts to achieve the consistency of each part, whereas a two-partition suffices for the first set. What

this means from the point of view of classical inference is that it is easier to reason classically but

non-trivially from the first set, modulo an inference relation that pays attention to partitions into

classical cells. This idea is formalized in [7] in terms of a measure of the level of the consistency of

set. But while the dual issue pertaining to verum ex quodlibet is raised by Schotch and Jennings,

its details are omitted. The purpose of this paper is to provide those missing details. The general

question at issue can be put thus:

Given a set I: of data and a formulae a, is it the case that a proves I:?

The question is abductive in nature, and the answer illustrates that the need to mitigate the

explosiveness of sets of formulae is not a uniquely paraconsistent imperative. There is a more

general issue of relevance at stake. Besides inconsistency, there is an alternative vehicle for the

trivialization of inferential closure, namely, informational vacuity. For if 0 f- I: and I: is closed

under the rule [a f- I: =} a E I:] then I: is the universal set of formulae. That is to say, classical

logic draws no principled distinctions among sentences with respect to a set proved by the empty set,
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a vacuous set, for short. This is a straightforward generalization to a multiple conclusion setting of

the principle of implosion for classical logic, verum ex quodlibet, that anything implies a tautology.

But there is something to be said for the idea that {P V ,P} is more vacuous, is less inferentially

useful, contains less information than say, the set {P ~ Q, Q ~ R}, even though the empty

set entails each. In this paper, an inference relation called q-folding is developed which preserves

distinctions between sets with respect to their informational content, by preserving what is called

the vacuity level r.p of a conclusion set. Intuitively, this can be understood as the level of the absence

of informational content of a set. For any set 2:, if T is in 2: then r.p(2:) is arbitrarily high. In general,

r.p(2:) is a function of the number of parts into which 2: must be divided so that no part is entailed

by the empty set.

If II is any set and p is a positive integer, the set of p-partitions of II is defined:

IIp(ll) := {{CI' ... , cp } I U Cm = II & Cm n Cn = 0 (1 :s: m =I=- n :s: p)},
mE[p]

where if p is any integer the notation '[p]' abbreviates '{I, 2, ... ,p}'. Moreover, a set 2: of formulae

is falsifiable iff 0 If 2: iff there is a valuation on which every element of 2: is false. I If 2: is a set of

formulae, the vacuity level of 2: is defined:

{

min q ~ 1:::J7T E IIq (2:): Vc E 7T,C is falsifiable
r.p(2:) :=

00

Thus for example, r.p( {T}) = 00, and r.p( {P, ,P}) = 2. Similarly,

r.p({P ~ Q,Q ~ R}) = 2,

if this limit exists;

otherwise.
(7.1.5)

and

r.p({P, ,p V Q, P ~ ,Q}) = 3.

Modelling the relevant inference relation 'q-folding' on a closure condition for the set of formulae

true a point x in a (q + 1)-ary model for modal logic (q ~ 1), it is shown that the class of pairs

(ex, 2:) such that ex q-folds 2: is finitely axiomatizable. In this respect the article follows suit with [7],

where a corresponding result for the dual, paraconsistent, inference relation 'q-forcing', is proved.

1No loss of generality results in what follows from alternating between semantic and syntactic representations of
falsifiability.
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However, q-folding is not relevant simpliciter. For one thing, any inconsistent formula 0: q-folds

any set .6. whatsoever, for every q 2': 1. But relevant and paraconsistent systems alike notoriously

want for some quality or other: a principle which leads to triviality is excluded, but at the cost

either of including another principle with equal, or at least other, burdensome consequences, or of

excluding some feature which someone considers essential to any system worthy of the name 'logic'.

A representative sample of such evaluations can be found in [4], where Priest and Routley describe

several approaches to paraconsistency and relevance together with alleged inadequacies. For ex­

ample, the 'connectional' approach to relevance embodied in Parry systems, in which antecedents

and consequents of correct inference satisfy a variable sharing requirement, suffers, according to

Priest and Routley, from its retention of Disjunctive Syllogism [4] (see also [5]). da Costa's 'posi­

tive plus' approach to paraconsistency rejects the negative explosion paradox 0: --f (""0: --f /3), but

in retaining 0: --f ((3 --f 0:), sacrifices parts of negation theory, and consequently does not possess

a 'true' negation [4]. A similar remonstrance is made against the weakly-adjunctive approach to

paraconsistency, a representative of which is described below in Schotch and Jennings' system: ex

falso quodlibet is blocked only because so-called 'true' conjunction is done away with [4].

But these kinds of evaluations, specifically, ones which seek to undermine the motivation for

research based on some particular approach to paraconsistency or relevance, seem ill-conceived.

Just because there is not a perfect fit between a formal system and an application does not mean

that other applications will not be forthcoming. As Lu puts it, "li]t is not always possible for us

to foresee how a formal theory will find applications" [2]; deciding that an approach is not worth

pursuing because it falls short with respect to one (intended) application is accordingly premature.

The history of paraconsistency and relevance is arguably young enough that formal research in its

domain can be justifiably undertaken with the motivation of being primary research.

In any case, the point in devising the putatively relevant system which is presented below was

not to show that there is a 'truly' relevant logic which is the dual of a paraconsistent logic, but

rather that there is a paraconsistent logic whose dual has some interesting properties of relevance.

To date, no one has undertaken a systematic analysis of the dual of n-forcing. Let the present

article be counted as a first.
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Figure 7.2.1: The truth condition for D on (q + 1)-ary relational frames.

7.2 q-Folding

In [6] it is shown how to derive the model theory for the K q (q 2: 1) modal logics from the

paraconsistent inference relation 'q-forcing', from which the inference relation is again recoverable.

For any positive integer q, the K q modal logic is the logic determined by the class of (q + 1)-ary

relational frames [1] [3]. A (q + 1) -ary relational frame for modal logic is a pair (U, R) where U is

a non-empty set of points, and R ~ Uq+l is a (q + 1)-ary relation on U. To obtain a model on

a frame, a valuation function V from formulae to subsets of U is defined, standard for Boolean

connectives, and for D given as:

(7.2.1)

(See Figure 7.2.1.) If ~ is a set of formulae and a is a formula then ~ q-forces a, ~[I-q a, if

'r:hr E rrq(~), 3c E 7r such that c I- a. Thus, if q = 1 then [I-q is just 1-. If q > 1 then [I-q

is paraconsistent because it distinguishes between an inconsistent set and a set that contains an

inconsistent formula, by preserving what is called the coherence level of a set ~, ~(~). If ~ is a set
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of formulae, the coherence level of ~ is defined:

{

min q 2': 1 : :J7r E IIq(~) : Vc E 7r, C If 0 if this limit exists;
n;(~) :=

00 otherwise.
(7.2.2)

That is, as <p(~) is the size of the least partition of ~ into falsifiable sets, dually, n;(~) is the size of

the least partition of ~ into classically consistent sets. Thus n;( {P A-,P}) = 00 and n;( {P, -,P}) = 2.

Note that while Vo:,q 2': I,P A -,p [!-q 0:, it is false that Vo:,{P,-,P} [!-2 0:. In general, V~,o:, if

n;(~) = q 2': 1 then ~ [!-q 0: only if n;(~,o:)::; q.2 Whence the paraconsistency of q-forcing.

Now if 9J1 is a (q + 1)-ary model, and x is a point in 9J1, let X!JJi be the set {o: I 0: is true at x}.

Further, if * is a unary connective and ~ is a finite set of formulae, let *[~] be the set {*rP I rP E ~}.

Ih is an associative binary connective and ~ = {rPI, rP2, ..., rPm} is finite then *[~] := rPI *rP2 *... *rPm·

On a standard binary relational model 9J1 for kripkean modal logic, which on the K q scheme is a

(q + 1)-ary model for q = 1, if x E 9J1 then X!JJi is closed under the following rule:

A[D[~]] E X!JJi & ~ !- 0:
Do: E X!JJi

Dually, where '00:' abbreviates '-,0-,0:', the set X!JJi is also closed under:

00: E X!JJi & 0: !- ~

V[O[~]] E X!JJi

(7.2.3)

(7.2.4)

As discussed in [1]' replacing the classical !- in Condition 7.2.3 with the paraconsistent q-forcing

relation, [!-q, yields closure for X!JJi in the logic K q (q 2': 1). That is, for all q 2': 1, for any point x

in a (q + 1)-ary model 9J1, X!JJi is closed under:

A[D[~]] E X!JJi & ~[!-q 0:
Do: E X!JJi

(7.2.5)

Here it is shown that the inference relation which can replace the classical!- in Condition 7.2.4 to

yield closure for X!JJi in the K q logics is both relevant, because of its relationship with the level of

vacuity of a set, as well as finitely axiomatizable.

2For any set S and item x, 'S U {x}' is abbreviated'S, x'.
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Figure 7.2.2: The truth condition for 0 on (q + 1)-ary relational frames.

From the truth condition for 0 on (q + 1)-ary models, the truth condition for 0 is:

(7.2.6)

108

simultaneously falsify each member of~. If q 2: 1, then ~ is q-falsifiable iff 37r E IIq(~) : "ic E 7r, C

The connection between q-folding and level of vacuity of a set can be made clear by generalizing

the dual correspondent to the classical notion of the satisfiability of a set ~, i.e., the ability to

(7.2.7)
00' E X!JJ1 & 0' 1If-q ~

V[O[~]] E X!JJ1

(See Figure 7.2.2.) As a result, X!JJ1, for an arbitrary point x in a (q+1)-ary model, is not necessarily

closed under Condition 7.2.4 if q 2: 2. But by dualizing the definition of [f-q, it is possible to

formulate an appropriate substitute: "i0',~, q 2: 1, 0' q-folds ~, 0' lIf-q ~, if "i7r E IIq(~), 3c E 7r such

that 0' f- c. Then for all q 2: 1, for any point x in any (q + l)-ary model, X!JJ1 is closed under:

Proof. Let 00' be in X!JJ1. Then 3Yl, ... , Yq such that RXYl ...Yq and "ij E [q], 0' is true at Yj. Now

suppose that "i¢ E ~,O¢ tf- X!JJ1. Then "i¢ E ~,3j E [q] such that ¢ is false at Yj. Let 7r be the set

{Cj S;;; ~ I ¢ E Cj iff ¢ is false at Yj}. Then "ic E 7r,0' If c. Therefore 0' Ifq~. So if 0' IIf- q ~ then

3¢ E ~ such that O¢ E X!JJ1, in which case V[O[~]] E X!JJ1. 0



is falsifiable iff rp(2:) :::; q. The idea is that q-falsifiability is to q-folding as falsifiability is to the

classical ~. If 2: is a set of formulae and a is a formula then let ,a V [2:] be the set {,a V f3 I f3 E 2:}.

Then:

Theorem 7.2.1. 'Va, 2:, q 2: 1, a 11f-q 2: iff ,a V [2:] is not q-falsifiable.

Proof.

[=?] Assume that ,a V [2:] is q-falsifiable (q 2: 1). Then there is a partition 1r E IIq (,a V [2:]) such

that 'Vc E 1r, C is falsifiable. Therefore for each c E 1r there is a valuation which assigns a to true

and every element of 2: disjoined with ,a in c to false. Whence there is a partition 1r' E IIq (2:)

such that 'Vc E 1r', a If c.

[-¢=] If a Ifq 2: then there is a partition 1r E IIq(2:) such that 'Vc E 1r, there is a valuation which

assigns a to true and every element of c to false. By disjoining ,a with each element of c for each

c E 1r while preserving distinctions between the c's, we obtain a q-partition of ,a V [2:], each of

whose elements is falsifiable. D

Furthermore, q-folding preserves the vacuity of a set. That is:

Theorem 7.2.2. 'V2:,a,q 2: 1, ifcp(2:) = q and a IIf-q 2: then rp(2:,a):::; q.

Proof. Let rp(2:) = q and suppose that a 11f-q 2:. Then 'V1r E IIq (2:),::Ic E 1r such that a ~ c.

:.::I1r E IIq(2:): 'Vc E 1r,01f c and::lc E 1r such that a ~ c. :. 01f cU {a}. Whence cp(2:,a):::; q. D

Consequently, q-folding is relevant in the sense that only formulae which preserve level of vacuity

q-fold a vacuous set. E.g., notwithstanding the classical, truth functional basis of the relation, the

irrelevant inference from an arbitrary formula a to the set {P, ,P} is blocked. In this way, the

attenuation of informational content of a set may be kept in check while still permitting classical

inference.

7.2.1 Compactness

The authors of [1] exploit the connection between coherence level and the colouring theory of

hypergraphs to establish the compactness of K and [~q. A set A is a hypergmph if A is a non-empty

family of non-empty sets, am, called edges. If UmEIAI am is finite then A is a finite hypergraph.

If A and Bare hypergraphs and A ~ B then A is a subgmph of B; A is a finite subgmph of B,
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A ~fin B,3 if A ~ B and A is finite. If L: is a set then H(L:) is the set {A I L: ;2 UmEIAI am} of

hypergmphs on L:. A q-colouring (q :::': 1) of a hypergraph A on L: is a function f : L: -> [q] such

that Va E A, 3x, yEa such that f(x) =f f(y). The chromatic number of a hypergraph A, X(A), is

defined:

{

min q :::': 1 : there is a q-colouring of A if this limit exists;
X(A) :=

00 otherwise.
(7.2.8)

Thus, if X(A) > q for any hypergraph A, then V7r E IIq(UmE!AI am), 3a E A, c E 7r : a ~ c. If

X(A) > q then we say that A is q-uncolourable; otherwise A is q-colourable.

Now as i.p is dual to "', we may use a strategy similar to that adopted in [1] to demonstrate that

q-folding and q-falsifiability are compact. In each case the proof relies upon the compactness of

q-colourability for hypergraphs with exclusively finite edges:

Theorem 7.2.3. VA,q :::': 1, if each edge of A is finite then X(A) > q iff 3B ~fin A such that

X(B) > q.

Proof. This can be established using the compactness of propositional logic.

Theorem 7.2.4. VL:, q :::': 1, L: is q-falsifiable iff every finite subset of L: is q-falsifiable.

D

Proof. The direction from left to right is trivial. For the converse, following [1], we define GE as the

canonical hypergraph on L:#0 whose edges comprise the set {e ~fin L: I0 f- e}. Then i.p(L:) ::; q iff

X(GE) ::; q. So assume that i.p(L:) > q. Then X(GE) > q. Whence 3B ~fin GE such that X(B) > q.

Let r be UmEIBI bm . Then r ~fin L: and i.p(r) > q. D

Theorem 7.2.5. Vo:,L:,q:::,: 1,0: IIrq L: iff3r ~fin L: such that 0: Ilrq r.

Proof. The direction from right to left is trivial given the right invariance of f- under supersets. For

the converse, assume that 0: Ilrq L:. Then V7r E IIq(L:), 3c E 7r such that 0: f- c. So V7r E IIq(L:), 3c E

7r, d ~fin C such that 0: f- d. Let A be the set {d ~fin C ICE 7r E IIq(L:) & 0: f- d}. Then X(A) > q

and by colouring compactness (Theorem 7.2.3), 3B ~fin A such that X(B) > q where Vb E B, 0: f- b.

Let r be the set UmEIBI bm . Then V7r E IIq(r) , 3c E 7r such that 0: f- c. Whence 0: Ilrq r, where r

is finite. D

3The notation 'r;;;,fin' is also used to indicate that one set is a finite subset of another set.
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The proof that q-folding is compact (Theorem 7.2.5) illustrates that q-folding may be given the

following finitary definition:

a 11f- q L; ¢} :JA E H(L;) such that A is finite, X(A) > q, and Va E A, a f- a. (7.2.9)

For this reason we may assume in what follows, without loss of generality, that hypergraphs are finite

unless otherwise specified. This finitary definition of q-folding is useful moreover because using the

notion of a tranverse hypergraph it permits a dual definition of q-folding in terms of the harmonic

number of a hypergraph. We can then exploit this dual definition in a finite axiomatization of a

restriction of f- which represents q-folding.

7.3 Harmonic Number

If A is a hypergraph, an intersector for A is a set b such that Va E A, bna i= 0. A minimal intersector

for A is an intersector which is not a proper superset of any intersector. The transverse hypergraph

of A, T(A) is the set of all minimal intersectors for A. As theorems we have VA, T(T(A)) ~ A

[3], and for any hypergraph A, Va E A,:Jb E T(T(A)) such that b ~ a. Whence VA, X(A) > q

iff X(T(T(A)) > q. There is a straightforward sense in which a hypergraph A and its tranverse

T(A) are logical duals. This is illustrated by formulating hypergraphs as sentences. Let A be a

hypergraph with UiEIAI ai a collection of sentences. Define the V-formulation of A to be:

FV(A):= V 1\ aj,

mEIAI jElaml

and the I\-forrnulation of A:

FA(A):= 1\ V aj.

mEIAI jElaml

Then:

Theorem 7.3.1. VA,FV(A) =11= FA(T(A)), and FA(A) =11= FV(T(A)) [3].

(7.3.1)

(7.3.2)

Consequently, because FV(A) and FA(A) are logically dual, so too are FV(A) and FV(T(A)), as
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well as F"'(A) and Pf'(T(A)). It is in this sense that A and T(A) are logically dual.

Because of Theorem 7.3.1 and Condition 7.2.9, q-folding may be defined in terms of the V-

formulation of the transverse hypergraph of a q-uncolourable hypergraph A. This suggests the

following question: Is there a characterization of q-folding in terms of the V-formulation of a

hyperyraph which precludes reference to the chromatic number of a transverse hypergraph? The

answer is 'yes' because there is a dual characterization of chromatic number in terms of what is

called the harmonic number of a hypergraph. If A is a hypergraph the harmonic number of A,

'T](A) is defined:

{

min q ;:::: 1 : 3B E (Aq ) : nmE[q] bm E B = 0
'T](A) := 00

if this limit exists;

otherwise,
(7.3.3)

where for any set A and positive integer q, (:) denotes the set of all q-membered subsets {b I , b2 , ... , bq }

of A. If'T](A) > q then we say that A is q-harmonic. From the logical duality of hypergraphs and

their transverse hypergraphs it follows that harmonic number and chromatic number are logically

dual given the following theorem:

Theorem 7.3.2. \fA, q ;:::: 1, 'T](A) > q {o? X(T(A)) > q [3].

As a result we have:

Theorem 7.3.3. \f~, a, q ;:::: 1, the following conditions are equivalent:

2. 3A E H(~), X(A) > q and \fa E A, a f- a,

3. 3A E H(~), X(A) > q, and a f- pt\(A), and

4. 3A E H(~), 'T](A) > q and a f- F V (A).

Proof.

[(1) =} (2)] Assume that \f7r E IIq(~),3c E 7r: a f- c. Let A = {c E 7r 17r E IIq(~) & a f- c}. Then

X(A) > q and \fa E A,a f- a.

[(2) =} (3)] Let A E H(~) be such that X(A) > q and \fa E A, a f- a. Let B = {b c:;.jin a I a E

A & a f- b}. Then by colouring compactness (Theorem 7.2.3), 3C c:;.jin B such that X(C) > q and

a f- P!\(C).
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[(3) =} (4)]. Let A E H("2;) be such that X(A) > q and a ~ F"\(A). From Theorem 7.3.2 it follows

that 7](T(A)) > q, and from Theorem 7.3.1 it follows that a ~ FV(T(A)).

[(4) =} (1)] Assume that A E H("2;), 7](A) > q and a ~ FV(A). Then a ~ P'\(T(A))(Theorem 7.3.1),

so \lb E T(A), a ~ b. But X(T(A)) > q (Theorem 7.3.2). SO \lTI E IIq ("2;),:3c E TI, bE T(A) such that

b ~ c, and therefore a ~ c.

o

It follows from Theorem 7.3.3 that V-formulating q-harmonic hypergraphs on a set "2; preserves

Theorem 7.3.4. \I"2;,q::::: 1, cp("2;)::; q,B E H("2;) and 7](B) > q =} cp("2;,FV(B))::; q.

Proof. Let cp("2;) = r ::; q and 7](B) > q. Then 7](B) > r. But FV(B) ~ FV(B). Therefore, we have

cp("2;, FV(B)) ::; r ::; q, from Theorems 7.2.2 and 7.3.3. o

Theorem 7.3.4 plays an important role in finitely axiomatizing lIf-q . Its significance is this:

although the closure of a set "2; under V-Introduction does not preserve level of vacuity (recall

that cp( {p V -,p}) = 00), closing "2; under V-formulations of q-harmonic hypergraphs does. But

for any set "2;, if q ::::: 1 then a 1If-q "2; iff there is a q-harmonic hypergraph B on "2; such that

a ~ F V (B) (Theorem 7.3.3). To represent 11f-q as a restriction of classical implication, it is there­

fore sufficient to finitely axiomatize the V-formulations of q-harmonic hypergraphs without using

V-Introduction. As a replacement for V-Introduction, the truth function F V ({~;}) is adopted for a

q+ I-membered set {aI, ... , aq+l} of sentences,4 which taken together with singular implications ex-

cluding V-Introduction, is functionally complete with respect to the V-formulation of all q-harmonic

hypergraphs. Some intermediate results are required prior to a demonstration of this claim.

Let A = {AI, A2, ... , Ar } be a set of r hypergraphs (r ::::: 1), and let S be a set. Then S n-covers

A (r ::::: n ::::: 1) if :3{AI , ... , An} ~ A such that \Ii (1 ::; i ::; n), :3a E Ai : S :;2 a. In words: the

set S n-covers A iff S contains an edge from each of n elements of A; S minimally n-covers A if

S n-covers A, and no proper subset of S n-covers A. We write '~(AI,A2, ... ,Ar)' for the set of

minimal n-covers of A when IAI = r.

41[ {Xl, ... , xr } is any 1'-membered set (1' 2: 1), the notation '{x;}' (i E [1']) is sometimes used as an abbreviation
for '{Xl, ... , Xc}', where context makes clear that '{Xi}' does not indicate a singleton set.
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Theorem 7.3.5. Let AI, ... , A q+l be hypergraphs (q 2 1). Then:

Theorem 7.3.6. If B I , ... , B q+l are hypergraphs and for each i (1 S; i S; q + 1), T)(Bi ) > q, then

T)(-ih(B I , ... , Bq+d) > q.

Proof. Let A E (;;fr(Bl,~ .. ,Bq+,»). By a pigeonhole argument, there is some hypergraph B i (1 S; i S;

q + 1) such that Va E A,:3b E B i such that b S;; a. But T)(Bi ) > q. ... njE[qJ{bj E B i I :3a E A : bj S;;

a} -I- 0.... ni ai E A -I- 0. Whence T)(qfy(BI, ... ,Bq+d) > q. 0

7.4 The Rules

The inference relation q-folding is finitely axiomatizable. To prove this, a restriction of the classical

f-, 'If-q' (to be read 'q-proves'), is introduced, and the representation theorem for q-folding is proved,

namely, Va,'E.,q 21, a IIf-q 'E. iff a If-q 'E..

The following structural rules are adopted:

[Pres f-]

[Re~

[Mon(i)]

[Mon(ii)]

[Tran]

The following are the rules of inference:

a If-q 'E. ~::> 'E. <p(~) < q

a If-q ~

a If-q 'E., (3 (3 If-q 'E.
alf-q'E.
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[II-q V]

[V II-qJ

(3 II- q L:, a], (3 II-q L:, a2, ... ,(3 II-q L:, aq+l

(3 II- q L:, F'\ ({~;})

(3ll-q L:, a

(3 II- q L:, a V J

a11l-q L:, a211-q L:, ... ,aq+l II- q L:

FV ({~;}) II-q L:

It follows as a consequence of the preservational profile of II- q that II- q is, to some extant, relevant.

Unlike in classical logic, where a vacuous set L: is proved by any sentence, if cp(L:) > 1 then whether

or not (3 II- q L: depends on two factors: (a) whether or not (3 I-- L:, and (b) whether or not cp(L:, (3) :s; q

if cp(L:) :s; q. To prove this, it suffices to show that II-q is cp-sound-that for all q ~ 1, if a II-q L: then

cp(L:, a) :s; cp(L:) :s; q. And since q-folding is cp-sound (Theorem 7.2.2), for this it is enough to show

that for all q ~ 1, a II-q L: only if a IIl-q L:.

Theorem 7.4.1. VL:,a,q ~ 1,a II-q L::::} a III- q L:.

Proof We begin with the structural rules. Note that q is intended to float at the level of L:. I.e., if

a II- q L: then cp(L:) = q.

[Presl--]. If a I-- (3 then a I-- F V {{(3}}. But "l( {{(3}} > q for all q ~ 1. Whence a III- q (3.

[Re~. Va,a I-- FV{{a}}. But {{a}} E H(L:) if a E L: . .". a III-q L: if a E L:.

[Mon(i)]. Assume that a III-q L:, that ~ :2 L:, and that cp(~) :s; q. Then a III- q ~ because

H(~) :2 H(L:).

[Mon(ii)]. If (3 I-- a and a I-- F V (A) where A E H(L:) and "l(A) > q, then (3 I-- F V (A) where

A E H(L:) and "l(A) > q. .". (3lll-q L:.

[Tran]. Assume that a III-q L:, (3 and that (3 IIl- q L:. Then from Theorem 7.3.3 it follows that

:JA E H(L:, (3) where X(A) > q, and such that a I-- P"'(A), and :JB E H(L:) where X(B) > q, and

where (3 I-- FI\(B). Using A and B we construct a hypergraph D E H(L:) where X(D) > q and
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Cy ~ PI\(D): For each edge a E A such that (3 E a, replace a with (a - {(3}) U b, for each b E B.

Then:

1. a ~ PI\(D). Suppose not. Let a be true on a valuation on which PI\(D) is false. Then all

elements of some d E D are false..'. d rf- A. So for some a E A, bE B, d = (a - {(3}) U b. .'. (3 is

true, else a If PI\(A) . ... FI\(B) is true, which is impossible if all elements of bE B are false.

2. X(D) > q. Suppose not. Let 1r E IIq (2:) be such that 'Vd E D, C E 1r, d 1= c. But for some

c E 1r, b E B, b ~ c, and adding (3 to c produces a q-partition of 2:, (3. So 3a E A such that

a ~ c U {(3}, where (3 E a. ... (a - {(3}) U b ~ c, which is absurd.

And now for the rules of inference:

[If-q /\]. For each i (1 ::; i ::; q + 1), let B i E H(2:, ai) be such that 'T](Bi ) > q and (3 ~ F V(Bi ). Let

B: be the result of replacing each occurrence of ai in B i with Pl\({~;}). Let 8 be pV({FV~B;)}).

Then 8 =11= pVq:'h(B;, ...,B~+l) (from Theorem 7.3.5). So given Theorem 7.3.6, it suffices to

show that (3 1= 8. Suppose not. Let (3 be true on a valuation and 8 false. If 8 is false then for some

pair i, j (1 ::; i < j ::; q + 1), pv (Bn and pv (Bj) are false. So an intersector for each has all of

its elements false. But (3 is true and (3 ~ PV(Bi ) and (3 ~ PV(Bj ). So Pl\({~;}) is false. So for

some q-tuple aI, ... , a q , each element is false.... either pv (Bi ) or pv (B j ) is false, which is absurd.

... (3 1= 8.

[/\ If- q ]. Assume that a IIf-q 2:. Then 3A E H(2:) such that X(A) > q and 'Va E A, a ~ a. Whence

by the left downward monotonicity of ~ for single formulae, a /\ (3 ~ a, 'Va E A.

[If- q V]. Assume that 3A E H(2:, a) where X(A) > q and 'Va E A,(3 ~ a. Let B be the result of

replacing each occurrence of a in A with a V 8. Then X(B) > q and 'Vb E B, (3 ~ b, by the right

upward monotonicity of ~ for single formulae on the left.

[V If-q]. Assume that for each i (1 ::; i ::; q + l),ai ~ PV(Bi ) where 'T](Bi ) > q and B i E H(2:).

Let 8 be pV({FV~Bi)}). Then 8 =11= pVq:'h(Bl, ... ,Bq+d(= ')') (given Theorem 7.3.5). But

pv ({~;}) 1= 8, whence pv ({~i}) 1= ')'.

o

Theorem 7.4.1 amounts to a demonstration not only that If-q preserves vacuity level, but also that

If-q is sound with respect to Iff-q' Taken together with the following corresponding completeness result
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we have the representation theorem for q-folding.

Theorem 7.4.2. 'tl'£, Q, q 2: 1, if Q 11f-q L: then Q If-q L: .

Proof. Assume that Q 11f-q L: where <p(L:) :::: q. Then ?JB E H(L:) such that 7)(B) > q and Q f- F V(B).

We induce on IBI to show that 'tIB, if 7)(B) > q and B E H(L:) then FV(B) If-q L:.

For the basis, IBI = 1. Then B = {{1,2, ... ,k}} (k 2: 1) and FV(B) is 1/\2/\ ... /\ k with

i E L: (1 :::: i :::: k). :. F V(B) f- i .. '. F V(B) If-q i (using [Pres f-J). :. F V(B) If-q L: (from [Mon(i)]).

For the inductive step, assume IBI = r > 1. Suppose that r :::: q. Then nmEIBI bm -I- 0. Let

i E nmEIBI bm . Then F V(B) f- i. :. F V(B) If-q i (from [Pres f-J). So using [Mon(i)], F V(B) If-q L:.

Now let IBI = r 2: q + 1. Let {b1 , ... , bq+d S;; B and define B i := B - {bi } (1:::: i :::: q + 1).

Then by the hypothesis of induction, FV(B;) If-q L:. So from [V If-q ] we have FV(F
V

(:,)}) If-q L:.

But FV(F
V

(:,)}) ~F FV(B). :. FV(B) If-q FV(F
V

(:;)}) (from [Pres f-J). So using [Mon(i)] and

Theorems 7.2.2 and 7.4.1, F V(B) If-q F V(F
V

(:;))), L:. :. F V(B) If-q L: (using [Tran]).

This completes the induction, whence we have F V (B) If-q L:. But now since Q f- F V (B), Q If-q

FV(B) (using [Pres f-]). So Q If-q FV(B),L: (using [Mon(i)]). So using [Tran], Q If-q L: because

FV(B) If-q L:. Therefore Q lIf-q L: only if Q If-q L: if <p(L:):::: q. 0
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