
DESIGN VARIATIONS IN ADAPTIVE WEB SAMPLING

by

Kyle Shane Vincent

B.Sc (Hans), University of Winnipeg, 2006

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department

of

Statistics and Actuarial Science

© Kyle Shane Vincent 2008

SIMON FRASER UNIVERSITY

Summer, 2008

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.



APPROVAL

Name: Kyle Shane Vincent

Degree: Master of Science

Title of Project: Design Variations in Adaptive Web Sampling

Examining Committee: Dr. Brad McNeney

Chair

Dr. Steve Thompson

Senior Supervisor

Simon Fraser University

Dr. Charmaine Dean

Supervisor

Simon Fraser University

Dr. Derek Bingham

External Examiner

Simon Fraser University

Date Approved:

II



SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "Institutional Repository" link of the SFU Library website
<www./ib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2007



Abstract

There is an increasing body of literature related to sampling for network and spatial settings.

Although current link-tracing methods like adaptive cluster sampling, snowball sampling,

and targeted random walk designs have advantages over conventional designs, some of the

following drawbacks remain evident: there is a lack of flexibility in sample placement; there

is an inability to control over sample sizes; and efficiency gains over conventional sampling

designs for estimating population parameters may not be achievable. Adaptive web sampling

(AWS) is a recently developed link-tracing design that overcomes some of these issues.

Furthermore, the flexibility inherent to the AWS method permits many design variations.

Using a simulated network population, an empirical population at risk for HIV/ AIDS, a

simulated spatial population, and an empirical population of birds, this project performs a

simulation study to compare the performance of three variations of AWS strategies.

Keywords: Adaptive sampling, Link-tracing designs. Markov chain Monte Carlo,

Network sampling, Rao-Blackwellization, Spatial sampling

Subject Terms: Hidden populations, Link-tracing designs, Markov chain Monte Carlo,

Sampling
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Chapter 1

Introduction

With increasing societal concerns such as the prevalence of epidemics like HIV and environ­

mental issues such as species extinction, improved sampling methods need to be developed

to study such target populations more efficiently. Sampling in such network and spatial

settings has therefore received increasing attention in recent years.

Most current link-tracing designs like adaptive cluster sampling, snowball sampling,

and targeted random walk designs have many advantages over conventional designs such as

simple random sampling and cluster sampling. Some of these advantages include a potential

reduction in time, effort, and expenses required to obtain samples of equal size (Frank and

Snijders (1994); Thompson (1990)). Additional advantages consist of an increase in the

overall yield of units of higher interest in the sample (Frank and Snijders (1994); Thompson

(1990, 2006b)), and a potential reduction in variance of the estimates (Thompson (1990)).

However, many of the current designs still present many drawbacks; for instance, there

may be little flexibility in where to allocate sampling effort, limited control over how much

effort is allocated to adaptive selections, and an inability to fix the final sample sizes in

advance. Adaptive web sampling (AWS) is a new adaptive link-tracing design based method

that overcomes some of these drawbacks. The AWS design is said to be adaptive since

selection distributions of new members to be included in the sample depends on the observed

variables of interest in the current sample.

AWS starts with the selection of an initial sample through some conventional sampling

design. New members can be added to the sample by either tracing links from the members

in the current sample or through a conventional sampling design. The choice of which links

that are traced may depend on the current sample size, the status of the members in the

1



CHAPTER 1. INTRODUCTION 2

current sample, or the behavior of their relationships with members in the sample and/or

to members outside of the sample, just to name a few possibilities. In many populations,

relationships will have a tendency to only form between members that share similar char­

acteristics. Hence, with a link-tracing design the probability of including new members of

the population into the sample is likely to be distributed unevenly, and at face value the

final sample will not be representative of the population. Estimators used in AWS designs

compensate for uneven selection probabilities, which is achieved by making use of the in­

clusion probabilities of the sampled units at the time they were selected, to form unbiased

or consistent estimators.

Rao-Blackwellization (RB) of the estimators involves averaging over paths that are con­

sistent with the minimal sufficient statistic (m.s.s.). For small sample sizes, these estimators

are computationally feasible. For large sample sizes, the number of possible permutations

becomes prohibitively large for exact calculations. A Markov chain resampling method

makes these computations feasible.

Most work in AWS has been done using a general design that randomly selects links to

trace in order to add new units to the sample. This project considers some new variations

of the AWS design that provide more flexibility over the general AWS design. With the

new design variations, more flexibility in the sample selection will come from using two

new features. The first allows for the choice of which sample selection steps will tend to

use adaptive or conventional sampling. The second allows the choice for assigning different

probabilities of following links that originate from different types of nodes in the current

sample. This project is a simulation study which compares the efficiency of the estimators

of the current versus the new designs.

The remainder of this chapter introduces some of the notation used in AWS designs

as well as an example of a network and spatial population. In Chapter 2, the sampling

setup for AWS and its estimators will be introduced, as well as the Markov chain Monte

Carlo (MCMC) methods for estimating the Rao-Blackwellized estimators. Chapter 3 yields

simulation studies comparing the various designs for a simulated network population, an

empirical population at risk for HIV/ AIDS, a simulated spatial population, and an empirical

bird population. Chapter 4 summarizes the studies, provides conclusions, and a discussion

for future research.



CHAPTER 1. INTRODUCTION

1.1 The Network setting

3

In a network setting, the units of the population are labelled 1,2, ... , N. For every unit i,

there is an observable variable of interest Yi. In the general network setting, Yi can take

on any numerical value. In more specific network settings, Yi can be an indicator variable

where

{

1 if unit i is a unit of interest
Yi = .ootherwise

One may declare a unit i to be a "unit of interest" if the unit possesses (or does not

possess) some specific characteristic or trait. For every ordered pair of individuals (i, j), there

is an observable variable Wij that represents the existence or strength of the relationship

between units i and j, and determines the graph structure of the units (nodes). The variable

Wij may be a measure on the distance between the two individuals, how often they come

into contact, or indicate if they are mutual friends.

In most general network settings, Wij can also take on any numerical value. In more

specific network settings, Wij is an indicator variable where

_ { 1 if there is a link from unit i to unit j
Wij -

ootherwise

For simplicity, we shall define Wii = 0 for all i = 1,2, ... , N.

When collecting an adaptive web sample, it is assumed that for all units i and j in the

sample, Yi, Wij, and Wi+, are recorded. The variable Wi+ is the number of links out from

the node, and is referred to as the out-degree of node i.

Figure 1.1 illustrates a graphical representation of a simulated population with two types

of members, in which all links between nodes are symmetric. One could think of the simu­

lated population as being comprised of injection and non-injection drug users, where dark

nodes represent the injection drug users. Links could potentially exist between members if

they share drug using paraphernalia or come into sexual contact. Researchers have reported

that drug using populations share many of the features that are seen in this type of simu­

lated population (i.e. patterns of cluster activity, tendency of relationships between similar

nodes, etc. (Hoff et al. (2002))). This simulated population, and an empirical population,

will be further investigated in Chapter 3.
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Population

Figure 1.1: A simulated network population

1.2 The Spatial setting

4

A spatial setting can be depicted as a geographical area partitioned into single units. For

example, in the simulated spatial population presented in Figure 1.2, each unit is represented

by a square, and the Yi variables take on the count of the number of point-objects in the

square.

For the spatial distribution, Wij is defined to be

{

I if units i and j are adjacent and unit i is a unit of interest
'Wi) =

a otherwise

According to the structure of the population plots in Figure 1.2, units i and j are

considered adjacent if uni t t is directly above, below, left, or right of UBi t j. III the spatial

setting, symmetry of links only holds if two units both possess the characteristic of interest

and are adjacent.

In Figure 1.2, the graph representation of the simulated spatial population is presented

on the right. This provides a visual representation of the units of interest and where one­

way relationships exist. Units of interest consist of the plots that contaiu at least one

point-object, and are represented by the dark nodes in the graph. One can think of the
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spatial distribution of this simulated population as a population of species that exhibits

clustering characteristics (like plants, fish, deer, or even human beings). Each square may

represent an area of land, and the YI values take on the count of the nUIlluer of animals

within the square. This simulatecl population, and an empirical population. will also be

further investigated in Chapter ~3.
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Chapter 2

New Variations in Adaptive Web

Sampling Designs

2.1 Adaptive Web Sampling

An adaptive web sample is selected in steps that begins by conventionally selecting an initial

sample of size no with probability PO. Selection of new units to be included in the sample

is said to occur in waves. For each wave k, selection of a new unit depends on a current

active set ak <;;; Sck, where Sck is the current sample at wave k. Choice of the active set is

flexible and may consist of all sampled nodes, or only nodes of higher interest, with links to

units outside of the current sample. With the flexible choice of an active set, adaptive web

sampling designs have an advantage over random walk designs in that the active set is not

confined to the most previous unit selected.

Upon using a link tracing design, selection probabilities of new units to be included in the

sample may be easily influenced by the nodes, and the behavior of their linkage tendencies,

that were selected for the initial sample and in earlier waves. Consider, for example, a

population under a network setting. Suppose an initial sample consists primarily of nodes

that cluster together. If one were to always follow links to build up the sample, then this

sample would consist entirely, or almost entirely, of nodes within the cluster(s) that were

initially sampled from. This may be undesirable to the sampler and could potentially force

the estimators to deviate away from their expected values. To help overcome this issue,

AWS introduces the use of a mixture distribution in the selection probabilities of new units

6



CHAPTER 2. NEW VARIATIONS IN ADAPTIVE WEB SAMPLING DESIGNS 7

to be included in the sample.

The mixture distribution is the convex combination of two probability distributions. The

first is the probability distribution of adaptively selecting a new node as a function of the

observed values in the active set. The second is the probability distribution of selecting a

new node through a conventional design. The two component distributions of the mixture

distribution are weighted with values d and 1 - d, respectively. The value of d is referred

to as the dampening value since its purpose is to "dampen" the out-degree of nodes in the

active set. Values of d do not always have to be constant, but can depend on the wave or

the active set. In AWS, flexibility comes not only from the choices of initial sample size and

active set, but also the mixture distribution which gives the choice of how much effort is

allocated towards tra.cing links.

Illitial choices such as sample size and dampening values greatly influellce the composi­

tion of the fillal sample. For initial samples that are of a large enough size, wide coverage

of the populatioll will tend to be immediately available and this will help render the final

sample to be unbiasedly representative of the population. In contrast, with smaller initial

sample sizes, larger choices of d will tend to make the final sarnple consist of more clustered

nodes. For such cases, smaller choices of d may be necessary to obtain more coverage of the

population, if desired. These two cases are exemplified with the two samples ill Figure 2.1,

where dampening values are held constant at 0.9 and the final samples are of size 20.

Jnirlal ~nmple of -=.il~ 2 luitidlSaulpl<!of;ize 10

o o

c (;. '-"-' L. '-'

"
-,

~")

C, "

Figure 2.1: Two adaptive web samples from simulated spatial population



CHAPTER 2. NEW VARIATIONS IN ADAPTIVE WEB SAMPLING DESIGNS 8

As can be seen in Figure 2.1, the sample obtained with the smaller initial sample size

has selected every node in the cluster at the bottom left corner, while leaving all other five

clusters unsampled. In contrast, the sample obtained with the larger initial sample size has

observed at least one node from four of the six clusters. Hence, the AWS approach provides

the advantage of giving the user the choice to either penetrate deep into the population by

following many links, or going wide by following few links.

We now introduce some of the mathematical formulas behind the AWS design. Sup­

pose that at wave k, the current sample Sck contains some active set ak. We shall let

qk(Sklak, Yak' W ak ) denote the design probability of selecting a new node at wave k. One

general design makes use of selecting one node, 'i say, in each wave with probability propor­

tional to the number of links from the active set out to node 'i (Thompson (2006a)). For

this design, the conventional part of the mixture distribution is based on simple random

sampling (SRS).

If we let qki denote the probability of selecting node 'i at step k, then when using this

general design and sampling without-replacement, this selection probability is

qki = d W
ak , + (1 - d) -l-,

W ak + N n Sck

where Waki is the number of links from the nodes in the active set out to a node 'i

not in the current sample, wak + is the number of links from nodes in the active set out

to members not in the current sample, and n Sck is the size of the current sample. When

sampling with-replacement

where waki is the number of links from the nodes in the active set out to node 'i, and W ak +

is the number of links from nodes in the active set out to any members of the population.

In the event that there are no links at all out from the active set, then when sampling

without-replacement

1
qki = N-nck'

and when sampling with-replacement
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To clarify the design previously described, suppose the adaptive web sample in

Figure 2.2 is chosen without-replacement and is presently at some wave k. Then for the

indicated node i, qh = d~ + (1 - d) N~(j'

node i

Act;" Set1t!'~
Oment Sample - 0

Figure 2.2: Example of inclusion probability of a node given the current active set

The overall selection probability of the ordered a,daptive web sample 5, where one node is

selected at each wa,ve, is therefore

where n is the final sample size. Since only one node is selected at each wave. notation for

the overall selection probability involving k is redundant since we have just reordered the n

nodes in the sample to be the first n nodes in the population.

If one wishes to choose nk > 1 nocles at somE' wave k, then we can denote the inclusion

probability of the tth unit selected at sub-step t in wave k as qkt. The selection probability

at this time when sampling without-replacement for a node i not in the current sample is

. = d~ (1- d) 1qktz 'w I + N-n-'
O'kt ~ckl

and when sampling with replacement the selection probability for any node i ill the

population is

o • =d~ (1 - d)J.qktl II!. I + N'
"/;1

where the active links are similarly redefined for the sampling without-replacement or

with-replacement cases as were presented earlier. Hence, the overall probability of selecting

. ( ) - , .TIl( TInk
p5-PO k=l L=lqkti,
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where K is the number of waves.

Since sampling can stop at anytime, K does not necessarily have to be fixed in advance.

If the sampler feels that adequate coverage and information of the population has been

obtained, they have the option to choose to stop sampling at the present wave. Adaptive web

sampling therefore has an advantage over adaptive cluster and snowball sampling designs

by not requiring every link from a sampled node to be followed, and hence sample sizes can

be fixed in advance.

In AWS, selection probabilities for links to be traced can also be a function of observed

link weights or depend on auxiliary variables associated with the sampled nodes in the active

set. More specific variations like these may prove to be very useful for especially hard to

reach populations (like those infected with HIV), where any pertinent information can be

exploited to recruit members of higher interest to be included in the sample, when desired.

2.2 Description of New Variations of Adaptive Web

Sampling

Three specific variations of AWS designs are examined in this study, the second two of which

are new. Apart from being intuitively appealing, the two new strategies provide additional

flexibility in the sample selection.

Strategy 1: Random choice of links

Most work in AWS has been done using constant dampening values in conjunction with

Strategy 1. Strategy 1 was outlined in the previous section; an initial sample is selected

conventionally and, at every wave, the choice to follow a link from a node in the active set

is made with a constant probability d. If a link is to be traced to add a new node to the

sample then it is chosen with uniform probability amongst all links that stem out from the

active set.

Strategy 2: Changing dampening values

In this new strategy we allow for changing dampening values at each wave.

After selecting the initial sample with a conventional design, a new node i is chosen to

be in the sample at wave k with probability
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This strategy gives the user the ability to choose in advance which waves will tend to be

used for adaptive or conventional sampling.

Strategy 3: Following links that originate from nodes of high interest with a

pre specified probability

In this new strategy a pre specified value ()Hid f (0, 1) is introduced to flexibly weight the

chances of tracing links that originate from nodes of high interest in the active set, given

that a node is to be traced from the active set.

In the network setting where all nodes take on a value of either 0 or 1, we can partition

the active set ak into the two subsets aOk and alb where aOk = {i f ak : Yi = O} and

alk = {i f ak : Yi = 1}. After selecting the initial sample with a conventional design, a new

node i is chosen to be in the sample at wave k with probability

where Wakji (Wakoi) is the number of links from nodes of high interest (low interest) in the

current active set out to node i, and wakl + (wako+) is the total number of links from nodes

of high interest (low interest) in the current active set out to members not in the current

sample. In the event that there are only nodes of one type in the current active set, a

random jump is taken (i.e. a new node is selected completely at random).

In the spatial setting, a similar strategy has been developed by Thompson (2006a) where

one follows links with probability proportional to the originating node value. In the network

setting, this would be equivalent to setting ()Hid = 1. For example, suppose the adaptive

web sample in Figure 2.3 is chosen without replacement, and the current active set consists

of units 1, 3, and 6 at some current wave k. Then the probability of selecting unit 2 is

qk2 = d5+5~!~1+1 + (1 - d)9~3'

1
,

.'-
5 - - - -3
I

l I <

"-1
- s ,

I

Figure 2.3: Example of Strategy 3 inclusion probability of a node in the spatial setting

given the current active set
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The motivation behind developing this strategy is to take advantage of the "like sticks

with like" phenomenon (i.e. dark colored nodes tend to link to dark colored nodes and light

colored nodes tend to link to light colored nodes) to build up a sample whose proportion of

nodes of high interest has some relationship with the value of (}Hld'

2.3 The Minimal Sufficient Statistic for the Rao-Blackwell

method

In the network setting, sample data consists of a set of nodes s(1) and a set of pairs of nodes

s(2). In an adaptive web sample s(1) consists of the units i, in the order selected, and their

observed Yi values. Note that, in the case of sampling with replacement that nodes may be

repeated. The set s(2) consists of all Wij values for each unit i in the sample and unit j in

the population.

In the graph setting, the minimal sufficient statistic (m.s.s.) consists of the reduced

data dr = {(i,Yi,Wi+,Wij): i,j E s} (Thompson and Seber (1996)). The minimal sufficient

statistic will be used in conjunction with the Rao-Blackwell Theorem to form improved

estimators. These improved estimators are described in the following section.

2.4 Estimators for Adaptive Web Samples

Four estimators have been developed for inference upon using an AWS design (Thompson

(2006a)), and are described below. The primary motivation for developing the four estima­

tors rests on the property that none produce uniformly lower mean square errors, due to

the incompleteness of the m.s.s. for design-based sampling in the finite population setting

(Thompson (2002)).

1) Estimator Based on Initial Sample Mean

Suppose an initial sample So is chosen where each unit i has some probability 7ri of being

included in the initial sample. Then the Horvitz-Thompson estimator

A _ 1 '" Yi11-01 - N ~ifSO 1[;'

is an unbiased estimator for the population mean 11- for all values of 0 :::; d :::; 1. If the initial

sample is chosen through a SRS design then fio1 is the initial sample mean Yo.
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The Rao-Blackwell estimator can be formed by weighting estimates from all samples

consistent with the m.s.s. against the conditional probability

p(sldr ) = p(s) s'
2:s"'(S)=8 p( )

where r is the function that reduces reorderings of the sample s to the set s of distinct

elements. The improved estimator can be expressed as

For sampling without-replacement, the summation consists of the sample estimates from

all n! reorderings of the sampled nodes. For initial samples chosen with a simple random

sample design, the expected value is over all (:0) combinations for the initial sample and

the (n - no)! reorderings of the nodes selected after the initial sample.

2) Estimator Based on Conditional Selection Probabilities

The second estimator is a Hansen-Hurwitz type estimator since it takes into account

the selection probability for each node, at the wave it was selected, to be in the sample.

We shall let Tso = 2:iEso ;: be the unbiased estimator of the population total T = 2:~] Yi

based on the initial sample. For each node selected after the initial sample, we shall define

Zi = 2:
J

<i Yj + ~. Each Zi is also an unbiased estimator of the population total for values
qk>

of 0 -:; d < 1, and hence the composite estimator

A ] [A '\'11 ]
I-L02 = Nn nOTso + L..-i=no+] Zi ,

is an unbiased estimator for the population mean I-L for values of 0 -:; d < 1. In the event

that one chooses to only follow links (d = 1), {Lo2 is not unbiased since not all the conditional

selection probabilities are greater than O. In this case, the Zi'S will only estimate the total

of the node values in the sample and those that are accessible, for which it is unbiased.

The second improved estimator

is formed by carrying out estimates over every sample path consistent with the m.s.s.

In a specific network setting where Y values only take on values of 0 or 1, the second

estimator can take on values greater than 1. Ratio estimators can be used to help reduce

the occurrence of such extreme values, of which two are described below.
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3) Composite Conditional Generalized Ratio Estimator

A Horvitz-Thompson type unbiased estimator for the population size N can be formed

by replacing each Yi value by 1 in the population total estimator Tso = LifSO ~ to get

No = LifSO ;i· If the initial sample is chosen with a SRS design, then No reduces to N since

Hi = N for all units i in the initial sample.

Similarly, if we replace each Y value found in the Zi'S by 1, then these form unbiased

estimates for the population size for values of 0 :s: d < 1, and the expressions are equivalent

to Ni = nck + --.L. Taking a weighted average of these estimates yields an unbiased estimator
qkl

N for the population size where

and using N we can form the ratio estimator

A N A

/-l03 = N /-l02 .

Since ll03 is a ratio estimator, there may be some bias in the estimates. However, the

improved estimator

will have the same bias but variance as small or smaller than that for M03.

4) Composite Conditional Mean-of-Ratios Estimator

Ratio estimates for the population mean /-l can be formed by dividing the initial sample

estimator f so by No, and each Zi by Ni . The mean of these ratio estimates form the estimator

M04, where

A l[nOA ",n z·]
/-l04 = n iii, Tso + L.i=no+l it .a •

The improved estimator is
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2.5 Markov Chain Monte Carlo for resampling estimators

For estimating the RB estimators previously described, a Markov chain accept/reject algo­

rithm is used (Hastings (1970),Thompson (2006a)). The resampling approach proves to be

especially useful for large sample sizes, where the number of permutations is prohibitively

large for exact calculation of the improved estimators.

We desire to obtain a Markov chain xo, Xl, X2, ... , having the stationary distribution

p(xldr ) = p(sldr ) that was presented in the previous section. When sampling without

replacement, X is a permutation of the original ordered sample s from the population.

When sampling with replacement, X is a vector of length n whose elements reduce to the

set that is consistent with the reduced set of the original sampled units.

A Markov chain that remains in the stationary distribution is obtained as follows:

Step 0: Start the chain in its stationary distribution by setting Xo = s, where s is the

original ordered sample. Suppose that at the previous step k -1, the value for Xk-l is some

permutation j.

Step 1: Form a tentative permutation tk from the candidate distribution, where the

candidate distribution (denoted pd consists of all permutations of the original sample s ob­

tained by applying the same sampling design to the n sampled members as if the population

were comprised only of these members.

Step 2: Set a = min{[pr;~~)IlI[P~t(~:)Il], I}. With probability a, take Xk = tk, and with

probability 1 - a, take Xk = Xk-l' Return to step 1.

After making a large number of resampled permutations (nr say), let P,6~) be the value

of the jth estimator on the kth resample. We can then estimate the population mean with

the enumerative estimator

for each of j = 1,2,3,4.



CHAPTER 2. NEW VARIATIONS IN ADAPTIVE WEB SAMPLING DESIGNS 16

2.6 Variance estimators and confidence intervals

A recommended approach (Thompson (2006a)) to estimating the variance and obtaining

confidence intervals of adaptive web sampling estimators is to start by selecting Tn inde­

pendent samples. With an estimate of ilk for the population mean from sample k, we can

estimate J.l with it = I:k=l ~. An unbiased estimator for the variance of J.l is

Approximate 100(1 - a)% confidence intervals for the estimator {l can be constructed

with the familiar formula

where tm - 1,a/2 is the upper a/2 point of the Student's t distribution with Tn - 1 degrees

of freedom.



Chapter 3

Simulation Experiments

The previous chapter covered the sampling strategies and their estimators. In this chap­

ter, simulation studies are compared between the AWS designs previously presented for

a simulated network population, a population at risk for HIV/ AIDS, a simulated spatial

population, and a bird population.

3.1 Network populations

3.1.1 Simulated network population (Population 1)

The population in Figure 3.1 (Population 1) was presented in Chapter 1, and was simulated

using the Adaptive Network Sampling package in R. The links between individuals follow

a logistic distribution that is based on their status and distance. Many researchers have

reported that modelling network populations with this type of setup has helped to capture

the true network structure of the population. For a further discussion on network modelling,

see Chow and Thompson (2003), Frank and Thompson (2000), Hoff et al. (2002), and

Linkletter (2007).

17
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Population

Figure 3.1: Population 1
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Population 1 has 147 members. The dark colored nodes are classified as nodes of interest

and take on a value of 1, and the light colored nodes take on a value of O. Links between

Hodes are symmetric and take on a value of 1. Estimates of the proportion of dark nodes

in the population (i.e. the population mean) are found in the following sections.

Strategy 1

The simulations of sampling with Strategy 1 used a without-replacement design. An

initial sample of size 10 was selected tllrough a SRS design, and the final sample size was set

to 20. One node was selected at each wave, and the dampening values were held constant

at 0.9. An illustrative example of a sample of this type can be found in Figure ;~.2.
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Sample
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'J

o
~l

1

o

Figure 3.2: A Strategy 1 sample from Population 1

Table 3.1 gives the lvISE scores for the AV. S Strategy 1 design. A series of 2000 simulation

runs were used. For each rUll, 10,000 ret;amples were used to obtain the tvIC IIC estimates.

Table 3.1: MSE scores of Strategy 1 estimators for Population 1

Estimator 1 Estimator '2 Estilll<l tor :3 E~timator 4

Preliminary estimate 0.0170 0.0324 0.0241 0.0294

Improved est.irnate U.0136 0.0147 O.ulH 0.029::3

Properties of the sampling strategy and its estimators can be found in the histograms

in Figure 3.3. The true population mean I), = 0.231 is indicated by the solid triangle. alld

the approximate expectation of each estimator is indicated by the transparent triallgle.
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1st estimator. preliminary

2nd esrimacor. preliminary

1st estimator. improved

2nd estimator. improved
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3rd estimator. preliminary

c. ') l.(

3rd estimator. improved

0.0 c.z c.c c .:

4th estimator. pre Iim inary 4th estimator, improved

Figure 3.3: Histograms of Strategy 1 estimators for Population 1

Table 3.1 indicates that significant improvements haw been made for the first second;

and third Ra.o-Blackwellized estimators, and the histograms show that there is more sym­

metry in their distributions. As expected, the first and second estimators appear to be

unbiased. The fourth estimator shows a large amount of bias when compared to the third

estimator, and this bias accounts for most of its MSE. Extreme values were taken on by the

second estimator, and in some cases it took on values greater than one. Rao-Blackwellization

of the second estimator helped minimize its range, while the ratio estimators show further

improvement. The first estimator performed the best overall.
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Strategy 2
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The AWS Strategy 2 design makes use of changing dampening values. For this project,

the pre chosen dampening vectors all summed to the same value. This ensured that the

number of nodes that were randomly chosen. via the initial sample or a random jump at

any wave after the initial sample, would be expected to be approximately equal.

0

-----'"
en /'
w /

I /I~

Dampelllllg V\'alue

'" I0

;-.J /w

/

'" " //
"

5 10 1:, 20
Sam Ie Step

Figure 3.4: Strategy 2 dampening vectors used for Population 1

Three vectors were of interest, and are illustrated in Figure 3.4. The vectors associated

with the black, blue, and red line correspond to Vectors 1, 2, and 3, respectively. The fiat

line at a value of zero corresponds with the simple random selection of the initial sarnple.

Vector 1 was used in the Strategy 1 simulation study. The motivation behind choosing the

values for Vector 2 was to allow for a smoother transition in the extreme values tha.t are

similarly used in Vector 1. Values for Vector :3 were chosen to a.llow for the freedom of

potentially following links early in the sample selection.

Table 3.2 gives the l'vISE scores for the preliminary and improved estimators for the AWS

Strategy 2 design. Bar charts for the MSE scores of the improved estimators for each vector

are presented in Figure :3.5.



CHAPTER 3. SIMULATION EXPERIMENTS 22

Table 3.2: MSE scores of Strategy 2 estimators for Population 1

Vector 1 Vector 2 Ve('tor 3

Estimator 1 Preliminary estimate 0.0170 0.0248 00836

Improved estimate 0.0136 0.0138 0.0173

Estimator 2 Preliminary estimate 0.0324 O.028G 0.0190

Im proved esti mate 0.0147 0.0130 0.0111

Estimator 3 Preliminary estimate 0.0241 0.0209 0.0159

Improved stimate 0.0147 O.0l3Pi 0.0120

Estimator 4 Preliminary estimate 0.0294 (J.0293 0.0316

Improveu estimate 0.0293 0.0291 0.0314
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Figure :3.5: Bar charts of IvISE scores of Strategy 2 improved estimators for Population 1

Table :3.2 and Figure 3.5 show that using Strategy 2 with the two changing dampening

vectors improved the efficiency scores of the second a.nd third estirna.tors over those found in

the Strategy 1 variation. Vector 3 was shown to perform the be~t overall. The larger I'vISE

scores from the first estimators could be attributed to the smaller initial sample sizes that
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were used with Vectors 2 and 3. As can be seen, there is almost no change in efficiency for

the fourth estimator.

The most efficient estimate from the Strategy 1 design came from the first estimate,

while the most efficient estimate from the Strategy 2 design came with the second estimate

when Vector 3 was used. The relative efficiency of these two estimators was found to be

0.0111 0816
0.0136 =. .

Table 3.3 on the following page gives the estimated bias of the estimators and semi-

length of confidence intervals, as well as the estimated coverage rates of the estimators from

the Strategy 2 design for a final sample comprised of six independent samples. The bias

scores have been rescaled for easier comparison purposes.

Table 3.3 indicates that most coverage rates were close to 95%. The weak coverage

rate from the fourth estimator was accounted for by its large amount of bias. Coverage

rates were slightly stronger for the Rao-Blackwellized estimates, which could be attributed

to their more symmetric distributions upon comparison to their preliminary counterparts.

As can be seen in the table, the coverage rate for the second preliminary estimator became

successively stronger when using the dampening values from the second and third estimators.

Bias scores for each estimator are approximately equal for all vectors and semi-lengths of

the confidence intervals for the second and third estimators from Vector 3 were significantly

smaller than those found in the Strategy 1 design.
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Table 3.3: Bias, CI semi-length, and coverage scores of Strategy 2 estimators

for Population 1 upon using six independent samples

Vector 1

Biasx 102 Semi-length Coverage

Estimator 1 Preliminary estimate -0.101 0.130 0.947

Improved estimate -0.016 0.114 0.952

Estimator 2 Preliminary estimate -0.188 0.164 0.889

Improved estimate -0.125 0.117 0.951

Estimator 3 Preliminary estimate 0.903 0.153 0.943

Improved estimate 0.869 0.120 0.951

Estimator 4 Preliminary estimate 8.320 0.148 0.789

Improved estimate 8.341 0.148 0.790

Vector 2

Biasx 102 Semi-length Coverage

Estimator 1 Preliminary estimate 0.112 0.156 0.951

Improved estimate 0.032 0.117 0.952

Estimator 2 Preliminary estimate 0.011 0.155 0.915

Improved estimate 0.035 0.114 0.949

Estimator 3 Preliminary estimate 0.933 0.145 0.945

Improved estimate 0.989 0.116 0.949

Estimator 4 Preliminary estimate 8.512 0.150 0.783

Improved estimate 8.502 0.149 0.781

Vector 3

Biasxl02 Semi-length Coverage

Estimator 1 Preliminary estimate -0.327 0.295 0.957

Improved estimate -0.103 0.133 0.9.51

Estimator 2 Preliminary estimate -0.140 0.127 0.946

Improved estimate -0.139 0.107 0.949

Estimator 3 Preliminary estimate 0.417 0.125 0.947

Improved estimate 0.394 0.110 0.954

Estimator 4 Preliminary estimate 8.492 0.158 0.803

Improved estimate 8..500 0.157 0.800

24
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Strategy 3

The Strategy 3 design provides more flexibility over the previous design by allowing the

user to choose values of eHid to weight the chances of selecting links that originate from

nodes of higher interest. Wit.h this met.hod, t.he user has some control over how much of the

sample will be comprised of higher units of int.erest.

Figure 3.6 below provides plots of t.he l'viSE values for each estimator for values of

eNid = 0.05,0.10,0.1.5, ... ,0.90,0.95. Preliminary est.imat.ors are represented by the dashed

line, and t.he improved estimators are represented by t.he solid lines. MSE scores for t.he

Strategy 1 improved estimators are represented by the solid blue line.
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Figure 3.6: IvISE scores for Strategy 3 estimators for Population 1
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Figure 3.6 shows that some improvements have been made for improved estimators 011e

and three for values of eHld within close proximity of values slightly greater than II = 0.231,

while little to no improvement was found for all values of eHid for estimator two. Although

Rao-Blackwellization of the fourth estimator provided very little improvement, significant

improvements have been achieved over that found with the corresponding Strategy 1 es­

timator for vil-lues of f1rlld within close proximity of the population meall ~l = 0.231. The

smallest JvISE score when using Strategy 3 came with the fourth estimator and a value of

eHid = 0.10. The relative efficiency of the best estimate from Strategy 1 and this estimate

f d b 0.0095 0 699was oun to e 0.01:36 =. .

The solid line in Figure 3.7 gives the expectation of the fourth estimator for the cor­

responding values of eHld · The sample mean is represented by the dashed line and the

approximate expectation of the fourth estimator from the Strategy 1 design is represented

by the blue line.

.'.
c

"o

O? or;

Figure 3.7: Expected values of fourth estimator from Strat.egy 3 for Population 1

As seen in Figure 3.7, the smaller IvISE scores for estimator four, for values of Bf/ld

close to the population mean f..t = 0.231, come from a large reduction in the amount of

bias and some reduction in variability. The relationship between the expectation of the

fourth estimator and the sample mean is visibly evident, and the correlation of the observed

simulated valnes was found to be 0.991. The graph also shows that the expectation of the

fourth estimator and the sample mean intersect at a value close to the population mean.
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A simple property of this estimator, and adaptive web sampling in general, is seen in the

graph: the values of the expectation of the estimator are almost always closer to the true

mean than the sample mean, hence giving the intersection at this value.

One alternative strategy is to set (}Hld equal to the initial sample mean. This may

prove to be especially useful if one wishes to use Strategy 3 with (}Hld as close to the true

population mean as possible, but has no insight on what this value may be. Table 3.4

gives the estimated bias and semi-length of confidence intervals, as well as the estimated

coverage rates of the estimators from setting (}Hld = J.L and the initial sample mean. The

final sample is comprised of six independent samples, and the bias has again been rescaled

for comparison purposes.

Table 3.4: Bias, CI semi-length, and coverage scores of Strategy 3 estimators

for Population 1 upon using six independent samples

eRld = J-L

Biasx 102 Semi-length Coverage

Estimator 1 Preliminary estimate -0.002 0.130 0.944

Improved estimate 0.495 0.107 0.947

Estimator 2 Preliminary estimate -0.133 0.165 0.854

Improved estimate -0.004 0.124 0.942

Estimator 3 Preliminary estimate 0.740 0.148 0.935

Improved estimate 0.684 0.119 0.950

Estimator 4 Preliminary estimate 1.821 0.104 0.942

Improved estimate 1.878 0.102 0.939

eRld = Ys()
Biasx102 Semi-length Coverage

Estimator 1 Preliminary estimate -0.003 0.130 0.944

Improved estimate 0.200 0.108 0.947

Estimator 2 Preliminary estimate -0.234 0.164 0.863

Improved estimate -0.627 0.122 0.939

Estimator 3 Preliminary estimate 0.714 0.151 0.926

Improved estimate 0.382 0.121 0.944

Estimator 4 Preliminary estimate 2.030 0.129 0.934

Improved estimate 1.972 0.126 0.940
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Table 3.4 suggests that bias, confidence interval semi-length, and coverage rate scores for

the first, second, and third estimators are approximately the same for both choices of eHid'

For the fourth estimator, very little bias is introduced with setting eHld equal to the sample

mean, and semi-lengths of the confidence intervals are about twenty-five percent larger. The

coverage rates from both cases show they are almost identical. Further improvements could

possibly be made if one were able to set eHld to the mean of the initial sample means of the

independent samples that will make up the final sample, if possible.

In comparison to the bias, confidence interval semi-lengths, and coverage rate scores from

the Strategy 1 estimators, the scores seem to parallel those found with the first, second, and

third estimators. Significant improvements have been made for each score with the fourth

estimator from Strategy 3.
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3.1.2 At risk for HIV/ AIDS population (Population 2)
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Population 2 is presented in Figure 3.8, and has 595 members. The empirical data set comes

from the Colorado Springs Study on the heterosexual transmission of HIV/ AIDS (Potterat

et al. (1993), Darrow et al. (1999)). Dark nodes represent injection drug users, and the

sylllmetric links betweell the nodes indicate drug-using relationships.

?OpU!~lioH

Figure 3.8: Population 2

For hidden populations of this type, the difficulty and cost of sampling with conventiollal

methods is usually much greater than with a link-tracing design like adaptive vveb sampling.

Using the AWS strategies, we wish to estimate the proportion of injection drug users

(i.e. the population mean).

Strategy 1

The simulations of sampling from this population with Strategy 1 used a without­

replacement design. An initial sample of size 15 WEtS selected through a SRS design, and tbe

final sClmph· size was set to 30. One node was selected at each wave, and the dampening

values were held constant at. 0.9.

Table 3.5 gives the .MSE scores for the AVlS Strategy 1 design estimators. Again. a

series of 2000 simulation runs were used, and 10,000 rei:lamples were used on each run for

the MCNIC estimates.
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Table 3.5: lVISE scores of Strategy 1 estimators for Population 2

Estimator 1 ~ stirnator 2 Estimator :{ Estimat.or -1

Prelimina.ry estimate 0.0160 0.0775 0.030() 00114

Improved Estimate 0.0104 0.0725 0.021'11 0.0113

Properties of the sampling strategy and its estimators can be found in the histograms

in Figure 3.9. The true population mean ~i = 0.575 is indicated by the solid triangle.
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Figure 3,9: Histograms of Strategy 1 estimators for Population 2
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Table 3.5 and Figure 3.9 show that Rao-Blackwellizatioll of the preliminary estimators

has slightly improved tbe MSE scores, Again, the bias is evident in tbe fourth estimator, and

accounts for most of its MSE. For the ratio estirnators, significant reductions in the !VISE

scores are evident over the second estimator. Recall that the fourth estimator performed

the worst in Population 1 when using Strategy 1, and for Population 2 the fourth estimator

has performed the best overall.

Strategy 2

Once again, three damp vectors are of interest for the A'vVS Strategy 2 design for

Population 2. The plots of these vectors can be found in Figure 3.10, and they all sum to

the same value.
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Figure 3,10: Strategy 2 dampening vectors used for Population 2

Larger initial sample sizes for tile three vectors, in comparison to those used for the

Strategy 2 design when sampling from the simulated network population, ensured that

there was a strong probability t.hat. at least one node in the init.ial sample would bave a link

out to some member not. in the initial sample. This way, t.he dampening vector would not

be '·'cheat.ed", and it was found that. t.hese higher initial sample sizes were sufficient enougll

t.o significant.ly reduce t.he chances of adding more randomness to the sample selection t.han

was desired.
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Table 3.6 gives the rvISE scores for the preliminary and improved estimators, and bar

charts for thetvISE scores of the improved estimators for each vector are presented in

Figure 3.11.

Table :3.6: MSE scores of Strategy 2 estimators for Population 2

Vector 1 Ver"tor 2 Vector ~~

Estimator 1 Preliminary estimate 0.0160 0.02416 0.0409

Improved Estimate 0.0154 0.02~B 0.0369

Estimator 2 Preliminary estimate 0.0775 0.1195 0.0695

Improved Estimat 0.0725 0.1115 0.0615

Estimator 3 Preliminary estimate 00306 00274 0.02~~5

Improved Estimate 0.0281 0.0257 0.0214

Estimator 4 Preliminary estimate 0.0114 0,(J091 00093

Improved Estimate 0.Dll:3 0.0001 00093
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Figure 3.11: Bar charts of f'vrSE scores of Strategy 2 improved estimators for Population 2
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Table 3.6 and Figure 3.11 show that some improvements were made for the third esti­

mator when using both Vectors 2 and 3, while the second estimator has shown a significant

decrease in efficiency with the use of Vector 2. The best estimates from using Strategy 1

and Strategy 2 designs both came from the fourth estimator, and the relative efficiency of

these two estimators was found to be g:gn~ = 0.805.

Table 3.7 gives the estimated bias and semi-length of confidence intervals, as well as the

estimated coverage rates of the estimators for a final sample comprised of six independent

samples. Again, the bias scores have been rescaled for easier comparison purposes.

Table 3.7 shows that coverage rate scores for the second estimator were weakest with

Vectors 2 and 3. For all three scores, estimator three performed very well with Vector 3.

The improvement in the coverage rate scores for the RB estimators over the preliminary

estimators are not as good as those seen in Population 1. This may possibly be due to a

smaller improvement, in magnitude, of the RB estimators for Population 2 when comparing

against those found in Population 1.
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Table 3.7: Bias, CI semi-length, and coverage scores of Strategy 2 estimators

for Population 2 upon using six independent samples

Vector 1

Biasx 102 Semi-length Coverage

Estimator 1 Preliminary estimate -0.012 0.126 0.953

Improved estimate -0.307 0.123 0.962

Estimator 2 Preliminary estimate -0.370 0.276 0.934

Improved estimate -0.236 0.265 0.938

Estimator 3 Preliminary estimate 0.078 0.178 0.942

Improved estimate 0.094 0.170 0.939

Estimator 4 Preliminary estimate 1.072 0.105 0.943

Improved estimate 1.065 0.105 0.942

Vector 2

Biasx 102 Semi-length Coverage

Estimator 1 Preliminary estimate 0.121 0.156 0.954

Improved estimate 0.094 0.151 0.955

Estimator 2 Preliminary estimate -0.126 0.313 0.840

Improved estimate 0.067 0.296 0.864

Estimator 3 Preliminary estimate 0.083 0.172 0.948

Improved estimate 0.147 0.162 0.945

Estimator 4 Preliminary estimate 1.617 0.106 0.939

Improved estimate 1.616 0.106 0.942

Vector 3

Biasx 102 Semi-length Coverage

Estimator 1 Preliminary estimate -0.122 0.201 0.952

Improved estimate -0.942 0.182 0.939

Estimator 2 Preliminary estimate -0.270 0.254 0.880

Improved estimate -0.005 0.234 0.911

Estimator 3 Preliminary estimate -0.006 0.157 0.941

Improved estimate -0.003 0.145 0.949

Estimator 4 Preliminary estimate 1.480 0.108 0.946

Improved estimate 1.484 0.108 0.945

34
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Strategy 3

Figure 3.12 below gives plots of the l\!lSE scores for each estimator for val ues of

eHld = 0.05, 0.10, 0.15, ... ,0.90,0.95. Due to the large difference in the MSE scores, the range

of the MSE axes are adjusted for each estimator to capture the behavior of the estimates

at the varying choices of eHid' The plotteel values were gently smoothed wi th a normal

kernel smoothing method to better illustrate the trend in the estimators. The preliminary

estimates are represented by the dashed lines, and the improved estimates are represent, d

by the solid lines. The l\!lSE score for each estimator when using the Strategy 1 design is

represented by the solid blue line.

Figure 3.12: MSE scores for Strategy 3 estimators for Population 2
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The graphs in Figure 3.12 indicate that for all estimates, efficiency improvements were

made over those found in the Strategy 1 estimators for almost all values of Bf-!ld' It appears

that minimum values for the r-,IISE scores for improved estimators two, three, and four were

made at values very close to the population mean I" = 0.575. The best estimate that came

\vith the Strategy 3 design came witlJ the fourth estimator at a value of BH1d = 0.45, and

the relative efficiency of this estimator to the best estimator from Strategy 1 was found to

I 0.00 K 0 779)e 0.0113 = . ..

Figure 3.13 gives the expectation of the fourth estimator for the corresponding values

of BHid' Again, the sample mean is represented by the dashed line and the approximate

expectation of the fourth estimator hom the Strategy 1 design is represented by the blue

line.
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Figure 3.13: Expected values of fourth estimator from Strategy 3 for Population 2

Figure 3.13 shows a crossover in the expected value of the fourth estimator with the

sample mean at a value that is approximately equal to the population mean I" = 0.575, and

the correlation of the observed values was found to be 0.999. The graph also shows that.

when comparing the expected values of the fourth estimator from the Strategy 3 design

with the Strategy 1 design, a lot of the reduction in the MSE scores came from a significant

decrease in its variance. As can be seen, for values of BH1d within close proximity of 0.45,

the bia.. was at a minimum.

Table 3.8 gives the estimated bias of the estinmtors and semi-length of confidence inter­

vals, as well as the estimated coverage rates of the estimators from setting () Hid = P and
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the initial sample mean. The final sample is comprised of six independent samples, and the

bias has again been rescaled for comparison purposes.

Table 3.8: Bias, CI semi-length, and coverage scores of Strategy 3 estimators

for Population 2 upon using six independent samples

()Hld = Jl

Biasx 102 Semi-length Coverage

Estimator 1 Preliminary estimate -0.020 0.126 0.953

Improved estimate -0.005 0.123 0.957

Estimator 2 Preliminary estimate -0.060 0.269 0.937

Improved estimate 0.039 0.260 0.935

Estimator 3 Preliminary estimate 0.051 0.174 0.940

Improved estimate 0.022 0.166 0.942

Estimator 4 Preliminary estimate 1.079 0.094 0.941

Improved estimate 1.077 0.094 0.940

()Hid = fisll
Biasx 102 Semi-length Coverage

Estimator 1 Preliminary estimate -0.196 0.126 0.951

Improved estimate -0.302 0.122 0.954

Estimator 2 Preliminary estimate -0.364 0.270 0.927

Improved estimate -0.121 0.263 0.936

Estimator 3 Preliminary estimate -0.387 0.176 0.942

Improved estimate -0.338 0.168 0.947

Estimator 4 Preliminary estimate 1.210 0.104 0.946

Improved estimate 1.230 0.104 0.946

Similar to the results from Population 1, Table 3.8 indicates that the scores for estimators

one, two, and three are approximately equal for both cases. For the fourth estimator, the

semi-length of the confidence interval from setting (}Hld equal to the initial sample mean was

about ten percent larger than that found with setting (}Hld equal to the population mean,

while slightly more bias was introduced.

In comparison with estimates from the Strategy 1 design, semi-lengths of the confidence

intervals were slightly smaller for estimators two and three from the Strategy 3 design, as

well for the fourth estimator when setting ()Hid = IL, and this seems to correspond with
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the MSE plots found in Figure 3.12. The bias and coverage rate scores were approximately

equal in both Strategies I and 3 for these estimators.
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3.2 Spatial populations

3.2.1 Simulated spatial population (Population 3)
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The population in Figure 3.14 (Population 3) was presented in Chapter 1, and was simulat.ed

using the Adaptive Network Sampling package in R. Population 3 was generated using six

parent locations whose values followed a Poisson distribution with mean 120. The central

location of t.hese clusters was randomly select.ed in the unit square, and their dispersion

followed a symmetric Gaussian distribution with st.andard deviation 0.03.
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Figure 3.14: Population 3

The study area was divided into 100 plots, and those of which contained at If'flst one

point-object were classified as units of interest.. Estimates of the mean number of point­

objects in each plot are found in the following sections.

Strategy 1

The simulations of sampling from this populatioll wit.h St.rategy 1 used a without­

replacement design. An initial sample of size 15 was selected through a SRS design, and the

final sample size was set t.o 30. One node was selected at each wave, and the dampening

values were held constant at 0,9. A sample of this type can be found in Figure 3,15.
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Figure 3.15: A Strategy 1 sample from Population ;3

Table 3.9 gives the MSE scores for the AWS Strategy 1 design estimators. A series of

2000 simulation runs were used, and 10,000 resamples were used on each run for the MCMC

estimates.

Table 3.9: MSE scores of Strategy 1 estimators for Population 3

Estimator 1 Estimator 2 Estimator 3 Estimator 4

Preliminary estimate 21.62 27.92 23.56 16.75

Improved Estimate Fi.96 21.22 18.09 15.56

Properties of the sampling strategy and its estimators can be found in the histograms

in Figure 3.16. The true population mean p. = 7.15 is indicated by the solid triangle, and

the approximate expectation of each estimator is indicated by the transparent t.riangle.
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1st estimator. preliminary

2nd estimator. preliminary

1st estimator. improved

2nd estimator. improved
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Figure 3.16: Histograms of Strategy 1 estimators for Population 3

Table 3.9 shows that significant gains in efficiency were made for the first, second, and

third improved estimators over the preliminary estimators. The histogram plots reveal

that some symmetry has been introduced with Rao-Blackwellization of the preliminary

estimators. Similar to the simulation results seen in the network populations, the histograms

show that the second estimator took on extreme values. Rao-Blackwellization and the use of

the ratio estimators has once aga.in helped to reduce the occurrence of the extreme values.

The fourth estimator showed a large amount of bias when compa,red to the other three

estimators. However, this estimator still performed the best overall.
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Strategy 2

42

The three damp vectors that were used for the Strategy 2 design are the same as those

that were used for sampling from Population 2.

Table 3.10 gives the 1'v1SE scores for the preliminary and improved estimators, and bar

charts for the lV1SE scores of the improved estimators for each vector are presented in

Figure 3.17.

Table 3.10: MSE scores of Strategy 2 estimators for Population 3

Vector 1 Vector 2 Vector 3

Estimator 1 Preliminary estimate 21.619 ~)2.%7 57.020

Improved Estimatp, 15.962 2:).171 32.571

Estintator 2 Preliminary estimate 27.923 42.417 25.16~)

Improved Estimate 21.217 25.825 17.741

Estimator 3 Prelimiliary estimate 2:3.563 23.469 19.928

1mproved Estimate 18.086 17.934 14.240

Estimator 4 Preliminary estimate 16.748 17.0~5 17.000

Improved Estimate 15.555 16.284 15.933

\[SE

Figure 3.17: Bar charts of MSE scores of Strategy 2 improved estimators for Population 3



CHAPTER 3. SIMULATION EXPERIMENTS 43

Table 3.10 and Figure 3.17 show that efficiency gains were made when using the AWS

Strategy 2 design with Vector 3 for the second and third estimators. With Vector 2, it

appears that no improvements were made over the Strategy 1 design. Similar to the network

populations, the higher MSE values for the first estimator when using Vectors 2 and 3 may

be attributed to their smaller initial sample sizes, while no change in efficiency was found

with the fourth estimator.

The most efficient estimate from the Strategy 1 design was with the fourth estimate,

and the most efficient estimate from Strategy 2 was with the third estimate from Vector 3.

The relative efficiency of these two estimators was found to be ~~:~~g = 0.892.

Table 3.11 on the following page gives the estimated bias of the estimators and semi­

length of the confidence intervals, as well as the estimated coverage rate of the estimators

used with the corresponding vectors for one final sample comprised of six independent

samples.

Table 3.11 shows that the coverage rates are better with the first, second, and third

improved estimators over those found with the preliminary estimators. Also, for the second

and third estimators, coverage rates are better when using Vectors 2 and 3 in comparison

to Vector 1. The bias scores from all three dampening vectors were approximately the same

for all four estimators. The weak coverage from the fourth estimator reflects a consequence

of the bias that is present with this estimator, and Rao-Blackwellization shows little to

no improvement in the behavior of the confidence intervals constructed with it. Overall,

significant gains in efficiency were found for estimators two and three when using Vector 3.
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Table 3.11: Bias, CI semi-length, and coverage scores of Strategy 2 estimators

for Population 3 upon using six independent samples

Vector 1

Bias Semi-length Coverage

Estimator 1 Preliminary estimate 0.011 4.608 0.938

Improved estimate 0.058 4.116 0.953

Estimator 2 Preliminary estimate -0.078 4.537 0.885

Improved estimate -0.049 4.165 0.906

Estimator 3 Preliminary estimate 0.117 4.434 0.920

Improved estimate 0.146 4.050 0.936

Estimator 4 Preliminary estimate 2.223 3.423 0.783

Improved estimate 2.245 3.283 0.750

Vector 2

Bias Semi-length Coverage

Estimator 1 Preliminary estimate -0.024 5.735 0.929

Improved estimate -0.020 4.936 0.935

Estimator 2 Preliminary estimate -0.037 4.563 0.894

Improved estimate -0.069 4.158 0.918

Estimator 3 Preliminary estimate 0.195 4.362 0.936

Improved estimate 0.184 3.945 0.944

Estimator 4 Preliminary estimate 2.313 3.410 0.737

Improved estimate 2.332 3.291 0.715

Vector 3

Bias Semi-length Coverage

Estimator 1 Preliminary estimate 0.041 7.505 0.899

Improved estimate 0.077 5.930 0.935

Estimator 2 Preliminary estimate 0.024 4.189 0.916

Improved estimate 0.004 3.789 0.938

Estimator 3 Preliminary estimate 0.158 4.071 0.931

Improved estimate 0.184 3.677 0.942

Estimator 4 Preliminary estimate 2.461 3.406 0.718

Improved estimate 2.459 3.246 0.691

44
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Strategy 3
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In this strategy, links are traced with probability proportional to the originating node

values. With this variation the user has the advantage of adding units that possess higher

observed values into the sample, but perhaps at the expense of more effort required to count

the number of point-objects within the plot.

The MSE scores for each estimator when using Strategy 3 are presented in Table 3.12.

Table 3.12: MSE scores of Strategy 3 estimators for Population 3

Estimator 1 Estimator 2 Estimator 3 Estimator 4

Preliminary estimate

Improved estimate

21.02

15.65

31.43

23.52

24.69

18.92

16.47

15.50

As can be seen, the estimates show no improvement over those found in Strategy 1.

When using the changing dampening vectors in conjunction with this strategy, it was found

that the estimates did not perform nearly as well as those that were presented in the previous

section.
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3.2.2 Wintering Waterfowl population (Population 4)
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Figure 3.18 illustrates an empirical blue-winged teal bird population (Population 4) on

a wildlife refuge (Smith et al. (1995)). The study area was divided into 50 plots, and

the number of birds within each plot is represented in the population box. The graph

representation version indicates plots of interest (those with a count of at least one bird),

and one way relationships exist from plots of interest to adjacent boxes. Estimates of the

mean number of birds in each plot are found in the following sections.

Population
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Figure 3.18: Population 4

Strategy 1

The simulations of sampling from this population with Strategy 1 used a without­

replacement design. An initial sample of size 15 was selected through a SRS design, and the

final sample size was set to 30. One node was selected at each wave, and the dampening

values were held constant at 0.9.
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TablE' 3.13 gives the NISE scores for the AWS Strategy 1 design estimators. Again, a

series of 2000 simulations were used for each design, and 10,000 resamples were used on each

run for the MCMC estimates.

TablE' 3.13: MSE scores of Strategy 1 estimators for Population 4

Estimator 1 Estimator 2 Estimator 3 Estimator 4

Preliminary estimate

Improved Estimatp

174431.02

36093.01

84922.8tl

2023R.7()

84972.93

22132.54

63469.09

26827.33

Properties of the four estimators can be found in the histograms in Figure 3.19. The

true population mean f-J, = 282.42 is indicated by the solid triangle.
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Figure 3.19: Histograms of Strategy 1 estimators for Population 4
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Table 3.13 suggests that the second and third estimates perform the best, as opposed

to the fourth and first estimators as seen in Population 3 when using Strategy 1. Rao­

Blackwellization of the estimators showed significant improvement over the preliminary es­

timators. The histograms only show frequency values up to 1200, and this is for visual

purposes. Extreme values were taken on by the second estimator, and reached values up to

6000. In comparison to the other estimators, a large amount of bias in the fourth estimator

is evident, and accounts for most of the MSE.

Strategy 2

The same three dampening vectors that were used in the simulated spatial population

will be used in Population 4.

Table 3.14 gives the MSE scores for the preliminary and improved estimators for each

vector.

Table 3.14: MSE scores of Strategy 2 estimators for Population 4

Vector 1 Vector 2 Vector 3

Estimator 1 Preliminary estimate 174431.02 298381.80 545997.06

Improved Estimate 36093.01 51855.80 70026.42

Estimator 2 Preliminary estimate 84922.88 81422.89 73051.01

Improved Estimate 20238.76 29723.42 17493.70

Estimator 3 Preliminary estimate 84972.93 76962.99 70261.21

Improved Estimate 22132.,54 25844.17 18337.99

Estimator 4 Preliminary estimate 63469.09 63149.81 63377.66

Improved Estimate 26827.33 28082.79 27733.91

Bar charts for the MSE scores of the improved estimators from each vector can be seen

in Figure 3.20 on the following page.
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Figure 3.20: Bar charts of lVISE scores of Strategy 2 improved estimators for Population 4

It appears, as with the last simulation, that a significant improvement was found in the

second and third estimators upon using Vector 3, with little to no change found in the fourth

estimator using the new vectors.

The most efficient estimate from the Strategy 1 design came from the second estimate.

The most efficient estimate from Strategy 2 came with the second estimate from Vector 3.

The relative efficiency of these two estimators was found to be 1bii~;~ = 0.864.

Table 3.15 gives the estimated bias and semi-length of the confidence intervals, as well

as the estimated coverage rates of the estimators used with the corresponding vectors for

one final sample comprised of six independent samples.



CHAPTER 3. SIMULATION EXPERIMENTS

Table 3.15: Bias, CI semi-length, and coverage scores of Strategy 2 estimators

for Population 4 upon using six independent samples

Vector 1

Bias Semi-length Coverage

Estimator 1 Preliminary estimate -4.550 405.111 0.867

Improved estimate -0.444 202.008 0.946

Estimator 2 Preliminary estimate -1.075 258.349 0.876

Improved estimate -0.444 146.289 0.945

Estimator 3 Preliminary estimate 4.664 263.670 0.882

Improved estimate 6.406 152.066 0.937

Estimator 4 Preliminary estimate 59.705 246.272 0.932

Improved estimate 61.946 154.197 0.767

Vector 2

Bias Semi-length Coverage

Estimator 1 Preliminary estimate 4.648 496.253 0.745

Improved estimate 0.516 240.842 0.940

Estimator 2 Preliminary estimate -1.981 245.7117 0.883

Improved estimate 0.822 144.360 0.945

Estimator 3 Preliminary estimate 6.411 256.739 0.894

Improved estimate 7.340 151.077 0.935

Estimator 4 Preliminary estimate 65.093 247.661 0.933

Improved estimate 65.123 158.131 0.769

Vector 3

Bias Semi-length Coverage

Estimator 1 Preliminary estimate -12.081 554.691 0.515

Improved estimate 2.121 269.964 0.920

Estimator 2 Preliminary estimate -0.524 242.470 0.889

Improved estimate -3.338 138.202 0.943

Estimator 3 Preliminary estimate -1.006 248.448 0.890

Improved estimate 3.255 143.342 0.932

Estimator 4 Preliminary estimate 64.322 245.975 0.927

Improved estimate 65.253 156.642 0.755

50
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As can be seen in Table 3.15, coverage scores greatly improved with the Rao-Blackwellization

of the first, second and third estimators. The significant decrease in the coverage score with

the improved fourth estimator may be attributed to the large amount of bias coupled with

the small variability in the estimator. Similar to the results found from the simulations from

Population 3, significant gains in efficiency were found for estimators two and three when

using Vector 3.

Strategy 3

The MSE scores for each estimator when using Strategy 3 is presented in Table 3.16.

Table 3.16: MSE scores of Strategy 3 estimators for Population 4

Estimator 1 Estimator 2 Estimator 3 Estimator 4

Preliminary estimate

Improved estimate

174962.17

36482.72

88497.46

25083.51

85146.47

25294.03

64157.67

27578.96

Once again, these estimates have shown no improvement over those found in

Strategy 1. Similar to the simulation results with Population 3, when using the changing

dampening vectors in conjunction with this strategy, no improvements in the estimates were

found over those presented in the previous section.



Chapter 4

Conclusions

Improvements from Rao-Blackwellizing the first three preliminary estimators have proven to

give significantly better estimates, while adding some symmetry to the distributions of these

estimators to give as good or better coverage rates than those found with their preliminary

counterparts. The fourth estimator did not benefit as much from Rao-Blackwellization in

comparison to the other three estimators. As expected, the first and second estimators

always came out approximately unbiased in the simulations. Though the second estimator

had a tendency to take on extreme values in the simulations for both the network and

spatial setting populations, the occurrence of these values was always reduced with the

ratio estimators. In comparison, the fourth estimator continuously showed much more bias

than the third estimator.

The use of Vector 3 in the Strategy 2 design helped to significantly reduce the MSE

scores from the second and third estimators. In all cases, using Strategy 2 with Vector 3

has provided at least one estimate that is better than the best estimate that comes with

Strategy 1. Coverage rates with these estimators always did as good or better than those

found with the Strategy 1 design, while the semi-lengths of the confidence intervals were as

small or smaller and the biases remained the same.

Strategy 3 estimators for Population 1 have shown that when setting the parameter

(}Hld to values slightly larger than the true population mean !-t, some improvements were

made in estimators one and three, while little to no change in MSE was found for the

second estimator for all values of (}Hld' However, when setting (}Hld approximately equal to

the population mean, a significant reduction in both the bias and variance was found for

estimator four. For Population 2, all four estimators greatly benefitted from setting (}Hld

52
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within close proximity of the population mean.

In both network populations, the MSE score from the fourth estimator was lower than

that found with the best estimator from the Strategy 1 design when setting eHid = J-L. Al­

though setting eHld equal to the sample mean did not make improvements in the fourth

estimator over the best estimate from Strategy 1, significant improvements were still made

over some of the estimates from Strategy 1. If one were to select a large number of indepen­

dent samples, then further improvements may be made by setting eHld equal to the mean

of the initial sample means.

Estimators from the Strategy 3 design used in the spatial setting showed no significant

improvements over those found from the Strategy 1 design. Moreover, these estimates

usually performed worse than the estimates from the Strategy 1 design. While using the

changing dampening vectors in conjunction with Strategy 3, it was found that the MSE

scores failed to compare with those found in the Strategy 2 design.

Future study on how the initial sample is selected and what size to use would certainly

be useful. Thompson (2006a) investigated the same bird population (Population 4), and

found that with a final sample of size 20, an initial sample of size 13 or 14 achieved the

smallest MSE scores when using the Strategy 1 design. It therefore may be possible to make

immediate improvements with the new designs by allowing for different initial sample sizes.

When using Strategy 3, more study on what values of eHld should be used for certain

types of populations would certainly be helpful. When uncertain as to which values one

should use, research into setting eHid equal to a function of the observed sample values and

link variables from the initial sample would also be good.

Investigation on the use of auxiliary information with adaptive web sampling would also

be very useful, as new ratio estimators could potentially be developed by exploiting some

of the auxiliary information.

In conclusion, the new strategies provide estimates for all four populations which are

better than those found in the general design. The new designs are attractive in that they

are intuitively appealing and retain many of the features of the general design, such as ease

of understanding and application, as well as retaining all the advantages that the previous

design has over some of the current link-tracing designs. With the large amount of flexibility

available in adaptive web sampling, as well as the results presented in this project from using

the new designs, further improvements can be expected to be seen in the future.



Bibliography

Chow, M. and Thompson, S. (2003). Estimation with link-tracing sampling designs- a
bayesian approach. Survey Methodology 29, 197-205.

Darrow, W., Potterat, J., Rothenberg, R., Woodhouse, D., Muth, S. and Klovdahl, A.
(1999). Using knowledge of social networks to prevent human immunodeficiency virus
infections: The Colorado Springs Study. Sociological Focus 32, 143-158.

Frank, O. and Snijders, T. (1994). Estimating the size of hidden populations using snowball
sampling. Journal oj Official Statistics 10, 53-67.

Frank, O. and Thompson, S. (2000). Model-based estimation with link-tracing sampling
designs. Survey Methodology 26, 87-98.

Hastings, W. (1970). Monte-carlo sampling methods using markov chains and their appli­
cation. Biometrika 57, 97-109.

Hoff, P., Raftery, A. and Handcock, M. (2002). Latent space approaches to social network
analysis. Journal oj the American Statistical Association 97, 1090-1098.

Linkletter, C. (2007). Spatial Process Models Jor Social Network Analysis. Ph.D. thesis,
Simon Fraser University.

Potterat, J., Woodhouse, D., Rothenberg, R., Muth, S., Darrow, W., Muth, J. and Reynolds,
J. (1993). AIDS in Colordao Springs: Is there an epidemic? AIDS 7,1517-1521.

Smith, D., Conroy, M. and Brakhage, D. (1995). Efficiency of adaptive cluster sampling for
estimating density of wintering waterfowl. Biometrics 51, 777-788.

Thompson, S. (1990). Adaptive cluster sampling. Journal oj the American Statistical As-
sociation 85, 1050-1059.

Thompson, S. (2002). Sampling. Wiley, second edition.

Thompson, S. (2006a). Adaptive web sampling. Biometrics 62,1224-1234.

Thompson, S. (2006b). Targeted random walk designs. Survey Methodology 32, 11-24.

Thompson, S. and Seber, G. (1996). Adaptive Sampling. Wiley.

54


