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Abstract

This dissertation describes the fat-elements method for providing functional arrays and

the LR-tags method for determinacy checking. Although these topics may seem very

different, they are actually closely linked: Both methods provide reproducibility in ad-

vanced programming languages and share many implementation details, such as tagging

data using version stamps taken from an ordered list.

The fat-elements method provides arrays as a true functional analogue of imperative

arrays with the properties that functional programmers expect from data structures. It

avoids many of the drawbacks of previous approaches to the problem, which typically

sacrifice usability for performance or vice versa.

The fat-elements method efficiently supports array algorithms from the imperative

world by providing constant-time operations for single-threaded array use. Fully persis-

tent array accesses may also be performed in constant amortized time if the algorithm

satisfies a simple requirement for uniformity of access. For algorithms that do not access

the array uniformly or single-threadedly, array reads or updates take at most O(log n)

amortized time for an array of size n. The method is also space efficient—creating a new

array version by updating a single array element requires constant amortized space.

The LR-tags method is a technique for detecting indeterminacy in asynchronous

parallel programs—such as those using nested parallelism on shared-memory mimd

machines—by checking Bernstein’s conditions, which prevent determinacy races by

avoiding write/write and read/write contention between parallel tasks. Enforcing such

conditions at compile time is difficult for general parallel programs. Previous attempts to

enforce the conditions at runtime have had non–constant-factor overheads, sometimes

coupled with serial-execution requirements.
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vi Abstract

The LR-tags method can check Bernstein’s (or Steele’s generalized) conditions at

runtime while avoiding some of the drawbacks present in previous approaches to this

problem. The method has constant-factor space and time overheads when run on a

uniprocessor machine and runs in parallel on multiprocessor machines, whereas the best

previous solution, Cilk’s Nondeterminator (a constant-space and nearly constant-time

approach), requires serial execution.

Both parts of the dissertation include theoretical and practical material. Tests from

implementations of both techniques indicate that the methods should be quite usable in

practice.



In memory of Wallace Clawpaws
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Preface

A doctoral dissertation is many things: an academic discourse, an exhibition of research

for an examining body, and, of course, a personal milestone. My dissertation is both

an academic work, describing my contributions to the fields of functional arrays and

determinacy checking, and a narrative, recounting how research I began in one field lead

me to another.

When I began my doctoral work, I was fairly sure that my dissertation would be about

functional arrays—I had scarcely given any thought to the idea of parallel determinacy

checking. But as my research progressed, I began to look first at the parallel use of

functional arrays and then at the parallel use of memory in general. As I did, I discovered

that some of the core techniques I had developed to implement functional arrays could

be employed in determinacy checking.

In retrospect, the connections between the topics seem obvious. Both address non–

single-threaded access to data, both deal with preserving reproducibility, and my solu-

tions to both problems involve using ordered lists to provide version stamps that chron-

icle data accesses.

Nevertheless, in an attempt to make this dissertation as accessible as possible to

readers from both the functional-programming and parallel-programming communities,

I have broken it into two distinct parts, the first discussing functional arrays; the second,

determinacy checking. A discussion of the relationship between the two fields is avail-

able in Appendix A.

However you choose to read this dissertation (and there are many ways to do so!), I

hope you will learn as much from reading it as I did during the journey.
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Overview

In this overview, I will outline the content of my dissertation, providing some brief com-

ments about the content of each chapter and touching on the important new contribu-

tions made.

The dissertation consists of two main parts and a set of appendices. The first part

discusses functional arrays. The second discusses determinacy checking for programs

that use nested parallelism (and some other, related, kinds of parallelism).

Functional Arrays

Chapter 1 reviews previous research on functional arrays. This chapter draws heavily

on the review present in my master’s thesis, and also on the review paper presented for

the depth-examination component of my doctoral study. It does not present any new

research, and can probably be skipped over or skimmed through by someone familiar

with prior work in the area of functional arrays.

Chapter 2 describes the fat-elements method for representing functional arrays. Since

this method is an improvement on the array representation I presented in my master’s

thesis, the information contained in the first two sections will be familiar to those who

have read that earlier work. The concept of array splitting introduced in the remainder of

this chapter is a new idea that forms part of my doctoral research. A preliminary version

of this chapter was published as “A New Method for Functional Arrays” in the Journal

of Functional Programming (O’Neill & Burton, ) so that my research results could be

disseminated in a timely manner.

Chapter 3 discusses both the theoretical and actual performance of the fat-elements

xxvii
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method. Like Chapter 2, an early version of this chapter was included in “A New Method

for Functional Arrays” to provide others in the research community with an opportunity

to evaluate my work.

Chapter 4 explores how persistent arrays interact with the garbage-collection mech-

anisms typically present in functional languages (a topic that is, in my opinion, under-

explored in the literature). It shows how fat-element arrays fail to fit the assumptions

made by typical garbage collectors (a property they share with several other functional-

array and persistent–data-structure mechanisms), and how this issue can be addressed

so that fat-element arrays may be garbage collected efficiently.

Chapter 5 discusses a few of the possible optimizations for improving the real-world

performance of the fat-elements method without affecting its theoretical properties.

Determinacy Checking

Chapter 6 reviews previous research on the topic of determinacy checking for parallel

programs that use nested parallelism. This review draws heavily on the review paper I

presented for the depth-examination component of my doctoral study

Chapter 7 introduces the LR-tags method for determinacy checking, which involves

tagging data so that we may rapidly determine whether access to that data satisfies or

violates Bernstein’s (or Steele’s) conditions for determinacy.

Chapter 8 proves the correctness of the algorithm used to allocate tags to new tasks

given in Chapter 7.

Chapter 9 shows that the LR-tags method has good time and space complexity for

both serial and parallel execution of the algorithm.

Chapter 10 discusses some of the optimizations that can be made to improve the real-

world performance of the LR-tags method without affecting its asymptotic performance.

Chapter 11 examines the performance of a C++ implementation of the LR-tags method

running standard benchmarks. The results from running the code on a highly parallel

Sun Enterprise  system show that the algorithm scales well.

Chapter 12 provides a conclusion to both this part and the body of the dissertation

as a whole.
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Appendices

Much of the body of the dissertation relies on techniques that may not be well known

or obvious to the average reader familiar with either functional arrays or determinacy

checking. The appendices discuss some of these techniques.

Some of the techniques discussed in these appendices do not appear to have been

published elsewhere. The Cotton/Pthieves multithreaded programming system dis-

cussed in Appendices B and C, for example, was written simply to allow me to bench-

mark my determinacy-checking code using off-the-shelf benchmarks from the Cilk sys-

tem, and mostly uses well-known ideas for performing work-stealing scheduling. Some

of the ideas underlying this system may be novel, however.

In addition, the appendices contain some work is more of historical than practical

interest. Appendix G outlines techniques that may allow several fat-element array ver-

sions to be merged into a single array, a feature that could have some use in parallel

programs using arrays. Although, ultimately, I was not satisfied with the usefulness of

the merge operation, this work is interesting at the very least because it is what led

me into my work on determinacy checking. Similarly, Appendix F discusses my first

attempt at a determinacy-checking scheme. While the results presented in Appendix F

have been superseded by the chapters presented in the body of the dissertation, this

work is interesting because it admits Feng and Leiserson’s () determinacy-checking

technique as a specialization.





Notation

Before I begin, let me take a moment to explain some of the notation used throughout

this dissertation.

I have been slightly sloppy in my use of asymptotic notation. Usually, we use the

notation g(n) ∈ O
(
f(n)

)
to indicate that

∀n > L : g(n) ≤ Cf(n)

where L andC are positive constants. In this dissertation, I will also write x ∈ O
(
f(n)

)
as a shorthand for saying that x is a variable that depends on n, such that

∃g(n) : ∀n > L :
(
x = g(n)

)
∧
(
g(n) ≤ Cf(n)

)
.

Also, to make stating upper bounds easier, I define the function log
+

as follows:

log
+
n ≡ log2 2n.

This function has the advantage of being positive for positive integers (thus log
+
1 = 1

whereas a conventional log2 1 = 0).

In situations where there are a number of constants to define, I have adopted the

practice of writing km, where the letter k indicates a constant and the subscript is a

letter that, hopefully, has some worth mnemonically.
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Part I

Functional Arrays





Chapter 1

Background for Functional Arrays

Programmers writing in traditional programming languages, such as C, have a significant

advantage over those writing in less traditional programming languages. As the longest-

standing programming paradigm, serial imperative programming has a legacy of algo-

rithms, data structures, and programming techniques, many of which do not transpose

well into the domains of other programming paradigms. In my master’s thesis (O’Neill,

), I investigated the problem of arrays in functional languages; in this doctoral disser-

tation, I continue that work, further developing my earlier techniques and investigating

techniques for parallel array use.

This chapter sets the context for the research that forms the first part of my dis-

sertation. It is based on the review written for my master’s thesis, with revisions and

elaborations covering advances in the field. A preliminary and abridged version of this

chapter has already been made available to the functional-programming community

(O’Neill & Burton, ) to provide timely access to my results.

1.1 Functional versus Imperative

Imperative and functional languages are fundamentally different—imperative style re-

lies on assignment, whereas functional style avoids it. Underlying assignment and the

imperative style is the idea that values reside in storage locations. When a value is

assigned to a storage location, any previous value at that location is overwritten by the


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new value: thus, assignment is also commonly called destructive update. Depending

on context, a variable in an imperative language either refers to a storage location (the

variable’s l-value) or to the value currently residing in that storage location (the variable’s

r-value). Since assignment can be performed more than once on each storage location,

with different values each time, a variable can have a different r-value at different points

in a program’s execution.

Functional languages, on the other hand, do not view programming in terms of stor-

age locations, but in terms of values. Values are manipulated directly and how their stor-

age is handled is implicit and incidental. Variables in a functional language differ from

their counterparts in imperative languages in that their role is purely denotational: The

lambda-bound or let-bound variables of functional languages simply denote a particular

value, albeit one that may be unknown until runtime.

Traditional imperative programming languages often blur the distinction between

storage locations and values, especially when it comes to aggregate structures such as

arrays, records and objects, so we will clarify the difference here: Values are immutable,

whereas storage locations tend to be seen as a chunks of computer memory that can be

modified as required. In almost all languages, functional and non-functional alike, it is

unreasonable to destructively change values themselves; an assignment such as “1 := 2”

is disallowed, since its semantics are unclear.¹ Similarly, since variables in functional

languages represent values, not storage locations, they cannot have their values altered.

Functional languages would not allow a definition such as “f(x) = (x := 2)” because

evaluating “f(3)” would be equivalent to evaluating “(3 := 2)”. Likewise, because func-

tional languages do not have aggregates of storage locations, only aggregates of values,

we cannot redefine or modify the components of a compound value—we can only create

new values, possibly derived from existing ones.

The differences between imperative and functional languages not only encourage

programmers to adopt different coding styles (see Figure 1.1), but also impose differences

in the data structures they use. To describe the ramifications of these differences, we will

use the terminologies of Schmidt () and Driscoll et al. ().

1. If assignments such as “1 := 2” were allowed, they would presumably have a deleterious effect on
arithmetic.
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procedure insert(item, headptr) =
var itemptr : list-pointer;
while not( isnull(headptrˆ.next) or headptrˆ.nextˆ.item > item) do

headptr := headptrˆ.next;
allocate(itemptr);
itemptrˆ.item := item;
itemptrˆ.next := headptrˆ.next;
headptrˆ.next := itemptr

(a) An imperative implementation of insert.

insert(item, list) = cons (item, list), if isempty list∨ first list > item
= cons (first list, insert(item,rest list)), otherwise

(b) A functional implementation of insert.

Figure 1.1: Comparing functional and imperative code.

Item Next3 Item Next5 Item Next8 Item Next9
List1 :

(a) The list is made up of storage locations whose values can be destructively
modified.

Item Next3 Item Next5 Item Next8 Item Next9
List2 :

First Rest7

List1 : ?????

(b) Typically, insertions into a list will be done destructively. Having per-
formed the update, we can no longer reference the old version of the list.
Because updates destroy prior versions of the list, we call this kind of data
structure ephemeral.

Figure 1.2: A linked list in an imperative language.
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First Rest3 First Rest5 First Rest8 First Rest9
List1 :

(a) The list is a value that can be decomposed into two components, the first
element and the rest of the list, both of which are, themselves, values.

First Rest3 First Rest5 First Rest8 First Rest9
List1 :

First Rest3 First Rest5
List2 : First Rest7

(b) Insertions cannot be performed destructively. Thus, in order to perform
the update, we must copy elements of the list until we reach the point where
the element is to be inserted. Notice that the old version of the list can still
be accessed; this property leads us to call the data structure persistent.

Figure 1.3: A linked list in a functional language.

In an imperative language, we typically perform destructive updates on data struc-

tures, modifying them as necessary. Figure 1.2 shows the implications of modifying data

structures destructively: updates to the data structure destroy the old version of the

data structure in creating the new. Driscoll et al. describe such mutable data structures

as ephemeral, expressing the transient nature of their contents. In contrast, data in

functional languages can only be revised by creating new values, not by destructively

modifying old ones. Figure 1.3 shows how a functional linked list uses path copying

(Sarnak & Tarjan, ) to create a new version of the linked list. Driscoll et al. describe

such immutable data structures as persistent.²

Schmidt terms algorithms that only refer to the most recent version of a data struc-

ture as single-threaded; those that do not are non-single-threaded. From these defini-

tions, it follows that single-threaded algorithms only require data structures that are

ephemeral, and that ephemeral data structures can only support single-threaded algo-

rithms. Functional programs can be non-single-threaded, but can also (and often do)

access their data single-threadedly.

Given that functional and imperative programming styles and data structures are

different, the obvious next question is: How well can we adopt one style while working

2. Driscoll also introduces the concept of partial persistence, in which the original version remains
readable after an update but cannot itself be updated. We will return to this concept in Section 2.1.



1.2. Integrating Imperative Structures into Functional Languages 

in the other? A typical algorithms textbook covers a plethora of imperative algorithms;

if these algorithms can easily be ported to a functional setting—and run efficiently!—

functional programmers may benefit from this arsenal of techniques.

The linked-list example above shows us that for some data structures, even though

the functional version may do more copying than its imperative counterpart, the asymp-

totic complexity can remain the same; additional costs can be small enough to be out-

weighed by the elegance, safety, and potential for non-single-threaded use present in the

functional solution. Most straightforward linked data structures, such as trees, heaps,

and so forth, are analogous to linked lists in this respect. However, not all imperative data

structures have obvious and pleasing functional analogues (e.g., arrays, double-linked

lists, and file-systems), which leads us to consider how to handle these more awkward

cases.

1.2 Integrating Imperative Structures into

Functional Languages

There are two ways to support imperative structures in a functional setting. The first is

to find a way to allow imperative features into the language, ideally without disrupting

the overall functional feel. The second is to find a way to turn the ephemeral structures

of imperative languages into persistent data structures suitable for use in functional

languages. These two methods are not necessarily mutually exclusive: A functional lan-

guage with imperative extensions can be very useful in implementing functional versions

of imperative data structures.

1.2.1 Providing Access to Imperative Features

One approach for integrating imperative features—such as destructive update—into func-

tional languages is to provide mechanisms that allow imperative constructs to be used

without violating the functional properties of the language. The three approaches we

will consider are monads, linear types, and direct access to imperative features.



 Chapter 1. Background for Functional Arrays

A criticism that applies to all three of these approaches is that support for imper-

ative programming techniques dilutes or eliminates the very properties that differenti-

ate functional programming from imperative programming. For example, functional-

programming style makes certain coding errors (such as the accidental overwriting of

data) much less likely; allowing imperative data structures or algorithms to be incorpo-

rated into functional code negates this advantage. If a language attempts to partition

imperative code from functional code, in an attempt to preserve the formal properties

of the functional component of the language, it is likely to create two universes for

programmers to work in—a functional universe and an imperative universe—with poor

integration between the two. For example, if a data structure is only available ephemer-

ally, it cannot be incorporated into ordinary functional data structures (because they are

persistent), and therefore cannot be used in non-single-threaded algorithms.

Monads

Monads (Wadler, a, ) are a very general encapsulation mechanism, with strong

mathematical foundations in category theory (Lambek & Scott, ; MacLane, ).³

From a software engineering perspective, monads are simply an abstract data type with

an interface that satisfies a particular set of algebraic laws. For our discussion, we are

mostly concerned with monads that “hide” state by cloaking it with a monadic veil that

completely controls all access to that state. A monad can ensure single-threaded ac-

cess to ephemeral state by making it impossible to specify any other access pattern.

(Monads are not the only means to accomplish this end—Paul Hudak (a; b) has

suggested continuation-based mutable abstract datatypes, which have a similar flavour

to the monadic datatypes we are discussing here.)

Haskell (Hudak et al., ; Peyton Jones et al., ), for example, uses monads ex-

tensively to model the file-system. Extensions to Haskell have been proposed to support

state threads (Launchbury & Peyton Jones, ), which provide single-threaded access

to mutable storage locations and mutable arrays.

3. In fact, the generality of monads may also be a weakness. Although monads are expected to satisfy
certain laws as to their behaviour, that behaviour can vary significantly from monad to monad, meaning
that programmers’ intuitions about how monads behave gleaned from working with one kind of monad
can mislead them when they deal with another kind.



1.2. Integrating Imperative Structures into Functional Languages 

Monads do allow pure functional languages to provide features that are usually found

only in “impure” languages, but they are not without their problems. Creating a com-

posite monadic operation to perform a particular algorithm can result in complicated-

looking and unintuitive expressions. Also, using more than one monad at a time can

be difficult (it remains an open research area). If separate monads are used to support

distinct language features (such as arrays, continuations, and IO) we may end up with

a situation where programmers cannot use two or more of these features at the same

time. This problem can be exacerbated by the fact that programmers can write their

own monads, (e.g., for error reporting or program profiling), increasing the likelihood of

needing to use multiple monads.

With careful design, many of these problems are not insurmountable. Language

syntax can make the construction of monadic expressions more palatable (as exem-

plified by the do-notation added to Haskell in the . revision of the language), and if

the various kinds of monads available are well designed and properly integrated, we can

eliminate some of the occasions when we might have had to ponder how to combine

two monads (Launchbury and Peyton Jones’s state-threads monad (), for example,

makes Haskell’s IO monad an instantiation of their state monad, thereby removing any

difficulties in combining the two).

Linear Types

Linear types (Wadler, b) (and also unique types (Achten et al., )) seem to be a very

promising solution to the problem of enforcing single-threadedness. If a data item has a

linear type, the type system statically ensures that at most one reference to it exists at any

time. If such a data item is passed into a function, the function can safely use destructive

update on that data because the function can be certain that no other references to that

data exist. Issues such as garbage collection also become greatly simplified, due to the

impossibility of there being multiple references to objects with linear type.

By using the type system to enforce the single-use property, this approach allows

single-threaded algorithms that use ephemeral data to look very much like ordinary

functional code, and represents a viable alternative to monads for allowing imperative

structures into a language safely. Concurrent Clean (Huitema & Plasmeijer, ) uses
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this approach to provide access to the file system and mutable arrays.

However, linear types are not a panacea. The single-use restriction can be quite

limiting when it comes to expressing algorithms, making porting imperative algorithms

(which inherently have no single-use restrictions) more complex than it might first appear.⁴

Giving In

A final possibility is for the language to abandon the requirement that it be purely func-

tional, allowing imperative storage locations and abandoning referential transparency

(Quine, ; Søndergaard & Sestoft, ). Such a language would usually retain a purely

functional sublanguage, in which programmers could choose to remain. Standard ML

(Milner et al., ) takes this approach.

This approach can be criticized on the grounds that imperative code can violate

referential transparency. Without the assurance of referential transparency, programs

become much harder to reason about (both formally and informally) and lose some

opportunities for aggressive optimization. This argument may lead us to prefer the

strong separation of functional and imperative data that occurs in both monads and

linear types.

But barriers between functional and imperative code can be a problem, preventing

functional programmers from using some valuable data structures. For example, exter-

nally functional self-adjusting data structures (e.g., a data structure that rearranges itself

on each read access to improve the performance of successive reads) cannot be written

using monads or linear types. Recognizing the value of carefully managed ventures

into the imperative world, compiler authors for purely functional languages sometimes

spurn their language’s definition to provide unsafe imperative features when absolutely

necessary (e.g., both GHC and Hugs provide unsafePerformIO as a means to escape the

usual constraints of Haskell’s IO monad (Peyton Jones et al., )). Programmers are

responsible for ensuring that their code cannot lead to visible violations of referential

transparency if they choose to use these language extensions.

4. In general, we might have to resort to passing an additional argument representing the memory of
the imperative program into and out of every function.
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Moreover, allowing easy access to imperative features allows experienced program-

mers to write code as they see fit, without being cast out of Eden for occasionally nibbling

on the imperative apple. Whether this property is really an advantage or not is likely to

remain a topic of lively debate.

1.2.2 Wrapping Imperative Data So That It Appears

Functional

We have seen that one approach to incorporating imperative data into functional lan-

guages is to provide direct or indirect access to imperative features. The alternative is

to find a way to make an ephemeral imperative data structure appear to be a persistent

functional data structure. Many of the schemes that follow this second strategy permit

persistent (non-single-threaded) use of the formerly-ephemeral data structure, but do

not make such usage patterns efficient—they expect the data structure to actually be

used single-threadedly.

Update Analysis

Update analysis (Bloss, ; Hudak & Bloss, )—sometimes called sharing analysis

(Jones & Le Métayer, )—provides a compiler with knowledge of when it may avoid

allocating space for a new value and instead destructively modify an old value that has

just become unreferenced; in essence performing garbage collection at compile time

(Mohnen, ). These techniques use abstract interpretation (Cousot & Cousot, ,

) to work out the point at which a data item cannot possibly be referenced and can

safely be overwritten with new data. When update analysis discovers a single-threaded

access sequence, data structures can be updated in place, rather than needing to be

copied.

A problem with this approach is that, for an arbitrary functional program, the task of

statically determining whether a data structure is used single-threadedly is undecidable.

So the determination of single-threadedness is conservative, erring on the side of caution

and flagging some programs that will actually execute single-threadedly as non-single-

threaded. Unfortunately, it may not always be obvious to the programmer whether or



 Chapter 1. Background for Functional Arrays

not update analysis will flag their code as suitable for destructive update or not. A small

local change can have far-reaching and unexpected consequences on performance if it

upsets the analysis.

There are also some difficulties with abstract interpretation in general. For example,

abstract interpretation may not operate well under separate compilation (it may not

be clear, for instance, whether an external function will keep a reference to one of its

arguments).

Some of the variability of update analysis can be eliminated by merging its static

checks with the runtime checks of single-bit reference counting (Wise & Friedman, ;

Stoye et al., ). This technique can catch a few more occasions when destructive

update can used safely, but adding this technique may not catch all opportunities for

destructive update.

Although update analysis can and should be used to improve the performance of

functional languages generally—allowing destructive update where it can be used invisibly—

it does not address the issue of what to do if an ephemeral data structure is used persis-

tently. The implicit answer is to make a copy, but this approach far from ideal, because

copying the whole data structure could be extraordinarily expensive. Thus, update anal-

ysis is best used in the background, supporting other techniques, rather than as the sole

solution to the problem.

Change Histories

An oft re-invented technique to make an ephemeral data structure persistent is to use

change histories (Overmars, ; Baker Jr., ). The idea is simple: Change the impera-

tive data structure, keeping a log of the information necessary to undo that change. We

thereby have one “in use” copy of the ephemeral data structure, and “rollback logs” that

can be used to transform it into any previous version. In this way, we use destructive

update on the most recent version of the data structure, but if the program references

an older version, we undo the changes (while creating a new log that can be used to redo

those changes), consider the rolled-back data structure to be the “in use” version, and

then access it.
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421 3 1515 37 29Arrayarray1 :

(a) An initial array, array1.

421 3 1215 37 29

Cell To3 15 Next

Array

Change

array2 :

array1 :

(b) The same array after updat-
ing array1[3] to hold the value 12;
array2 becomes the current array,
but we can still access array1 be-
cause a chain of changes is main-
tained from it to the current ar-
ray.

Change Cell To3 12 Nextarray2 :

421 3 1515 37 29Arrayarray1 :

(c) If array1 is subsequently ac-
cessed, it is made the current
array and the change list is in-
verted so that it records the
changes required to recreate ar-
ray2 from array1.

Change Cell To3 12 Next
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array2' :

(d) Finally, we see what happens
if we create another array, array2′,
by modifying array1 again. This
time we have altered the second
element to hold 84. array2′ is now
current.

Figure 1.4: Understanding trailers.

This technique has frequently been applied to arrays (Aasa et al., ; Baker Jr., ),

where it has been called trailers or version arrays, sometimes with some slight variations

(Chuang, , ). We will discuss the application of change histories to arrays in

Section 1.3.4.

Figure 1.4 shows the change-histories technique applied to arrays. Multiple functional-

array versions link to a single ephemeral array. The “current” array version links di-

rectly to the ephemeral array; other versions are linked to the ephemeral array through

difference lists that indicate how those versions differ from the current array version.

Whenever a particular array version is accessed, the usual first step is to rearrange the

data structure so that the desired version becomes the one that uses the internal array,
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adjusting and creating trailers for other versions as necessary.⁵ Figure 1.4(c) shows how

a subsequent read access to array1 makes it the current array.

The advantage of this approach is that it is simple and can be very widely applied,

suiting any data structure that can allow changes to be undone. Change histories only

add modest overhead (constant time and space) to imperative structures they encapsu-

late, provided that the “functional” data structure they provide is used single-threadedly.

Non-single-threaded access can be costly, however, because a long change list may have

to be traversed to construct the desired version of the data structure. In fact, for all

techniques based on this method that are discussed in this dissertation (i.e., all the

techniques I am aware of), there are pathological non-single-threaded access sequences

that exact huge time or space penalties (see Section 1.3.4 for some examples).

Linked Data Structures

Driscoll et al. () describe general techniques that can transform any ephemeral linked

data structure into a persistent one. Unfortunately, their most impressive results were

reserved for linked data structures of bounded in-degree, and the in-degree of a data

structure cannot, in general, be guaranteed to be bounded in a functional context. Their

techniques and terminology set the stage for research into persistence, however, and

form the inspiration for some of my work.

The fat-node approach suggested by Driscoll et al. avoids storing changes for the data

structure as a whole, and instead stores changes at the level of the data structure’s link

nodes. A fat node stores different values for different versions of the data structure.

Getting Specific

It is no surprise that there is no general technique that can simply and elegantly turn

an arbitrary ephemeral structure into an efficient persistent one. As a result, researchers

and practitioners have attempted to create efficient functional equivalents of particular

imperative data structures.

5. Not all implementations of trailers always rearrange the data structure so that the array being ac-
cessed becomes the “current” array for every access. In general, knowing whether to make an array version
“current” for a particular access requires knowledge of the array’s future access patterns, information that
is rarely available or determinable.
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Examples of this approach can be seen in functional implementations of queues

(Gries, ; Hood & Melville, ; Burton, ), priority queues (Brodal & Okasaki,

), double-ended queues (Hood, ; Hoogerwoord, b; Chuang & Goldberg, ;

Okasaki, , ), binomial queues (King, ), sorted lists (Kaplan & Tarjan, ),

and so on. Excellent reviews of progress in this area can be found in Graeme E. Moss’s

PhD qualifying dissertation () and Chris Okasaki’s PhD dissertation (). The

latter contributes many new functional data structures, as well as some important tech-

niques for analysing and implementing such data structures.

In this dissertation, we are particularly interested in how functional arrays may be

implemented. Existing approaches to this problem are the focus of the next section.

1.3 Specific Techniques for Functional Arrays

Arrays are the quintessential imperative data structure. An imperative array is an in-

dexed collection of storage locations, usually occupying a contiguous area of computer

memory. Although the collection of locations can be considered as a whole, the process

of array subscripting singles out one array element to be read or destructively updated

like any other storage location.

Arrays provide a very low-level abstraction that corresponds very closely to the be-

haviour of a random-access machine—in fact, because of an array’s ability to simulate

computer memory, virtually any data structure may be represented inside an array. This

property makes arrays possibly the most difficult imperative data structure to re-engineer

to be functional.

A functional array must be persistent: The update of a single element must generate

a new array, and leave the old version accessible, holding the same values it held before

the update. A naïve implementation of these semantics would make a copy of the whole

array at every update. Copying an entire array of arbitrary size at every update seems

extravagant and inefficient.

There are two techniques for providing efficient update for functional arrays that can

be used in combination. The first is to restrict access so that array operations are done

en masse—if we have enough updates to do at once (i.e., Θ(n), where n is the size of the
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array), the cost of copying the array can be amortized over the update sequence. The

second is to have a data structure that provides the same operations as arrays but is

not a conventional imperative array internally, instead having some more complex data

structure that can avoid performing an expensive copy operation for each array update.

1.3.1 Monolithic Approaches

The monolithic approach to array operations does not try to find ways of performing

small operations on arrays efficiently; instead it provides operations that act at the level

of of the array as a whole. A very simple monolithic array operation would be

arraymap : (α→ β, array(α))→ array(β).

This operation takes a transformation function and an array as its arguments and re-

turns a new array created by applying that function to every element of the array. The

arraymap function may freely copy the array because the Θ(n) cost of copying the array

is matched by the Ω(n) cost of applying the transformation function to every element.

Usually, we want to perform more complex operations on the entire array, and thus most

monolithic approaches use a special syntax to denote monolithic array operations.

Having a separate syntax obviously adds complexity, not only for programmers, but

also for the language, which may have to perform some checks on the correctness of the

operation specified. Monolithic specification does have some useful properties, however,

being better suited to supporting parallelism in array access.

Haskell (Hudak et al., ) does not provide a special syntax for monolithic array

access, but its array-access functions are designed to process groups of updates at once.

In current implementations these mass-update operations have O(n+u) cost, wheren is

the size of the array and u is the number of updates performed together. Although some

algorithms can use this technique efficiently—by collecting groups of O(n) updates and

performing them en masse—others cannot.

A general problem with the monolithic approach is that unless update analysis (Bloss,

) is employed by the compiler, the technique cannot even offer good performance
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size : array-op (α, int)

read : int → array-op (α, α)

update : (int, α)→ array-op (α, ε)

return : β → array-op (α, β)

(a) The functions above provide monadic operations for arrays. An
array-op (α, β) is an operation that can be performed on an array whose ele-
ments are of type α, with the result of the operation being of type β. When no
result is returned, we use the null type ε.

compose : (array-op (α, β), β → array-op (α, γ))→ array-op (α, γ)

execute : (int, int → α, array-op (α, β))→ β

(b) These functions allow monadic operations to be combined and executed.
Composing array operations is vital to creating array-based algorithms, because
the execute function takes a single array operation, creates an array, applies the
operation, and returns the result of the operation while discarding the array that
was used.

Figure 1.5: An example monadic interface for arrays.

for common single-threaded algorithms from the imperative world, because not all algo-

rithms can be cast into a monolithic-access framework.

1.3.2 Monadic Arrays

In the case of arrays, a monad can be used to bring traditional imperative arrays into a

functional language, allowing us to enforce single-threaded access to arrays and thereby

not violate the properties of functional programming languages. A monad can refer to

an imperative array implicitly (i.e., the array itself cannot be captured as a value), and

can restrict operations that can be performed on the array and the ways in which those

operations can be combined. An array monad is an abstract data type that encapsulates

an operation on an array, not the array itself. An array operation⁶ has a parametric type;

6. The term array operation is used here as a synonym for array monad. I believe the term “array
operation” makes the text accessible to a wider audience. To the uninitiated, monads may seem to be an
esoteric concept.
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the type parameters are the type of the array elements and the type of the result from

the operation (e.g., the type of size is array-op (α, int) because it operates on arrays of

arbitrary type, α, and the result of the operation—the size of the array—is an integer).

Figure 1.5 defines a possible interface for a monadic implementation of an array.

Figure 1.5(a) shows the core operations for arrays. These operations are of no use by

themselves; they only become useful when combined and executed with the functions

in Figure 1.5(b). The compose function allows array algorithms to be constructed (and

embodied in the form of a compound array operation) from our primitive array opera-

tions. The execute function executes an array operation (its other arguments are the size

of the array to create and a function to provide initial values for the array elements). The

execute function does not take an array as an argument, but instead creates a transient

array to which a supplied array operation is applied. This transient array exists only

during the execution of the execute function; the array itself cannot be captured and

returned by the operation being executed because none of the core array operations

provide such a feature.

The compose function is essential for specifying array algorithms as array operations.

The compose function takes two arguments: an array operation, o, and a function f

that returns an array operation. compose returns a new array operation c that, when

executed, will perform the array operation o, producing a result, r, and then execute the

operation returned by f(r). The resulting array operation c, can then be executed or

passed back into compose to create a more complex composite array operation. This

mechanism allows us to pass information along a chain of operations and thus allows

us to specify useful algorithms. Figure 1.6 compares a simple monad-based algorithm

implementation with a more conventional implementation of the same algorithm.⁷

Algorithms that involve more than one array (e.g., an algorithm that merges the con-

tents of two arrays) cannot be implemented without specific support from the array data

type (such as a two-array monad). Also, because the array is always handled implicitly,

it may not be embedded within any other data structures; this limitation also prevents

7. In recent versions of Haskell, the ugliness of specifying monadic array algorithms has been sig-
nificantly mitigated by the introduction of do-notation. However, in our discussion we are concerned
with understanding how monadic arrays actually operate, and thus this syntactic sugar would only add
obfuscation.
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max = compose size init
where

init arraysize = compose (read last) (loop1 last)
where

last = arraysize - 1
loop1 pos best = return best, if pos = 0

= compose (read prev) (loop2 prev best), otherwise
where

prev = pos - 1
loop2 pos best this = loop1 pos this, if this > best

= loop1 pos best, otherwise

(a) A monad-based implementation of max.

max array = loop last (read array last)
where

last = (size array) - 1
loop pos best = best, if pos = 0

= loop prev this, if this > best
= loop prev best, otherwise

where
this = read array pos
prev = pos - 1

(b) A more traditional implementation of max.

Figure 1.6: Two implementations of max, written in a Haskell-like language. The first
implementation uses monadic array operations, the latter uses a more traditional array
interface. Both implementations follow the same algorithm: first finding the size of the
array, then working from back to front, keeping track of the largest value found so far.
The implementations are a little more wordy than necessary to facilitate the comparison
of the two approaches.
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multidimensional arrays, since arrays of arrays are not possible unless they are explicitly

supported in the monad.

1.3.3 Trees and Tries

One of the most commonly used techniques to provide functional arrays is to use a

balanced binary tree with integer keys (Myers, ), or a tree where the bit pattern of the

array index is used to determine the position of the element in the tree (Hoogerwoord,

a). Trees are conceptually simple, and can be implemented in almost any functional

language, making them a popular choice when programmers need arrays and have to im-

plement them themselves. In languages such as Miranda (Turner, ), which lack both

arrays and the facility to extend the runtime environment to provide new functions that

use imperative features internally, tree-based arrays become the only practical choice.⁸

Figure 1.7(a) shows an example of Hoogerwoord’s approach; Figure 1.7(b) shows how

the data structure is affected by an array-update operation. In general, it is possible to

use k-ary trees instead of binary trees; for a k-ary tree representing an array of size n, the

tree will have branch nodes of size k and a height of logk n. As k increases, reads become

cheaper (because the height of the tree diminishes) and updates become more expensive

(because logk n branch nodes of size kmust be replaced for every update operation).⁹ In

the limit, when k = n, we have the naïve array-copying approach.

Okasaki () observes that we can choose k based on n (rather than making it a

constant), and advocates a choice of k = 2
√

log n. As we would expect, this technique

offers improved performance for reads, but imposes a greater time and space penalty for

writes over traditional binary trees.

The problem with using trees as an array representation is that read operations re-

quire O(logk n) time and update operations require O(k logk n) time and space (where

n and k are as defined above). However, if the arrays are small or sparse, the overheads of

8. Another common choice is to use an association list (or just a plain list) to simulate arrays.
Representing arrays as lists is computationally inefficient, requiring O(n) time for element read and O(n)
time and space for element update, where n is the size of the array. The only redeeming feature of list-
based arrays is that they can typically be implemented in only a couple of lines of code.

9. For very small k, increasing k may reduce the time and space costs of updates. For example, k = 3
and k = 4 may offer better performance than k = 2 (Tarjan, ).



1.3. Specific Techniques for Functional Arrays 

1

2 3

4 5 6 946229

37 15

49array1:

7 94

(a) An initial array, array1.

1

2 3

4 5 6

1

3

946229

37 15

49

49

15array1:

array2:

7 94

7 52

(b) The same array after updating array1[7] to hold a value of 52; notice how array2 shares much
of the tree structure of array1.

Figure 1.7: Understanding the tree-based array representation.

tree-based arrays make them a practical and simple data structure, especially if they are

used single-threadedly.

1.3.4 Trailer Arrays

Sören Holmström (), Lars-Henrik Eriksson & Manny Rayner (), John Hughes

(), and Annika Aasa et al. () have proposed a technique called version-tree arrays

or trailer arrays. The technique, which is, in fact, a rebirth of Henry Baker’s shallow-

binding method (; ), provides excellent performance for single-threaded algo-

rithms. The performance of trailer arrays for non-single-threaded access is less satisfac-

tory, however. When used as a persistent data structure, its performance can be arbi-

trarily bad, taking time proportional to the number of updates between the old version

being accessed and the most recent version.
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Tyng-Ruey Chuang () extended the version-tree–array technique to provide peri-

odic “cuts” to the version tree, ensuring that reads of any array element cost at most O(n),

where n is the size of the array, in the fully persistent case, while continuing to provide

O(1) performance for single-threaded algorithms. Chuang’s method also provides an

operation to perform r reads in O(r) amortized time, provided that r ∈ Ω(n). These

voluminous reads are further restricted to versions that form a linear path in the version

tree. Chuang states that this voluminous-read operation may prove useful in practice

for some non-single-threaded algorithms, but the technique nevertheless suffers from

an unfortunate O(n) worst-case performance.

Chuang later developed an alternative method for providing cuts to the version-tree

array based on randomization (): Instead of making cuts to ensure that reads of any

array element take at most O(n) steps, cuts are performed with a probability of 1/n (per

step) during read operations. This method has an expected–worst-case performance

of O(r + nu) for u updates and r reads of an initial array of size n, which we can

restate as an expected amortized performance of O(nu/(r + u)) per access.¹⁰ Chuang

proves that in many cases the expected performance of his technique is within a factor

of two from optimal for any strategy involving cuts to a version-tree array. Chuang does

not consider the theoretical space overheads of his algorithm, but it appears that the

expected amortized space requirements are O(1) space per element read, until the array

versions take O(nu) space in total; in other words, the upper bound on space is the

same as the upper bound for naïvely copying the array at every update. This result

contrasts sharply with other array techniques, which almost universally require no space

consumption for element reads.

1.3.5 Fat Elements

Prior to Tyng-Ruey Chuang’s work, Paul Dietz () presented, in extended abstract

form, a technique that supports fully persistent arrays in O(log log n) expected amor-

tized time for read and update, and constant space per update. Dietz’s technique is, how-

10. One way to produce this worst-case behaviour is to choose r and u such that r > u/p, where p is
the probability of array copies (e.g., p = 1/n), and then proceed as follows: After each update, read the
newly created array �1/p� times, resulting in an (expected) array copy, requiring Θ(n) work.
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ever, particularly complex, and appears to have never been successfully implemented. It

seems unlikely that Dietz’s technique could be implemented without a large constant-

factor overhead, making it more interesting in theory than useful in practice. Dietz’s

work in this area seems to have been largely overlooked by those working in this field

(Baker Jr., ; Chuang, ), perhaps because the method was never published as a

complete paper. Dietz’s technique is interesting, however, because in its early stages it is

broadly similar to my own prior and current work on functional arrays (O’Neill, )—

both my work and his are inspired by the work of James Driscoll and colleagues on

persistent data structures (). However, beyond the common inspiration of Driscoll’s

work, my work and Dietz’s differ significantly.

Even more overlooked than Dietz’s work is that of Shimon Cohen (), which was

ignored in all papers I have discussed except for Okasaki (Okasaki & Kc, ). Cohen’s

method is similar to both my fat-elements method and Dietz’s method, being based on

the idea of storing changes at the element level rather than the array level, and using

a version counter. Cohen’s method is less sophisticated than either Dietz’s or my own,

however, and claims¹¹ a worst-case performance for reads of O(ue), where ue is the

number of updates performed on element e (although the method does achieve updates

in O(1) time).

Functional arrays using the fat-elements method were also the subject of my master’s

thesis (O’Neill, ). Like the techniques of Dietz and Cohen, my earlier technique

required only constant space per element update, and supported single-threaded array

access in constant amortized time. Non-single-threaded reads and updates required

O(log ue) amortized time, where ue is the number of updates performed on element e.

Chapters 2 and 3 of this dissertation, show how enhancements to my earlier algorithm

can improve this bound.

11. From my understanding, of Cohen’s work his result only holds for partially persistent updates—a
pathological fully persistent update sequence can actually cause accesses to take O(u) time, where u is
the total number of updates made to the array.





Chapter 2

The Fat-Elements Method for

Functional Arrays

In the previous chapter, we saw that prior attempts at functional arrays have had prob-

lems with poor worst-case performance, poor space-per-update, or poor performance

for the most common uses of arrays. In this chapter, we will discuss the fat-elements

method, a new method for functional arrays that avoids these weaknesses.

I first discussed the concept of arrays based on a fat-elements technique in my mas-

ter’s thesis, so the ideas presented in the first part of this chapter are not new. In my

master’s thesis, I developed array and heap data structures and explored different options

for version stamping. Sections 2.1 and 2.2 restate the relevant portions of that earlier

work.¹ The new material in this chapter begins at Section 2.3, introducing array splitting

and its consequences.

The fat-elements method has broad similarities to the fat-node method for persistent

linked data structures of bounded in-degree, developed by Driscoll et al. (). Both

methods use a system of version stamps and record how data changes over time in a

localized way (in fat nodes for linked data structures and in fat elements for arrays). How-

ever, the fat-elements method is more than a naïve application of Driscoll’s techniques to

the functional-array problem. It uses innovative techniques to ensure good performance

for common algorithms and provide good worst-case behaviour.

1. Although the first two sections mostly describe my prior research, they were written as part of this
dissertation and allude to the work in later sections in order to provide a cohesive chapter.


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In the fat-elements method, each array version receives a unique version stamp, which

is used, along with fat elements, to store multiple array versions in a single master array.

A fat element maps version stamps to values, allowing it to return that element’s value for

any version of the array. The master array is simply an array of fat elements. To ensure

good performance, the master array never holds more than Θ(n) versions, where n is

the size of the array; the master array is broken into two independent master arrays as

necessary to preserve this condition.

2.1 Version Stamps

The master array stores several array versions, and so requires some form of tagging

mechanism so that data corresponding to a particular array version can be retrieved or

stored. These tags are known as version stamps. Version stamps are ordered such that

an update on some array version with version stamp xv creates a new array version with

version stamp yv where xv < yv .

If the most recent version of an array was the only version that could be updated

(a restriction known as partial persistence), issuing version stamps would be simple: a

simple integer counter would suffice. Although partial persistence would be sufficient

for some algorithms, it would not properly satisfy the needs of functional programmers,

because the array interface would not be referentially transparent and programmers

would need to ensure that their programs always “followed the rules”, only updating the

most recent version of the array.

Allowing any version of the array to be updated requires a more complex version-

stamping scheme. If x, y, and z are array versions, with version stamps xv , yv , and

zv , respectively; and both y and z are arrays derived from x though some sequence of

updates; it is clear from the rule given earlier that xv < yv , and xv < zv , but no ordering

is defined between yv and zv . So far, these requirements only dictate a partially ordered

version-stamping scheme.

A partially ordered version-stamping scheme would be problematic, however, be-

cause it would preclude the use of efficient data structures for storing data keyed by

version stamp.
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Imposing additional structure on version stamps allows them to follow a total order

rather than a partial order. The total ordering for version stamps is defined as follows: If

xv < yv and xv < zv , and yv was created before zv , then yv > zv . More formally, we can

state the rule as follows: Let V be the set of all currently existing version stamps and x

be an array version with version stamp xv . If we update x to form a new version, y, y will

be given a version stamp yv such that (xv < yv) ∧ ∀v ∈ V : (xv < v) ⇒ (yv < v). In

other words, yv is the least version greater than xv .

This version scheme corresponds to an existing and well-studied problem: the list-

order problem. The technique described above is equivalent to inserting an item into an

ordered list: yv is inserted into the ordered list of versions immediately after xv . A naïve

solution to the list-order problem is to maintain a linked list of ordered-list items, where

each item is tagged with a real number indicating its position in the list. In this scheme,

order comparisons between list items are “efficiently” achieved by comparing the tag

values; insertions are performed by finding a (possibly fractional) value for the tag of the

newly inserted list item that satisfies the ordering rule (a version inserted between two

other versions is given a tag that lies between the tags of its neighbours). A problem with

this simple ordered-list algorithm is that it requires arbitrary-precision real arithmetic,

which cannot be done in constant time. Practical solutions that take constant time

for insertion, deletion, successor and predecessor queries, and comparisons do exist,

however (Dietz & Sleator, ; Tsakalidis, ). A description of Dietz and Sleator’s

constant–amortized-time ordered-list algorithm is included in Appendix D.

Although the naïve ordered-list scheme has efficiency problems that make it unsuit-

able for a fast and robust implementation of version stamps, it does have some value in

its simplicity: It is useful for describing the concepts of the fat-elements method without

being burdened with the details of particular efficient ordered-list algorithms. In the

discussion that follows, I will write specific version stamps as vtag , where tag is a real

number following the naïve scheme. Figure 2.1 provides an example of version stamping

using the naïve ordered-list scheme, showing how our version-stamping rules coerce the

natural partial order of array versions into a total order.

Figure 2.1(b) also illustrates the concept of adjacent versions, to which we will refer

later. Put simply, two versions are adjacent if there is no other version between them.

It should be clear from the discussion above that in the case of partially persistent (or
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(b) The same version tree flattened to better show the imposed total
ordering.

Figure 2.1: Providing a total order for a version tree.

single-threaded) updates, versions that are adjacent at one time will always remain ad-

jacent, because any new versions will be added after all previous versions. With fully

persistent updates, versions that are adjacent at one time need not remain adjacent

because new versions may be inserted between them.

2.2 The Fat-Element Data Structure

As outlined earlier, a fat element is a data structure that provides a mapping from version

stamps to values. For our discussion, we will consider this mapping as a set of version-

stamp/value pairs. As we will see shortly, the fat-elements method actually uses a tree to

represent this mapping efficiently.

Array elements often hold the same value for several array versions, a property that

the fat-elements method uses to its advantage. The nature of array updates is that each
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(b) Here we show not only the actual
values stored in the fat element, but also
the inferred values (shown in grey).

Figure 2.2: Fat elements need not contain entries for every version stamp.

update operates on a single element of the array—all other elements remain unchanged.²

Fat elements exploit this property by storing only the entries for versions in which the

element’s value changes.

The values associated with versions not explicitly represented in a fat element is

inferred according to a simple rule: The value corresponding to some desired version

stamp, vd, is determined by finding the closest version stamp, vc, in the fat element F ;

where

vc = max{v | (v, x) ∈ F ∧ v ≤ vd}

and retrieving the value corresponding to that version stamp. In other words, vc is the

greatest version stamp less than or equal to vd. This technique is shown graphically in

Figure 2.2, which introduces the abstract diagrammatic notation for fat elements.

Since version stamps have a total order, we can use a relatively efficient data struc-

ture to provide the necessary insert and lookup operations, such as a height-balanced

mutable tree. Further, by using a splay tree (Sleator & Tarjan, ) instead of an ordinary

2. Although ordinary array update operations change only a single element, the fat-elements method
allows for greater difference between array versions—any of the array elements may be changed between
one version and the next (although if two versions have little in common, there is little reason to keep
them together, an issue we will address in the next section). Thus, the fat elements method is compatible
with batched updates that modify several elements of the array at once and with garbage collection of
unused array versions; we will discuss these topics in Chapters 5 and 4 respectively.
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Figure 2.3: Putting the pieces together.

balanced binary tree, we can gain the property that the most recently read or updated

version in a fat element is at the top of the tree, and can be accessed in O(1) time.

This property guarantees that accesses performed by single-threaded array algorithms

execute in O(1) time (because every read will be of the root of the tree, and every update

will make the new fat-element entry the root (and the previous root becomes its left child;

thus creating a tree with no right children)). Splay trees can also provide useful locality

for some non-single-threaded algorithms, while guaranteeing O(log e) amortized worst-

case performance, where e is the number of entries in the fat element.³ Later, we will

ensure that e ∈ O(n).

Putting fat elements together with the version-stamping system developed in Sec-

tion 2.1 gives us the basic data structure used for the fat-elements method. Figure 2.3

shows a fat-element array containing six array versions—the initial array version, array0,

was initialized with element values [19, 56, 12, 48], and then additional array versions

were created by updating the array as follows:

3. Variations of the splay-tree idea that minimize the amount of tree reorganization may also be used
to provide single-threaded algorithms with constant-time performance. All that is necessary is to “stack”
single-threaded tree updates so that they do not require O(log n) time to perform, and have the most
recent write at the top of the stack. If a non-single-threaded write is performed, the stack is processed
and the new additions properly integrated into the tree. Thus, much of the complexity that accompanies
splay trees can be eliminated, if desired.
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array1 = update(array0, 2, 135)

array2 = update(array1, 4, 40)

array3 = update(array2, 3, 27)

array4 = update(array3, 3, 23)

array5 = update(array4, 2, 96)

Note that the data structure holding the version list also provides a pointer to the master

array such that, given any entry in the version list, the master array can be found in

constant time and updated in, at most, O(v) time, where v is the number of versions.

There is, however, one flaw in the method that we must rectify before we move on.

It relates to fully persistent updates (updates done to array versions that have already

been updated at least once) and to an interaction between totally ordered version stamps

and the mechanism that fat-elements use to avoid storing redundant information. The

problem arises because fat elements need not contain entries for every version stamp—

in other words, they may contain “gaps”. If an update to an element causes a version-

stamp/value pair to be added where there is a gap, the values inferred for versions in that

gap may change when they should have remained the same. An example of this problem

is shown in the first two parts of Figure 2.4, where we see that adding elements into a

gap can change the value of any inferred entries that fall immediately after the added

fat-element entry.

Figure 2.4(c) shows how an element value can be inserted into a gap where element

values were previously inferred without upsetting any existing inferred element values.

In general, if we need to add an entry with version stamp vx to a fat element, and vx is

not the last version stamp in the version list, we need to check whether the value for vx’s

immediate successor in the version list, vy , is explicitly represented in the fat element, or

whether that value is merely inferred. If the value for vy is inferred, we must convert the

inferred entry into an explicit entry before inserting the entry for vx. Thus, representing

a new array version generated by an array update requires constant space, because at

most two fat element entries are added for each array update. An array update never

requires more than two fat-element entries (one for vy and one for vx), and much of the

time (when vx is the last array version, or when vy has an explicit entry in the fat element)

we will only need to add one entry (for vx).
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try), before inserting v1.5.

Figure 2.4: Potential difficulties in using linear version stamps.

We now have a working method for functional arrays. The fat-elements method,

as presented so far, allows constant time access to the most recently read or updated

value of an array element. In general, reading or updating an array element which has

been updated ue times takes O(log ue) amortized time.⁴ The next section explains how

splitting the array can prevent elements from becoming “too fat” and thereby improve

performance.

2.3 Breaking Up Is Easy to Do

The goal is now to improve the performance of the fat-elements method, especially its

worst-case performance. Section 2.2 described how each fat element is an ordered tree

of version-stamp/value pairs. If the size of these trees is unconstrained, performance will

degrade as the fat elements increase in size.

My strategy for achieving a better worst-case bound involves splitting the master

array into two independent master arrays whenever the fat elements grow too fat. In this

4. This time result can be made O(log ue) worst-case time if a balanced tree is used instead of a splay
tree, and a real-time version-stamping algorithm is used.
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refinement, master arrays may hold no more than O(n) versions, wheren is the size of the

array. More specifically, if c∗ is the number of fat-element entries in a master array, every

master array must satisfy the constraint c∗ ≤ (1 + kl)n, where kl is a positive constant.⁵

To preserve this constraint, we split each master array into two independent master

arrays when updates cause it to reach its “fatness limit”. Since it requires Θ(n) updates

to take a master array from half-full to full, we can amortize the cost of splitting an array

of size n over those updates (a full amortized-time analysis is presented in Section 3.1).

In order to know when to split the array, we need to maintain some additional house-

keeping information. Specifically, each version stamp now has an associated counter, ci,

holding the number of fat-element entries that are associated with that version. Each

master array has a counter, c∗, representing the total number of entries stored in the

master array. When it comes time to split the array, we perform the split such that entries

corresponding to all versions up to themth are placed in one master array, and all entries

from versionsm+ 1 onwards are put in another. m is an integer such that

m∑
i=1

ci ≤
c∗ + n

2
≥ n+

v∑
i=m+2

ci

holds; where n is the size of the array, v is the number of versions held by the master

array, c1, . . . , cv are the counters for each entry in the version list, and c∗ is their sum

(also note that c1 will always be equal to n). The left-hand and right-hand sums will be

the sizes of the two master arrays after the split—the right-hand sum is n +
∑v

i=m+2 ci

and not
∑v

i=m+1 ci because the first version in the second array will need entries for all

n elements, regardless of the number of entries it had before. If there is more than one

possible m, we choose the m such that c(m+1) is maximized, thus reducing the number

of fat-element entries that have to be added during the split.

5. The exact value of kl is a matter of choice—my own tests have shown that when reads and writes are
equally balanced, a value of approximately five is appropriate, with lower values improving performance
when reads outnumber updates.



 Chapter 2. The Fat-Elements Method for Functional Arrays

Another way to state the previous equation is to say that

L =

{
l

∣∣∣∣∣
l∑

i=1

ci ≤
c∗ + n

2

}

R =

{
r

∣∣∣∣∣ n+
v∑

i=r+2

ci ≤
c∗ + n

2

}

m ∈ (L ∩R)

Clearly, 1 ∈ L and v ∈ R; L forms a prefix of the sequence 1, . . . , v; R forms a suffix of

the same sequence. We can show that there is always at least one split point by showing

that L ∩ R �= ∅, which we will do by contradiction. Suppose that L ∩ R = ∅: Because

L is a prefix andR is suffix of 1, . . . , v, it must be the case that they do not “meet in the

middle”; that is,

∃m ∈ 2, . . . , v − 1 : (m /∈ L) ∧ (m /∈ R).

Thus, (
m∑

i=1

ci >
c∗ + n

2

)
∧
(
n+

v∑
i=m+2

ci >
c∗ + n

2

)

⇒
m∑

i=1

ci + n+
v∑

i=m+2

ci > c∗ + n

⇒c∗ − cm+1 + n > c∗ + n

which is a clear contradiction, because cm+1 is always positive.

This splitting technique sets an upper bound on the number of fat-element entries in

each of the two new master arrays resulting from the split of (c∗ + n)/2 (where c∗ refers

to the pre-split master array). An obvious lower bound on the number of entries is n.⁶

Since splitting only takes place when c∗ = (1 + kl)n, we can see that an upper bound on

the number of fat-element entries in each of the new master arrays is (2 + kl)n/2.

6. We could also manipulate the inequality above to yield a tighter lower bound of kln/2 when
kl ≥ 2. This lower bound does not appear to be useful, however: It is not required to show any of the
useful properties of the fat-elements method, and, furthermore, suffers from the drawback that it adds
restrictions to kl.
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We will conclude this chapter by showing that the time required for such a splitting

operation is O(n).

Lemma 2.1 Splitting the master array into two independent master arrays takes O(n)

worst-case time if splitting is done when c∗ = (1 + kl)n.

Proof

The steps involved in splitting the master array are:

. Allocate space for the second array, which requires O(n) time.

. Find the split point and break the version list into two separate lists at that point,

which, from the description above, takes O(v) time. Since v < c∗ and c∗ ∈ O(n),

a loose bound on the time taken to find the split point is O(n).

. Change one of the two version lists so that it points to the new master array, which

takes at most O(v) time (assuming that every version stamp must be modified to

effect the change), or, more loosely, O(n) time.

. Split all the fat elements, which takes O(n) time because splitting the splay tree for

an element i takes O(log ei) amortized time and at most O(ei) worst-case time;⁷

where ei is the number of entries stored in that fat element. For simplicity, we will

use the looser bound of O(ei) time to split. Thus, the time to split all the elements

is O(
∑n

i=1 ei) = O(c∗) = O(n). (Note that when we split a fat element we need to

ensure that it has an explicit entry for the version that is the split point, requiring

us to make an implicit entry into an explicit one if necessary.)

Since each of the steps is bounded by O(n), the whole splitting procedure is bounded by

O(n). �

An example of splitting a master array, with c∗ = 2n, is shown in Figure 2.5.

7. Some search-tree structures might require O(ei) time if they were used instead of splay trees,
although AVL trees (Myers, ) can be split in O(log ei) worst-case time.
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(b) If the master array receives another update, we need to split the array
before applying the update so that our invariants are preserved (i.e., c∗ ≤
(1 + kl)n). The midpoint m is 3; thus the first three versions form the first
array, and the remaining two form the second array.

Figure 2.5: Splitting a master array.



Chapter 3

Theoretical and Actual Performance

of the Fat-Elements Method

In this chapter, we will discuss the theoretical and actual performance of the fat-elements

method. Both topics are of interest because good asymptotic performance is necessary

for programs that process large arrays, but good constant-factor overheads are also re-

quired for the technique to be generally applicable.

3.1 Amortized Time Analysis

We shall examine the amortized time complexity of the fat-elements method using po-

tential functions (Tarjan, ). The idea is that each configuration of the data structure

is given a real number value called its potential (we may thus conceive of a function that

takes a data-structure configuration and returns this value). We may think of potential

as representing stored energy that can be used to compensate for expensive operations,

and thus define amortized work as

amortized time ≡ time taken + increase in potential

or, using symbols to represent the words above,

TA ≡ TR +∆Φ.


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We define the potential of a master array in terms of primitive potential φ defined as

φ = kΦ

(
c∗ −

(kl + 2)n

2

)

where n is the size of the array, c∗ is the total number of fat-element entries in the master

array, kΦ is a suitably chosen constant (see Lemma 3.2), and kl is the constant governing

the size of the master array (i.e., c∗ ≤ (1 + kl)n, as defined in Chapter 2). The potential

Φ of a master array is defined as

Φ = max (φ, 0) .

Since we will often be discussing changes in potential, it is worth noting that when

∆φ is positive, ∆Φ ≤ ∆φ; and that, since n is invariant, ∆φ = kΦ∆c∗ . Both of these

relationships are easily derived from the equations above.

Lemma 3.1 Splitting master array A at or before its maximum fullness (i.e., when c∗ ≤
(1 + kl)n ), using the algorithm from Section 2.3, produces two independent arraysA′ and

A′′, each with a primitive potential of at most zero, and hence potential of exactly zero.

Proof

The algorithm from Section 2.3 splits the master array A into two arrays, A′ and A′′.

Without loss of generality, consider the first of these. The splitting algorithm ensures

that c′∗ ≤ (c∗+n)/2, and, because c∗ ≤ (1+ kl)n, we know that c′∗ ≤ (kl +2)n/2. Thus

φ′ ≤ 0 and Φ′ = 0. �

Lemma 3.2 Splitting master arrayA at its maximum fullness (i.e., when c∗ = (1+kl)n)

takes zero amortized time, for a suitably chosen value of kΦ.

Proof

The actual time TR taken to perform the split has the boundTR ≤ ksn, for some ks (from

Lemma 2.1).

After the split, we have two arrays, neither of which can be larger than (c∗ + n)/2.

Recall from Lemma 3.1 that the potential of the two arrays produced in the split (Φ′ and
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Φ′′) is 0. Thus the net change in potential ∆Φ can be defined as

∆Φ = (Φ′ + Φ′′)− Φ

= 0− Φ

= −
(

kΦkln

2

)

since Φ = kΦkln/2 when c∗ = (1 + kl)n. Since the amortized time TA is defined as

TA = TR +∆Φ, it has the bound

TA ≤ ksn−
(

kΦkln

2

)

If we define kΦ such that kΦ ≥ 2ks/kl, we find that TA ≤ 0. �

Lemma 3.3 Adding an entry to fat element x takes at most ki log+
ex + kΦ amortized

time; where ex is the number of entries stored in fat element x, and ki is a constant of the

tree-insertion algorithm.

Proof

There are two cases to consider: one where splitting occurs, and one where splitting does

not occur.

Case : The master array is not full.

In this case the actual time taken to insert the entry will be the time taken to

perform an insertion in the tree used to represent fat elements. We will assume

that the tree insertion takes time bounded by ki log+
ex, where ki is a constant of

the tree-insertion algorithm. Both splay trees (Sleator & Tarjan, ) and balanced

binary trees satisfy this assumption.¹

Now let us consider the increase in potential from the insertion. As we noted

earlier, ∆Φ ≤ ∆φ and ∆φ = kΦ∆c∗ . In the case of inserting one element, ∆c∗ = 1,

and thus ∆Φ ≤ kΦ.

1. In the case of splay trees, the time bound is an amortized bound, but our amortization analysis
of the fat-elements method is independent of the amortization analysis for splay trees. The potential of
each splay tree has no effect on the potential of the master array that contains it.
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Therefore, the amortized time in this case is TA ≤ ki log+
ex + kΦ.

Case : The master array is full.

In this case, we need to split the array into two arrays before performing the in-

sertion, using the process outlined in Section 2.3. This takes zero amortized time

(Lemma 3.2).

After the split, we have two arrays, A′ and A′′, each with at most (c∗ + n)/2

fat-element entries. We will insert the new fat-element entry in just one of them.

Without loss of generality, we will call the array that receives the new fat-element

entryA′.

Inserting a new fat-element entry takes at most ki log+
e′x time, where e′x is the

size of the fat element in A′. Since e′x ≤ ex, we can also say that the time taken to

perform the insertion is bounded by ki log+
ex, and, as in the previous case, causes

a change in potential for that array of at most kΦ. The potential of A′′ remains the

same.

Thus, the amortized time TA ≤ ki log+
ex + kΦ. �

Lemma 3.4 Updating element x of an array version, takes at most 2(ki log+
ex + kΦ) +

kf amortized time; where ex is the number of entries stored in fat element e of the array

version’s master array, ki is a constant of the tree-insertion algorithm, and kf is the time

required to find the particular fat element x the master array.

Proof

This lemma trivially follows from Lemma 3.3, since in the worst case we may have to add

two fat-element entries for a single update (Section 2.2). �

Lemma 3.5 Updating any element of an array version takes O(log n) amortized time.

(Specifically, the update takes at most 2
(

ki log+
(kln+ 1) + kf + kΦ

)
amortized time.)

Proof

The maximum size of fat element ex in the master array is ex ≤ c∗−n+1 and c∗ has the

bound c∗ ≤ (1+kl)n. Thus, ex ≤ kln+1. Therefore this lemma follows from Lemma 3.4

�
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Lemma 3.6 Reading element i of an array version takes at most kr log+
ei amortized

time; where ei is the number of entries stored in fat element i of the array version’s master

array, kr is a constant of the tree-lookup algorithm, and kf is the time required to find the

particular fat element i the master array.

Proof

Finding the value for an element in a particular version of the array requires that we find

that fat-element entry associated with that version in the corresponding fat element of

the master array, which requires kf time. The fat element holds ei entries, and we assume

that our tree lookup algorithm takes at most kr log+
ei amortized time. This bound is the

total bound on the amortized time taken to perform the operation, because reading the

array does not change its potential �

Lemma 3.7 Reading any element of an array version takes at most O(log n) amortized

time. (Specifically, it takes at most kr log+
(kln + 1) + kf amortized time; where kr is a

constant of the tree-lookup algorithm.)

Proof

Analogous to Lemma 3.5. �

At this point, we have determined the asymptotic performance of the fat-elments

method for arbitrary access sequences, but we can show a tighter bound on performance

for an important common case. Usually, array algorithms do not single out one element

and access that element alone—it is quite common for array algorithms to access Θ(n)

elements of the array, and not access any element significantly more than other elements.

In this case—which I call accessing the array evenly (defined precisely below)—we can

obtain a tighter performance bound over the general case.

Lemma 3.8 When a sequence of read accesses occurs evenly across a master array,

those accesses require constant amortized time per access. The evenness condition is

defined as follows: If element i of the master array is accessed ai times, for a total of a∗
accesses across the entire array (thus, a∗ =

∑n
i=1 ai ), the array accesses occur such that

∀i ∈ {1, . . . , n} : ai ≤
kaa∗
n
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where n is the size of the array and ka is a constant. (Specifically, the amortized time

required per access is at most kr log+
(ka(1+ kl)), where kr is a constant of the tree-lookup

algorithm—see Lemma 3.6.)

Proof

We will consider a master array where each fat element corresponding to array element

i contains ei entries (note that
∑n

i=1 ei =
∑v

i=1 ci = c∗).

For this analysis, we do not need to use potential functions. The amortized time per

access can be defined as

amortized time =
time for a∗ accesses

a∗

≤ 1

a∗

n∑
i=1

(
ai

(
kr log+

ei + kf

))

= kr

n∑
i=1

(
ai

a∗
log

+
ei

)
+ kf

Since log
+

is a convex function, we can use Jensen’s inequality (described in most texts

on convex functions (e.g., Pecaric et al., )):

n∑
i=1

(
ai

a∗
log

+
ei

)
≤ log

+

(
n∑

i=1

(
ai

a∗
ei

))

Given the condition that the array is accessed evenly, we can now say

amortized time ≤ kr log+

(
n∑

i=1

((
kaa∗

n

)
a∗

ei

))
+ kf

= kr log+

(
ka

n

n∑
i=1

ei

)
+ kf

= kr log+

(
ka

n
c∗

)
+ kf
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But c∗ ≤ (1 + kl)n; therefore,

amortized time ≤ kr log+

(
ka(1 + kl)

)
+ kf �

Notice that the conditions of the above lemma do not require all the elements to be

accessed; some fraction of the elements may be ignored completely.

Lemma 3.9 The number of updates u required to take an initial array to the point where

it needs to be split is Θ(n). (Specifically, (kln+ 1)/2 ≤ u ≤ kln.)

Proof

Initially, the number of fat-element entries c∗ is n. At the point when the array is split

c∗ = (1 + kl)n. Therefore, kln fat-element entries must have been added. In the upper-

bound case, every update adds exactly one fat-element entry, meaning that u ≤ kln. In

the lower-bound case, every update except the first adds two fat-element entries; thus

2(u− 1) + 1 ≥ kln, which simplifies to u ≥ (kln+ 1)/2 �

Lemma 3.10 The number of updates u required to take an array that has just been split

to the point where it needs to be split again is Θ(n). (Specifically, kln/4 ≤ u ≤ kln.)

Proof

An array that has just been split will containn ≤ c∗ ≤ (2+kl)n/2 entries, but at moment

the array is split, c∗ = (1+kl)n; thus an array produced by splitting could have as few asn

fat-element entries or as many as (2+ kl)n/2 entries (see Section 2.3 for a more detailed

discussion of these bounds). We have already considered the first case in Lemma 3.9;

therefore, u ≤ kln. For the second case (the worst case for splitting), the array resulting

from the split contains (2 + kl)n/2 fat-element entries and thus only kln/2 fat-element

entries may be added to such an array before it has (1 + kl)n fat-element entries and

needs to be split again. In the worst case for updates, every update adds two fat-element

entries. Thus, 2u ≥ kln/2 or u ≥ kln/4. �

Lemma 3.11 If an initial array receives Θ(n) updates (with the updates being made to

any array in the version tree stemming from that initial array), the updates will create Θ(1)

master arrays.
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Proof

Trivially from Lemma 3.9 and Lemma 3.10. �

Lemma 3.12 When a sequence of read accesses occurs evenly across m master arrays,

those accesses require O(logm) amortized time per access. The evenness condition is

defined as follows: If element i of master array j is accessed ai,j times, for a total of a∗∗
accesses across all m master arrays (thus, a∗∗ =

∑m
j=1

∑n
i=1 ai,j), the array accesses

occur such that

∀i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} : ai,j ≤
kaa∗∗
n

where n is the size of the array and ka is a constant. (Specifically, the amortized time

required per access is bounded by kr log+
(ka(1 + kl)m) + kf , where kr is a constant of the

tree-lookup algorithm—see Lemma 3.6.)

Proof

This proof is analogous to that of Lemma 3.8, except that there are multiple master

arrays. We will consider a collection of master arrays where each fat element corre-

sponding to array element i of master array j contains ei,j entries, with e∗∗ defined as

e∗∗ =
∑m

j=1

∑n
i=1 ei,j .

The amortized time per access can be defined as

amortized time =
time for a∗∗ accesses

a∗∗

≤ 1

a∗∗

m∑
j=1

n∑
i=1

(
ai,j

(
kr log+

ei,j + kf

))

= kr

m∑
j=1

n∑
i=1

(
ai,j

a∗∗
log

+
ei,j

)
+ kf

≤ kr log+

(
m∑

j=1

n∑
i=1

(
ai,j

a∗∗
ei,j

))
+ kf
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Given the condition that the master arrays are accessed evenly, we can now say

amortized time ≤ kr log+

(
m∑

j=1

n∑
i=1

((
kaa∗∗

n

)
a∗∗

ei,j

))
+ kf

= kr log+

(
ka

n

m∑
j=1

n∑
i=1

ei,j

)
+ kf

= kr log+

(
ka

n
e∗∗

)
+ kf

But e∗∗ ≤ m
(
(1 + kl)n

)
; therefore,

amortized time ≤ kr log+

(
ka(1 + kl)m

)
+ kf �

Corollary 3.13 A collection of read accesses across a set of versions created from an ini-

tial array version by O(n) updates, in which the set of versions is accessed evenly, requires

O(1) amortized time per access.

Proof

From Lemma 3.11, the O(n) versions created by the updates will reside in a constant

number of master arrays. Hence this corollary follows from Lemma 3.12. �

Corollary 3.14 A collection of arbitrary read or update accesses, across a set of versions

created from an initial array version by O(n) updates, in which the set of versions is

accessed evenly, and no more than O(n) updates are made, takes O(1) amortized time

per access.

Proof

This corollary is analogous to Lemma 3.12 and Corollary 3.13, except that splits may

occur because we allow updates. The O(n) updates can only cause a constant number of

splits (from Lemma 3.11), meaning that there is a constant upper bound on the number

of master arrays. This constant bound on the number of master arrays and, thus, O(n)

bound on the total number of fat-element entries allows us to generalize Corollary 3.13

to cover updates as well as reads in this case. �
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Thus, the fat-elements method offers constant amortized-time performance when

array versions are accessed evenly or single-threadedly—even when arrays are not used

in these patterns, the fat-elements method provides a quite reasonable O(log n) worst-

case amortized performance.

3.2 Real-World Performance

In the previous section we showed that the fat-element method has solid theoretical

properties. Whether a data structure is useful, however, depends not only on its the-

oretical complexity but on the constant-factor overheads involved in using that data

structure in the real world and how they compare to those of other data structures that

can be used for the same purposes. In this section we will briefly examine how a Standard

ML implementation of the fat-elements method fared against ML implementations of

competing techniques.

Our goal is not to try to deduce the asymptotic complexity of the fat-elements method

from experimental results—we have already found these results in the preceding section.

In fact, to try to make such inferences would be difficult, because experimental results

often have small anomalies resulting from the complex interactions found on a modern

computer system with processor caches, virtual memory, and overheads from running a

large language such as ML. These anomalies, however, affect neither the deductions we

can make about usability, nor the fundamental properties of the algorithms involved.

The discussion that follows compares the performance of the fat-elements method

against that of an implementation of functional arrays using binary trees and an imple-

mentation using the trailers technique. The tree-based array implementation was based

on the code given in ML for the Working Programmer (Paulson, ), which was inspired

by the work of Hoogerwoord (a). The trailer-array implementation was based on

that of Annika Aasa, et al. ().

There appear to be no popular benchmarks for functional arrays (unlike impera-

tive arrays, which are the basis of many benchmarks for imperative languages). The

benchmarks we will discuss below were originally developed to test the functional-array

techniques I presented in my Masters thesis (). The benchmark programs are simple,

designed to highlight the important properties of functional arrays. The first benchmark
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uses an array as a fully persistent structure. The second benchmark uses an array as an

ephemeral data structure, accessing data single-threadedly. The third uses an array as a

partially persistent structure. (See Appendix H for details on obtaining source code for

these benchmarks). The benchmarks were run using Standard ML of New Jersey (version

..) on a Sun Enterprise , with  mb of memory running Solaris 8. Benchmarks

involving the fat-elements method had the array-splitting parameter kl = 5.

The first benchmark creates v different versions of an array of size n, with each ver-

sion depending on three randomly selected prior versions of the array. The benchmark

repeatedly updates a random element of a randomly selected array version with the sum

of random elements of two other randomly selected array versions. Figure 3.1 shows the

results of this test.

Figure 3.1(a) shows how the performance of each of the functional-array techniques

varies as we increase both the number of different versions and the size of the array (with

n = v). Notice that although the fat-element method requires O(log n) amortized time

per access in the worst case, the random element accesses of this benchmark can be ex-

pected to cover the array evenly, resulting in O(1) amortized time per access. The graph

mostly echoes these expectations, but in any case, the benchmark using fat-elements

method executes faster than the benchmarks using competing techniques.

Figure 3.1(b) shows how the performance of each of the techniques varies as we

increase the number of array versions while holding the size of the array constant (at 216

elements). From theory, we would expect the performance of binary trees to depend only

on the size of the array, and we would expect the time per access to stay constant. The

graph mostly fits these expectations, but shows some anomalous behaviour for small

arrays. From theory we might also expect the performance of fat elements to take a

constant time per iteration. However, although there is a constant upper bound, we see

that actual times increase as we increase versions until splitting begins, which is the

source of the discontinuity on the graph. After this discontinuity, the difference in speed

between the fat-elements method and trees appears to be small, and, for larger arrays,

trees will both take more time and require O(log n) space per update compared to the

constant space per update required for fat elements and trailers. These results suggest

that binary trees may be the most appropriate technique for the particular case of small

arrays with many versions.
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Figure 3.1: Results from the multiversion test.
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Figure 3.1(c) shows how the performance of each of the techniques varies as we

increase the size of the array while holding the number of versions constant (at 216).

Although theory would lead us to expect the performance of the fat-elements method to

be bounded by a constant, the results show varying times, and the overheads of splitting

cause it to yield lower performance than binary trees for small n (with seven splits for

n = 4096, three splits for 8192 and 12,288, and one split for 16,384, 20,480 and 24,576—

for large n no splitting is required). As array size increases, the speed of the fat-elements

method improves because the average number of fat-element entries per element dimin-

ishes as n increases. For n > 25,000, the fat-elments benchmarks runs faster than the

benchmarks for other techniques.

The remaining two benchmarks test the array data structures in simple ephemeral

and partially persistent usage. These benchmarks use the simple test of reversing an

array. The first benchmark (shown in Figure 3.2(a)) uses the standard imperative array-

reversal algorithm, swapping leftmost and rightmost elements and working inwards un-

til the entire array is reversed. The second (shown in Figure 3.2(b)) uses a partially per-

sistent method, performing updates from left to right, always reading from the original

array, but updating the most recently changed array.

Figure 3.2(a) shows that trailers significantly outperform both the fat-elements method

and binary trees for imperative algorithms. This result is not surprising, because trailers

are primarily designed to support imperative algorithms. These results also show that,

although the fat-elements method is not the fastest technique for this application, it

outperforms binary trees and fulfills our theoretical expectations of O(1) performance.

Figure 3.2(b) reveals the weaknesses of the trailers method. Binary trees and fat

elements show virtually identical performance to their results for the imperative algo-

rithm. The results for trailers, on the other hand, do not even make it onto the graph,

taking 0.04 seconds per iteration when n = 4096. The poor performance of trailers is

predicted by theory, which stipulates that a trailer-based implementation of this array

reversal algorithm will require Θ(n) time per access (Θ(n2) time overall). Even if we had

used the first of Chuang’s techniques for speeding up trailers (), the results would

show the same behaviour. (Chuang’s second, probabilistic, method () would have

O(1) expected amortized performance for this test, but, as we noted in Section 1.3.4,

this method has its own problems when it comes to space usage.)
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(b) Partially persistent array reversal.

Figure 3.2: Results from the two tests based on array reversal.

3.3 Conclusion

We have seen that as well as having good asymptotic performance, the fat-elements

method is competitive with other techniques for providing functional arrays and offers

better real-time performance than those techniques in many cases. In particular, the

fat-elements method provides reasonable performance for every case, making it a good

general-purpose functional-array implementation.



Chapter 4

Garbage Collection for the

Fat-Elements Method

In this chapter, we will examine the issues that arise if we wish to have array versions that

are no longer referenced by the program removed from the fat-elements data structure.

In the preceding chapters, we have shown how the fat-elements method can efficiently

support array operations such as read and update, but like other functional data struc-

tures, fat-element arrays provide no delete operation to remove array versions that are

no longer required. Functional programming languages typically eschew explicit storage

management operations like delete and instead rely on implicit storage management

in the form of garbage collection. If the fat-elements method is to provide arrays for

functional languages, we need to show that it is amenable to garbage collection.

This topic appears to be underexplored in the literature. Discussions of garbage

collection rarely examine “complex” data structures that are non-trivial to garbage col-

lect, and discussions of persistent data structures usually assume that all data will need

to persist indefinitely, rather than just a subset of that data. Garbage collection for

persistent data structures is not mentioned in any of the works on the topic known to me

(Overmars, , ; Cohen, ; Driscoll et al., ; Dietz, ; Chuang, , ).

The following sections require a passing familiarity with the most common algo-

rithms for garbage collection. Reviews of these topics can be found in Richard Jones’s

excellent book on the topic () and Paul Wilson’s review paper ().





 Chapter 4. Garbage Collection for the Fat-Elements Method

4.1 Logical Size versus Actual Size

In the preceding chapters, we have seen how our functional-array technique can store

O(v) versions of an n-element array in O(v+n) space (assuming that the array elements

themselves are constant-sized), where each array version is made by modifying a single

element of the array. Since each array version is seen externally as being self-sufficient,

the logical view of these array versions is of O(v) arrays of size n, or O(vn) space.

The fat-elements method, like other persistent data structures, achieves this “mira-

cle” of packing what appears to be O(vn) array elements into O(v + n) space by relying

on sharing: Each array version is created by altering one array element of another array

version and leaving the other n− 1 array elements unchanged.

When we introduce garbage collection, however, the picture changes. If array ver-

sions are removed, the differences between array versions may become greater. In the

worst case, each remaining array version may have no elements in common with other

array versions. Thus, it is quite possible (and reasonable) to have O(v) versions of an

n-element array occupying O(v + n) space before garbage collection (i.e., averaging to

constant space per array version), and O(w) array versions (where w � v) that require

O(wn) space left after garbage collection(i.e., O(n) space per array version).

These issues are illustrated by Figure 4.1. In this example we see six array versions,

three of which are garbage. But removing these three versions from the master array

only allows one fat-element entry to be reclaimed—all the other fat-element entries are

needed. I will leave determining which one as an exercise for you, the reader, as a prelude

to the next section.

4.2 Persistent Structures Are Hard to Garbage

Collect

In the previous section, we saw that reclaiming fat-element entries that are not required

may result in only small space savings. The exercise at the end of the previous section

should have also demonstrated that determining which fat elements can be reclaimed
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(a) An array data structure containing some arrays that are no longer referenced exter-
nally. The array structure contains entries for version stamps v0, v2, and v3, which may
need to be either updated or removed, since their associated array versions are no longer
referenced.

Master
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1 2 3 4

40v412v4

v1 v2.5

v2.5 135 48v2.547v2.5

24v4

v4

array1:

array2.5
array4:

(version list)

(master array)

40v2.5

29v4

v1 12 56 135 48v1 v1 v1

(b) The array data structure after removing the superfluous array versions. Notice that
in this example it was only possible to delete one fat-element entry. The other six entries
associated with v0, v2, and v3 could only be adjusted to use one of the remaining version
stamps.

Figure 4.1: Garbage collecting a functional-array data structure.
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FOO
BAR

XYZ

A B C

Figure 4.2: Topological reachability �= liveness.

and which need to be updated is not necessarily easy.¹ This problem is not specific

to fat-element arrays; it also applies to the garbage collection of many non-trivial data

structures.

The core idea behind garbage collection is to determine which objects are live and

which are not—live objects will be accessed again at some future point during the pro-

gram’s execution, whereas objects that are not live will not be accessed again and can

be reclaimed. Typically, garbage collectors used in functional languages use tracing to

determine liveness. The fundamentals of tracing garbage collection are simple: Follow

the pointers from objects that are known to be live and everything you can reach is

also live. This assumption, that topological reachability closely approximates liveness,

is fundamental to tracing garbage collectors. Unfortunately, there is no guarantee that

this liveness heuristic works well for every data structure.

Figure 4.2 illustrates the problem of whether topological reachability equates to live-

ness. Should the data marked “BAR” be garbage collected? According to the rules for

topological reachability, it is live because it can be reached (e.g., A is live and has a link to

B and B links to BAR). But what if the double links between nodes are never used as a route

into the data?—perhaps the most appropriate action for the garbage collector would be

for it to delete node B and link nodes A and C together. Without a deeper understanding

of what this data structure actually means, it is not possible to properly garbage collect

it.

The fat-elements data structure provides another, more complex, example of the

1. The fat-element entry that can be reclaimed is the one corresponding to version v0 for element  of
the array.
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failings of the topological-reachability liveness heuristic. Determining the liveness of

fat-element entries is not a simply a matter of following pointers. Similar problems

also affect other persistent data structures, including the persistent arrays proposed by

Hughes (), Aasa et al. (), Chuang (; ), Dietz (), and Cohen ().

Only tree-based implementations of arrays have the simple topology that allows garbage

collection based on topological reachability, which is perhaps just as well because trees

have far worse space behaviour than the approaches listed above, typically requiring

O(vn log n) space to store O(vn) array versions.

4.3 Using Traditional Tracing Garbage Collection

So far, we have learned that applying garbage collection to the fat-elements data struc-

ture is non-trivial and may not recover much space. So perhaps we should ask ourselves

what will happen if we do nothing to address the specific needs of fat-element arrays and

only use a traditional tracing garbage collector that does not understand the structure

of fat-element arrays.

A tracing garbage collector that provides no special support for fat-element arrays

will correctly reclaim a master array if and only if all the array versions represented by

that array are unreferenced. But, if even one array version is referenced, the garbage

collector will consider all O(n) array versions contained in the same master array as

also being referenced. If the elements of the array are simple fixed-size data types (such

as integers or floating-point numbers), the uncollected garbage amounts to a constant-

factor space overhead.

For arrays with elements that are themselves larger data structures (especially el-

ements that are not constant-sized), retaining garbage array elements may be unac-

ceptable, so in the following sections we will look at specific techniques for performing

garbage collection on fat-element arrays.
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4.4 Garbage Collecting Array Versions Individually

In the previous section, we saw that a tracing garbage collector that does not under-

stand the fat-elements data structure is inadequate for some applications of fat-element

arrays. In this section, we will show how copying collection, a common garbage collection

scheme, can be extended to support the fat-element array representation, as well as the

pitfalls of such an extension. The techniques we will discuss can also be applied to other

tracing garbage collectors, including mark/sweep collectors and generational collectors.

(Garbage collectors based on reference counting require different techniques, which are

covered in Section 4.6.)

If we extend our garbage collector so that it can find the element values for an in-

dividual array version, we can ensure that the collector only copies the versions from

the master array that remain referenced. The copying process itself is straightforward,

following the same lines as the array creation, access, and update operations described

in earlier chapters. Figure 4.3 shows an example of the copying process.

During copying, it may be possible to undo some of the fat-element entry duplication

that occurs for fully persistent updates (described in Section 2.2). If an array version

corresponding to a fully persistent update is no longer referenced, and the fat element

entries above and below the unreferenced fat-element entry both hold the same value, we

can eliminate the entry with the greater version stamp because the value it provides can

be inferred from the fat-element entry for the lesser version stamp. In Figure 4.3(b), we

see that the fat-element entry that had been used to infer the value for array4[1] does not

need to be copied because the value for array4[1] can also be found using the fat-element

entry corresponding to version stamp v1—in the original array, this entry is obscured by

the entry for array2.5[1], but at this point in the garbage-collection process there is no

indication that array2.5 is referenced.

The easiest way to undo this duplication is to use a simple pointer-equality check on

fat-element values that are about to be copied to make sure that their values are really

needed. An alternate strategy is to perform a redundancy-elimination pass over the array

after garbage collection is complete. This latter approach avoids the small constant-

factor time overhead from eliminating apparent redundancy only to discover later that

the fat-element entry is required after all (a situation that is shown in Figure 4.3(c)). Both
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Array

1 2 3 4

24v4
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array4:

(version list)

(master array)29v4v4 12 40v4

(a) In this example, we continue the situation shown in Figure 4.1(a). This figure shows
the point during collection where the garbage collector has found a reference to array4,
and this array version has been copied. In Figure 4.1(a), v4 only had one explicit fat-
element entry; most array elements for v4 were inferred from earlier ones. Now all the
entries must be explicit.

Master
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1 2 3 4

12v4
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24v4

v4

array1:
array4:

(version list)

(master array)29v4

v1 12 56 135 48v1 v1 v1
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(b) At this point, a reference to array1 has been found, and the fat-element entries relating
to v1 have been incorporated into the copy. With this addition, one of the previously
explicit v4 entries can be removed, since it can now be inferred from the earlier entry for
v1.

Master
Array

1 2 3 4

40v412v4

v1 v2.5

v2.5 135 48v2.547v2.5

24v4

v4

array1:

array2.5
array4:
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(c) Finally, a reference to array2.5 is found, and its fat-element entries are added. We now
need to make one v4 entry that was previously inferred explicit.

Figure 4.3: Garbage collecting a functional-array data structure.
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methods may sometimes perform additional—harmless—optimizations to the master

array by eliminating other kinds of redundancy (e.g., a duplicated array value arising from

updating an array element to hold the same value it already held).

Although the final result of this simple copying approach is a smaller structure, the

asymptotic time complexity of this approach is poor. As we know from Figure 4.1, a

master array typically has a much larger virtual size than its actual size in memory—

many of the elements of a particular array version are inferred from earlier values, rather

than being defined explicitly. If we copy each active array version individually as they

are encountered, the time taken will be at O(rn), where r is the number of versions of

the array that remain referenced, and n is the size of the array. (If splay trees are used to

represent fat elements, this time bound is an amortized bound, otherwise it is a worst-

case bound.)

If the number of array versions that remain referenced for each master array is a

constant, then this level of performance may be acceptable. For example, in single-

threaded array algorithms, only the most recent array version will remain referenced;

thus, the constant is one.

In the worst case, however, r ∈ O(n), and therefore the r referenced array versions

will require O(n2) time to be garbage collected. Thus, garbage collecting a functional

array using this technique may take time proportional to the virtual size of the array

versions, as opposed to the amount of memory they actually occupy. Ideally we would

prefer a garbage-collection technique that only took time proportional to the actual size

of the fat-elements data structure.

4.5 Deferred Copying

The problem with the simple array-version copying approach is that it needs to traverse

the entire master array each time an array version is copied, at a cost per traversal of

O(n) (amortized) time. The only way to avoid this cost is to avoid traversing the array

data structure for every array version that is encountered.

A solution to the problem of repeated array traversals is to defer copying array ver-

sions for as long as possible (as shown in Figure 4.4). Whenever an array version is
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found, we tag its version stamp, copy the array version pointer, add the master array

to a “deferred queue”, and then continue with any other copying that needs to be done.

When there is nothing else to copy, we copy a master array from the deferred list, copying

only the values belonging to the tagged version stamps.

This copying process works as follows: First we replace the version stamp for each

unreferenced array version u with an indirection to the nearest version stamp greater

than u that belongs to a referenced array version—if there is no such version stamp, u is

marked as irrelevant. (This procedure takes time proportional to the number of version

stamps that exist for that master array; because there are at most O(n) of these version

stamps, this process takes O(n) time.) Then we copy each of the fat elements of the

master array: For each fat element, we copy the fat-element entries in reverse order (i.e.,

starting with the entry with the greatest version stamp and ending with the entry with

the least version stamp), using the indirections to map version stamps from unrefer-

enced arrays to version stamps belonging to referenced array versions. If this mapping

produces a version stamp we have already encountered or an “irrelevant” version stamp,

we skip that entry and move to the next one. Copying fat element i of the array in this

way requires O(ei) time; thus, copying the entire array requires
∑n

i=1 ei = c∗ time, and

c∗ ∈ O(n).

For example, consider Figure 4.4(d). The next fat element to copy is element  (shown

in uncollected form in Figure 4.1(a)). We begin with the (v3, 29) fat element entry, which

is remapped to be (v4, 29) because v3 is the version stamp of an unreferenced array

version. Then we copy (v1, 135) unchanged (because v1 belongs to a referenced array

version). Finally, we come to (v0, 27), which would be mapped to (v1, 27), but is dis-

carded because we have already copied an entry for v1. Thus, we produce the final array

shown in 4.4(e).

Thus, by waiting to copy the array until the last moment, we can copy all of the

referenced array versions from that master array in O(n) time. This time contrasts

strongly with the O(n2) worst-case time for garbage collecting a master array under the

simple scheme described in the previous section.

Unfortunately, the O(n) time bound for the deferred copying technique only applies

to arrays which are not nested in complex ways. We discuss the problems of nested

arrays in the next section.
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Master
Array

To be done…

v0 v2v1 v2.5 v3 v4

array4:

(version list)

(master array)

(a) As in Figure 4.3(a), the collector has found array4. In this case, however, instead of
copying the array version associated with array4, we flag its version stamp, v4, and then
continue. We defer copying the array data structure until all other garbage collection is
complete.

Master
Array

To be done…

v0 v2v1 v2.5 v3 v4

array1:
array4:

(version list)

(master array)

(b) The collector now encounters array1 and flags its version stamp, v1. Copying of the
array data structure remains deferred.
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To be done…

v0 v2v1 v2.5 v3 v4

array1:

array2.5
array4:

(version list)

(master array)

(c) Similarly, when the collector encounters array2.5, all that is done is to flag its version
stamp.

Master
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v1 v2.5 v4

array1:

array2.5
array4:

(version list)

40v412v4

47v2.5 40v2.5

v1 12 56v1

(master array [incomplete])
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(d) Once other garbage collection is done we copy any array data structures we had
deferred. When copying the structure, we only copy the entries that relate to the version
stamps we have flagged. This figure shows the copying process part way through.

Figure 4.4: Deferred copying improves performance. (continued over...)
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(e) Finally we complete the copying process. Only the fat-element entries and version
stamps corresponding to referenced array versions have been copied.

Figure 4.4 (cont.): Deferred copying improves performance.

4.5.1 Difficulties with Deferred Copying

When the live portion of a master array is copied, the element values for all of the live

array versions must also be copied. In copying these values, we may find a good deal

more data that had hitherto been thought to be unreferenced. If fat-element arrays can

be (directly or indirectly) nested inside other fat-element arrays, we have the possibility

that as we copy the array-element values we will discover a previously undiscovered array

version from a master array that has already been copied—meaning that the copy is

incomplete.

There are two alternative ways of handling this situation. The first is to throw away

the incomplete copy of the array, add the array to the end of the deferred queue, and copy

it again later; when we copy it again, we will include the previously omitted array values.²

The second option is to use the simple copying technique we discussed in Section 4.4 to

add the missing array version to the existing copy of the array data structure.

From a computational-complexity perspective, the first solution is no worse than the

second, because copying the master array requiresΘ(n) time, which is no worse than the

Θ(n) time required to copy a single array version using the second method. Thus, in the

pathological case where every deferred copy reveals another array version that needs to

be copied, the time required is O(n2), which is no worse than the worst case for copying

array versions individually.

2. In reality, we probably would not throw away the incomplete copy, but merely augment it when we
perform subsequent deferred copies.
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4.6 Using Reference Counting or Explicit Deletion

Some languages use reference counting to provide garbage-collection functionality. Ref-

erence counting is based on significantly different principles than tracing garbage col-

lection. In reference counting, allocated data is deleted when it ceases to be referenced

(rather than waiting to be discovered in the next garbage-collection cycle). Thus, to

support garbage collection via reference counting, the fat-elements data structure needs

to support the deletion of individual array versions.

Providing deletion of individual array versions is easy if we allow the deletion process

to take O(n) time, wheren is the size of the array. We can traverse the array, and each fat-

element entry tagged with the version stamp belonging to the unwanted array version is

either relabeled with the version stamp of its successor in the version list (if there is no

entry for that version stamp in the fat element) or deleted (if there is such an entry or

there is no successor).

Ideally, however, we would prefer to avoid traversing the array to find and update

only a few of its fat-element entries. We can avoid such a traversal if we store additional

housekeeping information in the master array that records exactly which array elements

are changed in each successive version of the array. Figure 4.5 provides an illustrative

example of deleting specific array versions.

In this revised scheme, we associate a list of the elements that are changed in each

array version (as compared to its predecessor) with the version stamp for that array

version. By keeping this information at hand, we can avoid examining fat elements that

will not need any changes, which, in the usual case, will be most of them.

Figure 4.5 also shows a second optimization to the deletion process: Sometimes an

array version provides a large number of element values for subsequent array versions,

making updating the fat-element entries a costly task. If the successor to the deleted

version defines fewer element values, it is cheaper to base the update process on the

successor’s list of changes, rather than the deleted array’s list of changes.

With this optimization, we can support deletions that mirror a single-threaded array

access pattern with constant-time overhead. In the worst case, deletion costs O(e log n),

where e is the number of element values defined in that version.
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(a) A fat-element array with housekeeping information to support deletes. In previous
chapters, we stored only the number of changes made with each version, but to support
explicit deletes we also need to store exactly which array elements are changed in each
array version. This housekeeping information is redundant, as it could be found by simply
traversing the each element of the master array, but such a traversal would require O(n)
time.
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(b) The array after deleting array2. Although array2 is no longer accessible, no informa-
tion is actually removed from the master array because the changes made in array2 are
required by subsequent array versions. The version stamp for array2, v2, is deleted from
the version list, and the fat-element entry for array2[2] is updated to attribute its contents
to array2’s successor in the version list, v2.5.

Figure 4.5: Explicit deletion of array versions. (continued over...)
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(c) The array after deleting array2.5. In this case, we can remove the element values
corresponding to array2.5[1] from the master array because no subsequent array versions
depend on it—in fact, when the entry for array2.5[1] is removed, the entry for array3[1] is
also removed because it is the same as its predecessor, array1[1]. The fat-element entry
for array2.5[2] cannot be removed because it is needed by array3, so it is retagged with v3.
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(d) The array after deleting array3. The values for array3[2] and array3[3] are needed by
array4, so these values cannot be deleted. Although we could update these fat-element
entries to be tagged with v4, it is less work to discard the v4 version stamp and adopt v3

as the version stamp for array4. By doing so, we only have to retag one fat-element entry
rather than two.
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(e) Finally, array0 is deleted. As in the previous example, it is less work to adjust array1
to use v0 as its version stamp than to traverse the array and change fat-element entries
tagged with v0 to be tagged with v1.

Figure 4.5 (cont.): Explicit deletion of array versions.
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4.7 Conclusion

In this chapter, we have developed techniques that can garbage collect a non-nested

master array of size Θ(n) (containing O(n) array versions) in Θ(n) time. Arrays that

are nested within arrays may take longer than this time bound, and in the worst case a

master array of size n may contain nested references to n versions of itself and thus re-

quire O(n2) time to collect—in other words, it may take time proportional to the virtual

size of the collected arrays rather than their actual size in memory. This pathological

case is fairly unlikely for most normal uses of arrays.

Thus, in normal use, the fat-elements data structure is very amenable to garbage

collection, even if the process is somewhat more complex than the process for simpler

data structures (in particular, we must have some mechanism at our disposal to make

the garbage collector “smarter” about specific data structures). The complexities that

arise for fat elements are not unique to this data structure—other data structures whose

link topology does not reflect their liveness may suffer similar problems under garbage

collectors that use simple tracing techniques. Thus, it seems reasonable to expect that

similar strategies to the ones we have discussed may be applicable to other data struc-

tures.





Chapter 5

Optimizations to the Fat-Elements

Method

This chapter sketches some useful optimizations that can be applied to the fat-elements

method for functional arrays. Some of these optimizations can improve performance

without requiring any changes to programs that expect a typical functional array in-

terface, whereas others require that programs adopt new strategies for using functional

arrays. Although these optimizations do not improve the theoretical complexity of the

fat-elements method, they can be useful in reducing the overheads involved in using fat-

element arrays in practice.

5.1 Batched Update

Currently, to change three elements of an array we must make three calls to the array-

update function and create three new versions of the array. Figure 5.1 shows the results

of executing the following code to change three elements of an array:

let array1 = update(array0, 3, 135)

array2 = update(array1, 2, 40)

array3 = update(array2, 4, 29)

in array3


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(a) The initial contents of the array.
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(b) The array after three updates using the conventional update mechanism. Even though
array1 and array2 were only created as stepping stones to array3, they nevertheless exist in
the master array as separate array versions. These array versions will only be removed
when garbage collection takes place.
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(c) This figure shows the array after a three-element batched update. Note that only one
version stamp has been allocated but three element values have been changed.

Figure 5.1: Batched array update.
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Because the two intermediate versions of the array that are created by these calls to

update will never be used afterwards, it is somewhat wasteful to create them.

If we extend the array interface to allow batched array updates, we can avoid creating

superfluous array versions. Figure 5.1(c) shows an array that has undergone the following

update sequence:

let array1 = batch_update(array0, [(3, 135), (2, 40), (4, 29)])

in array1

Here a new function, batch_update, is used. This function takes as its argument an array

version and a list of changes to make and returns a new array version with the specified

changes. It operates in the obvious way: Like the single-element update described in

Section 2.2, it allocates a single version stamp and then applies all of the updates given

in the list (thus the only difference between this function and the update technique

described in Section 2.2 is that batch_update changes several array elements, whereas

update changes just one). Similarly, the usual rules for array splitting apply—if adding

the newly created array version would make the master array “too fat”, the master array

is split into two independent master arrays (see Section 2.3 for complete details on the

splitting process).

In addition to this batch_update function, it may also be appropriate to provide other

operations that process many array elements en masse. For example, the arraymap func-

tion discussed in Section 1.3.1 can also avoid wasteful creation of array versions.

5.2 Destructive Update

As we discussed in Chapter 1, array algorithms born in the imperative world access

data single threadedly, regardless of whether they act on an ephemeral imperative array

or a persistent functional array. In fact, even algorithms that use arrays persistently

may have sequences of single-threaded updates—the update sequence we examined in

the previous section is just one example of a single-threaded access sequence (after

each update, we only accessed the newly created array version, and discarded the old
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(b) The array after four updates using the conventional update mechanism. The previous
array versions remain in the master array even though they are no longer referenced and
will only be removed when garbage collection takes place.

Master
Array

1
v0 12

2 3 4

40 33 29v0 v0 v0

v0

array4:

(version list)

(master array)

(c) This figure shows the array after the same sequence of single-threaded updates as (b),
but this time destructive update was used. Note that no new fat-element entries have
been allocated and the version stamp remains the same.

Figure 5.2: The promise of destructive update.
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one). Although the fat-elements method provides good (amortized constant-time) per-

formance for single-threaded array use, it is worth considering whether we can improve

the performance of single-threaded array algorithms further.

The same techniques we discussed in Sections 1.2.1, 1.2.2, and 1.3.2 that allow us

to use destructive update on ordinary arrays (i.e., linear types, monads, update analysis,

and single-bit reference counting) can also be applied to functional-array data structures

such as the fat-element arrays. In the case of monads or linear types, a single-threaded

array-access sequence is directly specified by the programmer; whereas in update anal-

ysis and single-bit reference counting, single-threaded update sequences are discovered

by the program’s support environment (the compiler for update analysis and the run-

time system for single-bit reference counting). For example, we could allow monadic

array-access sequences to be applied to functional arrays by providing a function with

the following interface:

apply_arrayop :
(

array-op (α, β), array (α)
)
→
(
(array (α), β)

)
This function applies a monadic operation to an existing array and yields a new array

version and any other result returned by the monadic code. As with the batch_update

function discussed in the previous section, the operation of this function is straightfor-

ward: A new version stamp is created for the new array version, r, that will be returned

by apply_arrayop, then the monadic array operation is executed. Each single-threaded

update performed by the monadic code provides a new value for some element of r.

Because the monadic code executes before r has been returned by apply_arrayop, the

changes made to r by the monadic code cannot be observed by functional code. Simi-

larly, the monadic code is allowed to perform conventional functional-array updates and

include the resulting array versions in its return value (the type variable β in the interface

shown above).¹

1. In a lazy functional language, where the batch_update function takes a lazy list (or stream) of array
updates to make, it is also possible for ordinary persistent updates to take place during a batch update
sequence. The batch_update primitive is not quite as powerful as apply_arrayop, however, because it does
not allow the new array version to be read while the updates are partway through—there is no way to
access the new array until it is returned. The monadic version, on the other hand, can use the read array
operation to access the resulting array version as it is being formed.
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An advantage of single-threaded access sequences is that they may allow us to de-

structively modify an existing fat-element entry rather than add a new one. We can

only overwrite fat-element entries that are exclusively associated with the specific array

version we wish to update and not used to infer values for other array versions. This

property is true of all the entries in the example shown in Figure 5.2, but need not

always be true. When we cannot overwrite a fat-element entry, we must add a new entry

following the rules outlined in Chapter 2. Figure 5.3 gives an example of destructive

updates that could not use fat-element overwriting.

To support destructive updates, we simply need to extend the interface to the fat-

elements method with a procedure, destructive_update, that safely changes an element

value in an existing array version (i.e., without harming the values stored in prior or

subsequent array versions). The destructive_update procedure cannot be made available

to programmers in languages that guarantee referential transparency, but it can be called

by programming-language support code as part of any facility that detects or enforces

single-threadedness.

5.3 Single-Entry Compression

We will now examine a technique that aims to reduce the amount of space required to

represent fat elements. Each fat element is a tree-based data structure that provides

a mapping from version stamps to values. When a fat element stores several different

values, a tree is a fairly efficient data structure, but when a fat-element entry holds only

a single value, a tree-based implementation may be less space efficient than we desire.

In a typical implementation, a tree node representing a fat-element entry will contain

pointers to left and right subtrees, a version-stamp pointer, and a value (or value pointer).

In contrast, an array element in an imperative array would just store the value (or value

pointer). Thus, if a master array happens to contain only a single array version, it may

use more than four times the space of an imperative array (which, by its very nature, can

only store a single array version).

When there is only a single entry in a fat element, maintaining a data structure to

map version stamps to values is unnecessary because all version stamps map to the same
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(b) The array after one update. Destructive update cannot be used for this update because
array0 is still referenced, and thus the update is not single threaded.
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(c) This figure shows the array data structure after a sequence of three single-threaded
updates to array1. Although we have been able to avoid allocating any new version stamps
for these array versions, and have been able to use overwriting in creating array4[3], the
other two updates required fat-element additions (following the procedures outlined in
Section 2.2).

Figure 5.3: A more typical case of destructive update.
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(a) When all array versions have the same value for an array element, we can avoid the
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(b) When one element of the array is updated, we must create a fat element for that array
element. The other array elements remain unchanged.

Figure 5.4: Single-entry compression.

value. Instead, we can defer creation of the fat-element data structure and replace the

pointer to the top fat element in the tree with the value that the single entry would have

stored (see Figure 5.4). This technique requires us to able to distinguish between fat-

element pointers and values that may be stored in the array. Systems that use runtime

type tagging may be able to make the necessary distinction with no overhead; otherwise,

we may require an additional array of single-bit flags that mirrors the master array.

5.4 Conclusion

In this chapter, we have examined optimizations that may yield small but useful constant-

factor gains over the general fat-elements method. These optimizations are orthogonal:

Batched array-update facilities may be present in a system that uses update analysis to

detect other single-threaded array accesses and provides facilities that make single-entry

compression easy to implement. When update-in-place and single-entry compression

optimizations are applied together, single-threaded algorithms may run at close to the

same speed they would with imperative arrays, and without significant memory turnover.
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Chapter 6

Background for Determinacy

Checking

Parallel programming has a reputation for being more difficult than serial programming,

and with good reason. Parallelism not only provides new kinds of mistake for program-

mers to make (in addition to the numerous mistakes that can occur as easily in parallel

code as they can in sequential code), but these new errors may be difficult to discover

and correct.

Testing and debugging parallel programs that have multiple threads of control is

notoriously difficult. Timing issues and scheduler behavior can mask problems, resulting

in code that appears to be free of bugs during testing but fails mysteriously at some later

time. Tracking down such problems with conventional debugging tools can be difficult;

the particular interaction between threads that triggers the bug may be nearly impossible

to reproduce reliably.¹

One approach to address the problem of accessing data safely in a parallel program

is to use a locking mechanism to serialize access to vulnerable data. These techniques—

such as semaphores (Dijkstra, ) or monitors (Hoare, )—are well known, but lock-

ing is not a panacea. For example, programmers working with locks must guard against

1. In my own experience, I have encountered bugs in parallel code where the window of opportunity
for two threads to interact improperly was tiny (about  ns, the time to execute one machine instruction).
On a uniprocessor machine, the code never showed any errors, but on a four-processor machine, the error
showed up once in every twenty-four hours of continuous execution of the program. In addition, when
the program did finally fail, it was not at the point where the erroneous access actually occurred but much
later.


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deadlock, while also ensuring that their locking strategy preserves their program’s paral-

lel scalability.

More importantly, locking does little to ensure that a program’s data dependencies

are safe. A simple locking strategy may prevent task A from reading data before task B

has finished writing it, but such a strategy does not address the question of whether task

A should even be allowed to depend on data written by task B. A parallel program that

is written without regard to intertask data dependencies—even one that uses locks to

protect data—can suffer determinacy problems, causing program failures or unexpected

variability of output.

In this part of my dissertation, I will show how Bernstein’s conditions () can be

checked at runtime, ensuring that a program behaves deterministically. Data that is

accessed in compliance with Bernstein’s conditions avoids read/write and write/write

contention between tasks and does not need to be protected by locks. On a multiproces-

sor shared-memory machine with processor caches, obeying Bernstein’s conditions may

also reduce interprocessor memory contention, eliminating one possible source of poor

performance.

In the remainder of this chapter, I will define the terminology that underpins the

discussion in this and subsequent chapters, then review prior work on the topic of de-

terminacy checking. Chapter 7 describes the LR-tags method—my technique for de-

terminacy checking—and the basic theory that underlies it. Chapters 8 and 9 discuss

additional theoretical aspects of the LR-tags algorithm: Chapter 8 provides a correct-

ness proof; Chapter 9 discusses the algorithm’s time and space complexity. Chapters 10

and 11 discuss more practical matters: Chapter 10 describes some useful optimizations

to the LR-tags technique; Chapter 11 examines the performance of an implementation

of the algorithm when running realistic benchmarks. Finally, Chapter 12 presents my

conclusions and outlines opportunities for further work.

6.1 Describing Determinacy

Various terms have been used to describe parallel determinacy problems, including harm-

ful shared-memory accesses (Nudler & Rudolph, ), race conditions causing indeter-

minacy (Steele, ), access anomalies (Dinning & Schonberg, ), data races (Mellor-

Crummey, ), and determinacy races (Netzer & Miller, ).
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Listing 6.1: Examples of parallel programs exhibiting determinacy and indeterminacy.
The first program exhibits indeterminacy, whereas the middle two are clearly determin-
istic. The fourth program exhibits internal indeterminacy while remaining externally
deterministic.

(a)

a := 2;

cobegin
b := a;

a := a + 1;

coend;

(b)

a := 1;

b := 2;

cobegin
c := a + b;

if a > b then
d := a;

else
d := b;

coend;

cobegin
a := c / 2;

d := b + c + d;

coend;

(c)

a := 1;

b := 2;

cobegin
begin

c := a + 3;

cobegin
a := (a + b) / c;

d := b / c;

coend;

end;

e = (b / 2) + 1;

coend;

(d)

cobegin
a := -2;

a := 2;

coend;

a := a * a;

Feng and Leiserson () list most of the above terms and recommend the term “de-

terminacy race”. We will adopt this term for our discussion, but also follow Steele’s pref-

erences by using “indeterminacy” to describe a problematic lack of determinacy caused

by determinacy races and “nondeterminacy” to describe a lack of determinacy intended

by the programmer (such as McCarthy’s nondeterministic amb operator ()).

Programs do not need to be fully deterministic to generate consistent results from

run to run—for example, an operating system may run unrelated tasks in nondeter-

ministic order without causing any problems; or a search algorithm may choose its ini-

tial search direction nondeterministically and yet generate unwavering results. Thus

programs can be externally deterministic even if they are not internally deterministic

(Emrath & Padua, ) so long as the operations that are performed in nondeterministic

order commute (Steele, ).

Checking external determinacy is difficult. For example, suppose m = 2.0 and we

perform two atomic actions, m ← 1/m and m ← m − 2.5, in nondeterministic order.

For these values, either order results in m = −2.0, although addition and division do

not usually commute. (Steele () discusses commuting with respect to a memory state

versus commuting in general.) Similarly, far more complex instances of nondeterminacy
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could eventually cancel out, and the duration of the internal nondeterminacy could be

arbitrarily long.

Checking internal determinacy is easier, because we need only be concerned about

the local effects of program behavior. Internally deterministic programs are easier to

reason about than their externally deterministic and nondeterministic cousins, making

debugging easier and formal verification more practical. Even nondeterministic pro-

grams can benefit from ensuring that their nondeterminacy is limited to those places

where it is intended.

Listing 6.1 provides some code fragments with and without indeterminacy. List-

ing 6.1(a) shows a simple example² of indeterminacy: Inside the cobegin construct, one

task reads the value of awhile the other task updates a. Listings 6.1(b) and 6.1(c) are both

deterministic; how tasks are scheduled has no effect on the final result. Listing 6.1(d) is

a rather ambiguous case—the code is externally deterministic, but during its execution,

a has a nondeterministic value.

I will focus on the problem of preventing indeterminacy by ensuring internal deter-

minacy. If the programs in Listing 6.1 were tested for internal determinacy, only (b) and

(c) would pass the test.

6.2 Parallel Model

We focus our discussion on mechanisms to provide determinacy checking for programs

that execute on a shared-memory Mimd machine (Flynn, ). To describe such pro-

grams, we will use a model of parallel computation in which parallel programs are com-

posed of tasks—sequential sections of code that contain no synchronization operators.

All parallelism comes from executing multiple tasks concurrently.

The scheduling dependencies of tasks can be described using a directed acyclic graph

(dag) (Valdes, ). When a task y cannot begin until another task x has completed, we

place an edge in the dag from x to y and describe x as a parent of y and y as a child of x.

When a task has multiple children, we call it a fork node; when a task has multiple par-

2. All four examples are simple and could be checked for determinacy statically. More complex
programs, especially ones involving array accesses with dynamically computed subscripts (e.g., parallel
sorting algorithms) can be difficult or impossible to check statically.
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Figure 6.1: Parallel task models. In all three graphs, a task can begin only after all tasks
that have arrows pointing to it have completed.

ents, we call it a join node. Nothing precludes a node from being both a fork node and a

join node. Figure 6.1 shows three such graphs with increasingly complex synchronization

requirements. The dag representation of tasks is a reduced graph because it contains

no transitive edges—transitive edges would be redundant because synchronization is

implicitly transitive.

The dag representation cannot fully represent all kinds of parallelism and synchro-

nization. For example, programs that are inherently nondeterministic, synchronize using

locks, or expect lazy task execution, will have some of their parallel structure uncaptured
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by the a task dag.³ We will restrict our discussion to the kinds of parallelism where the

dag representation is useful.

The scheduling dependencies of a task dag can also be equivalently expressed using

a partial order among tasks. We will use the relation �, pronounced “ancestor of ”, to

denote such a partial order. For two distinct tasks, x and y, x � y means that y may not

begin until x has completed. This relation exactly mirrors the dag model since x � y

is equivalent to saying that there is a (possibly zero-length) path from x to y in the dag.

We also define a relation �, pronounced “proper ancestor of ”, such that

(x � y)⇔
(
(x � y) ∧ (x �= y)

)
.

We define two metrics for a task dag: The breadth of the dag is the maximum num-

ber of tasks that could execute concurrently if the program were run using an infinite

number of processors. The size of the dag is the total number of tasks it contains.

We use three terms to describe the life cycle of an individual task from a task sched-

uler’s perspective:

• Nascent tasks are tasks that are not yet represented in the task scheduler.

• Effective tasks are tasks that must be represented by the task scheduler, because

they are executing, waiting to execute, or their children are still nascent. By defi-

nition, a task cannot be executed by the scheduler until it has become effective (a

scheduler cannot execute a task without representing that task in some way). A

task cannot become effective until one of its parents has completed, and must re-

main effective until it has completed its execution and all its children have ceased

to be nascent. This specification of when a task may be effective is deliberately

loose—the exact details depend on the scheduler.

• Ethereal tasks are tasks that have ceased to be effective, and no longer need to be

represented in the task scheduler.

3. It is nevertheless possible to draw a task dag for such programs. For example, a program in which
tasks should only be run when their results are needed (corresponding to lazy evaluation) can use the task
dag to represent the task dependencies, but not the lazy execution requirement. Similarly, sometimes we
can draw a more restrictive graph that corresponds to the properties of a given run of the program, rather
than the properties of all runs. For example, some nondeterministic programs can be viewed as having a
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Figure 6.2: Understanding nascent, effective, and ethereal tasks. If we consider a moment
in time where the light-grey tasks have yet to execute, the black tasks are executing, and
the dark-grey tasks have completed, then all the light grey tasks are nascent and the
crossed-out tasks are ethereal. The remaining tasks, g, k, n, and o, are effective: k and o
are effective because they are executing, whereas n and g are effective because they have
nascent children. This is not the only possible arrangement of effective tasks—if l were
made effective, g could become ethereal.

The number of effective tasks varies as the program executes (see Figure 6.2), and is a

function of both the scheduling-algorithm implementation and the structure of the task

dag. Typically, the peak number of effective tasks would be higher for a breadth-first

task scheduler than a depth-first scheduler. For our discussion, we will assume that the

task scheduler requires Ω(e) memory to execute a program, where e is the peak number

of effective tasks during execution under that scheduler.

Note that a programming language’s definition of a task, thread, process, or coroutine

may be different from a task in this model but nevertheless compatible with it. Some

languages, for instance, allow a thread to spawn a subthread and allow both the spawner

thread and its subthread to execute in parallel, and later have the spawner wait for its

set of dags, where the size of this set grows exponentially with the number of nondeterministic choices.
In this case, a given run of the program will follow one of the dags from the set.
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subthread to terminate. As Steele () observes, we can represent such a mechanism

in our model by representing the spawner thread as three nodes in the dag: a fork node,

a child node, and a join node, where the child node represents that part of the spawner

thread’s execution that occurs concurrently with its subthread.

The full generality of the dag model is not required in many cases. Parallel pro-

grams that use nested parallelism fit the constraints of a series–parallel dag (MacMahon,

; Riordan & Shannon, ; Duffin, ), a simple and elegant form of planar dag

(see Figure 6.1(a)). Producer–consumer problems cannot be described using series–

parallel graphs, but they can be described using another simple planar dag form (see

Figure 6.1(b)). In both of these cases, the � relation describes a planar lattice and the

dag is subsumed by a type of planar dag known as a planar st-graph (which we define in

Section 7.2). Some parallel programs require an arbitrary nonplanar dag to precisely

represent their synchronization requirements. The graph shown in Figure 6.1(c), for

example, cannot be drawn as a planar dag.⁴

We will devote most of our discussion to the problems faced in checking parallel pro-

grams that use nested parallelism, but the LR-tags technique presented in subsequent

chapters can also be applied to a more general class of parallel program, including parallel

programs whose � relation forms a planar lattice (see Section 7.2).

6.3 Conditions for Parallel Determinacy

Determining statically whether a general parallel program will avoid parallel indeter-

minacy problems for all inputs is undecidable.⁵ Sufficient conditions for determinacy

4. Astute readers may notice that we can add a node to Figure 6.1(c) to turn it into a planar graph
without altering its behavior by adding a node at the point where two lines cross. This transformation
is not applicable in general, however, because it may add synchronization behavior and describe data
dependencies not required by the original program. Interestingly, the graphs that can be trivially trans-
formed into a planar st-graph by inserting dummy nodes can also be directly represented in the efficient
graph representation introduced in Section 7.2 without using any dummy nodes.

5. It is easy to recast other undecidable problems as determinacy-checking problems. For example,
consider a program that initializes a shared variable v to hold U, reads in an input string, s, and then
spawns two tasks, t1 and t2, that attempt to recognize s using context-free grammars G1 and G2,
respectively. If t1 recognizes s using G1, it writes Y into v otherwise it does not write to v. If t2 does not
recognize s, it writes N into v, otherwise it does not write to v. The program only avoids indeterminacy
(and satisfies Bernstein’s conditions) when at most one of the two tasks writes a value into v; if they



6.3. Conditions for Parallel Determinacy 

exist, however, that are not unduly restrictive, and can either be used as a discipline for

programmers or imposed as a condition in language design.

6.3.1 Milner’s Confluence Property

Milner () points out that even if two systems are deterministic, allowing uncon-

strained communication between them immediately allows the possibility of nondeter-

minacy. Milner develops a confluence property sufficient to ensure parallel determinacy,⁶

but Milner’s parallelism follows a csp (Hoare, ) model, which has its greatest appli-

cability in distributed systems (it can represent shared memory, but the mapping is not

ideal). My interest in this dissertation is shared-memory parallel computations, so we

will now turn our attention to specific attempts to express shared-memory determinacy

conditions.

6.3.2 I-Structures

One method for ensuring that shared-memory is accessed deterministically is to insti-

gate a write-once policy and suspend any task that attempts to read a yet-to-be-written

memory location until that location is written. This approach is taken by Arvind et al.

() in their I-structure data structure. This condition is simple and easy to enforce, yet

fits a number of parallel algorithms. One problem with this approach is that, although

indeterminate results are not possible with I-structures, read/write races remain possible

and can result in deadlock.

6.3.3 Bernstein’s Conditions

Bernstein () developed conditions for noninterference between parallel tasks. Bern-

stein’s conditions are sufficient conditions to prevent indeterminacy in a pair of parallel

tasks. If t and t′ are tasks that may run in parallel; Wt and Wt′ are the set of memory

both write to v, the final value of v may be either Y or N (i.e., indeterminacy arises when s ∈ L(G1) and
s /∈ L(G2)). Thus, the program is deterministic for all inputs iff L(G1) ⊆ L(G2). Determining whether
L(G1) ⊆ L(G2) for arbitrary G1 and G2 is a well-known undecidable problem.

6. Hoare () also suggests conditions for determinacy for communicating parallel tasks, but his
conditions are less interesting and less useful than Milner’s.
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locations written by t and t′, respectively; and Rt and Rt′ are similarly defined to be the

set of memory locations read by t and t′, respectively; then t and t′ are noninterfering iff

(Wt ∩Wt′ = ∅) ∧ (Rt ∩Wt′ = ∅) ∧ (Wt ∩Rt′ = ∅).

Bernstein’s conditions generalize to a set of tasks executing in parallel,T = {t1, . . . , tn}.
If we use ti � tj to mean that there is no interference between ti and tj , then there is no

interference between the tasks in T if ∀ti, tj ∈ T : ti � tj ∨ ti � tj ∨ tj � ti.

Like Milner’s restrictions for confluence, Bernstein’s noninterference conditions en-

sure determinacy, but are a sufficient rather than a necessary condition. It is possible for

tasks to violate Bernstein’s conditions but nevertheless be deterministic—for example,

if two tasks write the same value to memory, the action is classed as interference even

though it has no negative ramifications for determinacy.

6.3.4 Steele’s Conditions

Steele () proposes a more generous scheme that subsumes Bernstein’s noninter-

ference condition.⁷ In Steele’s terminology, two tasks, t and t′, are causally related iff

t � t′ ∨ t′ � t. Steele’s condition for avoiding indeterminacy is that any two accesses

must either be causally related or commute.⁸ Intuitively, two operations commute if the

order in which they are performed does not matter; thus, multiple reads to a memory

location commute with each other, but reads and writes to the same location do not.

Similarly, multiple writes to the same location do not commute. Some useful operations

that change memory do commute with one another—for example, an atomic increment

commutes with an atomic decrement, but not with a read.

Interestingly, most algorithms intended to enforce Bernstein’s conditions can be gen-

eralized in a straightforward manner to enforce Steele’s conditions instead, because reads

generalize to operations that commute, and writes generalize to operations that do not

commute. We will simplify our discussion by focusing on the problem of reads and

writes, but all the checking mechanisms we discuss are suited to this generalization.

7. Steele does not explicitly cite Bernstein’s paper, perhaps because he was not aware of it—the
conditions themselves are fairly straightforward and can be derived from first principles.

8. Steele’s conditions are stated differently; I have put them in the same framework as our discussion
of Bernstein’s conditions to show the parallels between them.
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Parallel Space Time for Time for
Algorithm Checking Required Fork/Join Data Access

English-Hebrew Labeling Yes O(vb + min(ns, nbv)) O(n) O(nb)
Task Recycling Yes O(vb + pb) O(b) O(b)
Offset-Span Labeling Yes O(e + v + min(ns, nv)) O(n) O(n)
SP-Bags No O(e + v) O(α(e + v, e + v)) O(α(e + v, e + v))
LR-Tags Yes O(e + v) O(1) O(1)

where b = breadth of the task dag

e = maximum number of effective tasks during execution
n = maximum depth of nested parallelism
p = maximum number of running tasks during execution
s = size of the task dag (number of tasks)
v = number of shared locations being monitored
α ≡ Tarjan’s () functional inverse of Ackermann’s function

Note: The time complexities given are for execution on a single processor; multiprocessor implementa-
tions may incur additional loss of parallelism due to synchronization. Also, the time complexity of the
SP-Bags method is an amortized bound. The space complexities include the need to represent effective
tasks, any of which may be the subject of thread operations (usually e � v, so e is frequently omitted
when space complexities are described in the literature).

Table 6.1: Properties of runtime determinacy checkers.

6.3.5 Multiple Conditions

Restrictions for deterministic parallelism in parallel systems using communication chan-

nels and restrictions for deterministic access to shared memory do not necessarily con-

flict with each other. Brinch Hansen’s SuperPascal (a; b) has both of the above

features, although the determinacy-enforcement facilities of SuperPascal are not as so-

phisticated as Milner’s confluent parallel systems or Steele’s safe asynchronous paral-

lelism.

6.4 Enforcing Determinacy Conditions

Traditionally, parallel languages and runtime systems have done little to ensure determi-

nacy. Programmers have instead had to rely on their intuitions about correct program

behavior and depend on established (and frequently low-level) constructs for serializing
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access to their data structures, such as locks. As we learned earlier, these basic mutual-

exclusion mechanisms are not a complete answer—checks for determinacy (based on

Bernstein’s or Steele’s conditions for shared-memory accesses, or Milner’s confluence

property for channel-based communications) have their place too.

Static checks at the language level (Taylor; Callahan & Subhlok, ; Emrath & Padua,

; Balasundaram & Kennedy, ; Beguelin, ; Beguelin & Nutt, ; Xu & Hwang,

; Bagheri, ; Brinch Hansen, a), can ensure deterministic execution, but these

checks rule out those algorithms that cannot (easily) be statically shown to be determin-

istic. For example, parallel tasks working on a shared array are likely to decide at run-

time which array elements they should access, making static analysis of whether these

accesses will lead to nondeterminacy difficult or impossible. Brinch Hansen encounters

just this problem in his SuperPascal language, which attempts to enforce determinacy

statically. SuperPascal includes an annotation that allows programmers to turn off static

determinacy checking when necessary. Brinch Hansen notes that he has used this con-

struct exclusively for dealing with tasks accessing a shared array.

A runtime test for determinacy races allows a wider range of programs to be executed

with assured determinacy than similar compile-time tests. Obviously, compile-time tests

should be used whenever practical, because they may both provide earlier detection

of errors and reduce the amount of runtime testing required, but when compile-time

tests cannot pass an algorithm as deterministic, runtime checking can at least assure

us that the program is deterministic for a given input. Like other runtime tests, such as

null-pointer checks and array-bounds checking, we may either use runtime determinacy

checks as a mechanism for catching coding errors during development, turning checking

off in production code for better performance; or leave checking on permanently, trading

some performance for safety.

For some programs, runtime determinacy checking on a few inputs is enough to

confirm that the program will always operate correctly. For example, the memory access

patterns and parallel task structure of code that performs a parallel matrix multiply may

depend only on the size of the matrices, not the actual contents of each matrix. Thus,

checking that the code generates no determinacy errors for two matrices of a particular

size also assures us that no multiplications using arrays of that size will ever generate a

determinacy error.



6.4. Enforcing Determinacy Conditions 

There are two classes of dynamic determinacy checks: on-the-fly checking and post-

mortem analysis. In on-the-fly checking (Nudler & Rudolph, ; Emrath & Padua, ;

Schonberg, ; Steele, ; Dinning & Schonberg, , ; Min & Choi, ; Mellor-

Crummey, ; Feng & Leiserson, ), accesses to data are checked as they happen,

and errors are signaled quickly. In post-mortem analysis (Miller & Choi, ), a log

file is created during execution that is checked after the run to discover whether any

accesses were invalid. Both methods have problems, however: On-the-fly detection can

slow program execution significantly and may not accurately pinpoint the source of in-

determinacy,⁹ and post-mortem analysis faces the difficulty that logs may be voluminous

(and wasteful, because the log becomes an unreliable indicator after its first error) and

errors may not be detected in a timely way.

I will focus on using Bernstein’s conditions as the basis of an on-the-fly dynamic

determinacy checker. As we discussed in Section 6.3.4, it would be a simple matter to

use my determinacy checker to enforce Steele’s conditions as well.

6.4.1 Enforcing Bernstein’s Conditions

Bernstein’s conditions provide us with a basis for runtime checking, but although they

are algebraically elegant, they do not, by themselves, provide an efficient determinacy

checking algorithm. Implementations of runtime determinacy checking concentrate on

tagging each shared memory cell with enough information for it to be checked, indepen-

dent of other memory locations.

Previous algorithms for runtime determinacy checking have run into one of two

problems: non–constant-factor overheads or a serial-execution requirement. English-

Hebrew Labeling (Nudler & Rudolph, ), Task Recycling (Dinning & Schonberg, )

and Offset-Span Labeling (Mellor-Crummey, ) suffer from the first problem, whereas

the SP-Bags algorithm (Feng & Leiserson, ) suffers from the second problem. Ta-

ble 6.1 compares the properties of various determinacy-checking algorithms, including

my own: the LR-Tags method.

9. If two accesses are made to a location, one correct and one erroneous, it may be that the error is
not detected at the point the erroneous access is made, but is instead detected when the entirely correct
access is made. The extent of detection and error reporting depends largely on the technique; typically
we will know what task last accessed the datum, but not when, where, or why it performed that access.
Choi & Min () propose a software debugging assistant that can be helpful for those methods where
this poor reporting would be a problem.
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Feng and Leiserson’s SP-Bags algorithm, embodied in their Nondeterminator deter-

minacy checker for the Cilk language (), provides the most time- and space-efficient

determinacy-race detector to date for programs using nested parallelism. Their method

is inspired by Tarjan’s () nearly linear-time least-common-ancestors algorithm.

The SP-Bags algorithm requires O(T α(e + v, e + v)) time to run a program that

runs in T time on one processor with checking turned off and uses v shared-memory

locations, where α is Tarjan’s () functional inverse of Ackermann’s function. For

any practical situation, α has a constant upper bound of 4, so we may regard Feng

and Leiserson’s algorithm as an “as good as constant” amortized-time algorithm. The

SP-Bags algorithm is also space efficient, needing O(v + e) space to execute, where

e is the maximum number of effective tasks in the Cilk program. Execution of the

program under Cilk without determinacy checking also requires Ω(v + e) space; thus

the algorithm has constant-factor space overheads.

Feng and Leiserson’s method is a serial method, however. It can find the internal

indeterminacies that would arise if the program were executed in parallel, but does so

by running the program serially. Although this restriction may not be the crushing

disadvantage it first appears to be (as developers often develop and debug their code on

uniprocessor systems before running it on a more expensive parallel machine), it is nev-

ertheless an unfortunate limitation. The SP-Bags method is also restricted to programs

that use nested parallelism and so cannot enforce Bernstein’s conditions for programs

using producer–consumer parallelism or other, more esoteric, forms of parallelism.



Chapter 7

The LR-tags Method for Runtime

Determinacy Checking

In the preceding chapter, we examined previous attempts at enforcing Bernstein’s condi-

tions for determinacy, and saw that techniques that enforce Bernstein’s conditions may

be simply extended to enforce Steele’s slightly broader conditions. In this chapter, I will

introduce my method for determinacy checking: the LR-tags method.

We will begin by examining a naïve approach to determinacy checking, and then

refine that method to create an efficient algorithm.

7.1 A Simple Determinacy Checker

This section introduces a simple determinacy checker that is neither time nor space

efficient. This checker will act as a stepping stone to the final LR-tags determinacy

checker. Sections 7.2 and 7.3 will explain how the inefficiencies of this simple deter-

minacy checker can be eliminated.

To enforce internal determinacy at runtime, we need to check two conditions. We

must ensure that

. Each read is valid, given previous writes

. Each write is valid, given previous reads and writes


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We need to consider prior reads when checking writes because reads might be scheduled

in a different order on other runs—even when tasks are scheduled in a simple serial

fashion, error detection should not be influenced by the order of task execution (see

Listing 6.1(a)).

We saw in the previous section that Bernstein’s noninterference conditions provide

us with a simple rule to ensure deterministic execution; we will now express those condi-

tions in a slightly different way. We will associate each datum d with both the last writer

for that datum, w(d), and the set of tasks that have accessed that datum since it was

written, R(d). We may think of R(d) as the “reader set” for d, but R(d) also includes

the task that last wrote d. (Sometimes, when d is obvious from context or irrelevant to

the discussion, I will write R and w rather than R(d) and w(d). I will also apply this

convention to rf (d) and rb(d), which we define later.)

• Reads — A read is valid if the task that last modified the data item is an ancestor of

(or is itself) the task performing the read. Expressing this restriction algebraically,

a task tmay read a datum d if

w(d) � t (Bern-1)

where w(d) is the task that wrote the value in d. When a read is valid, we update

R(d) as follows:

R(d) := R(d) ∪ {t}

• Writes — Writes are similar to reads, in that the task that last modified the data

item must be an ancestor of the task performing the write, but writes also require

that all reads done since the last write are also ancestors of the task performing

the write. Thus, a task tmay write a datum d if

∀r ∈ R(d) : r � t (Bern-2)

where R(d) is the set of tasks that have accessed d since it was last written (in-

cluding the task that performed that write). If the write is valid, we update R(d)

and w(d) as follows:



7.1. A Simple Determinacy Checker 

w(d) := t

R(d) := {t}

Even this simple method provokes some interesting implementation questions, such

as “How do we provide R(d) and w(d) for a datum d?”. One way to store R(d) and

w(d) is to add a writer field and a readers field to each determinacy-checked object.

Feng and Leiserson () provide an alternate way to address this question with their

shadow-spaces instrumentation technique. In their approach, determinacy-checking

information is stored in additional memory (shadow space) that mirrors the memory

where the determinacy-checked objects are stored. Calculating where R(d) and w(d)

are stored in this scheme is a simple function of the memory address of d. The shadow-

spaces approach has the advantage that the way program data is laid out in memory need

not change when determinacy checking is being used. Unfortunately, the shadow-spaces

approach can waste memory because some objects take up more space than others

(e.g., extended-precision complex numbers may take twenty-four times more space than

eight-bit integers), leading to unused gaps in the shadow spaces.

But considering implementation questions is perhaps a little premature, as this naïve

determinacy checker has poor asymptotic time and space requirements. For example,

R(d) can contain an arbitrary number of tasks, potentially causing tests involvingR(d)

to be slow. There are also performance issues for ancestor queries. Traditional represen-

tations such as adjacency lists or adjacency matrices do not offer good computational

complexity, especially given that the full definition of the � relation may not be known at

the time the program begins—the parallel structure of the program may be determined

by its input data. A linked data structure that mirrors the structure of the task dag yields

similarly poor performance.

Many parallel algorithms can enjoy better determinacy-checking performance, how-

ever, because they do not need the full power of an arbitrary dag to describe how their

tasks relate. In the next section, I will introduce restrictions to the task dag that allow it

to be represented efficiently.
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Figure 7.1: A graph for which the � relation cannot be defined.

7.2 Defining a Graph with Two Relations

As we have seen, task dags form a reduced graph that can be adequately represented

by a partial order (�). As we saw in Chapter 2, partial orders are not always the most

convenient representation—sometimes it is helpful to provide some additional structure

if doing so yields an efficient algorithm. In this section, we will discuss how adding

structure and restricting the class of graphs that we can represent enables us to use a

compact representation for tasks and sets of tasks; this representation facilitates fast

ancestor queries, which may either compare one task with another or determine whether

all members of a set of tasks are ancestors of a particular task.

Definition 7.1 An LR graph is a reduced dag where there is a (possibly zero-length) path

from x to y in the dag iff x � y, and those nodes that are not related by � are related by a

second relation, � (pronounced “is to the left of ”), where

• � is transitive

• � does not relate nodes related by �

• Any two nodes are related by either � or �

Intuitively, we can imagine � as the order in which a serial scheduler would execute tasks

that could be executed concurrently under a parallel scheduler.

For some graphs, there is no way to define the � relation because the two require-

ments for � conflict. For example, in Figure 7.1, if d � e and e � c, then d � c, which

contradicts c � d; other attempts to define � for this graph will lead to similar failures.

The class of graphs for which we can define � is a large one, however. All the graphs

shown in Figure 6.1 are LR-graphs, in fact these graphs are drawn such that the left-to-

right ordering of nodes on the page can be used as the basis for defining the � relation
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(provided that we remember to define � only for nodes unrelated by �). LR-graphs

include a class of graphs known as planar st-graphs, which subsumes both series–parallel

graphs and producer–consumer graphs.

A planar st-graph is a planar dag with one source node and one sink (or terminal)

node, both of which lie on the external face of the graph. A source node, conventionally

labeled s, is a node with no inbound edges; a sink node, conventionally labeled t, is a node

with no outbound edges. Di Battista et al. (, page ) shows how � may be defined

for a planar st-graph using the dual of the graph, and proves that any pair of distinct

nodes in the graph are either related by � or related by �.

Although the fundamental concepts underlying � (as well as � and �, which we

will indroduce shortly) are not new (Birkhoff, ; Kelly & Rival, ; Kameda, ),

LR-graphs avoid the planarity requirement present in earlier treatments of this subject.

These earlier works show that it is always possible to define � (or � and �) for planar

lattices (or planar st-graphs). Such a proof is tautological for LR-graphs because LR-

graphs are characterized as reduced graphs for which � can be defined. Thus, whereas all

planar lattices are LR-graphs (Birkhoff, , page , exercise (c)), there are potentially

other (nonplanar) graphs that are also LR-graphs (e.g., Figure 6.1(c)). Nevertheless, LR-

graphs have similar expressive power to planar st-graphs and planar lattices.¹

A more straightforward definition of � (for those graphs where � can be defined) is:

x � y iff x comes before y in a left-to-right traversal of the dag and x � y and y � x.

(Because we only use the traversal order to compare cousins, it is irrelevant whether the

traversal is preorder or postorder, depth-first or breadth-first).

Task dags are reduced graphs because they contain no transitive edges, thus if we

restrict the task dag to be an st-graph, it becomes a reduced planar st-graph. Reduced

planar st-graphs have the useful property that the � relation completely defines the

planar embedding of the graph. The prohibition of transitive edges means that none

of the parents or children of a node can be related by �. Thus, the clockwise order of

inbound edges to a node is identical to the order of their sources (the parent nodes)

1. It is fairly straightforward to transform a planar st-graph into an LR-graph or vice versa by adding
dummy nodes to the graph. When transforming a planar st-graph to an LR-graph, dummy nodes may
need to be added because an LR-graph is a reduced graph (see Di Battista et al., , page , for an
algorithm), whereas nonplanar LR-graphs (or LR-graphs without a single source or sink node) may requre
the addition of dummy nodes to form a planar st-graph (see Di Battista et al., , page , for a review
common planarization algorithms).
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under � and the anticlockwise order of outbound edges from a node is identical to the

order of their destinations (the child nodes) under � .
Formally, we can express the properties of � and � as follows:

. The usual rules for equality apply (nodes are only equal to themselves).

. For any x and y, exactly one of the following is true:

x � y, y � x, x � y, y � x, x = y.

. Both � and � are transitive.

Like �, the reflexive closure of � forms a partial order. Given the above definition,

we can observe that

(x � y) ∧ (y � z) ⇒ (x � z) ∨ (x � z) (.)

(x � y) ∧ (z � y) ⇒ (x � z) ∨ (z � x) (.)

(y � x) ∧ (y � z) ⇒ (z � x) ∨ (x � z) (.)

(y � x) ∧ (z � y) ⇒ (z � x) ∨ (z � x) (.)

because any other relationships between x and z lead to a contradiction with the defini-

tions of � and �.

Now we will define the two relations that form the core of the LR-tags method. Let

us define � (pronounced “is to the left or below”) and � (pronounced “is to the left or

above”) as follows,

x� y ≡ (x � y) ∨ (y � x) ∨ (x = y) (.)

x� y ≡ (x � y) ∨ (x � y) ∨ (x = y) (.)

It is a simple matter to prove that � and � are transitive relations by a trivial examination

of cases. It is similarly easy to show that � and � provide total orders, which, for a graph

G, we termG� andG�.

If these orderings seem vaguely familiar, they should. G� and G� are, in fact, topo-

logical sortings of the nodes, and represent the order in which nodes are encountered

under a left-to-right postorder traversal and a reversed right-to-left postorder traversal,
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Figure 7.2: An st-graph. The tasks are labeled to reveal the left-to-right postorder
traversal (the first letter of the label) and the reversed right-to-left postorder traversal
(the second letter of the label).

respectively. The numerical sequence of nodes in G� and G� also corresponds to the

x and y coordinates of those nodes in a dominance drawing of the graph, as shown

in Figure 7.3. The discussion that follows does not rely on either of these properties,

although the results described in this section are well known for dominance drawings

(Di Battista et al., ) and have their foundations in the properties of planar lattices

(Kelly & Rival, ).

Some readers may wonder whether a reversed right-to-left postorder traversal is the

same as a left-to-right preorder traversal. It is not. Although these traversals are equiv-

alent in the case of trees, they are not equivalent in more general graphs. Consider the

example given in Figure 7.2. In this case, G� = [sa, lb, gc, kd, fe, cf , dg, rh, oi, jj, ek, bl,

pm, qn, no, ip,mq, hr, as] and G� = [as, bl, cf , dg, ek, fe, gc, hr, ip, jj, kd, lb,mq, no, oi,

pm, qn, rh, sa]. In contrast, the left-to-right preorder traversal of this graph is [as, bl, cf ,

fe, gc, lb, sa, kd, dg, ek, jj, oi, rh, hr, ip, no, pm, qn,mq]. Interestingly, the reversed right-

to-left postorder traversal is equivalent to the order in which tasks would be executed by

a left-to-right depth-first serial scheduler. We will return to this property in Section 10.1.
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Figure 7.3: A dominance drawing of the graph from Figure 7.2. (More compact domi-
nance drawings of this graph are possible; see Section 10.2).
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From these definitions, we can either derive the � and � total orders from � and � ,
or do the reverse and derive � and � from � and �. Since � and � are total orders, and

� and � are not, it is preferable to represent a task dagG entirely usingG� andG�. We

will return to the topic of maintaining these total orders for a dynamic graph in the next

section.

Given � and �, we can easily perform ancestor queries, since

(y � x) ∧ (x� y)⇔ x � y (.)

(from equations 7.5 and 7.6). In Figure 7.2, we can see that bl is an ancestor of oi because

bl � oi and oi � bl.
But there is another, more significant, benefit we can reap from using these traver-

sals. Recall that the naïve determinacy checker we discussed in Section 7.1 needed to

maintain a set R of all the tasks that had read a particular datum, and check to make

sure that the current task t was a descendant of all those tasks. In a graph represented

by � and �, we can avoid maintaining the setR—instead we can use two values fromR,

the frontmost, rf , and the backmost rb as surrogates for the entire set. We define rf and

rb as the least and greatest elements ofR under � and �, respectively; thus,

(rf ∈ R) ∧ (rb ∈ R) (.)

(∀r ∈ R : rf � r) ∧ (∀r ∈ R : r � rb). (.)

In Figure 7.2, if R = {cf , ek, ip}, rf = cf and rb = ip. Using comparisons against only

these two nodes, we can confirm that kd is a descendant of the nodes in R, whereas gc

and jj are not.

Theorem 7.2

(∀r ∈ R : r � t)⇔ (t� rf ) ∧ (rb � t) (.)
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Proof

The forward implication is trivial to prove:

∀r ∈ R : r � t

⇒ (rf � t) ∧ (rb � t) [from 7.8]

⇒
(
(t� rf ) ∧ (rf � t)

)
∧
(
(t� rb) ∧ (rb � t)

)
[from 7.7]

⇒ (t� rf ) ∧ (rb � t).

Proving in the other direction is almost as easy:

(t� rf ) ∧ (rb � t)
⇒ ∀r ∈ R,

(
(t� rf ) ∧ (rf � r)

)
∧ ∀r ∈ R,

(
(r � rb) ∧ (rb � t)

)
[from 7.9]

⇒ ∀r ∈ R, (t� r) ∧ ∀r ∈ R, (r � t) [transitivity]

⇒ ∀r ∈ R, r � t. [from 7.7]

�

Given these properties, the following rules are sufficient for checking that reads and

writes performed by a task t on a datum d are deterministic:

• Reads — A read is valid if (t�w(d))∧ (w(d)� t)—that is, if it satisfies condition

Bern-1. If the read is valid, rf (d) and rb(d) may need to be updated:

– If t� rf (d) then rf (d) := t

– If rb(d) � t then rb(d) := t

• Writes — A write is valid if (t� rf (d))∧ (rb(d)� t)—that is, it satisfies condition

Bern-2. If the write is valid, w(d), rf (d), and rb(d) are updated to be t.

The next section shows how it is possible to provide an efficient implementation

of the � and � relations for a dynamically created task dag, and thereby provide an

efficient determinacy checker.
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7.3 Maintaining G� and G� for a Dynamic Graph

In the previous section, we saw that if we had efficient implementations of the � and

� relations, we could implement determinacy checking efficiently. For a static graph,

it may be trivial to perform two postorder traversals to generate the orderings G� and

G�, but parallel programs are usually dynamic and the final form of the task dag is often

unknown until the run has completed. Thus we require an algorithm that can maintain

G� and G� for an incomplete graph and efficiently update these orderings as nodes are

added to the bottom of the graph, eventually completing it.

We will assume that the graph is a reduced graph where � can be easily defined

(i.e., the left-to-right ordering of parents and children is known and remains consistent

during the construction of the graph). These assumptions hold for both series–parallel

and producer–consumer dags. For series–parallel dags, any left-to-right ordering of

parents and children correctly defines � . For producer–consumer dags, it is sufficient

to adopt a convention that producers fall to the left of consumers (as exemplified by

Figure 6.1(b)).

When we list parents or children of a node, we will list them in their left-to-right

order. This node order is identical to their sorted order under � , �, and �. Thus, when

a node n has parents P = {p1, . . . , pk},

∀j ∈ {1, . . . , k − 1}, (pj � pj+1) (.)

∀x,∀j ∈ {1, . . . , k − 1},¬(pj � x) ∨ ¬(x � pj+1) (.)

∀x, (x � n)⇒ ∃p ∈ P, (x = p) ∨ (x � p) (.)

and similarly, when a parent node p has childrenC = {c1, . . . , cl},

∀j ∈ {1, . . . , l − 1}, (cj � cj+1) (.)

∀x,∀j ∈ {1, . . . , l − 1},¬(cj � x) ∨ ¬(x � cj+1) (.)

∀x, (p � x)⇒ ∃c ∈ C,
(
(c = x) ∨ (c � x)

)
(.)

(the latter condition states that no children of p are omitted).

We will also restrict ourselves to considering graphs that grow through the addition
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of new terminal nodes, and assume that a node and all its inbound edges are added

together. Both of these assumptions reflect the underlying purpose of the task graph—

it would be nonsensical to start a task and then, after it had begun, add an additional

commencement restriction.

Given these restrictions, our problem becomes one of finding the correct place to

insert a node in both G� and G�, because adding a terminal node to the dag cannot

affect the ordering of other nodes with respect to each other (i.e., if x�y before the node

is added, x� y afterwards). I present a simple constant-time algorithm to perform these

insertions below.

7.3.1 Insertion Strategy

For each node n in the task dag we provide an associated shadow node n′ where n � n′.

This node does not represent a task—its only purpose is to allow us to find insertion

points inG� andG� when adding children to n. We will discuss shadow nodes in detail

in Chapter 8 and prove that the insertion strategy explained below is correct. For this

discussion, I will give a shorter and less formal explanation of the properties of shadow

nodes.

Let us consider the case of adding a new node n with parents P = {p1, . . . , pk}.
After adding n, we desire that

∀p ∈ {p1, . . . , pk} :
(
(n� p) ∧ (p� n)

)
. (.)

The position of the new node inG� is determined by p1, because ∀p ∈ P : (p1 � p),
and thus (n � p1) ⇒ ∀p ∈ P : (n � p). Let c1, . . . , cl be the children of p1, where

ci = n (i.e., n is to be the ith child, ci, of p1). For correct insertion, we desire that ∀c ∈
{c1, . . . , ci−1} : (c� n) and ∀c ∈ {ci+1, . . . , cl} : (n� c). To achieve this condition, we

insert n′ intoG� immediately to the right ofm, wherem = ci−1 if (i �= 1) ∧ (p′1 � ci−1)

andm = p′1 otherwise. We then insert n intoG� immediately to the right of n′.

We perform the converse operation for G�. The position of the new node in G� is

determined by pk , because ∀p ∈ P : (p�pk), and therefore (pk�n)⇒ ∀p ∈ P : (p�n).
Let c1, . . . , cl be the children of pk , where ci = n (i.e., n is to be the ith child, ci, of pk). For
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correct insertion, we desire that ∀c ∈ {c1, . . . , ci−1} : (c� n) and ∀c ∈ {ci+1, . . . , cl} :
(n � c). To achieve this condition, we insert n′ into G� immediately to the left of b,

where b = ci+1 if (i �= l) ∧ (ci+1 � p′n) and b = p′n otherwise. We then insert n intoG�
immediately to the left of n′.

The above scheme is general in that it allows children to be added one by one. In

practice, some growth patterns allow straightforward derivatives of this algorithm that

do not require shadow nodes. These optimizations can be applied to both series–parallel

and producer–consumer dags, but since they do not affect the time or space complexity

of the LR-tags method, we will defer that discussion until Chapter 10.

7.3.2 Efficient Ordered Lists

In the previous section we saw how we can dynamically maintain two total orders, G�
and G�, representing a task dag, but we have not yet shown that these total orders can

be maintained and queried efficiently. Thankfully, this problem is the same list-order

problem we saw in Section 2.1. As we observed there, this problem has efficient solutions

(Dietz & Sleator, ; Tsakalidis, ) that can perform insertions, deletions, and order

queries in constant time and require space proportional to the number of items in the

list.

As in Chapter 2, I prefer the first of Dietz and Sleator’s two ordered-list algorithms.

Dietz and Sleator’s second, more complex, algorithm has better theoretical performance,

because it can perform all operations in constant worst-case time, in contrast to their

simpler algorithm, which can only perform ordered-list deletions and order queries in

constant worst-case time, requiring constant amortized time for ordered-list insertions.

In practice, however, Dietz and Sleator’s first algorithm is less complex, much faster (in

total execution time), easier to implement, and better suited to parallelization than its

completely real-time counterpart.

Parallel Access to Ordered Lists

For determinacy checking to run in parallel, it is necessary to allow parallel access to the

ordered-list structure. Sometimes, however, these accesses must be serialized to ensure

that the ordered list is not inadvertently corrupted.
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To describe the locking strategy required, we need to expose a little of the under-

lying details of the Dietz and Sleator’s ordered-list data structure (complete details are

provided in Appendix D).

Each item in the ordered list is tagged with two integers: an upper tag, which provides

a coarse-grained ordering for tasks; and a lower tag, which orders nodes that have the

same upper tag. When an item is inserted into the list, it is given the same upper tag as

its predecessor and a suitable new lower tag. Sometimes the ordered list “runs out” of

lower tags, at which point all the ordered-list entries with that upper tag are renumbered

and given new upper and lower tags. Let us call this process a local reorganization.

Sometimes the algorithm also runs out of room in the upper-tag space, and so must

renumber the upper tags so that they are more evenly distributed. Let us call this process

a global reorganization. Both kinds of reorganization can only be triggered by ordered-

list insertions and are fairly rare in practice (e.g., for the benchmarks in Chapter 11, the

average is about one reorganization per thousand ordered-list insertions).

The most common operation for the ordered lists in the determinacy checker will be

comparisons between items in the list. Other list operations, such as insertions and dele-

tions are less common. To reduce the chances of the ordered list becoming a bottleneck,

we desire a locking strategy that maximizes the amount of parallelism while nonetheless

remaining correct.

In my parallelization of the ordered-list structure (described in more detail in Ap-

pendix E), order queries are lock free, although they may have to be retried if the ordered

list undergoes a local or global reorganization while the order query is being performed.

Ordered-list insertions are performed while holding a shared lock, allowing multiple

insertions to take place concurrently. This lock is upgraded to a local or global exclusive

lock if a local or global reorganization is required. Deletions from the ordered list are

performed while holding an exclusive lock.

I do not claim that this parallelization scheme is the most efficient one possible, but

it does appear to work well in practice, especially when the optimizations detailed in

Section 10.5.3 are implemented.



Chapter 8

The Shadowed Task Graph

In Section 7.3 of the preceding chapter, I outlined an algorithm to maintainG� andG�
for a dynamic graph. In this chapter, we will examine the foundations of that algorithm

in more detail. These details will be of most interest to readers who wish to assure them-

selves that the algorithm presented is correct—this chapter can be skipped or skimmed

through in a first reading of this dissertation, or ignored entirely by readers interested in

more practical matters.

8.1 Introduction

As we saw in Chapter 7, an LR-graph can be defined by two total orders (defining re-

lations � and �). Although any two total orders can define a LR-graph, an important

question is whether we can quickly and correctly insert a new node into each total order

to add a new node to the graph at a particular position.

Extending the graph is not difficult if efficiency is not important. It is relatively

straightforward to construct an algorithm that will add a node to a graph of size n in

O(n) time.¹ In Chapter 7, we examined an algorithm to add new leaves to an LR-Graph

efficiently by using shadow nodes to determine insertion points in � and �.

In this chapter, I will show how it is possible to construct a shadowed LR-Graph,

1. One possible algorithm involves creating � and � from � and �, extending � and � appropriately,
and then creating updated versions of � and � from � and �.


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G∗, from a given LR-graph, G; discuss the properties of the shadow nodes it contains;

and show how these properties lead to the insertion algorithm of Chapter 7.

8.2 Notation

In our discussion, we will refer to an arbitrary graph, G, and to G∗, the graph resulting

from augmentingG by adding shadow nodes. G∗ subsumesG, containing allG’s nodes

and relationships, but adds nodes such that, for each node x inG, there is an additional

node x′ inG∗. Hence, ifG is of size n,G∗ will be of size 2n. Similarly,G′ is defined as the

graph of shadow nodes inG∗—that is,G′ = G−G∗. Notationally, we will use a, b, c, . . .

for variables that can only be non-shadow nodes, a′, b′, c′, . . . for shadow nodes, and

a∗, b∗, c∗, . . . for nodes that may be either.

Let us also define a few notational conveniences, �=�, ��=, � � , and �, where

x∗ �=� y∗ ≡ ¬(y∗ � x∗) ≡ (x∗ � y∗) ∨ (y∗ � x∗) (.a)

x∗ ��= y∗ ≡ ¬(y∗ � x∗) ≡ (x∗ � y∗) ∨ (x∗ � y∗) (.b)

x∗ � y∗ ≡ ¬(x∗ � y∗) (.c)

x∗ � � y∗ ≡ ¬(x∗ � y∗). (.d)

8.3 Below-Left-Of Sets

This section defines below-left-of sets and below-right-of sets, which we will use to

formally define shadow nodes in the next section, and proves some useful properties of

these sets.

For an arbitrary LR-graphG let us define the following:

Definition 8.1 For any x ∈ G,

↓LG(x) ≡ {l ∈ G | ∃s ∈ G : (s � x) ∧ (s � l)} (.a)

↓RG(x) ≡ {r ∈ G | ∃s ∈ G : (x � s) ∧ (s � r)} (.b)

In English, ↓LG(x) (pronounced “the below-left-of set of x”) contains all the nodes in G
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Figure 8.1: An illustration of below-left-of sets. Each shaded area is the below-left-of set
for the nodes listed in its corner.
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to the left of x, and all the descendants of the nodes to the left of x. Similarly, ↓RG(x)

contains all the nodes to the right of x, and all the descendants of the nodes to the right

of x.

Figure 8.1 provides an example of below-left-of sets. We can see, for example, that
↓LG(H) = ↓LG(F) = {L, C, J,D, B, I,G, E}. Notice that I is included in the set not because it

is a descendant of F, but because it is a descendant of E, and E � F. (The graph is drawn

as a dominance drawing, making it easy to see that G� = [A, B, C,D, E, F,G,H, I, J, K, L]

andG� = [L, C, J,D, B, I,G, E,H, F, K, A].)

From definitions 8.2a and 8.2b, we can trivially observe that a node is never contained

within its own below-left-of set; that is,

∀x ∈ G : x /∈ ↓LG(x) (.a)

∀x ∈ G : x /∈ ↓RG(x), (.b)

and that all nodes in the below-left-of set of some node x are strictly to-the-left-of or

below x; that is,

∀l ∈ ↓LG(x) : (l �=� x) (.a)

∀r ∈ ↓RG(x) : (x ��= r). (.b)

Figure 8.1 also reveals another property of below-left-of sets that we will express

formally in the following lemma:

Lemma 8.2 For any x ∈ G, ↓LG(x) forms a (possibly null) prefix of G�, and, similarly,
↓RG(x) forms a (possibly null) suffix ofG�. That is,

∀l ∈ ↓LG(x) : m� l⇒ m ∈ ↓LG(x) (.a)

∀r ∈ ↓RG(x) : r � n⇒ n ∈ ↓RG(x) (.b)
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Proof

We will prove equation 8.5a. The proof for equation 8.5b is analogous.

(l ∈ ↓LG(x)) ∧ (m� l)
expand using definition 8.2a

⇒
(
∃s : (s � x) ∧ (s � l)

)
∧ (m� l)

rearrange, widen (using definition of �)

⇒ ∃s : (s � x) ∧ (m� l) ∧ (l � s)
eliminate l (transitivity)

⇒ ∃s : (s � x) ∧ (m� s)
expand (definition of �)

⇒ ∃s : (s � x) ∧
(
(s � m) ∨ (m � s)

)
distribute

⇒
(
∃s : (s � x) ∧ (m � s)

)
∨
(
∃s : (s � x) ∧ (s � m)

)
eliminate quantification in first term (transitivity)

⇒ (m � x) ∨
(
∃s : (s � x) ∧ (s � m)

)
reintroduce quantification

⇒
(
∃s : (s � x) ∧ (s = m)

)
∨
(
∃s : (s � x) ∧ (s � m)

)
simplify (remove duplication)

⇒ ∃s : (s � x) ∧ (s � m)

simplify using definition 8.2a

⇒ m ∈ ↓LG(x) �

We will now show some obvious corollaries of the above lemma.
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Corollary 8.3

∀x, y ∈ G : x ∈ ↓LG(y) ⇒ ↓LG(x) ⊂ ↓LG(y) (.a)

∀x, y ∈ G : x ∈ ↓RG(y) ⇒ ↓RG(x) ⊂ ↓RG(y) (.b)

Proof

We will prove equation 8.6a; equation 8.6b is analogous. First, we will prove that ↓LG(x) ⊆
↓LG(y) by showing that l ∈ ↓LG(x)⇒ l ∈ ↓LG(y):

(x ∈ ↓LG(y)) ∧ (l ∈ ↓LG(x))

apply equation 8.4a

⇒ (x ∈ ↓LG(y)) ∧ (l �=� x)

apply equation 8.5a

⇒ l ∈ ↓LG(y)

Now, all that remains is to show that ↓LG(x) �= ↓LG(y). This task is trivial, because

(x ∈ ↓LG(y)) and x /∈ ↓LG(x), thus x is one element that is in ↓LG(y) but not ↓LG(x). �

Corollary 8.4

∀x, y ∈ G : (x � y) ⇒ ↓LG(x) ⊂ ↓LG(y) (.a)

∀x, y ∈ G : (y � x) ⇒ ↓RG(x) ⊂ ↓RG(y) (.b)

Proof

We will prove equation 8.7a; equation 8.7b is analogous.

x � y
apply equation 8.2a

⇒ x ∈ ↓LG(y)

apply equation 8.6a

⇒ ↓LG(x) ⊂ ↓LG(y) �
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Given this result, we can expect that distinct nodes that share the same below-left-of

set must be related by �, because they cannot be related by � . Figure 8.1 provides several

instances of this property—for example, ↓LG(E) = ↓LG(G) = ↓LG(I), and E � G � I. We

will express this property formally in the following corollary:

Corollary 8.5 It is possible for two distinct nodes in G to have the same below-left-of

sets, but only if one is an ancestor of the other.

∀x, y ∈ G : (↓LG(x) = ↓LG(y)) ⇒
(
(x = y) ∨ (x � y) ∨ (y � x)

)
(.a)

∀x, y ∈ G : (↓RG(x) = ↓RG(y)) ⇒
(
(x = y) ∨ (x � y) ∨ (y � x)

)
(.b)

Proof

It is trivial to rule out the other possibilities, x � y and y � x, because they contradict

Corollary 8.4 (e.g., (x � y)⇒ (↓LG(x) ⊂ ↓LG(y))). �

If you examine Figure 8.1, you may also notice that ↓LG(G) ⊂ ↓LG(F) and F � G.

Interestingly, these two properties imply that G ∈ ↓LG(F)—the following lemma states

this property in the general case:

Lemma 8.6

∀x, y ∈ G : (↓LG(x) ⊂ ↓LG(y)) ∧ (y � x) ⇒ x ∈ ↓LG(y) (.a)

∀x, y ∈ G : (↓RG(x) ⊂ ↓RG(y)) ∧ (y � x) ⇒ x ∈ ↓RG(y) (.b)

(Proof begins on next page…)
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Proof

We will prove equation 8.9a; equation 8.9b is analogous.

(↓LG(x) ⊂ ↓LG(y)) ∧ (y � x)

expand using properties of subsets

⇒ (∃l ∈ ↓LG(y) : l /∈ ↓LG(x)) ∧ (y � x)

expand using equation 8.2a

⇒
(
∃l, s ∈ G : (s � y) ∧ (s � l) ∧ (l /∈ ↓LG(x))

)
∧ (y � x)

rearrange (and duplicate one term)

⇒ ∃l, s ∈ G : (s � y) ∧
(
(s � y) ∧ (y � x)

)
∧ (s � l) ∧ (l /∈ ↓LG(x))

eliminate y from one term

⇒ ∃l, s ∈ G : (s � y) ∧
(
(s � x) ∨ (s � x)

)
∧ (s � l) ∧ (l /∈ ↓LG(x))

rearrange and discard

⇒
(
∃l, s ∈ G : (s � x) ∧ (s � l) ∧ (l /∈ ↓LG(x))

)
∨
(
∃s ∈ G : (s � y) ∧ (s � x)

)
simplify using equation 8.2a

⇒
(
∃l ∈ G : (l ∈ ↓LG(x)) ∧ (l /∈ ↓LG(x))

)
∨ (x ∈ ↓LG(y))

only the right-hand term can be true

⇒ x ∈ ↓LG(y) �

8.4 Construction of a Shadowed Graph

We will define the shadow graph by defining the relationships of shadow nodes to non-

shadow nodes under � and �. In informal English, the shadow node x′ lies after the last

node in ↓LG(x) and before the first non-shadow node that follows ↓LG(x); in cases where

several shadow nodes are adjacent (because they have the same below-left-of sets), we

define the order of the shadow nodes using the ordering of their non-shadow counter-

parts (i.e., x′ � y′ if x � y).
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Figure 8.2: An illustration of below-left-of sets and shadow nodes.
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Definition 8.7

∀l, x ∈ G :
(
l ∈ ↓LG(x)⇔ (l �=� x′)

)
(.a)

∀r, x ∈ G :
(
r ∈ ↓RG(x)⇔ (x′ ��= r)

)
(.b)

∀x, y ∈ G :
((

↓LG(x) = ↓LG(y)
)
⇒
(
(x′ � y′)⇔ (x � y)

))
(.a)

∀x, y ∈ G :
((

↓RG(x) = ↓RG(y)
)
⇒
(
(y′ � x′)⇔ (x � y)

))
(.b)

∀x ∈ G, y′ ∈ G′ : x �= y′ (.)

These equations show how to unambiguously create a shadowed graph from an ex-

isting graph. Figure 8.2 adds shadow nodes to the graph shown in Figure 8.1 following

these rules. In the resulting graph, the total orders that define the graph areG∗
� = [A, B,

C, C’,D,D’, B’, E, E’, F,G,G’,H, I, J, J’, I’,H’, F’, K, K’, A’], and G∗
� = [A’, B’, C’, C,D’, J, J’,D, B,

E’,G’, I’, I,G, E, F’,H’,H, F, K’, K, A].

8.5 Properties of Shadow Nodes

Shadow nodes are useful because they express certain useful information about a graph

in a “handy” way. We will cover some simple properties and then move on to more

complex ones. Put simply, a node’s shadow always lies beneath it, and the nodes in the

graph between x and x′ can only be reached by passing through x. We will prove these

two properties in the following lemmas:

(Lemma begins on next page…)
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Lemma 8.8 A node’s shadow is always beneath it.

∀x ∈ G : x � x′ (.)

Proof

First, let us observe that x′ �=� x, because its negation, x� x′, leads to a contradiction:

(x ∈ G) ∧ (x� x′)
apply equation 8.12

⇒ (x ∈ G) ∧ (x �=� x′)

apply equation 8.10a

⇒ x ∈ ↓LG(x))

contradiction with equation 8.3a

By a symmetric argument, x ��= x′. Combining these relationships, we have

(x′ �=� x) ∧ (x ��= x′)

simplify

⇒ x � x′ �

Figure 8.2 also shows the close correspondence between shadow nodes and below-

left-of (and below-right-of) sets. Thus, the following lemma should be very apparent:

(Lemma begins on next page…)
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Lemma 8.9

↓LG(x) ⊂ ↓LG(y) ⇒ x′ �=� y′ (.a)

↓RG(x) ⊂ ↓RG(y) ⇒ y′ ��= x′ (.b)

Proof

As usual, we will prove equation 8.14a; equation 8.14b is analogous.

↓LG(x) ⊂ ↓LG(y)

rules for proper subsets

⇒ ∃l ∈ ↓LG(y) : l /∈ ↓LG(x)

expand using definition 8.10a

⇒ ∃l ∈ G : (l �=� y′) ∧ ¬(l �=� x′)

remove negation

⇒ ∃l ∈ G : (l �=� y′) ∧ (x′ � l)
eliminate l (transitivity)

⇒ x′ �=� y′ �

Given the way that shadows lurk beneath their regular counterparts, we should not be

surprised that there is a strong connection between the � relationships for regular nodes

and the � relationships for shadows. We will examine this connection in the following

two lemmas:

(Lemma begins on next page…)



8.5. Properties of Shadow Nodes 

Lemma 8.10

∀x, y ∈ G : (x � y) ⇒ (x � y′) (.a)

∀x, y ∈ G : (x � y) ⇒ (x′ � y) (.b)

Proof

As usual, we will prove equation 8.15a; equation 8.15b is analogous.

x � y
apply equation 8.2a

⇒ x ∈ ↓LG(y)

apply equation 8.10a

⇒ x �=� y′

expand

⇒ (x � y′) ∨ (y′ � x) (.)

On the other hand, from equation 8.13 we know that y � y′. From that, and x � y, we

can determine

(x � y) ∧ (y � y′)

eliminate y

⇒ (x � y′) ∨ (x � y′) (.)

If we combine equations 8.16 and 8.17, the only valid solution is x � y′. �

(Lemma begins on next page…)
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Lemma 8.11

∀x′ ∈ G′, y ∈ G : (x′ � y) ⇒ (x′ � y′) (.a)

∀x ∈ G, y′ ∈ G′ : (x � y′) ⇒ (x′ � y′) (.b)

Proof

As usual, we will prove equation 8.18a; equation 8.18b is analogous. First, let us observe

that

x′ � y
apply equation 8.13

⇒ (x′ � y) ∧ (y � y′)

eliminate y

⇒ (x′ � y′) ∨ (x′ � y′) (.)

We will show that of these two cases, only the first case, x′ � y′, can be true. The second

case, x′ � y′, leads to a contradiction:

x′ � y′

widen

⇒ y′ � x′

use negated form

⇒ ¬(x′ �=� y′)

apply equation 8.14a (backwards)

⇒ ¬(↓LG(x) ⊂ ↓LG(y))

apply equation 8.7a (backwards)

⇒ ¬(x � y)
contradicts equation 8.15b

Thus, x′ � y′ leads to a contradiction and, hence, from equation 8.19, x′ � y′. �
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We can combine the preceding two lemmas in two useful ways:

Corollary 8.12

∀x∗ ∈ G∗, y ∈ G : (x∗ � y) ⇒ (x∗ � y′) (.a)

∀x ∈ G, y∗ ∈ G∗ : (x � y∗) ⇒ (x′ � y∗) (.b)

Proof

Trivially from Lemmas 8.10 and 8.11. �

Corollary 8.13

∀x, y ∈ G : (x � y)⇒ (x′ � y′) (.)

Proof

Trivially from the Lemmas 8.10 and 8.11. �

8.5.1 Adjacency Properties

In this section, we will show that leaves in G have the property that they lie adjacent to

their shadows in the � and � orders definingG∗.

Lemma 8.14 If c is a leaf inG, there is no shadow node that lies between c and c′ under

� or �.

(�d ∈ G : c � d)⇒
∀x′ ∈ G′ : (x′ �=� c) ⇒ (x′ � c′) (.a)

∀x′ ∈ G′ : (c ��= x′) ⇒ (c′ � x′) (.b)

Proof

As usual, we will prove equation 8.22a; equation 8.22b is analogous. We will begin by
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observing that

x′ �=� c

weaken

⇒ c � � x′

apply equation 8.15a backwards

⇒ c � � x

and

(c � � x) ∧ (�d ∈ G : c � d)

weaken

⇒ (c � � x) ∧ (c � x)

restate in the positive

⇒ (x = c) ∨ (x � c) ∨ (x � c)

We will consider each possibility, (x = c), (x � c), and (x � c), in turn. First,

(x = c)⇒ (x′ = c′)⇒ (x′ � c′) (.)

Similarly,

(x � c)
apply equation 8.21

⇒ (x′ � c′)
weaken

⇒ (x′ � c′) (.)

Finally, we will consider the last case, x � c. First, we will show that if x � cwith x′ �=� c,

then ↓LG(x) ⊆ ↓LG(c). We will do this by showing that ∀y ∈ G : (y � x)⇒ (y � c).
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(x � c) ∧ (y � x) ∧ (x′ �=� c)

apply equation 8.10a (backwards) to last term

⇒ (x � c) ∧ (y � x) ∧ (c /∈ ↓LG(x))

expand last term using definition 8.2a

⇒ (x � c) ∧ (y � x) ∧
(
�s ∈ G : (s � x) ∧ (s � c)

)
rearrange (duplicate one term)

⇒ (y � x) ∧
(
(x � c) ∧ (y � x)

)
∧
(
�s ∈ G : (s � x) ∧ (s � c)

)
eliminate x in second term

⇒ (y � x) ∧
(
(y � c) ∨ (y � c)

)
∧
(
�s ∈ G : (s � x) ∧ (s � c)

)
simplify

⇒ (y � c) ∨
((
(y � x) ∧ (y � c)

)
∧
(
�s ∈ G : (s � x) ∧ (s � c)

))
simplify (remove contradictory second term)

⇒ y � c

and, finally,

(↓LG(x) ⊆ ↓LG(c)) ∧ (x � c)

expand

⇒
(
(↓LG(x) = ↓LG(c)) ∨ (↓LG(x) ⊂ ↓LG(c))

)
∧ (x � c)

rearrange, discard

⇒ (↓LG(x) ⊂ ↓LG(c)) ∨
(
(↓LG(x) = ↓LG(c)) ∧ (x � c)

)
apply equation 8.14a (and weaken)

⇒ (x′ � c′) ∨
(
(↓LG(x) = ↓LG(c)) ∧ (x � c)

)
apply equation 8.11a

⇒ (x′ � c′) ∨ (x′ � c′)
simplify

⇒ x′ � c′ (.)

Thus, equations 8.23, 8.24, and 8.25 and together show that x′ � c′. �
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Lemma 8.15 If c is a leaf inG, then c and c′ are adjacent in � and �. (This lemma is a

generalization of the preceding lemma, which only applied to shadow nodes.)

(�d ∈ G : c � d)⇒
∀x∗ ∈ G∗ : (x∗ �=� c) ⇒ (x∗ � c′) (.a)

∀x∗ ∈ G∗ : (c ��= x∗) ⇒ (c′ � x∗) (.b)

Proof

We will show only equation 8.26a; equation 8.26b is analogous.

First, let us observe that x∗ must be either a shadow or non-shadow node:

x∗ ∈ G∗ ⇒ (∃x ∈ G : x = x∗) ∨ (∃x′ ∈ G′ : x′ = x∗)

If x∗ is a shadow node, then we can use the preceding lemma (equation 8.22a applies).

Therefore, we only need to consider the case where ∃x ∈ G : x = x∗:

(x∗ �=� c) ∧ (∃x ∈ G : x = x∗) ∧ (�d ∈ G : c � d)

simplify (eliminate x∗ using equality)

⇒ (x �=� c) ∧ (�d ∈ G : c � d)

expand (definition of �=�)

⇒
(
(x � c) ∨ (c � x)

)
∧ (�d ∈ G : c � d)

simplify (remove impossible cases)

⇒ x � c
apply equation 8.15a

⇒ x � c′

widen

⇒ x� c′ �

Thus, if c is a leaf, c and c′ are adjacent in both total orders. We can restate this

adjacency condition more tersely: A node and its shadow are adjacent in both orderings
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if and only if ∀z∗ ∈ G∗ : (c � z∗)⇒ (c′ � z∗), as we show in the following corollary:

Corollary 8.16

(
∀x∗ ∈ G∗ : (x∗ �=� c)⇒ (x∗ � c′)

)
∧
(
∀y∗ ∈ G∗ : (c ��= y∗)⇒ (c′ � y∗)

)
⇔
(
∀z∗ ∈ G∗ : (c � z∗)⇒ (c′ � z∗)

)
(.)

Proof

First, the forwards direction:

(
∀x∗ ∈ G∗ : (x∗ �=� c)⇒ (x∗ � c′)

)
∧
(
∀y∗ ∈ G∗ : (c ��= y∗)⇒ (c′ � y∗)

)
∧ (c � z∗)

expand � as �=� and ��=

⇒
(
∀x∗ ∈ G∗ : (x∗ �=� c)⇒ (x∗ � c′)

)
∧
(
∀y∗ ∈ G∗ : (c ��= y∗)⇒ (c′ � y∗)

)
∧
(
(z∗ �=� c) ∧ (c ��= z∗)

)
simplify

⇒ (z∗ � c′) ∧ (c′ � z∗)
simplify

⇒ c′ � z∗)

(Proof continues on next page…)
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Second, the backwards direction. In this case, we will only show a proof for � (the proof

for � is analogous).

(
∀z∗ ∈ G∗ : (c � z∗)⇒ (c′ � z∗)

)
∧ (x∗ �=� c)

expand �=�(
∀z∗ ∈ G∗ : (c � z∗)⇒ (c′ � z∗)

)
∧
(
(x∗ � c) ∨ (c � x∗)

)
simplify

⇒
(
(x∗ � c) ∨ (c′ � x∗)

)
apply equation 8.20a

⇒
(
(x∗ � c′) ∨ (c′ � x∗)

)
simplify

⇒ (x∗ � c′) �

8.6 The Inconsequentiality Condition

As we have seen, leaves inG have the property that they lie adjacent to their shadows in

� and �, and thus satisfy the condition

∀x∗ ∈ G∗ : (c � x∗)⇒ (c′ � x∗) (.)

I call this condition the inconsequentiality condition because, as we will see shortly,

nodes that satisfy this condition can be added to (or removed from) the total orders that

define the graph without damaging the relationships between any of the other nodes

in the graph—in particular, the locations of shadow nodes remain the same whether or

not such inconsequential nodes and their shadows are present.² (We will prove this

property in the next section.)

For the purposes of determinacy checking, we need only be concerned with graphs

that grow by adding new leaf nodes. The proofs that follow are slightly more general,

2. There may also be other nodes that can be safely removed from the graph without disrupting the
placement of shadow nodes. The inconsequentiality condition is therefore a sufficient rather than a
necessary condition.
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however, being based on the addition and removal of inconsequential nodes, rather than

the addition and removal of leaves.

In Figure 8.2, we can see that both J and L satisfy the inconsequentiality condition,

while only L is a leaf (the only leaf in the graph). If we remove J from the total orders, they

becomeG∗
� = [A, B, C, C’,D,D’, B’, E, E’, F,G,G’,H, I, I’,H’, F’, K, K’, A’], andG∗

� = [A’, B’, C’,

C,D’,D, B, E’,G’, I’, I,G, E, F’,H’,H, F, K’, K, A]. Figure 8.3 shows the graph defined by these

relations.

Let us consider what kinds of nodes, besides leaves, may satisfy the inconsequen-

tiality condition. A non-leaf node c which satisfies the inconsequentiality condition is

flanked by nodes to its left and right such that every node that is a child of c is also a

child of these left and right nodes. We will express this condition more formally in the

following lemma:

Lemma 8.17

(
∀x∗ ∈ G∗ : (c � x∗)⇒ (c′ � x∗)

)
⇒

∀x ∈ G : (c � x) ⇒
(
∃l ∈ G : (l � c) ∧ (l � x)

)
(.a)

∀x ∈ G : (c � x) ⇒
(
∃r ∈ G : (c � r) ∧ (r � x)

)
(.b)

(Proof begins on page …)
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Figure 8.3: Deleting an inconsequential node. This graph is identical to the graph shown
in Figure 8.2 except that the inconsequential node J has been removed.
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Proof

As usual, we will prove equation 8.29a; equation 8.29b is analogous.

c � x

add an obvious consequence

⇒ (c � x) ∧ (x � � c)
apply inconsequentiality condition to first term

⇒ (c′ � x) ∧ (x � � c)
generalize first term

⇒ (x �=� c′) ∧ (x � � c)
apply equation 8.10a (Definition 8.7) to first term

⇒ (x ∈ ↓LG(c)) ∧ (x � � c)
apply equation 8.2a (Definition 8.1) to first term

⇒
(
∃l ∈ G : (l � c) ∧ (l � x)

)
∧ (x � � c)

simplify (l �= x because x � � c)

⇒ ∃l ∈ G : (l � c) ∧ (l � x) �

8.7 Incremental Graph Destruction

As a prelude to the next section, where we will discuss incremental graph construction,

this section shows that it is possible to remove an inconsequential node and its shadow

from the total orders that define a shadowed graph without making the location of the re-

maining shadow nodes incorrect (in stark contrast with the deletion of an arbitrary node

from the graph, which may have consequences for the placement of shadow nodes—see

Figures 8.4 and 8.5).

We will consider the case of removing a node c (and its shadow, c′) from the total

orders that representG∗, resulting in a new graph Γ∗.
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Figure 8.4: Incorrect deletion of a non-inconsequential node. This graph is identical to
the graph shown in Figure 8.2 except that the F and F’ nodes have been removed from the
total orders that define the graph. Unfortunately, this graph places the shadow node G’
incorrectly. The correct graph is shown in Figure 8.5
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Figure 8.5: Correct deletion of a non-inconsequential node. This graph was created
by removing F and all the shadow nodes from the graph shown in Figure 8.2 and then
adding shadow nodes in the appropriate places. In other words, all the shadow nodes
were thrown away and recreated from scratch.
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Lemma 8.18 With the exception of the removal of c, the below-left-of sets ofG and Γ are

identical. (And similarly for below-right-of sets).

∀x ∈ Γ : ↓LΓ(x) = ↓LG(x)− {c } (.a)

∀x ∈ Γ : ↓RΓ(x) = ↓RG(x)− {c } (.b)

Proof

As usual, we will prove equation 8.30a; equation 8.30b is analogous. We will prove this

equation 8.30a by first showing that all members of ↓LΓ(x) are in ↓LG(x)− {c } and then

showing that all members of ↓LG(x) − {c } are in ↓LΓ(x). First, let us consider some

l ∈ ↓LΓ(x):

l ∈ ↓LΓ(x)

apply equation 8.2a (Definition 8.1)

⇒ (l ∈ Γ) ∧
(
∃s ∈ Γ : (s � x) ∧ (s � l)

)
G subsumes Γ, thus (s ∈ Γ)⇒ (s ∈ G)

⇒ (l ∈ G) ∧
(
∃s ∈ G : (s � x) ∧ (s � l)

)
apply equation 8.2a (Definition 8.1)

⇒ l ∈ ↓LG(x)

(Proof continues on next page…)
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Second, we shall consider some l ∈ (↓LG(x)− {c }):

l ∈ (↓LG(x)− {c })
apply equation 8.2a (Definition 8.1)

⇒
(
l ∈ (G− {c })

)
∧
(
∃s ∈ G : (s � x) ∧ (s � l)

)
use definition of Γ (∀x ∈ G : (x ∈ Γ) ∨ (x = c))

⇒ (l ∈ Γ) ∧
((
∃s ∈ Γ : (s � x) ∧ (s � l)

)
∨
(
(c � x) ∧ (c � l)

))
apply equation 8.2a (Definition 8.1)

⇒ (l ∈ ↓LΓ(x)) ∨
(
(l ∈ Γ) ∧

(
(c � x) ∧ (c � l)

))
but (l ∈ Γ)⇒ (l �= c), thus c � l becomes c � l

⇒ (l ∈ ↓LΓ(x)) ∨
(
(l ∈ Γ) ∧

(
(c � x) ∧ (c � l)

))
apply equation 8.29a (Lemma 8.17)

⇒ (l ∈ ↓LΓ(x)) ∨
(
(l ∈ Γ) ∧

(
(c � x) ∧

(
∃s ∈ G : (s � c) ∧ (s � l)

)))
apply transitivity, and also (s �= c) ∧ (s ∈ G)⇒ (s ∈ Γ)

⇒ (l ∈ ↓LΓ(x)) ∨
(
(l ∈ Γ) ∧

(
∃s ∈ Γ : (s � x) ∧ (s � l)

))
apply equation 8.2a (Definition 8.1)

⇒ (l ∈ ↓LΓ(x)) ∨ (l ∈ ↓LΓ(x))

simplify

⇒ (l ∈ ↓LΓ(x)) �

Because the position of shadow nodes is defined by the graph’s below-left-of and

below-right-of sets, this lemma proves that all the shadow nodes in G∗ preserve their

positions in Γ∗. If removing an inconsequential node does not change the ordering of

the nodes that remain, then, conversely, adding an inconsequential node will not change

those orders either. We will rely on this property in the next section.
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8.8 Incremental Graph Construction

We have seen that it is possible to create a shadowed graph from a pre-existing graph

defined by two total orders (Section 8.4). Now we will show how it is possible easily and

efficiently to extend the total orders for a graph as new inconsequential nodes (and their

shadows) are added toG∗.

As we have seen, leaves in G (and other inconsequential nodes) have the property

that they lie adjacent to their shadows. Thus, if we can determine where a new leaf ’s

shadow c′ lies in the two total orders, we will also have determined where c lies.

For simplicity, the following discussion will describe adding c′ and c to the � ordering

(the � ordering is analogous). Because it is inconvenient to talk about the position of c

and c′ in a graph that does not yet contain them, we will use a “backwards approach” and

imagine that c and c′ have already been added to the graph. Since c is an inconsequential

node, c′ immediately precedes c in the � ordering. Suppose we find the node m that

immediately precedes c′ in G∗
� and then delete c′ and c. As we saw in Lemma 8.18,

deleting c′ and c does not invalidate the rest of the graph. Similarly, given m, we can

reinsert c′ and c into the graph. More importantly, given a means to find m, we can

insert c′ and c into the graph for the first time.

It is vital that c′ and c be adjacent (and, thus, that c is an inconsequential node);

otherwise, finding the insertion point for c′ would not reveal c’s position in the total

orders.

Lemma 8.19 If c satisfies the inconsequentiality condition, then the only nodes that may

have the same below-left-of set (or below-right of set) as c are its ancestors.

(
∀x∗ ∈ G∗ : (c � x∗)⇒ (c′ � x∗)

)
⇒

∀l : (↓LG(l) = ↓LG(c))⇒ (l � c) (.a)

∀r : (↓RG(r) = ↓RG(c))⇒ (r � c) (.b)

Proof

This lemma is trivially true for leaves in G. To show that it is true for any node that

satisfies the inconsequentiality condition requires a little more work. We will only prove
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equation 8.31a; equation 8.31b is analogous.

(↓LG(l) = ↓LG(c))

apply equation 8.8a

⇒ (l � c) ∨ (c � l) (.)

but

(c � l) ∧
(
∀x∗ ∈ G∗ : (c � x∗)⇒ (c′ � x∗)

)
simplify (and discard)

⇒ c′ � l

use equation 8.13 (and transitivity)

⇒ c′ � l′

widen using definition of �=�

⇒ l′ �=� c′

from equation 8.11a (given ↓LG(l) = ↓LG(c))

⇒ l � c

contradiction (.)

Combining equation 8.32 and contradiction 8.33 yields equation 8.31a. �

8.8.1 Parents and Siblings

As we shall see, the insertion algorithm for inconsequential nodes uses information

about the leftmost and rightmost parents of the newly added node, and its left and right

siblings. In this section we will formally define what is meant by these terms.
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Parents

Definition 8.20 When c has at least one parent, PL(c) (the leftmost parent of c) and

PR(c) (the rightmost parent of c) are defined to be the unique nodes satisfying:

∀p, c ∈ G : (p � c)⇒ (PL(c) � c) ∧ (PL(c) � p) (.a)

∀p, c ∈ G : (p � c)⇒ (PR(c) � c) ∧ (p� PR(c)) (.b)

(PL(c) and PR(c) may refer to the same node. )

A more conventional way to state the definition above is

PL(c) ≡ min
�

{
p ∈ G | (p � c)

}
PR(c) ≡ max

�

{
p ∈ G | (p � c)

}
where min (or max) of the empty set is undefined, meaning PL(c) (or PR(c)) do not exist.

The advantage of the form in Definition 8.20 is that the equations only apply when nodes

have parents. In our discussion, we will assume that the graph begins with a root node

so that every leaf that is added to the graph will have a parent, but the results generalize

in the obvious way to the addition of inconsequential nodes that have no parent.

Parent Shadows

We also define the P′
L(c) and P′

R(c) to be the shadows of PL(c) and PR(c) respectively. Thus

p = PL(c) ⇔ p′ = P′
L(c)

p = PR(c) ⇔ p′ = P′
R(c)

Neighbours

Similar to our definition of leftmost and rightmost parents, we define the closest left and

right neighbours of a node as follows:
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Definition 8.21

∀s, c ∈ G : (s � c) ⇒ (SL(c) � c) ∧ (s� SL(c)) (.a)

∀s, c ∈ G : (c � s) ⇒ (c � SR(c)) ∧ (SR(c) � s) (.b)

A corollary of the above definition is

Corollary 8.22

(l ∈ ↓LG(c)) ⇒ (SL(c) ∈ ↓LG(c)) ∧ (l � SL(c)) (.a)

(r ∈ ↓RG(c)) ⇒ (SR(c) ∈ ↓LG(c)) ∧ (SR(c) � r) (.b)

Proof

Trivially from Definition 8.1. �

When SL(c) and SR(c) exist

SL(c) ≡ max
�

↓LG(c)

SR(c) ≡ min
�

↓RG(c).

We do not use these simpler equations because min and max are problematic if ↓LG(c)

or ↓RG(c) are empty sets, whereas Definition 8.21 can only be used when these sets are

not empty.

If a node c has a left sibling, SL(c) will be the closest (rightmost) left sibling; otherwise,

SL(c) may refer to a more distant cousin of c (and analogously for SR(c)).

Parent Properties

The below-left-of set for the left parent can never be larger than the below-left-of set for

its child (and similarly for below-right-of sets).
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Lemma 8.23

∀c ∈ G :↓LG(PL(c)) ⊆ ↓LG(c) (.a)

∀c ∈ G :↓RG(PR(c)) ⊆ ↓LG(c) (.b)

Proof

As usual, we will only prove equation 8.39a, as equation 8.39b is analogous. First, we will

show that (s � PL(c))⇒ (s � c):

(s � PL(c)) ∧ (PL(c) � c)

rearrange (duplicate first term)

⇒ (s � PL(c)) ∧
(
(s � PL(c)) ∧ (PL(c) � c)

)
eliminate PL(c) in second term

⇒ (s � PL(c)) ∧
(
(s � c) ∨ (s � c)

)
rearrange (and weaken)

⇒ (s � c) ∨
(
(s � PL(c)) ∧ (s � c)

)
apply equation 8.34a

⇒ (s � c) ∨
(
(s � PL(c)) ∧ (PL(c) � s)

)
eliminate contradiction

⇒ s � c (.)

Given the above, showing that ↓LG(PL(c)) ⊆ ↓LG(c) is now trivial:

l ∈ ↓LG(PL(c))

apply equation 8.2a

⇒ ∃s : (s � PL(c)) ∧ (s � l)

apply equation 8.40

⇒ ∃s : (s � c) ∧ (s � l)

apply equation 8.2a

⇒ l ∈ ↓LG(c) �
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Neighbour Properties

As we have seen, SL(c) is the last node in ↓LG(c), provided ↓LG(c) �= ∅. Thus,

Lemma 8.24

SL(c) ∈ ↓LG(x) ⇒ ↓LG(c) ⊆ ↓LG(x) (.a)

SR(c) ∈ ↓RG(x) ⇒ ↓RG(c) ⊆ ↓RG(x) (.b)

Proof

As usual, we will only prove equation 8.41a, as equation 8.41b is analogous. We will prove

that ↓LG(c) ⊆ ↓LG(x) by showing that l ∈ ↓LG(c) ⇒ l ∈ ↓LG(x):

(l ∈ ↓LG(c)) ∧ (SL(c) ∈ ↓LG(x))

apply equation 8.37a

⇒
(
(SL(c) ∈ ↓LG(c)) ∧ (l � SL(c))

)
∧ (SL(c) ∈ ↓LG(x))

discard

⇒ (l � SL(c)) ∧ (SL(c) ∈ ↓LG(x))

apply equation 8.5a

⇒ l ∈ ↓LG(x) �

We can now show an important relationship between a node’s left parent and its left

neighbour.

Lemma 8.25

∀c ∈ G : (∃l ∈ G : l � c) ⇒
(

SL(c)
�=� P′

L(c) ⇔ ↓LG(c) = ↓LG(PL(c))
)

(.a)

∀c ∈ G : (∃r ∈ G : c � r) ⇒
(

P′
R(c) ��= SR(c) ⇔ ↓RG(c) = ↓RG(PR(c))

)
(.b)

(Proof begins on next page…)
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Proof

As usual, we will only prove equation 8.42a, as equation 8.42b is analogous. First, we will

prove it in the forwards direction:

SL(c) exists, because we are assuming ∃l ∈ G : l � c

SL(c)
�=� P′

L(c)

apply equation 8.10a from Definition 8.7

⇒ SL(c) ∈ ↓LG(PL(c))

apply equation 8.41a

⇒ ↓LG(c) ⊆ ↓LG(PL(c))

include result of equation 8.39a

⇒ (↓LG(c) ⊆ ↓LG(PL(c))) ∧ (↓LG(PL(c)) ⊆ ↓LG(c))

simplify

⇒ ↓LG(c) = ↓LG(PL(c))

Now we shall prove it in the other direction:

(∃l ∈ G : l � c) ∧ (↓LG(c) = ↓LG(PL(c)))

apply equation 8.36a

⇒
(
∃l ∈ G : (SL(c) � c) ∧ (l � SL(c))

)
∧ (↓LG(c) = ↓LG(PL(c)))

discard

⇒ (SL(c) � c) ∧ (↓LG(c) = ↓LG(PL(c)))

apply equation 8.2a

⇒ (SL(c) ∈ ↓LG(c)) ∧ (↓LG(c) = ↓LG(PL(c)))

equality

⇒ SL(c) ∈ ↓LG(PL(c))

apply equation 8.10a

⇒ SL(c)
�=� P′

L(c) �



8.8. Incremental Graph Construction 

From equation 8.15a, we can see that when SL(c) is not a direct sibling of c but a

more distant cousin—and thus SL(c) � PL(c)—then SL(c) � P′
L(c), and, from the above

lemma, ↓LG(PL(c)) = ↓LG(c). Similarly, looking at this result from the reverse direction, if
↓LG(PL(c)) �= ↓LG(c)—that is, when ↓LG(PL(c)) ⊂ ↓LG(c))—then SL(c) � � PL(c) and thus

PL(c) � SL(c) (because (SL(c) � c) ∧ (PL(c) � c)⇒ (SL(c) � PL(c)) ∨ (PL(c) � SL(c))).

8.8.2 The Two Cases for Insertion

In Lemma 8.23, we saw that ↓LG(PL(c)) ⊆ ↓LG(c). We will consider the two possibilities

of this result separately.

. ↓LG(PL(c)) ⊂ ↓LG(c) — We will call this case the germane sibling case.³ In this

case, c has a sibling, s, where s = SL(c) and PL(s) = PL(c).

. ↓LG(PL(c)) = ↓LG(c) — We will call this case the no germane sibling case. In this

case, c either has no sibling at all, or it has an avuncular sibling—that is, a sibling

that is also a child of a parent that is to the left of PL(c) (a child of c’s leftward uncle).

(analogously, right siblings are also germane or avuncular—for simplicity, we will focus

on left siblings and left parents in our discussion).

Figure 8.6 provides examples of both of these cases. For example, if F were to spawn a

child between nodes G and H, then G would be an avuncular left sibling of the new node,

because G is a child of both E and F. In contrast, if this new node were to be inserted in

the same place but had both E and F as parents, G would be a germane sibling.

To complete the picture, Figure 8.7 shows all of the possible scenarios for inserting

a new node into a graph, showing how each of them neatly falls into one or other of the

two cases given above.

We will show that the position of c′ in � is solely determined by the left sibling of c

(which is SL(c)) and the shadow of the left parent of c, P′
L(c)—c′ will lie after the greater of

these two nodes (under �).⁴ This disarmingly simple rule is the essence of the insertion

3. The root of germane is the Middle-English word germain, which literally means “having the same
parents”, making the term a relevant choice because SL(c) has the same left parent as c in this case. More
importantly, only these kinds of sibling will turn out to be relevant.

4. This property that may appear “obvious” from Figure 8.7, but such an examination of cases is an
informal approach, whereas we seek a more formal proof.
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Figure 8.6: A partially complete graph. This graph is identical to the graph shown in
Figure 8.2 except that nodes I, J, and L have yet to be added.
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Figure 8.7: Cases for insertion. In these examples, P is the left parent of C, and S (if
present) is the left neighbour of C. Rotating the page ° clockwise allows us to see the
node ordering under � (running left-to-right)—the dotted lines are provided as a reader
aid for determining which node precedes C’ under �.
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algorithm given in Section 7.3 of Chapter 7. Showing that this rule is correct has been

our task in this chapter, and we are now in the final stages of that proof.

Lemma 8.26 If c satisfies the inconsequentiality condition and has no germane left sib-

ling then P′
L(c) is the last of all the shadow nodes (excluding c′) following ↓LG(PL(c)) in the

� ordering. That is,

(
∀x∗ ∈ G∗ : (c � x∗)⇒ (c′ � x∗)

)
⇒

(↓LG(p) = ↓LG(PL(c)) = ↓LG(c)) ⇒
(
(p = c) ∨ (p � PL(c))

)
(.a)

(↓RG(p) = ↓RG(PR(c)) = ↓RG(c)) ⇒
(
(p = c) ∨ (p � PR(c))

)
(.b)

Proof

As usual, we will show only equation 8.43a; equation 8.43b is analogous. We will prove

this lemma by showing that of all the nodes that share the same below-left-of set as PL(c)

(except c), PL(c) is the lowest in the graph (i.e., all the other nodes are ancestors of PL(c)).

This property, coupled with equation 8.11a of Definition 8.7, gives our desired result. Let

us first observe that equation 8.31a (Lemma 8.19) applies, and so we have

↓LG(p) = ↓LG(PL(c)) = ↓LG(c)

equality

⇒
(

↓LG(PL(c)) = ↓LG(p)
)
∧
(

↓LG(c) = ↓LG(p)
)

apply equation 8.8a to first term and and equation 8.31a to second term

⇒
(
(p � PL(c)) ∨ (PL(c) � p)

)
∧
(
(p � c) ∨ (p = c)

)
rearrange (distribute and discard)

⇒
((
(p � PL(c)) ∨ (PL(c) � p)

)
∧ (p � c)

)
∨ (p = c)

apply equation 8.34a

⇒
((
(p � PL(c)) ∨ (PL(c) � p)

)
∧ (PL(c) � p)

)
∨ (p = c)

simplify

⇒ (p � PL(c)) ∨ (p = c) �
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Thus, if c has no germane left sibling, then c′ lies directly after p′ in G� and c lies

directly after c′.

Lemma 8.27 If c satisfies the inconsequentiality condition and has a germane left sib-

ling, then there is no other node inG that has the same below-left-of set as c.

(
∀x∗ ∈ G∗ : (c � x∗)⇒ (c′ � x∗)

)
⇒(

(↓LG(PL(c)) ⊂ ↓LG(c)) ∧ (↓LG(x) = ↓LG(c))
)
⇒ (x = c) (.a)(

(↓RG(PR(c)) ⊂ ↓RG(c)) ∧ (↓RG(x) = ↓RG(c))
)
⇒ (x = c) (.b)

Proof

We will show only equation 8.44a; equation 8.44b is analogous. Let us first observe that

Lemma 8.19 applies, and thus we have

(↓LG(x) = ↓LG(c))

⇒ (x = c) ∨ (x � c)

We will show that the x � c case leads to a contradiction.

(x � c)

apply equation 8.34a

⇒ (PL(c) � x)
expand according to definition of �

⇒ (PL(c) = x) ∧ (PL(c) � x) ∧ (PL(c) � x)

Each of these possibilities leads to a contradiction. First, suppose PL(c) = x:

PL(c) = x

equality

⇒ ↓LG(PL(c)) = ↓LG(x)

contradicts (↓LG(PL(c)) ⊂ ↓LG(c)) ∧ (↓LG(x) = ↓LG(c))
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Second, suppose PL(c) � x:

(↓LG(x) = ↓LG(c)) ∧ (PL(c) � x)
apply equation 8.2a

⇒ (↓LG(x) = ↓LG(c)) ∧ (PL(c) ∈ ↓LG(x))

equality

⇒ (PL(c) ∈ ↓LG(c))

apply equation 8.4a

⇒ PL(c)
�=� c

contradicts PL(c) � c

Finally, let us consider the last case, x � PL(c):

(↓LG(x) = ↓LG(c)) ∧ (↓LG(PL(c)) ⊂ ↓LG(c)) ∧ (x � PL(c))

apply rules for equality

⇒ (↓LG(x) = ↓LG(c)) ∧
(
(↓LG(PL(c)) ⊂ ↓LG(x)) ∧ (x � PL(c))

)
apply equation 8.9a

⇒ (↓LG(x) = ↓LG(c)) ∧ (PL(c) ∈ ↓LG(x))

apply rules for equality

⇒ PL(c) ∈ ↓LG(c)

apply equation 8.4a

⇒ PL(c)
�=� c

contradicts PL(c) � c

All the cases stemming from x � c lead to a contradiction, thus the only possibility that

remains is x = c. �

Therefore, if c has a germane left sibling, c′ will lie immediately after that sibling.
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8.8.3 The Rule for Insertion

We have shown that, in the � total order, c′ will lie immediately

. After the germane left sibling, if there is one

. After the shadow of the left parent, if there is no germane left sibling

From equation 8.42a (Lemma 8.25), we can see if SL(c)
�=� P′

L(c), then SL(c) is not a

germane left sibling. Thus, it is easy to determine whether or not a given left sibling is

germane. Similarly, if c has no left sibling (SL(c) is merely neighbour, or is undefined),

then the second rule applies.

We have found the insertion point for c′, and, because c lies immediately after c′, the

insertion point for c.

The rule for inserting c′ and c into � is analogous: c′ will lie immediately

. Before the germane right sibling, if there is one

. Before the shadow of the right parent, if there is no germane left sibling

and c lies immediately before c′.

8.9 Conclusion

We have developed a theory to support the dynamic creation of LR-graphs by maintain-

ing shadow nodes. The proof is rather long, but I hope it provides some insight into why

the algorithm presented in Chapter 7 works.





Chapter 9

Space and Time Complexity of the

LR-tags Method

In the preceding chapters, I presented the foundations of the LR-tags method for deter-

minacy checking. In this chapter, I will discuss its time and space complexity.

9.1 Space Complexity

The space overheads of determinacy checking come from two sources: the space needed

to maintain w, rf , and rb for each determinacy-checked shared object, and the space

needed for the ordered lists that represent task relationships. Clearly, the first overhead

is constant, so our discussion will focus on showing that the space required to represent

tasks in the ordered lists is also constant.

Task relationships are entirely expressed by the � and � relations, embodied in the

G� and G� ordered lists. Ordered lists require space proportional to the length of the

list, so the space required to represent task relationships is proportional to the size of

G� and G�. A loose bound for the size of G� and G� is O(s), where s is the final size

of the task dag they represent, but some applications have very large task dags without

requiring much memory to execute, so we will seek a tighter bound.

If we remove those elements of G� and G� that cannot be referenced by the deter-

minacy checker, we can obtain a tighter bound on the size of these ordered lists. By


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definition, nascent tasks do not need to be included inG� andG� because they cannot

perform any actions—tasks only need to be added when they become effective. Similarly,

a simple reference-counting strategy is sufficient to ensure that ethereal tasks that are no

longer referenced as readers or writers of any data item are removed from G� and G�.

(Reference counting adds a constant space overhead to each ordered-list item.)

Thus, if there are v determinacy-checked objects in the program, those objects could

refer to at most 3v tasks. The only other references intoG� andG� come from effective

tasks, which, by definition, are either currently running or are represented in the task

scheduler for other reasons (see Section 6.2).

The space overheads of determinacy checking are thus O(v + e), where v is the

number of determinacy-checked objects and e is the maximum number of effective tasks

that existed during the program’s run.

Usually, e � v, in which case the space overheads simplify to O(v), but we should

nevertheless consider that e could be greater than v.¹ As we discussed in Section 6.2, the

upper bound for e depends on both the task scheduler and the program being executed.

Because the effective tasks of a program are defined to be exactly those that the task

scheduler must represent, it is reasonable to assume that a general-purpose task sched-

uler will store information about the effective tasks of the program, requiring Ω(e) space

to do so. Thus the O(e) space required to represent tasks in G� and G� is mirrored

by Ω(e) space used in task scheduler. (Highly specialized task schedulers may be able

to avoid storing information about the relationships between tasks they schedule, but

such schedulers may also admit highly specialized implementations of � and �; these

specialized systems are beyond the scope of this dissertation.)

Figure 9.1 illustrates some of these memory-use issues by returning to the example

first shown in Figure 6.2. It shows the per-object overheads of determinacy checking,

as well as revealing which items in the ordered list may be deleted. In this example,

we can see that the number of effective tasks is dwarfed by the amount of determinacy

checked data. (Notice also how different objects use determinacy checking at different

granularities; the string str is checked as a single object, whereas the array chr treats each

character as a separate determinacy-checked object.)

1. Perhaps this common case explains why most published literature on the subject fails to take
account of the space required to represent the effective tasks of the program when assessing the space
requirements of determinacy checking
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Figure 9.1: Memory use for the LR-tags method. This figure shows a moment during the
execution of a program that shares an array of complex numbers, a string, and an array
of characters between multiple threads. In the ordered lists, entries shown faintly in light
grey can be removed because they are no longer referenced. (The small figure “pinned”
to the page is a repeat of Figure 6.2.)
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Thus the space overheads of determinacy checking both general nested-parallel and

producer–consumer programs mirror the overheads of the programs themselves, result-

ing in constant-factor space overhead for determinacy checking.

9.2 Serial Time Complexity

For serial execution of a parallel program, the time overheads are governed by the time

complexity of the ordered-list algorithm. The best currently known algorithm (Dietz &

Sleator, ) is a real-time algorithm. Thus, the LR-tags algorithm can run in constant

time for a parallel program executed using a serial scheduler.

As I mentioned in Section 7.3.2, the actual algorithm I use in my implementation

of the LR-tags algorithm uses constant amortized time for list insertions. In normal

use, comparisons (which require constant worst-case time) dominate insertions by a

significant margin (see Table 11.1 in Chapter 11), so the impact of the amortization in

the simpler of Dietz and Sleator’s algorithms is slight.

9.3 Parallel Time Complexity

The time complexity of the LR-tags method is more difficult to assess when it runs in

parallel. When running on a multiprocessor machine, multiple processors may attempt

to access the same ordered list at the same time—these accesses must be arbitrated and

sometimes serialized, as we discussed in Section 7.3.2. Serialization can introduce delays

in accessing the ordered list and prevent accesses from taking constant-time.

As I show in Chapter 11, the actual overheads of serialization depend on the program—

for many programs, serialization does not cause significant overhead.

9.4 Conclusion

The LR-tags method has good asymptotic time complexity, offering better time and

space bounds than existing techniques (see Table 6.1). But although “constant-factor

overheads” are good in theory, the size of the constant is what matters in practice. In
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the chapters that follow, we will examine ways to reduce the size of this constant, and

then examine the results of tests to determine whether the LR-tags technique is indeed

a practical one.





Chapter 10

Optimizations to the LR-tags

Technique

In this chapter we will examine some useful optimizations that can be applied to the LR-

tags technique. Although these optimizations do not improve the theoretical complexity

of our approach, they can be useful in reducing the overheads involved in performing

determinacy checking in practice.

10.1 Speeding Serial Performance

If execution is performed serially, following a left-to-right depth-first strategy that re-

spects the commencement restrictions of the dag, the order of tasks in G� is identical

to the order in which tasks are executed (as mentioned in the discussion of Figure 7.2 in

Section 7.2). Thus, in this case, an ordered-list data structure is not required to represent

G�.

In fact, G� is completely irrelevant in the serial case, because every “rb(d) � t” and

“w(d)�t” comparison (described in Section 7.2) will evaluate to true. The only way these

comparisons could evaluate to false would be for a task from later in the serial execution

sequence to have already read or written the datum, and that is clearly impossible.

Thus, for serial execution, there is little point in storing rb(d) for each datum d or

maintaining a � relation. The following rules are sufficient for checking that reads


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and writes performed by a task t on a datum d are deterministic when the program is

executed following a left-to-right depth-first strategy:

• Reads — A read is valid if t � w(d)—that is, if it satisfies condition Bern-1. If the

read is valid, rf (d) may need to be updated: If t� rf (d) then rf (d) := t

• Writes — A write is valid if t� rf (d)—that is, if it satisfies condition Bern-2. If the

write is valid, w(d) and rf (d) are updated to be t

These optimizations do not improve the asymptotic time or space bounds for serial

execution, but they do improve performance in practice by reducing the time and space

required for determinacy checking by a constant factor.

10.2 Optimizations to G� and G�

In equation 7.7 of Section 7.2, we saw that

(y � x) ∧ (x� y) ⇔ x � y;

and how the important properties of the LR-tags determinacy checker (such as Theo-

rem 7.2) are derived from this equation. What may be less obvious is that there are other

possible definitions for � and � besides those of equations 7.5 and 7.6 that also allow us

to derive this equation.

A sufficient specification for � and � is

(x � y) ⇔ (y � x) ∧ (x� y) ∧ (x �= y) (.)

(x � y) ⇔ (x� y) ∧ (x� y) ∧ (x �= y) (.)

(x = y) ⇔ (x� y) ∧ (y � x) ∧ (x� y) ∧ (y � x). (.)

This specification for � and � contrasts strongly with the definitions we saw earlier

(equations 7.5 and 7.6). Those definitions lead to the following equation for task equality:

(x = y) ⇔ (x� y) ∧ (y � x) ⇔ (x� y) ∧ (y � x), [not necessarily true]
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Figure 10.1: This diagram shows a graph isomorphic to the graph shown in Figure 7.3
(which is repeated here in the graph “pinned” to the page), in the form of a compact
dominance drawing.

which is not implied by equations 10.1, 10.2 and 10.3. These looser specifications for �
and � have the advantage that they allow us to represent a task dag more compactly,

sometimes sharing a single entry inG� orG� between several tasks. From a theoretical

perspective, the � and � relations have become partial orders, although from an im-

plementation perspective, G� or G� would remain total orders, with each task having

a pointer to an entry in each ordered list (but some entries would be shared between

multiple tasks).

Figure 10.1 shows a graph that is isomorphic to the graphs in Figures 7.2 and 7.3, in

which tasks have been labeled following this compact representation. Like Figure 7.3,

this graph is a dominance drawing—in fact, it is common practice to portray dominance

drawings in this compact form (Di Battista et al., ).¹

From this diagram and equations 10.1, 10.2, and 10.3, we can observe that a fork node

1. It is also common practice, however, to then rotate the graph by  degrees so that equations 7.5
and 7.6 continue to hold.
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can share its entry in G� with its leftmost child (provided that it is either the leftmost

or only parent of that child), and share its entry inG� with its rightmost child (provided

that it is either the rightmost or only parent of that child). Similarly, a join node may

share the same entry inG� as its leftmost parent (provided that it is either the leftmost

child or the only child of that parent) and share the same entry in G� as its rightmost

parent (provided that it is either the rightmost child or the only child of that parent).

The algorithm for maintaining G� and G� that we examined in Chapters 7 and 8

does not use this alternative scheme, however. That algorithm allows new leaves to be

added to the graph at arbitrary points, and thus cannot know whether a newly added

leaf will remain the leftmost or rightmost child of that node, or whether more children

will be added later.

In some cases, however, we can adopt a simpler algorithm for maintaining G� and

G� that allows tasks to share entries inG� andG� and avoids using shadow nodes. For

example, programs using nested parallelism can adopt the following strategy:

• Fork: When a node p forks multiple children, c1, . . . , ci, c1 shares the same entry

as p in G�, while entries for c2, . . . , ci are inserted into G� immediately after the

entry shared by p and c1. Similarly, ci shares the same entry as p in G�, with

ci−1, . . . , c1 inserted intoG� immediately before the entry shared by p and ci.

• Join: When a node c joins multiple parents, p1, . . . , pi, c shares the same entry as

p1 inG� and the same entry as pi inG�.

This particular algorithm is potentially asymptotically worse than the general al-

gorithm in the case of graphs where the number of children per node is unbounded,

because it inserts all the children of a node into G� and G� together. A more complex

specialization of the general insertion algorithm could no doubt address this deficiency,

but such additional optimization would only be useful if the overheads of both of the

algorithms we have examined were to prove significant in practice.

This optimization is orthogonal to the serial-execution optimization outlined in Sec-

tion 10.1; thus both optimizations can be used together.
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10.3 Relation Caching

In this section, we will examine an optimization that can reduce the number of order

queries performed on the ordered lists representing G� and G�. Reducing the number

of queries made to the ordered list reduces the potential for contention between accesses

to this shared data structure.

As we saw in Section 7.3, the relationships between existing tasks do not change

as new tasks are spawned. Thus, given two tasks, x and y, we need only test x � y

once, because the result of the order query will always be the same, even if other tasks

are added or removed from the ordered list (and similarly for �). (The answer would

change if either x or y were removed from the ordered lists, but x and y are not ready

to be deleted from the ordered lists if they are still being used in task comparisons—see

Sections 9.1 and 10.5 for discussions of when and how we may remove tasks from the

ordered lists.² )

Although � and � are binary relations, the queries performed by a task t during

determinacy checking are always of the form t� x and y � t, for some x and y; thus we

can replace the binary relations with task-specific unary functions, t� and �t, where

t�(x) ≡ t� x
�t(x) ≡ x� t.

These functions serve as a local cache for the � and � relations, and only need to exist

during the execution of their selected task. Thus the number of these functions can be

limited to the number of concurrently running tasks, which results in an additional O(p)

space overhead for constant-sized caches, where p is the number of processors.

2. It is worth noting that any scheme for relation caching should be properly integrated with the
scheme used to reclaim unreferenced tasks from the ordered lists. It would not be appropriate, for
example, to reclaim a task from the ordered lists while leaving a reference to that task in a relation
cache (lest a new task be created at the same location, resulting in incorrect cached information). One
option is to remove the relevant entries from the relation caches when tasks are deleted from the ordered
lists. Another is to consider relation-cache task references as a reason to retain tasks in the ordered
list. Although a little wasteful of memory, this latter approach is easy to implement and amounts to a
constant space overhead for constant-sized relation caches.
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Restating the rules for determinacy checking given earlier using this notation yields

the following for a task t accessing a datum, d:

• Reads — A read is valid if t�(w(d)) ∧ �t(w(d))—that is, if it satisfies condition

Bern-1. If the read is deterministic, rf (d) and rb(d) may need to be updated:

– If t�(rf (d)) then rf (d) := t

– If �t(rb(d)) then rb(d) := t

• Writes — A write is valid if t�(rf (d)) ∧�t(rb(d))—that is, if it satisfies condition

Bern-2. If the write is deterministic, w(d), rf (d), and rb(d) are updated to be t.

Tasks need not begin with empty caches. Parents can pass their caches to their

children because of the transitivity of � and �. Specifically, if a new task n has parents

p1, . . . , pk , it can begin with the cache for n� containing the same mappings as the cache

for p1� and with the cache for �n containing the same mappings as the cache for �pk
.

It is also possible to pass a cache from a task to one of its cousins, but in this case the

cache must be purged of incorrect entries. When passing caches from a task t to a task

u where t � u, the property (t � u) ∧ (x � t) ⇒ (x � u) allows us to preserve in �u

all entries from �t that map to true. On the other hand, entries in �t that map to false

must either be verified or summarily removed from �u, because (t � u) ∧ ¬(x � t) �

¬(x � u). Conversely, entries in t�, that map to false can be retained in u� because

(t � u)∧¬(t� x)⇒ ¬(u� x), whereas entries that map to true should be discarded or

rechecked.

If groups of nodes are added together (as may be the case in series–parallel graphs

and producer–consumer graphs; see Section 10.2), we can employ cache preloading to

avoid querying the ordered-list data structure about close relatives, where the close rela-

tives of a task are its ancestors and the direct children of those ancestors. We can preload

the caches because the parent knows how its children relate to each other and itself. Of

course, creating all children at once—together with their caches—may increase space

use for nonbinary task dags, because doing so may make nascent child tasks become

effective tasks earlier than would otherwise be necessary.

Adding a cache raises some design questions, such as cache size and replacement

policy. Different applications benefit from different cache sizes. At one extreme is the



10.4. Write-Restricted Data 

strategy of performing no caching at all. At the other extreme is using a cache that grows

dynamically, never forgetting any cached information. If cache preloading is combined

with the latter approach, some programs may never need to query the ordered lists

at all, but the benefits of reducing the number of ordered-list queries are balanced by

the increased time and space costs of managing larger caches. Such implementation

questions do not have obvious theoretical answers, but, in practice, I have found that

even a small cache can dramatically reduce the number of queries to the ordered list.

Whether relation caching actually improves performance in practice depends on a

number of factors, including the amount of contention and the costs of accessing a

shared structure. In my original implementation of the LR-tags algorithm, I used a single

lock to guard the entire ordered list. Under this simple locking scheme, adding relation

caching dramatically improved performance. But when I replaced this simple locking

scheme with the scheme outlined in Section 7.3.2, which specifically attempts to reduce

locking overheads for order queries, I found that relation caching offered little benefit on

the machines I was using for my tests. Perhaps my findings would have been different

on a machine with more processors or where the costs of accessing shared memory were

nonuniform—parallel scalability appears to be an area where experimentation is often

the only way to determine the value of a particular approach.

10.4 Write-Restricted Data

In some cases, Bernstein’s conditions are needlessly general and tighter determinacy

restrictions can be used. For example, it is common for a program to read some input

data representing the parameters of the parallel algorithm and then perform a parallel

computation using those parameters. If the parallel component of the program only

reads these parameters, it seems wasteful to use full-blown determinacy checking to

ensure that these parameters are never corrupted by parallel code. In this section I will

describe an obvious specialization for handling such cases.

A write-restricted object is a shared object that is subject to a stronger form of deter-

minacy checking than we have described in previous sections. A write-restricted object

may only be written to by a task that has no siblings or cousins. Both the start points

and end points of the dag are such points, but it is also possible for other tasks to satisfy
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this condition (such tasks occupy positions where the task dag narrows to being a single

task wide).

It is not necessary to perform any read checking for write-restricted data because any

task can read the data without risking interference. It is similarly unnecessary for write-

restricted data to store rf , rb, and w, because the only tasks that could have written the

data are other tasks that have no cousins, and such tasks must be ancestors of the task

performing the write.

Thus, the rules for a task t accessing a write-restricted object are:

• Reads — Reads are always deterministic; no checking is required.

• Writes — A write is allowed (and is deterministic) if ∀s ∈ S : s � t, where S is the

set of all tasks so far created by the program.

(Notice that write-restricted data does not require that any housekeeping information

be stored with the data, in contrast to the normal LR-tags method, which requires that

we store rf (d), rb(d), and w(d) for each datum, d.)

Enforcing the above conditions for write-restricted data is orthogonal to checking

determinacy using the the LR-tags method. The write condition for write-restricted data

can be enforced by keeping track of the width of the task dag, or by some scheduler-

dependent means. Thus, if all shared data is write-restricted, we can avoid maintaining

G� andG� at all.

As with the techniques we discussed in Section 10.1, the time and space gains from

making data write-restricted only amount to a constant factor, but such constant-factor

gains can, nevertheless, be useful in practice.

Write-restriction is not the only restriction we could impose to gain more efficient

determinacy checking. I mention it in part because it has proven useful in practice,

but also because it illustrates that determinacy checking may be implemented more

specifically and more efficiently when the full generality of Bernstein’s conditions is not

required. Other useful possibilities, such as data that can only be written at object-

creation time (and thus would not need to store rf and rb), or data that does not allow

multiple concurrent readers, can also be developed within the LR-tags determinacy-

checking framework. These variations can be useful not only because they can speed
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determinacy checking, but also because they can ensure that the use of shared objects

matches the programmer’s intent.

10.5 Storage Management

In Section 9.1, I mentioned that we may use reference counts to reclaim the entries in

G� and G� that are no longer required, and thereby ensure a good space bound for

determinacy checking. In this section we will look more closely at storage-management

issues and discuss alternatives to reference counting.

When managing storage, there are four common approaches to deallocating storage

that is no longer required: explicitly programmed deallocation, no deallocation, reference-

counted deallocation, and tracing garbage collection. Explicitly programmed deallocation

is not a viable strategy for managingG� andG� because we cannot statically determine

when entries are no longer required,³ but the three remaining approaches are all work-

able solutions, each with its own advantages and disadvantages.

10.5.1 Reference Counting

Reference counting has good asymptotic complexity, but can be costly in practice due to

its bookkeeping overheads. Reference counting requires that objects store reference-

count information and keep that reference-count information up to date, increasing

both the size of objects and the time it takes to store or release a reference to an object

by a constant factor. In practice, reference counts can affect the cache behaviour of a

program by increasing the number of writes it must perform.

Reference-counting techniques can also have difficulty with circularly linked struc-

tures, but this problem is not relevant to the LR-tags method because the references to

entries inG� andG� are unidirectional.⁴

3. In my C++ implementation of the LR-tags algorithm, I use explicitly programmed deallocation
whenever possible; it is only G� and G� that require a more sophisticated storage-management strategy.

4. The internal representation of ordered lists G� and G� may involve a circularly linked list, but
these internal pointers should never be included in the reference count for the entry.
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10.5.2 Tracing Garbage Collection

Tracing garbage collection can also reclaim unused entries in G� and G�. The exact

asymptotic behavior of garbage collection depends on the collector, but, in practice, we

can expect time overheads to decrease compared to reference counting, and storage re-

quirements to increase slightly. As we are concerned with parallel code, it is worth noting

that parallel garbage collectors exist with performance that scales well on multiprocessor

machines (Endo et al., ; Blelloch & Cheng, ). My implementation of the LR-tags

algorithm includes support for the Boehm garbage collector () to show that such

collection is feasible.⁵

10.5.3 No Deallocation

For many applications, the overheads of deallocating entries fromG� andG� outweigh

the storage saved. For example, an application that spawns  threads over the course of

its execution will use only a few kilobytes of memory forG� andG�. If we must link the

program against  kilobytes of garbage collector code (or increase the code size by %

by using reference counting), we may reasonably wonder if the effort to reclaim such a

small amount of storage is worthwhile.

More formally, the wasted space from performing no deallocation of entries from

G� and G� is proportional to the size s of the complete task dag for the program’s

execution. If s ∈ O(e + v), where e is the peak number of effective tasks that may exist

during a run of the program and v is the number of determinacy-checked data items, this

“leaky” approach falls within the space bound of the technique with reference counting

employed.

In my experience, it tends to be quite straightforward to analyze an algorithm and

determine when this approach is acceptable. See Table 11.1 and the accompanying dis-

cussion in the next chapter.

5. The ordered-list structure does present some problems for naïve garbage collectors, as ordered lists
belong to the class of data structures for which topological reachability does not equate to liveness.
In fact, I used this structure as the basis for an example in Chapter 4 (Figure 4.2). Ordered lists can
only be handled by a tracing garbage collector that supports weak pointers and finalizers, or provides
more generalized extensions to handle “awkward” data structures. The Boehm collector provides all the
necessary facilities.
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10.6 Conclusion

In this chapter, we have examined several practical enhancements that can be applied to

the basic LR-tags determinacy-checking technique. In practice, these optimizations can

improve the performance of determinacy checking by a small but noticeable constant

factor. In the next chapter, we will examine the performance of an implementation of

the LR-tags algorithm that uses these enhancements appropriately.





Chapter 11

Real-World Performance of the

LR-tags Technique

In the preceding chapters we have explored the LR-tags technique, including its under-

lying principles and properties—now we will discuss how it performs in practice. We

will use parallel benchmarks to investigate its performance and discuss some of the

practical issues that are revealed by benchmarking. For example, we will discover that the

granularity at which determinacy checking is applied can make a significant difference

to the program’s performance. We will also see how the “leaky” approach to storage

management discussed in Section 10.5.3 can improve time performance at the cost of

added space usage.

11.1 Reasons for Benchmarking

We have already discussed the theoretical complexity of the LR-tags method (in Chap-

ter 9), but we also need to examine how it performs in practice. If the constant factors

are too high, the technique is merely a theoretical curiosity, rather than a useful tool for

software developers.

We will examine the performance of several parallel algorithms, both with and with-

out determinacy checking. Given the complex interactions found on a modern com-

puter system, with processor caches, virtual memory, and so forth, we are not trying


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to find an exact constant for the overheads, but rather to discover the extent of the

performance penalty in broad terms. Also, we should regard my implementation of

the LR-tags algorithm as only being a prototype to show the merits of the technique—a

production version would no doubt be more carefully optimized and tied more closely to

the particular development platform.

11.2 Benchmarks and Platform

The tests for my performance analysis are based on the benchmark programs provided

with the Cilk parallel programming environment and used by Feng and Leiserson in

benchmarking their Nondeterminator determinacy checker (). Cilk is a parallel

extension of C that uses a work-stealing scheduler to achieve good time and space per-

formance (Frigo et al., ). For my tests, I developed Cotton/Pthieves, an unremark-

able parallel-programming environment that can run many Cilk programs after a few

superficial source-code changes (see Appendix B).¹ Cotton uses the C preprocessor to

perform a translation analogous to that performed by Cilk’s cilk2c translator, whereas

Pthieves is a work-stealing scheduler built on top of Posix threads.

I ported the following programs from the Cilk benchmark suite:

• mmult — A matrix-multiplication test that performs a matrix multiply without

using a temporary array to hold intermediate results

• lu — An LU-decomposition test, written by Robert Blumofe

• fft — A fast Fourier transform, based on the machine-generated fftw code of Mat-

teo Frigo and Steven G. Johnson ().

• heat — Simulates heat diffusion using a Jacobi-type iteration, written by Volker

Strumpen

• knapsack — Solves the - knapsack problem using a branch-and-bound technique

1. Initially I hoped to extend Cilk and substitute my LR-tags determinacy checker for Cilk’s SP-Bags
algorithm, but it turned out to be easier to implement a replacement for Cilk than to modify it.
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Checked Object Number of Number of Total Dag Dag Total G� Peak G�
Benchmark Objects Size Reads Writes Nodes Breadth Insertions Entries

mmult 49,152 2048 4,194,304 2,146,304 2,843,791 49,152 947,931 65,097
lu 16,384 2048 1,398,016 723,776 1,765,174 4096 588,392 24,011
fft 12,582,913 8 65,273,856 62,914,563 932,251 262,144 310,751 28,755
heat 1,048,592 8 1,057,743,823 109,051,979 159,589 1024 12,956 263
knapsack 34 8 18,956,584 216 9,477,871 3,159,291 3,159,291 59

Table 11.1: Benchmark properties.

All of these benchmarks spend the bulk of their time accessing determinacy-checked

data. Table 11.1 shows some of their properties.

11.3 Variations

We will compare several versions of the test algorithms:

• Serial execution of the algorithm with no determinacy checking

• Serial execution using Feng and Leiserson’s SP-Bags determinacy-checking method

• Serial execution using the LR-tags determinacy-checking method

• Parallel execution of the algorithm running under the Cotton/Pthieves environ-

ment with no determinacy checking

• Parallel execution of the algorithm running under the Cilk environment with no

determinacy checking

• Parallel execution using the LR-tags determinacy-checking method running under

the Cotton/Pthieves environment

A test revealing the parallel performance of algorithms under the Cilk parallel system is

included solely to show that the Cotton/Pthieves environment provides a reasonable

test bed on which to run the LR-tags determinacy checker.

In the interests of fairness, the comparisons against Feng and Leiserson’s SP-Bags

determinacy-checking checking method use my implementation of their algorithm rather
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than their freely-available code. Had I used Feng and Leiserson’s code, the results would

be unfairly skewed against the SP-Bags method—in tests, using Cilk’s standard settings,

I have found the performance of Cilk’s Nondeterminator to be disappointing, about one-

tenth the speed of my implementation of their algorithm.² Also, recall that the SP-Bags

algorithm cannot run in parallel, thus there is no test of the SP-Bags algorithm running

in parallel.³

11.4 Results and Commentary

Figures 11.1–11.5 show the performance of the five benchmarks, running both serially

and in parallel on a -processor Sun Enterprise , with  gb of memory running

Solaris 7 (the benchmarks only use up to  of the  processors because I did not have

exclusive access to the machine).⁴ In each figure, graph (a) shows the performance of the

programs using a linear scale; graph (b) “zooms in” on the -% portion of the graph

in (a), which is otherwise hard to see; and graph (c) shows the performance plotted on a

logarithmic scale.

11.4.1 mmult and lu

Figure 11.1 shows the performance of the mmult benchmark. This Cilk benchmark uses

a divide-and-conquer technique to multiply two large ( × ) matrices. Internally,

the mmult benchmark represents the large matrix as a  ×  matrix of  ×  element

blocks. The parallel matrix-multiplication algorithm decomposes the multiplication of

the matrices into multiplications of these blocks, which are themselves multiplied using

a fast serial algorithm.

This test shows that for the right program, determinacy checking can exert a very

2. These observations are not unexpected—in the conclusion of their paper on the Nondeterminator,
Feng and Leiserson remark that the released version of the Nondeterminator lacks some of the perfor-
mance optimizations present in the benchmarking version they describe.

3. Actually, the SP-Bags algorithm can be generalized to run in parallel, but the generalization is
nonobvious. My first attempt at a determinacy-checking technique, discussed in Appendix F, admits
Feng and Leiserson’s technique as a specialization.

4. My thanks to Emerich Winkler of Sun Microsystems Canada, who provided me with access to this
powerful and expensive machine.
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Figure 11.1: Benchmark results for mmult.
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low impact. For this program, the parallel implementation of the LR-tags algorithm

determinacy checker exerts an overhead of less than %, and both serial determinacy

checkers exert so little overhead that it is virtually undetectable (in fact, it is sometimes

negative, a matter we will discuss shortly). For serial execution, the SP-Bags and LR-

tags methods turn in equivalent performance. Even on only two processors, parallel

execution of this benchmark with determinacy checking enabled is faster than serial

execution with no determinacy checking. Clearly, this is an application where it may be

perfectly acceptable to leave determinacy checking turned on permanently if it allows us

to feel more confident about the results of parallel execution.

The LU-decomposition benchmark, lu, is similar to the mmult benchmark both in

terms of its algorithmic structure and its parallel structure: Both algorithms operate on

matrices of  ×  element blocks, and use O(n log n) tasks to decompose a matrix of

n elements. As with the mmult benchmark, the overheads of determinacy checking are

very low. In fact some of the test results show a negative overhead—for serial deter-

minacy checking, the program runs .% faster with determinacy checking turned on.

This anomalous result appears to be due to the cache behaviour of the test platform.

I investigated this quirk by adding two words of padding to the front of each  × 

element block, mirroring the two words used to store determinacy-checking informa-

tion, and found that the program ran almost % faster. Thus, although determinacy

checking does have a cost, in this particular case (an UltraSparc machine performing

LU decomposition of a  ×  matrix) that cost is offset by altered cache behavior.

The way in which determinacy checking was applied to these two algorithms played

a significant role in their good performance. I employed determinacy checking at the

level of the  ×  blocks rather than at the level of individual elements. This choice was

a natural one because the parallel parts of the both programs work at the level of these

blocks. The alternative would have been to apply determinacy checking at the level of

individual matrix elements, but such an approach would incur substantially worse time

and space overheads, as we will discuss below.

To use determinacy checking on large objects, such as the matrix blocks used in both

mmult and lu, we need to be confident that code that claims to be accessing the interior

of a determinacy-checked object does not step beyond the boundaries of that object.

Bounds checking provides one way to ensure this kind of correctness. For mmult and lu,
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Figure 11.2: Benchmark results for lu.
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I examined the code (which was, fortunately, trivial to reason about) and also double-

checked that examination using runtime bounds checking.⁵ Runtime bounds check-

ing is not used in the test runs evaluated here because we can be confident about the

memory-access behaviour of the serial algorithms. Moreover, adding bounds checking

to all versions of the algorithm would inflate the running time of the algorithm, making

the additional cost of determinacy checking appear smaller.

Using coarse-grained determinacy checking improves both the time and space per-

formance of the algorithms by a significant constant factor. In my implementation, each

determinacy-checked object must store rf , rb, and w, a space overhead of less than %

per  ×  block. Had we been checking each matrix element individually, the space

overhead would be an additional % per object. Time overheads are also reduced

by this block-based strategy. The matrix multiply performed by mmult performs three

determinacy checks on the blocks it passes to the serial block-multiplication algorithm

(namely a read check for each of the two const operands, and a write check for the result

area). The serial algorithm then performs  floating-point operations to multiply the

blocks. If we were checking at the level of individual numbers rather than blocks, we

would have to perform , determinacy checks for each block multiply.

Finally, these two benchmarks are also interesting because they show some of the

tradeoffs between time and space when it comes to the management ofG� andG�. If v

is the total number of elements in the matrices, both benchmarks create O(v log v) tasks

in the course of their execution. With reference counting, the number of entries in G�
and G� is bounded at O(v). Without reference counting, the ordered lists exceed the

O(v) bound, resulting in a non-constant-factor space overhead for determinacy check-

ing; but, as we can see from the performance graphs, avoiding reference counting does

achieve a small but noticeable speed improvement.

5. A single run with runtime bounds checking is actually sufficient to check that a block-multiply
routine cannot access memory inappropriately. The block size is fixed at  × , and the structure of
the algorithm is independent of the data in the block—thus the algorithm will always behave in the same
way. This property of array-bounds checking, whereby checking program behavior for a particular input
may allow us to draw conclusions about a whole class of inputs, can also apply to determinacy checking,
as mentioned previously in Section 6.4.
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11.4.2 fft, heat, and knapsack

In the remaining benchmarks, the overheads of determinacy checking are higher then

they were for mmult and lu. As we saw in Table 11.1, these benchmarks perform de-

terminacy checking on a large number of very small objects. In the fft benchmark, the

objects are single-precision complex numbers; in the heat benchmark, the bulk of the

determinacy-checked objects are double-precision floating-point numbers (but three in-

teger objects are also checked). In the knapsack benchmark, the checked objects describe

items that may be placed into the knapsack: Each object is a weight/value pair.

The heat benchmark performs more than a billion determinacy-checked reads and

more than  million determinacy-checked writes, making it the benchmark that per-

forms the most determinacy checking. Just under a third of those reads are performed

on data that represent parameters of the test, defined at the time the benchmark begins.

Because these parameters are never modified by parallel code, I declared them to be

write-restricted (see Section 10.4), allowing them to be read with minimal overhead.

The knapsack benchmark is perhaps the cruelest benchmark of the set. It is the only

benchmark where the number of threads grossly outnumbers the number of determinacy-

checked objects. Whereas the other benchmarks consume a few megabytes of additional

memory if reference counting is disabled, this benchmark requires a couple of hundred

megabytes of memory to run if reference counting is disabled, which seems far less likely

to be acceptable in a production environment.

Although the knapsack benchmark has the highest determinacy-checking overhead

of the group, we can take comfort in the fact that it does not actually need the full gener-

ality of our runtime determinacy checker at all. All the determinacy-checked data in the

program is written during the initialization by the initial thread. If the only determinacy-

checked data is write-restricted data, the bulk of our general determinacy-checking mech-

anisms, and their costs, are unnecessary. If we strip out the general determinacy checker

and only support determinacy checking for write-restricted data, the performance of

this benchmark with determinacy checking becomes virtually indistinguishable from its

performance without determinacy checking. In my tests, however, I did not apply this

optimization as it would render the benchmark much less useful for gaining insights into

determinacy-checking performance.
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Figure 11.3: Benchmark results for fft.
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Figure 11.4: Benchmark results for heat.
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Figure 11.5: Benchmark results for knapsack.
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11.5 Conclusion

Parallel determinacy checking can be practical, both as a debugging aid and in pro-

duction code. The tests show the impact of runtime determinacy checking in both a

good and a not-so-good light, revealing that the overheads of using runtime determi-

nacy checking depend on the particular application, varying from virtually undetectable

to quite noticeable. The number of shared objects, the size of those objects, and the

frequency with which they are accessed influence the overheads of runtime checking.

Similarly, the number of threads and the frequency with which threads are created also

affects the cost that determinacy checking exacts.





Chapter 12

Conclusion

In this chapter, I summarize the results presented in this dissertation. Because the

dissertation itself consists of two parts—one discussing functional arrays, the other dis-

cussing determinacy checking—this conclusion begins with a similar structure.

12.1 Functional Arrays

In Part I, I developed a functional-array data structure that offers good time and space

performance in both theory and practice. From a theoretical standpoint, its asymp-

totic performance is an improvement over existing techniques for functional arrays. In

practice, this new technique can offer better performance than competing tree-based or

trailer-based array techniques.

The fat-elements method is not a panacea, however—some applications may im-

prove their time or space performance by using an alternative array mechanism. For

example, applications that do not require persistence and are able to use imperative ar-

rays directly can avoid the overheads required by all persistent data structures. Similarly,

although a given algorithm may require O(n log n) time and space when implemented

using trees, and only O(n) time and space using fat-element arrays, in practice, the less

complex tree-based approach may offer better time or space behaviour if n is sufficiently

small.

Given that no known functional-array technique can be best at everything, it is worth

remembering that the fat-elements method can integrate well with other techniques. For


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example, it can act as a useful adjunct to other techniques for arrays (such as update

analysis). In cases where abstract interpretation can determine that an array will only be

accessed single-threadedly, a raw imperative array may be used, but when this optimiza-

tion cannot be applied, a fat-element array can be used. As we saw in Chapter 5, these

optimizations need not be all-or-nothing; single-threaded update sequences that form

part of a non-single-threaded program can be efficiently applied to a fat-element array.

Like other persistent data structures that use mutation internally, the fat-elements

method poses some challenges for traditional garbage collectors. In what may be one of

the first discussions of this topic, we have seen how these garbage-collection issues can

be addressed.

Although it would seem that no functional-array technique is likely to provide all the

answers, the fat-elements method does seem to offer improvements over previous work.

In my opinion, it makes the best compromise between time and space performance. It

avoids some of the unfortunate worst-case behaviour present in other techniques with-

out making programmers pay for that benefit with heavy constant-factor overheads.

12.2 Determinacy Checking

In Part II, I presented a straightforward runtime technique that can verify that a parallel

program satisfies Bernstein’s conditions for determinacy. Runtime checks for Bernstein’s

conditions are useful because, much like array-bounds checking, statically determin-

ing whether a general parallel program satisfies Bernstein’s conditions is undecidable.¹

Although runtime checks only assure us that a program runs correctly for the given

(class of) input, such tests can be invaluable aids for debugging. In addition, the added

protection against incorrect results these tests provide can even make the overheads

of determinacy checking (which, as we have seen, can be small for some algorithms)

worthwhile in production code.

The LR-tags method is orthogonal to other schemes that can enforce determinacy.

It is compatible with static determinacy checking, because we can apply runtime check-

ing only to those algorithms and data structures that cannot be statically shown to be

1. See footnote  on page  for a discussion of the undecidability of static enforcement of Bernstein’s
conditions.
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deterministic. Similarly, it is possible to mix runtime determinacy checks of shared data

structures with I-structures (Arvind et al., ) and intertask communication through

deterministic communication channels in a single program. If some of the shared data in

the program is accessed using locks, we may debug the code that uses locks with a lock-

discipline checker such as Eraser (Savage et al., ), or a serial determinacy checker

that supports locks such as All-Sets or Brelly (Cheng et al., ). Finally, as with

other determinacy-checking techniques that enforce Bernstein’s conditions, the LR-tags

method can form the core of a system that enforces Steele’s more general determinacy

conditions.

In addition, the techniques I have devised for determinacy checking are general algo-

rithms that may prove to be applicable elsewhere. At the core of my determinacy checker

is a graph representation using two ordered lists that may rapidly satisfy ancestor queries

and efficiently maintain node sets against which such queries can be made (i.e., “Are all

the nodes in a set ancestors of some other node?”). Similarly, the algorithm for maintain-

ing this graph representation as new leaves are added to the graph appears to be both

novel and interesting.

12.3 Future Work

The research undertaken for this dissertation has revealed several possible directions for

future work. In this section, I will describe some of these possible avenues.

For the fat-elements method, one question that remains is whether the process of

array splitting can be easily combined with garbage collection. It may also be fruitful

to consider whether a garbage collector could be made to undo array splits if doing so

would reduce space usage without adverse effects.

Some of the issues that arise in garbage collecting functional arrays apply to other

persistent data structures. In general, the topic of hard-to-garbage-collect data struc-

tures appears to be rarely addressed in the published literature. Developing a framework

for understanding what properties may make a data structure difficult to garbage collect,

and devising a generalized mechanism for dealing with such structures, is a topic for

additional research.
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The LR-tags method also provides us with some opportunities for further research.

The method was designed to operate on shared-memory machines, but although com-

modity hardware appears to favour this model, massively parallel machines tend to adopt

alternate strategies. Future research could examine techniques for extending the LR-tags

method to elegantly support other parallel architectures, such as cache-coherent non-

uniform memory architecture, cache-only memory architecture, and distributed virtual

shared memory.

Also interesting is the question of whether the LR-tags technique can be extended

to efficiently represent programs whose task dag is not an LR-graph, or programs whose

task dag is an LR-graph but where the dag’s left-to-right node ordering is non-obvious

and must be calculated on the fly.

As mentioned in Section 12.2, the graph algorithms used to support determinacy

checking appear to be novel and may be applicable to other domains.

Finally, much of the work in this dissertation relies on ordered lists. Although a

real-time algorithm for ordered lists has been outlined by Dietz and Sleator (), that

algorithm is complex and ill-suited to parallel use. A simple real-time algorithm for this

problem—especially one that was amenable to parallelization—would strengthen many

of the results presented in this dissertation.

12.4 Summary

To summarize, I have presented the following:

• A new method for providing functional arrays, the fat-elements method, which

uses periodic array splitting to achieve good time and space bounds

• A proof that the fat-elements method has good time and space complexity

• Performance results that suggest that the fat-elements method has advantages

over existing techniques

• Techniques for garbage collecting unused array versions from fat-elements master

arrays
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• Techniques for optimizing the fat-elements method

• A new method for verifying at runtime whether a program obeys Bernstein’s con-

ditions for determinacy: the LR-tags method

• Asymptotic complexity results for the LR-tags method that are better than those

for any prior technique

• A new algorithm for performing ancestry queries on nodes or sets of nodes in a

dynamic LR-graph

• A proof that the insertion algorithm used to add leaves to an LR-graph is correct

• Techniques for optimizing the LR-tags method

• Performance results that suggest that the LR-tags method has advantages over

existing techniques

In addition to this work, there are various topics included in the appendices to this

dissertation, which, although secondary to the main results, may be of interest to some

readers:

• A discussion of the connections between my work on functional arrays and my

work on determinacy checking

• A description of the Cotton environment for parallel programming (which was

created to enable me to run Cilk benchmarks under my determinacy checker)

• A description of the Pthieves work-stealing scheduler (also created to enable me

to run Cilk benchmarks)

• A description of Dietz and Sleator’s () ordered-list data structure

• A sketch of how Dietz and Sleator’s () ordered-list data structure may be ac-

cessed safely by parallel code with minimal serialization
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• A description of an earlier method for parallel determinacy checking that, although

less efficient than the technique presented in the body of my dissertation, may be

of interest because it admits Feng and Leiserson’s () technique as a specializa-

tion

• An outline of some of my preliminary ideas for parallel use of functional arrays,

which lead me to explore determinacy checking

Finally, although not included in this dissertation, source code for my implementations

of the fat-elements and LR-tags methods is available, which may provide answers to

various implementation questions not explicitly discussed here (see Appendix H for

information on obtaining this material).

Ultimately, I hope that the ideas presented in this dissertation will prove to be useful

to researchers and practitioners alike.
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Appendix A

Connecting Functional Arrays and

Determinacy Checking

Part I of this dissertation introduced a new technique for implementing functional ar-

rays; Part II introduced a new technique for determinacy checking—can there really be

a connection between these two topics? Yes! In this appendix, we will examine some of

those connections.

A.1 Shared Memory, Tagged Data, and Hidden

Mechanisms

In Part I, we examined a technique that allowed a single shared array to be safely used

non–single-threadedly, whereby a read of the array in one context did not conflict with

a write to the same array location in another. In Part II, we examined a technique that

allowed shared memory to be safely used in multithreaded programs, whereby a read of

a memory location in one thread was prohibited from conflicting with a write to that

same memory location in another thread.

Since arrays are, in essence, a data abstraction that is analogous to computer mem-

ory, we can already see some broad parallels between the work described in Parts I and II.

But the parallels go deeper. In the case of functional arrays, what appear to be distinct

arrays created from a single original array may, in fact, all share the same master array. In-


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side the master array, element values are tagged so that we can find which array-element

values belong to which array version. In the case of determinacy checking, objects in

memory are transparently instrumented with tags that allow us to know which parallel

threads have read and written those objects. In both cases, the tagging mechanism itself

is invisible to programmers—there is no way to access the tags themselves. Programmers

deal with a simple external interface; the internal details need not concern them.

A.2 Version Stamps

As we have seen, both techniques tag data with version stamps to keep track of changes

made to the data. The LR-tags method uses two sets of version stamps (a single task

is represented as a version stamp in both the G� and G� ordered lists), whereas the

fat-elements method uses a single version stamp.

A.3 Referential Transparency versus Determinacy

There is more of a connection between these topics than a mere coincidence of imple-

mentation details: There is also a connection between their underlying purposes.

In Chapter 1, we saw that referential transparency is the raison d’être for functional

arrays. Were it not for the desire on the part of functional programmers to write pro-

grams that are referentially transparent, there would be one less reason for functional

arrays. Thus, Part I of this dissertation can be seen as providing an efficient means to

enforce referentially transparent access to arrays, whereas Part II provides an efficient

means of enforcing deterministic parallel access to shared memory. We have already seen

that shared memory and a shared array are analogous—now we will see that determinacy

and referential transparency are also analogous.

Referential transparency requires that a function with the same arguments must

always yield the same results, whereas determinacy requires that a program with the

same input must always yield the same output.¹ It follows that a referentially transpar-

1. This definition is a simplification; there are in fact a variety of definitions for determinacy, each
with slightly different requirements but the same ultimate goal: reproducible behaviour.
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ent program is deterministic, but not all deterministic programs are referentially trans-

parent.² In the same way that referentially transparent programs are easier to reason

about than their non–referentially-transparent counterparts, so, too, are deterministic

programs easier to reason about than nondeterministic ones.

A.4 Conclusion

While both parts of this dissertation can be read separately, we have seen that there is

actually a significant connection between these two areas. This revelation should not

come as much of a surprise, because my work on functional arrays would never have

lead me to the problem of parallel determinacy checking if there had not been a strong

connection between the two.

2. Again, this statement is a simplification. Whether referentially transparent programs can be
nondeterministic depends entirely on how you define nondeterminacy.





Appendix B

Cotton: A Parallelism Mechanism for

C++

In this appendix, I describe the mechanism I developed to allow parallel code to be run

easily under C++. The goal was a straightforward one: Allow the Cilk benchmarks to be

used to test my determinacy-checking algorithms.

B.1 Cilk

Cilk (Frigo et al., ; Blumofe et al., ) is not a mere thread library, but is instead a

powerful extension to Ansi C that adds constructs for parallelism to the language and

schedules the resulting parallel code under an efficient work-stealing scheduler.

The Cilk system provides a language translator, cilk2c, to convert Cilk programs

into machine-readable C code, and a runtime system that supports and schedules the

translated code. Cilk is promoted as a faithful extension to C, because Cilk programs

can be transformed into serial C programs simply by eliding the Cilk keywords from

the program’s source code (a task that can be performed by the C preprocessor).¹Cilk

has a well-deserved reputation as a fast, efficient, and expressive parallel language. List-

ing B.1 shows an example Cilk procedure that calculates Fibonacci numbers (using a

1. The C elision of a Cilk program is always a valid program in Gnu C, but may not always be a valid
Ansi C program. Note also that the converse operation—adding Cilk keywords to a C program—may not
result in parallel execution that is faithful to the C original, or even semantically correct; parallelization
remains a thoughtful exercise.


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Listing B.1: A procedure to calculate Fibonacci numbers in Cilk.

cilk void fib (int n, int *result) {
if (n < 2) {

*result = n;
} else {

int x, y;

spawn fib (n − 1, &x);
spawn fib (n − 2, &y);
sync;
*result = x + y;

}
}

parallel implementation of the classic, inefficient, algorithm).² We will use this example

throughout the remainder of our discussion.

Programming in Cilk is usually much more pleasant than programming using Posix

threads (IEEE, ) or similar thread libraries, but Cilk is not the ideal tool for every

situation. Cilk has only been ported to a small number of Unix platforms, making

its availability limited. Moreover, the Cilk language is closely coupled to its threading

mechanism—cilk2c can only target the Cilk runtime system, rather than Posix threads

or a user-defined threads package. This tight integration translates into runtime effi-

ciency, but makes third-party adaptations and extensions to Cilk more difficult. As with

Modula-3 (Nelson, ), Ada 95 (ISO, ), and Java (Joy et al., ), the integration

of threads into the language ties the language’s users to its implementer’ thread-support

choices. In addition, Cilk is tied to the Gnu C dialect—there is currently no Cilk++

providing Cilk extensions for C++.

Cotton is my solution to both the portability and extensibility problems present in

Cilk and the problems of handling numerous thread libraries for C and C++. Cotton

is not a thread library, it is a simple, but elegant, threading interface. It aims to provide

2. Obviously, there are better algorithms for calculating Fibonacci numbers than this one, but this
inefficient algorithm provides a useful example of a short parallel program. Also, note that defining fib
as a procedure rather than a function was a deliberate choice—we will address implementing fib as a
function shortly.
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similar expressiveness to that found in Cilk and to allow migration in both directions

between Cilk and more basic thread libraries such as Posix threads. The design goals of

Cotton were to:

• Be modular and extensible, suitable for research into scheduling and parallelism

• Be simple, not replicating the work of the Cilk project and thread-library develop-

ers

• Allow efficient serial execution of Cotton programs through a trivial translation

process from Cotton to C

• Allow efficient parallel execution of Cotton programs under Cilk through a trivial

translation process from Cotton to Cilk

• Allow efficient parallel execution of programs using Posix threads (and similar

libraries) through a trivial translation process from Cotton to C++

• Use the C preprocessor to perform all translations

• Allow development in C++ as well as C

Many of these above goals reflected my needs as a researcher. I needed a simple

foundation on which to examine issues relating to parallel program execution. The Cilk

language suggested a means to faithfully extend the C language for parallelism, provided

a simple mechanism to parallelize existing code, and offered many examples of parallel

programs. Had cilk2c produced human-readable C code that I could adapt to other thread

libraries, I might have used Cilk. But because I wanted to be able to experiment with

different thread libraries, including those conforming to the Posix threads specification

(IEEE, ) as well as those offering the earlier C-Threads interface (Cooper & Draves,

), I developed Cotton.

B.1.1 The Cilk and Cotton Languages

Listings B.1 and B.2 show a procedure to calculate Fibonacci numbers in Cilk and Cot-

ton, respectively. In Cilk, spawn indicates a parallel procedure call in which a thread
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Listing B.2: The fib procedure in Cotton.

PARALLEL void fib (int n, int *result) {
PARALLEL_BLOCK
if (n < 2) {

*result = n;
} else {

int x, y;

SPAWN (fib, n − 1, &x);
SPAWN (fib, n − 2, &y);
SYNC;
*result = x + y;

}
}

is spawned to run the procedure invocation and the calling code continues with the

following statements while the spawned thread runs. The sync statement provides a

local barrier that pauses execution until all threads spawned by the procedure have ter-

minated. There is an implicit sync when a procedure returns—thus a Cilk procedure

cannot spawn a detached daemon thread that continues executing after the procedure

has returned. Procedures that will be invoked with spawn must be prefixed with the

keyword cilk (and, conversely, such cilk procedures must always be called using spawn).

The Cotton version of the program is very similar to the Cilk program. Instead of a

prefix cilk, procedures that will be invoked in parallel are given the qualifier PARALLEL and

include as the first keyword inside their outermost block the keyword PARALLEL_BLOCK.

Similarly, spawn is replaced with a macro SPAWN, and sync is replaced with SYNC. To

translate a Cotton program into a Cilk program, we use the C preprocessor to make the

following substitutions:³

3. SPAWN takes a variable number of arguments. Macros that take a variable number of arguments
were added to the C language definition (ISO, ) only recently, but many C preprocessor implemen-
tations, including the popular Gnu C preprocessor, have allowed macros to take a variable number of
arguments for some time. If we must follow earlier Ansi C standards, we must either use a set of macros
that include the number of function arguments in their names, such as SPAWN0, SPAWN1, and so forth, or
adopt a more verbose means of expression, such as SPAWN f BEGIN_ARGS a1, . . . ,an END_ARGS.
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PARALLEL �→ cilk

PARALLEL_BLOCK �→ ε

SPAWN(f ,a1, . . . ,an) �→ spawn f (a1, . . . ,an)

SYNC �→ sync

(In these mappings, ε represents an empty string.)

As we stated earlier, Cilk programs may be converted to C programs that execute

serially simply by deleting the keywords cilk, spawn, and sync from the program source.

Thus the serial C translation is obtained by using the following macro substitutions:

PARALLEL �→ ε

PARALLEL_BLOCK �→ ε

SPAWN(f ,a1, . . . ,an) �→ f (a1, . . . ,an)

SYNC �→ ε

The remaining case is the Cotton translation for thread libraries such as Posix

threads, C-Threads, and custom-written thread libraries. We shall detail this translation

in the next section.

B.2 Implementing Cotton for Thread Libraries

To understand how the Cotton thread-library translation is implemented, we shall first

look at how we would hand-parallelize our code to use a fictitious thread library with two

primitives:

thread_fork(*(any→ any), any) → thread_id

thread_join(thread_id) → any

where any represents an arbitrary pointer and *(any→ any) represents a pointer to a

function that takes an arbitrary pointer and returns an arbitrary pointer.⁴ Both Posix

4. I have tried to insulate readers from the unpleasantness of C/C++ type specifications in the text of
this appendix; in C, any ≡ void * and *(any→ any) ≡ any (*)(any). The C and C++ source shown in the
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threads and C-Threads follow this form. The pointer value returned by the spawned

thread is made available to the parent thread by thread_join.

To code fib as a parallel procedure, we must take account of the fact that whereas fib

takes two arguments, the threads interface only allows for a single argument.⁵ The stan-

dard solution to this problem is to allocate a record structure, known as an argument

block, in memory to hold the function arguments. An example coding of fib under this

scheme is shown in Listing B.3. We have declared two new functions, an invocation

function, spawn_fib, that puts the arguments for fib into the argument block, and a

dispatch function, run_fib, that pulls the arguments out of the argument block and calls

fib. The procedure fib itself has only changed slightly, invoking recursion through calls to

spawn_fib rather than fib, and waiting for the two child tasks to finish (the equivalent of

sync) using thread_join.

If we have several functions with the same type signature as fib (that is, functions with

the same argument types), we can reduce the number of support functions and structure

declarations by noting that the structures for functions with identical argument types

are identical. Applying this generalization yields the program shown in Listing B.4. In

this version of the program, the invocation and dispatch functions have suffixes based

on the argument types rather than the names of the functions they support (in this

case, the suffix has changed from _fib to _i_pi, standing for an integer and a pointer

to an integer argument). The argument block is also updated to reflect the new naming

conventions and to store a pointer to the function that the dispatch function should

call—this function pointer is provided as an argument to the invocation function.

If we limit ourselves to coding in clean, standard C, the above is about as far as we

can go. But if we can use the powerful extensions present in C++, additional possibilities

become available. First, we are able to replace all of the function names beginning with

spawn_ with a single overloaded function, spawn. But we need not stop at a simple

renaming of functions. We can collapse the myriad of functions and structure defini-

tions needed to support spawn for different function arguments into a single structure

listings uses traditional C type specifications.
5. Some readers may realize that a functional version of fib could be called by the Posix threads library

with much less trouble. For now, the additional trouble is useful, since it better represents the general
case. We will discuss an efficient implementation of fib as a function shortly.
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Listing B.3: The fib procedure, hand-converted to use a thread library.

typedef struct {
int n;
int *result;

} fib_args;

void run_fib (fib_args *args) {
int n = args−>n;
int *result = args−>result;

free(args);
fib(n, result);

}

thread_id spawn_fib (int n, int *result) {
fib_args *args;

args = malloc (sizeof (fib_args));
args−>n = n;
args−>result = result;
return thread_fork (&run_fib, args);

}

void fib (int n, int *result) {
if (n < 2) {

*result = n;
} else {

int x, y;
thread_id child1, child2;

child1 = spawn_fib (n − 1, &x);
child2 = spawn_fib (n − 2, &y);
thread_join (child2);
thread_join (child1);
*result = x + y;

}
}
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Listing B.4: The fib procedure generalized for all functions with the same type signature.

typedef void (*f_i_pi)(int, int *);

typedef struct {
f_i_pi fn;
int arg1;
int *arg2;

} closure_i_pi;

void run_i_pi (closure_i_pi *closure) {
f_i_pi fn = closure−>fn;
int arg1 = closure−>arg1;
int *arg2 = closure−>arg2;

free (closure);
(*fn) (arg1, arg2);

}

thread_id spawn_i_pi (f_i_pi fn, int arg1, int *arg2) {
closure_i_pi *closure;

closure = malloc (sizeof (closure_i_pi));
closure−>fn = fn;
closure−>arg1 = arg1;
closure−>arg2 = arg2;
return thread_fork (&run_i_pi, closure);

}

void fib (int n, int *result) {
if (n < 2) {

*result = n;
} else {

int x, y;
thread_id child1, child2;

child1 = spawn_i_pi (&fib, n − 1, &x);
child2 = spawn_i_pi (&fib, n − 2, &y);
thread_join (child2);
thread_join (child1);
*result = x + y;

}
}
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definition and a spawn function for each supported function arity. This simplification

is achieved through the use of templates. Listing B.5 shows an implementation using

templates.

One subtlety of the template implementation is that the arguments provided to spawn

do not have to be the same types as the argument types declared by the function—C++

has a variety of type-conversion behaviours, and by leaving the types unconstrained, we

allow any desired type conversion to occur. We do not need to worry about whether

a proliferation of spawn-template instances could be created by this added flexibility

because spawn is an inline function.

At this point the hard work is done! We can implement sync by using a stack (imple-

mented as a class ThreadGroup, see Listing B.6) to hold the thread_ids of spawned threads,

and providing a method sync proceed down the stack, executing thread_join on each one.

Thus, our C-preprocessor definitions implement the following mappings:

PARALLEL �→ ε

PARALLEL_BLOCK �→ ThreadGroup __tg;

SPAWN(f ,a1, . . . ,an) �→ __tg.push(spawn(&f ,a1, . . . ,an))

SYNC �→ __tg.sync()

Listing B.7 shows the Cotton fib procedure shown in Listing B.2 translated to use our

new definitions.

B.2.1 Extending Cotton to Support Functions

As presented so far, Cotton only supports procedures, but fib is most naturally specified

as a function. We can support functions by moving the assignment of the result value

out of the invoked function (fib, in this case) and into the dispatch function. Listing B.8

shows our running example converted to use fspawn to spawn functions and assign their

results to a supplied destination. The arguments to fspawn are identical to the argu-

ments to spawn, except that an additional argument—a pointer to an area of memory

for storing the function’s result—is added.
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Listing B.5: The fib procedure with thread support through templates.

template <class A, class B>
struct TwoArgClosure {

typedef void (*F)(A,B);
F fn;
A arg1;
B arg2;

TwoArgClosure(F f, A a, B b) : fn(f ), arg1(a), arg2(b) { }

static void run (TwoArgClosure *closure) {
F fn = closure−>fn;
A arg1 = closure−>arg1;
B arg2 = closure−>arg2;

delete closure;
(*fn) (arg1, arg2);

}
};

template <class A, class B, class X, class Y>
inline thread_id spawn (void (*fn)(A, B), X arg1, Y arg2) {

TwoArgClosure<A, B> *closure;

closure = new TwoArgClosure<A, B>(fn, arg1, arg2);
return thread_fork (&closure−>run, closure);

}

void fib (int n, int *result) {
if (n < 2) {

*result = n;
} else {

int x, y;
thread_id child1, child2;

child1 = spawn (&fib, n − 1, &x);
child2 = spawn (&fib, n − 2, &y);
thread_join (child2);
thread_join (child1);
*result = x + y;

}
}
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Listing B.6: The ThreadGroup task for managing thread synchronization.

class ThreadGroup {
struct StackElement {

StackElement *next;
thread_id tid;

StackElement(StackElement *n, thread_id t) : next(n), tid(t) { }
};
StackElement *threads;

public:
ThreadGroup() : threads(0) { }

~ThreadGroup() {
sync();

}

void sync() {
StackElement *current = threads;
while(current) {

StackElement *next = current−>next;
thread_join(current−>tid);
delete current;
current = next;

}
threads = 0;

}

void push(thread_id t) {
threads = new StackElement(threads, t);;

}
};
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Listing B.7: The Cotton fib procedure translated into C++.

void fib (int n, int *result) {
ThreadGroup __tg;

if (n < 2) {
*result = n;

} else {
int x, y;

__tg.push(spawn (&fib, n − 1, &x));
__tg.push(spawn (&fib, n − 2, &y));
__tg.sync();
*result = x + y;

}
}

We could define another macro, FSPAWN, that is identical to spawn except for an

added argument at the front to specify the location to store the function result, but such

a macro looks somewhat ugly. We can, in fact, adopt a slightly more elegant syntax of

LET x BECOME(f ,a1, . . . ,an). A Cotton implementation of fib as a function, using these

macros, is shown in Listing B.9.

For the thread-library translation, we use

LET �→ __tg.push(fspawn(&

BECOME(f ,a1, . . . ,an) �→ , &f ,a1, . . . ,an))

For the Cilk translation, the macros expand as follows:

LET �→ ε

BECOME(f ,a1, . . . ,an) �→ = spawn f (a1, . . . ,an))

The C translation is identical, except for the removal of the spawn keyword.

This translation style assumes that functions are always called from an assignment

statement. When spawned function calls would be part of an expression, the expression
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Listing B.8: The fib function, using fspawn.

template <class R, class V, class A>
struct OneArgFnClosure {

typedef V (*F)(A);
R *rptr;
F fn;
A arg;

OneArgFnClosure(R *r, F f, A a) : rptr(r), fn(f ), arg(a) { }

static void run (OneArgFnClosure *closure) {
R *rptr = closure−>rptr;
F fn = closure−>fn;
A arg = closure−>arg;

delete closure;
*rptr = (*fn) (arg);

}
};

template <class R, class V, class A, class X>
inline thread_id fspawn (R *rptr, V (*fn)(A), X arg) {

OneArgFnClosure<R, V, A> *closure;

closure = new OneArgFnClosure<R, V, A>(rptr, fn, arg);
return thread_fork (&closure−>run, closure);

}

int fib (int n) {
ThreadGroup __tg;

if (n < 2) {
return n;

} else {
int x, y;
thread_id child1, child2;

__tg.push(fspawn (&x, &fib, n − 1));
__tg.push(fspawn (&y, &fib, n − 2));
__tg.sync();
return x + y;

}
}
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Listing B.9: The fib function in Cotton.

PARALLEL int fib (int n) {
PARALLEL_BLOCK
if (n < 2) {

return n;
} else {

int x, y;
LET x BECOME(fib, n − 1);
LET y BECOME(fib, n − 2);
SYNC;
return x + y;

}
}

can usually be trivially rewritten to use spawned assignment on temporary variables,

which are then used in the expression.⁶

B.3 Improving Efficiency

For most real programs, the overheads of Cotton are negligible if heap-memory allocation

and deallocation is reasonably efficient. In comparisons using a null thread library (one

where thread_fork simply invokes the passed function on its argument and thread_join is

a no-op) I found little difference between the performance of the serial C elision of Cot-

ton programs, hand-coded parallelization, and Cotton’s parallelization. Nevertheless,

there are a few efficiency criticisms that might be leveled at the Cotton implementation

and we shall address those criticisms in the remainder of this section.

B.3.1 Avoiding ThreadGroups

C and C++ programmers like to avoid dynamically allocating heap memory where pos-

sible, preferring the cheaper option of statically allocating memory on the stack frame.

The ThreadGroup class must allocate memory dynamically on the heap to store thread_ids

6. I experimented with an alternate style, having spawned functions return a Pending<τ>, where τ is
the return type of the passed function, but limitations in the facilities provided by C++ meant that this
approach had much muddier semantics.
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because it has no way to tell how many times the push method is going to be invoked.

One solution is to provide an alternate version of PARALLEL_BLOCK that takes an argu-

ment specifying an upper limit on the number of threads that will be spawned. However,

requiring the programmer to state the number of threads that will be spawned may rep-

resent an additional maintenance headache and an additional opportunity for program

failure if the declared number of threads and the actual number of threads do not match.

An alternate solution involves recognizing a common idiom in parallel programs

written for the Cilk language. Often, all the spawn statements in a function are present

in groups that are immediately followed by a sync statement. For this common case,

we implement a variant style where the spawned procedures are placed between COBE-

GIN and COEND, and where calls to SPAWN are replaced with calls to FAST_SPAWN. Only

spawning statements are allowed between COBEGIN and COEND—a compound statement

(such as an if or for statement) is unlikely to perform as desired. Similarly, FAST_FSPAWN

and LAST_FSPAWN are provided for functions.

In Cilk, the last spawn before the sync is, in most respects, redundant, because the

parent thread immediately waits for that spawned child—the spawn keyword is only

required because of Cilk’s requirement that parallel procedures (those marked with cilk)

always be called via spawn. To allow Cotton to optimize this case for platforms other

than Cilk, we provide two additional macros, LAST_SPAWN and LAST_FSPAWN, which may

optionally be used for final spawn in a COBEGIN/COEND block.

We will shortly see how this variation allows us to generate efficient C++ code, but

first let us examine fib written in this style. Listing B.10 shows the fib function imple-

mented using these macros.

For the Cilk translation, the macros expand as follows:

COBEGIN �→ ε

COEND �→ sync;

FAST_SPAWN(f ,a1, . . . ,an) �→ spawn f (a1, . . . ,an)

LAST_SPAWN(f ,a1, . . . ,an) �→ spawn f (a1, . . . ,an)

FAST_FSPAWN(x,f ,a1, . . . ,an) �→ x = spawn f (a1, . . . ,an)

LAST_FSPAWN(x,f ,a1, . . . ,an) �→ x = spawn f (a1, . . . ,an)
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Listing B.10: An optimization-ready fib function in Cotton.

PARALLEL int fib (int n) {
if (n < 2) {

return n;
} else {

int x, y;
COBEGIN

FAST_FSPAWN(x, fib, n − 1);
LAST_FSPAWN(x, fib, n − 2);

COEND
return x + y;

}
}

Notice that for Cilk, FAST_SPAWN and LAST_SPAWN are identical to each other and to

SPAWN. The FAST_FSPAWN and LAST_FSPAWN macros are provided to support functions.

These constructs are perhaps a little uglier than the LET . . . BECOME construct introduced

earlier, but this form is necessary because the destination for the function result is used

in several places in the macro thread-library translation.

For the Cotton thread-library translation, we avoid using a ThreadGroup by declaring

an ActiveThread object to hold the thread_id of each newly spawned thread. The important

part of the ActiveThread class is its destructor, which waits for the thread to finish. If

several ActiveThread objects are created in a block, when the block is exited, the program

will wait for all the threads managed by the ActiveThread objects to terminate—equivalent

to a sync operation.

The ActiveThread class is parameterized with a type, τ . ActiveThread<τ> stores infor-

mation about a thread that is running a function that returns an object of type τ (proce-

dures use ActiveThread<void>). This type parameter is only used in certain specializations

of the ActiveThread class, which we will discuss in Section B.3.4.

Listing B.12 shows how we could adapt our translation of the Cotton fib function to

use the ActiveThread class in the translation of the code shown in Listing B.10.

Notice that FAST_SPAWN translates to a declaration. In C++, a declaration must

associate an identifier with the object declared, even if the declared object will never
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Listing B.11: The ActiveThread class.

template <class R>
struct ActiveThread {

thread_id active;

ActiveThread(R* x, thread_id tid) : active(tid) { } // called by functions

ActiveThread(thread_id tid) : active(tid) { } // called by procedures

~ActiveThread() {
thread_join(active);

}
};

again be explicitly referenced. To avoid saddling the programmer with the chore of

providing a suitable identifier, we rely instead on a preprocessor trick that allows us to

generate an identifier of the form __fs_line, where line is the current source line. For this

technique to work, we require that every occurrence of FAST_SPAWN must be placed on

a separate line. The translation rules for the thread-library translation are as follows:

COBEGIN �→ {

COEND �→ }

FAST_SPAWN(f ,a1, . . . ,an) �→ ActiveThread<void> __thr_line(spawn(&f ,a1, . . . ,an))

LAST_SPAWN(f ,a1, . . . ,an) �→ f (a1, . . . ,an)

FAST_FSPAWN(x,f ,a1, . . . ,an) �→ ActiveThread<typeof(x)>

__thr_line(&x, fspawn(&x,f ,a1, . . . ,an))

LAST_FSPAWN(x,f ,a1, . . . ,an) �→ x = f (a1, . . . ,an)

Notice that this code uses typeof, a Gnu C++ extension.⁷ It is actually possible to use

tricks involving sizeof to achieve the same ends, but those tricks are ugly and would

obfuscate matters considerably.

7. Why typeof (or a mechanism of similar power) was excluded from the ISO C++ standard is a mystery
to me.
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Listing B.12: The fib function, using the ActiveThread class.

int fib (int n) {
if (n < 2) {

return n;
} else {

int x, y;
{

ActiveThread<int> __thr(fspawn (&x, &fib, n − 1));
y = fib(n − 2);

}
return x + y;

}
}

B.3.2 Avoiding Dynamic Allocation in Invocation and

Dispatch

ThreadGroups are not the only source of dynamic memory allocation. The invocation and

dispatch functions also use new and delete to allocate argument blocks on the heap. But,

when the COBEGIN/COEND construct is used, it is safe to allocate the argument blocks in

the stack frame. Listing B.13 shows a revised version of the code that avoids any heap

memory allocation.

This code also uses typeof to support the DECLARE macro, which allows us to declare

a variable without needing to (redundantly) specify its exact type. The DECLARE macro

is expanded as

DECLARE(v,e) �→ typeof(e) v = e

For example, “DECLARE(x, strlen(foo))” expands as “typeof(strlen(foo)) x = strlen(foo)”, which

is semantically equivalent to “size_t x = strlen(foo)”. As with the earlier use of typeof,

DECLARE can be implemented in pure ISO C++ using tricks involving sizeof, but the

details are truly disgusting.⁸

8. Okay, if you must know, you can find the amount of space required using sizeof and then allocate
that much memory on the stack frame (using a char array with additional magic to ensure it is properly
aligned) and then call a function that uses placement new to install the new object. You can even use
similar tricks to ensure that the destructor is called.
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Listing B.13: The fib function, with efficient thread support for all single-argument
functions.

template <class R, class V, class A>
struct FastOneArgFnClosure {

typedef V (*F)(A);
R *rptr;
F fn;
A arg;

FastOneArgFnClosure(R *r, F f, A a) : rptr(r), fn(f ), arg(a) { }

static void run (FastOneArgFnClosure *closure) {
*closure−>rptr = (*closure−>fn) (closure−>arg);

}

thread_id invoke () {
return thread_fork(&run, this);

}
};

template <class R, class V, class A, class X>
inline FastOneArgFnClosure<R, V, A> fclosure(R *rptr, V (*fn)(A), X arg) {

return FastOneArgFnClosure<R, V, A>(rptr, fn, arg);
}

#define DECLARE(var, value) typeof(value) var = value

int fib (int n) {
if (n < 2) {

return n;
} else {

int x, y;
{

DECLARE(__clo, fclosure(&x, &fib, n − 1));
ActiveThread<int> __thr( &x, __clo.invoke());

y = fib(n − 2);
}
return x + y;

}
}
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With this additional optimization, the Cotton translation rules for FAST_SPAWN and

FAST_FSPAWN become

FAST_SPAWN(f ,a1, . . . ,an) �→ DECLARE(__clo_line, closure(&f ,a1, . . . ,an))

ActiveThread<void> __thr_line(__clo_line.invoke())

FAST_FSPAWN(x,f ,a1, . . . ,an) �→ DECLARE(__clo_line, fclosure(&x, &f ,a1, . . . ,an))

ActiveThread<typeof(x)>

__thr_line(&x, __clo_line.invoke())

B.3.3 Creating Fewer Template Instances

Another potential criticism of the thread-library translation for Cotton is that a myriad

of dispatch functions can be created if SPAWN is invoked for many different functions

with distinct argument types. In Cotton, invocation functions are inlined, but dispatch

functions are not, so a separate dispatch function will be created for each combination

of argument types, even though the generated code for many of the dispatch functions

is likely to be identical (e.g., on many architectures, all pointers are passed to functions

identically, yet from Cotton’s perspective they are different argument types and demand

different dispatch functions).

C++’s template-specialization mechanisms provide a means to avoid this prolifera-

tion. C++ allows templates to provide specialized implementations for particular types,

or classes of types that are chosen over the general implementation. We can use this

technique to provide structural-surrogate type substitution, where we substitute a type

with a surrogate type that has identical size and calling conventions. For example, on

most machines all kinds of pointers can be represented by a single pointer type, and,

similarly, on many machines, a machine word can represent an integer, an unsigned

integer, or a pointer. From a low-level perspective, anything that is represented as a single

machine word is passed into and out of functions in the same way.

For every type τ , we provide a (potentially machine-dependent) structural surrogate,

StructualTraits<τ>::Surrogate. By default (i.e., unless overridden by a template specializa-

tion), the surrogate type is identical to the provided type (i.e., StructualTraits<τ>::Surrogate ≡
τ ). Known surrogates are detailed through specializations—Listing B.14 shows some of

the possibilities.
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Listing B.14: A template defining structural surrogates.

template <class T>
struct StructualTraits {

typedef T Surrogate;
};

template <class T>
struct StructualTraits<T *> {

typedef void * Surrogate;
};

template <>
struct StructualTraits<int> {

typedef void * Surrogate;
};

B.3.4 Eliminating the Argument Block

Seasoned users of Posix threads may have been feeling that the fib example needlessly

allocates a memory block—on many architectures, we can pass an integer argument

and return an integer result without needing to resort to allocating an argument block

(relying instead on the use of casts to convert between pointers and integers, and thereby

passing the integer into and out of the fib function directly).

As in the previous section, we can use template specialization as a route to optimiza-

tion. In this case, we map single-argument functions (whose argument and return types

are generic pointers (i.e., void *), or types whose structural surrogate is a generic pointer),

onto the basic thread primitives, without the need to allocate an argument block.

But supporting such functions requires a departure from our previous implementa-

tion of functions. Usually, it is the child thread’s responsibility to write the result value

into a space provided by the parent thread, but for this special case, we would prefer

the child to return its result via the return value of thread_join (usually, the return value

of thread_join is unused). To implement these alternate return semantics, we use the

template specialization ActiveThread<void *>, shown in Listing B.15.
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Listing B.15: A specialization of ActiveThread for functions that return integers.

template <> // specialization
struct ActiveThread<int> {

thread_id tid;
int* rptr;

ActiveThread (int* r, thread_id t) : tid(t), rptr(r) { }

~ActiveThread () {
*rptr = (int) thread_join(tid);

}
};

template <class V, class A>
struct FastOneArgIntFnClosure {

typedef V (*F)(A);
F fn;
A arg;

FastOneArgIntFnClosure(F f, A a) : fn(f ), arg(a) { }

thread_id invoke () {
return thread_fork(fn, arg);

}
};

template <class V, class A, class X> // specialization
inline FastOneArgIntFnClosure<V, A> fclosure(int *rptr, V (*fn)(A), X arg) {

return FastOneArgIntFnClosure<V, A>(fn, arg);
}
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Listing B.16: A hand-coded implementation of fib using a thread library.

int fib (int n) {
if (n < 2) {

return n;
} else {

int x, y;
thread_id tid;
tid = thread_fork(&fib, (void *) (n − 1));
y = fib(n−2);
x = (int) thread_join(tid);
return x + y;

}
}

B.3.5 Applying All Three Optimizations

When all three optimizations are applied, an good optimizing C++ compiler will produce

output for the program given in Listing B.10 that is exactly equivalent to the code pro-

duced for the hand coded C function shown in Listing B.16. Thus these optimizations

allow Cotton to produce object code that is exactly equivalent to carefully hand-coded

solutions.

B.4 Limitations

Cotton provides a high level abstraction, but it caters to the lowest common denomi-

nator of its underlying thread packages. It supports the intersection of functionality be-

tween C-Threads, Posix threads and Cilk. For example, whereas Cilk and Posix threads

each provide facilities for thread cancellation and thereby make applications like non-

deterministic search straightforward to implement, C-Threads does not natively support

cancellation, so Cotton does not provide it. Similarly, Cilk provides a facility, known as

inlets, that allow a the result of a spawned function to be asynchronously received and

acted upon in the calling procedure; no analogous facility exists in C-Threads or Posix

threads—in fact, the serial elision of a Cilk program with inlets is not even valid Ansi C.
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These features could conceivably be addressed by Cotton, but there comes a point

where the original design simplicity begins to be obscured. Pushing Cotton to support

functions was one step away from its simple foundations, adjusting it to provide optimal

code was another step, and pushing it still further to support cancellation, mutexes,

inlets, thread-stack sizes, daemon threads, or other features could each be seen as a step

too far.

B.5 Conclusion

Cotton, in combination with the Pthieves work-stealing scheduler, provides the par-

allel platform on which the LR-tags method was tested. As the performance results in

Chapter 11 show, Cotton/Pthieves can sometimes outperform Cilk, which came as an

unexpected surprise. Not too shabby for a C-preprocessor–based C++ hack.



Appendix C

The Pthieves Work-Stealing

Scheduler

This appendix provides an overview of Pthieves, a lightweight work-stealing–scheduler

front end. Pthieves does not concern itself with the low-level details of task scheduling,

instead acting as an intermediary between Posix threads and programs that require fine-

grained parallelism. Although the work-stealing algorithm in Pthieves is similar to that

in the Cilk system (which has a provably memory-efficient scheduler), Pthieves does

not claim to be memory efficient in theory.¹ In practice, however, for the applications I

have tested, Pthieves appears to work reasonably well.

C.1 Not Another Scheduler!

I never expected (or intended) to write my own work-stealing scheduler. When I first

wrote a prototype of my determinacy-checking system, I wrote the code in Java. Java

seemed ideal because it contained built-in constructs for parallelism and provides its

own scheduler. Sadly, the overheads of Java’s virtual machine and the inefficiencies of

its synchronization mechanisms muddied the waters enough for me to decide to re-

implement my work in an “efficient” language with excellent parallel scalability.² So I

1. I also make no claim that Pthieves is provably inefficient.
2. Others have not been so quick to give up on Java. For example, Doug Lea () has developed an

efficient work-stealing scheduler written in pure Java.


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looked to Cilk (Frigo et al., ; Blumofe et al., ; Blumofe & Leiserson, ), which

seemed to fit the bill admirably. Alas, although Cilk is powerful (and included excellent

benchmarks for would-be authors of determinacy checkers), its codebase did not appear

to be written with third-party modification in mind.

Because Cilk was not amenable to modification, I developed the Cotton parallelism

mechanism to allow me to borrow benchmarks from Cilk and run them under the

Posix threads environment (or the simpler C-threads library)—see Appendix B. Cotton

worked wonderfully, but the Solaris and Linux implementations of Posix threads did

not, and neither did the C-Threads threads library on NextStep. These thread libraries

simply were not designed for programs that used the kind of fine-grained parallelism

present in the Cilk benchmarks.

I began looking for alternative schedulers. My officemate, David Simpson, was work-

ing on a work-stealing scheduler (Simpson & Burton, ), but it was intended for

scheduling a parallel functional programming language and his prototype implemen-

tation was written in Java, the very language I had fled. I considered whether I could use

Cilk’s powerful and efficient work-stealing scheduler without using the rest of the Cilk

system, but Cilk’s scheduler is tightly integrated with the cilk2c translation mechanism,

which provides a special version of each spawnable function that uses call/cc (Reynolds,

; Danvy & Filinski, ) rather than the more usual C-calling conventions.

So, after considering my options, I decided to try my hand at writing my own work-

stealing scheduler. Interestingly, at around the same time, several other researchers also

implemented user-level thread libraries using work-stealing schedulers, including Hood

(Blumofe & Papadopoulos, ), StackThreads (Taura et al., ), and Pthreads for

Dynamic and Irregular Parallelism (Narlikar & Blelloch, ).

All of the user-level thread libraries listed above were developed after I created Cot-

ton, and some of them were created after I had written Pthieves. Yet, even if these

schemes had been developed earlier, they still might not have dissuaded me from de-

veloping my own user-level scheduler. None of the above schemes support the simple

thread_fork/thread_join api that Cotton expects, and all of them have subtle practical

annoyances that, although not insurmountable, would have created more work for me

in the long run. Hood, for example, disallows many C-standard library calls under Linux

and encodes parallel functions in the form of a C++ class, increasing the porting work
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Listing C.1: A function to calculate Fibonacci numbers in Cilk.

cilk int fib (int n) {
if (n < 2) {

return n;
} else {

int x, y;

x = spawn fib (n − 1);
y = spawn fib (n − 2);
sync;
return x + y;

}
}

necessary for the Cilk benchmarks I wanted to run. Similarly, StackThreads requires

compiler changes (which were only provided for an obsolete version of gcc), and Narlikar

and Blelloch’s Pthreads implementation is a modification of the proprietary Solaris

Pthreads library and is, therefore, not available in source form. Finally, all of the above

techniques are low-level, making porting them difficult (initially, I was doing my devel-

opment work under NextStep, an unsupported platform for all of these tools).

C.2 The Pthieves Interface

Pthieves provides two functions to user-level code:

thread_fork(*(any→ any), any) → thread_id

thread_join(thread_id) → any.

This interface is similar to the interface provided by both Posix threads and C-threads,

except that no provision is made for programs to use locks or other synchronization

mechanisms—instead, Pthieves assumes that the program follows a nested-parallelism

model. This requirement means that, in a given task, calls to thread_join should follow

the reverse order of calls to thread_fork (the ThreadGroup class in Listing B.6 provides

facilities to ensure the necessary ordering rules are followed). Listings C.1 and C.2 show
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Listing C.2: The fib function using Pthieves.

int fib (int n) {
if (n < 2) {

return n;
} else {

int x, y;
thread_id calc_y, calc_x;
calc_y = thread_fork(&fib, (void *) (n − 2));
calc_x = thread_fork(&fib, (void *) (n − 1));
x = (int) thread_join(calc_x);
y = (int) thread_join(calc_y);
return x + y;

}
}

Listing C.3: Cilk-like serial semantics for thread_fork and thread_join.

typedef void * thread_id;

thread_id thread_fork(void * (fn)(void *), void *arg) {
return (*fn)(arg);

}

void * thread_join(thread_id tid) {
return tid;

}

a function to calculate Fibonacci numbers written in Cilk and ordinary C using the

Pthieves thread library, respectively.

The semantics of thread_fork and thread_join under Pthieves on a uniprocessor ma-

chine are slightly different from the semantics of spawn and sync in the serial elision of

a Cilk program. Listing C.3 shows the semantics that Cilk users might expect, whereas

the definitions for thread_fork and thread_join shown in Listing C.4 are the actual defi-

nitions required to execute the code in exactly the same way that Pthieves does on a

uniprocessor machine. In essence, Cilk follows the left branch of the tree first, whereas

Cotton follows the right branch (or, put another way, Pthieves pushes function calls
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Listing C.4: Actual serial semantics for thread_fork and thread_join in Pthieves.

typedef struct thread_id {
void * (fn)(void *);
void *arg

};

thread_id thread_fork(void * (fn)(void *), void *arg) {
thread_id tid = { fn, arg };
return tid;

}

void * thread_join(thread_id tid) {
return (*tid.fn)(tid.arg);

}

onto its work stack, whereas Cilk pushes continuations). For many algorithms, the dif-

ference is either irrelevant, or, as in our fib example, trivial to account for by re-ordering

calls to thread_fork to provide the same serial execution order as Cilk.³

In the discussion that follows, we will assume that code written for Pthieves is

transformed as necessary to execute on a uniprocessor using the same serial execution

order as Cilk.

C.3 How Pthieves’ Scheduler Differs from Cilk’s

Scheduler

Cilk’s scheduler served as the inspiration for Pthieves’ scheduler—both are based on an

efficient-work stealing algorithm (Blumofe & Leiserson, ), and both use the thread-

ing facilities provided by the operating system to provide a virtual-processor abstraction

on which tasks are scheduled (in both cases, the number of active virtual processors

should be the same as the number of physical processors present in the machine). But

3. The only exception is Cilk code that performs a spawn inside a loop and then performs a sync
outside the loop. To achieve the same execution pattern as Cilk, the loop must be rewritten as a recursive
function, with each recursive step being invoked with thread_fork.
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Figure C.1: Divide-and-conquer algorithms use nested parallelism.

Pthieves compromises the efficient work-stealing algorithm to the extent necessary to

be portable and easy to implement, whereas Cilk does not. In this section, I will outline

the essential differences between the schedulers provided by Pthieves and Cilk.

To understand how Pthieves operates, we will examine a generic parallelizable divide-

and-conquer algorithm, shown in Figure C.1. Figure C.2 shows how the serial execu-

tion of such an algorithm uses memory—in this example, we can see that there are

never more than four function-activation records on the stack (the figure uses a rather

whimsical representation of the memory state of each activation, representing it with a

randomly chosen unique bar graph and abstract shape). Careless parallel execution (a

breadth-first strategy), on the other hand, could cause up to fifteen activation records in

existence concurrently.

Figure C.3 shows how work is stolen in Cilk. When work is stolen in Cilk, the entire

state of the topmost spawned task is stolen (thanks to special continuation-storing op-

erations added to the code by the cilk2c translator). Unfortunately, this operation cannot

be simulated in a simple user-level thread library such as Pthieves without resorting

to machine-dependent tricks (because it’s difficult to know how much of the processor

stack to copy, and the stack may contain pointers that need to be adjusted for their new

locations).⁴

4. StackThreads avoids the stack-copying problem by changing function-call behaviour to eliminate
the expectation that activation records on the stack are contiguous. Pthieves does not have that luxury,
however.



C.3. How Pthieves’ Scheduler Differs from Cilk’s Scheduler 

Memory

Memory

Memory

Memory Memory Memory Memory

Memory Memory Memory Memory

Memory Memory Memory Memory

SOLUTION solve PROBLEM

BLEMSOLU

 solve PROBLEM

BLEMPROB

 solve PROBLEM

BLEMPROB

 solve PROB

PRROB

 solve PROB

PRROB

 solve PROBLEM

BLEMPROB

 solve PR

PPR

 solve PROBLEM

BLEMPROB

 solve PR

PPR

 solve P

 solve PROBLEM

BLEMPROB

 solve PROB

PRROB

 solve PR

PRS

 solve PROBLEM

BLEMPROB

 solve PROB

PRROB

 solve PR

PRS

 solve PR

 solve PROBLEM

BLEMPROB

 solve PROB

PRROB

 solve PR

SSO

 solve PROBLEM

BLEMPROB

 solve PROB

SOROB

 solve PROBLEM

BLEMPROB

 solve PROB

SOROB

 solve ROB

ROOB

 solve PROBLEM

BLEMPROB

 solve PROB

SOROB

 solve ROB

ROOB

 solve RO

 solve PROBLEM

BLEMPROB

 solve PROB

SOROB

 solve ROB

OBOL

 solve PROBLEM

BLEMPROB

 solve PROB

SOROB

 solve ROB

OBOL

 solve RO

 solve PROBLEM

BLEMPROB

 solve PROB

SOROB

 solve ROB

OLLU

 solve PROBLEM

BLEMPROB

 solve PROB

SOOLU

 solve PROB

PRROB

Figure C.2: Serial execution of a divide-and-conquer algorithm. (continued over…)
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Figure C.2 (cont.): Serial execution of a divide-and-conquer algorithm.
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When work is stolen, there are two possibilities: either the thief will finish before the

victim needs the result, or the victim will need the result before the thief has finished.

Figure C.4 shows how Cilk handles task completion in these two cases. In Cilk, both

cases are handled efficiently.

Figure C.5 shows how work stealing is handled by Pthieves. Unlike Cilk, Pthieves

cannot steal as much context as Cilk does, leaving the thief a second-class citizen com-

pared to its victim. This difference has important ramifications for the completion of

stolen work. If the thief finishes the work before it is needed, all is well. If, however, the

victim discovers the theft, it is left in a bind. In general, the victim cannot keep itself

busy by stealing work, because doing so could leave it busy with other unrelated stolen

work when the thief finishes the work it stole from the victim.⁵ Thus, the victim should

sleep. But rather than leave a (physical) processor performing no work, just before the

victim sleeps, it creates a new, idle, virtual processor that is free to steal work. When

the original thief finishes its stolen work and discovers that the work it stole was not

completed soon enough, it wakes the sleeping victim and then dies. Thus, the number of

active processors always remains constant.

In theory, every piece of stolen work could be completed “too late”, and thus cause a

proliferation of operating-system–level threads implementing the virtual-processor ab-

stractions (with most of the processors sleeping). But this scenario is no worse than

calling pthread_fork instead of thread_fork—in both cases, the largest worry is not how

much real memory is used, but how much address space (i.e., not how much stack is

used, but how much stack space is allocated).⁶ Narlikar and Blelloch () indicate

that this issue can be addressed by creating operating-system–level threads with small

stack allocations rather than the  mb operating-system default. If Pthieves were to

follow this model (it does not do so, currently), whenever an existing processor started

to run out of stack space, it would simply create a new virtual processor and then sleep,

5. In the specific case of two processors, the victim actually can steal from the thief, because doing so
always aids progress towards getting the original piece of stolen work completed. This two-processor
optimization is supported in Pthieves, as dual-processor hardware is probably the most common
multiprocessor configuration.

6. Actually, in some Posix-threads implementations, a greater worry is how foolishly the threads will
be scheduled. This worry does not apply to Pthieves, however, because Pthieves always ensures that
the number of active Posix threads is equal to the number of processors present in the machine.
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Figure C.5: How work-stealing operates in Cotton.
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waiting for that virtual processor to finish its work. In practice, this technique has not

proved necessary, because—for the benchmarks I needed to run—stolen work is usually

completed before the theft is discovered, and the number of virtual processors created is

usually only two or three times the number of physical processors.⁷

C.4 Conclusion

As the performance results in Chapter 11 show, Pthieves performs remarkably well,

given its simplicity and lack of a rigorous proof of good memory performance.

7. In a work-stealing scheduler, provided that the amount of parallelism significantly exceeds the
number of physical processors, we can expect work queues to be fairly long on average. Thus, while
thefts are occuring at the far end of the work queue, the victim is busy with work at the near end of the
queue.



Appendix D

The List-Order Problem

In this appendix we present an algorithm that addresses the list-order problem.¹ This

algorithm has been presented previously by Dietz and Sleator (), but we explain it

here both because maintaining an ordered list is a fundamental to our method, and to

show that this technique can be implemented relatively easily.

We have chosen to present the simplest practical solution to the list-order problem

that requires constant amortized time and space for insertion, deletion, and comparison.

Other, more complex, solutions to the list-order problem exist, including a constant real-

time algorithm (Dietz & Sleator, ; Tsakalidis, ).

Although the algorithm has been presented before, our presentation of it may be of

some interest to those who might encounter it elsewhere, since we present it from a

slightly different perspective, and reveal some properties that may not have been obvi-

ous in the original presentation.² Note, however, that for brevity we omit proofs of the

complexity of this algorithm, referring the interested reader to the original paper (Dietz

& Sleator, ) for such matters.

We will start by presenting an O(log n) amortized-time solution to the list-order

problem, which we will then refine to give the desired O(1) amortized-time solution.

1. This appendix is a minor revision of one that appeared in a prior paper by the present authors
(O’Neill & Burton, ).

2. In particular, we show that it is only necessary to refer to the ‘base’ when performing comparisons,
not insertions. Also, some of the formulas given by Dietz and Sleator would, if implemented as presented,
cause problems with overflow (in effect causing “mod M ” to be prematurely applied) if M is chosen, as
suggested, to exactly fit the machine word size.


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D.1 An O(log n) Solution to the List-Order Problem

The algorithm maintains the ordered list as a circularly linked list. Each node in the

list has an integer label, which is occasionally revised. For any run of the algorithm, we

need to know N , the maximum number of versions that might be created. This upper

limit could be decided for each run of the algorithm, or, more typically, be fixed by an

implementation. Selection of a value for N should be influenced by the fact that the

larger the value ofN , the faster the algorithm runs (because it operates using an interval

subdivision technique), but that real-world considerations³ will likely preclude the choice

of an extremely large value for N. In cases where N is fixed by an implementation, it

would probably be the largest value that can fit within a machine word, or perhaps a

machine half-word (see below).

The integers used to label the nodes range from 0 to M − 1, where M > N2. In

practice, this means that if we wishedN to be 232 − 1, we would need to setM to 264. If

it is known that a large value forN is not required, it may be useful for an implementation

to fix M to be 2w , where w is the machine word size, since much of the arithmetic

needs to be performed moduloM , and this choice allows the integer arithmetic overflow

behavior of the processor to accomplish this modulo arithmetic with minimal overhead.

In the discussion that follows, we shall use l(e) to denote the label of an element e,

and s(e) to denote its successor in the list. We shall also use the term sn(e) to refer to

the nth successor of e; for example, s3(e) refers to s(s(s(e))). Finally, we define two “gap”

calculation functions, g(e, f) and g∗(e, f), that find the gap between the labels of two

elements:

g(e, f) = (l(f)− l(e)) mod M

g∗(e, f) =



g(e, f) if e �= f

M if e = f.

To compare two elements of the list, x and y, for order, we perform a simple integer

comparison of g(base, x) with g(base, y), where base is the first element in the list.

3. Such as the fact that arithmetic on arbitrarily huge integers cannot be done in constant time. In
fact, if we could do arithmetic on arbitrary-sized rationals in constant time, we would not need this
algorithm, since we could then use a labeling scheme based on rationals.
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Deletion is also a simple matter, we just remove the element from the list. The only

remaining issue is that of insertion. Suppose that we wish to place a new element i such

that it comes directly after some element e. For most insertions, we can select a new

label that lies between l(e) and l(s(e)). The label for this new node can be derived as

follows:

l(i) =

(
l(e) +

⌊
g∗(e, s(e))

2

⌋)
mod M.

This approach is only successful, however, if the gap between the labels of e and its

successor is greater than 1 (i.e., g(e, s(e)) > 1), since there must be room for the new

label. If this is not the case, we must relabel some of the elements in the list to make

room. Thus we relabel a stretch of j nodes, starting at e, where j is chosen to be the least

integer such that g(e, sj(e)) > j2. (The appropriate value of j can be found by simply

stepping through the list until this condition is met). In fact, the label for e is left as is,

and so only the j − 1 nodes that succeed e must have their labels updated. The new

labels for the nodes s1(e), . . . , sj−1(e) are assigned using the formula below:

l(sk(e)) =

(
l(e) +

⌊
k × g∗(e, sj(e))

j

⌋)
mod M.

Having relabeled the nodes to create a sufficiently wide gap, we can then insert a new

node using the procedure we outlined earlier.

D.2 Refining the Algorithm to O(1) Performance

The algorithm, as presented so far, takes O(log n) amortized time to perform an inser-

tion (Dietz & Sleator, ). However, there is a simple extension of the algorithm which

allows it to take O(1) amortized time per insertion (Tsakalidis, ; Dietz & Sleator,

), by using a two-level hierarchy: an ordered list of ordered sublists.

The top level of the hierarchy is represented using the techniques outlined earlier,

but each node in the list contains an ordered sublist which forms the lower part of the

hierarchy. An ordered list element e is now represented by a node in the lower (child) list,

c(e), and a node in the upper (parent) list, p(e). Nodes that belong to the same sublist
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will share the same node in the upper list; thus,

p(e) = p(f), ∀e, f s.t. c(e) = sc(c(f))

where sc(ec) is the successor of sublist element ec. We also define sp(ep), lc(ec), and

lp(ep) analogously.

The ordered sublists are maintained using a simpler algorithm. Each sublist initially

contains �log n0� elements, where n0 is the total number of items in the ordered list we

are representing. That means that the parent ordered list contains n0/log n0 entries.

Each sublist element receives an integer label, such that the labels of the elements are,

initially, k, 2k, . . . , �log n0� k, where k = 2�log n0�. When a new element nc is inserted

into a sublist after some element ec, we choose a label in between ec and sc(ec). More

formally:

lc(nc) =

⌈
lc(ec) + lc(sc(ec))

2

⌉
.

Under this algorithm, a sublist can receive at least �log n0� insertions before there is any

risk of there not being an integer label available that lies between ec and sc(ec).

To insert an element i after e in the overall ordered list, if the sublist that contains

c(e) has sufficient space, all that needs to be done is to insert a new sublist element

ic after c(e), and perform the assignments c(i) ← nc and p(i) ← p(e). However, if

the sublist contains 2 �log n0� elements, it may not be possible to make insertions after

some of its elements. In that case, we must split the sublist into two sublists of equal

length, relabeling both sets of �log n0� nodes following the initial labeling scheme. The

nodes of the first sublist are left with the same parent ep but nodes of the second sublist

are given a new parent ip which is inserted in the upper ordered list immediately after ep.

These techniques are used for insertions until the number of nodes n in the over-

all ordered list is greater than 2�log n0�, since at that point �log n� > �log n0�. When

this happens (every time n doubles), we must reorganize the list so that we now have

n/�log n� sublists each containing �log n� nodes, rather than having n/�log n0� sublists

of �log n0� nodes.

Since this new scheme only creates n/�log n� entries in the upper ordered list, M

can be slightly lower. Recall that previously we imposed the conditionM > N2. Now we
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have a slightly smaller M, since it need only satisfy the condition

M > (N/�logN�)2

In practice, this condition would mean that if we required up to 232 list entries, we would

need an arena size of 254 (instead of 264). Similarly, if we wished all labels to fit within

a machine word, and so wished M to be 232, we would be able to have a little over 220

items in an ordered list at one time (instead of 216 items).

Following this scheme, we can implement efficient ordered lists and by simple deriva-

tion, a quick and effective scheme for representing relationships between tasks in a task

dag.





Appendix E

Practicalities of Parallel Ordered Lists

In Appendix D, we examined Dietz and Sleator’s () algorithm for providing efficient

ordered lists. In this appendix, we will examine a few of the practicalities for implement-

ing these lists, especially the issue of providing parallel access to this data structure.

As with any discussion of implementation issues, there is always a question of how

deep to go and when to refer the reader to the documented source code of an actual

implementation. This appendix merely touches on some of the most salient features of

my implementation—many more details can be found in the commented source code.

E.1 Basic Structure

Figure E.1 shows a basic ordered list. This list shows the basic properties that we would

expect from the description in Appendix D: a two-level structure with an “upper list”

(shown at the top, running left to right) where each upper-list node contains a lower list

(shown beneath each upper node, running top to bottom).¹

This data structure includes a useful optimization over the structure described in

Appendix D: The list is singly linked rather than doubly linked. Although this optimiza-

tion makes some insertion and deletion operations more awkward, this kind of ordered

1. If you are lucky enough to be viewing the figure in colour, the upper nodes are violet and the lower
nodes are yellow; otherwise the upper nodes are a slightly darker grey than the lower nodes.


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Figure E.1: A basic ordered list.

list is sufficient for many real-world situations. Also note that the lower nodes are miss-

ing Contents fields to contain the data stored in the list. This omission reflects the way

we use ordered lists when implementing the fat-elements and LR-tags methods—we use

the ordered-list entries themselves as version stamps; there is no actual data stored in

the list.

In this realization of the ordered-list structure, a reference to an ordered-list entry

is in fact a reference to a lower-list node. Each lower-list node contains a reference to

the upper-list node to which it belongs. Constructing an algorithm to traverse the entire

ordered list is straightforward.²

2. See the succ() method in gen-vstamp.h or the succ function in version-stamp.sml—see Appendix H.
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Figure E.2: An ordered list that supports deletion.

E.2 Supporting Deletion

As with ordinary linked lists, sometimes a singly-linked list is incapable of efficiently

providing the desired range of operations and a doubly-linked list is required. Figure E.2

shows the ordered-list structure with backward links added to make deletion and certain

kinds of insertion easier. Observe that the backward links do not mirror the forward

links—the backward links trace the flattened ordered list, rather than following the ups

and downs of the upper and lower lists. Even though there are no back links in the upper

list, we can nevertheless travel backwards in the upper list using the Lower, Previous,
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and Upper links (because every upper-list node always has at least one lower-list node

associated with it).

E.3 Locking Strategies

If the data structure portrayed in the preceding sections looked somewhat complex,

those complexities are nothing compared to the intricacies involved in allowing parallel

access to the data structure. Serializing parallel access is a tricky business—it is easy

to serialize access correctly, and easy to serialize access quickly, but serializing parallel

accesses such that they are both quick and correct is a more challenging problem.

For the ordered list, the most common operation in typical use is the order query. If

the two nodes being compared are in the same lower list, we use their lower tags, but

if they are in different lower lists, they are compared based on the tags of the upper-list

nodes to which each lower list belongs.

If the tags given to nodes were immutable, order queries would be straightforward—

the insertion or deletion of other nodes in the graph would have no bearing on the tags

being compared. But sometimes an insertion may require a certain amount of reshuffling

(see Appendix D). One solution to this problem is to use a locking strategy that prevents

reshuffles from occurring while order queries are taking place, but I have adopted a “lock-

free” strategy for order queries that improves performance by allowing the list to be

reorganized even as it is being read. (List insertions and deletions, on the other hand,

do require locking.)

To allow a lock-free approach, the code that compares version stamps needs to be

able to determine when it has read data that is consistent, and when it has read data that

is inconsistent. Consistency information is communicated via a Version counter (each

lower list has an associated version counter (held in the lower list’s upper node), and

the upper list also has a version counter (held in the first upper node)—see Figure E.3).

Whenever the version counter is even, the list it guards is in a consistent state, and

whenever it is odd, a reorganization is in progress.

A read begins by reading the version counter. If the version number is odd, we must

wait until it becomes even. We may then proceed with reading the Tag fields necessary
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to perform the order query. After we have read the data structure, we check the version

counter again. If it holds the same value it held when we began, we have read consistent

data. If the counter’s value has changed, we must start over.

There are a number of subtleties involved in this approach because the Version field

for a lower-list is stored in its associated upper-list node, but reorganizations can move a

lower-list node from one upper list node to another. If we allow deletion, the situation is

further complicated: Between the moment when the upper node is located (by reading

the Upper field of the lower node) and the moment that we read the Version field from that

upper node, the lower node could be moved to belong to a new upper node as part of a

reshuffle and memory containing the old upper node could have been recycled. (This

problem can be solved using machine-specific locking features, or by adding a Version

field to each lower node and incrementing the counter when the node’s Upper pointer is

changed—making otherwise invisible changes to the Upper pointer detectable.).

Insertions, deletions, and reorganizations of elements within a list use a shared/ex-

clusive lock associated with the list to arbitrate access. When performing an insertion,

a shared lock is acquired (because multiple insertions can take place concurrently), but

when a reorganization is required, an exclusive lock must be acquired and the Version

counter incremented. (In practice, the version counter is not incremented immediately;

there is a certain amount of preparatory work that is done while the global lock is held

that introduces no inconsistencies to the Tag (and Upper) values of nodes).

Deletions always require an exclusive lock on the list they are modifying. I would

have preferred to allow deletions to operate concurrently with insertions, but realizing

this goal has proved to be tricky in practice. For now, I have settled for a locking strategy

that I know is correct, even if it may not necessarily be optimal.

E.4 Conclusion

This appendix has only touched on some of the issues involved in providing parallel

access to an ordered list. The most complete documentation of my implementation

can be found in the file gen-vstamp.h in the source code for the LR-tags method (see

Appendix H). There are, however, several observations I can and should make.
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Writing code that uses complex synchronization mechanisms can be very difficult.

Tracking down simple mistakes can be arduous, and, even after all known bugs are fixed

and the code appears to behave flawlessly, it is very difficult to be certain that there are

no opportunities for subtle race conditions. The contrast between writing complex lock-

based code with writing algorithms that adhere to Bernstein’s conditions (and can be

checked with the LR-tags determinacy checker) is a stark one. In my experience, code

that can be checked using Bernstein’s conditions can be checked and debugged quickly,

whereas code that uses locks can be very difficult to debug. Although race detectors

exist for programs that use locks (Savage et al., ; Cheng et al., ), these detectors

require fairly primitive uses of locks, and appear to be of little use for data structures that

endeavour to use a minimal amount of locking, such as the parallel ordered list we have

discussed here.





Appendix F

An Alternative Method for

Determinacy Checking

This appendix presents a determinacy-checking technique that was a precursor to the

LR-tags method presented in the body of this dissertation. This technique is more lim-

ited than the LR-tags method because it can only check Bernstein’s conditions for pro-

grams that use nested parallelism, whereas the LR-tags method works for any program

whose parallel structure can be modeled using an LR-graph. In addition, this technique is

merely a “nearly constant” amortized-time algorithm, rather than a constant amortized-

time algorithm.

F.1 Basics of Determinacy Checking

As we discussed in Chapter 6, checking determinacy at runtime requires us to check

that each read is valid given previous writes, and that each write is valid given previous

reads and writes. You will recall that we need to consider prior reads when checking

writes because reads might be scheduled in a different order on other runs, and error

detection should not be influenced by the order of task execution, even when the tasks

are scheduled in a simple serial fashion (see Listing 6.1(a) on page ).

We can express the necessary validity conditions in terms of the relationships be-

tween tasks in the dag task model. A read is valid if the task that last modified the data


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item is an ancestor of, or is itself, the task performing the read. Writes are similar to

reads, in that the task that last modified the data item must be an ancestor of the task

performing the write, but writes also require that all reads done since the last write are

also ancestors of the task performing the write.

As we discussed in Section 7.1, we associate each datum d with both the last writer

for that datum, w(d), and the set of tasks that have accessed that datum since it was

written,R(d). We may think ofR(d) as the “reader set” for d, butR(d) also includes the

task that last wrote d. Given these definitions, Bernstein’s conditions become:

• Reads — A read is valid if the task that last modified the data item is an ancestor of

(or is itself) the task performing the read. Expressing this restriction algebraically,

a task tmay read a datum d if

w(d) � t (Bern-1)

where w(d) is the task that wrote the value in d. When a read is valid, we update

R(d) as follows:

R(d) := R(d) ∪ {t}

• Writes — Writes are similar to reads in that the task that last modified the data

item must be an ancestor of the task performing the write, but writes also require

that all reads done since the last write must also have been done by ancestors of

the task performing the write. Thus, a task tmay write a datum d if

∀r ∈ R(d) : r � t (Bern-2)

where R(d) is the set of tasks that have accessed d since it was last written (in-

cluding the task that performed that write). If the write is valid, we update R(d)

and w(d) as follows:

w(d) := t

R(d) := {t}

At this point, we will deviate from the determinacy-checking framework set out in
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Chapter 7. Observe that we can use a single value to represent all the reads instead of

maintaining the set R(d) for each datum, d. Given the function ncd(T ), which finds

the nearest common descendant in the task dag for some set of tasks T we can use the

equivalence (∀x ∈ T : x � t) ⇔ (ncd(T ) � t), which is the definition of nearest

common descendant, to change the test for writes to (r(d) � t) ∧ (w(d) � t) where

r(d) ≡ ncd(R(d)). It is a simple matter to keep r(d) updated as reads occur, since

ncd({r(d), t}) ≡ ncd(R(d) ∪ {t}).
By maintaining and checking values for r(d) and w(d) for each datum d we have a

simple runtime check for determinacy that can be applied to any program that can be

described using the dag model. This method does, however, presuppose that we can

determine the nearest common descendant of two tasks, which, for a dynamic parallel

program, may or may not be practical, depending on how the dag is generated.

Many parallel algorithms are not hampered by this problem, however, because they

do not need the full power of an arbitrary dag to describe how their tasks relate and can,

instead, be described by a series-parallel graph. If we restrict ourselves to this class of

parallel algorithms, we find that we can trade the graph model for a dynamic tree, and,

in so doing, be able to solve ancestor queries more quickly and avoid solving the nearest

common descendant problem in the general case.¹

Figure F.1 shows how the tasks that were represented using a static series-parallel

graph in Figure 6.1(a) can be represented using a dynamic tree. In this representation, the

tree expands as tasks are forked and contracts again when they join. When a join occurs,

the parent’s children are removed from the tree and all their work becomes attributed to

the parent—as if the children had never existed and all the work had been done by the

parent.²

We have outlined the basis of this determinacy-checking technique, but we must

1. The nearest common descendant problem in a dag becomes the nearest common ancestor problem
for a dynamic tree, which we then solve in just-in-time fashion through a useful side effect of other
behaviour.

2. The parent and child metaphor fails us here, since it seems wrong that parents should always outlive
their children, and strange that they should assume the credit for their children’s work. It would probably
be better to talk of contractors and subcontractors, since it seems more plausible that a contractor
would be around for a longer period of time than its subcontractors, and that it would sleep while its
subcontractors work, and then take credit for all the work that the subcontractors had done. But we will
stick to parent and child, because these are the terms in common usage.
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(a) Initially, there is just
one task: a.

a

b c

(b) a forks two chil-
dren, b and c, which
begin running. a is
suspended until both
its children have termi-
nated.

a

b c

d e

(c) c forks d and e; c is
suspended until d and
e terminate.
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f g d e

(d) b forks f and g. e
dies.

f dg

cb

a

e

(e) f dies.

a

b c

d e

(f) g dies—f and g are
removed from the tree;
their work becomes at-
tributed to their parent
b which resumes (rep-
resented as task b′ in
Figure 6.1(a)).

a

b c

h i d e

(g) b forks two new chil-
dren, h and i.

a

b c

h i d e

(h) h dies.

a

b c

d e

(i) i dies; b takes credit
for its children’s work
and resumes execut-
ing (task b′′ in Fig-
ure 6.1(a)); b completes
its work and dies.

a

b c

(j) d dies—d and e
are removed from
the tree and c takes
credit for their work
and resumes (the
task becomes c′ in
Figure 6.1(a)).

a

(k) c dies—b and c are
removed from the tree
and have all their work
attributed to a (a′ in
Figure 6.1(a)); a com-
pletes execution and
itself dies.

Figure F.1: Using a dynamic tree instead of a series-parallel graph. Here we represent one
possible parallel execution sequence for the series-parallel graph given in Figure 6.1(a).



F.2. Solving Ancestor Queries for a Dynamic Tree 

now show that we can solve ancestor queries quickly for a dynamic tree, how we can

attribute the work of child tasks to their parents, and how to fit these pieces together to

produce a viable method for determinacy checking.

F.2 Solving Ancestor Queries for a Dynamic Tree

In Figure F.1, we saw how we may represent the current state of tasks using a tree,

rather than a full series-parallel graph. This representation makes the problem of solving

ancestor queries easier. Although we will eventually need to solve ancestor queries in a

dynamic tree, we will begin by examining the existing work on this problem, which has

been directed at solving such queries for static trees.

Schubert et al. () developed a straightforward labeling for a static tree that can

quickly solve ancestor queries. The label for each node i has two components, which we

shall call l(i) and u(i). The first component l(i) is an integer representing the order in

which the node is encountered in a preorder traversal of the tree (thereby giving every

child an l-label greater than that of its parent or any of its ancestors, and, hence, l(j) ≥
max{l(i) | i � j}). The second component u(i) is defined to be an integer one greater

than the largest l-label in the subtree rooted at i (thus u(i) > max{l(j) | i � j}).³ An

example of this labeling is shown in Figure F.2. (Note that in my examples, nodes have

either two children or none, but the principles apply equally well to arbitrary numbers of

children.)

Using this scheme, it is a simple matter to determine the positional relationship of

one node to another. For two nodes, i and j,

i = j ⇔ l(i) = l(j)

i � j ⇔ l(i) < l(j) < u(i)

j � i⇔ l(j) < l(i) < u(j)

i � j ⇔ l(i) < l(j) ≥ u(i)
j � i⇔ l(j) < l(i) ≥ u(j).

3. Schubert et al.’s value for u(k) is actually one less than the value presented here, but the principles
are the same.
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(13, 16): i(12,13): h(6,11): e(3,6): d

(2,11): b (11, 16): c

(1,16): a

(9,10): n o

m

Figure F.2: Labeling a static tree to solve ancestor queries.

Schubert’s approach is designed for labeling a static tree, but if we use rational num-

bers for labels rather than integers, we can easily extend Schubert’s method to support

dynamic trees. Unfortunately, using rational labels is inefficient, but by examining this

revision we lay the groundwork for our final solution. The underlying theme is that we

may insert new labels in the space between old ones.

Figure F.3 shows a tree labeled with rationals rather than integers. The root is labeled

such that l(r) = 0 and u(r) = 1 (although any values such that l(r) < u(r) would have

sufficed). As before, i � j ⇔ l(i) ≤ l(j) < u(i) and u(i) > max{l(j) | i � j}.
To add children, c1, . . . , cn, to a leaf i (making it a parent node) we subdivide the

interval (u(i)− l(i)) between the two labels of the parent node. We label the kth child ck
such that

l(ck) = l(i) + k ×
u(i)− l(i)
n+ 1

and

u(ck) = l(i) + (k + 1)× u(i)− l(i)
n+ 1

.

This revised labeling scheme supports dynamic trees that grow at the leaves.⁴ But

using rationals as labels is problematic because their numerators and denominators grow

4. This method also easily accommodates tree growth from the addition of leftward children because
the interval between l(t) and l(c1), where t is a parent and c1 is a leftmost child, is never filled by
subsequent growth at the leaves. Other growth patterns and wholesale dynamic reorganizations might
be more difficult to handle, but these limitations are of no concern to us in this discussion.



F.2. Solving Ancestor Queries for a Dynamic Tree 

l gf kj

ihed

b c

a

n o

m

(1
3 , 2

3

)
:

(2
3 ,1
)
:

(4
9 , 5

9

)
:

(5
9 , 2

3

)
:

(13
27 , 14

27

)
:

(14
27 , 5

9

)
:

(16
27 , 17

27

)
:

(17
27 , 2

3

)
:

(52
81 , 53

81

)
:

(53
81 , 2

3

)
:

(7
9 , 8

9

)
:

(8
9 ,1
)
:

(25
27 , 26

27

)
:

(26
27 ,1

)
:

(
0,1
)
:

Figure F.3: Labeling a dynamic tree to solve ancestor queries.

exponentially with the level of the tree. The rationals method shows that a labeling

scheme that can insert labels between existing labels and can compare labels for order

is all that is required to support ancestor queries in a dynamic tree, but rationals them-

selves, although conceptually simple, would not have the constant-factor time and space

overheads we require, so we must look to other labeling methods with similar insertion

and comparison properties.

Figure F.4(a) shows how we can replace the rationals we used in Figure F.3 with

references to the elements of an ordered list—an ordered list being a data structure

that supports the insert, delete, and successor operations of a linked list, but can also

swiftly compare two list items to see which comes first in the list (Dietz & Sleator, ;

Tsakalidis, ). Instead of being rationals, l(k) and u(k) are references to elements in

in such an ordered list.

As in the previous scheme, we add children by generating new node labels that lie

between two existing labels, but rather than dividing a numerical interval, we achieve

this objective by adding new ordered-list elements that lie between existing ordered-list

elements. To add n children, c1, . . . , cn, to a leaf i making i a parent, we add n items,

e1, . . . , en, to the list between l(i) and u(i), setting l(c1) = e1, . . . , l(cn) = en, and

u(c1) = e2, . . . , u(cn−1) = en, u(cn) = u(i). Thus, prior to spawning its children (when

iwas a leaf), l(i) and u(i) were contiguous, but afterwards the entries for the children lie

between l(t) and u(t). In the previous method we compared labels for order using their



 Appendix F. An Alternative Method for Determinacy Checking

(•,•):(•,•): (•,•): (•,•): (•,•): (•,•):

(•,•):(•,•):

(•,•):

(•,•):

(•,•): (•,•): (•,•):

(•,•):

l gf kj

ihed

b c

(•,•): a

n o

m

(a) Using pointers to entries in an ordered list as node labels.

a b d l m e f g n o c h i j k

(b) Clarifying the diagram by not depicting the task tree. This
diagram is complex because it focuses on labeling a tree. But
we do not need to represent the tree at all. By removing it,
l(k) implicitly represents the position of k in the ordered list,
with the arrows now representing u(k).

Figure F.4: Using an ordered list to solve ancestor queries.

numerical value, but now we compare labels based on their position in the ordered list;

thus, x < y if the element that x references comes before the element that y references in

the ordered list.

All that remains is to clean up the representation, which looks ugly as presented so

far. We have never actually needed to explicitly represent the task tree itself (we need

only store l(k) and u(k) for each task, k), so it can be removed. Also, the mapping from k

to l(k) is one-to-one, so we can make l(k) and k synonymous and store any information

k stored (including u(k)) in the ordered-list node at l(k)—previously the ordered list

contributed nothing but its ordering, but now it also stores information. This yields our

final data structure, shown in Figure F.4(b).

Solutions to the ordered-list problem (Dietz & Sleator, ; Tsakalidis, ) can
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perform insertions, deletions, and order queries in constant time.⁵ By using such an

ordered list, we can perform ancestor queries on a task tree in constant time and extend

the tree in constant time and space per child added.⁶

F.3 Solving Ancestor Queries for Parallel Tasks

In the preceding section, we presented a method for solving ancestor queries in a dy-

namic tree, yet our problem is to solve ancestor queries at runtime for a set of tasks in a

run that can be described by a series-parallel graph. We have already seen (in Figure F.1)

that we can use a dynamic tree to represent the current state of parallel tasks that fork

and join. The complication is that at a join, when execution resumes at the parent, we

must not only delete the children from the tree, but attribute all the work done by the

children to their parent.

Indirection nodes (Turner, ; Ehrig, ; Peyton Jones, ), a technique long

used in the graph-rewriting community, provide us with the means we need to attribute

the work of children to their parents. When all the children of a node have terminated, we

take their tags out of the ordered list, and overwrite them with an indirection node that

points to their parent (see Figure F.5). Anything that had been tagged with the child’s tag

is now effectively tagged with the parent’s tag.

Over time, indirections can form chains as tasks die, so we need a technique that will

short-circuit indirection chains as they are followed and ensure that they are as short

as possible. One option is to use a variation of Tarjan’s disjoint-set union algorithm

(). Tarjan’s algorithm is not quite amortized constant time per operation, but is close

enough to be the technique of choice for a real-world implementation.

Theoretically, however, we can develop a true amortized linear-time algorithm using

a variant of Gabow and Tarjan’s linear-time discrete-set union algorithm (). Gabow

and Tarjan’s algorithm requires that we know what task any given task will be indirected

to, and we do: its parent. Gabow and Tarjan’s algorithm also requires us to know the

5. As in the rest of this dissertation, Dietz and Sleator’s simpler constant–amortized-time algorithm
is usually the preferable choice.

6. Our complexity results assume that tasks are running under a serial scheduler; under a parallel
scheduler some serialization is required, potentially resulting in some loss of parallelism.
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number of tasks that will be created ahead of time. Because we cannot know this infor-

mation in advance, we must use the same technique that is used to build dynamic arrays

from static arrays—successive size doubling.

Successive size doubling works as follows: You begin with a data structure that can

hold k items. When that data structure is full, you copy all the items into a new data

structure that can hold twice as many items. Successive doubling even supports item

deletion by not truly deleting items, but simply not copying them when we relocate data

from one data structure to the next.

Adding successive doubling makes Gabow and Tarjan’s algorithm take constant amor-

tized time, rather than constant worst-case time, but amortized time is sufficient to

make the overheads of our technique constant.

This technique applies not only to our method, but, according to Feng,⁷ can be adapted

for Feng and Leiserson’s SP-Bags determinacy algorithm as well.

F.4 Checking Determinacy

So far, we have developed a method for generating task tags that support ancestor queries

(and the initiation and termination of child tasks) in nearly-constant time; now we sim-

ply need to show how these task tags can be used to tag data to enforce determinacy.

As we saw in Section F.1, to support reads we need to keep, for each datum d a record

of the tag of the task that last wrote the data, w(d), and compare that tag to the tag of

the current task, t. If w(d) � t, the read is valid.

For writes, the situation is a little more complex. We have the same condition as

reads, w(d) � t, but we also have to ensure that all reads since the last write were

performed by ancestors of this write’s task; thus, ifR(d) is this set of reads, ∀r ∈ R(d) :
r � t. We do not, however, need to store all tasks that have performed reads to check this

condition. If two tasks, i and j, are to be added to the read-set, and i � j, we need only

store j, because for some task, k, j � k ⇒ i � k (the ancestor relation is transitive). We

also need to correctly maintainR(d) as tasks terminate.

7. Personal communication via email,  December .
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(a) The ordered list after n and o have both terminated and execution
resumes at their parent, g. Notice that n and o are removed from the
ordered list and overwritten with indirections to g.
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(b) The same ordered list after f and g have both terminated and control
resumes at their parent, e.
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(c) If the tags for n or o are accessed, the indirection chains are shortened
so that they point directly to e (which is the standard behaviour for indi-
rection nodes).

Figure F.5: Using indirection nodes to attribute the work of terminated children to their
parents.
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In the previous section, we outlined how indirections are used when children ter-

minate. When all the children of a task have terminated, references to the children

become synonymous (though indirection) to references to the parent. For example, if

R = {b, f, g}, where f and g are children of c, c does not need to be in R while f and g

are running. However, after both f and g have terminated, they are synonymous with c;

thus,R = {b, c, c} ≡ {b, c}.
We can optimizeR(d) to ensure that |R(d)| ≤ 2. For any setRwhere |R| ≥ 2, ∃rl ∈

R, rg ∈ R : ncd({rl, rg}) = ncd(R), provided that the task dag is a series–parallel

graph. One possible choice for rl and rg is the least and greatest of R’s members (as

ordered in the ordered-list representation). Thus, rl and rg are the leftmost-uppermost

and rightmost-lowermost nodes in the task dag.⁸ Let us also define r(d) as the value

held by rl(d) and rg(d) when rl(d) = rg(d) (when rl(d) �= rg(d), r(d) is undefined), with

updates to r(d) updating both rl(d) and rg(d).

The full rules for reads and writes in a task t on datum d are as follows:

• Reads — A read is valid ifw(d) � t. For a valid read, if r(d) is defined and r(d) � t,

we update r(d) to be t; otherwise, we update rl(d) := min(rl(d), t), and rg(d) :=

max(rg(d), t).

• Writes — A write is valid if r(d) is defined and r(d) � t. For a valid write, we

update bothw(d) and r(d) to be t.

The ordering of tasks for min and max is the same as the ordering of task l-labels: Tasks

that come earlier in the ordered list are considered to be less than those that come later.

Notice that we never need to calculate the least-common ancestor of rl(d) and rg(d),

because when execution resumes in their least-common ancestor, the use of indirection

to attribute the work of children to their parents will mean that rl(d) = rg(d), and writes

will once more be allowed.

F.5 Alternate Strategies

We chose rl and rg as two distinguished members of R that could act as surrogates

for the entire set, but rl and rg are not the only possible choices. In this section, we

8. This choice of rl and rg only works when the task dag is a series–parallel dag.
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will examine a variant of the previous method that uses the leftmost-lowermost and

rightmost-lowermost nodes as the surrogates forR.

Let st(x) be the situation of x with respect to t (where t is the current task, and x is

some task that is either executing or has completed execution), defined as follows:

st(x) =




UP if x � t

LHS if x � t
RHS if t � x
DOWN if t � x

Intuitively, UP means that x lies on the path upwards from t to the root of the tree; LHS

means x lies to the left-hand side of t in the tree; and RHS means that x lies to the right-

hand side of t in the tree. During actual execution, DOWN will never be returned (because

it would mean that t could see one of its children while it was executing—remember

that t sleeps while its children execute, and after they are complete, the children are

indirected to become indistinguishable from the parent), but we do not depend on this

actuality.

We define the frontmost member of R, rf , and the backmost member rb to be the

unique tasks such that

∀t ∈ R : (t = rf ) ∨ (st(rf ) = LHS)

∀t ∈ R : (t = rb) ∨ (st(rf ) = RHS)

(Note that this definition assumes thatR does not contain any elements related by �—

as have already seen, R can adequately represent the read set without these superfluous

elements.)

With these definitions, we only need to store rf (d) and rb(d) for each datum d rather

than the full read set,R(d). The full rules for reads and writes in a task t on datum d are

as follows:

• Reads — A read is valid if w(d) � t. For a valid read, if st(rf (d)) �= LHS, we

perform rf (d) := t. Similarly, if st(rb(d)) �= RHS, we perform rb(d) := t.

• Writes — A write is valid if st(rf (d)) = UP ∧ st(rf (d)) = UP. For a valid write, we

updatew(d), rf (d), and rb(d) to be t.
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This alternate technique requires more memory writes than its predecessor, but has

some advantages for optimization as we will see in Sections F.7 and F.6. Moreover, it has

the advantage that rf and rb can be surrogates for a read-set in more classes of graph

than rl and rg as previously defined; in fact, rf and rb are exactly the same nodes that

would be chosen by the techniques given in Section 7.2.

F.6 Time and Space Complexity

The ordered-list data structure requires only constant amortized time for every access,

and space proportional to the number of items in the list. Current tasks are represented

in the order list, and terminated tasks become indirections to current tasks. We should,

perhaps, consider whether the list could be flooded with indirections to deceased tasks,

but there can be at most O(min(i, n)) indirections at any given time, where i is the

number of indirections created (and thus is proportional to the number of children that

have been reaped), and n is the number of checked data items. Those indirections which

are not in use can be garbage collected⁹ (via reference counting, or any other garbage-

collection method that adds constant-factor overhead). Thus, the space overhead is

O(n) for n checked data items.

The indirections themselves require amortized constant space and amortized con-

stant time for access.¹⁰

For serial execution of a parallel program, we have constant amortized-space over-

head and constant amortized-time overhead for determinacy checking, but we also need

to consider the issue of contention for the ordered list during parallel execution. Ideally,

the ordered list would support concurrent access, but existing efficient algorithms for

ordered lists require some degree of serialization. Thus, best-case performance would

provide constant overheads, but more typical performance would incur some slowdown

due to loss of parallelism. The extent of this slowdown will vary from application to

application.

9. If we are convinced that i will be small, we can refrain from garbage collecting and save the expense
of maintaining reference counts.

10. Real-world implementations will probably settle for the constant space and nearly constant time
provided by Tarjan’s classic algorithm ().
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F.7 Speeding Parallel Performance

The above technique works for parallel programs, but requires repeated accesses to the

ordered-list data structure to answer situation queries. In any parallel system, con-

tention for a shared structure presents a potential bottleneck, so we should consider

whether it is possible to avoid that bottleneck.

In the naïve determinacy-checking scheme we discussed in Section 7.1, I mentioned

that it was possible to perform a query once, and then cache the result. The same tech-

nique can be used to reduce the number of queries performed by the directory technique

discussed in Section F.5. In any task t the value of st(x) will remain the same during t’s

life—even if x dies and is indirected to its parent. Thus, tasks can cache the answers to

situation queries. Parents can even copy their caches to their children.

If we employ cache preloading, we can avoid querying the ordered-list data struc-

ture for close relatives altogether, where the close relatives of a task are its ancestors and

the direct children of those ancestors. We can preload the caches because the parent

knows how its children relate to each other and itself. If a parent p creates two children,

a and b, the parent can preload a’s cache with sa(p) = UP, sa(a) = UP, and sa(b) = RHS;

and preload b’s cache with sb(p) = UP, sb(a) = LHS, and sb(b) = UP.

Adding a cache raises some design questions, such as determining an appropriate

cache size and replacement policy. Different applications will benefit from different

cache sizes. At one extreme we might have no caching at all, whereas at the other

extreme we might have a cache that grows dynamically, never forgetting any cached

information.

Another question is whether we should cache results before or after following indi-

rections. Caching before following indirections eliminates the time spent following those

indirections, but caching after following indirections may reduce the number of cached

entries and also allows the parent to use data cached by its terminated children (but only

after all the children have terminated and have been redirected to point to the parent).

These questions do not have obvious theoretical answers, but I have found through

experience that a small cache can improve the parallel execution performance of this

determinacy-checking method when contention for the ordered list is high.
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F.8 Speeding Serial Performance

If we are executing our program serially and use the caching techniques above, with

cache preloading, a dynamic cache that does not discard information, and caching after

following indirections, we discover something interesting: The ordered-list data struc-

ture is never queried. Every situation query is serviced from the cache.

We can, therefore, abandon our ordered-list data structure entirely, and call our cache

the map: m. Each task s has an entry m(s) ∈ {LHS,UP, RHS}, which defines its rela-

tionship to the currently executing task, t. As we move from one task to the next in a

depth-first execution, we adjust the map so that it remains correct (altering at most two

map entries).

If we execute child tasks from left to right, the map will never hold the value RHS for

any task, since the task we are executing will always be the rightmost-lowermost task.¹¹

Not only is the map now only storing one bit of information per task, but the rb(d) entry

for each datum d is redundant and can be eliminated.

Our final, optimized algorithm for the serial case has been discovered before, by Feng

and Leiserson (). A task t in an S-Bag in Feng and Leiserson’s algorithm exactly

corresponds to m(t) = UP; similarly, membership in a P-Bag exactly corresponds to

m(t) = LHS. (Interestingly, I did not realize that my optimizations resulted in Feng and

Leiserson’s algorithm until I implemented their algorithm to compare it against my own,

and found that it was operationally identical to my serial-case optimization.)

F.9 Conclusion

Although the technique I have described in this appendix is less efficient in practice than

the LR-tags technique discussed in the body of the dissertation, it did serve as a useful

stepping-stone to developing that slightly-faster method. Along the way, we have shown

that Feng and Leiserson’s algorithm can be seen as a specialization of this more-general

algorithm, and that both algorithms could, at least in theory, run in amortized-constant

time, rather than nearly constant time.

11. Children may have been lower or further right, but for our task to be running, those children must
have terminated and been replaced with an indirection to their parent.



Appendix G

Mergeable Parallel Fat-Element Arrays

This appendix examines techniques for rapidly merging several fat-elements–array ver-

sions into a single array version. I developed these techniques with an eye towards de-

veloping an interesting parallel functional-array data structure. Although this work was

instrumental in inspiring me to develop my LR-tags determinacy-checking technique,

the array-merge mechanism I developed seemed to have little application. In a sense,

what I describe here has been a research dead end for me, but I shall still outline some

of the techniques I developed, both because they are interesting historically (this work

lead me into the study of determinacy checking), and also in the hope that some future

reader may see some applications for these techniques that I do not.

G.1 Simple Parallelism

Functional programming languages are often cited as good candidates for parallel execu-

tion. The absence of side-effects and mutable global state mean that function arguments

can not only be executed in arbitrary order, but that they can also be evaluated in parallel.

Fat-element arrays are amenable to parallel access with a few caveats: The version

list for each master array requires some access arbitration to serialize the creation of

version stamps and to prevent two threads from attempting to split an array at the

same time. Similarly, the fat-elements master array may require a per-element lock

to prevent corruption if two different tasks simultaneously attempt to modify the tree


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representing a fat element. If the number of array elements is large compared to the

number of processors, it seems reasonable to assume that fat-element arrays could be

used in parallel code without lock contention causing severe loss of parallelism.

Note that other functional-array techniques may not be as amenable to parallel ac-

cess. The trailers technique, for example, suffers poor time performance if the array is

accessed non–single-threadedly, and a multithreaded program is, by definition, not sin-

gle threaded. On the other hand, tree-based arrays offer lower synchronization overheads

because the immutable nature of the tree representation eliminates any need for locking.

Although fat-element arrays may be accessed in parallel, every update performed in

each parallel thread will generate a distinct new array version. There is no way for several

threads to cooperate in building a single array result—if we desire such a result, each

thread must create its own array version and we must then merge the results after all

those threads have terminated.

Merging several versions of an array of size n appears to require Θ(n) work, which

may be acceptable if some of the threads performed Ω(n) array accesses or there were

Ω(n) threads, but if each thread performed only a few accesses, the merge becomes a

bottleneck. In the rest of this appendix, we will examine some techniques to remove this

bottleneck for a particular kind of array merge.

G.2 Mergeable Fat-Element Arrays

There are several possible strategies for merging the array values produced by indepen-

dent threads that modify the same initial array, including

. Using a function to combine the element values. For example, we could produce

a merged array in which the ith element of the merged array is the sum of the ith

element of each of the provided array versions.

. Using a function to select the element values. For example, we could produce a

merged array in which the ith element of the merged array is the maximum of all

the ith elements of each of the provided array versions.
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. Assuming that no two threads access the same element, and creating a merged

array by applying the writes performed in each thread to the original array.

. Creating a merged array by applying the writes performed in each thread to the

original array in deterministic order (thus, if two array versions change the same

array location, we can always know which array version’s value will be preferred).

If we adopt the first merge strategy, it is reasonable to assume that a general array

merge mechanism will require Θ(pn) time, where p is the number of arrays that must

be merged, and n is the size of the array. This merge time can be improved to Θ(n)

if the merge is performed in parallel on p processors. (Obviously, in certain specialized

circumstances, where more is known about the array contents, a faster merge may be

possible.)

The remaining strategies are selection strategies. A selection strategy may require

less execution time because the selection function does not need to be applied to ele-

ments that are unchanged in all versions of the array. The second strategy is a generalized

selection strategy, and appears to require Ω(c) time, where c is the total number of

changes made by all threads.¹

The third strategy can allow very fast merges, essentially requiring no time at all for

the merge. In fact, if intrathread accesses are single-threaded, we can simply use an

imperative array—tasks are prohibited from seeing the changes made by other threads.

Ensuring that tasks play by the rules is a different matter, however, and it is exactly this

question—how to ensure that tasks play by the rules—that is addressed by Part II of this

dissertation.

The fourth strategy is interesting because it can be implemented efficiently using the

fat-elements method; we will consider an instance of this strategy in the remainder of

this appendix.

G.3 Fat-Elements Merge

Figure G.1 shows three threads, P, Q, and R, accessing a fat-element array. Each thread

performs some element reads and then writes some elements. Thread P writes 97 into

1. Achieving a generalized selection-based merge in time proportional to the number of changes
seems to be quite difficult, especially if multiple merges are allowed to occur in parallel and c < n.
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element 1; thread Q writes 131 and 6 into elements 2 and 4, respectively; and thread R

writes 16 and 24 into elements 3 and 4, respectively. (None of the threads see the writes

performed by the other threads, following the usual rules for fat-element arrays.) Let us

suppose that we wish to merge the results of these threads, arrayP1, arrayQ1, and arrayR1,

according to the rule that whenever more than one thread writes to the same location,

the merged array should prefer a value written by thread P over thread Q, and prefer one

written by Q over R.

One possible execution sequence is shown in Figure G.1, with P writing to the array

before Q and Q making its first write before R. The pair of writes performed by Q share

the same version stamp because they were single-threaded writes (see Chapter 5), as do

the pair of writes performed by R.

Figure G.2 shows two ways to achieve our desired merge result. Figure G.2(a) adds

fat-element entries to create the merged master array, whereas the process illustrated by

Figure G.2(b) deletes entries to achieve the same result. (Note that deleting entries is only

acceptable if we can be sure that arrayP1, arrayQ1, and arrayR1 are no longer referenced

and can therefore be destructively modified—for now we will make this assumption.)

The fat-element entries that need to be removed are exactly those elements that were

added to avoid incorrect values being inferred in the data structure (see the discussion

of fully persistent updates on page ). With a small change to the initial setup, these

entries are easy to identify, as shown in Figure G.3. Instead of updating the same initial

array, each thread is given its own initial array. Although arrayR0 is equivalent to array0,

the other two initial arrays, arrayQ0 and arrayP0, contain no changes—their only purpose

is to act as separators between the master-array additions and hide changes made by

other threads with earlier version stamps. After the threads have terminated, we only

have to remove the values associated with these “separator” array versions and we have

merged the array.

Traversing the array to find versions to delete is expensive (requiring Θ(n)) time, so

we do not actually delete these versions immediately. Instead, we simply mark the ver-

sion stamps for separator versions as corresponding to deleted nodes. Then we perform

deletion lazily as “deleted” nodes are encountered.
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(a) An initial array, array0.
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(b) Thread P updates one element of array0, creating arrayP1.
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(c) Thread Q updates two elements of array0, creating arrayQ1.
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(d) Thread R updates two elements of array0, creating arrayR1.

Figure G.1: Three threads create three array versions.
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(a) Using insertion to create the merged array, array2.
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(b) Using deletion to create the merged array, array2.

Figure G.2: Creating a merged array.

G.4 Issues and Limitations

Earlier, I stated that we would assume that the merge operation was free to destroy the

array versions it was merging. But what should we do when this assumption does not

hold? Sadly, I do not have a good answer to this question. None of the techniques I have

investigated can provide both completely functional semantics and good performance.

Although this strategy for merging arrays seems to be a dead end, the LR-tags method

provides a mechanism that can be used to allow parallel tasks to share an array (or

memory).
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Figure G.3: Three threads each create separate array versions. (continued over...)
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Figure G.4: Creating a merged array from separate array versions.
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Obtaining Source Code for the

Fat-Elements and LR-tags Methods

While writing this dissertation, I was faced with a dilemma: How should I provide readers

with access to the source code for my implementations of the fat-elements and LR-

tags methods. I could, perhaps, have typeset all the source code and included it as an

appendix, but at , lines of C/C++ code for the LR-tags method, and  lines of

Standard ML code for the fat-elements method, adding such an appendix would have

made this dissertation a weighty volume indeed. Even if I were to exclude library code

written by others on which my work depends, there would still be more than , lines

of code to present.¹

Therefore, I am making my source code available electronically. At the time of writ-

ing, you can download the code (which is licensed under the Gnu General Public License)

using the following url:

http://schoenfinkel.cs.sfu.ca/~oneill/thesis/

Unfortunately, whereas books are relatively persistent, the “World Wide Web” is an ephem-

eral structure,. Thus, if the url above does not work, or urls themselves have become an

1. About , lines of code in the LR-tags method come from Hans Boehm’s garbage collector; and
a further , are due to Doug Lea’s malloc and its parallel derivative. Additionally, almost  lines
of code come from ported Cilk benchmarks. The LR-tags algorithm itself consists of about  lines of
code; in addition, the SP-Bags algorithm is implemented in about  lines and the Cotton/Pthieves

parallel platform is a mere  lines. Similarly, the Standard ML code includes about  lines of freely
available library code.


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anachronism, I can only suggest that you use whatever means at your disposal to search

the information infrastructure for my name or the term “LR-tags method” in hopes of

finding an archive of the source.

Sadly, my source code is never as thoroughly commented as I would like. If you have

questions, feel free to contact me.
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