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Abstract 

Representation theory studies the structure of a finite group G by looking at  the set of 

homomorphisms p from G to the group of automorphisms of a complex vector space V. The 

character x of a representation (p, V) of G is the complex valued function ~ ( g )  = tr(p(g)) 

for g E G. In general, it is less complicated to work with the characters of a group G than 

with the representations themselves. Fortunately, a representation is uniquely determined 

by its character. 

This thesis focusses on characters of the group G = GL2(ZIP2Z), the general linear 

group of 2 x 2 invertible matrices over the local ring R = Zlp2z.  In particular, we study 

GL2(ZIp2Z) directly without resorting to sL2(ZIp2Z), the subgroup of G of elements with 

determinant 1. Let R X  denote the group of units of R,  and let ,u and v be irreducible 

characters of R X .  We construct the character 1ndg w,, of G, where B is the Bore1 (or upper 

triangular) subgroup in G and w,, ( 1 ) = ,u(a)v(d) In this thesis, we determine 

the decomposition of 1nd; w,,, for all pairs of characters {p, v) of R X ,  into a direct sum 

of irreducible characters. Since all representations of a finite group G are composed as 

the direct sum of irreducible representations, this information can be used to find further 

characters of G. 
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Chapter 1 

Introduction 

Representation theory studies the structure of a finite group G by looking at the set of 

homomorphisms p from G to the group of autonlorphisms of a complex vector space V ;  

each of these homomorphisms is called a representatzon. The underlying objects of interest 

in representation theory are zrreduczble representat~ons; all representations can be formed 

as the direct sum of irreducible representations. 

Character theory simplifies the study of representations; the character x of a represen- 

tation ( p ,  V )  of G is the complex valued function y(g) = t r (p(g)) ,  the trace of p ( g )  for 

g E G. In general, it is less complicated to work with the characters of a group C: than 

with the representations themselves. Fortunately, a representation is fully determined by 

its character. 

One focus of character theory is in determining the complete set of irreducible represen- 

tations of groups of invertible n x n matrices, and in particular 2 x 2 matrices. The three 

primary groups of interest are: GLn(R) ,  the group of invertible n x n matrices over the ring 

R; SLn(R) ,  the subgroup of matrices with determinant 1; and LF,(R) = S L , , ( R ) / H ,  with 

1 the n x rz identity matrix. These groups are called the general lznear group, the speczal 

lznear group, and the lznear fractzonal group, respectively. 

The literature on representations of these groups spans the entire 20th century. In 1896, 

F'robenius determined the irreducible characters of LE2(Z/pZ) for a prime p  [3], while in 

1907, Schur deterrriined those of SL2(Z/pZ)  [16]. Around 1933, both Praetorius [14] and 

Rohrbach (151 independently determined the characters of S L 2 ( ~ / p 2 Z ) .  In 1955, Green 
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determined the characters of GL,,(F,) with F ,  the finite field with q elernentsl [5] and in 

1966 and 1967 Tanaka gives a classification of representations of SL2(E/pTnE) 122,231. Hecke 

[7, 61, Kloosterrnan [8] and McQuillan [12], all performed work related to  the representations 

of the groups LF2(Z/nZ) while both Stienberg [21] and Silberger [la, 19, 201 determined 

and classified represelltations of finite general linear groups, projective, and special linear 

groups. In 1972, Kutzko determined the irreducible characters for the groups LF2(Z/pmZ) 

and SL2(Z/pmZ),  where p is a prime greater than 3 [9, lo]. For n not divisible by 2 or 

3, Kutzko's results can be extended to SL2(Z /nZ) ,  since SL2(Z/nZ) is equal to  the direct 

product of SL2(Z/py 'Z)  where n =. npy [9]. 

In 1977, Nobs classified the irreducible representations of GL2(Zp),  with Zp the ring 

of integers in the field of p-adic rationals. Further, Nobs determined all the irreducible 

representations of GL2(Zp)  and more specifically of GL2(Z/pnZ); though he does not present 

the character values of these representations the dimensions and numbers of each type of 

irreducible representation are included [13]. 

This thesis focusses on characters of the group G = G L ~ ( Z / ~ ' Z ) ;  in particular, we study 

G L ~ ( Z / ~ ~ Z )  directly without resorting to S L ~ ( Z / ~ ~ Z ) .  Let R be the local ring Zlp2Z, with 

maximal ideal m = p Z / p 2 ~ ,  and denote the group of units of R by RX. Let L3 be the 

Borel, or upper-triangular, subgroup of G. Then for p and v  irreducible characters of RX, a 

character w,,, is defined on B such that wp, ( ;; ) = p(a)v(d).  The character 1ndE w ,  

of G is produced by inducing wp, from B to G. 

In this thesis, we determine the decomposition of 1ndg w,,, into a direct sum of irreducible 

characters. Chapter 2 presents an overview of representation and character theory, including 

the definitions and theorems used throughout. Chapter 3 presents the conjugacy classes of G 

and determines the size of each class; this chapter also presents the irreducible characters of 

GL2(Z/pZ) that will be used to define characters of G L ~ ( z / ~ ~ z ) .  Chapter 4 determines the 

decomposition of 1ndE w,,, int,o a direct sum of irreducible characters; this decomposit,ion 

divides into four cases that depend on p and v ,  so the irreducible components of 1ndE w,,, 

are determined separately for each case. 

Supplementary calculations used throughout Chapter 4 are included in Appendices A 

and B; the values of 1ndS w,,, on G are determined in Appendix A, while all inner products 

are calculated in Appendix B. 

'A construction of the characters of GL2(F,) can be found in [4, 111. 



Chapter 2 

Overview of Representation Theory 

This chapter presents an overview of the basic definitions and results of representation theory 

that are used throughout the remainder of this thesis. Also included are some examples to 

help illuminate this discussion. 

The following properties and definitions have been taken from Fulton and Harris' Rep- 

resentation Theory [4] and Serre's Linear Representations of Finite Groups [17]. 

2.1 Representat ion Theory 

Throughout this text we assume that a group G is finite and will denote the order of G by 

(GI. 

Definition 2.1 ([dl, p.3) A r e p r e s e n t a t i o n  of a finite group G o n  a finite-dimensional 

complex vector space V is  a homomorphism p : G + GL(V) of G to the group of automor- 

phisms of V. 

A representation is determined by the pair (p, V), but it is understood that G acts on 

V via the map p. Thus, in the following chapter, when one of the pair (p, V) is understood, 

we will refer to the other as the representation. 

Example 2.2 ([17], p.4) A representation of degree 1 of a group G i s  a homomorphism 

p : G + CX.  where CX denotes the multiplicative group of nonzero complex numbers. Since 

each element of G has finite order, the values p(s)  of p are roots of unity; in particular, we 

have Jp(s ) l  = 1. If we take p ( s )  = 1, V s E G, we obtain a representation of G which is 

called the t r i v i a l  (or u n i t )  r e p r e s e n t a t i o n .  
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Definition 2.3 ([4], p.4) A subspace W of V is invariant under p if for each w E W 

and for all g E G ,  p(g )  . w E W .  A subrepresentation of a representation V is a vector 

subspace W of V which is invariant under the action of G. 

Definition 2.4 ([4], p.4) A representation V is irreducible if there is no proper nonzero 

invariant su.bspace W of V. 

Theorem 2.5 ([l7], p.5,7) Let V, W and Y be representations of  G .  Then both the direct 

sum V @ W and the tensor product V @ W define representations of G .  Further, 

Theorem 2.6 ((41, p.6) If W is an invariant subspace of a representation V of a finite 

group G ,  then there is a complimentary invariant subspace W'  of V such that V = W @ W ' .  

Using induction on the degree of the representation V, this theorem yields the following 

crucial result. 

Corollary 2.7 ([17], p.7) Any representation is a direct sum of irreducible representations. 

The next Lemma describes the degree to which this decomposition is unique. 

Theorem 2.8 (Schur's Lemma) ([4], p.7) If V and W are irreducible representations of 

G ,  and cp : V -+ W is a G-module homomorphism, then: 

1. either cp is an isomorphism, or cp = 0; 

2. if V = W ,  then cp = X .  I for some X E C, where I is the identity. 

Hence, for any representation V of a finite group G ,  there is a decomposition 

where the V,  are distinct irreducible representations and the ai are the number of times 

they appear as invariant subspaces in V. The decomposition of V into a direct sum of the 

k factors is unique, as are the V,  and their multiplicities ai. 

Theorem 2.9 ([l7], p.18) If {Wi : i = 1,. . . , h )  is the set of all distinct irreducible 
h 

representations of a group G ,  with ni their degrees, then xni2 = \GI. 
i=l 
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Theorem 2.10 (/17], p.19) The num.ber of distinct irreducible representations of a group 

G is equal to the number of conjugacy classes of G. 

Corollary 2.11 ([l7], p.25) G is abelian i f  and only if all of the irreducible representations 

of G have degree 1. 

Proof: Let G be an abelian group. Since each element of an abelian group is its own 

conjugacy class, by Theorem 2.10 there are IGI distinct irreducible representations Wi of G. 
IGI 
t 8 

Let ni be the degrees of the Wi's. Then Theorem 2.9 tells us that x n i 2  = IGI; however, 
i=l 

as each ni 2 1, this implies that all the ni = 1. The converse argument is similar. 0 

Recalling from Example 2.2, we see that for an abelian group G each irreducible repre- 

sentation p of G is a homomorphism from G to the complex roots of unity. 

Theorem 2.12 For any s~lbgroup H of an abelian group G, 

(HI, p is trivial on all of H; 

0, otherwise. 

Proof: If p is trivial on H ,  then the result is obvious. Assume p is non-trivial on H .  Then 

im(H), the image of H under p, is an abelian group with order s = [HI//  ker(p)l > 1. Each 

element of im(H) is a root of the polynomial xS - 1, and by noting the degree, these are 

all the roots of xs - 1. By expansion, or by usiig the binomial theorem we see that the 

xS- 1 coefficient is - x a = 0. Thus, the sum x p(h) = I ker(p)l x a = 0 as 
a E i m ( H )  h € H  a  E  i m ( H )  

required. 

2.2 Character Theory 

The study of representation theory is greatly simplified by the use of characters. Character 

theory uses the fact that the map p(y) on V is determined by its eigenvalues. 

Definition 2.13 ([l7], p.1O)If V is a representation of G, its character X ,  is the complex- 

valued function on the group G defined by the trace of p(g) on V ,  denoted by 
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Notice that for the character xp  of a representation p of degree 1, x p ( g )  = p(g)  V g  E G, thus 

Example 2.2 and Theorem 2.12 can be rewritten replacing p with x,. 

Theorem 2.14 ([17], p.16) T w o  representations with the same character are isomorphic. 

Theorem 2.15 ([17], p.10) If xv is  the character of a representation ( p ,  V )  of degree n ,  

then: 

where c* denotes the complex conjugate of c .  A cC valued function o n  G displaying the second 

property is  called a class function. 

Theorem 2.16 ([I 71, p.11) Let V and fir be representations of G. Then ,  

Since each representation V of G is composed of irreducibles, a character table of G can 

be constructed; this table lists irreducible characters of G and their values on each conjugacy 

class of G. 

An inner product is defined on the set of all class functions on G by 

In particular, if x and p are characters of G,  

Often, we will be taking the inner product of a character with itself, which becomes 
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Remark 2.17 ([l7],  p.15) T h e  characters of the irreducible representations of a group G 

form a n  orthonormal basis (with respect to  the inner  product (2.1)) for the complex vector 

space of all class functions o n  G .  A n y  class function o n  G that i s  a positive integer linear 

combination of irreducible characters i s  itself a character of a representation of G .  

Theorem 2.18 ([dl, p.17) A representation V i s  irreducible if and only if (x,, xv) = 1 .  

In fact, if V decomposes in to  irreducibles as 

Definition 2.19 ([dl, p.33) Let H be a subgroup of G ,  and consider the set of left cosets 

of H i n  G ,  G I H .  T h e  representation p of G i n  V is  induced by the representation Q of H 

W e  denote this as V = 1ndg W. 

Theorem 2.20 ([l7],  p.30) Let W be a linear representation of H ,  and let x NG y mean  

that x i s  conjugate to  g via some s E G .  There exists a linear representation V of G which 

is induced by W and i s  unique up to  isomorphism. Further, if R i s  a set of representatives 

for G I H  and CG(g )  is the centralizer of g in G ,  then the ch,aracter of V can be calculated 

using the equivalent formulae: 



Chapter 3 

Background on GL2(Z/ p2 Z) 

Throughout the remaining chapters, let G and G denote the general linear groups G L ~ ( z / ~ ~ z )  

and GL2(Z/pZ) respectively, for p an odd prime. Let R be the local ring Zlp2Z with max- 

imal ideal m = pZlp2Z and group of units R X ,  and let R be the field Z/pZ with group of 

units R*: . Conjugation of an element s by an element t will mean t-'st. 

Before we determine characters of G,  it will be useful to first discuss the conjugacy class 

structure of G. In Section 3.1 we determine the conjugacy classes of G, as well as the size of 

each class and the number of classes of each type. This information will be used throughout 

Chapter 4, where we determine the characters 1ndg w,, of G and the irreducible characters 

involved in the decomposition of 1ndS w,,. 

There is a homomorphism 7r : G + G such that each entry of a matrix g E G is reduced 

modm. For this reason, a representation or character of G becomes a representation or 

character of G by first allowing the map 7r to act on the elements of G. Section 3.2 describes 

the characters of G that will be used to determine characters of G in Chapter 4. 

3.1 Conjugacy Classes of GL2(zIp2Z)  

Consider the map 
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where for a E R,  & denotes reduction modm. As the homomorphism .ir from G to G is 

surjective, the first isomorphism theorem tells us that G - G/ ker(.ir) and hence the order 

of G is IG/ = I G (  1 ker(.ir) 1 .  It is clear that the kernel in G of the map .ir is 

This subgroup has order p4; we will see in Section 3.2 that IG( = p(p - 1 ) 2 ( p  + I ) ,  and 

therefore we have JG(  = p5(p  - 1)2 (p  + 1). 

Theorem 3.1 [ I ]  Suppose that 6 is a fixed non-square i n  R X ,  the group of units of R. 

Then G partitions into conjugacy classes with representatives as listed below. Further, each 

representative belongs to a distinct class of G, and these are all the conjugacy classes of G. 

(Note that if H is a quotient of R X  then b y  /3 E H we mean that the /3 are chosen from a 

complete set of inequivalent representatives i n  R X  of H . )  
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Type R B  RB, = ( ' ) a E R x  

Proof: 

For types I, B ,  T ,  TI, RT, RT' and RB,  two different representatives from the same type are 

not conjugate as they do not have both the same trace and the same determinant. Further, 

representatives from types T, T', RT  and RT' have discriminants ( a  - 6)2, ep2, pp2 and 

pep2 respectively, where the discriminant of the characteristic polynomial of an element in 

G is calculated as A(g) = tr(g)2 - 4 det (g) ; thus, representatives from any two of these types 

cannot be conjugate. Matrices of type I, B, RI ,  R B  and RI' all have discriminant 0, and 

hence are not conjugate to those of types T, T', RT and RT'. Also, representatives from 

the different types I, B ,  R I ,  RB  and RI' have centralizers of different orders (see Table 

3.11, and hence cannot be conjugate. It is left to prove that two representatives of the same 

type for types R I  or RI' are not conjugate, and that this is in fact all the classes of G. 

To show that the classes of type R I  are distinct, it is enough to show that if there exists 

a g E G such that RIa,b . g = g . RICxd then a = c, and b = f d (modm). Suppose that 

representatives RIa,b and RIC,d are conjugate via some g = ( : 1 ) E G. Then 

Since two conjugate matrices have the same trace, a must equal c, and therefore we have 

This implies that b2y = d2y (modm) and that b2z = d2z (modm), but as at least one of 

y, z E R for g to be in G, we have that b2 = d2 (mod m) + b = f d (mod m) as required. 

The argument is the same to show that the classes of type RI' are distinct. 



C H A P T E R  3. B A C K G R O U N D  ON GL2 ( Z I  p2 Z) 

That these are all the classes of G will be verified by noting that 

where S is the collection of all the different conjugacy classes C, of G. The size IC,I of each 

class C, is listed in Table 3.1; they are found using the orbit stabilizer theorem and Theorem 

3.2. 0 

Theorem 3.2 [ I ]  The  centralizer for each class representative is: 

Proof: 

This can be verified by a direct matrix calculation. 

Remark 3.3 T h e  orbit stabilizer theorem tells u s  that  zf gl i s  conjugate t o  g2 in G,  then  

ICG(g l ) (  = ICG(gB)( .  By calculating the  orders of the  centralizers of Theorem 3.2 the order 
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of the centralizer CG(g) for each g E G is  determined; note that the order o f  the centralizer 

i n  G of an  element g depends only o n  the t ype  of conjugacy class i t  belongs to. 

Table 3.1 summarizes the conjugacy class information of G. Included in this Table are 

the number of conjugacy classes of each type, the orders of the centralizers of each class 

representative (and hence the orders of the centralizers for each g E G),  and the size of 

each class (using the orbit stabilizer theorem). This information will be repeatedly used to 

determine the characters of G and to calculate the inner product of two characters. 

From Table 3.1 there are p(p - l)(p2 + p + 1) conjugacy classes of G;  thus, by Theorem 

2.10 there are exactly p(p - 1) (p2 + p + 1) distinct irreducible representations, and hence 

characters, of G. 

Throughout the remainder of this thesis, I will use the notation S to be the collection 

of all the conjugacy classes C, of G partitioned by the nine different types 7 of conjugacy 

class, and r to mean the representative of the class C, as chosen in Theorem 3.1 

With this notation and using that all characters are class functions (2.2) and (2.3), 

become 

and 

3.2 Characters of GL2(Z/pZ)  

Recall that the reduction map .ir : G * G is a surjective group homomorphism. A repre- 

sentation or character of G can be extended to a representation or character of G by first 

allowing .ir to act on the elements of G. Such a character is called a lift of x on G to G. 

Theorem 3.4 Let pd2 be a representation of G and let p, be the repre~en~tat ion p, o IT o n  

G. If pc i s  a n  irreducible representation of G then p, i s  a n  irreducible representation of G. 
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Proof: We will prove the equivalent statement that if p, is a reducible representation of 

G, then pc is a reducible representation of G. Let V be the vector space associated with 

p,, and suppose that p, is reducible. Then V can be decomposed as Wl @ W2, for Wl and 

W2 non-trivial proper invariant subspaces of V. Thus for all g E G and for all wl E U/1, 

pG (g)wl E Wl, or equivalently pe (.rr(g))wl E Wl. However, .rr is surjective from G to G, 

thus for all E G and for all wl E Wl, p,(ij)wl E Wl. Hence, Wl is a non-trivial proper 

invariant subspace of V with respect to pc and necessarily pc is reducible. 

The conjugacy classes and the irreducible characters of G are calculated in [4, 111. 

Let s be the set of all conjugacy classes of G partitioned into the four different types of 

classes 7. Let CT be a conjugacy class of G with representative F .  Table 3-2 displays how 

G is partitioned into conjugacy classes; from this table, the order of G is counted to be 

P(P - 1 ) 2 ( ~  + 1). 

There are four types of irreducible characters of G;  we will only be discussing the first 

three of these types. Let B be the Bore1 subgroup of G, given by 

and let ji and V be one-dimensional irreducible characters of Rx. The character GP of G is 

defined as the map 

p o d e t  : G -+ C X ,  

and wp" is the character on B such that 

The values of the first three types of characters of G are as given in Table 3-3, and can be 

found in [4, 111. 

As previously mentioned, a character x of G becomes a character XG = x o .rr of G; for 

this reason, Table 3-4 lists which class CT of G' ~ ( r )  belongs to for each class representative 

r of G. For all classes except those of type R T  and RT', the element ~ ( r )  in G is already 

one of the class representatives of G,  as listed in Table 3-2; therefore, it is clear to which 

conjugacy class of G they belong. As for representatives of type R I  and RI', 
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where, for x E R, 2 is the reduction of x modm. Conjuga.ting this by 

get the class representative ba of G; therefore, both T ( R I , , ~ )  and n(RI&)  belong to the 

class of ba of G. 
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Number 
of C, E 7 

Table 3-1: Conjugacy information of G 
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Number of C, E 7 

Table 3-2: The conjugacy classes of GL2(Z/pZ): Shown are example representatives for a 
conjugacy class of each of the four types, as well as the size of each class and the number of 
classes of each type. 

Table 3-3: Characters of GL2(Z/pZ). Shown are the values of three types of irreducible 
characters of G = GL2(Z/pZ). 
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r : ~ ( r )  E C,. 

Table 3-4: The class in G of ~ ( r )  for each class representative r of G. 



Chapter 4 

Decomposing 1ndg w,,, into 

irreducible characters 

In this chapter we determine the decomposition of the character 1nd: w,, of G L ~ ( z / ~ ~ z ) ,  

into irreducible characters. Recall from Section 3.2 that wpu 

characters ji and ij of R x  ; similarly, we construct w~,, ( 1 ) = p(a)u(d) for cllaracters 

p a n d  u o f R X .  

4.1 Introduction 

The decomposition of 1ndE w,, into irreducibles breaks down into four cases, depending on 

the character put of R X  defined by put(a) = p(a)u(a-l)  for all a E RX . In Case 1, p = u, 

so put is the trivial character on R X .  In Case 2 and Case 3, the character put is the trivial 

character on the kernel in R X  of the reduction modm map. In Case 4, put is not trivial on 

this kernel. 
G We treat the decomposition of 1ndE w,,, separately within each case. In Case 1, IndB w,, 

is the direct sum of three distinct irreducible characters I/,,, t9,, and 8,. In Case 2, 1nd: w,,, 

is the direct sum of two irreducible characters 1nd; w ~ ,  o a and p,,, where 1ndg wp, is 

the irreducible character of G = GL2(Z/pZ) and p,, is the remaining character found 

by subtraction. In Case 3, p = au  for a trivial on the aforementioned kernel, and thus 

1ndE w,,, = (1nd; w,1 o a @ $,) + (pol @ Q,,) with both characters irreducible. Finally, in 
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Case 4, 1ndg w , ,  is an irreducible character of G. 

Recall from Theorem 2.16 that for characters ~1 and ~2 of G, a character x of G defined 

by 

x(y) = x1 (!?I . x2(y) or x(y) = x1 (y) + x2(!?) 

is the character of the tensor product or direct sum, respectively, of the representations 

of ~1 and ~ 2 .  Throughout this chapter, a character p of R X  is understood to mean an 

irreducible character of R X ;  since R X  is an abelian group, there are ( R X  I = p(p  - 1) distinct 

one-dimensional irreducible characters p of R X  by Theorems 2.10 and 2.11. 

Two characters x and X are inverse characters of a group H if x . X = I ,  the trivial 

character of H. Note that the characters pul and plv of R X ,  defined respectively by pvl(a) = 

p(a)v(aP1) and plv(a) = p(a-')v(a) for cr E R X ,  are inverse characters of R X  . Therefore 

pvl and plu are simultaneously trivial or non-trivial on any subgroup of R X .  

Lemma 4.1 Define 

U1 = { a €  R X  : a =  lmodm), 

the kernel i n  R X  of 4 : R X  + R X ,  the surjective reduction mod m map.  If p i s  a character 

of RX that i s  trivial o n  Ul, then p = I*. o 4 for  some character I*, of R X .  

Proof: Suppose that p is trivial on all of Ul. Then for a 6 R X ,  p ( a )  depends only on the 

value of cr mod m: 

Therefore, p is a well defined class homomorphism on RX/Ul  " R x ,  and thus defines a 

character of R X .  
There are p - 1 characters of Rx  and hence, by Lemma 4.1, there are p - 1 characters of 

R X  that are trivial on the subgroup Ul, with the remaining ( p -  1)2 characters non-trivial on 

Ul. This information is used to count the number of each type of irreducible representation 

of G constructed in this chapter. 
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4.2 The Characters 1nd: up, of GL2(ZIp2Z) 

Let D = { ( , : ) : a 6  , R x }  be the diagonal subgroup of G, and notice that D X 

R X  x R X .  Therefore, we can construct a character p x v of D, where p and v are characters 

of R X  with 

Observe that B /U 2 D ,  where B = E G : ~ , ~ E R ~ , ~ E R  istheBorelsub- 

group of G, and U is the normal subgroup of B given by 

Hence, there is a surjective homomorphism 0 from B to D with kernel U, given by 

So p x v can be extended to a character on B ,  denoted w,,, with 

The values of the character 1ndE w,, on G are determined in Appendix A and are 

included in Table 4-1. Observe from Table 4-1 that 

1nd: up, 2 1nd: w,,, 

regardless of whether or not pv' is the trivial character on the subgroup U1 of R X .  By 

comparing of the values of 1nd: wp1,, on class types I, T and R I  with those of 1nd: LJ,,,~, 

it can be shown that 1ndE w,,,, 2 1ndg w,,,, if and only if the pair {pl ,  y) is the pair 

{p2, v2). Therefore each unique pair {p, v) produces a distinct character 1nd: w,, of G. 
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1ndg w,, ( r  ) for 
put trivial on U1 

1ndg w,, ( r )  for 
put non-trivial on U 1  

Table 4-1: The values of 1nd: w,, when put is trivial on U1 and when put is not trivial on 
U 1 :  These values are taken from Table A-3. 

The inner product of 1ndg w,, with itself is determined in Appendix B. We see in Table 

B - l  that when pu' is trivial on U1 this inner product divides into two cases: when put = 1, 

and hence p = u, the inner product (1ndg w,,, 1ndS w,,) = 3; when put # 1 and put is 
G trivial on U 1 ,  (1ndg w,,, h d B  w,,) = 2. 

4.2.1 Case 1: put trivial on R X  

When put is trivial on R X  , we have p = u. We rewrite the values of the character 1ndg w,, 

of G by replacing u with p in the put trivial on U1 column in Table 4-1; these character 

values are included in Table 4-2. 
G B y  'I'able B-1, we see that (1ndg w,,, IndB w,,) = 3, and hence the character 1ndS w,, 

is not irreducible. Using the notation of Theorem 2.18, 

ai = 1, i = 1, . . . ,  3; 
3 = (1ndg w,,, 1ndg w,,) = a: + 

ai = 0 ,  otherwise. 

Therefore, 1ndg w,, is the direct sum of three distinct irreducibles. 
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The Irreducible Component $, of 1ndg w,, 

The map 

$ , = p o d e t : G + C X  

defines a character of G, with values as listed in Table 4-2. We see that $, is one-dimensional, 

and hence is necessarily an irreducible character of G. Table B-2 shows that (1ndg wPp, $,) = 

1; therefore, $, is an irreducible component of the direct sum that composes 1nd2 w,,. 

The Irreducible Component 8, of 1ndS w,, 

Consider the character 8, = ml o r dl, of G. Recall that WI = 1nd: $1 I s  - is one of the 

irreducible characters of G = GL2(Z/pZ), and that IT sends G to G by reduction modm. 

The values of this character are in Table 4-2 and can be verified by multiplying the values of 

$,(r) with the values of wl(.ir(r)) from Table 3-3. Table 3-4 shows the class of G in which 

IT(T) belongs. 

Table B-3 shows that (6,,,8,) = 1, and thus 8, is an irreducible character of G. Further, 

Table B-4 shows that 1ndg w,,, 6,) = 1; therefore, 8, is an irreducible character of the ( 
direct sum that composes 1ndS w,,. 

The Irreducible Component 6, of 1ndg w,, 

We know that for each character p of R X ,  the character 1nd: w,, of G is the sum of three 

distinct irreducible characters. Therefore for each g E G, 1ndg w,,(g) = d,,(g) + 8,(g) + 
6,(g); therefore, the values for the character 29, of G are equal to the values 1ndg w,,(g) - 

$l,(g) - for each g E G. The values of 6, are included in Table 4-2. 

The three characters $,, 8, and 19, are distinct and irreducible, and their sum gives 

1ndS w,,; thus we have found all the irreducible characters involved in the decomposition of 

1ndg w,,. For each of the p(p - 1) distinct p E R X ,  the character 1ndg w,, is also distinct. 

In addition, the det map from B to R X  is surjective and thus characters of the form $, and 

8,  are distinct for each p E R X .  As 29, is determined by subtraction, 6, is also distinct 

for each p E R X .  Therefore, there are p ( p  - 1) distinct irreducible characters of each of the 

types gp, 8, and 19~ .  
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Table 4-2: The irreducible characters that comprise 1ndE w,, 

Case 2: pu' trivial on Ul, non-trivial on R X  

and both p and u trivial on Ul. 

Assume both p and v are trivial on U1 and that is trivial on U1 but is non-trivial on 

RX , then p # v. Consider the character 1ndg wpc o a  of G, where 1ndg wp" is the irreducible 

character of G = G L 2 ( Z / p Z )  from Table 3-3 with ,G and F as in Lemma 4.1. Table 4-3 

shows the values of 1nd; w p ~  o a on G ,  and Theorem 3.4 tells us that 1nd; wp" o n is an 

( irreducible character of G .  Further, Table B-5 shows that 1nd: w,,, 1ndg wp, o a = 1; ) 
therefore, 1ndg w p  o n  is an irreducible character in the direct sum that composes 1ndg w,,. 

G As 1ndE w,, = (IndB wp" o r )  + cpILV for a character (p,, of G ,  the values of cpp ,  can be found 

by subtracting 1nd; wpv o a ( g )  from 1nd: w,,(g) for each g t G .  Table 4-3 summarizes these 

values. 

There are $ ( p  - l ) ( p  - 2 )  pairs { p ,  v) C RX such that p # v and both p and v are 

trivial on Ul. Therefore, there are ( p  - 1) ( p  - 2) characters 1ndE w,, where both p and v 

are trivial on UI, and for each there are distinct irreducible characters 1nd; w p ~  and cp,,. 
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w,, (I') 

I 

Number 1 $ (p - 1) (p - 2) +(P - WP - 2) 

Table 4-3: The irreducible characters that comprise 1ndg w,, when both p and u are trivial 
on U1. 

4.2.3 Case 3: put  trivial on U1, non-trivial on R X  

and p or v nontrivial on Ul 

Suppose that pv' is trivial on U1 but that either p or v is non-trivial on U1. This will occur 

when p = (TU for some character a of RX that is trivial on U1; note that as put is non-trivial 

on RX p # u and thus a # I. The values of 1ndg w,, in this case are included in Table 4-4; 

these values are found by replacing p(x) with (T(X)U (x) in column 2 of Table 4- 1, and by 

recognizing that a ( z )  is affected only by the value of z (mod m). 

As in the previous case, (1ndg w,,, 111dg w,,) = 2 as shown in Table B-1. Observe 

that in this case 1ndg w,, = 1ndgw,l . $, where again p = au. However, since both 

a and 1 are trivial on Ul, we have 1nd2 w,l = 1ndS w,l o n + pol by Case 2. Therefore, 

1ndg w,, = (1ndE w,l on.&) + (pVl .$,) by distribution. As 1ndZ w,l o n.$" and pol .$J, are 

both characters of GI they are positive integer linear combinations of irreducible characters; 

since they comprise 1ndg w,, which is the direct sum of only two irreducible characters, 

they are necessarily irreducible. 

There are (p - 1)2 choices for u not trivial on U1 and (p - 2) choices for a # 1 trivial on 

U1. Hence there are $(p - 2)(p - 1)2 characters 1ndE w,, in Case 3. In addition, there are 
1 i ( p  - 2)(p - 1)2 characters of the form 1nd; w,l o n ,+!I, and $ ( p  - 2)(p - 1)2 characters of 
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Number I i (p - 2) (p - 1)2 
Table 4-4: The irreducible characters that comprise 1nd: w,, when pv' is trivial on U1, 
p = uv where a # 1 is trivial on U1 and v is not trivial on U1. 

the form yU1 .g,. 

4.2.4 Case 4: pv' is not trivial on U1 

G Table B-6 shows that (1nd: w,,, IndB w,,) = 1 when pv' is not trivial on U1. There- 

fore, in this case 1nd: w,, is irreducible; the values of this character are in Table 4-1. 

The number of such irreducible characters is equal to one half the number of ordered 

pairs in RX x RX minus the nurnber of pairs {p, v) involved in Cases 1, 2 and 3, namely 
2 ; [P2(P - 1) - P(P - 1) - (P - l)(P - 2) - (P - I)~(P - 2)] = ;P(P - q3. 

4.3 Conclusion 

The complete list of irreducible characters of this chapter, along with the number of distinct 

characters of each type, are listed in Tables 4-5 and 4-6. This accounts for ip(p - l)(p2 + 3) 
of the p(p - 1) (p2 + p + 1) irreducible characters of G. 
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Number 

Table 4-5: Irreducible characters of GL2(ZIp2Z):  Columns 2, 3 and 4 are the irreducible 
characters from Case 1, while column 5 is from Case 4. 
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Chapter 5 

Conclusion 

In this thesis, we have determined the decomposition of the character 1ndg w,, into a direct 

sum of irreducible characters of G = GL2(ZIp2Z). This task is divided into four cases that 

depend on the pair {p, v) of irreducible characters of the ring R X  = ( Z / ~ ~ Z ) ~ .  

The first partition into cases occurred when we determined the values of 1nd; w,, on 

G. We discovered that these values depend upon whether or not the character pv' of R X  

defined as p(cr)v(cr-') for cr E R X  is trivial on the subgroup U1 of R X ,  where U1 is the 

kernel in R X  of the reduction map 4 : G + GL2(Z/pZ). 

A further division into cases occurred while taking the inner product of 1ndg w,, with 

itself when pv' is trivial on Ul. When p = v, this inner product is 3, and hence 1ndZ w,, is 

the direct sum of three distinct irreducibles (Case 1). When pv' is trivial on U1 but not on 

R X ,  this inner product is 2, and 1nd; w,, is the direct sum of two irreducibles (Cases 2 and 

3). When pv' is not trivial on U1, the character 1ndg w,, is irreducible (Case 4). In Case 

2, both p and v are trivial on U1, and 1nd; w,, decomposes as a character of GL2(Z/pZ) 

extended to G, with the remaining irreducible character found by subtraction. In Case 3, 

p and v are not trivial on U1, but p = a v  for some character a # 1 of R X  trivial on Ul. 

In Cases 1, 2 and 3, irreducible characters of GL2(Z/pZ) are used to produce irreducible 

characters of G. 

A natural next step is to calculate the remaining characters of G,  as the irreducible char- 

acters of Chapter 4 account for only ip (p  - l )(p2 + 3) of the p(p - l)(p2 + p +  1) irreducible 

characters of G. In [9], Kutzko determined the irreducible characters of SL2(Z/pnZ), a 

subgroup of GL2(Z/pnZ). The construction of these characters for n = 2 might be consid- 

ered to find further characters of G. In addition, Kutzko's characters of SL2(Z/p2Z) can be 
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induced to form characters of G; however, prior to performing these calculations, we do not 

know how many of these will produce characters distinct from those we have already found. 

In addition, for G, = GL2(Z/pr1Z) and p and v characters of the ring (Z/prlZ)X, a 

similar approach might be used inductively on n to determine the decomposition of the 

characters 1nd;: w,,. If the necessary characters of G,-I are known, then we can use the 

same approach of extending these to characters of G, and identifying these as characters in 
G the direct sum composing Inds: w,,. Subtracting these known characters from 1ndE; w,, 

will produce characters of G, with smaller inner product; hopefully, these characters will 

be easier to decompose. 

The characters and representations of G can be applied to number theory. In [I], a 

relation between the induced representations of G L ~ ( z / ~ ~ z )  is defined, which implies a 

relation between the jacobians of some modular curves of level $. A similar relationship is 

discussed in [2] for GL2(Fp) where IFp is the finite field with p elements. 
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Character Values of 1ndg up, 

In this appendix we determine the values of the character 1ndg up, on G. As before, G will 

denote the group G L ~ ( z / ~ ~ z ) ,  and the notation of Appendix A will be that of Chapter 4. 

A . l  Preliminaries 

Recall from Section 4.2 the Bore1 subgroup B of G; this group has order IBJ = p4(p - 1)'. 

To find the character values 1ndEwp, on G, it will help to locate the p4(p - 1)' elements 

of B in G with respect to their conjugacy class in G. Table A-1 lists the elements b E B 

conjugate to each class representative r ,  along with an element g E G such that g-lrg = b. 

Each of these elements of B are distinct; from Table A-2, we can see that there are IBI of 

these elements, and hence all of B is found. 
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T 

I f f  

B f f  

Tff,b 

T&P 

RTa >o 

RTA,p 

RIff,p 

RB, 

RI&p 

none 

none 

none 

( 1) 
none 

Table A-1: Elements of B in G: Elements of B in each conjugacy class C, of G are found 
by conjugating C, 's class representative T by a given element g E G. Observe that each such 
b E B is distinct. The number of b E B found is counted in Table A-2, which verifies that 
these are all the elements of B. 
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Product 

Table A-2: Distribution of b E B across the conjugacy classes of G: Recall that S is the set 
of all conjugacy classes C, of G, and that S is partitioned by the nine different types 7 of 
classes. Included are the number of conjugacy classes of each type along with the orders of 
the sets { b  E B : b=,r) for each class C,. The sum x / { b  E B : b=,r) 1 = x x J { b  E 

Cr ES 7 C S  CrE7 
B : b=,r)l gives the total number of b E B found in Table A-1; note that this number is 
equal to the order of B, proving that these are all the elements of B. 
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A.2 Values of 1nd: a,, on G 

we use this expression, together with Table A-1, to determine the values of 1ndg wp,. The 

classes T&, RT,,B, RTA,B and RI& do not intersect B and hence their values under 

1ndg wp,  are 0; we isolate the calculations for the remaining classes below. 

1  
= -lcG(Ia)l  x wpv(b) I B I  b E B  

b y G  I', 

1  
= -lCG(Ba)l I B l  x wpv(b) 

bE B 
b y G  B', 

P- 1 
- - p 3 ( p -  

p (p  - 1 )  x p ( a  + k p ) v ( a  - k p )  
p4(p - 112 k=O 

Notice that ( a  - k p )  = a2 (a  + k p ) - l ,  and thus 

.(a - k p )  = v(a2)v ( ( a  + k p ) - l )  

Recall from Section 4.1 the character pv' and the subgroup U1 of R X .  In addition, recall 

from Theorem 2.12 that the sum of a non-trivial character over an abelian group is 0. Using 



this, we have 

which decomposes into two cases. 

Case 1: if pv' is trivial on U1 then 

Case 2: if pv' is non-trivial on U1 then 

1ndE w,, (B,) = 0. 
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Case 1: if pv' and p'v are trivial on U I  then 

Case 2: if pv' is not trivial on U1 then 

1 
= -lcc(RB,)I C wpu(b)  I B I bE B 

b ~ ,  RB, 

The results of the above calculations are summarized in Table A-3. 
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1ndg up, ( r )  for 
pvl trivial on Ul 

1nd: wL,, ( r )  for 
non-trivial on U1 

Table A-3: Values of 1ndE wp, on G: Summarized in this table are the character values 
1ndg up, both when the character ,LW' is trivial and non-trivial on U1. 
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Inner Products of Characters of G 

In this appendix, the inner products discussed in Chapter 4 are calculated. Recall (3.1) and 

(3.21, 

and 
1 

(x, x) = - C C I~rIlx(r)l2, 
l G l  T C S  G E T  

where x and p are characters of G, S is the set of all conjugacy classes C, of G, and r is 

the class representative of C,. Recall that S is partitioned by the nine types of conjugacy 

classes 7- of G. Recall also that for a character x of G, x(g)* = X(g-l) for all g E G, where 

c* denotes the complex conjugate of c E @. The characters pv' and p'v, and the subgroup 

U1 of R X  are as defined in Section 4.1. 

Many of the right hand entries of the following tables are easily calculated and can 

be verified by the reader. The more involved sums are indicated by * and by + and are 

calculated at  the end of this appendix. 
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Total 

Table B-3: (a,, 8,) 
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I Case 1: I p = v. In this case * becomes 

Otherwise, if p # v we see that * is equal to 

Notice that the set {TO,6 : {a, 6) c R X  , a # G(mod m)) is contained in Dl the diagonal 

subgroup of G with elements denoted by Da,& The sum over the T0,6's can be replaced 

with the sum 

multiplying by 112 since Ta,6 E~ T6,a. Therefore, * becomes 
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From Theorem 2.12, recall that for any non-trivial character x of an abelian group G, x ~ ( g )  = 0. As p # u the character pu' x p'u is not trivial on D, and thus * becomes: 

9EG 

P - 1  

= p3(p + 1 )  [ p2(p - l ) ( p  - 2 )  - 5 C ( p u ' ( a ) p l u ( a  + k p )  + p u l ( a  + k p ) p 1 u ( a )  ) ] 
0 E R X  k=O 

The sum * breaks down into two more cases 

ml When put and p'u are non-trivial characters of U l ,  [pu(r )  + pi . (x )]  = 0 and 
xEU1 

thus * is 

When jiu and p'/ are trivial characters of U 1 ,  x [ ~ V ( Z )  + p V ( r ) ]  = 21U11 = 21) and 
xEUl 

thus * is 
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In + the characters pv' and p'v are non-trivial on Ul 

Recognizing that (a + PO)-' = 9 = a-' - ppaP2 and, (aP1 - ppaP2) (a  - pp) = 

1 - 2ppa-', + becomes 

Notice that only the value of <(mod m) is involved in the above sum; equivalently, 

Hence, the sum over < E R of pi.(l- 2pP<) + ,Gv(l- 2p/3<) is p C ( pfi(u) + jiv(u) ) Notice 
uEU1 

also, when < = 0 (modm) that 1 - 2p,& = 1. Recall that in this case, pv' and p'v are 
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characters of R X  that are not trivial on Ul, so the sum C ( pii(u) + pv(u) ) = 0. Now 4 
UEUl 

becomes: 
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