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ABSTRACT

Microfossils such as foraminifera, diatoms and pollen serve as proxy indicators of
environmental change in tidal marsh environments. In this study, marsh foraminifera
were used to estimate the magnitude of land-level change at Willapa Bay, Washington
during repeated great (M>8) earthquakes at the Cascadia subduction zone. Tidal muds
abruptly overlie buried high marsh soils in estuarine wetlands along the Pacific coast
from northern California to central Vancouver Island. This stratigraphy records sudden
submergence during great earthquakes.

A large brackish marsh along Niawiakum River at Willapa Bay was selected for
this study because it contains buried soils that record the last seven great Cascadia
earthquakes. The zonation of marsh foraminiferal species at Willapa Bay is closely
related to elevation. Foraminiferal zonation in the modern marsh was determined by
visually analysing, and applying cluster analysis to, surface samples collected along a
transect across the marsh. Three zones were delimited: low marsh (1.30-2.23 m above
MLLW), middle marsh (2.23-2.86 m above MLLW), and high marsh (2.86-3.06 m above
MLLW). Modern foraminiferal assemblages were compared to fossil assemblages
recovered from a vertical sediment monolith to estimate the paleoelevation of fdssil
samples. Amounts of coseismic subsidence of ~1 m were calculated using these
estimates and a transfer function derived from partial least squares. Due to a limited
sampling range for the modern analogue of the lowest marsh zone relative, these values
are considered as minima. The values are similar to estimates of coseismic subsidence in
other parts of coastal Washington, Oregon and British Columbia. This research
complements similar diatom- and pollen-based studies at Willapa Bay and contributes to

a multi-proxy assessment of the earthquake history of the area.
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INTRODUCTION

Microfossils, such as diatoms, pollen and foraminifera, are important tools for
reconstructing past environments. In many instances, a site’s environmental and
geological history can be inferred by comparing modern and fossil microfossil
assemblages (Scott et al., 2001). A number of studies have used foraminifera to interpret
past environments due to their abundance in marine settings, their ability to react quickly
to environmental change, and their relative ease of sampling. One relatively new use of
foraminifera is in investigations of seismically induced coastal land movements (e.g.
Guilbault et al., 1995, 1996; Scott et al., 2001; Shennan et al., 1996, 1998, 1999). These
investigations complement those done using pollen, diatoms and plant macrofossils,
providing a multi-proxy approach for deferrnining the pattern of coseismic deformation

during large earthquakes in the past.

This study uses marsh foraminifera to estimate the magnitude of coastal land-
level changes associated with past great earthquakes at the Cascadia subduction zone. A
large tidal salt marsh at Niawiakum River, Willapa Bay, southwestern Washington, was
chosen for this project, as it contains well-documented geologic evidence of large
earthquakes during the late Holocene. Estimates of coseismic land-level change at this
site are made by comparing fossil foraminiferal assemblages with modern assemblages of

known elevation. The estimates are based on surveys and sampling of the present marsh,

and lithostratigraphic logging of monoliths.




Background

Cascadia subduction zone earthquakes

Numerous very large earthquakes have occurred at the Cascadia subduction zone
(CSZ) along the west coast of North America during the late Holocene. The CSZ extends
offshore from the north end of Vancouver Island, British Columbia, to northern
California, and marks the boundary between the subducting oceanic Juan de Fuca plate
and the less dense continental North America plate (Figure 1). Part of the interface, or
megathrust fault, separating the two plates is presently locked and accumulating a large
amount of strain (Atwater et al., 1995; Clague, 1997). This strain will ultimately be
released in a ‘great’ (M > 8) earthquake. At least seven such earthquakes have occurred
at 100-1000 year intervals over the past 3500 years (Atwater and Hemphill-Haley, 1997,
Atwater et al., 2004). Future similar earthquakes pose a significant hazard to the growing

number of people who live in the Pacific Northwest.

There is abundant geologic evidence along the Pacific coast for repeated great
earthquakes during the Holocene. This evidence includes buried marsh and forest soils
and tsunami deposits beneath tidal marshes and estuarine wetlands (Atwater, 1987, 1992;
Darienzo and Peterson, 1990; Atwater and Yamaguchi, 1991; Nelson, 1992; Clague and
Bobrowsky, 1994; Atwater et al., 1995; Atwater and Hemphill-Haley, 1997; Clague,
1997, Clague et al., 1998), and tsunami deposits in coastal lakes (Hutchinson et al., 1997,
2000; Kelsey et al., 1998, Clague et al., 1999). In most cases, the buried marsh soils
(peat) are abruptly overlain by tidal muds. Such sharp contacts occur along passive
coasts, but their abundance and areal extent in Cascadia, along with the tsunami sands

that overlie some of them, argue for a seismic origin (Shennan et al., 1996). The




lithostratigraphic sequences are best explained by sudden submergence associated with

coseismic subsidence during great earthquakes (Atwater et al., 1995; Clague, 1997).
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Figure 1. Location map of the Cascadia subduction zone (modified from Atwater et al., 1995).



To confidently associate this kind of wetland stratigraphy with great earthquakes,
researchers must demonstrate that: 1) the subsidence was sudden and large (generally >1
m); 2) submerged tidal wetland soils are laterally extensive; 3) tsunamis are coincident
with subsidence; and 4) submergence events are synchronous at widely spaced sites
(Nelson et al., 1996a). Cycles of sudden submergence of wetlands, followed by gradual
shoaling and development of new marshes are explained by a cycle of regional coseismic
subsidence followed by aggradation and interseismic uplift (Atwater et al., 1995; Nelson
et al., 1996a). This cycle has been termed the ‘earthquake deformation cycle’ (Figure 2;

Dragert et al., 1994).

BETWEEN
EARTHQUAKES

Figure 2. The great earthquake deformation cycle (modified from Dragert et al., 1994).



Foraminifera as indicators of sea-level change

Foraminifera are one-celled marine microorganisms with shells (tests). The shells
are commonly preserved as fossils in sediments. They provide information on the
environmental history of a site in the absence of real-time physiochemical baseline data
(Scott et al., 2001). Foraminifera have been used as environmental proxies in several
pollution studies, tracer and transport research, and studies of submarine slides and
glacial-marine and fluvial transport (Scott ef al., 2001). They occur in large numbers in a
wide variety of marine environments, and have restricted salinity and other
environmental tolerances. A growing number of studies use foraminifera to reconstruct
coastal marine palacoenvironments. Examples of such studies include classification of
estuaries and embayments, documentation of salinity and temperature fluctuations, and
hurricane detection using estuarine sediments (Scott et al., 2001). Foraminifera have also
been recognized as important indicators of relative sea-level change caused by large
storms, rapid climate change, seismic events, and other phenomena (e.g. Gayes et al.,

1992; Jennings ez al., 1995; Scott et al., 1995a, 2001, 2003; Nelson et al., 1996a).

Most marsh foraminifera are agglutinated, that is they have organic linings with
tests composed of silt and sand grains that the organism collects from the substrate and
cements together to make a rigid shell. The tests are resistant to low-oxygen and low-pH
conditions, which characterize tidal marshes and are, therefore, well preserved in marsh
sediments (Scott and Medioli, 1980a). In addition, local foraminiferal assemblages show
a consistent vertical zonation within marshes. This characteristic underpins the
application of foraminifera to sea-level studies. It allows recognition of distinct elevation
zones in both modern and ancient sediments (Scott ez al., 2001). Marsh foraminifera

have become an important tool for detecting relative sea-level change during the



Holocene, especially where the change is less than 1 m. Foraminiferal assemblages in
tidal wetlands are commonly defined according to their elevation with respect to a tidal
datum and include tidal flat, low marsh, middle marsh and high marsh assemblages

(Patterson ez al., 2000).

Couplets of tidal mud and marsh peat separated by abrupt contacts have been
described at numerous estuaries along the coast of the Pacific Northwest. The abrupt
contacts between couplets have been attributed to episodic subsidence caused by CSZ
earthquakes (Atwater, 1987; Atwater et al., 1995; Shennan et al., 1996; Nelson et al.,
1996b; Clague, 1997). Microfossils (diatoms, foraminifera and pollen) in these deposits
record relative sea-level change and help determine whether the subsidence was sudden
or gradual. Foraminiferal data increase the resolution of relative sea-level reconstructions

(Nelson et al., 19964, b).

Importance of project

More precise estimates of coastal land-level change during great earthquakes
allow geophysical modellers to better delineate the locked part of the CSZ and to estimate
the magnitudes of the earthquakes. The objective of this study is to use marsh
foraminifera to estimate amounts of coseismic subsidence during past great earthquakes

at the CSZ and to track relative sea-level change between the earthquakes.



STUDY SITE

Physical environment

Willapa Bay, on the southwest coast of Washington state, comprises numerous
estuaries that extend several kilometres inland and are protected from the open Pacific
Ocean by a large barrier beach bar. Two major tidal arms extend landward from Willapa
Bay and mark the mouths of Naselle and Willapa rivers. Niawiakum River, the location
of this study, is just northeast of the Naselle arm (Figure 3). The northeastern part of
Willapa Bay crosses the South Bend antiform (Figure 3), which is developed in an
exposed core of the Crescent Formation — Eocene pillow basalt, basaltic breccia, and
basaltic sedimentary rock. The South Bend antiform has been active in the Quaternary,
as Pleistocene estuarine and shallow marine sedivments crop out on its flanks (Atwater

and Hemphill-Haley, 1997).

This study was conducted at the Oyster locality of Atwater and Hemphill-Haley
(1997) on the northeast bank of Niawiakum River approximately 200 m upriver from US
Highway 101 and 10 km north of Columbia River (Figure 4a). The bank is about 2 m
high, and its top lies within the upper marsh above normal high tide level (>3 m) (Figure
4b). A nearby mudflat at the confluence of two tidal creeks tributary to the river is about
50 m wide and is inundated twice a day by tides. Extreme tides have a range of 4.5 m.
Vascular plants in the marsh are typical of brackish-water wetlands and include tufted
hair-grass (Deschampsia caespitosa), Baltic rush (Juncus balticus), Pacific silverweed
(Potentilla pacifica), Seaside arrowgrass (Triglochin maritimum), and Lyngby’s sedge

(Carex lyngbyei). Pickleweed (Salicornia virginica) is common in saline parts of the



high marsh and in the transition between the high and low marsh environment. Sitka
spruce (Picea sitchensis) and western crabapple (Pyrus fusca) grow just above the
extreme high tide level. The Oyster locality has been invaded by Atlantic-coast grass
(Spartina sp.), which was introduced with oyster farming at Willapa Bay in the early

1980s (Atwater and Hemphill-Haley, 1997).

123°52.5 123° 45

469 37.5'—

EXPLANATION
Estuarine water and tidal flat X Strike and dip of bedding

% Tidal marsh and tidal swamp 0O Town O Other locality

Floodplain T N
Upland underlain by: o 7 tl'y km
Estuarine and fluvial deposits (Pleistocenc)
------ Road

Scdimentary rocks (Eocene and Oligocenc)

- Crescent Formation (Eocenc)

Figure 3. Map of northeastern Willapa Bay, southwestern Washington (after Atwater and Hemphill-
Haley, 1997).
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Figure 4a. Aerial photo of the Oyster locality along Niawiakum River at low tide. (Courtesy of the
Washington State Department of Ecology, shoreline aerial photo #PAC0185, 5/11/97.
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Figure 4b. Oyster locality at high tide, June 2001; view to the northeast.



Coseismic subsidence at Willapa Bay
Atwater and Hemphill-Haley (1997) conducted extensive litho- and

biostratigraphic investigations at Willapa Bay, partly to determine the recurrence
intervals of great earthquakes at this part of the CSZ. They surveyed and sampled
outcrops along the banks of the rivers entering the bay and found evidence for seven
great earthquakes in the area during the past 3500 years. They concluded that the
earthquakes were plate-boundary events because the CSZ is the only recognized fault
common to all areas having evidence for coseismic subsidence in southern Washington

(Atwater and Hemphill-Haley, 1997).

The monolith that I analysed contains four buried soils, referred to as S, U, W and
Y (oldest to youngest) by Atwater and Hemphill-Haley (1997). Figure 5 shows the two
youngest soils (S and W) in the riverbank at the Oyster locality. Soils S and Y form
prominent ledges along the tidal channels entering Willapa Bay, whereas soils U and W
lack topographic expression, except on well washed, nearly vertical faces, from which
they protrude a few centimetres. All of the soils are laterally extensive in the marshes.
They have been radiocarbon dated at 1500-1700 years, 1130-1350 years ago, ~900 years
ago, and about 300 years ago, respectively (Atwater and Hemphill-Haley, 1997). The
work of Atwater and Hemphill-Haley (1997) is the foundation for this study, as it
provides solid information on stratigraphy, vegetation and diatoms, as well as dates of the

last four great earthquakes at the CSZ.
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Figure 5. Riverbank outcrop at the Oyster locality showing soils S, W, and U.
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PREVIOUS WORK

Microfossil evidence of sea-level change

A distinctive characteristic of most tidal marshes is the vertical zonation of plant
communities (Chapman, 1960). Foraminifera also have a zonation within tidal marshes;
knowing the elevational ranges of the foraminiferal species that constitute the zones, one
can determine past elevations of the site from fossil foraminifera in sediments. A record
of the changing elevation of the site through time can be obtained by analysing changes

in the abundance of indicator species with depth in a sedimentary sequence (Patterson et

al., 2000, Scott et al., 2001).

A set of agglutinated foraminiferal taxa typical of temperate tidal marshes
includes Ammotium salsum, Trochammina macrescens (two formae), Miliammina fusca,
Tiphotrocha éomprimata, Haplophragmoides species and Trochammina inflata (Phleger,
1970, 1977; Murray, 1971; Scott et al., 1996; Hutchinson et al., 1998). Biogeography,
local ecology and the discontinuous distribution of species introduce an element of
variability in the vertical zonation of marsh foraminifera, but examination of high and
low marsh fauna shows that these zones are marked by the same or similar groups of
species over large areas (Sen Gupta, 1999). Jennings and Nelson (1992) summarized
tidal data, floral zones, foraminiferal assemblages and faunal zones for four cool, humid
areas in North America, demonstrating the relationship of marsh foraminifera to
elevation. The summary of Pacific marsh foraminiferal faunas compiled by Scott et al.
(1996) demonstrates the similarity among faunas around the Pacific Ocean (Table 1).

The most noticeable features are the dominance of T. macrescens and T. inflata in high-
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marsh assemblages and the consistent occurrence of M. fusca in the low-marsh ones

(Scott er al., 1996).

These species are important for relative sea-level studies. In

Cascadia, buried peats in tidal marshes contain abundant 7. macrescens (two formae),

whereas muds are commonly dominated by M. fusca (Guilbault et al., 1995, 1996).

Major changes in marsh foraminiferal assemblages mark sudden changes in relative sea-

level (Nelson et al., 1996a).

Table 1. Common foraminifera in Pacific tidal marshes (modified from Scott ef al. 1996).

Location High marsh Low marsh
Trochammina m. f. macrescens Miliammina fusca
Hokkaido Haplophragmoides manilaensis Trochammina m. f. macrescens

Miliammina fusca

{Trochammina inflata)

British Columbia

Trochammina m. f. macrescens
Trochammina inflata

Miliammina fusca
Ammonia beccarii
Ammobaculites exiguus
Elphidium spp.

Washington State

Trochammina m. f. macrescens
Trochammina inflata
Haplophragmoides wilberti
Trochammina m. f. polystoma

Miliammina fusca
Ammotium salsum

Oregon

Trochammina m. f. macrescens

Miliammina fusca
Reophax nana
Ammotium salsum
Ammobaculites exiguus

Northem California

Trochammina m. f. macrescens and f. polystoma

Miliammina fusca
Calcareous spp.

Southern California

Trochammina m. f. polystoma

Polysaccammina hyperhalina
Miliammina fusca
Calcareous spp.

Chile

Trochamminita salsa
Haplophragmoides spp.
Pseudothurammina limnetis

Milammina fusca

New Zealand

Trochammina inflata
Trochamminata salsa
Haplophragmoides wilberti
Trochammina m.f. macrescens
Miliammina obliqua

Elphidium spp.
Haynesina depressulum
Other Calcareous spp.

Notes: Species are listed in order of importance. Trochammina m. f. refers to Trochammina macrescens f.,
either macrescens or polystoma.

Patterson er al. (2000) conducted a multi-proxy study of relative sea-level change

at an intertidal marsh at Zeballos on northwestern Vancouver Island. They compared the

vertical zonation of diatoms, foraminifera and vascular plants using Q-mode cluster
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analysis. The analysis yielded three, six and four, mostly elevation-controlled
assemblage zones, respectively. Cluster analysis of the foraminifera dataset yielded three
foraminiferal assemblages: high marsh (0.8-1.5 m above mean sea level, amsl),
dominated by Jadammina macrescens and Balticammina pseudomacrescens; low marsh
(0.4-0.8 m amsl), dominated by B. pseudomacrescens; and tidal flat (-0.2-0.4 m amsl),
dominated by Miliammina fusca. Their study was one of the first to compare the
zonation of three types of organisms across an intertidal marsh, and it demonstrated the
value of a multi-proxy approach in relative sea-level studies. When applied to the fossil
record at a site, this method allows even small sea-level changes to be detected, which is
important in the Pacific Northwest where coseismic land-level changes of only a few tens

of centimetres are probably common (Patterson ez al., 2000).

More generally, studies from different tidal wetlands around the world have
shown the value of marsh foraminifera in studies of sea-level change: in the UK
(Edwards and Horton, 2000), Greece (Cundy er al., 2000), Chile (Jennings et al., 1995)
Japan (Scott et al., 1995b), New Zealand (Hayward et al., 1999), eastern Canada (Scott

and Medioli, 1980b), and the US (de Rijk and Troelstra, 1997).

Microfossil studies of coseismic subsidence in the Pacific Northwest

Tidal marshes are sensitive recorders of relative sea-level change and thus have
become favoured sites for paleoseismic investigations, especially along the Pacific coast

(Jennings et al., 1995; Guilbault et al., 1995, 1996; Scott et al., 2001).

Western British Columbia

One of the first paleoseismic studies in British Columbia to incorporate

microfossil data was done by Mathewes and Clague (1994) at tidal wetlands near
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Vancouver. They inferred two large earthquakes from plant fossils recovered from
buried soils. The two events were radiocarbon dated at approximately 3400 and 2000 "“C
years ago. At one site, a fossil forest is sharply overlain by silt and sand containing

brackish-water diatoms (Mathewes and Clague, 1994).

Tidal marshes at Tofino and Ucluelet on western Vancouver Island contain one to
two buried marsh soils. A sheet of tsunami sand overlies the upper soil. On the basis of
stratigraphic and geochronological data, Clague and Bobrowsky (1994) concluded that
the upper soil was a former marsh surface that subsided suddenly during the last

earthquake at the CSZ about 300 years ago.

Guilbault et al. (1995) conducted a foraminiferal study at the Tofino study site of
Clague and Bobrowsky (1994) (‘cemetery site’). They compared fossil foraminiferal
assemblages in sediments below the modern marsh with those of the modern marsh. The
modern samples were grouped into four biofacies based on visual examination: tidal flat;
lower marsh, dominated by Miliammina fusca, but also including Ammobaculites
exiguus, Ammotium salsum and Eggerella advena; middle marsh, dominated by
Jadammina macrescens; and upper marsh, dominated by J. macrescens and
Haplophragmoides wilberti. Visual examination of the modern and fossil foraminiferal
assemblages indicated 0.50-0.95 m of coseismic subsidence during the earthquake about
300 years ago. Guilbault et al. (1995) also used transfer functions to estimate the amount
of coseismic subsidence at Tofino. Q-mode factor analysis was performed on 16 modern
samples with 22 taxonomic categories. The analysis produced three factors that explain
96.7% of the data variance. The first factor was designated ‘higher high marsh’ and was

dominated by J. macrescens. The second factor, the ‘low marsh’, was dominated by M.
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fusca. The third factor was termed the ‘lower high marsh’ and was dominated by H.
wilberti and, secondarily, T. inflata. Stepwise multiple regression analysis was then done
to obtain a regression equation (the transfer function) that gives elevation as a function of
species composition. The transfer function was then applied to the fossil data to calculate
paleoelevations of the samples. This analysis of the fossil data yielded values of 0.20-
0.94 m of coseismic subsidence. Guilbault et al. (1995) also used the assemblage
approach of Jennings and Nelson (1992), obtaining extreme subsidence values of 0.0 m

and 1.33 m.

Guilbault et al. (1996) did similar work at a site on Meares Island near Tofino. At
that site, the pre-earthquake succession begins with a tidal flat and lower marsh
assemblage and changes upward into a middle marsh assemblage, followed by an upper
marsh assemblage. Above the tsunami sand, there is a brief middle marsh interval,
followed by an upper marsh assemblage that extends to the top of the section. Data from
the modern transects revealed three biofacies: tidal flat and lower marsh, dominated by
M. fusca, with some A. exiguus, A. salsum and Polysaccamina hyperhalina; the upper
marsh, dominated by J. macrescens and T. salsa; and the supratidal zone, dominated by
arcellacea. Guilbault er al. (1996) developed a transfer function to test their visual
interpretations. Factor analysis yielded three factors that explain 96.8% of the variance in
the Meares Island data. Factor 1 (75.2% of the variance) characterizes the upper marsh,
as it is dominated by J. macrescens and T. salsa. Factor 2 (18.6% of the variance) is
dominated by adult M. fusca and represents the lower marsh. Factor 3 (3.0% of the
variance) is dominated by H. wilberti. The mean estimate of subsidence is 55 cm

(Guilbault et al., 1996).
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Another study was conducted in the tidal marshes near Tofino by Hughes et al.
(2002). They obtained estimates of coseismic subsidence using pollen and vascular
plants. The relationship between the modern and fossil data sets was established using
four transfer functions: partial least squares (PLS); weighted averaged PLS; simple
weighted averaging (WA); and WA with the tolerance of abundant taxa downweighted
(WA(tol)). Four marsh zones were delimited by the vascular plants: low (2.0-2.9 m
amsl); middle (2.8-3.5 m amsl); high (3.2-3.9 m amsl); and forest-edge transition (3.7-4.2
m amsl). WAC(tol) provided a mean estimate of coseismic subsidence of 0.61 +/- 0.3 m,
which was in agreement with estimates derived from the foraminiferal studies (Hughes ez
al., 2002). This study demonstrated that pollen from subsurface sediment, when
combined with modern pollen and plant distributions, can contribute to high-resolution

sea-level reconstructions.

Washington State

The southwestern coast of Washington has extensive estuarine tidal marshes that
have been extensively studied by many scientists. Several types of evidence were
presented by Atwater (1987, 1992) and Atwater and Yamaguchi (1991) to support the
hypothesis that the uppermost buried soil in tidal marshes along Niawiakum River had
dropped during a great subduction earthquake. First, they documented the abruptness of
the upper contact of the buried soil, with in situ tree roots and other plants preserved
along it. Second, below-ground rhizomes of Triglochin maritimum, a low-marsh plant,
were found in mud a few tens of centimetres above the contact, suggesting that
submergence was long-lived, rather than temporary due to a storm or another ephemeral

phenomenon. Atwater and Yamaguchi (1991) estimated the amount of submergence at
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0.5-2 m, based on the stratigraphic position of fossil plants and their modern counterparts.
Finally, they reported anomalous fine sand layers directly above the buried soil that
became finer and thinner up-valley. They interpreted these layers as the deposit of the

tsunami generated by the last great earthquake about 300 years ago.

Hemphill-Haley (1995) used diatom evidence to infer the amount of relative sea-
level rise during the most recent great earthquake in southwestern Washington. Diatom
assemblages from four stratigraphic sections at Niawiakum River showed a sudden drop
in mérsh and forest surfaces that were near or above high tide, followed by a change to
mud flat and low marsh environments. The latter were gradually replaced by a high
marsh. Based on known elevations of modern diatom assemblages, Hemphill-Haley
(1995) estimated the amount of coseismic subsidence required to explain the abrupt
change in fossil assemblages above and below the buried marsh surface. The estimates
range from a minimum of 0.8-1.0 m to a maximum of 3.0 m. A tsunami origin for the
sand sheet overlying the buried peat was supported by diatom evidence. The sand
contains diatom species that are found on the modern sand flats of Willapa Bay,
indicating a bayward source. In a later study, Atwater and Hemphill-Haley (1997)
presented a detailed analysis of the past seven great earthquakes and their recurrence

interval, based on surveys of numerous outcrops throughout Willapa Bay.

Shennan et al. (1996) tested the ‘earthquake deformation cycle’ in Cascadia by
applying the methods and scientific framework common to sea-level investigations in
northwest Europe to a sequence of peat-mud couplets in southern Washington. Intertidal
sediments at the estuary of Johns River include eight peat-mud couplets that record

coastal submergence over the past 5000 years. The study of these deposits incorporated
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lithologic, pollen, diatom and foraminiferal data obtained from samples collected along
surface transects and tidal channel exposures. Multivariate statistical methods were
employed on the large data set to reconstruct paleoelevations. One of the eight events
had approximately 1.5 m of submergence, four events had 1 +/- 0.5 m of submergence,
and three events had <0.5 m of submergence. The upper contact of each peat horizon is
abrupt, and the pollen and diatom data show changes from vegetated marsh to mudflat.
Two of the eight events were preceded by non-seismic relative sea-level rise. Shennan er
al. (1996) note that a lack of a modern analogue representative of immediate post-

submergence environments limited the precision of their subsidence estimates.

Oregon

The late Holocene estuarine record along the Oregon coast is more difficult to
interpret than that of southwestern Washington, because there are few good exposures
and coring at some sites indicates differing styles of late Holocene relativé sea-level rise -
uniform in some sites, jerky in others. Nelson and Jennings (1988) recognized that marsh
foraminifera are sensitive to changes in sea level and analysed samples along surface
transects at several Oregon marshes. They identified three informal assemblage zones: a
high-marsh zone, dominated by 7. macrescens and T. inflata, with lesser values of M.
fusca and H. wilberti; an upper-low-marsh zone, dominated by M. fusca, with subordinate
T. macrescens and T. inflata; and a low-marsh to mudflat zone, dominated by M. fusca
and A. salsum, with calcareous species increasing in abundance with decreasing
elevation. Based on their preliminary findings, Nelson and Jennings (1988) argued that
sudden changes in sea level of about 0.5-1.0 m could, in theory, be identified at Oregon

estuaries.
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Darienzo and Peterson (1990) conducted a detailed study of late Holocene relative
sea-level change at a small marsh bordering Netarts Bay. They reported six buried marsh
surfaces, five of which have sharp, non-erosional upper contacts with either anomalous
sand layers, interpreted to be tsunami deposits, or tidal flat mud. In contrast, the marsh
peats grade downward into underlying intertidal muds, indicating progressive uplift and
development of the marsh over time. Darienzo and Peterson (1990) used percent organic
matter, diatom assemblages and percent eolian sand to estimate the paleoelevations of the
buried soils. They reported subsidence of 1-1.5 m, followed by gradual uplift of 0.5-1.0
m, which they attributed to coseismic strain release followed by interseismic strain

accumulation associated with great earthquakes.

After completing their first project in southwestern Washington, Shennan and co-
workers turned their attention to Netarts Bay, using tidal marsh stratigraphy, diatoms and
pollen to reconstruct relative sea-level change. Three main floral zones were identified in
the modern marsh: mudflat (0.0-0.3 m above mean tide level); low marsh (0.3-1.2 m);
and high marsh (1.3-1.5 m), with a mixed community of vegetation comprising both low-
and high-marsh species between 1.05 and 1.35 m (Shennan et al, 1998). The
multivariate statistical analysis techniques that had been used successfully by Shennan et
al. (1996) at Johns River were not successful in this study. Certain pollen and diatom
species were grouped as outliers at Netarts Bay, representing distinctive assemblages
with only a small overlap between contemporary and fossil samples. Nevertheless, their
quantitative comparison of the contemporary and fossil microfossil data provided limits
on the magnitude of submergence during great earthquakes at Netarts Bay (Shennan et

al., 1998).
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Jennings and Nelson (1992) studied foraminifera distributions in three Oregon
tidal marshes and developed assemblage zones that they linked to marsh floral zones and
elevation. Discriminant analysis was used to distinguish three foraminiferal zones: the
high marsh; low marsh; and mudflat (Table 2). They observed that boundaries between
modern zones are gradational, especially that between the low and high marsh, due to the
low gradients of the middle parts of the marshes they studied. They found their results to
be similar to those from other mid-latitude, cool-temperature coastal marshes, but noted
that the large vertical ranges of the marsh zones in Oregon limited the precision with
which they could estimate amounts of relative sea-level change using foraminiferal

assemblages.

Table 2. Vascular plant and foraminiferal zones in three Oregon tidal marshes (modified from
Jennings and Nelson, 1992).

Zone Plants Foraminifera
Miliammina fusca,
Mudflat Zostera nana, Reophax nana
uciia Zostera marina phax nand,
Ammotium salsum
. Miliammina fusca,
Carex lynbyei, . . J . .
X i L. Lilaeopsis occidentalis,
Triglochin maritimum, .
Low > L Trochammina macrescens f. macrescens,
Salicornia virginica, L
Marsh e . Trochammina inflata,
Distichlis spicata, .
; . Haplophragmoides sp.,
Deschampsia caespitosea .
Ammotium salsum
Deschampsia caespitosea,
Carex lynbyei,
Distichlis spicata, Trochammina macrescens f. macrescens,
High Agrostis alba, Miliammina fusca,
Marsh Potentilla pacifica, Trochammina inflata,
Triglochin maritimum Haplophragmoides sp.
Salicornia virginica,
Atriplex patula

Note: Species are listed in order of abundance.

One of the challenges in using estuarine stratigraphy to infer the size and rate of
late Holocene relative sea-level change is that both seismic and nonseismic processes can
produce peat-mud contacts. Nelson et al. (1996a) studied changes in lithology and

microfossil assemblages at a protected tidal marsh at Coos Bay, Oregon, to determine
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which of the ten abrupt contacts at the site are the result of sudden coseismic subsidence.
Fossil foraminifera and diatom assemblages across peat-mud contacts in one core were
compared with modern assemblages previously studied along transects elsewhere in Coos
Bay (Jennings and Nelson, 1992). Using discriminant function analysis, they showed
that two of the ten contacts, dating to approximately 1700 and 2300 years ago, record at

least 0.5 m of sudden subsidence.

Kelsey et al. (2002) documented eleven plate-boundary earthquakes over the past
6000 years in coastal wetland sediments at Sixes River valley in south-coastal Oregon.
Diatom assemblages indicate that the land subsided abruptly at least 0.5 m in each event.
Sand layers on top of buried soils demonstrate coincidence of coseismic subsidence and
tsunami inundation. Witter et al. (2003) conducted similar research at the Coquille River
estuary in southern Oregon and identified peat-mud couplets dating to the last 6700 years.

Diatom assemblages indicate 1.2-3.0 m of submergence during each event.

Alaska

A challenge in studying relative sea-level change associated with great
earthquakes in the Pacific Northwest is the lack of historical events. In contrast, Alaska
has experienced a great subduction earthquake in historic time. On March 27, 1964, a
great earthquake submerged forest and tidal marshes bordering Turnagain Arm near
Anchorage. Coseismic subsidence decreased from a maximum of 2 m at Portage to

approximately 1 m around Anchorage.

Peat layers are sharply overlain by clastic sediments at tidal marshes at Portage
and Girdwood Flats. The stratigraphy is similar to that at tidal marshes on Vancouver

Island and along the Pacific coasts of Washington and Oregon. What makes the Alaskan
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stratigraphy different is that the times of coseismic subsidence and post-seismic recovery
at Girdwood Flats are known with precision, thus data from this site can provide insights
that help in interpreting the pre-earthquake stratigraphy of Cascadia. Shennan et al.
(1999) hypothesized four phases of relative sea-level change at Girdwood Flats using
diatom, pollen, foraminifera and thecamoebian data. Uplift during the first phase was
caused by slow strain accumulation along the locked portion of the Aleutian subduction
zone. It is manifested in the development of a freshwater swamp above high marsh
sediments. The second phase, which is recorded by a change in all three microfossil
groups in the uppermost 2 cm of peat, is interpreted to be subsidence. The third phase is
instantaneous subsidence during the March 1964 earthquake, which initiated intertidal silt
deposition on the marsh peat. The final phase is post-seismic uplift, recorded by
colonization of the mudflat by salt marsh communities. These observations raise the
question whether the relative sea-level rise prior to the 1964 earthquake is a precursor

signal (Shennan et al., 1999).

23



METHODS

Sample collection

The sampling strategy was to establish the overall pattern of foraminiferal
assemblages in the modern marsh and their relation to tide levels (Shennan et al., 1996).
Samples were collected in June 2000 along transect JS1, perpendicular to Niawiakum
River (Figure 6). Marsh foraminifera are commonly discussed in terms of ‘low’,
‘middle’ and ‘high’ or ‘upper’ marsh zones. This usage has become accepted in studies
of the distribution of foraminifera in marshes to informally denote position and elevation
in the marsh (Scott and Medioli, 1978, 1980b; Patterson et al., 2000). The transect was
chosen to sample low, middle and high marsh ecologic zones and to traverse plant and

microfossil communities (Nelson et al., 1996b).

The 320-m-long transect extended from the forest edge (highest high marsh) to
the river’s edge at lower low tide (lowest low marsh). Tide tables were consulted to
determine the best time to collect samples from the lower part of the tidal zone. Ten
cubic centimetre samples of surface sediment were collected at stations along the transect
with a garden bulb planter. Only the top 1 cm of the material was used in this study. The
local flora was recorded along the transect. Salinity was not recorded along the transect,

as the marsh surface was too dry at the time of sampling.

Differences in elevation of the marsh surface were measured with a surveying
level and are accurate to within 1 cm. Vertical levels were referenced to a temporary

benchmark in the marsh, which in turn was tied to a geodetic benchmark. The elevation
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datum is mean lower low water (MLLW), the average of the two daily tides. MLLW is a
standard datum for nautical charts in the western United States. Horizontal distances

from the upland forest to the river were determined with a measuring tape.

Most salt marshes in the world have a vertical zonation of plants (Chapman,
1960), and marsh foraminiferal populations have a similar zonation. Therefore, only 36
of the 47 surface samples were selected for foraminiferal analysis. They were chosen to
provide continuous 10-cm vertical coverage of the marsh, as this is the limit of resolution
of tidal marsh foraminiferal assemblages’(Scott and Medioli, 1980b). Other samples
were collected where significant changes in vegetation were observed, irrespective of
elevation. No attempt was made to establish the direct influence of other factors that can
affect the distribution of microfossils, such as salinity, nutrient status, seasonal changes

and sedimentation rates.

A series of vertical sediment monoliths were collected by Jonathan Hughes and
Brian Atwater in 1997 along a freshly exposed cutbank at the Oyster locality, several tens
of metres from surface transect JS1 (Figure 6), and within 0.5 m of Hemphill-Haley’s
monolith collection site (at horizontal coordinate 165 m in the outcrop sketch of Atwater
and Hemphill-Haley’s (1997) Figure 18, p. 44). The monoliths were removed from the
outcrop in several overlapping (10 x 10 x 50 cm) blocks, to a depth of 330 cm, using a
flat-faced spade and knife. They were stored in a cold room at SFU until the start of this
project. Transect JS1 was located near the monolith site to minimize differences in tidal

range and species variability within the marsh.
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Figure 6b. Aerial photograph of the Oyster locality at low tide; view to the southwest. Transect JS1
is shown as a solid line; the monolith site is shown as a dot. (Courtesy of the Washington State
Department of Ecology, shoreline aerial photo #0209221021_073;

www.ecy.wa.gov/programs/sea/SMA/atlas home.html )
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Sample preparation

The surface samples were refrigerated at Simon Fraser University upon return from
the field. At the time of processing, the monoliths were removed from cold storage and
photographed with a digital camera. They were then correlated with the aid of
stratigraphic notes and photographs supplied by Jonathan Hughes. Ten-cubic-centimetre
samples were extracted from the monoliths at a 1-cm interval to obtain a continuous 330-

cm sediment sequence similar to a core.

Surface samples were treated with buffered formalin to kill any living
foraminifera. The monolith and surface samples were wet-sieved through 500 um and 63
um screens to eliminate large debris and silt and clay particles, respectively. The residue
retained on the 63 um séreen included sand, plant detritus and foraminifera. Each sample
was then rinsed in water, preserved in diluted ethanol, and stored in air-tight containers

prior to examination. Residues were split into eight equal parts using a settling column

splitter (Figure 7; Scott and Hermelin, 1993).

The organic content of the monolith samples was determined by Pacific Sotls
Analysis Inc. (Richmond, B.C.) by the loss-on-ignition (LOI) method. Each 5 cc
subsample was weighed, dried, ashed in a muffle furnace at 500 °C for sixteen hours, and

weighed again to calculate the organic content of the sediment.

Data analysis

Split subsamples were examined in liquid under a binocular stereoscope at
magnifications of 20-40x to find, identify and count the foraminifera present (total
number of individuals, total number of species and total number of individuals per

species). Phleger (1960) first suggested that 300 foraminifera per 10 cc sample are an
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adequate number to count to obtain statistically significant data, and this has been the
standard since (Scott er al., 2001). Values in split subsamples were multiplied by eight to

give a representative value for the entire 10 cc sample.

For the purposes of this study, two taxa mentioned under different names in the
section on previous work (pp. 12-24) will be referred to from this point forward as
follows: Jadammina macrescens and Trochammina macrescens f. macrescens will be
referred to as Trochammina macrescens, and Jadammina macrescens f. polystoma will

be referred to as ‘Trochammina macrescens f. polystoma’ (Appendix 2).

Counts were entered into Excel spreadsheets and recalculated as percentages.
Percentage values were then entered into a paleontologic plotting program called
‘psimpoll’ (Bennett, 2003). Microfossil figures and graphs, displaying population
percentages vs. depth or horizontal distance, were generated using “CorelDraw10.

Statistical analysis was performed on raw, percentage and logarithm (log;o) values.

Multivariate statistical analysis was used to extract a qualitative assessment of the
foraminiferal assemblages and the within-group variance and groupings. Three stages of
statistical analysis were performed on both the modern and fossil data sets to determine
species zonation and paleoelevations for the subsurface samples (steps outlined in Figure

8).
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Figure 7. Laboratory tools used to process and examine foraminifera (modified from Scott et al.,
2001).
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The data sets were considered in several different forms to account for the natural
variability within the environment. Both the original modern and fossil data sets were
analysed in three forms: raw abundances, percentages, and logarithms (logjg). Raw
abundances use the actual counts, which is appropriate if the samples are equivalent in
some way (i.e., equal volume). However, analogues based on raw counts may be biased
by total abundances, which can fluctuate greatly within a marsh environment and may not
necessarily be representative of external forces. The raw counts were recalculated as
percentages of the total abundance in each sample. Percentage data are constrained to a
sum of 100%, thus an increase in the percentage of one organism must be balanced by a
decrease in the percentage of another. This is problematic because, in such a scenario, it
is possible that both organisms may increase in absolute abundance. Analyses based on
log counts avoid some of these problems. Logarithms also take into account abundance
because ratios reflect powers of absolute numbers. The choice of data form depends on
the environmental conditions that influenced the species in the analysed samples, as well

as the project’s objective.

Principal component analysis (PCA) and cluster analysis (CA) were used on the
correlation matrix to reduce the large data sets to a more manageable size while
maintaining as much of the underlying structure in the data as possible (Orwin and Smart,
2003). PCA, a type of factor analysis, was first run on the separate data sets using °SPSS
9.0 for Windows. This method organizes sampling entities (e.g., number of species per
sample) along meaningful gradients (i.e., principal components), which are linear
combinations of the original values that describe maximum variation among the

individual sampling entities (McGarigal et al., 2000). In this case, the principal
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components define the environmental variables that have the greatest influence on

species distribution.

Cluster analysis (CA) was then performed on the modern data using °SPSS 9.0.
Samples with similar distributions were grouped using Ward’s hierarchical clustering
method. This method, also known as minimization of within-group dispersion, creates
clusters by minimizing a squared distance between variance weighted by cluster size
(McGarigal et al., 2000). It produces the smallest increase in the within sum-of-squares,
maintaining the within-group variability to a minimum (see Fishbein and Patterson, 1993,

for methodology).

A cluster dendrogram can then be plotted, aiding in the visual identification and
interpretation of the various clusters. Descriptive titles, in this case marsh zones, can be
assigned using the data represented by each cluster (Orwin and Smart, 2003). By
combining the results from PCA and CA, one can identify patterns and interpret

environmental factors controlling those patterns.

When PCA and CA were run on the entire modern data set, it became clear that
several uncommon foraminifera (i.e. Eggerella advena, T. comprimata and T. ochracea)
were not key indicator species and were consequently ignored in the statistical analysis

of the surface samples.
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OBJECTIVES:
1. To identify a species zonation from modern and fossil marsh foraminifera

2. To estimate the amount of coseismic subsidence during past great earthquakes using
marsh foraminifera

Data from transect JS1 Data from monolith
surface samples subsurface samples
Raw
values

PCA to reduce each dataset to its
underlying structure.
Components with an Eigenvalue of >1

were retained
!

45
Plot of PC scores to identify the nature of the
underlying structure for each component

11

Interpretation of the PC components to
identify driving environmental factor(s)

41

Ward’s hierarchical CA on PCA
components. Run with and without z-
scores. Best plot selected

Logio
values

Logo
values

Percentages

1. Identification and interpretation of clusters.

Identification of species zonation for surface
and subsurface data sets

PLS on combined surface and
— subsurface data to determine
paleoelevations for subsurface samples

1T

Calculation of standard error and bootstrap confidence limits for each value.
Comparison and assessment of results from raw, percent and log,o data sets

2. Comparison of paleoelevations from above and below buried soils to estimate
subsidence related to earthquakes

Figure 8. Flowchart of steps used in multivariate statistical analysis.
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Data obtained from the monolith were also analysed using CA, and a species
zonation was determined from the clusters based on fossil distribution with depth. CA
was first run on the entire data set, but due to the size of the dataset and the amount of
variability of the foraminiferal assemblages over the 2000-year length of the record, the
results showed poor association. The fossil record was therefore divided into five
 different groups, using the marker soils (S, U, W and Y) as boundarie/s, and the groups
were individually analysed using CA. This analysis produced much better associations.
Samples grouped using this method can be considered to be representative of a particular
environment or biofacies (Patterson et al., 1999). PCA and CA results provided a species
zonation for the modern marsh based on measured elevations. A species zonation was

then established for the fossil record based on CA and species assemblages alone.

The relationship between elevation and species composition was examined using
partial least squares (PLS) in °JMP5.1. The PLS method, a form of multiple regression
analysis, is suitable when the number of x-variables exceeds the number of samples. PLS
develops a model based on factors that explain both response and predictor variation, and

works in three stages.

The modern and the fossil data sets are first run through a factor analysis to
determine successive linear combinations of predictors, called factors (also known as
latent variables or components) from the original set of variables (i.e. the foraminiferal
data). The second step involves determining the number of factors to extract, based on
the data. Too many factors can result in over-fitting (i.e., tailoring the model too much to
the data). The PLS platform enables the user to choose the number of extracted factors by

cross validation, that is by fitting the model to part of the data and minimizing the
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prediction error for the unfitted part (JMPS.1, 2002). PLS produces x-loadings, which
show what the factors are, and scores, which are the values of the factors. The user must
decide how many of the predictors are relevant to the analysis based on what species are
represented by the different factors. For example, the first factor may extract
foraminiferal species that are known to prefer higher marsh settings (e.g. T. macrescens,
T. inflata), whereas a second factor might extract species that are more common in a low

marsh environment (e.g. M. fusca).

Lastly, PLS runs a regression on the scores to develop an equation that predicts
elevation (y>) based on species composition. In this study, each of the modern samples
has a known elevation relative to MLLW (y,), based on level measurements in the field
and known species abundance at each elevation (x;). Each fossil sample also has known
species abundance (x;), but its elevation prior to burial (y>) is unknown. PLS develops an

equation to predict ys.

Standard error was calculated in ®SASS for paleoelevations predicted by PLS in
©JMP5.1, and by applying the bootstrap method using a 95% confidence interval. The
bootstrap technique estimates uncertainty of an estimated statistic (x;) of a population
parameter (0) by repeatedly resampling a portion of the population. The resample size is
the same as the original sample size, and a total of B resamples is generated. The statistic
xs* is calculated for each sample, where * denotes a bootstrap estimate. Standard errors
or confidence limits for xs can be constructed to describe the uncertainty of x5 as a
predictor of 8, based on the variability of x* (Politis, 1998). The analysis was run using
500 bootstrap samples. The 2.5® 50" and 97.5™ percentiles were computed. The 2.5

and 97.5" percentiles correspond to the 95% confidence interval.
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RESULTS

Modern record

Marsh setting

The Niawiakum River marsh is part of a large temperate tidal marsh that forms a
discontinuous fringe around Willapa Bay. At the Oyster locality, the marsh rises from
1.2 m above MLLW to approximately 1.8 m above MLLW over a short distance near the
river, and then slopes gently inland to approximately 3.2 m above MLLW at the forest
edge (Figure 9). It is interrupted, however, by several tidal channels and depressions.
Slump blocks occur at the boundary between the marsh and the mud flat. An old tidal
channel near the forest edge was filled with dead wrack at the time of the survey. The
marsh is underlain by a thick dark rooty peat, which grades downward into organic-rich
mud. Vegetation along the transect is similar to that described by Hughes (unpublished)

(Figure 10).

Foraminifera

Fourteen benthic foraminiferal species were observed in the top 1 cm of the
samples collected from the modern marsh: Ammobaculites dilatatus, A. exiguus,
Eggerella advena, Elphidium excavatum, Haplophragmoides manilaensis, H. wilberti,
Miliammina fusca, Tiphotrocha comprimata, Trochammina inflata, T. macrescens, T.
macrescens f. polystoma, T. ochracea, Trochamminata salsa, and inner linings
(Appendix 1). Only the four most common species are present in all of the samples: T.
macrescens, H. manilaensis, T. inflata, and M. fusca. Figure 11 summarizes the counts,

plotted against the horizontal distance along the transect.
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Visual interpretation of Figures 9 and 11 shows a change in marsh environment
along transect JS1, with the appearance and disappearance of different groups of species
and changes in total abundance. From the river’s edge to approximately 1.7 m above
MLLW, the samples contain relatively low total numbers of tests (< 700/10 cc) and
species, and the dominant species are M. fusca (60%), A. dilatatus (~25%) and A. exiguus

(~10%). These species characterize the lower portion of the marsh and the mudflat.

Assemblages change markedly, and total numbers of individuals and number of
species increase, as the marsh surface rises sharply, first over a slump block, and then
more consistently along a steep gradient. Both forms of Ammobaculites disappear, and
M. fusca declines to less than 20%, as H. manilaensis, T. macrescens and T. inflata
increase. These changes mark the transition from the low marsh to a higher marsh setting
at approximately 2 m above MLLW. At the crest of the steep rise up from the low marsh
(~220 m in Figure 9 and 11), T. macrescens increase to about 70%, followed by a peak in
H. manilaensis at about 55%. The two species are co-dominant from about 180 m to the
first large tidal channel (at about 50% and 40% respectively). Haplophragmoides

manilaensis is nearly replaced by T. inflata at about 100 m to the forest edge.

The marsh surface rises inland of a tidal channel at approximately 90 m. This
change is reflected in the foraminiferal assemblages, with a brief rise in 7. inflata, H.
manilaensis, M. fusca, and T. macrescens f. polystoma, and a decline in 7. macrescens.
A similar change occurs inland of a second tidal channel at ~30 m, where H. wilberti

appears for the first time in trace amounts.
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Inner linings are present only in small amounts (< 10%) in the lower marsh and
mudflat. Trochammina ochracea, T. comprimata and H. wilberti occur only in trace
amounts along the transect. Haplophragmoides wilberti is largely restricted to higher
elevations, and 7. salsa to the area where the marsh rises most steeply. Trochammina
macrescens f. polystoma, although present throughout most of the marsh above 2 m

above MLLW, nowhere exceeds 10%.

Species diversity is lower where the marsh surface is flat than where it is
undulating or steep. The total number of individuals is highest above 2 m above MLLW
near the river edge (at 240-270 m) and in the upper marsh, where the surface rises to
almost 3 m (at ~10 m). Samples near the forest edge showed a significant drop in
diversity and total numbers, and 7. macrescens and T. inflata are dominant, at 74% and

25%, respectively.

Three zones were identified in the modern marsh at the Oyster locality based on
visual interpretations alone (Figure 11): 1) the mudflat and low marsh (~1.3-2 m above
MLLW), dominated by M. fusca and Ammobaculites sp.; 2) the lower high marsh (~2-
2.8 m above MLLW), dominated by T. macrescens and H. manilaensis, and including T.
inflata; and 3) the higher high marsh (>2.8 m above MLLW), dominated by T.

macrescens and T. inflata, but with low total number of individuals.

Statistical analysis

Clusters obtained from the modern data expressed as raw abundances,
percentages and logarithms are presented in Figure 12, plotted along transect JS1. In

each case, two to three marsh foraminiferal zones were identified relative to elevation.
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Absolute (raw) values

PCA of the raw modern data yielded three factors that account for 66% of the
total variance. The first factor accounts for 31% of the variance and is dominated by T.
macrescens. The second factor accounts for 20% of the variance and is dominated by M.
fusca and T. inflata. The third factor accounts for 15% of the variance and is dominated
by H. wilberti and T. macrescens. The unexplained variance is partly due to the low
gradient of the marsh surface at the Oyster locality. Only small sections span the low
marsh-high marsh transition, limiting the total variability in foraminiferal assemblages in

the sample population.

Ward’s CA was run on the raw data from the modern surface samples. Two main
clusters were identified, along with four smaller groupings, with z-scores. The clusters,
when associated with individual samples, demonstrate that the distribution of species is
largely controlled by one variable, elevation. There are two primary marsh zones, and
one of the two zones is divisible into two sub-zones: zone 1, 1.30-2.18 m above MLLW
(low marsh); zone 2a, 2.02-2.88 m above MLLW (lower high marsh); zone 2b, 2.77-3.06
m above MLLW (higher high marsh). A species zonation for the modern marsh based on

analysis of the raw data is shown in Figure 12a.

Percentages

PCA of the modern data expressed as percentages yielded four factors that
account for 75% of the total variance. The first factor accounts for 36% of the variance
and is dominated by A. exiguus, M. fusca and inner linings. The second factor accounts
for 16% of the variance and is dominated by T. macrescens {. polystoma. The third factor

accounts for 14% of the variance and is dominated by H. wilberti and T. macrescens.
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Figure 12a.
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The fourth factor accounts for only 11% of the variance and is dominated 7. salsa, a

species that appears in very small amounts and can be considered an outlier.

Ward’s CA method was next run on the modern surface data expressed as
percentages. The same results were obtained when all species were considered and when
outlier species were removed. Three main clusters were identified without the use of z-
scores. Again, the clusters, when associated with individual samples, demonstrate that
the distribution of foraminiferal species is controlled by one dominant variable, elevation.
There are three marsh zones: zone 1, 1.30-2.23 m above MLLW (low marsh); zone 2,
2.23-2.91 m above MLLW (high marsh); and zone 3, 2.86-3.06 m above MLLW (higher

high marsh). The elevation ranges of zones 2 and 3 overlap (Figure 12b).

Logarithms
PCA of the modern data expressed as logarithms (log;o) yielded three factors that

account for 69% of the total variance. The first factor accounts for 40% of the variance
and is dominated by T. macrescens, H. manilaensis and T. inflata. The second factor
accounts for 17% of the variance and is dominated by M. fusca. The third factor accounts
for 12% of the variance and is characterized by low abundances of H. wilberti and T.
salsa. There is a weak association between elevation and the species represented by the

second and third factors.

Ward’s CA was run on the modern data expressed as logarithms. A species
zonation for the modern marsh is provided by the results of CA with z-scores (Figure
12c). There are three distinct marsh zones: zone 1, 1.30-2.23 m above MLLW (low

marsh); zone 2, 2.23-2.86 m above MLLW (middle marsh); zone 3, 2.86-3.06 m above
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MLLW (high marsh). The clusters determined from the data expressed as logarithms

best represent the species zonation in the modern marsh relative to elevation.

Fossil record

Lithostratigraphy

The 330-cm monolith from the Oyster locality contains soils Y, W, U and S, at

depths of 101 cm, 132 cm, 182 cm and 270 cm, respectively (Figure 13). Each of the

buried soils has a sharp contact with overlying mud, although soils W and U are fainter

than soils Y and S.

Bottom of monolith to soil S (330 to 270 cm). The lowest part of the sequence
consists of 24 cm of dark gray, organic-rich mud with abundant plant macrofossils.

'The mud grades upward into grayish brown marsh peat marking soil S.

Soil S to soil U (270 to 182 cm). The upper boundary of soil S is sharp and very
irregular. It was eroded before bverlying sediment was deposited. Sediment directly
above soils S is silt and sand with abundant plant fragments. This minerogenic
sediment grades upward into massive, dark gray, organic-rich mud. Algal rhythmites
occur between 238 and 230 cm. The mud between 230 and 195 c¢m is light gray.
Triglochin maritimum rhizomes were observed at 205 cm. The light gray mud grades

upward into 13 cm of marsh peat marking soil U.

Seil U to soil W (182 to 132 cm). The upper boundary of soil U is sharp and
irregular. A thin (2 cm) layer of sand and silt rests on soil U. It is overlain by dark
gray, organic-rich mud. The mud grades into dark grayish brown marsh peat at 138

cm. The marsh peat, soil W, is 6 cm thick.
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Soil W to soil Y (132 to 101 cm). The upper contact of soil W is sharp, but is the
least distinct of the four peat-mud contacts and lacks sand, silt and plant fragments.
However, it marks a significant change in sediment type. About 10 cm of dark gray,
organic-rich mud overlies soil W and grades upward into dark gray muddy peat over
a distance of 2 cm between 112 and 110 cm. The muddy peat, in turn, grades into 10
cm of marsh peat riddled with vertical stringy rootlets. Triglochin maritimum

rhizomes were noted at the base of the marsh peat.

Soil Y to surface (101 to 0 cm). The upper boundary of soil Y is very sharp and is
overlain by 6 cm of laminated sand, silt and mud, containing plant detritus including
cones and twigs. The laminated sediments are overlain, at 95 cm, by 10 cm of dark
gray, organic-rich mud, which grades into mottled, dark gray muddy peat at 85 cm.
Triglochin maritimum rhizomes are present at 65 and 57 cm. The colour of the
organic-rich mud changes upward from dark gray to mottled brown. Above 30 cm,
the brown mud grades into dark grayish brown marsh peat. The uppermost peat (18

cm to surface) contains abundant roots of the modern marsh vegetation.

Foraminifera

Fourteen species of benthic foraminifera were found in the sediment samples

from the monolith. Twelve species occur in numbers that are statistically significant (>1

%, or >100/10 cc of sediment) and thus were considered in the analysis: A. exiguus, A.

dilatatus, Elphidium excavatum, E. advena, H. manilaensis, H. wilberti, M. fusca, T.
comprimata, T. inflata, T. macrescens, T. macrescens f. polystoma, T. ochracea, T. salsa
and inner linings. The four most common species in the fossil record are T. macrescens,

T. macrescens f. polystoma, T. inflata and Miliammina fusca. The foraminiferal results
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are presented in five sections, corresponding to the five peat-mud couplets and starting

with the oldest couplet first.

Bottom of monolith to soil S (330 to 270 cm). The section starts with very low
numbers of individuals (< 500/10 cc), but concentrations increase upward (Figure
14).  Haplophragmoides manilaensis increases to ~10% in the lower part of the
section before disappearing at 300 cm. Miliammina fusca also disappears by 300 cm
and is replaced by T. inflata, which gradually increases to ~60% by 295 cm before
dropping back to ~20%. Trochammina macrescens increases upward through the
section to a maximum of ~80% at 290 cm. Inner linings are present in trace amounts
(<10%) to ~280 cm, at which level they drop off to zero. Values of 7. macrescens
and T. inflata fluctuate between 290 and 270 cm, and T. macrescens f. polystoma is
consistently present in small amounts (<15%). The total number of individuals rises
to 10,000-14,000/10 cc near the top of the section, the highest values in the fossil

record (Figure 14).

Soil S to soil U (270 to 182 cm). The number of foraminifera decreases drastically at
the contact between soil S and the base of the overlying mud, from >11,000 to
<600/10 cc (Figures 14 and 15). Values remain very low to 208 cm, but then increase
to 2000-4000/10 cc. The dominant species in the lowest 10 cm of the section
between soil S and soil U are 7. macrescens (>50%), T. inflata (<15%), A. exiguus
(<10%) and inner linings (<10%). The assemblage changes at 260 cm.
Trochammina macrescens and T. inflata are replaced by T. macrescens f. polystoma
and M. fusca, which are tolerant of more saline conditions. Miliammina fusca

increases from <5% just above soil S to 30% at 240 cm and then decreases to 0% by
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220 cm. Ammobaculites exiguus ranges from ~15% to >20%, but disappears at 200
cm. Trochammina inflata increases to >35%, and 7. macrescens replaces T.
macrescens f. polystoma, above 208 cm. Inner linings, which reach 20% in the lower
part of the section, decrease to <5% by 205 cm. Haplophragmoides manilaensis

appears just below the top of soil U, reaching 14% at 185 cm.

Soil U to soil W (182 to 132 cm). The total number of foraminifera begins to decline
just below the top of soil U and continues to do so above it, with values of <200/10 cc
at 180 cm. Values remain low to 168 cm, increase to 1000/10 cc at ~164 cm, drop
again, and then increase to ~8000/10 cc at 135 cm. The foraminiferal assemblages
reflect these fluctuations (Figure 14). Trochammina macrescens, T. macrescens f.
polystoma and inner linings are dominant just above soil U, but decrease as M. fusca
increases from 0% to 50% at ~170 cm. Trochammina inflata appears at 170 cm, but
only reaches 20% when M. fusca disappears at 160 cm. Trochammina macrescens f.
polystoma, T. macrescens and T. inflata increase above 160 cm, and, at 150 cm, 7.
macrescens f. polystoma is the dominant species. Trochammina macrescens replaces

T. macrescens f. polystoma, and T. inflata increases, at 140 cm.

Soil W to Soil Y (132 to 101 cm). The total number of individuals drops from
>2,000/10 cc to 10/10 cc at 132 cm. Inner linings attain their highest concentration in
the monolith (>60%) at 131 cm, but drop to <15% as T. macrescens returns to high
values at 128 cm. Trochammina inflata peaks at ~45% at 111 cm, and then declines
to <20% at the top of the section as it is replaced by Trochammina macrescens, which
peaks at >75% below the top of soil Y. Elphidium excavatum, a calcareous species

that is rare in the monolith, is present in small amounts above soil W. It accompanies
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large numbers of inner linings, but disappears with an increase of H. manilaensis and
the first occurrence of H. wilberti. The latter species does not appear anywhere else
in the monolith in significant amounts. Trochammina comprimata occurs in trace

amounts just below soil Y.

Soil Y to surface (101 to 0 cm). The total number of individuals is low just above
soil 'Y (<2,000/10 cc), but slowly increases to 55 cm, where values are greatest.
Miliammina fusca is the dominant species (>50%) at 97 cm, where it is accompanied
by inner linings and 7. macrescens (Figure 14). It declines, however, to <20% at 90
cm, where it is briefly replaced by T. inflata, T. macrescens, T. macrescens f.
polystoma and trace amounts of H. wilberti before rising again to >80% at 80 cm, its
highest concentration in the monolith. Miliammina fusca disappears at 60 cm, where
it is replaced by 7. macrescens f. polystoma. The latter peaks at 70% for several
centimetres and then declines to ~30%, accompanied by increases in 7. inflata, T.
macrescens and, eventually, H. manilaensis. Inner linings are present in significant

amounts only in the lower part of the section.
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Figure 13. Lithostratigraphy of the sediment monolith sequence (modified from notes of J. Hughes),
and photographs of soil contacts.
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Loss on ignition
Soils S and Y have the highest LOI values in the sequence (28% and 25%

respectively) (Figure 15). Values are lowest (<10%) above each soil and gradually,
increase upward to a peak of 15 - 25% just below each peat-mud contact. LOI values
drop from 23% to 6% across soil S, 16% to 8% across soil U, 10% to 3% across soil W,

and 25% to 6% across soil Y.

Statistical analysis

Several unsuccessful attempts were made to analyse the fossil data in their
entirety. Better results were achieved by dividing the record into five parts, separated by
soils S, U, W and Y. The data were also analysed in three forms, as absolute (raw) values

from the original counts, as percentages, and as logarithms (log;o).

Principal component analysis is an inappropriate method to analyse the monolith
data, as the fossil samples cannot be tied to a known elevation at the time of deposition.
Elevation is the dominant environmental control on species distribution in the modern
marsh, but there are too many other factors that affect the monolith samples for PCA to
extract this element alone. Therefore, only results from the cluster analysis are included

in this section.

Ward’s hierarchical CA method (without z-scores) was successful in all cases,
and samples clustered into two general marsh foraminiferal zones: those representative of
the lower marsh, and those representative of the middle to high marsh (referred to here as
‘upper marsh’). The best CA results were obtained from data expressed as logarithms
(Figure 14b), but all three forms of data produced similar clusters associated with lower

and upper marsh foraminifera species.
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Figure 15- Total number of foraminifera (logarithmic scale), percent loss on ignition, and calibrated
radiocarbon ages (Atwater and Hemphill-Haley, 1997) plotted against depth below marsh surface.
Dashed horizontal lines represent buried soils.
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Absolute (raw) abundances

Bottom of sequence to soil S (330 to 270 cm). Ward’s hierarchical CA produced
two distinct clusters (Table 3), one of low marsh species (M. fusca) and one of upper
marsh species (T. macrescens and T. inflata). When applied to the monolith, CA
indicates a change from low marsh to upper marsh at ~280 cm, with three brief low

marsh intervals in the upper part of the interval.

Soil S to soil U (270 to 182 cm). Ward’s CA method produced two clusters (Table
3), which represent the upper and lower to middle marsh zones. The lower to middle
marsh, represented by M. fusca, A. exiguus and T. macrescens, is replaced by the

upper marsh, dominated by 7. inflata and T. macrescens, at ~210 cm.

Soil U to soil W (182 to 132 cm). Ward’s CA method yielded two clusters (Table 3).
Much of this part of the sequence is lower marsh, dominated by M. fusca, inner
linings and T. macrescens. The lower marsh is replaced by upper marsh at ~140 cm,

near the top of this interval.

Soil W to soil Y (132 to 101 cm). Ward’s CA yielded two clusters (Table 3). The
clusters record an upper marsh zone dominated by 7. inflata and T. macrescens, and a
second zone, which is difficult to classify as it lacks M. fusca but contains low total

number of individuals and the highest peak of inner linings seen in the monolith.

Soil Y to surface (101 to 0 cm). Ward’s CA extracted two clusters (Table 3)
representative of the low and upper marsh zones. This part of the sequence alternates
between low marsh, dominated by M. fusca, and upper marsh, dominated by T.
macrescens f. polystoma and T. inflata. 1t begins in the low marsh and ends, near the

surface, in a higher marsh.
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Percentages

Bottom of sequence to soil S (330 to 270 ecm). Ward’s hierarchical CA produced
two clusters (Table 3), one of low marsh species (M. fusca) and one of upper marsh
species (T. macrescens and T. inflata). There is a change from low marsh to upper

marsh at ~305 cm.

Soil S to soil U (270 to 182 cm). Ward’s CA method produced two clusters (Table
3): a low marsh zone, including M. fusca and A. exiguus, which, at 200 cm, is

replaced by an upper marsh zone, dominated by 7. macrescens and T. inflata.

Soil U to soil W (182 to 132 ecm). Ward’s CA yielded two main clusters (Table 3),
one of which can be divided into two units. The lower part of this section is low
marsh, dominated by M. fusca. It is followed by a brief middle marsh zone,
dominated by T. macrescens f. polystoma, and then an upper marsh zone, dominated

by T. inflata and T. macrescens.

Soil W to soil Y (132 to 101 cm), Ward’s CA yielded two clusters (Table 3). A
lower zone lacks M. fusca, but contains the highest peak in inner linings seen in the

monolith. An upper marsh zone occurs above 110 cm.

Soil Y to surface (101 to 0 cm). Ward’s CA extracted two clusters (Table 3),
representative of the low and upper marsh zones. This part of the sequence alternates
between low marsh and upper marsh. Low marsh, dominated by M. fusca, occurs up
to 90 cm and is followed by two brief upper marsh intervals between 90 and 80 cm.
There is a low marsh interval above this, which is replaced by an upper marsh zone,
dominated by T. macrescens f. polystoma and T. inflara at ~68 cm. The upper marsh

zone extends up to the surface.
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Logarithms

Bottom of sequence to soil S (330 to 270 cm). Ward’s hierarchical CA produced
two clusters (Table 3), one of low marsh fauna (M. fusca) and another of upper marsh
fauna (T. macrescens and T. inflata). A low marsh zone extends to ~305 cm and is
followed by an upper marsh zone that continues to the top of the interval (Figure

14b).

Soil S to soil U (270 to 182 ecm). Ward’s CA method produced two clusters (Table 3)
for this section. A lower marsh zone, dominated by M. fusca and T. macrescens f.
polystoma, is replaced by an upper marsh zone, dominated by 7. macrescens, and T.

inflata, at ~211 cm (Figure 14b).

Soil U to soil W (182 to 132 cm). Ward’s CA yielded two clusters (Table 3). A low
marsh zone, dominated by M. fusca and inner linings, is replaced by an upper marsh

zone, dominated by T. macrescens and T. inflata, at ~160 cm (Figure 14b).

Soil W to soil Y (132 to 101 cm). Ward’'s CA yielded two clusters (Table 3). A
lower zone lacks the low-marsh species M. fusca, but contains the highest number of
inner linings in the monolith. This zone changes to an upper marsh zone, represented

by T. macrescens and T. inflata, at ~120 cm (Figure 14b).

Soil Y to surface (101 to 0 cm). Ward’s CA extracted two clusters (Table 3),
representative of the low and upper marsh zones in this section. A low marsh zone,
dominated by M. fusca, is replaced by the upper marsh, dominated by T. macrescens

f. polystoma and T. inflata, at ~60 cm (Figure 14b).
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Table 3. Results of cluster analysis of the monolith data sets.

Interval Ward’s hierarchical clusters
Soil Raw numbers Percentages Logarithms (logio)
(cm) Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2
(cm) (cm) (cm) (cm) (cm) (cm)
S 330-270 | 270-271 272-273 270-303 304-330 270-305 306-330
273-274 274-275
275-279 279-282
282-286 286-330
U 270-182 | 181-182 182-207 181-199 200-254 182-212 214-269
208-270 256-257 258-259
260-261
269-270
W | 182-132 | 132-140 141-182 133-143 144-180 132-156 158-180
Y 132-101 | 101-116 117-132 102-111 112-132 102-121 122-131
-—-- | 101- 0-57 58-61 0-67, 68-85 0-63 64-101
surface | 62-67 68-101 86-87, 87-89
89-90, 90-91
100-101 99-100

Transfer functions

A transfer function was developed based on partial least squares (PLS), multiple
regression analysis to predict paleoelevations of monolith samples. PLS analysis was
performed on the entire dataset (both the modern and the fossil data) expressed separately
as raw abundances, percentages and logarithms. Three species were treated as outliers

and not included in the analysis: E. excavatum, H. wilberti and inner linings,

Absolute (raw) abundances

PLS results from the data expressed as absolute (raw) abundances are skewed by
the total abundances of foraminifera and were not considered representative of the marsh

environment and former land level changes.

Percentages

PLS results obtained from the data expressed as percentages (Figure 16) show a

trend representative of changes in foraminiferal assemblages at different elevations over
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time. PLS x-loadings and x-scores are shown in Table 4. One factor was selected
through cross-validation, based on the x-loadings, which show a strong contrast between
lower marsh and higher marsh species. The following prediction equation (transfer
function) was used to determine the unknown elevations (y;) of fossil samples expressed

as percentages:
Elevation (m above MLLW) (y;) =

( (-3.8952048509451) * percent_A. exiguus
+(0.99545654811995) * percent_H. manilaensis
+ (-1.7199021985525) * percent_M. fusca

+ (20.5360880852835) * percent_T. comprimata *(.42997908880168
+ (1.26813787028555) * percent_T. inflata +2.3468404511686
+ (1.25939497276459) * percent_T. macrescens

+ (-4.2574333302244) * percent_7T. macrescens f. polystoma
+(12.0772807766741) * percent_T. ochracea
\_+(5.42491188176893) * percent_T. salsa Y,

Paleoelevations predicted from the percentage data (Table 5, Figure 16) show
sudden subsidence just above soils U and Y (~0.86 m over 2 c¢cm, and ~1.02 m over 1
cm). Results from soil S indicate a smaller sudden drop (~0.4 m over 2 ¢cm), followed by
a more gradual drop (~2 m over 40 cm). There is no apparent subsidence associated with
soil W. Above soils S, U and Y, there is a gradual drop, followed by a gradual rise.
Data were bootstrapped with the 95 percent confidence interval and showed an
asymmetric distribution within the central range, indicating a slightly skewed set of

results.
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Table 4. Partial least squares results from fossil data expressed as percentages and as logarithms.

PLS x-loadings

PLS x-scores

Species Percentages | Logarithms | Sample Percentages | Logarithms
e |5 | iomay 51O [0lasel T o0vin
el | paipy |y L% [007 {0 et
e S0 | 20651663 Ficiioe—— TG osssorooasese
comprimata | V48024165 | 033081854 50— oorous o povavais
e | 253980084 | 362080375 g 00— Gmsiss
arestens | S92 | SISOV PS50 Ly 'isaot 148
T. macrescens f. JS1-14 -0.03468 0.05568022
polystoma -1.7992185 1.78516287 JS1-15 0.033514 0.11434259
e DT e o T 13
o | s | [0 T0lobie o
JS1-24 0.160983 0.19364073
JS1-26 0.165983 0.14923267
JS1-27 0.092721 0.01165059
JS1-28 0.035207 0.09678702
JS1-29 0.021256 0.06926394
JS1-30 -0.15803 -0.0802242
JS1-31 0.087822 0.05518509
JS1-33 0.00033 0.08168306
JS1-34 0.046843 0.01592818
JS1-35 0.010099 0.01419522
J1S1-37 -0.22531 -0.2598933
JS1-38 -0.02712 -0.0291267
JS1-39 -0.37365 -0.3358622
15140 -0.48373 -0.4904074
1§1-41 -0.34378 -0.3751732
JS142 -0.25647 -0.2990503
JS1-44 -0.33308 -0.3023767

Notes: X-loadings are shown for each of the foraminiferal species used,

modern analogue.
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Table 5. Estimated paleoelevations and coseismic subsidence for soils obtained by partial least
squares analysis of foraminiferal data expressed as percentages.

Soil Agel Paleoelevation Paleoelevation Estimated
& before event (m) | after event (m) subsidence (m)
Soil Y
A.D. 1700 3.05 2.03 1.02
(101 cm)
Soil W
~900 years ago N/A N/A N/A
(132 ecm)
Soil U
1130-1350 years ago 3.02 2.16 0.86
(182 em)
Soil S
1500-1700 years ago 2.87 247 0.4
270 cm)

Notes: Error ranges are shown in Figure 16.

!Calibrated radiocarbon ages from Atwater and Hemphill-Haley (1997).
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Figure 16. Predicted paleoelevations from fossil data expressed as percentages, plotted against
depth. Data were bootstrapped with the 95 percent confidence interval. Dashed vertical lines
represent the 95 percent central range. Dashed horizontal lines represent buried soils. Calibrated
radiocarbon ages from Atwater and Hemphill-Haley (1997).
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Logarithms

PLS results obtained from the data expressed as logarithms (Figure 17) provide
paleoelevations representative of changes in marsh environment and foraminiferal
species assemblages at different elevations over time. PLS x-loadings and x-scores are
shown in Table 4. One factor was selected through cross-validation, based on the x-
loadings, which show a strong contrast between lower marsh and higher marsh species.
The following transfer function was used to determine the unknown elevations (yz) of

fossil samples expressed as logarithms:

Elevation (m above MLLW) (yz)‘=

4 )

(-0.7539412407864) * logio_A. exiguus
+ (0.29870488857607) * logiolog_H. manilaensis
+ (-0.3298859710621) * logig_M. fusca
+ (0.103356956936716) * logig _T. comprimata *0.42997908880168
+ (0.3030592487865) * logio_T. inflata +1.62234208162211
+ (0.65657311353166) * logo_T. macrescens
+ (0.10186568243546) * logio_T. macrescens f. polystoma
+ (-3.981206159e-16) *logio_T. ochracea
S (0.41522496497852) * logyo_T. salsa )

Paleoelevations predicted from the logarithm data rise gradually towards each
buried soil, with small fluctuations near the top of the soil. Samples above the four
buried soils indicate abrupt subsidence of ~1 m in each case (Table 6). Data were
bootstrapped with the 95 percent confidence interval and showed a symmetric
distribution within the central range (dashed vertical lines in Figure 17), with much

smaller ranges of error from the mean than those obtained with percentage data.
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Figure 17. Predicted paleoelevations from fossil data expressed as logarithms, plotted against depth.
Data were bootstrapped with the 95 percent confidence interval. Dashed vertical lines
represent the 95 percent central range. Dashed horizontal lines represent buried soils.
Calibrated radiocarbon ages from Atwater and Hemphill-Haley (1997).
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Table 6. Estimated paleoelevations and coseismic subsidence for soils obtained by partial least
squares analysis of foraminiferal data expressed as logarithms.

Soil Agel Paleoelevation Paleoelevation Estimated
g before event (m) | after event (m) subsidence ()
Soil Y
A.D. 1700 3.00 1.97 1.03
(101 cm)
Soil W
~900 years ago 277 1.66 . 1.11
(132 cm)
Soil U
1130-1350 years ago 3.32 2.26 1.06
(182 cm)
Soil S
1500-1700 years ago 3.12 2.13 0.99
(270 cm)

Notes: Error ranges are shown in Figure 17.

'Calibrated radiocarbon ages from Atwater and Hemphill-Haley (1997).
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DISCUSSION

Foraminiferal evidence for earthquakes

This study has provided foraminiferal evidence for sudden and lasting
submergence during the last four great earthquakes at the Cascadia subduction zone, and
for tsunami deposition during two of the events. Submergence during the earthquakes

was about 1 m.

Sudden submergence is marked with an abrupt change from high-marsh to low-
marsh foraminiferal assemblages at the upper contact of each of the four buried soils (S,
U, W and Y). This change is apparent from both visual interpretation of the
foraminiferal assemblages and multivariate statistical analysis. The marsh environment
recovers slowly following each abrupt submergence. Low-marsh species such as M.
fusca colonize the tidal flat produced by the earthquake and are gradually replaced by
upper-marsh species, including 7. macrescens and T. inflata. No offshore foraminifera
were observed within sandy sediment overlying some of the buried soils, but the total
number of individuals declines markedly and tests show signs of wear not observed
elsewhere in the sequence. The estimate of ~1 m of coseismic subsidence is on the low
side of independent estimates made by other researchers working in coastal Washington
and Oregon (Darienzo and Peterson, 1990; Hemphill-Haley, 1995; Nelson er al., 1996a;
Shennan et al., 1996; Kelsey et al., 2002; Witter er al., 2003), and is considered a
minimum value. The lowest modern sample in this study imposes an artificial maximum

limit on the computed subsidence.
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Foraminifera as indicator species

Studies of modern marsh foraminiferal assemblages show that some species have
a narrow elevational range (Scott and Medioli, 1986; Scott and Leckie, 1990).
Trochammina inflata and T. macrescens are common at higher elevations in tidal
marshes, whereas M. fusca is more abundant at lower elevations. Miliammina fusca,
however, is not restricted to the low marsh in Willapa Bay, as it tolerates a range of
salinities. Itis the occurrence of Ammobaculites sp. with high numbers of M. fusca that

defines the low marsh environment at this site.

Haplophragmoides may be more responsive to changes in salinity than elevation,
but it is characteristic of low-salinity high marsh areas around the world (Scott and
Medioli, 1980b; Scott et al., 1990, 1991; de Rijk and Troelstra, 1997). Guilbault ez al.
(1996) concluded that H. wilberti and T. inflata are high-marsh species at tidal marshes
near Tofino on western Vancouver Island. Haplophragmoides wilberti is associated with

brackish conditions, whereas T. inflata tolerates higher salinities in the high-marsh zone.

Some species, such as E. excavatum, are present in Willapa Bay samples both
sporadically and in low concentrations and thus were not included in the statistical
analysis. It is nevertheless important to consider what these species might contribute to
the overall analysis. From the visual analysis, it is clear that, where these species are
present, other, more common species are not. For example, E. excavatum peaks directly
above soil W but does not occur elsewhere in the monolith. As discussed below,
environmental conditions that follow submergence of soil W appear to be different from

those that followed submergence of the three other soils.
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Paleoelevation

The relationship between elevation and foraminiferal species assemblage was
examined using two different forms of data sets: percentages and logarithms. The two
sets of inferred paleoelevations show differences related to the statistical analysis.
Nelson er al. (1996b) argue that researchers should not depict changes in sea level with a
single line on plots of age or depth vs. elevation. They recommend that results be
displayed with a band to reflect uncertainties in the analysis. Accordingly, both data sets
were bootstrapped using the 95 percent confidence interval, including the central range of

the 2.5™ and 97.5" percentiles.

The percentage data yield a trend that shows changes in species assemblages
relative to one another (Figure 16). The changes may reflect biological transitions
between marsh environments over time. Figure 16 shows that foraminifera colonize a
subsided marsh surface after an earthquake, indicating that the earthquake resets the
marsh. There is an abrupt drop in land level above soils U and Y, but the drop is subtler
above soil S and is followed by a gradual, further drop. The analysis fails to show
subsidence of soil W, due to missing low marsh indicator species at this level of the

monolith. No analogue of this assemblage was sampled in the modern marsh.

Percentage values fail to register the significant drops in total number of
foraminifera that follow each earthquake. In contrast, logarithmic data show
relationships between species over time as well as the influence of total numbers of
foraminifera (Figure 17). Estimates of coseismic subsidence are likely more accurate in
this case, as the earthquake not only affects the ratio between low- and high-marsh

species, but also drastically and instantaneously reduces the total population. The sudden
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submergence would drown the living high-marsh species, and deposition of intertidal
muds following the earthquake would reduce the environment from a healthy high marsh
to an uncolonized tidal flat (Dave Scott, personal communication, 2004). Over time, as
sedimentation rates drop back to normal, and once the accommodation space created by
the coseismic subsidence is filled, the tidal flat would be colonized by low-marsh species

and the marsh would slowly rebuild.

The ordinate in Figures 16 and 17 is a depth scale, not a linear time-scale.
Deposition of sediment immediately after each earthquake would likely occur more
rapidly than accretion of the marsh later during the post-seismic uplift. In Alaska, rates
of uplift and sedimentation declined exponentially following the 1964 earthquake
(Shennan et al., 1999; Atwater et al., 2001). Changes in rates of uplift and sedimentation
could be different for each earthquake depending on the amount of subsidence, the time
between events and the level attained by the marsh prior to the succeeding event. The
reset time required to rebuild a widespread, stable, high marsh is poorly known, but has
been estimated to be less than 150 years at Willapa Bay (Atwater and Hemphill-Haley,
1997). Because of these uncertainties, it is not possible to date sample-based changes in

elevation of the marsh between earthquakes at the Oyster locality.

A limitation of using PLS to estimate paleoelevation in all cases (raw abundances,
percentages, logarithms) is that estimates at both ends of the elevation spectrum are
constrained by the single modern transect used in this study, with its limited elevation
range of 1.28-3.06 m above MLLW. Past marsh surfaces may have been different from
the modern surfaces documented in this study. A consequence of this is that estimates of

coseismic subsidence are minima.
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Growth-position, vascular plant fossils are an important component of the
monolith collected at the Oyster locality. At the top of soils S, U and Y are stems and
leaves of high-marsh plants that were buried at the time of the earthquake. In contrast,
rhizomes in the organic-rich mud below each soil are dominantly of the low-marsh
species Triglochin maritimum. These observations are in agreement with those of
Atwater and Hemphill-Haley (1997). They report that fossil T. maritimum rhizomes at

Willapa Bay record a position near the lowest growth limit of the species.

The plant macrofossils help pinpoint the levels of the marsh before and after each
earthquake. For example, algal rhythmites above soil S, at ~235 cm depth in the
monolith, may correspond to modern day algal mats on mudflats below the lowest 7.
maritimum at the Oyster locality. The algal mats form about 1.0-1.5 m below the level of
the high marsh in this area (Figure 18, p. 44, Atwater and Hemphill-Haley, 1997; the
lower Triglochin limit is lab(;lled “T” and upper algal limit is labelled “a”). The position
of the algal mats in the monolith is consistent with foraminiferal-based estimates of

paleoelevation.

The aftermath of a fifth large earthquake (event N of Atwater and Hemphill-
Haley, 1997) appears to be recorded in sediments below soil S (i.e., below 330 cm)

(Figure 17). These sediments record gradual change from low marsh to high marsh.

The microfossil record indicates that there has been little net relative sea-level
change at the Oyster locality over the last 2000 years. Eustatic sea-level rise has been
offset by gradual accretion of the marsh. Following each submergence event, post-
seismic rebound and sediment accretion restore the marsh to near the same elevation it

had prior to the earthquake.
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Soil W couplet

There are only 30 cm of sediment between soils U and W, yet these sediments
represent about 700 years of aggradation. Some of the results presented in this thesis do
not indicate coseismic subsidence of soil W. An example is the PLS analysis performed
on the percentage data. This result likely is due to the absence of M. fusca and
Ammobaculites sp. in mud above soil W, because the modern analogue delineates the low
marsh based on the presence of these indicator species. When the total number of
individuals is incorporated into the analysis (e.g. logarithmic data set), an abrupt drop in
land level is apparent. The logarithmic results are more reliable in this instance, as
percentages of low total numbers mean little. However, the amount of subsidence of soil
W indicated by the logarithmic results (~1.11 m) is greater than that of the other three
buried soils, which disagrees with other lines of evidence. This result may be invalid
because key low-marsh indicator foraminiferal species are missing from the mud directly
above soil W. Nevertheless, a low-marsh diatom species makes a brief appearance in the
mud above soil W near the monolith collection site (Figure 20, p. 49, Atwater and

Hemphill-Haley, 1997).

The large number of inner linings above soil W is noteworthy, although these
forms are also common above soils Y and U. The linings may indicate the former
presence of calcareous foraminifera. They are fragile, thus some are lost during or after
deposition or during sample preparation. Their numbers underestimate the calcareous
foraminiferal contribution to the assemblage (Edwards and Horton, 2000). Why, then,
are there so many more inner linings above soil W than at any other level in the

sequence? Perhaps conditions in the marsh favoured their preservation just after
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earthquake W. The inner linings at Willapa Bay, however, may not be derived from
calcareous species, but rather from poorly preserved, agglutinated foraminifera that were
degraded by oxygen introduced by roots from soil Y (Jonathon Hughes, personal

communication, 2003).

Missing tsunami deposits (soil U and W)

Soils U and W are not overlain by tsunami sand. The form of the large spit that
protects Willapa Bay from the open ocean (Figure 1)‘ has changed over the last several
thousand years due to longshore drift, eustatic sea level rise and storms. This begs the
question as to whether the environmental setting at present is the same as at the time of
the earthquakes that buried soils U and W. It is possible that the configuration of the spit
prevented tsunamis from reaching the Oyster locality during some earthquakes. It is also
possible that the earthquakes were smaller (M<9), or occurred on a part of the Cascadia
subduction zone that was farther away from Willapa Bay. In either case, a smaller
tsunami may have been generated, or there may have been no tsunami along this part of

the coastline.

Loss on ignition

Organic matter of a variety of compositions and textures affects benthic
foraminifera in estuarine systems. It may create anoxic conditions, which are harmful to
most marine fauna (Scott et al., 2001), although some foraminifera thrive where organic
matter is abundant (Williamson, 1999). In this study, the LOI curve mimics that of the
total number of foraminifera (Figure 15). High LOI values record a brackish high marsh,

in which foraminifera are abundant.
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Four sharp drops in organic carbon correspond to the four earthquake horizons
(Figure 15). The sharp drops are followed by gradual increases in organic carbon,
reflecting post-seismic rebound and reestablishment of the marsh. LOI values are highest
directly below each earthquake horizon. The results demonstrate that LOI is a useful

method for documenting coseismic land level change in some tidal marshes.

Precursor events

Paleoelevations of samples below the four buried soils display noteworthy
fluctuations over a short period of time (Figure 17). At least 10 cm of submergence
occurred shortly before each of the four earthquakes. As well, the amount of organic
matter (Figure 15) appears to drop slightly prior to a final peak below buried soils S and
U. These may be the ‘precursor events’ hypothesized by Shennan ez al. (1999) based on
their research on the deposits of the 1964 Alaska earthquake. Their data indicate a rise
in relative sea level prior to the 1964 Alaska earthquake. Alternatively, the fluctuations
may reflect small changes in eustatic sea level or may be noise in the data. The data are
otherwise consistent with the expected trends implicit in the ‘earthquake deformation
cycle’, with cycles of sudden submergence of wetlands followed by gradual shoaling and

development of new marshes.

Implications of measured coseismic subsidence

The results of this study reinforce the usefulness of foraminifera for paleoseismic
studies. Comparison of the modern and fossil foraminiferal record allows identification
and quantification of sudden and long-term land level change. The four soils analysed in
this study are laterally extensive and record sudden submergence (Atwater and Hemphill-

Haley, 1997). Two of the four soils (S and Y) are overlain by silt and sand that are best
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explained as tsunami deposits coincident with the submergence. These observations meet
four of the five criteria for coseismic subsidence suggested by Nelson et al. (1996b). The
tifth criterion is the amount of submergence, which has been successfully documented in
this study by analysing foraminifera distributions in the marsh. The paleoelevation trends
produced by PLS show cycles of sudden submergence of upper marsh peat, followed by
gradual shoaling and development of new marsh surfaces. These cycles reflect regional
coseismic subsidence followed by interseismic uplift and marsh accretion (Atwater et al.,
1995; Nelson et al., 1996a), and are consistent with recurrent great earthquakes along the

Pacific Northwest coast (Figure 18).
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Figure 18. Inferred land-level change over time at the Oyster locality (modified from Atwater et al.,
2004).

72



Limitations of study

Modern assemblages may not provide a good analogue for environments
immediately after earthquakes. Post-subsidence tidal prisms following submergence of
soils S and Y transformed the Niawiakum River valley into a wall-to-wall tidal flat with
salinities greater than those of today (Brian Atwater, personal communication, 2003).
The large peak in M. fusca and inner linings above soil Y may have resulted from an

increased tidal prism after the earthquake.

Tsunamis may also complicate interpretations of foraminiferal assemblages. The
thin sand and silt laminae directly above soil S contain high concentrations of 7. inflata
and T. macrescens f. polystoma, even though the total number of foraminifera is low. It
is likely these foraminifera were eroded from the underlying marsh peat by the tsunami
that followed the earthquake, as Shennan et al. (1999) hypothesize happened in a marsh

in Alaska following the 1964 earthquake.

The monolith location is within 100 m of transect JS1, where the surface samples
were collected. It was expected, therefore, that the foraminiferal assemblage of the top
few centimetres of the monolith would be similar to those of transect samples at the same
elevation. Both contain similar amounts of T. inflata and H. manilaensis, but they differ
in their abundance of T. macrescens and T. macrescens f. polystoma. Trochammina
macrescens f. polystoma is almost completely absent from the modern record, but is
abundant throughout the fossil record. The monolith was collected close to the river’s
edge, and its top, although technically in the upper marsh, was more strongly influenced

by tidal ebb and flow than samples at sites along the modemn transect at the same
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elevation but more distant from the river. Trochammina macrescens f. polystoma is
known to be more tolerant of salt than 7. macrescens (Scott and Medioli, 1980b), which
may explain its greater abundance in the uppermost monolith samples than in samples
collected farther from the river. The differences between the two sets of data may also
result from the considerable spatial variability that exists in foraminiferal assemblages in

tidal marshes.

Future studies of this type should include several surface transects to obtain a
more detailed representation of the spatial distribution of foraminifera in modern

marshes.

The reliability of subsidence estimates may be limited by other factors. Guilbault
et al. (1995) point out that both long-term and coseismic compaction of water-logged
marsh sediments produces an apparent rise in sea level. Long-term compaction does not
compromise estimates of coseismic subsidence, but coseismic compaction (as
documented by Plafker, 1969, for the 1964 Alaska earthquake) would result in
anomalously high subsidence estimates (Guilbault et al., 1995). Unrecorded postseismic
rebound is also a concern. Guilbault ez al. (1995) suggest that rebound may begin before
sediments start to accumulate on the subsided marsh surface. This potential problem is

minimized by sampling the lowest sediment above the peat, as was done in this study.

Multivariate statistical techniques were used to explore the underlying structure of
the large foraminiferal data sets. The data sets were reduced by eliminating uncommon
species, which carries some risk. A tidal marsh is an extremely sensitive environment,
and the distribution of foraminifera is controlled by a large number of environmental

factors. The sampling scheme was designed to establish the overall pattern of microfossil
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assemblages and their relation to elevation, but the statistical analysis included more
species than those whose distributions are primarily controlled by elevation (T.
macrescens, T. inflata and M. fusca). This approach was used to provide a more accurate
representation of the marsh environment, whose foraminiferal assemblages are controlled
by many factors, which may not be independent of one another and, therefore, cannot be

ignored.

The lowest samples from transect JS1 were higher than MLLW, thus imposing an
artificial limit on the analogue that was used to compute the values of coseismic
subsidence. Hemphill-Haley’s (1995) estimates of coseismic subsidence for the 1700
earthquake in Willapa Bay range from 0.8 m to ~3.0 m. The estimates are based on
diatom assemblages from samples that span a greater vertical interval between MLHW
and MLLW than the interval samples in this study (Figure 3, p. 370, Hemphill-Haley,

1995).
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CONCLUSIONS

A foraminiferal study was conducted at Willapa Bay on marsh sediments that record
the last four great earthquakes at the Cascadia subduction zone. The four earthquakes are
manifested in the marsh sediments by abrupt contacts between peats and overlying tidal
muds. In situ plant macrofossils, tsunami sands, a sharp drop in organic matter, and
changes in foraminiferal assemblages demonstrate that the contacts record subsidence

during earthquakes.

Foraminiferal assemblages in samples from the modem marsh at the Oyster locality
provide a species zonation against which the fossil record can be compared to estimate
elevations of the marsh over the last 2000 years. Three marsh zones were identified: low
marsh (1.3 -2.23 m above MLLW), dominated by M. fusca and Ammobaculites species;
middle marsh (2.23-2.86 m above MLLW), dominated by T. macrescens,
Haplophragmoides species, and T. inflata; and upper marsh (2.86-3.06 m above

MLLW), dominated by T. macrescens and T. inflata.

A transfer function was created using partial least squares, a multivariate statistical
method. It was applied to modemn marsh foraminiferal assemblages to estimate
paleoelevations of fossil samples. The calculated paleoelevations are most reliable for
samples containing key foraminiferal indicator species that are common in the modemn
marsh. Each of the earthquakes appears to have caused about 1 m of subsidence. The
lower elevation limit of the modern analogue sets an artificial maximum limit on the

computed subsidence, thus the subsidence estimates are minima. Cluster analysis defined
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high-marsh and low-marsh biofacies and showed that, during each earthquake, a high
marsh dropped to a low marsh position. Tsunamis sands were deposited on two of the
four buried soils, further strengthening evidence for coseismic activity. These findings
support the hypothesis that the buried soils record great earthquakes at the Cascadia

subduction zone.
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APPENDIX 2: Taxonomy of benthic foraminifera

The classification of foraminiferal genera listed here is in accordance with Scott et
al. (2001). The following list includes all species of benthic foraminifera mentioned in
the thesis. Taxa are listed in alphabetical order by genus.

Ammobaculites dilatatus (Cushman and Bronnimann)
Ammobaculites dilatatus Cushman and Bronnimann, 1948, p. 39, pl.7, figs. 10,11; Scott
etal, 1991, p. 384.
Ammobaculites c.f. foliaceus (Brady). Parker, 1952, p. 444, pl. 1, figs. 20, 21.
Ammobaculites foliaceus (Brady). Scott and Medioli, 1980b, p. 35, pl. 1, figs. 6-8.

Remarks: Test, agglutinated, initially planispirally coiled, then two to several uniserial
chambers with a single terminal aperture. This species lives typically in low marsh and
shallow upper estuarine environments where salinities do not exceed 20%o. It appears to
have a worldwide occurrence (Scott et al., 2001).

Ammobaculites exiguus (Cushman and Bronnimann)
Ammobaculites exiguous Cushman and Bronnimann, 1948, p. 38, pl. 7, figs. 7, 8; Scott et
al., 1991, p. 384; Scott et al., 1995b, p. 292, Figure 6.1.
Ammobaculites dilatatus Cushman and Bronnimann; Scott et al., 1977, p. 1578, pl. 2,
Figure 6; Scott and Medioli, 1980b, p. 35, pl. 1, figs. 9, 10.

Remarks: Test agglutinated, initially planispirally coiled, then several chambers
uniserial; similar to 4. dilatatus, but much narrower in outline. When broken it can be
confused with Ammotium salsum. Its occurrence is similar to 4. dilatatus (Scott et al.,
2001).

Eggerella advena (Cushman)
Verneuilina advena Cushman, 1922, p. 141.
Eggerella advena (Cushman). Cushman, 1937, p. 51, pl. §, figs. 12-15; Phleger and
Walton, 1950, p. 277, pl. 1, figs. 16-18; Scott er al., 1977, p. 1579, pl. 2, fig. 7, Scott and
Medioli, 1980a, p. 40, pl. 2, fig. 7; Scott et al., 1991, p. 385, pl. 2, figs. 1, 2.

Remarks: Test finely agglutinated, chambers triserial, roughly triangular in cross-section,
aperture is a small slightly protruding slit at the base of the last chamber. This species
occurs worldwide in outer estuaries (Scott et al., 2001).

Elphidium excavatum (Terquem)
Polystomella escavata Terquem, 1876, p. 429, pl. 2, fig. 2.
Elphidium excavatum (Terquem) formae Miller et al., 1982, (all).

Haplophragmoides manilaensis (Anderson)
Haplophragmoides manilaensis Anderson, 1953, p. 22, pl. 4, Scott et al., 1990, p. 730, pl.
1, figs. 9a, b; Scott et al., 1991, p. 385, pl. 1, figs. 18, 19; Scott er al., 1995b, p. 292, pl. 1,
figs. 3, 4.
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Haplophragmoides bonplandi Todd and Bronnimann, 1957, p. 23, pl. 2. Scott and
Medioli, 1980b, p. 40, pl. 2, figs. 4, 5.

Remarks: Test agglutinated, planispirally coiled. This species is characteristic of low-
salinity high marsh areas worldwide (Scott er a/., 2001).

Haplophragmoides wilberti (Anderson)
Haplophragmoides wilberti Anderson, 1953, p. 21, pl. 4, Figure 7, Boltovsky and
Vidarte, 1977, p. 39, pl. 3, Figure 3; Zaninettie et al., 1977, pl. 1, figs. 12, 13.

Miliammina fusca (Brady)
Quinqueloculina fusca Brady, 1870, p. 286, pl. 11, figs. 2, 3.
Miliammina fusca (Brady) Phleger and Walton, 1950, p.280, pl.1, figs. 19a, b; Phleger,
1954, p. 642, pl. 2, figs. 22, 23; Scott et al., 1977, p. 1579, pl. 2, figs.8, 9; Schafer and
Cole, 1978, p. 28, pl. 12, fig. 2; Scott and Medioli, 1980a, p. 40, pl. 2, figs. 1-3; Scott e¢
al., 1991, p. 386, pl. 1, fig. 14.
Remarks: Test agglutinated, coiled in a “quinqueloculine” pattern. This species occurs
almost worldwide in low-salinity low marsh and upper estuarine areas (Scott et al.,
2001).

Tiphotrocha comprimata (Cushman and Bronnimann)
Trochammina comprimata Cushman and Bronnimann, 1948, p. 41, pl. 8, figs. 1-3;
Phleger, 1954, p.646, pl.3, figs.20, 21.
Tiphotrocha comprimata (Cushman and Bronnimann). Saunders, 1957, p. 11, pl. 4, figs.
1-4; Scott et al., 1977, p. 1579, pl. 4, figs. 3, 4; Scott and Medioli, 1980a, p. 44, pl. 5,
figs. 1-3; Scott et al., 1990, pl. 1, figs. 10a, b; Scott et al., 1991, p. 388, pl. 2, figs. 5, 6.

Remarks: Test agglutinated, trochospiral, ventral side somewhat concave. This species is
distinguished from Trochammina by a siphon-like extension of the aperture in the
umbilical area. It is common in middle and high marsh environments and in brackish
areas, except in the Pacific basin (Scott et al., 2001).

Trochammina inflata (Montagu)
Nautilas inflatus Montagu, 1808, p. 81, pl. 18, fig. 3
Rotalina inflata Williamson, 1858, p. 50, pl. 4, figs. 93, 94.
Trochammina inflata (Montagu). Parker and Jones, 1859, p. 347; Phleger, 1954, p. 646,
pl. 3, figs. 22, 23; Scott et al., 1977, p. 1579, pl. 4, figs. 6, 7, Scott and Medioli, 1980a, p.
44, pl. 3, figs. 12-14; pl. 4, figs. 1-3; Scott et al., 1990, p. 733, pl. 1, figs. 3a, b; Scott et
al., 1991, p. 388, pl. 2, figs. 7, 8; Scott et al., 1995b, p. 294, figs. 6.10-17.

Remarks: Test agglutinated, trochospiral, chambers rather inflated, increasing in size
gradually; aperture a low arch with a bordering lip. This is the type species of the genus
Trochammina. It is perhaps the best known and most distinctive of the endemic marsh
species, and is one of the first foraminifera species ever described. It characterizes high
marsh environments worldwide (Scott et al., 2001).

Trochammina macrescens (Brady)
(forma macrescens and forma polystoma)
Trochammina inflata (Montagu) var. macrescens Brady, 1870, p. 290, pl. 11, fig. §;
Scott, 1976, p. 320, pl. 1, figs. 4-7; Scott et al., 1977, pl. 4, figs. 6-7.
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Jadammina polystoma Barenstein and Brand, 1938, p. 381, figs. 1, 2.

Trochammina macrescens Brady. Parker, 1952, p. 460, pl. 3, fig. 3; Phleger, 1954, p.
646, pl. 3, fig. 24; Scott and Medioli, 1980a, p. 44, pl. 3, figs. 1-12; Scott et al., 1990,
p.733, p 1.1, figs. 1a, b, 2a-~c; Scottef al., 1991, p. 388, pl. 2, figs. 10, 11; Scott et al.,
1995b, p. 294, p. 294, figs. 6-8.

Remarks: This species was first listed as a variety of 7. inflata, from which it differs in
being more compressed and limited to somewhat lower salinity conditions. A high
salinity ecophenotype, 7. polystoma, commonly occurs with 7. inflata. This high salinity
form is sometimes called Jadammina polystoma. In high numbers 7. macrescens forms
occur as a narrow zone near higher high water. (Scott et al., 2001)

“All the specimens designated as T. macrescens here would be T. macrescens forma macrescens
(the low salinity forma of Scott and Medioli, 1980a). Brdnnimann and Whittaker (1984) went
back to Brady’s (1870) original collection of what he called 7. inflata var. macrescens and
discovered that all of the specimens in his syntypic matenial had supplementary apertures, which
are characteristic of J. polystoma Bartenstein and Brand. Based on these observations they re-
designated Brady's species as Jadammina macrescens (Brady) which is perfectly valid without
the emendation of the genus 7rochammina mentioned above to accommodate supplementary
apertures. However because we view all these “species” as forrna, we prefer to use “polystoma”
(the Bartenstein and Brand species) forma as the higher salinity variant. Broénnimann and
Whittaker (1984) subsequently divided other forms of this species into a different genus,
Balticammina, based on whether or not the umbilicus was open or not. A relatively recent
presentation was given by Gehrels (1997) regarding the taxonomy of this species and the
relevance to the study of former sea levels, which was subsequently published in Gehrels and van
de Plassche (1999). The most surprising aspect of the presentation given by Gehrels (1997) was
that the plate that he used to show three genera was the very one used in 1980 by Scott and
Medioli (1980a, pl. 3, figs. 1-12) to show that all these “formae” were one species using one of
the most complete intragradational series ever assembled. Medioli and Scott (1978) pioneered
the use of the intragradational series as a technique to illustrate foraminiferal variability within
species. This is a technique previously suggested as a legitimate means to illustrate intraspecific
vanability by Mayt et al. (1953), a group of taxonomists that may be the most distinguished
taxonomists of our time. The erection of these new species and genera for what we have already
proven is one species adds undue confusion to a problem that is not taxonomic but one of
recognizing ecophenotypes and what they mean. Gehrels and van de Plassche (1999) saw few
forms of what we would call 7. macrescens forma macrescens; mostly they saw what they would
call Jadammina (Trochammina) macrescens, which is what we would call 7. macrescens fonma
polystoma (the high salinity forma with supplementary apertures). Just with this one example it ts
already clear what the problems are going to be with a series of different names all in the
literature. If only the species 7. macrescens is used as the species with formae macrescens(the
low salinity form) and polystoma (the high salinity form) then the confusion is reduced
significantly and it is also taxonomically correct since the formae fall outside the ICZN. As for
the new genus/species Balticammina pseudomacrescens, this to us is the end member of the
series (pl 3, figs. 1-3, Scott and Medioh, 1980a); if it is useful as a paleo-indicator then by all
means it can be used but not as a new species and genus but as a forma (7. macrescens forma
pseudomacrescens). The group of authors on our paper may have looked at more specimens of
this individual species than everyone else put together (> 10,000 samples with an average of 1000
counted per sample even with a splitter) and obviously we can see the many vaniations and we
could erect many “new species” but this would be spurious and would be counterproductive to
the goal which is to use these forms as sea-level indicators. If the formae can be shown to be
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useful ecophenotypes then they should be delineated but as informal names, not species.” (Tobin
et al., unpublished manuscript)

Trochammina ochracea (Williamson)
Rotalina ochracea Williamson, 1858, p. 55, pl. 4, fig. 112, pl. §, fig. 113.
Trochammina squamata Parker and Jones, 1865, p. 407, pl. 15, figs. 30, 31; Scott and
Medioli, 1980a, p. 45, pl. 4, figs. 6, 7.
Trochammina squamata Parker and Jones, 1859, and related species. Parker, 1952, p.
460, pl. 3, fig. 5.
Trochammina ochracea (Williamson). Cushman, 1920, p. 75, pl. 15, fig. 3; Scott and
Medioli, 1980a, p. 45, pl. 4, figs. 4, 5.

Remarks: 7Trochammina ochracea is distinguished from the previous two species of
Trochammina by being very flat and concave ventrally. It occurs in a wide variety of
places, including high marsh areas in Tierra del Fuego and Alaska, upper estuarine areas
in Nova Scotia, and reefs in Bermuda. This species is believed to be opportunistic (Scott
etal., 2001).
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