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Abstract 

Despite of their impressive classification accuracy in many high dimensional applications, 

Support Vector Machine (SVM) classifiers are hard to understand because the definition 

of the separating hyperplanes typically involves a large percentage of all features. In this 

paper, we address the problem of understanding SVM classifiers, which has not yet been 

well-studied. We formulate the problem as learning models to approximate trained SVMs 

that are more understandable while preserve most of the SVM's classification quality. Our 

method learns a set of If-Then rules that are generally considered to be understandable 

and that allow an explicit control of their complexity to meet user-supplied requirements. 

The adoption of the unordered rule learning paradigm, along with exploiting the trained 

SVMs helps overcome the weakness of standard rule learners in high dimensional feature 

spaces. A pruning method is employed to maximize the accuracy of the resulting rule set 

for some user-specified complexity. Experiments demonstrate that the accuracy of the rule 

set is close to that achieved by SVMs and keeps stable even with substantial decreases of 

the rule complexity. 
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Chapter 1 

Introduction 

1.1 Motivation 

Knowledge Discovery and Data Mining (KDD) is the process of discovering knowledge or 

interesting data patterns hidden in a large amount of data. With massive amounts of data 

being continuously collected in databases, there are great demands for analyzing such data 

and transforming them into useful knowledge [14]. Classification is a form of data analysis 

that can be used to built models describing important data classes. Many classification 

algorithms have been proposed by researchers and have been applied to numerous difficult, 

real-world problems [30] [29] [34] [15]. 

The application of classification algorithms is usually driven by two underlying goals: 

performance and discovery. In the first case, the goal is to use a classification algorithm to 

learn a model that can be used to perform some task of interest. For example, in a spam 

email filter system, a classifier is built to distinguish spam emails from other emails; in a 

webpage categorization system, a classifier is built to classify various web pages into different 

categories such as sports, news etc. Another reason to make use of classifications is for the 

purpose of gaining insight into a collection of data by learning a descriptive model that is 

humanly comprehensible and can lead to a better understanding of the problem domain. 

Of course, it is often the case that a classification method is applied in a given domain for 

both of these purposes: to construct a system that can perform a useful task, and to get a 

better understanding of the available data. 

Given the goals of performance and discovery, two of the criteria that are most often 

used to evaluate learning systems are the predictive accuracy and the understandability of 
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the learned models. Predictive accuracy, which is usually the predominant criterion, refers 

to how well a given model accounts for examples that were not used in learning the model. 

Understandability refers to how easily we can inspect and understand a model constructed 

by the learning system. It is often the case that the classification methods which construct 

the model with the highest predictive accuracy are not the methods which construct the 

most understandable model. For example, neural networks provide good predictive accuracy 

in a wide variety of problem domains, but produce models that are notoriously difficult 

to understand[31] 1331 1251 [20]. Support Vector Machines (SVMs), as another example, 

have achieved impressive classification accuracy in many challenging applications such as 

text classification 1211, classification of proteins [32], and face detection in images 1281. 

Unfortunately, SVMs, like the neural networks, generate black box models in the sense that 

they do not have the ability to explain, in an understandable form for a domain expert, the 

reasoning behind the predictions. 

There are, however, many applications where the understandability of the classification 

model is as important as its accuracy. In biological applications, for example, the scientists 

want to gain some insight into the underlying biological processes. In medical applications, 

as another example, the classification model must be checked by a physician before making 

crucial decisions. In spite of the good predictive accuracy of neural networks and SVMs, 

their inability to produce plausible explanations compromises their applicability. In order 

to deal with this limitation, it is desirable to be able to understand the models learned by 

these algorithms. 

In the last decade, a proliferation of methods for understanding trained neural networks 

has been presented in the literature 1311 1331 1251 1201. These methods apply the strategy 

of translating a trained neural network into a more understandable model, such as a set 

of If-Then rules or a decision tree. Nevertheless, in the case of SVMs, few research works 

have been published. Most of the application domains where SVMs significantly outperform 

other classification methods involve high dimensional (>1000) feature spaces, which often 

causes severe problems for building accurate classifiers. Essentially the amount of training 

data to sustain an accurate classifier increases exponentially with the dimensionality of the 

feature space. Based on the statistical learning theory, SVMs implements the structural 

risk minimization principle with the purpose of obtaining a good generalization from lim- 

ited training data [34]. In order to preserve this virtue of SVMs , it is necessary to develop 

an approach that is capable of translating SVMs into understandable yet accurate models 
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in the scenario of high dimensional feature spaces. Even though SVMs can be viewed as 

an extension of perceptron models (single level neural networks), existing methods of un- 

derstanding neural networks can not effectively be applied to the problem of understanding 

SVMs, because they are not scalable to high dimensional spaces. 

To overcome this limitation, this thesis investigates the following problem: in the sce- 

nario of high dimensional feature spaces, can we take an arbitrary, incomprehensible SVM 

classification model, and closely approximate it in a language that better facilitates under- 

standability. We propose an approach for approximating the prediction behavior of trained 

SVMs by a set of If-Then rules. The approach has the following advantages. 

It produces understandable yet accurate descriptions of trained SVMs. 

It can scale to high dimensional feature spaces very well. 

It can apply to a broad class of SVMs. 

1.2 Organization of the Thesis 

The rest of this thesis is organized as follows. 

Chapter 2 provides background material for the rest of the thesis. Chapter 3 surveys 

related work. In Chapter 4, we formulate the problem addressed by this thesis and present 

a two-phase approach to extract a set of If-Then rules from SVMs. Section 5 reports the 

results of an experimental evaluation and comparison with existing methods. Section 6 

concludes the thesis and discusses directions for future research. 



Chapter 2 

Background 

This chapter provides background information for the remainder of the thesis. The first 

section introduces main concepts and terminologies of classification. The next section gives 

a brief overview of decision tree learning methods and rule induction methods. This ma- 

terial is relevant since the Boost Unordered Rule Learner (BUR) algorithm, presented in 

chapter 4, learns a set of inference (If-Then) rules to approximate the trained SVMs. More- 

over, the experimental evaluation of our proposed approach presented in chapter 5 involves 

experimental comparison with a standard decision tree learning method and a rule induc- 

tion method. The last section in this chapter provides a brief introduction to SVMs , and 

discusses the difficulties in understanding the SVM classifiers. 

2.1 Introduction to classification 

Classifying examples into a discrete set of possible categories are referred to as classifica- 

tion. Classification is a two-step process. In the first step, a model (hypothesis) is learned 

describing a predetermined set of data classes. The model is constructed by analyzing data 

described by attributes. Each data is assumed to belong to a predefined class, as deter- 

mined by its class label. In the context of classification, data analyzed to build the model 

collectively form the training data set. The individual data making up the training set are 

referred as training examples and are randomly selected from the example population. Since 

the class label of each training example is provided, this step is also known as supervised 

learning (i.e. the learning of the model is "supervised" in that it is told to which class each 
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training example belongs). It contrasts with unsuperwised learning(a1so known as cluster- 

ing), in which the class label of each training example is not known, and the number of set 

of classes to be learned may not be known in advanced. 

Typically, the learned model is represented in the form of inference rules, decision trees, 

or a function or distribution that is learned. 

In the second step, the model is used for classification. First the predictive accuracy 

of the model (or classifier) is estimated. There are several ways to estimate the accuracy. 

The most common method is often referred to as holdout approach which estimates the 

predictive accuracy of a model by measuring its accuracy on a set of examples that it is 

not allowed to access when constructing the model. Such a set is called a test data set or a 

holdout data set. These examples are randomly selected and are independent of the training 

data. The accuracy of a model on a given test set is the percentage of test set examples 

that are correctly classified by the model. For each test example, the known class label is 

compared with the learned model's class prediction for that example. The motivation of 

this approach is: even though the learning algorithm may be misled by random errors and 

coincidental regularities within the training data set, the validating data set is unlikely to 

exhibit the same random fluctuations. Therefore, the validation data set can be expected to 

provide a safety check against overfitting the spurious characteristics of the training data set 

(that is, the learned model may have incorporated some particular anomalies of the training 

data that are not present in the overall example population). Of course, it is important 

that the validation set be large enough to itself provide a statistically significant sample of 

the examples. To serve this purpose, a preferred method for accuracy estimation is to use 

cross-validation. In k-fold cross validation, the available data is partitioned into k separate 

sets of approximately equal size. The cross-validation procedure involves k iterations in 

which the learning method is given k-1 of the subsets to use as training data, and is tested 

on the set left out. Each iteration leaves out a different subset so that each is used as the 

test set exactly once. The cross-validation accuracy of the given algorithm is simply the 

average of the accuracy measurement from the individual folds. 

If the accuracy of the model is considered acceptable, the model can be used to classify 

future examples for which the class label is not known. Such data are also referred to in the 

machine learning literature as "unknown" or "previously unseen" data. 

Classification methods can be compared and evaluated according to the following criteria: 



CHAPTER 2. BACKGROUND 6 

Classification Quality: This refers to the ability of the model to correctly predict the 

class label of unseen data. 

0 Speed: This refers to the computation costs involved in generating and using the 

model. 

0 Robustness: This is the ability of the model to make correct predictions given noisy 

data and data with missing values. 

Scalability: This refers to the ability to construct the model efficiently given large 

amounts of data. 

Interpretability: This refers to the level of understanding and insight that is provided 

by the model. 

In this thesis, we are particularly interested in the classification quality and interpretabil- 

ity issues. 

The standard classification quality measures are overall accuracy, recall and precision. 

They are defined based on a confusion matrix as shown in table 2.1. We refer to the classes 

in a binary classification problem as "positive" and "negative" class respectively. 

Table 2.1: Confusion matrix in classificaion 

- - I Actual negative class I nlo rill 1 
# Examples 

Actual positive class 

accuracy = n +n n ~ )  
noo+nZ+n:i+nll; = noo+nol ' precision = noo+nlo nOO 

The Interpretability is often measured in the size of the classifiers. 

2.2 Decision Trees 

Classified as positive class 
no0 

Decision tree induction algorithms are among the most widely used classification methods 

in data mining. Whereas neural networks and SVMs are perhaps the most popular repre- 

sentatives of the non-symbolic class of learning algorithms, decision-tree methods are the 

Classified as negative class 
no1 
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most widely used symbolic algorithms. In this section, the strategy of classifying examples 

by decision tree is described, and the decision tree learning algorithm is discussed. 

2.2.1 Decision-Tree Classification 

A decision tree is a flow-chart-like tree structure, where each internal node denotes a test on 

a feature, each branch represents an outcome of the test, and leaf nodes represent classes or 

class distributions. The topmost node in a tree is the root node. A typical decision tree is 

shown in figure 2.1 [19]. It represents the concept buys-computer, that is it predicts whether 

or not a customer at  AllElectronics is likely to purchase a computer. Internal nodes are 

denotes by rectangles, and leaf nodes are denoted by oval. 

excellent fair 

Figure 2.1: A decision tree for the concept buys-computer, indicating whether or not a 
custmor at AllElectronics is likely to purchase a computer. Each internal (nonleaf) node 
represents a test on a feature. Each leaf node represents a class (either buys-computer =yes 
or buys-computer =no) 

In order to classify an unknown example, the attribute values of the examples are tested 
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against the decision tree. A path is traced from the root to a leaf node that holds the class 

prediction for that example. For instance, the example 

< age = 25, student = no, credit-rating = fair > 
would be sorted down the leftmost branch of the decision tree in figure 2.1 and would 

therefore be classified as a negative example, i.e. the customer is not likely to purchase a 

computer. 

Decision trees can be re-presented as a set of If-Then rules to improve understandability. 

In general, decision trees represent a disjunction of conjunction of constraints on the feature 

values of instances. Each path from the tree root to a leaf corresponds to a conjunction of 

feature tests, and the tree itself to a disjunction of these conjunctions. For example, the 

decision tree shown in figure 2.1 corresponds to the expression 

If (age <= 30 A student = yes) 

~ ( 3 1  < age <= 40) 

 age > 40 A credit-rating = fair) 

Then buys-computer = yes 

2.2.2 Decision-Tree Learning 

Decision-tree learning involves constructing a tree by recursively partitioning the training 

examples. Each time a node is added to the tree, some subset of the training examples are 

used to pick the logical test at that node. All of the training examples are used to determine 

the rest for the root of the tree. After this test has been picked, it is used to partition the 

examples, and the process is continued recursively. That is, from the subset of training 

examples that reach a given internal node, only the examples that have the ith outcome for 

the test at that node are used to determine the test for the ith child of the node. 

One of the key aspects of decision tree algorithms is selecting the test for partitioning the 

subset of training examples, S, that reaches a given node. C4.5[30] uses tests that are based 

on a single feature. For a discrete-valued feature with v values, C4.5 considers partitioning 

based on a test with v outcomes - one for each possible value. For a real-valued feature, C4.5 

considers binary tests that compare the feature against various thresholds. The outcomes 

in this case are either that (1) the value is less than or equal to the threshold, or (2) the 

value is greater than the threshold. The thresholds considered by C4.5 for a real-valued 

split at a node are determined by the values that occur in the training examples that reach 

that node. 



CHAPTER2. BACKGROUND 9 

In order to pick a splitting test from a set of candidates, C4.5 uses an evaluation measure 

called infomation gain. In order to define information gain precisely, a measure commonly 

used in information theory, called entropy is defined as: 

where j ranges over the classes and freq(Cj, S) is the number of examples in S that belong 

to class Cj. Entropy characterizes the (im)purity of an arbitrary collection of examples and 

the information needed to identify the class of an example. Given the partition T,  entropy 

is defined as the expected value of the entropy over the subsets induced by T: 

Here i ranges over the outcomes of T and Si is the subset of examples in S that have 

the ith outcome. 

Given entropy as a measure of the impurity in a collection of training examples, the 

information gain picks the test, T ,  that maximizes the expected reduction in entropy caused 

by partitioning the examples according to this test: 

where entropy(S) is the amount of information needed to identify the class of an exam- 

ple in S, and entropyT(S)is the corresponding measurement after S has been partitioned 

according to T. 

Another key aspect of a decision tree algorithm is determining when to stop growing a 

tree.C4.5 uses several stopping criteria to decide when to make a node into a leaf. First, if 

the subset of examples that reaches a node are all members of the same class then C4.5 will 

not split the subset any further. Second, if C4.5 cannot find a test that result in at least 

two outcomes having a minimum number of examples in them, then it will stop splitting 

at this node. Finally, if the list of candidate tests available to use at a node is empty, then 

C4.5 will not partition this node further. 

After C4.5 has grown a tree, it then tries to simplify it by pruning away various subtrees 

and replacing them with leaves. This strategy is a method for avoiding over- fitting. C4.5'~ 

pruning method considers replacing each internal node by either a leaf or one of the node's 

branches. In order to decide if a change should be made, C4.5 computes a confidence interval 
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around the resubstitution rate for the node. A change is made to a subtree if the resulting 

resubstitution error rate for the modified subtree is within a C% confidence interval of the 

unmodified subtree's error rate, where C is a parameter of the algorithm that determines 

how conservative the pruning process should be. 

2.3 Rule Induction 

One of the most expressive and human readable representation for learned models is sets 

of If-Then rules. This section explores the algorithms for learning such sets of rules. In 

many cases it is useful to learn the target function represented as a set of If-Then rules that 

jointly define the function. As discussed in section 2.2, one way to learn sets of rules is to 

first learn a decision tree, then translate the tree into an equivalent set of rules - one rule for 

each leaf node in the tree. In this section we overview a variety of algorithms that directly 

learn rule sets. 

Most algorithms for learning rule sets are based on the strategy of learning one rule, 

removing the data it covers, then iterating this process. Such algorithms are called sequential 

covering algorithms. To elaborate, imaging we have a subroutine LEARN-ONERULE that 

accepts a set of positive and negative training examples as input, then outputs a single rule 

that covers many of the positive examples and few of the negative examples. We require that 

this output rule have high accuracy, but not necessarily high coverage. By high accuracy, 

we mean the prediction it makes should be correct. By accepting low coverage, we mean 

it need not make prediction for every training example. Given this LEARN-ONERULE 

subroutine for learning a single rule, one obvious approach to learning a set of rules is 

to invoke LEARN-ONERULE on all the available training examples, remove any positive 

examples covered by the rule it learns, then invoke it again to learn a second rule based on 

the remaining training examples. This procedure can be iterated as many times as desired 

to learn a disjunctive set of rules that together cover any desired fraction of the positive 

examples. This is called a sequential covering algorithm because it sequentially learns a set 

of rules that together cover the full set of positive examples. The final set of rules can then 

be sorted so that more accurate rules will be considered first when a new example must 

be classified. Unlike a decision tree, a rule set may not fully cover the data space. Some 

examples cannot be covered by any rule in the rule set and thus the rule set cannot make 

a decision on these examples. In these cases, a default rule which labels the examples as 
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the majority class is applied. A prototypical sequential covering algorithm is described in 

figure 2.2. 

Algorithm 2.1: SEQUENTIAL-COVERING 

Input: training examples 2 and their labels Y. 
Output: a disjunctive set of rules. 
begin 

1 Learned-rules = {) 
2 Rule = LEARN-ONE- RULE(^, Y) 
3 while PERFORMANCE(Rule, 2) > Threshold do 
4 Learnedrules = Learned-rules U {Rule) 
5 2 = 2 -  {examples correctly classified by Rule) 
6 Y = { labels of examples in 2) 
7 Rule = LEARN-ONER.ULE(~, Y) 

end 
s Learnedrules = sort Learnedrules accord to PERFORMANCE over the 

whole training data set 
9 return Learned-rules 

Figure 2.2: The sequential covering algorithm for learning a disjunctive set of rules. 

This sequential covering algorithm is one of the most widespread approaches to learning 

disjunctive sets of rules. It reduces the problem of learning a disjunctive set of rules to 

a sequence of simpler problems, each requiring that a single conjunctive rule be learned. 

Because it performs a greedy search, formulating a sequence of rules without backtracking, 

it is not guaranteed to find the smallest or best set of rules that cover the training examples. 

One effective approach to implementing LEARN-ONE-RULE is to organize the hypoth- 

esis space search in the same general fashion as the decision tree algorithm, but to follow 

only the most promising branch in the tree at each step. The search begins by considering 

the most general rule precondition possible (the empty test that matches every example), 

then greedily adding the feature test that most improves rule performance measured over 

the training examples. Once this test has been added, the process is repeated by greed- 

ily adding a second feature test, and so on. Like the decision tree algorithm, this process 

grows the hypothesis by greedily adding new feature tests until the hypothesis reaches an 

acceptable level of performance. Unlike the decision tree algorithm, this implementation 

of LEARN-ONERULE follows only a single descendant at each search step - the feature 

- value pair yielding the best performance - rather than growing a subtree that covers all 
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possible values of the selected feature. 

This approach to implementing LEARN-ONERULE performs a general-to-specific search 

through the space of possible rules in search of a rule with high accuracy, though perhaps 

with incomplete coverage of the data. As in decision tree learning, there are many ways 

to define a measure to select the "best" descendant. To follow the lead of decision tree 

algorithms let us for now define the best descendant as the one whose covered examples 

have the lowest entropy. 

The general-to-specific search suggested above for the LEARN-ONERULE algorithm is 

a greedy depth-first search with no backtracking. As with any greedy search, there is danger 

that a suboptimal choice will be made at any step. To reduce this risk, we can extend the 

algorithm to perform a beam search; that is, a search in which the algorithm maintains a list 

of the k best candidates at each step, rather than a single best candidate. On each search 

step, descendants (specializations) are generated for each of these k best candidates, and 

the resulting set is again reduced to the k most promising members. Beam search keeps 

track of the most promising alternatives to the current top-rated hypothesis, so that all of 

their successors can be considered at each search step. This general to specific beam search 

algorithm is used by the CN2 described in figure 2.3. 

2.4 Support Vector Machines 

2.4.1 Introduction to Support Vector Machines 

SVMs have a solid theoretical foundation based on the statistical learning theory [34]. Con- 

sider a binary classification task with the training data set {%, yi)gv=l ,% € Rm, yi € 

(-1, +I). SVMs find a hyperplane that correctly separates the training data of the two 

different classes while maximizing the distance of either class from the hyperplane (maxi- 

mizing the margin). Thus, they can generalize well to the test data even in the presence of 

a large number of features, as long as the training data can be separated by a sufficiently 

wide margin. SVMs can also deal with linear non-separable data sets by either using a 

kernel function K to map the original data vectors into a much higher dimensional space, 

called feature space ,where the data points are linearly separable, or by using soft mar- 

gin separation hyperplanes that allow some degree of training errors in order to obtain a 

large margin. The direction of the maximal margin hyperplane is determined through a set 

of support vectors SV, which are data vectors lying on the margin. A new example Ic' is 
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Algorithm 2.2: LEARN-ONERULE 
- - 

Input: training examples 2 and their labels Y ; number of best candidates at each step, 
k .  

Output: a single best rule. 

begin 
Initialize Best-hypothesis to the most general hypothesis null 
Initialize Candidate-hypothesis to the set { Best-hypothesis) 
while Candidate-hypothesis is not empty do 

/*Generate the next more s p e c i f i c  Candidate-hypoth,eses */ 
All-constraints t- the set of all constraints of the form (a = v), where a is a 
feature , and .o is a value of a that occurs in the current set of 2 
foreach h in Candidate-hypotheses do 

foreach c in All-constraints do 
New-candidate-hypothesis t- create a specification of h by adding 
the constraint c 

end 
end 
Remove from New-candidate-hypotheses any hypotheses that are duplicates, 
inconsistent, or not maximally specific 
/*Update Best-hypothesis */ 
ForEach h in New-candidatehypotheses 
if 
P E R F O R M A N C E ( h ,  2, Y) > PERFORMANCE(Best-hypothesis, 2, Y )  
then 

Best-hypothesis t- h 
end 
/*Update Candidate-hypotheses */ 
Candidate-hypothesis t- the k best members of 
New-candidate-hypothe~es~according to the P E R F 0  R M A N C E  measure 

end 
return a rule of the form "IF Best-hypothesis THEN predictionV,where 
prediction is the most frequent value of Y among those examples in, 2 that match 
Best-hgpothesis 

Al~orit hm 2.3: PERFORMANCE 

Input: a hypothesis h; training examples 2 and their labels Y . 
Output: the value of h's performance. 

begin 
1 h-ezamples t- the subset of 2 that match h 
2 return Entropy(h-exarrhples), where entropy is with respect to the labels 

Figure 2.3: The sequential covering algorithm for learning a disjunctive set of rules. 
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classified depending on the sign of the following decision function: 

f(Z) = C aiyiK(6,Z) + b (2.1) 
xiESV 

where K(6 ,Z)  is the kernel function ,yi is the class label of the support vectors and ai are 

the weights associated with the support vectors, obtained by solving the following convex 

Quadratic Programming (QP) problem: 

N l N  
maximize ai - - 7, aiaj . yiyj K ( 4 ,  Zj) 

a i=l 2 i=l i=l 

subject to ai 2 0, i  = 1,2, ..., N 

xE1 aiyi = 0. 

Once the weights ai are determined, support vectors are just those input vectors who 

have non-zero weights. In equaion 2.2 , N is the number of input vectors, i.e., number of 

training examples. 

Typical kernel functions include: 

Linear Kernel Function: 

K ( 6 , Z )  = 6 - Z  

a Polynomial Kernel Function: 

Radial Basic Function(RBF) : 

Sigmoid Function: 

K ( 6 , Z )  = tanh(y5 'i Z + 8 )  

The parameter d in equation 2.4 is the degree of the polynomial function; when d = 1, 

the function will revert into the linear kernel function. 

Figure 2.4 illustrates the basic concept of SVMs. 
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%.. Hyperplane 

Figure 2.4: A linear SVM for a two-dimensional training set. M is the margin between the 
two classes. w' is the norm vector of the separating hyperplane. 

2.4.2 Support Vector Machines and Understandability 

An SVM decision function defined in form of (2.1) is hard to understand because it implicitly 

involves (in varying degrees) all features that are relevant for the definition of the separating 

hyperplane. SVMs do not explicitly assign weights to all features, implicit feature weights 

can be derived from the weights of the training instances using the kernel functions. Nev- 

ertheless, we argue that it is still very hard for domain experts to understand the reasoning 

behind the SVM decision functions and to identify important features in the input spaces 

from these decision functions. 

This is caused by the following two reasons. Firstly, if nonlinear kernel functions are 

used, the feature space will contain many more features than the input space. Generally, it 

is very hard for domain experts to understand the meaning of these new derived features. 

Secondly, when linear kernel functions are used, typically a large percentage of all fea- 

tures are relevant to the SVM classifiers. This has been experimentally investigated in [7], 

which introduces another form of SVMs that can select very few relevant features as a re- 

sult of the trained SVM models. Unlike the standard SVMs where the distance of either 

class from the separating hyperplanes is measured in Znorm, the distance of this special 

form of SVMs (so called 1-norm SVMs) is measured in 1-norm. The vector norm 121p for 
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Table 2.2: Average number of features selected in the SVM classifiers (Asterisk* indicates 
that the full experiment had not been carried out because of excessive time hence results 
are averaged over folds completed [7]. 

p = 1,2, ... is defined as [ZIP = (xi lzilp):. M experimentally investigates the average num- 

ber of features selected by (i.e. number of features that are involved in) the standard linear 

SVM classifiers on 5 public data sets using 10-fold cross validation. The description of these 

datasets and results are listed in table 2.2. The results indicate that on five datasets almost 

all features in the input spaces are relevant to (involved in) the SVM classifiers. 

We observe similar results on a biology sequence dataset, which appears to be the most 

difficult classification problem investigated in chapter 5. Figure 2.5 shows the distribution 

of all feature weights that are derived from a linear SVM trained to predict if a protein is 

an outer membrane protein from its amino acid sequence. The features are in an ascending 

order of the absolute value of their weights, which indicate their importance to the SVM 

classifier. Among 1425 features, the weights of 1420 features are non-zero. The distribution 

among features is more or less uniform, with a standard deviation of 0.0380 from the mean 

0.0387. It seems to be difficult to make much sense of these weights in isolation. 

To summarize, both linear and nonlinear SVM classifiers are hard to understand for a 

domain expert. In order to address the deficiency in understandability of SVMs, we propose 

an approach that can extract understandable rules from both linear and nonlinear SVMs in 

chapter 4. 

# Features Selected 
by 2-norm SVMs 

32 

32 

33* 
13* 
6* 

DataSet 

Wisconsin Prognostic 
Breast Cancer(24 mo.) 
Wisconsin Prognostic 
Breast Cancer(6O mo.) 

Johns Hopkins University Innosphere 
Cleveland Heart Disease 
BUPA Liver Disorders 

# Input Features 

32 

32 

34 
13 
6 
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Features Ranked By Absolute Value of Their Weights 

Figure 2.5: Feature weights distribution of a linear SVM. 



Chapter 3 

Related Work 

In this chapter, I review previous work related to the problem of interpreting trained SVMs 

and techniques related to our proposed BUR algorithm. The purpose of this discussion is 

to provide suitable context for the novel work introduced in the subsequent chapter. 

3.1 Related Problems 

3.1.1 TheRuleExtractionTask 

A significant research effort has been expended in the last decade to address the deficiency 

in the understandability of neural networks [31] [33] [25] [20]. [26] presents a complete 

overview on this research. The generally used strategy to understand a model represented 

by a trained neural network is to translate the model into a more comprehensible language 

(such as a set of If-Then rules or a decision tree). This strategy is investigated under the 

rubric of rule extraction. 

[25] defines the task of rule extraction from neural networks as follows: 

" Given a trained neural network and the data on  which it was trained, pro- 

duce a description of the network's hypothesis that is  comprehensible yet closely 

approximates the network's prediction behavior." 

Although the task of rule extraction has only been formally formulated in the context 

of interpreting neural networks, this formulation can be generalized to any other opaque 

models (such as SVMs). 
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A variety of concerns have been addressed to evaluate the proliferation and diversity 

of techniques for extracting rules from trained neural networks in literatures. However, 

the following criteria are considered most relevant for measuring schemes of general rule 

extraction: 

Understandability: The extent to which the representation of the extracted models 

are humanly comprehensible. 

0 Accuracy:The ability of extracted models to make accurate predictions on previously 

unseen cases. 

Scalabi1ity:The ability of the method to scale to large input space and more compli- 

cated incomprehensive models. 

In the subsequent sections and chapters, the term "understandability" and " comprehen- 

sibility" are interchangeably used. 

Whereas understandability and accuracy are prime concerns for a rule extraction method, 

scalability also plays an important role in evaluating the rule extraction methods. A desirable 

ruleextraction technology with a greater impact requires that the method can be applied 

to a wider range of learned models in a wide range of application domains. In part, this 

means the extraction methods can be applied to problems and learned models that are, in 

some degree "big". Thus, we would like to have rule extraction algorithms that are scalable. 

In particular, the following definition is of interest for the task rule extraction [26]: 

Scalability refers to how the running time of a rule extraction algorithm and the 

comprehensibility of its extracted models vary as a function of such factors as 

the trained incomprehensible model, feature set, and training set size. 

This definition differs from the conventionally used definition in that it includes the 

understandability of extracted models as well as the running time of the method. Since 

comprehensibility is of fundamental importance in rule extraction, methods that scale well 

in terms of running time, but not in terms of understandability will be little value. 

Scaling in terms of understandability is a hard problem. In cases where the problem 

domain has a large number of features, or the trained incomprehensible models are of very 

complicated structures (such as neural networks with "big" architectures or SVMs with 
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complicated kernel functions), the classification functions represented by the trained incom- 

prehensible models are often too complicated for a succinct comprehensible model to closely 

approximate. 

To address the issue of scalability in understandability, a strategy for controlling the 

understandability and accuracy tradeoff can be utilized with the rule extraction algorithms. 

This strategy is to improve the understandability of an extracted model by compromising 

on its accuracy of approximation to the large, complicated trained models. 

In the subsequent subsections, we will review the state-of-art rule extraction algorithms 

and discuss the applicability of these methods to the task of interpreting SVMs. As we have 

discussed in section 1.1, we want to investigate the problem of interpreting SVMs in the 

scenario of high dimensional feature spaces where SVMs demonstrate substantial benefits 

over other classification methods. Thus we will focus on discussing the performance (in terms 

of the accuracy and understandability of the extracted models) of existing rule extraction 

methods in high dimensional feature spaces. 

Specifically, the discussions are with respect to the following issues: 

What language is used to represent the extracted models? 

What extraction strategy is applied by the algorithm? 

Does the algorithm utilize any strategies to address the issue of scalability in under- 

standability? 

Is the method ( if it is a method of extracting rules from neural networks)applicable 

to the task of extracting rules from SVMs? Or is there any limitation of the existing 

rule extraction method(if it is a method of extracting rules from SVMs)? 

3.1.2 Rule Extraction from Neural Networks 

Existing rule extraction algorithms developed for neural network can be categorized into two 

families by their extraction strategy: algorithms that set up the task as a search problem 

and algorithms that view the problem as an inductive learning task. In this section, we 

survey well-known methods from both families. 

The search-based rule extraction algorithms extract a set of conjunctive rules from 

trained neural networks. The extraction strategy involves exploring a space of candidate 
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conjunctive rules and testing individual candidates against the network to see if they are 

valid rules. 

Most of these algorithms conduct their search through a space of conjunctive rules. 

Figure 3.1 shows a rule search space for a problem with three Boolean features. Each 

node in the tree corresponds to the antecedent of a possible rule, and the edges indicate 

specialization relationships between nodes. The node at the top of the graph represents 

the most general rule (i.e., a rule that covers all examples), and the nodes at the bottom 

of the tree represent the most specific rules. Unlike most search processes which continue 

until the first goal node is found, a rule-extraction search continues until all (or most) of 

the maximally general rules have been found. A rule is valid if the predictions of the rule 

agree with the perditions of the trained neural network on all those examples that match 

the rule's antecedent. A rule is maximally general if any one of the literals is dropped from 

the rule's antecedent, the rule is no longer valid. 

Figure 3.1: A rule search space. 

Notice that rules with more than one literal in their antecedent have multiple ancestors 

in the graph. Obviously when exploring a rule space, it is inefficient for the search procedure 

to visit a node multiple times. In order to avoid this inefficiency, we can impose an ordering 

on the literals thereby transforming the search graph into a tree. The thicker (red) lines in 

figure 3.1 depict one possible search tree for the given rule space. 

One of the problematic issues that arise in search-based approaches is that the size of 
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the rule space can be very large. For an input feature space with n binary features, there 

are 3n possible conjunctive rules (since each feature can be absent from a rule antecedent, 

or it can occur as a positive or a negative literal in the antecedent). To address this issue, a 

number of heuristics have been employed to limit the combinatorics of the rule-exploration 

process. 

Several rule-extraction algorithms manage the combinatorics of the task by limiting the 

number of literals that can be in the antecedents of extracted rules [31] [18]. For example , 
Satio and Nakano's algorithm uses two parameters, kpos and kneg , that specify the maximum 

number of positive and negative of literals respectively that can be in an antecedent. By 

restricting the search to a depth of k, the rule space considered is limited to a size given by 

the following expression: 

For fixed k, this expression is polynomial in n, but obviously, it is exponential in depth 

k .  This means that exploring a space of rules might still be intractable since, for some 

networks, it may be necessary to search deep in the tree in order to find valid rules. 

The limited search space also improves the understandability of the extracted rules. 

Human experts often have difficulties in understanding rules with many (e.g 30) literals in 

the antecedents and a rule set with large number of rules (e.g 100 ). Limiting the number 

of literals that can be in the antecedents of extracted rules to a user desirable level will 

partially improve the understandability of the extracted rule sets. Therefore, algorithms 

that apply this heuristic can control the tradeoff between understandability and the accuracy 

of approximation by adjusting the parameter kpos and kneg. Enlarging these parameters (the 

extreme case is to set them to the maximal possible value, which means exploring the entire 

search space) will result in more accurate but less understandable rules. On the other hand, 

understandability of the extracted rules can be improved by compromising the search space 

of the maximal general rules. 

The drawback of the method is that it can only be applied to discrete features and to low- 

dimensional data sets. Otherwise, the search space of all possible rules would become too 

large to be enumerated and explored. Even though the heuristic of limiting search space can 

alleviate the problem of inefficient search in high dimensional feature spaces, the algorithms 

still have difficulties in numeric feature spaces. Many, if not most, classification applications 

involve both numeric-valued and discrete-valued features. Furthermore, the algorithms will 
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return all or most rules that are maximally general. At the same time there is no mechanism 

to control the tradeoff between the understandability of the resultant rule sets in terms of 

number of rules and the accuracy of the approximation. Hence the understandability is not 

fully scalable to high dimensional spaces. 

The alternative rule extraction algorithms are learning based methods, which are more 

efficient than the search based methods. In this learning task, the target concept is the 

function represented by the network, and the hypothesis produced by the learning algorithm 

is the model represented in a language used by the rule extraction algorithms to approximate 

the network. 

TREPAN [25] takes a trained neural network and a set of training data as inputs. 

As output, it produces a decision tree that provides a close approximation to the function 

represented by the network. The task of TREPAN then, is to induce the function represented 

by the trained network. 

In many respects, TREPAN is similar to conventional decision tree algorithms overviewed 

in section 2.2, which induce trees directly from training data. TREPAN'S learning task dif- 

fers in several key aspects, however. First, the target concept to be learned by TREPAN 

is the function represented by the network. This means that TREPAN uses the network to 

label (i.e. get the predicted output value of) all instances. Second, because TREPAN can 

use the network to label instances, it learns not just from a fixed set of training data, but 

from arbitrarily large samples. This can avoid the lack of examples for the splitting test in 

the lower levels of the tree and could alleviate the overfitting problem in the conventional 

decision tree algorithms. 

Figure 3.2 provides a sketch of the TREPAN algorithm. The basic idea of the method is 

to progressively refine an extracted description of a neural network by incrementally adding 

nodes to a decision tree that characterizes the network. Initially, TREPAN'S description of 

the network is a single leaf node that predicts the class that the network itself predicts most 

often. This crude description of the network is refined by iteratively selecting a leaf node of 

the tree to expand into an internal node with leaves as children. 

In order to decide which node to expand next, TREPAN uses an evaluation function to 

rank all of the leaves in the current tree and then picks the node with the greatest potential 

to increase the accuracy of approximation to the network. The motivation for expanding 

an extracted tree in this best-first manner is that it gives the user a fine degree of control 

over the size of the tree to be returned: a tree of arbitrary size (in terms of number of 
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Algorithm 3.1: TR,EPAN 

Input: the trained neural netowrk;training examples {Zi, yi)El, where yi is the class 
label predicted by the trained neural network on the training example $; global 
stopping criteria. 

Output: extracted decision tree. 
begin 

initialize the tree as a leaf node 
while global stopping criteria are not  met  and current tree can be further refined 
do 

pick the most promising leaf node to expand 
draw a sample of examples 
use the trained network to label these examples 
select a splitting test for the node 
for each possible outcome of the test make a new leaf node 

end 
end 

Figure 3.2: TREPAN algorithm. 

internal nodes) can be selected to describe a given network. The size of the decision tree 

could be viewed as a measure of the understandability of the extracted models. The best 

first manner to grow a tree allows the user to directly control the trade-off between the 

understandability and accuracy of approximation to neural networks. Hence the issue of 

scalability in understandability is addressed. 

Expanding a node in the tree involves two key tasks: determining a logical test with 

which to partition the examples that reach the node, and determining the class labels for 

the leaves that are children of the newly expanded node. In order to make these decisions, 

TRPEAN ensures that it has a reasonably large sample of examples. It gets these examples 

from two sources. First, it uses the network's training examples that reach the node. Second, 

TREPAN constructs a model (using the training examples) of the underlying distribution 

of data in the domain, and uses this model in a generative manner to draw new examples. 

These examples are randomly drawn but are subject to the constraint that they would reach 

the node being expanded if they were classified by the tree. In both cases, TREPAN queries 

the trained neural networks to get the class label for the examples. 

TREPAN can be applied directly to the task of interpreting SVMs by substituting neural 

networks with SVMs as an oracle. But the method is not expected to work well in a high 

dimensional feature space because the effectiveness of this method largely relies on accurate 
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density estimation, which also suffers from the "curse of dimensionality"[16]. In fact, the 

largest dimensionality of the datasets used in the experimental evaluation of TREPAN [25] 

is only 64. We will further discuss the experimental comparison of our proposed approach 

with TREPAN in chapter 5. 

3.1.3 Rule Extraction from Support Vector Machines 

To date, few papers have focused on interpreting SVMs. [27] uses a geometry based method 

to extract a set of If-Then rules from a trained SVM. Given a trained SVM and its train- 

ing dataset, a cluster is first obtained through a clustering algorithm for positive class and 

negative class respectively. For each cluster, a hyperrectangle is constructed in the full di- 

mensional space using the following way. The center of each cluster, termed prototype vector, 

is used as the center of a hyperrectangle. In each cluster region, the support vector which is 

farthest from the cluster's prototype vector is chosen as the corner of that hyperrectangle. 

These hyperrectangles can later be translated into If-Then rules. 

In order to define the number of hyperrectnagles per class, the algorithm follows an 

incremental scheme. Beginning with a single cluster per class, the associated hyperrectangle 

is generated. Next, a partition test is applied on this region. If it is negative, the region is 

translated into an If-Then rule. Otherwise, new regions are generated. This procedure is 

repeated while a region that fulfils the partition test exists or until the maximal number of 

iterations is reached. The process results in a desirable number of generated If-Then rules. 

For each iteration, there are p regions with a negative partition test (they will be trans- 

lated into If-Then rules) and m regions with a positive partition test. In the next iteration, 

data from these m regions are used to determine m + 1 new clusters and the associated new 

hyperrectangles. If the maximum number of iterations is reached, all the regions (indepen- 

dently of the results of the partition test) are translated into rules. 

The partition test attempts to diminish the level of overlapping between regions of 

different classes by apply several heuristics. Such heuristics could be, for example, the 

partition test is positive if the generated prototype belongs to another class, or if a support 

vector from another class exists within the region. Iteratively reducing the overlapping 

between regions of different classes and thus increasing the accuracy of resulting rule sets, 

the partition process gains a good tradeoff between the accuracy and size of resulting rule 

size. 

An example in figure 3.3 illustrates the essential idea of this algorithm. Figure 3.3 (a) 
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- - 
(a) a nonlinear SVM classifier 

corner protPpe 

3er the first round, two rectangles are 
generated, with some overlapping between them. 

I 

(c)After the second round, three rectangles are obtained, without any overlapping between region 
of different classes. 

Figure 3.3: An example of extracting If-Then rules from SVMs. 
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shows a trained nonlinear SVM that distinguishes black points from white pints in a two 

dimension space. The round points represent support vectors of both classes. Figure 3.3 

(b) shows the result after the first iteration of the algorithm. The triangles represent the 

prototypes, i.e. centers of clusters for both classes. With these two prototypes and the 

furthest support vectors in respective clusters (indicated as "corner" in the figure), two 

rectangles are defined. Then a partition test is conducted, which results in a positive test, 

because a white support vector resides in the region of black points. At the second iteration, 

one more cluster is generated. Three rectangles are constructed using the new prototypes 

and support vectors. At last, the rectangles can be translated into If-Then rules. For 

example, the leftmost rectangle in 3.3 (c) can be translated as 

If a < X L b a n d c < Y L d  

Then it is a black point. 

By using support vectors which are the closest points to the separating hyperplane in 

the class, it is possible to build a set of rectangles that represent the class with minimum 

overlap between classes. This method can control the number of If-Then rules, but it 

cannot control the size of the individual rules which all involve every dimension. Therefore 

the understandability of the extracted rules can not scale to a very high dimensional feature 

space. In addition the performance depends heavily on the chosen clustering algorithm. 

3.2 Related Techniques 

Although we are not aware of a learning strategy similar to our proposal, a few ideas that we 

discuss in this section hint that the proposed BUR algorithm, which learns a set of unordered 

rules to approximate the SVM classifiers by approximating their classification confidence in 

the training data, could be promising. In the following subsections, we will review the 

techniques related to our proposed method and discuss the rationale of our approach. 

3.2.1 Choice of The Rule Learner-Decision Trees or Rule Induction Meth- 
ods 

Rule induction methods are the commonly used methods to produce If-Then rules. Also, in 

section 2.2, we have mentioned that a decision tree can be translated into a set of If-Then 
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rules. To decide on the most appropriate rule learner for the task of extracting accurate 

and understandable IF-Then rules from trained SVMs, we need to find out more about the 

properties of learning in high dimensional features spaces. 

Previous work [22] indicates that high dimensional applications share the properties 

of dense concepts and sparse instances. Specifically speaking, most features seem equally 

relevant to class labels yet only few features are relevant to a certain example. Recently, re- 

searchers began to investigate deeply these properties of learning in high dimensional feature 

spaces. [5] [lo], e.g., address the problem of clustering in high dimensional spaces by finding 

clusters in separate subspaces where a cluster is only required to be dense in its correspond- 

ing subspace. [13], as another example, evaluates a "sleeping experts" learning algorithm 

on a number of large text categorization problems, one of the typical high dimensional ap- 

plication domains. Given a pool of fixed "expertsn- each of which is usually a simple, fixed, 

classifier (a sequence of words, possibly containing some "gaps", appearing in a fixed order 

but at any position in a document) -, sleeping experts build a master, which combines the 

classification of the experts in some manner. The master keeps a large pool of experts each 

associated with a weight, which are allocated in the learning period. In the classification 

period, whenever a new document is presented, only those experts (i.e. sequences of words) 

which appear in the document are "awakened" and extracted from the pool. The actual 

prediction given by the master combines the weights of these awakened experts. A large 

number of the rest "sleeping" experts have nothing to do with this prediction. 

The success of these works suggests that we can reasonably assume that different subsets 

of features are relevant to ( or are awakened for predicting) class labels for data in different 

regions of the data space. More precisely speaking, the target concept is a disjunction of 

many independent conjunction rules. 

Comparing decision tree learners and rule induction learners in the light of the above 

discussion, rule induction learners are more appropriate for our task for several reasons. First 

of all, because their hierarchical structure only allows testing one condition at each level, 

decision trees are less efficient in learning a disjunction of a set of independent conjunction 

rules. Moreover, it is well-known that decision trees have the problems of overfitting and 

instability [30] [8] [9] [24]. Due to the nature of iteratively splitting the data space, decision 

trees are more likely to overfit in high dimensional spaces, wherein a node could have as 

many as 100 similar quality splits and a choice may be no better than an arbitrary guess. 

In contrast, rule induction approaches do not split the entire data space and, therefore, a 
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previous bad choice will not seriously affect all following choices as it does in the decision 

tree learning process. 

3.2.2 Learning Rules in High Dimensional Feature Spaces 

Most rule induction algorithms generate rules assembled in a particular order. During 

classification of a new example, each rule is tried in this order until one fires and that rule 

predicts which class the example belongs to. Understanding such rules is not easy since 

the meaning of any single rule is dependent on all rules that precede it in the rule list. An 

example in [ l l ]  illustrating this problem is as follows: 

"If feather = yes 

Then class = bird 

ElseIf leg = two 

Then class = human 

ElseIf 77 ... 

The rule "If leg = two Then class = human", when considered alone, is not correct 

as birds also have two legs. Therefore, to understand the rule in the rule list, all rules 

preceding the rule must be considered. This problem becomes acute with a large number 

of rules, making it difficult for an expert to understand the true meaning of a rule far down 

in the list. 

In addition, we assume that separate subsets of features are relevant to class labels for 

data in different regions of the space. These feature subsets are equally important and 

should be applied simultaneously in order to decide the class of an example. However, if 

a rule list is used, the decision is made as soon as one rule in the rule list is fired. This 

could be an arbitrary decision, considering the number of possible instances existing in a 

high dimension space and the number of rules we rely on to make a single decision. 

Because of these reasons, we adopt the paradigm of unordered rule learning in our 

proposed approach. [Ill proposes a method for generating unordered rules using CN2 [121. 

CN2 is a sequential covering rule learning algorithm. At each step, CN2 learns a single 

best rule by performing a beam search. This has been discussed in section 2.3 and the CN2 

algorithm is outlined in figure 2.3. The original CN2 algorithm generates a rule list. The 
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main modification to this algorithm presented in [ll] is to iterate the beam search for each 

class in turn. When it searches the rules for the positive class, only covered examples of 

the positive class are removed. Unlike for ordered rules (or rule list), the examples in the 

negative class remain because now each rule must independently stand against all negative 

examples. The covered positive class examples must be removed to prevent CN2 from 

finding the same rule again. The same strategy is applied to searching the rules for the 

negative class. 

With unordered rules, each rule is associated with the class distribution of the covered 

training examples. At the classification stage, all rules are tried, those which fire are collected 

and the aggregation of the class distributions corresponding to those rules decides the most 

probable class for the example. 

3.2.3 Framework for Function Estimation by Gradient Boosting Machine 

[17] proposes a framework for approximating a function by a gradient boosting machine. 

Given training examples {Zi, yi)zl, where yi E R, the goal is to obtain an estimate F (2) of 

the function y = F* (2) using the training data, so that the expected value of the loss function 

L(y, F(Z)) is minimized. The form of F(Z) is restricted to a special additive function as 

follows: 

F(Z; {om, Zm)f) = cK=~ Dm . h ( 6  Zm) , where h ( c  dm) is a basic learner such as a 

decision tree, Zm is the learning parameters(e.g. define the shape of a decision tree), Pm is 
the confidence which indicates the reliability of the corresponding basic learner and M is 

the boosting round. This is a generalized form of boosting methods. 

The goal is formulated as finding 

In situations where it is very complicated to solve this optimization problem, we can do 

it by a "greedy-stagewise" approach as follows: 

for m = 0 to M do 

end 
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Using the "steepest-descent" method, the steepest-descent to minimize the loss function 

at each Zi at step m is 

The problem can be viewed as greedily finding the best step towards the estimate of F'*(Z) 

under the constraints that the "steepest direction" is a member of the parameterized class 

of functions h(lc'; a'). In the case that the "steepest direction" is infeasible, a' is chosen so 

that h ( e  a') is most parallel to ? E R ~ .  

Then a search for the optimal length of the step: 

is performed and the approximation function is updated as 

If the approximated function is a classifier, the classification is s i g n ( ~ k o  Bm. h(lc'; a'm)). In 

this thesis, we use a variant of Gradient Boosting to approximate a trained SVM classifier 

by a set of unordered If-Then rules, where a simple If-Then rule is treated as a basic learner. 

The detail of the method is discussed in chapter 4. 



Chapter 4 

The Algorithm 

4.1 Problem Formulation And Overview of the Approach 

We formulate the problem of extracting rules from SVMs as follows: 

I n  the scenario of high dimensional feature spaces, given a trained S V M  and the 

data on  which i t  was trained, produce a description of the SVM's hypothesis that 

is understandable yet closely approximates the SVM's prediction behavior. 

In this thesis, we present and evaluate a novel algorithm for the task of extracting 

understandable description from hard-to-understand SVMs. We propose a method that 

takes a trained SVM and the data on which it was trained as input and learns a set of 

If-Then rules to approximate the prediction behavior of SVMs. If-Then rules are generally 

considered to be understandable and that allow an explicit control of their size. The learning 

algorithm advanced by this thesis research has the following properties. 

First, the approach produces understandable yet accurate description of the SVMs in 

the scenario of high dimensional feature spaces. Both the understandability and classifica- 

tion accuracy of the rule sets learned by standard rule learners can not scale well to high 

dimensional feature spaces. This has been discussed in detail in section 3.2.1 and 3.2.2. To 

overcome these weaknesses of standard rule learners, we exploit two advanced concepts of 

rule learning. 

1) In a very high-dimensional feature space, the amount of information contained in 

many alternative rules will be rather similar and the choice of a single rule will be somewhat 

random. Therefore, we adopt the paradigm of unordered rule learning where all applicable 
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rules are used for the purpose of classification. The resulting unordered rule sets also lead to 

a better understandability as a single rule in such rule sets can be understood in isolation. 

The understandability of the resulting rule sets will be discussed in section 4.3. 

2) In classical rule learning, less and less training examples remain as the learning process 

proceeds, resulting in a high risk of overfitting. The trained SVMs can be exploited by our 

rule learner to alleviate this problem. The essential idea is as follows. A trained SVM will 

output a function value on every example. When SVMs are used for classification. The 

sign of this function value indicates the class label of this example (i.e. either positive 

class or negative class). The absolute value of this function value is called confidence which 

indicates the reliability of the prediction on this example. Classifiers that can produce 

such confidence value are called confidence-rated classifiers. The unordered rule sets can be 

easily modified into confidence-rated classifiers. A confidence which indicates the reliability 

of the prediction can be attached to each rule in the training process. The predictions of all 

applicable rules are combined in a way such that the predictions of more confident rules will 

play more important roles in the final decision. This final prediction is a value containing 

information on both the class label of the example and the confidence of this prediction, 

just like the function value output by SVMs. I will return to explaining this classification 

mechanism in section 4.3. To alleviate the problem we mentioned in the beginning of this 

paragraph, in the training process, we do not drop the positive class training examples until 

the unordered rules learned so far have a similar confidence in classifying this example as 

the SVM. In order to learn unordered rules approximating the confidences of an SVM, we 

adopt the method of function estimation by gradient boosting machine. The algorithm of 

approximating SVMs by the unordered rules will be discussed in section 4.2. 

Secondly, the resulting unordered rule set provides both a global explanation of the 

entire model represented by the SVMs trained for the problem domain and an instance- 

based explanation of SVM's classification decision on a single example. All extracted rules 

collectively provide a global overview of the knowledge implied by the trained SVM classi- 

fiers. Collecting the meaning of every applicable rule on a particular example generates an 

instance-based explanation of the SVM classifiers. 

Thirdly, the approach consists of two phases -a learning phase and a pruning phase, so 

that the tradeoff between understandability and classification accuracy is well controlled. In 

the learning phase, a rule set that maximally approximates the trained SVM is learned. In 

the pruning phase for some user-specified acceptable level of understandability (defined in 
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terms of rule set size), we want to obtain the most accurate model. This strategy allows the 

user to directly control the trade-off between understandability and classification accuracy. 

The learning phased is presented in section 4.2 and the pruning phase is presented in section 

4.4. 

Last but not least, the approach can be applied to a broad class of SVMs. Since the ex- 

tracted rule sets approximate the prediction behavior of SVMs by approximating the SVMs' 

classification confidence on the training data, the rule learner queries the trained SVMs only 

one kind of information: the output function value (i.e the classification confidence) on each 

training data. The rule learner does not need to know the internal structures of the trained 

SVMs. Therefore the approach can extract understandable description from SVMs that use 

any kind of kernel functions. 

The following sections provide a detail discussion of the approach. 

4.2 Learning Phase 

In this section, we will present the Boost Unordered Rule Learner algorithm that takes a 

trained SVM and the data on which it was trained as input, and produces a set of unordered 

rules that maximally approximate the prediction behavior of the SVM. 

4.2.1 Boost Rule Learners 

We approximate a trained SVM by a set of If-Then rules so that the classification confidence 

of the SVM and the If-Then rules are similar on the same training example. We achieve 

this goal by adopting the framework of gradient boosting machines. The input is a set of 

training examples {2i, yi}zv=l, where {2i}E1 is exactly the same set of training examples on 

which the SVM was trained and yi E R is the value (not the class label) output by the SVM 

classification function. The sign of yi is the class label predicted by the SVM on example 

& ,  and the absolute value of yi indicates the confidence of this particular decision given by 

the SVM. 

The estimator is a special additive function ~ x = ~  Dm . h ( c  Zm), where h ( c  Zm) is a 

basic learner, Zm is the learning parameters , is the confidence and M is the boosting 

round. For better understandability, we choose a single If-Then (conjunctive) rule as the 

basic learner. Formally it is defined as: 
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+1/ - 1 if the rule is applicable on example Z and the majority class 

r(Z) = h ( 6  a') = covered by this rule is the positive/negative class; 

otherwise. 

( 4 4  
where a' denotes the antecedent of a rule. 

At each boosting round, the basic learner and its corresponding confidence are chosen 

so that the loss function is minimized on the training examples. 

form = 0 to M do 

end. 

The loss function is defined as the absolute error, i.e. the absolute difference between 

the "correct" value as predicted by the SVM and the value predicted by the rules,i.e. 

L(y, F(Z)) = ly - F(Z) 1. Using the "steepest-descent" method, the direction of the steepest- 

descent step at the training data Zi is 

where yi - F(Zi) is termed "residuals". 

The basic learner which is most parallel to the direction Y E {H, O}Y is chosen at each 

boosting round. More specifically, we want to find the most accurate rule r(Z) that correctly 

labels Zi as the sign of the current residuals. 

For a given rule rm(Z), i.e. a fixed Zi,, its confidence Dm, i.e. the optimal length of the 

steepest-decent step is chosen to minimize the loss function. 
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- - C ~i - Fm-l(Zi) - argmin lrm(4)Il rm(2i) (4.5) ' all Zi covered by rule r ,  

- - C I 
yi - Fm- 1 (Zi) argmin 

rm (Zi ) - PI 
all Zi covered by rule rm 

- - ~ e d i a n { ' ~  - Fm-l(z;) : all covered by rule rm} 
rm (Zi ) 

Equation 4.7 is proved by the following theorem. 

Theorem 1 xZ1 lwi - dl is minimized for d = d* whenever d* is a median of { w i ) z 1 .  

Proof. ( A  similar proof can be found at M H De Groot, Optimal Statistical Decisions, 

McGraw-Hill 1970, section 11.4, Theorem 1, p. 232). 

Let d* be any median of {u t i ) z1  and let d be any other number such that d > d*. Then 

d* - d  (wi 2 d > d*) 
Iwi - dl - 1wi - d I = d + d* - 2wi (d > wi > d*) 

* 
(4.8) 

(d > d* 2 wi) 

Since when d > wi > d*, so that -2wi > -2d , we have d + d* - 2wi > d* - d, and thus 

~ z ~ { ~ w i  - dl - Jwi - d*))  2 (d* - d)){wilwi 5 d,  1 5 i < N ) )  + (d* - d)l{wild > wi > 
d*, 1 5 i 5 N}I + (d - d*)({wi)wi < d*, 1 5 i < N)I 

with equality if and only of I{wild > wi > d*, 1 5 i < N)I = 0,  which can only happen 

if and only if d is a median of {wi)F. We conclude that 

~ z ~ { ) w i  - d)  - Jwi - d*l) > (d - d*){){wilwi < d*, 1 < i 5 N)1 - ){wilwi > d*, 1 < i 5 
N}I 2 0 as d* is a median of {wi )y .  Hence 

and there can be equality if and only if d is also a median. The case where d < d* can be 

dealt with similarly. 

Our algorithm specializing the gradient boosting method for approximating is presented 

in figure 4.1. Note that at step 7 ,  we could adopt any existing rule learning method, e.g. 

the beam search strategy described in figure 2.3, to learn a single most accurate rule. The 
M classification is given as ~ i g n ( C , , ~  ,Om . rm(Z)) .  
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Algorithm 4.1: BOOSTRULE-LEARNER 

Input: training examples {Zi, yi)Ev=l, where yi is the value predicted by the SVM on the 
training example &; number of iterations M. 

Output: F(Z) = xEZo ,Om . rm(Z), where rm(2) is the function of a conjunctive rule 
defined as forrnula 4.1, and Dm is the confidence of the corresponding rule. 

begin 
1 r n t 0 , F m ( 5 ) t 0  
2 for m + 1 to M do 
3 foreach Zi 'i 2 do 
4 & + ssign(yi - Fm-l(&)) 

end 
5 2 + 2  - {2& = O )  
6 Y +-- {&lZi E 2) 
7 rm t LEARN-ONE-RULE(~,Y) 
s ,Om t Median{- T~ 2% : all Zi covered by rule r,} 
9 Fm (2) + Fm- (5) + ,Om . rm (5) 

end 

Figure 4.1: Boost rule learner algorithm. 

4.2.2 Improving Boost Rule Learners by Using Unordered Rules 

However, there exists a problem in this simple method which is illustrated by the example 

in figure 4.2. A linear SVM is trained to distinguish rectangular objects (the positive class) 

from round objects (the negative class). Initially Fo = 0, i.e. the initial rule learner estimates 

the SVM confidence on each example as 0. The signs of current residuals (i.e. the direction 

of the steepest-decent step) at each training data are shown in figure 4.2(a).We obtain the 

first most accurate rule R1 which correctly labels the residual signs of 5 rectangular objects. 

The confidence of rule R1 is set to the residual of the middle rectangle (the median) covered 

by Rule R1. After F is updated, the signs of the current residuals for the leftmost two 

rectangles covered by rule R1 become negative since they are closer to the separating hyper 

plane than the median of R1 and thus are assigned smaller values by the SVM. This is 

shown in 4.2(b). At the second round, the most accurate rule is R2, which correctly labels 

the residual signs of three objects. The problem with rule R2 is that it looks like "If an 

object can be covered by R2, then it's a round object.", but it covers more rectangular 

(positive class) than round (negative class) objects. 
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Figure 4.2: An example of boost rule learner algorithm 

To remedy this problem, we borrow an idea from CN2 and generate unordered rules 

for each class in turn, i.e. first for the positive and then for the negative class. This is 

equivalent to only searching for the steepest positive/negative direction (thus only increasing 

/decreasing the value of F on the training examples) towards the approximation of SVMs 

at each turn. The advanced version of our algorithm is called "Boost Unordered Rule 

Learner7'(BUR) and is presented in figure 4.3. 

The algorithm works as follows: when it learns unordered rules for the positive class, 

the steepest direction to increase the value of F at each step is along every positive training 

example whose residuals > 0. Those positive training examples whose residuals 5 0 have 

been classified by the rules extracted as far in at least the same confidence as the SVM's.Thus 

we simply drop them from the current training examples (line 9). As in CN2, all examples 

in the negative class are kept (line lo), because each rule must independently stand against 

all negative examples. Then the optimal length of the step towards the approximation is 

found (linel4) and the F is updated (line 15). A similar process proceeds to learn rules for 

the negative class. 

4.2.3 Convergence of BUR 

Unlike the algorithm presented in figure 4.1, there is no input parameter to restrict number of 

iterations in the BUR algorithm. However, we claim that the BUR algorithm will terminate 

in the end and the boost process will converge.This is informally proven as follows. In the 

process of learning rules for the positive class, every time a new rule is found, the confidence 

of this rule is chosen to be the median residual of all training examples covered. Half of the 
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Algorithm 4.2: BOOST-UNORDEREDRULE 

Input: training examples {Zi, yi)gV=l, where yi is the value predicted by the SVM on the 
training example Zi . 

M Output: F ( Z )  = Pm rm (Z) ,  where r,  (2) is the function of a conjunctive rule 
defined as formula 4.1, P, is the confidence of the corresponding rule, M is the total 
number of unordered rules discovered by this algorithm. 

begin 
1 m+-O,F,(Z)+O 
2 m j + m + l  
3 foreach class C E {C,,, , Cneg) do 
4 2, t {all training examples in clms C )  
5 + {all training examples in the other class) 
6 repeat 
7 foreach 3i E 2, do 
8 & t sign(yi - (6)) 

end 
9 2, +-- 2, - {ZilZi E 2, A jji # sign(yi))  

10 Tt+2,url, 
11 Y' + {sign(yi) lZi E 2 )  
12 r ,  +- LEARN-ONERULE(~',Y' ,G) 
13 if r ,  is not null then 
14 4, t ~ e d i a n { w  rm xz : all 4 covered by rule r,) 
15 Frn(2) Frn-V=l(Z) + Dm . rm(3)  
16 m + m f l  

end 
until r ,  is null 

end 
17 h f = m - l  

end 

Figure 4.3: Boost Unordered Rules algorithm 
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positive examples (whose residuals are smaller than the median's) covered by this rule will 

be removed since the unordered rules learned so far have at least the same confidence in 

classifying these examples as the SVM. Thus as the learning process proceeds, less and less 

training examples in the positive class are left, which leads to the termination of the search 

for rules for the positive class. The same argument stands for the process of learning rules 

for the negative class. Therefore the BUR algorithm will terminate in the end. 

4.3 The Format of the Resulting Rules 

To demonstrate the format of rules discovered by our method and their interpretation, we 

consider the following example that shows a small part of a set of unordered rules. The rule 

set is a result of approximating an SVM that predicts if a protein is an outer membrane 

protein from its amino acid sequence, which is one of the experiments in section 5. 

If SLGG = no and QY= yes and QSQ = yes 

Then class = outer-membrane [0.699955] 

If QS = yes and FW =yes 

Then class = non-outer-membrane [-0.9996581 

. . . 
Default Class = non-outer-membrane" 

The rules indicate that absence of subsequence "SLGG" and presence of subsequences 

"QY" and "QSQ" in a protein sequence is a predictor of outer membrane proteins, while 

presence of subsequences "QS" and "FW" in a protein sequence predicts the protein is not 

an outer membrane protein. Furthermore, the absolute values of the weights associated 

with rules indicate the confidence for the corresponding decisions. In this case, the second 

rule has higher confidence than the first rule. 

An important argument for the understandability of the unordered rules rests on the 

fact that the contribution of each rule can be understood in isolation. Summing these con- 

tributions generates the prediction/classification. This means that if we test the antecedent 

of every rule in a set of unordered rules, we accumulate evidence for or against the target 
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concept as we proceed. If none of the rules in the rule set is applicable, a default rule 

assigns the example to the majority class. Otherwise the absolute value of the sum can be 

understood as a measure of confidence of the classification. After gleaning the meaning of 

each rule in isolation, we can approximately understand the reasoning behind the SVMs 

decision. 

4.4 Pruning Phase 

The objective of algorithm Boost Unordered Rule Learner is to find unordered rules that 

optimally approximate SVMs. However, the level of understandability of the resulting 

unordered rules may not necessarily satisfy the user's requirements. The understandability 

of a model is often measured in the model size. In the pruning phase, the size of the 

unordered rules is trimmed to a user defined limit while maintaining accuracy as much as 

possible. 

We measure the size of a rule set by the number of rules and the number of features 

involved in each rule. For unordered rules, each rule must independently stand against 

all examples in the other class and will have a similar level of abstraction. Thus all rules 

have similar size in terms of number of features involved, which is also confirmed by our 

experimental evaluation in section 5. We also observe that the average number of features 

involved in the unordered rules is around 2-3. A single rule of this size is comprehensible to 

a human expert. Therefore, the pruning method focuses on controlling the number of rules. 

Since the number of unordered rules is usually too large to test every possible combina- 

tion of rules, we apply a greedy strategy. In essence, the rule that has the least effect on 

the overall performance of the current rule set is removed. Then we repeat evaluating the 

resulting smaller rule set until the size of the rule set meets the user's understandability 

requirement. 

Typically, the pprformance of a classifier is estimated using a separate test data set 

or using only the training data set and adjusting the raw error estimate by a statistical 

correction to reflect the bias [30]. Since in most application domains labeled data is not 

abundant, we adopt the latter approach and evaluate the performance in the pruning phase 

by the apparent error rate on the training data set. For large rule sets, the overall error 

rate may not change if only a single rule is eliminated. To break ties, a second measure 

based on the loss function presented in section 4.2.1 is introduced. Our pruning algorithm 
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Algorithm 4.3: PRUNE-UNORDEREDMLES 

Input: training examples {Zi, yyiEl, where yi is the value predicted by the SVM on the 
training example &; a set of unordered rules and their corresponding confidences 
discovered by algorithm BUR {r,; ,6'm),M==o; desirable number of rules S. 

Output:  a set of unordered rules and their corresponding confidence {rm; P,);;:. 
begin 

M 
1 R1 + {rm; Pm)nt=O 
2 w h i l e I R I I > S d o  
3 {r; P} t LEAST-SIGNIFICANTRULE(R1, 2, Y) 
4 R1 +- R1 - {r; p) 

end 
5 re turn  R1 

end 

Algorithm 4.4: LEAST-SIGNIFICANT-RULE 

Input: training examples {&, yi)Ev=l, where yi is the value predicted by the SVM on the 
training example &; a set of unordered rules and their corresponding confidences 
{rm; Bm)k=o. 

Output:  Rule r that has the least effect on the overall performance of {r,; /3m)k,0. 
begin 

1 R+{rm;Pm}k=O 
2 ~ ( ~ ) + C ~ = ~ ~ r n . ~ r n ( ~ )  
3 for m t 0 to L d o  
4 F (2) '  +- F (2) - pm . r, ( 2 )  
5 LossAccuracy [m] + ESTIMATED-ERROR(F(~)', 2, Y)- 

ESTIMATEDERROR,(F(X'), 2, Y) 
6 LossResiclual[m] c- xZ1 IF1(2i) - yi)l - zZ1 IF(?) - yiI 

end 
7 find the least significant rule(s) with the smallest LossAccuracy, and break a 

possible tie by returning the rule ri with the smallest LossResidual 
8 re turn  {Ti; pi) 

end 

Figure 4.4: Pruning algorithm 
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is presented in figure 4.4. 



Chapter 5 

Experiment a1 Evaluation 

5.1 Experiment Design 

We evaluated the quality of extracted unordered rules in terms of classification quality and 

understandability. Decision trees, rule induction learners and SVMs were chosen as com- 

petitors of our proposed algorithm. Classification quality is evaluated in recall and precision 

for the target class and overall accuracy, which have been defined in section 2.1. Under- 

standability is evaluated in the size of the learned models. The C4.5 [3] implementation of 

decision trees and S V M ' ~ ~ ~ ~ [ ~ ]  implementation of SVMs were chosen because they are well 

known and have been used extensively in previous research. For rule induction learners, 

we chose the CN2 implementation [4] which also learns a set of unordered rules. This is to 

study separately the consequences of exploiting unordered rules and SVM confidence in our 

proposed algorithm. We adopted the same procedure of learning a single rule in [4] as in 

our algorithm for the sake of fairness. Default learning parameters were used in C4.5, CN2 

and svMlight. In all experiments we performed 5-fold cross validation. 

5.2 Dataset Description 

For testing the effectiveness of our algorithm in high dimensional feature space, we per- 

formed experiments on two such application domains: biology sequence classification and 

text classification. The protein dataset was produced by the Department of Molecular Biol- 

ogy and Biochemistry at Simon Fraser University for tackling the outer membrane protein 

(OMP) identification problem [32]. Outer membrane proteins- which are exposed on the 
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surface of the cell- represent potential drug and vaccine targets, and the ability to identify 

such potential targets from sequence information alone would allow researchers to quickly 

prioritize a list of proteins for further study. [32] studies several learning methods on this 

challenging dataset, wherein SVMs outperform all other competing methods significantly, 

and by far the best result for OMP classification that has been reported. Therefore this 

dataset provides a good chance to evaluate the classification quality of the extracted rule 

sets. 

The text dataset used in our experiments is bundled with and can be down- 

loaded from [2].The task is to learn which Reuter's articles are about "corporate acqui- 

sitions". This dataset is chosen because of its public accessibility. Also it is part of the 

Reuters dataset which has been widely used in text classification research. 

The important properties of these two datasets are shown in table 5.1. 

Table 5.1: Description of the evaluation datasets. "Exs" stands for "Examples". 

I DataSet I #. Exs. In Target/Contrasting Class I Feature Type I #. Features I - .  - - - 

1 OMP I 427/1132 1 binary 1458 I 
I I I 

Reuters I 1300/1300 numeric 9947 

5.3 Experimental Results 

The first group of experiments investigates the quality of rule sets produced by the BUR 

algorithms without pruning. Table 5.2 and table 5.3 show the classification quality and 

model size of the classifiers constructed by our method BUR, and its competitors on the 

two datasets. The classification quality is measured in terms of recall and precision of the 

target class and overall accuracy. The number of nodes in a decision tree is used to describe 

the size of the tree. The size of a rule set is defined in terms of number of rules and average 

number of features (components) involved in the antecedent of each rule. Note that the 

sets of unordered rules include both rules for the target class and rules for the contrasting 

class. Thus we also count the total number of components in the rule sets to make their 

size comparable with decision trees. 

For all classification quality measures, the ones achieved by our method are within 4% 
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Table 5.2: Classification quality and classifier size on OMP dataset 

I C4.5 I CN2 I BUR / SVMs I 

I Total # Components 1 134 1 183 1 358 1 - 

. , 

Accuracy(%) 
# Rules 

Ave. # Components 

Table 5.3: Classification quality and classifier size on Reuters dataset 
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# Rules 
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Total # Components 
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- 
- 

160 
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116 
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- 
- 

140 
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BUR 
95 

SVMs 
97 

265 
1.9 
498 

- 
- 
- 



CHAPTER 5. EXPERIMENTAL EVALUATION 47 

from the ones achieved by SVMs, except the recall on the OMP dataset. BUR consistently 

outperforms C4.5 on both datasets and only loses to CN2 1% in precision on the OMP 

dataset while winning in all other cases. 

We also observe that CN2 and our method achieve much higher precision than C4.5 

on both datasets, in particular on the OMP dataset, due to the fact that each rule in the 

set of unordered rules stand against all examples in the other class. Comparing CN2 and 

BUR, BUR achieves much higher recall while still preserving very high precision. Since 

we do not drop the target class training examples until the unordered rules learned so far 

have a similar confidence in classifying these examples as the SVM, more useful rules are 

discovered by BUR and the overfitting problem caused by lack of training examples as the 

rule induction process proceeds is alleviated. 

Both CN2 and our method construct more complicated classifiers than C4.5 as a tradeoff 

for higher classification quality. However, on both datasets, the average number of compo- 

nents in each rule is 5 3, i.e. a single rule is easy for human experts to understand. 

We conclude that 1) Unordered rules perform very well in high dimensional feature 

spaces. 2) By approximating the SVM's classification confidence, the classification quality 

of unordered rules is improved. 

The second groups of experiments compare BUR with another two rule extractors 

TREPAN and BRL. 

As discussed in section 3.1.2, TREPAN can be directly applied to the problem of inter- 

preting SVMs by replacing neural network oracles with trained SVM oracles. In this way we 

tried to compare BUR with TREPAN. The implementation of TREPAN can be downloaded 

from [I]. TREPAN builds a decision tree by using both the supplied training examples and 

randomly generated examples whose labels are predicted by the oracle. At each node to be 

expanded, TREPAN estimates a local sample distribution function, compares it with the 

global sample distribution function and chooses one that is more statistically significant. 

Then the chosen distribution function is used to generate new examples. With the growth 

of the decision tree, less and less supplied training examples remain and more and more 

examples need to be generated in order to keep a sufficient number of examples for finding a 

test. Both datasets used in our experimental evaluation involve very high dimensional fea- 

ture spaces, which results in sparsely distributed training examples. A significant number 

of examples were generated at each node. Therefore the learning process of TREPAN was 

very slow. In the five-fold cross validation experiments on the OMP dataset, the experiment 
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of just one fold had not finished in two days on an 866MHz Pentium PC machine with 512M 

main memory, running Microsoft Windows XP. Consequently, the experiments of comparing 

BUR with TREPAN had not been carried out because of excessive time. 

Table 5.4 shows the comparison results between BRL and BUR on OMP and Reuters 

datasets. Since we wanted to compare the classification quality of the similar size rule sets 

extracted by BRL and BUR respectively, we set the number of boosting rounds in BRL 

to the number of rules in the rule set constructed by BUR. The results demonstrate that 

BUR significantly outperforms BRL in all classification quality measures on both datasets. 

Since BRL keeps learning new rules until the resulting rule sets have exactly the same 

confidence in classifying the training examples as the SVMs, it is very likely that it will 

generate overfitting rules. This may lead to the inferior classification performance of BRL. 

Table 5.4: Comparision of classification quality and classifier size of rule sets constructed 
by BRL and BUR. 

OMP 
11  BRL I BUR 

I Ave. #Com~onents  11 3.2 1 3.0 1 2.1 1 1.9 1 

Reuters 
BRL I BUR 

, , 

Accuracy(%) 
# Rules 

I I I I I 

Total # Components 11  384 1 358 1 564 1 498 

We also conduct experiments of pruning the rule sets produced by BUR to observe the 

variation of classification quality. In particular, we prune the rule sets so that their size is 

similar to that of the classifiers produced by CN2 and C4.5. 

Figure 5.1 and 5.2 show the classification quality at various rule set size. The classifier 

size refers to the total number of components in the rule sets. The results show that all 

classification qualities are fairly stable with substantial decrease of size (total number of 

components). Especially the accuracy only drops no more than 1% on both datasets when 

the rule sets are pruned to half of original size. 

Table 5.5 and table 5.6 compare the extracted rule sets with the classifiers produced by 

CN2 and C4.5 at the similar size. The pruned rule sets are presented as "Pruned BUR", 
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88 
116 

85 
265 

95 
265 
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followed by their size. For example, the item "Pruned BUR(182)" in table 5.5 means the 

pruned rule set totally contain 182 components and is compared to the rule set produced 

by CN2, which totally contain 183 components. 

Compared with the unordered rule sets at the same size, the rule sets extracted from 

SVMs still preserve the benefit of higher recall and higher accuracy. Compared with decision 

trees at the same size, the rule sets extracted from SVMs achieve higher accuracy and 

precision while achieve at least the same level of recall. 

To conclude, the accuracy of the pruned boosted unordered rules is very robust to the 

decrease of number of rules and BUR achieves higher accuracy compared with the similarly 

complicated decision trees and unordered rules generated by CN2. 
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Figure 5.1: Classifier size and classification quality of the pruned rule set on OMP dataset. 
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Figure 5.2: Classifier size and classification quality of the pruned rule set on Reuters dataset. 
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Table 5.5: Comparison of classification quality of similar size classifers on OMP dataset 

Table 5.6: Comparison of classification quality of similar size classifers on Reuters dataset 

Recall(%) 
Precision(%) 
Accuracy(%) 

# Rules 
Ave. # Components 

CN2(183) 

56 
90 
86 
62 
3.0 

Pruned BUR(182) 

65 
86 
88 
62 
3.1 

Recall(%) 
Precision(%) . , 

Accuracy(%) 
# Rules 

Ave. # Components 

Pruned BUR(132) 

67 
78 
86 
45 
2.9 

Pruned BUR(158) 

9 1 
93 

C4.5(134) 

65 
70 
83 
- 

- 

C4.5(160) 

9 1 
89 

Pruned BUR(252) 

95 
93 
94 
141 
1.8 

CN2(249) 

93 
9 1 
92 
140 
1.8 

92 
88 
1.8 

89 
- 
- 
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Conclusion 

One of the main challenges in SVMs for data mining applications is to obtain explicit 

knowledge from the trained SVMs for explaining classification decisions. In this thesis, we 

address the problem of extracting understandable yet accurate rules from SVM classifiers in 

the scenario of high dimensional feature spaces and propose a two phase approach to produce 

a set of unordered If-Then rules that is within user supplied understandability limit while 

maximizing accuracy. In this chapter, we summarize the thesis and discuss future research 

directions. 

6.1 Contributions 

The contributions of this thesis are summarized as follows: 

We propose a novel algorithm to learn a set of If-Then rules to approximate the 

prediction behavior of the trained SVMs. In order to overcome the weaknesses of 

standard rule learners in high dimensional feature spaces, we adopt two advanced 

concepts of rule learning: the paradigm of unordered rule learning where all applicable 

rules are used for purpose of classification and forcing the extracted rule sets to classify 

the training examples in a confidence similar to the trained SVM's . 

The resulting rule set is a set of unordered rules, where each rule gets a confidence 

score derived directly from the SVM by a variant of gradient boosting machines. The 

contribution of each rule can be understood in isolation. After gleaning the mean- 

ing of every applicable rule in isolation during classification, we can approximately 
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understand the reasoning behind the SVMs decision on the example. 

Our approach consists of two phases - a learning phase and a pruning phase, which 

allows users to control the size of the extracted rule sets. In the learning phase, a rule 

set maximally approximating the trained SVM is learned. In the pruning phase the 

rule set is trimmed to a user desirable size while maximizing the classification accuracy. 

Thus the user can directly control the tradeoff between classification accuracy and 

understandability of the model. 

Experimental evaluation is conducted in two typical high dimensional application do- 

mains: biology sequence classification and text classification. On both classification 

tasks, the classification accuracy of the rule sets extracted by BUR is within 4% from 

the one gained by SVMs and much higher than the one achieved by decision trees and 

unordered rules learned by traditional rule induction methods. After applying the 

pruning strategies, the resultant rule sets are at the same level of understandability 

as decision trees or rule sets generated by CN2 while consistently achieving higher 

accuracy than the competitors of the same level of understandability. 

6.2 Future Research Directions 

Future extension of this study could be explored in the following directions: 

In this thesis, we have conducted several experiments to evaluate the performance of 

the proposed algorithm. Further research may theoretically investigate our proposed 

algorithm in depth. Such issues could include the lower bound and upper bound of loss 

in approximation on the training data set and the generalization of the extracted rule 

sets on unseen data. For example, the generalization of the exacted rule sets can be 

evaluated based on the difference between a learned distribution over samples by the 

original learners and the approximations. Various probability distribution measures 

of comparison include relative entropy, KL-distance and cross-entropy. 

Our proposed approach learns understandable rule sets that approximate the predic- 

tion behaviors of trained SVMs by approximating SVM's classification confidence on 

the training data. We could use the same strategy to approximate any confidence-rated 

classifiers, for example classifiers constructed by a boosting algorithm. In particular, 



CHAPTER 6. CONCLUSION 55 

our approach is very promising to be applied to extracting understandable rules from 

these confidence-rated classifiers in the scenario of high dimensional feature spaces. 

Our proposed approach views the problem of extracting understandable yet accurate 

rules from trained SVMs as a learning task. However our learning task differs from 

the traditional learning tasks in several aspects. First, in the traditional setting for 

learning task, both the data distribution and the target concept are unknown. In 

contrast, the target concept is explicitly expressed in the rule extraction problem: 

the learned SVMs. Second, traditional learning algorithms and related theories focus 

on the generalization of the learning models, i.e. the classification quality on unseen 

data. But for rule extraction task, we not only consider the generalization of the 

extracted models, but also its understandability. How to integrate both goals into 

the search process of the learner? Is the rule extraction task easier than traditional 

learning tasks because of the first difference or is it more difficult than traditional 

learning tasks because of the second difference? Previous work [23][6] indicate that 

the knowledge of target concepts could make the learning problem easier. However, 

few theories have developed to address the understandability of a model. Thus there 

seems no direct answer to the question of how to integrate the understandability and 

generalization of a model. We believe it is crucial to develop theoretical models to 

further study these questions. 
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