
FOREST H-ARL7EST SCHEDULING PROBLELI: STUDYIXC'G 
11-.l.THEZ/I_ATICLAL XSD CONSTRAINT PROGR,1LIlIING 

SOLUTIOS STRATEGIES 

Junas Adhikary 

B.Sc., Trent University, Peterborough, ON Canada, 1994 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

O F  T H E  REQUIREMENTS FOR T H E  DEGREE O F  

MASTER OF SCIENCE 

in the School 

of 

Computing Science 

@ Junas Adhikary 1997 

SIMON FRASER UNIVERSITY 

April 1997 

All rights reserved. This work may not be 

reproduced in whole or in part ,  by photocopy 

or other means, without the permission of the author. 



National Library I+( of Canada 
Bibliothique 
du Canada @tmnaIe 

." 

Acquisitions and Acquisitions et 
Bibliographic Services services bibliographiques 

395 Wellington Street 395. rue Wellington 
Ottawa ON K 1 A O N 4  Ottawa ON K 1 A ON4 
Canada 'Canada 

i 

The author has granted a non- 
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell . 

copies of this thesis in rmcroform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in thls thesis. Neither the 
thesis nor substantial extracts fiom it 
may be printed or otherwise 
reproduced without the author's 
permission. 

Your h b  Vofre reference 

Our h!e Yotre reference 

L'auteur a accorde une licence non 
exclusive pennettant a la 
Bibliotheque nationale du Canada de 
reproduire, prtter, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reprodu&ion sur papier ou sur format 
electronique. 

L'auteur conserve la propriete du 
droit d'auteur qui protege cette these. 
Ni la these ni des extrats substantiels 
de celle-ci ne doivent Stre imprinies 
ou autrement reproduits sans son 
autorisation. 



APPROVAL 

Name: 

Degree: 

Title of thesis: 

Examining Committee: 

Date Approved: . 

l I a s t , e r  of  Science  

4 
Forest  Harves t  Schedu l ing  P r o b l e m :  S t u d y i n g  M a t h e n ~ a t i c a l  

a n d  ( ' ons t r a in r  P r o g r a m m i n g  So lu t ion  S t r a t e g i e s  

D r .  Hassan  Ai ' t -kaci  

( ' h a i r  

L- 

D r .  William S .  Havens  

Sen lo r  S u p e r v i s o r  

--+-- ---C - - - - 

D r .  .lib D e l g r a n d e  

E x t e r n a l  E x a m i n e r  



Abstract 

The Forest Harvest Scheduling Problem (FHSP) is an important part of the forest resource 

management. It is a complex multi-criteria optimization problem. Our review of the opti- 

mization techniques applicable to  forest harvesting problems in general suggests that long 

term scheduling is difficult because of the prohibitive size and the complexity inherent to  

the problem. In this thesis, we study mathematical and constraint programming as both 

modelling and solving techniques for such problems. We discuss how these solution strate- 

gies may accommodate the forest growth and treatment simulation model. The simulation 

model is an important part of the scheduling system since it makes the solution more real- 

istic and implementable. We give a mixed integer programming (MIP) formulation for the 

restricted FHSP problem and test it using real-life data  from the Norwegian ECOPLAN 

project. Since larger instances were not solved in a reasonable time, the MIP model alone 

is not sufficient to  solve practical FHSP. We advocate the combined use of the Constraint 

Satisfaction Problem (CSP) model and the iterative improvement technique as a solution 

strategy. The simulation model can also be more easily integrated in this strategy than in 

the MIP model. The iterative improvement techniques will in general benefit from the high 

quality initial solutions. We show how a CSP formulation can be used t o  find "good" initial 

solutions t o  the problem, based on simulation results from a stand growth and treatment 

simulator. The initial solution generator can be used as a module in a n  integrated forest 

treatment scheduling system which will advance the state-of- the-art in forest harvesting 

practices. 
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Chapter 1 

Introduction 

Governments and private sectors worldwide manage an immense area of forest. The United 

States Department of Agriculture alone manages a forest area almost twice the size of 

Germany. Forest harvest planning and scheduling problems are an important part of this 

forest management. Recently, both governments and the public worldwide are demanding 

sustainable harvesting practices for these areas, which would take into account not only 

economics but also the preservation of biodiversity, and the esthetic, and recreational value 

of the forest. Long term forest harvest scheduling allows communities, governmental, and 

non governmental organizations to  check if sustainable forestry is actually being practiced. 

Simplified, the problem is to  assign forest treatment types and times t o  treatment units (of- 

ten called stands) in a given forest area over a long period of time. We will call this problem 

the Forest Harvest Scheduling Problem (FHSP). An optimization version of the problem 

involves optimizing objective criteria such as economical, esthetic, and recreational values, 

which are subject t o  multiple constraints. Traditionally, mathematical programming models 

and solution techniques have been extensively used to generate such schedules, and are still 

the most widely used method (for example, (Garcia 1990, Nelson et al. 1991, Yoshimoto et al. 

1994)). Artificial Intelligence (,41) techniques such as the rule-based espert systems, and 

the local search, have also been applied to  forest management (for esample, (Linehan & 

Corcoran 1994, Eriksson 1994, Murray k Church 1995b)). The above techniques have dif- 

ficulties in modelling a wide variety of spatial, temporal, and visual constraints and/or in 

performing the (usually conflicting) multi-criteria optimization that  is inherent to  the prob- 

lem. In addition, the size of a real life problern is often beyond the practical capacity of 

these met hods. 



llisund t t  al. have suggested the integrated uie of Geographic Information Technol- 

og.  (GI? ' )  and certain -41 techniques (constraint reasoning and local search) to model and 

solve such problem (Slisund r t  (11. 199.5). They describe their approach through a simpler 

version of the problem where only clear-cutting is allotbed. The problem is called the Clear- 

Cut Scheduling Problem (CCSP).  C'CSP is riiodelled as a Constraint Satisfaction Problem 

( C S P )  (Tsang 1993) and a solution is iteratively improved using Tabu search (Glover 1989). 

Although the authors give some reasons for their choice of Tabu search as the iterative im- 

provement technique, it is not all that clear whether the traditional method using a mixed 

integer linear programming (AIIP) model can be effective. 

The thesis of this dissertation is that the FHSP (as defined later) can in principle be 

solved using a MIP model and a state-of-the-art MIP solver if the problem constraints are 

sufficiently relaxed and if some objective criteria are ignored. However, the size of the 

problems solvable in a reasonable time is far below the size of any practical real-world prob- 

lem. Furthermore, an  MIP-based strategy can not be easily integrated with the simulation 

models, which makes the solution hard to  implement. The term simulation in our thesis 

refers t o  the growth and treatment simulation. which is often used by foresters t o  find all 

possible treatment schedules for a stand based on the current stand characteristics and 

general forestry knowledge. The simulation results can be incorporated into a MIP-based 

model too but the model formulation alone becomes a demanding task. Therefore, we give 

a CSP-based model where the simulation can be integrated easily into a solution strategy. 

Experi~nental results show that a simple heuristic called minconfEicts (Minton et al. 1992) 

is able t o  generate initial solutions that  are almost always complete and consistent. The 

idea is t o  take these initial solutions and improve them by applying other heuristic opti- 

mization procedure like Tabu search. The novel idea in this approach is the integration of 

the simulation model in a harvest scheduling process using a CSP model. 

Our thesis does not solve the full FHSP problem, but rather provides a foundation 

t o  start  solving practical problems using either mathematical or constraint programming 

techniques. Our contribution to  the FHSP can be outlined as follows. First we conduct a 

formal study on the restricted version of the problem (CCSP) as given in (hlisund et al. 

1995). U'e give a MIP model for the CCSP as described later in the problem definition 

(cf. Section 1.1). We model all of the constraints and the objectives. Evaluating this 

model on a real-world data shows that it is difficult and time consuming t o  solve even 

medium sized problems with all the constraints and the objectives. Next, we integrate 



the growth and treatnlent simulation results into a C'SP model \i,l~ic.li can be used to solve 

the FHSP. A nlethotl for using the sin~ulation results as domain variables for the stands is 

developed. Lastly. we give a n  algoritlm to generate an initial mlution for the FIISP using 

the rnlnconjIict.s heuristic repair method. Our esperi~nental results show that this method is 

fast and makes use of the knowledge from the treatment simulation. Therefore, the method 

can be a good candidate for generating initial solutions to be improved upon later using 

the iterative techniques. In short, we show that it is possible to  model the FHSP as a CSP 

and use the simulation results so that better forest treatment schedules can be found for 

the practical problems. 

1.1 Problem Definition 

Sustainable forest management requires the forest harvesting actions scheduled for a long 

period of time t o  obey a variety of constraints. For management purposes, a forest landscape 

is divided into basic treatment units, often equivalent to  stands. A stand is a forested 

area considered homogeneous with respect to a selected set of properties. We will restrict 

our study to  even-aged stands, that is, stands containing trees of the same or almost the 

same age. We will call the time period of the schedule as scheduling horizon. It is a 

common practice to  divide the scheduling horizon into a number of time periods, each 

period equivalent to, 5 - 10 years. 

Definition 1 (Stand) A stand S;  is an area which is considered homogeneous with respect 

to certain characteristics. The set of n stands comprises a forest 3, such that: 

1. 3 = u ~ = l S ;  

2. Si  n S j  = 0, for all i ,  j, i # j 

For each stand S ; ,  

0 LH ( S i )  : time of most recent harvest 

0 EARLZ'(S;) : minimum duration between harvests 

0 L A T E ( $ , )  : nzaximunz duration between harvests 

0 O P T ( S ; )  : optimal time between harvests 



Definition 2 (Scheduling Horizon)  /I scheduling horizon 'H is n contiguous set of rn 

periods { P I ,  . . . , P,), where each P, is of a certain length in years. 

Definition 3 ( T r e a t m e n t )  A treatment unit (stand) is given a number of management 

options over the scheduling horizon. We will call indiuiduul management option a treatment. 

A set of treatment types 7 = {To, .  . . ,Ti) is available for each stand. Jbe let To to be null 

treatment or "let grow" where a stand is left without any treatment, and T I  to be the clear- 

cut treatment. 

Definition 4 (Fores t  H a r v e s t  Scheduling P r o b l e m  ( F H S P ) )  Given an area of forest 

F divided into n stands, (5'1,. . ., S,), find a schedule S = {Al , .  . .,A,) over scheduling 

horizon satisfying a set of constraints C = {CI, . . . , C,) . Here, A; is the set of activities 

represented by a set of tuples < Pij, Tij >, where each tuple represents treatment period and 

treatment type for the stand S;. The constraints are usually adjacency constraint, harvest 

interval constraint et cetera.' 

Now we describe the constraints and the optimization criteria involved in the FHSP 

by defining the Clear-cut Scheduling Problem (CCSP) in detail 2 .  The CCSP is a special 

case of the FHSP where (besides null treatment) only one other treatment (clear-cutting) 

is allowed, and each stand is assigned only one management option over the scheduling 

horizon. Figure 1.1 is an example of a forest area divided into stands. Two stands sharing 

a common border are defined as adjacent, or neighbors. 

Definit ion 5 ( C l e a r - c u t  Scheduling P r o b l e m  ( C C S P ) )  The Clear-cut Scheduling Prob- 

lem is a restricted FHSP. Only two possible treatment types are allowed, To and TI  ("let 

grow" and clear-cut). The clear-cut treatment is scheduled only once for each stand during 

the entire scheduling horizon. 

'The  constraints will be described later 
'This closely follows the definition given in (Misund et al. 1995). 



Figure 1.1: An example of a forest area divided into stands 

A CCSP can be visualized as assigning values t o  each of hi, 1 5 i < n, where hi is the 

scheduled harvesting (clear-cut) period for the stand S;, rest of the periods are assigned 

the null treatment. The value of each h, is picked from its domain D; = (1, .  . . , m )  where 

m  is the total number of periods, such that  the problem constraixlts (defined shortly) are 

satisfied. We define the constraints and the optimization criteria for the FHSP as  follow^.^ 

Constraints Constraints can be generally divided into two categories - hard and soft. 

The hard constraints are defined as those constraints that  must be satisfied whereas the soft 

constraints can be relaxed to  satisfy the hard constraints or to  adjust the objective function 

value. 

Hard Constraint C1: Minimum height constraint All the neighbors of the stand to  

be harvested must have an average tree height of a t  least X meters. For CCSP, 

where I ( i )  is index set for neighbors of S;. 

Soft Constraint Cz: Harvest Interval Preferred harvest interval based on economical 

and ecological considerations. A lower and upper threshold is given for each stand, as 

well as the optimal harvest time relative to  the last clear-cut. For CCSP, 

3These are taken from forest harvesting requirements for the Norwegian ECOPLAN project (Misund e t  al. 
1995) but are also general enough to be applicable to forest harvesting practices elsewhere. 



Optimization Criteria -4 f ~ a s ~ b l t .  solutwn is an assignnient of problem variables such 

that  all the corlstraints are 5;itisfied. An optirni~ation version of the C'C'SE' (and the FIISP) 

arises ivhen various op t i~n i~a t ion  criteria are niasirnizd (or rninirtlized) i l l  the solution. 

IVe are interested in solving the optimization version of the problem with the following 

optimization criteria: 

01: Optimal Harvest Time The actual time between harvests should be as close to  the 

optimal as possible. For CCSP, 

02: Even Harvest Volume The estimated harvested volume EHVp(S) for any period p 

should be as close to the average harvested volume in a schedule S ,  AHV(S).  In other 

words, the variance between the harvest volumes should be minimized. 

hf in imire  5 (IEHVp(S) - AHV(S)I) (1-4) 
p=l  

03: Old Forest A specified minimum area of old forest (AOF), that  is, the total area of 

the stands with average age above a certain threshold, should be maintained over the 

scheduling horizon. Let 0 L D(p, S )  be the area of old forest in period p. 

m 

Minimize  mas(0,  A O F  - OLD(p, S)) (1-5) 
Y P = ~  

Note that  the optimal would be 0 when the area of old forest is greater than or equal 

t o  AOF. 

04: Visual Impact Minimize the visual damage of clear-cutting relative to  a set of view- 

points. Let VIS(S;,p,  V) denote visual impact from stand S; in period y relative t o  

viewpoint V. Note that  the following equation only assumes one viewpoint, whereas 

in the real case there is usually a set of viewpoints. 

n 

Ad inimize mar,, (x VIS(S,, JI ,  v)) (1.6) 
z = l  

The  minimum height constraint is enforced so that a large area of forest is not clear-cut 

simultaneously causing a great damage to the regeneration process and the wildlife habitats. 



Scheduling horizon 
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Figure 1.2: A number of schedules as paths in the tree produced by a treatment simulator 

It is also referred t o  as adjacency constraint because cutting adjacent stands a t  the same 

time period is prohibited by the constraint. This restriction is usually valid for certain 

specified periods such that  the harvested area will have regenerated properly. These periods 

are commonly called exclusion periods or green-up age. Recently, the adjacency constraint 

and the exclusion period have been given special consideration in the majority of research 

dealing with the forest harvest scheduling (according to  our review in the nest section). 

1.1.1 Growth and Treatment Simulation 

In this thesis,, the term simulation refers to the growth and treatment simulation of areas of 

forest as practiced and defined in the forestry literature (Hoen 1992, Lappi 1992). Growth 

simulation is usually implemented in a simple way using growth curves for a variety of 

tree species. 011 the other hand, treatment simulation is more involved and requires more 

forestry knowledge and stand characteristics data. Various factors come into play when 

generating an allowable treatment for a given stand. Although the simulation assumes 

that  each stand is independent from the others, a state of the stand changes each time a 

treatment is applied. Depending on this state, future treatments are simulated. 



Figure 1.2 is a srnall example of the grolvth anti treatment sirri~llator result for a stand. 

The simulator in effect produces a tree where each node represents a period i r k  the scheduling 

hor i~on,  which is increasing in the X-axis. Different treatments arc represented in the E7-asis 

a t  every branch of the tree. For example, the first level could be the '.let grow"treatment 

or do nothing, the second clear-cut. the third commercial thinning anti so on. Every path 

in the tree anlounts to  a complete schedule for the stand. Thus. the number of leaf nodes 

in the tree is equivalent to the number of alternate schedules available for the stand. 

It is evident that any harvest scheduler that integrates simulation results produces a 

correct and implementable schedule. The problem is that each tree as in Figure 1.2 can 

have hundreds of leaf nodes. For efficiency, only some of the leaf nodes can be selected as 

the possible schedules during the scheduling phase. There has not been any published work 

( to  our knowledge) that  tries to  integrate the simulation model into the scheduling process 

in such a way that the problem constraints are also satisfied simultaneously. Almost all 

of the scheduling systems to  date do not take the treatment simulation into account while 

generating harvest schedules. Another problem with such simulation is the independence- 

of-stands assumption. A scheduler has t o  take care of all the conflicts that may arise from 

the constraints between the stands such as the adjacency constraint. Thus, the scheduler 

will perform better if every stand has a number of alternate schedules. 

Our goal is to  integrate the growth and treatment simulation into the harvest scheduling 

process. We study whether this can be done with either the mathematical or the constraint 

programming. Ideally, we would like to have an initial solution that uses the simulation 

results and the optimizer improves the solution with the help of the simulator. This is 

illustrated in Figure 1.3. It is a tight integration model. If the simulator results are compiled 

beforehand and given to  the optimizer, then we have a loose integration model. In our thesis, 

we only deal with the loose integration model. 

1.2 Review of Optimized Forest Harvest Scheduling 

There are two major classes of forest harvest scheduling algorithms. One is based on math- 

ematical programming and the other on heuristic techniques (with or without using simula- 

tion in both cases). The former is a global procedure which finds an optimal solution to the 

forest management rnodel whereas the latter is usually a local procedure which iteratively 

improves the solution without any guarantee of finding the optimal one. Mathematical 



Initial solution r'l 

Figure 1.3: Tight integration of simulation in a forest harvest schedulj 

- 

ng system 

programming is the technique that is commonly used in practice and consequently a large 

percentage of the research activity is devoted to it. There are also some algorithms which 

do not fall under these two categories, and that  we will discuss under the miscellaneous 

methodology. 

1.2.1 Mathematical Programming 

The general forest planning problem, where harvesting is an important process, has been 

studied for some time. Early forest management models (Navon 1971, Johnson & Crim 

1986) were developed using Linear Programming (LP). Two well known LP-based scheduling 

packages in use are FORPLAN (Johnson & Rose 1986) and MUSYC (Johnson & Jones 

1979). Johnson and Scheurman reviewed and analyzed many LP-based forest planning 

systems (Johnson QL: Scheurman 1977). In this paper, the authors group LP models into 

Model I and Model 11, which are frequently used in forest planning. Later Garcia in his 

review of LP in forest planning (Garcia 1990) revises the classification. All these models 

are geared towards LP-based solution strategies. 

LP models use continuous variables. Defining spatial relationships requires the use of 

integer decision variables. For example it is not possible t o  capture the adjacency constraint 

just by using continuous variables. Thus, LP-based model are aspatial models. These 

models therefore have been used a t  strategic planning level. But implementing the plan 

a t  an operational level, that  is, designating a spatial area of forest for harvesting, is very 

difficult and may be impossible. Furthermore. the solution obtained from such a model is 



no~iintegral. Consequently. LP-bwetl solution\ are difficult to interpret. For e san ip l~ .  how 

informative would be a solution suggesting treatment 2.:) for n stand or period 1.5! 

Since LP-based models are not able to espre5s spatial relationships. the research began to  

shift towards the mixed integer programming (SLIP) models (Iiirby et (11. 10%. Jones et  (11. 

1091). An integer decision variable is used to espress a particular harvesting decision. This 

allows the model to express spatial relationships in the form of adjacency constraints. In 

Chapter 3, ive will give a MIP model for the CCSP such that  the spatial relationships 

are captured in the constraints. Since the general integer programming algorithms are 

not efficient when a large number of integer variables exist, the AIIP-based strategies are 

restricted to  small problems. One way of making the MIP models efficient is using an im- 

proved representation of adjacency constraints (hleneghin et nl. 1988, Torres-Rojo QL Brodie 

1990, Jones et al. 1991, Yoshimoto Sc Brodie 1994). Researchers have been steadily solving 

larger and larger MIP problems using the improved constraint formulations and a variety of 

heuristic algorithms. Weintraub et al. solved a MIP forest harvesting model with adjacency 

constraints for multiple time periods using linear programming, and a sophisticated round- 

ing heuristic (Wientraub et  al. 1994). The LP relaxation of the MIP model is solved and 

passed to  a MIP solver which attempts t o  assign integer values using the heuristic algorithm. 

The LP models are sometimes used together with a growth and treatment simulator. 

The simulator is used to  find all possible treatment schedules for all the stands. In most 

cases, each stand is treated independently and the necessary information is provided as 

the simulation proceeds. In LP models all the information has to  be encoded beforehand 

in the model. Some researchers have tried to  combine these two techniques (GAYA-LP 

(Hoen 1992) and JLP (Lappi 1992) are good examples). In both cases, the growth and 

treatment simulator is used to  define all the allowable treatments for each stand and the 

output is optimized by a LP solver. The net present value of the forest is often used as the 

optimization criteria. It is calculated using various economic and forest data  such as the 

interest rate, the volume harvested, the species of the harvested trees et ceteru. 

1.2.2 Heuristic Optimization 

There have been several studies exploring the heuristic optimization techniques for the 

FIISP with (or without) mathematical programming. One of the approaches considered 

successful is the sampling heuristic called Monte Carlo Integer Programming (hlCIP) (Nel- 

son QL Brodie 1990). It is a biased sampling scheme that  generates a number of feasible 



solution alternatives. The solution becorrie\ better as the nurnber of samples increases. 

Therefore. the optimal or the near optimal solution may be possible o u 1 ~  if a very large 

number of samples are generated. Unfortunately. this increases significantly the time nec- 

essary to find a solution. Lockwood and 51oore use Simulated Annealing (S.-\) to  generate 

harvest schedules with spatial constraints (Lockwood & Moore 1993). S-1 is a stochastic 

optimization technique that has been successfully used to solve combinatorial optimization 

problems (Kirkpatrick 1983, Kirkpatrick 1084). The authors report t o  have solved large 

harvest scheduling problems with adjacency constraints only. Briefly, annealing is a natural 

phenomenon (for example in metals) in which the internal elements of a cooling body rear- 

ranges their order from a high to a low energy state. From the molten (freely moving) state 

the body cools down slowly to a stable state with minimal energy. If it is cooled too fast the 

body hardens into a suboptimal state. SA tries to  imitate this phenomenon by gradually 

rearranging the elements of a system from disordered to ordered state. If the system is 

cooled slowly enough, SA guarantees (probabilistic) convergence to an optimal solution. 

A recent study compares three heuristic approaches to  solving the forest planning prob- 

lems, of which harvest scheduling is a part (Murray Qt Church 1995b). The authors model 

the problem as a MIP which allows the representation of the adjacency constraints. The 

only objective used in the study is the maximization of the net revenue. They develop a 

method which improves upon the solution produced by Monte Carlo sampling process using 

Hill Climbing (HC), Simulated Annealing (SA), and Tabu Search (TS). In all the three 

approaches, the initial solution produced by Monte Carlo sampling is locally improved by 

generating new neighbourhood solutions. In HC, only an improved solution is accepted in 

every step and therefore is more likely t o  get stuck in a locally optimal solution. When 

minimizing a locally optimal solution is called local minimum. These local minima hinder 

the heuristic from moving towards the globally optimal solution. SA and TS  accept a worse 

solution (with some probability) in hope of escaping the local minima. These methods were 

tested using the data  from (Nelson & Brodie 1990). It was found that  TS performed better 

more often than SA or HC. However, this does not imply that  TS will always produce a 

better solution than the other two approaches. The authors confirmed this using Friedman 

analysis (Conover 1980) on the solution results. Given any initial solution, it is equally 

Likely that  a high quality solution be reached by any one of the three techniques. 
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Pukkala and Iiangas describe another heuristic optimization technique (Pnkkala k Iian- 

gas 1993). Their rnetliod uses a groivth simulator ah the first step to produce several alter- 

native treatment schedules for each stand. The second step is the actual heuristic optimiza- 

tion, in which the total utility of the schedule is rnasirnized by randonily picking a treatment 

schedule, where the utility is calculated by adding the values of the objective function. This 

method was tested on a data of a small forest area and was found to be successful. It is 

claimed to  be better than the LP-based methods because of its ability to espress nonlinear 

objectives. The drawback of this met hod, however, is that it does not take take into account 

the adjacency constraints. Therefore the schedules generated may be of very poor quality. 

Constraint Satisfaction Problems (CSPs) 

Almost all of the methods mentioned above have an underlying mathematical programming 

model for solving the forest harvesting problem. One interesting study is (Misund et al. 

1995), where the problem is modelled as a constraint satisfaction problem (CSP) for the first 

time ( to  our knowledge). The authors suggest the CSP model and an iterative improvement 

technique, such as TS, t o  solve the FHSP. They used the restricted version of the problem 

(CCSP) as a test case. We will study this case in more detail in Chapter 2 and Chapter 3. 

There are well-studied A1 search methods that can be used to  solve CSPs (Tsang 1993). 

These methods can be classified into constructive and iterative search methods. Construc- 

tive search, for example standard backtracking (Bitner & Reingold 1975), starts with a 

particular ordering of the variables and instantiates them one at  a time. Thus it works 

with a partial solution and tries to  extend it to  a full solution. This search method suffers 

from a phenomenon called thrashing whereby the same variable-value pair that  leads to  no 

solution is instantiated over and over again during the search process. These algorithms 

have exponential time complexity. However, this search technique is complete, that  is all 

the possible solutions. can be found, and the optimal one identified. 

The alternative t o  the constructive search is to start with an initial solution and use 

a local search heuristic (for example, Tabu search (Glover 1989) or simulated annealing 

(Iiirkpatrick 1984)) to  iteratively improve the solution. This method has been shown to  be 

much more effective for large and complex search problems. The advantages of using such 

methods are that  they are fast for some problems, that the current best solution is available 

any time, and that  fairly large problems can be attempted. The drawback is that  the search 

can get stuck in local optima or minima and consequently finding the global optimal solution 
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can become impossible. 

In addition to  a search technique. a solution strategy for the ( 'SPs car1 also consist 

of a consistency enforcement mechanisnl, for example. arc-conszstency (hlackworth 1977). 

These algorithms reduce the size of the search space by eliminating those parts that can 

not contain a solution. Therefore, a typical solution strategy for a CSP interleaves a search 

mechanism with the consistency enforcement. 

1.2.3 Miscellaneous Methodology 

There are a few other studies that do not fall under the above categories. One study 

uses 0-1 integer programming to determine patterns for forest harvesting with adjacency 

restrictions and forbidden regions modelled as a grid-packing problem (Snyder gL ReVelle 

1996). Another recent study suggests a method based on Bayesian statistical concepts 

(Van Deusen 1996). Still these methods do not solve the FHSP problem as we defined it,  

especially the multi-criteria optimization part. 

Other techniques are those based on control theory, and on non linear and dynamic 

programming (Roise 1986, Hof St Joyce 1992). Even though many objectives in the FHSP 

can be written as nonlinear constraints, there has been very little work done in this area. 

Most of the nonlinear programming research deal with the problem of habitat scheduling 

along with the harvest scheduling. However, the size of the problem that is actually being 

solved is very small because of the additional habitat constraints and the inefficiency of 

general nonlinear program solvers. 

1.2.4 Summary 

Most of the methods mentioned before in the review have been tested with very small prob- 

lems compared t o  the practical ones that exist. Many studies use only 5-7 periods and 

100 stands whereas any real-life problem is bound to have stands in the order of thousands 

and approximately 20 periods (usually of length 5 years). The problem size is kept small 

because MIP models tend to  consist of a large number of binary integer variables (or inte- 

grality constraints). These constraints restrict the size bounds for problems because of the 

limitations of general integer programming solution procedures. For example, in one study 

considering only adjacency relations the number of constraints is O(nm), where n and m 

are the number of stands and periods respectively (Murray gL Church 1995b). The number 



of binary variables needed to formulate thew const raints is nut. F'rlrt herriiore. each such 

variable participates in a number of constraints. A practical probleni typically has at  least 

5000 stands and 20 periods. That  is, 100.000 integer variables - a large number for current 

MIP solvers. 

However. some studies have developed and added various heuristics to solve increasingly 

larger harvest scheduling problems. Furthermore, in most of the experiments the scheduling 

horizon is kept very small to keep the nu~nber of binary variables (and thus the integrality 

constraints) under control. But these methods do not deal with all the constraints and 

the objectives simultaneously as we have illustrated in the problem definition (Section 1 .I) .  

Therefore, a NIP  model which tries to minimize the number of binary integer variables 

using efficient constraint formulations and/or good cut constraints is needed. These cut 

constraints help produce an integral solution faster. We will study some of the cut con- 

straints relevant to our problem in the first part of Chapter 2. 

Most of the algorithms we reviewed implements growth and yield simulation using growth 

and yield curves for a variety of tree species. But the treatment simulation is almost never 

used. We reviewed some research which tried to  integrate the treatment simulation with a 

LP solver to  find harvest schedules (Hoen 1992, Lappi 1992). However, the problem with 

these approaches is the LP model since not even the adjacency constraint (spatial relations) 

can be represented in the model. Integrating the treatment simulation with a MIP has not 

been done so far and we will see in Chapter 3 that  this may be possible if we can utilize 

column generation technique. However, a MIP model formulation for this is a challenging 

task. Therefore, an alternative model is needed, in which the integration of the simulation 

would be easier than in the MIP models. A constraint satisfaction problem (CSP) model is 

introduced in (Misund et al. 1995). The authors integrate constraint reasoning techniques 

with geographical information technology (GIT). GIT is helpful in visualizing the solution 

t o  explore the possibillity of further improvements. This is effective for example regarding 

the visual effect of a particular schedule. It is therefore imperative that  models be built such 

tha t  these techniques can also be esploited properly. The CSP model is attractive for this 

purpose since new models can be integrated easier than in a MIP. We suggest this model 

for integrating the sin~ulation and the scheduler for the FHSP. 



1.3 Overview of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 describes a fornlal study on the 

structure of the C'CSP to gain a deeper understanding of the probleni. Good cut constraints 

(defined in the next section) are needed to  solve a 1IIP model for integer solutions effectively. 

We identify a constraint fornlulation in the (ICSP and explain why it is useful during the N I P  

solution process. Studying the adjacency constraint in the CCSP reveals that  the problem 

is very loosely constrained. It means that  preprocessing the problem using consistency 

techniques (Mackworth 1977) is not worthwhile. Consistency enforcement is a technique 

commonly used while solving the CSPs. Furthermore, it implies that  satisfying just the 

adjacency constraint in CCSP is easy. This does not necessarily say anything about the 

hardness of the whole problem when the objective criteria are also included. In Chapter 3, 

we give a N I P  model for the CCSP as described in Section 1.1. The adjacency constraints 

are formulated in such a way that  they behave as the cut constraints. We also outline some 

empirical evidence showing that  small-sized problems with some constraint relaxations can 

be solved using the model. This exercise also shows that solving practical problems using 

currently available MIP solvers is unrealistic. 

Since it is unlikely to  solve the full FHSP using just the N I P  techniques, we give a 

model based on the CSP model. We also integrate the growth and treatment simulation in 

this model. Based upon the research to  date, our reason for doing this is twofold. Firstly, 

MIP can give solutions but the solvable size of the problems is very small compared t o  the 

practical problems that exist. Secondly, incorporating simulation results into a MIP would 

be difficult and the problem decomposition techniques (for example, the column generation) 

have to  be figured out first. This type of problem is most likely solved using some sort of 

iterative improvement technique together with a wide variety of available heuristics. For 

these techniques to  work well, it is believed that  the initial solution has t o  be reasonably 

"good". We therefore present a method of generating an initial solution that  uses the known 

minconflicts heuristic (Minton et al. 1992). Our measure for goodness is the number of 

consistent variables in the initial solution. Our experimental results show that  this method 

can be used to generate consistent solutions. 

Finally, we give concluding remarks and some future research directions in Chapter 5. 



Chapter 2 

Formalization of the FHSP 

The Forest Harvest Scheduling Problem (FHSP) is a complex problem involving spatial and 

non-spatial constraints and (conflicting) objective criteria (cf. Chapter 1.1). It  is an  example 

of a hard combinatorial optimization problem. The search space for these problems is huge. 

To illustrate, let us take an  example of the CCSP (only considering the adjacency constraint) 

with 500 stands and 20 periods. Then the total number of schedules, both feasible and 

infeasible, is 2oSo0, which is more than the number of atoms in the universe! Furthermore, 

the optimization criteria add complexities to the CCSP. Such complex problems can be 

solved effectively only if problem-specific heuristics are developed that  searche only part 

of the search space. Another approach is t o  reduce the size of the search space itself by 

eliminating those parts which do not contain any feasible (or optimal) solution. 

The problem solving techniques we are going to  study are mathematical programming, 

MIP in particular, and constraint programming using a CSP model. To solve a MIP model 

for an  integral solution, we need an efficient constraint formulation and we have to  identify 

good cut constraints (defined shortly). Efficient constraint formulations help reduce the 

number of integer variables in the model and the cut constraints help quicken the MIP 

solution process by converging t o  the integral solution faster. We study the CCSP structure 

to  identify these formulations. A constraint solving technique is more effective if the search 

space is reduced to  a manageable size. However, the search space is huge even for the CCSP 

which is already a restricted version of the FHSP. Nevertheless, it is usually the case that  

a large area of search space can be thrown away by enforcing consistency techniques, for 

example arc-consistency. We study the problem structure to  see if such techniques can be 

used effectively t o  solve the CCSP (and the FHSP). 



F\'e first ztudy the C'('SP problcn~ structurt' to identify the efficient coristraint arid cut 

constraint formulations for a AIIP rnocirl. T h ~ n  we stndy constraint structure in the C'C'SI' 

to see if any of the consist~ncy enforcenlent techniquez can be applied to speed-up the 

solution process. 

2.1 Identifying Cuts 

In this section we will study the relased version of the FIISP problem (CCSP). mainly 

its structure and the constraints. iVe study the node-packing problem and show that the 

CCSP consists of many such problems as sub-problems. We study the adjacency constraint 

structure in particular. First. some definitions are required. 

Definition 6 (Set-packing Problem (Nernhouser & Wosley 1988)) Any problem that 

can be defined as linear system of inequalities Ax 5 b, such that A is a ( 0 , l )  matrix, b is 

an unit vector and x is binary. 

Definition 7 (Node-packing Problem) Given a graph G = (V, E), where V is the set 

of vertices and E is the set of edges, find U C V, and IUI 2 2, such that no pair of nodes 

in U is joined by  an edge. 

Definition 8 (Branch-and-Bound) It is the most popular integer programming algo- 

rithm. The original problem is divided into smaller and smaller sub-problems. The di- 

viding (branching) is the process of partitioning the entire set of solutions into smaller and 

smaller subsets. Then, the best solution in each subset is bounded and the subset discarded 

if the bound indicates that it can not contain optimal solution for the original problem. The 

discarding process is also called fathoming. 

Definition 9 (Cutting plane (Cut)) A cutting plane (cut) for an integer program is a 

new constraint that eliminates some feasible solution of the originul LP  relaxation while keey- 

ing every integral feasible solution intact. Cuts tighten the bound obtained in the bounding 

step of the branch-and-bound technique and improves its performance, 

Some researchers have shown that  a binary integer (0-1) model for the node-packing 

problem has better chance of converging into an integer solution in practice (for example, 

(Gebotys Si Elmasry 1993, Hoffman Si Padberg 1991)). Gebotys and Elmasry apply a 



Figure 2.1: (Sl ,  S2) participating in a neighborhood constraint 

node-packing problem represent ation for architectural synthesis problems. Architectural 

synthesis is an important part of the VLSI design cycle. The objective is to  transform the 

input algorithm into a hardware architecture that minimizes a cost function while satisfying 

a set of constraints. They model this problem as a 0-1 integer programming problem and 

solve the previously unsolved instances. Their success can be attributed to the constraint 

formulations which act as good cuts during the branch-and-bound algorithm for integer 

solutions. 

We now model the CCSP (cf. definition in Chapter 1.1) as a 0-1 integer program. We 

start  with a binary (0, l)  variable x;j for each stand S; and each period yj ,  where i = 1. .  .n 

and j = 1..  .m. That is, if x;j = 1, then stand S; is harvested in period j . l  Now our 

problem is to  assign integer values to  all x;j such that the CCSP constraints are satisfied. 

We can represent this problem by a system of inequalities Ax 5 b ,  where the rows of 

A correspond to  the coefficients (values) [xll . . . XI,, 2 2 1  . . . 52, . . . x,1 . . . x,,], where x is 

binary and b is a unit vector. 

[ x l l . .  . x l m ,  221.. . ~ 2 , .  . . X,* . . . x,,] x < b 

Thus, by definition this is a set-packing problem. Set packing problems can be transformed 

into a node-packing graph G(V,E) (Nemhouser Si Wosley 1988). Therefore, the CCSP can 

' I t  is standard practice in forestry literature (cf. Chapter 1) 
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be transformed into a node-packing graph G(L7,E) .  

In Figure 2.1, two stands (,S1. S',) are neighbors and it is a~mrnet l  that the time for 

trees to  grow to  the minimum height of say 2 meters. 1lH. is 2 pclriotls and the length of 

scheduling horizon is 7 periods. Then, we irlimediately see that  

x3:lm < 1, Q i .  

That  is, a stand is harvested only once in the scheduling horizon. The solid line ellipsoids 

in Figure 2.1 group the variables participating in these constraints. Another constraint of 

this kind that  becomes apparent is the minimum height constraint. For example, in Figure 

2.1 if stand S1 is harvested in period 4, then x ld  = 1, which means that  stand S2 can not 

have been harvested 2 periods before and can not be harvested 2 periods after the period 

4. We can represent this in general by the equation: 

Zit + C xj, 5 1, V neighbors (Si, Sj). 
(t-MH) mod m L n l ( t + M H )  mod m  

We can graphically view this equation in Figure 2.1 as dotted cones. This equation is 

symmetric for the stands S1 and S2 since we are assuming only one treatment per stand 

in the CCSP, it can not be the case otherwise. This is a subgraph of the node-packing 

graph. For example, in Figure 2.1, V = {x;j) V i  E (1,.  . . ,n) and V j  E (1 , .  . ., m )  and 

E = {(X;, Xj) IX; and X j  can not be simultaneously 1). Then we can choose ul  E S1 and 

u2 E S2 where u l ,  u2 E U ,  and that would be our solution. Note that  it is trivial t o  solve 

node packing in this case, just choose x l j  from S1 and choose the node x2k from S2 such 

that  Ij - kl > M H .  However, it may not be so simple if S1 or S2 is also adjacent to  some 

other stand. 

2.1.1 0-1 Node-Packing Problem 

We noted earlier that  branch-and-bound is a technique for solving general integer program- 

ming problems. It is an efficient technique in the sense that the algorithm identifies and 

ignores the feasible solutions which can not be the optimal one. Nevertheless, it is still re- 

stricted to problems with a small number of integer variables due to  the very large number of 

the feasible solutions which may exist. General 0-1 integer program is NP-complete (Nem- 

houser & Wosley 1988). However, in some special cases, polyhedral theory can be applied 

'It is an assumption in the definition of the CCSP 
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to solve then1 more efficiently. bounded system of linear inpqrlidities can be visualized 

as a polgtope such that thta solution(s) can only be the vertices of the polytope. An  znt~gral 

polytope is a polytope where all the vertices that are the solutions are also integral. It has 

been proven that  for every polytope there exists an integer polytope that  can be solved as 

a linear program and always produce an integer solution (Nemhouser JL. LVosley 1988). -411 

integral facets of the polytope are necessary to  be formulated as the constraints t o  identify 

its corresponding integer polytope. where a facet is a hyper-plane of dimension one less than 

that  of the polyhedron. 

There esist problems for which all such integral facets are characterized, for example, 

matching and total unimodularity (Nemhouser & Wosley 1988). But for the node-packing 

problem, it is only partially characterized. Finding all integral facets for the node-packing 

problem is NP-complete (Gebotys &- Elmasry 199.3). It is still worthwhile finding some of 

these facets because they make the model tight, that  is, reduce the size of the solution space, 

and give good bounds for the problem. This in turn is expected to  make a branch-and-bound 

algorithm more effective. 

In graph-theoretic terms, a set C C V is called a clique if every pair of nodes in C have 

an edge. In other words, C is a complete graph. Therefore, in a node-packing, only one node 

from a clique is allowed in the solution. Note that  the ellipsoids in Figure 2.1 are cliques. 

A clique is maximal if it can not be contained in any other cliques. Each maximal clique 

in a node-packing problem can be formulated as a clique constraint or clique inequality. 

The clique constraint is a known integral facet of the node-packing problem (Nemhouser & 

Wosley 198s). Therefore, it is in our interest to  find all the maximal cliques in the problem. 

These inequalities will not define all the integral facets. However, it is likely tha t  they will 

reduce the number of branch and bounds later while solving for optimal integer solution. 

Lemma 1 The cliques represented by the ellipsoids in Figure 2.1 are maximal assuming 

M H  2 sizeoftheschedulinghorison. Let a window for x,, of stand S,,, WzV,,, be the set of 

nodes in  S, that can not be simultaneously one with x,,, whenever S, and S, are neighbors. 

The clique represented by the cone for every variable x,, i n  Figure 2.1 is also mazimal if 

JV,, is not contained in any other wzndow for the variables other than z,,. 

Proof: Note that  the cliques represented by the bigger ellipsoids are maximal. The ones 

represented by the dotted cones are maximal because all of them are unique. This is because 

each x,, together with the z,k where k is a window, JV,, , of interval [ ( t  - 111 H )  mod m,  ( t  + 
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Figure 2.2: Nodes i , j  and k participating in an  adjacency constraint 

M H )  mod m] forms a clique. If this is not contained in any other window for variables 

other than x;j, then it is unique and hence the clique is maximal. 

Note that  this may not be the case when we consider the complete problem. There may 

exist a number of structures similar t o  Figure 2.1 as in Figure 2.2, where the nodes i ,  j and 

k are part of separate cliques. We can call the graph on the left of the figure an  adjacency 

graph, where the nodes are stands and edges represent the adjacency constraint. Let v;, vj 

and vk be one of the binary variables for the nodes i , j  and k in respective order. Then 

v; + (vj + M H ; )  5 1; v; # vk; vk + (vj + M H ; )  5 1. Thus, what used to  be a maximal clique 

for any two nodes does not remain so any longer because it can be extended. For example, 

the clique represented as the cone for nodes i and j can be extended with another node vk, 

which also shares the same variables from the node j t o  form a clique. 

To use clique constraint as integral facet, all the maximal cliques in the original adjacency 

graph has to  be determined. Since the graph is planar, size of the masimal cliques is 

bounded by 4. All these cliques can be found by looking a t  all possible combination of three 

and four vertices in the graph. Thus, the complexity is of O ( n 9 ,  where n is the number 

3Not to  be confused with the maximal cliques of binary variables 
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N'I-1) of vertices in C;. Another known integral facet for node-packing is CIEC.  .cl 5 7. for 

all chordless cycles C'. /C'/ 2 5. Finding these facets for large problems can lead to integral 

solutions faster. 

Lemma 2 For every pair of neighbors (5,. ,S;), it is suficient to include in the ,\IIP model 

the clique inequalities defining the adjacency constraint from only one stand. 

Proof: It is easy to  see that  the constraints are symmetric and therefore, one set of 

constraints originating from 5, also essentially captures the set of constraints originating 

from S,. 111 

Using Lemma 1 and 2, we expect that  the chances of finding integer solutions to  our 

model with reasonable number of constraints are higher. We describe our MIP model in 

detail in Chapter 3. 

2.2 Consistency Enforcement 

The FHSP can also be represented as a constraint network (defined below). There are vari- 

ous algorithms that  eliminate parts of the search space for such networks by throwing away 

inconsistent solutions. One such algorithm is arc-consistency. However, these algorithms 

are wasteful if the problem (constraint network) is loosely constrained. Therefore, we want 

t o  find out how "loose" our problem is. To formally study this, we adopt van Beek7s concept 

of constraint looseness which gives the lower bound on the inherent level of local consistency 

in a binary constraint network (Van Beek 1994). For graph coloring problems, these bounds 

are tight. 

Definition 10 (Binary Constraint Network (Montanari 1974)) A binary constraint 

network consists of a set X of n variables {xl, 2 2 , .  . . , x,), a domain set Di of possible 

values for each variable, and a set of binary relations between variables. A binary relation 

or binary constraint, R;, between variables xi and x, is a subset of cartesian product of 

their domains. A n  instantiation of variables in A' is a n-tuple {XI, X2, .  . . , X,) such that 

X, E Dl is assigned to x;. A consistent instantiation of a network, also called solution, is 

an instantiation of variables such that all the constraints between variables are satisfied. 

Definition 11 (Strong k-consistency (Freuder 1978, Freuder 1982)) A network is 

k-consistent iff given any k - 1 consistent instantiations of variables there exists another 
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consistent znstantiation for the kth  uarzablr such that all the k in.st(~rltzatwn.s are consistent 

wzth orie another. If k = 2 or k = 3,  the network I S  cdlcd arc-consistent or path-consistent 

rcspect2r~ely. .4 network i s  called strongly k-consistent zf and only if it is j-cons~strnt for a11 

j < k. 

Definition 12 (m-looseness (Van Beek 1994)) A binary constraint is m-loose if every 

row and every column of the (0,l)-matrix that defines the constraint has at least nz ones. 

where 0 5 m ID1 - 1. A binary constraint network is m-loose if all its binary constraints 

are m-loose. The (0 , f ) -matr ix  representation of the constraint between variables x, and x ,  

is given by 

1 i f a # b A l a - b l # I i - j l  
R i j , a b  = 

0 otherwise 

Theorem 1 ((Van Beek 1994)) If a binary constraint network is m-loose and all do- 

mains are of size ID1 or less, then the network is strongly ([&]) -consistent. 

The above definitions and the theorem can be understood in terms of a graph coloring 

example, say k-coloring problem. Then, the problem is k-consistent. It  is also k - 1 loose 

because every binary constraint between two variables disallows the assignment of the same 

colors for both. Therefore, the problem is &-consistent, that  is, k-consistent. Above 

Note that  for any row, the masimum number of zeroes is 2 ( M H  - 1) + 1, that  is, in any 

row i, the columns that  are ( M H  - 1) to  the left and the right and the ith column itself can 

be zero. Therefore, the minimum number of ones is bounded by IDiI - 2(11I H - 1) + 1. The 

matrix is diagonally symmetric. Thus, same number is also the lower bound for the columns. 

It is usually the case that  in a practical FHSP ID,/ is much greater than M H .  For esample, 

definitions are generalizations of this observation. 

Representing node-packing constraint from Figure 2.1 in ( 0 , l )  - matr ix  form gives the 

following matrix, 

Ri j= 

0 0 1 1 1 1 1  

0 0 0 1 1 1 1  

1 0 0 0 1 1 1  

1 1  0  0  0  1 1  

1 1 1 0 0 0 1  

1 1 1 1 0 0 0  

1 1 1 1 1 0 0  



ID,/ = 'LO and *Iff1 = 5. Thus. this network is rn - loosr. wlicre 1n = lDll - 2(.\1H - 1 )  + 1 

or 13. Then. according to Theoreni 1. the network is strongly :J-consisttlnt. Thus. it is 

usually the case that such networks are already path-consistent. :\rc-consistency and path- 

consistency algorith~ns have time complesity of 0 ( e d 2 )  and 0 ( e 3 d 3 )  respectively. where e 

is the number of variables and rl is the size of the largest domain. Therefore, running 

consistency enforcement algorithms may be wasteful for many instances of FHSP if only 

constraint satisfaction is sufficient. 

2.2.1 Row Convexity 

X globally consistent network yields a backtrack-free solution, that is. a solution can be 

found in n steps where n is the number of variables in the network. As seen earlier, the 

constraints in the problem are fairly loose and usually path-consistent. Such networks can 

be identified t o  be globally consistent or minimal using the following theorem. 

Definition 13 (Row Convex (Van Beek & Dechter 1995)) A binary relation Rij rep- 

resented as a (0, l)-matrix is row convex if and only i f  in each row all of the ones are 

consecutive; that is no two ones in a row are separated by a zero. 

Theorem 2 ((Van Beek & Dechter 1995)) If there exists an ordering of the domains 

Dl,. . . , D, of a path-consistent network N such that all the relations are row convex, then 

N is minimal or globally consistent. 

Theorem 3 ((Booth & Lueker 1976)) An m x n (0,l)-matrix specified by its f-nonzero 

entries can be tested for whether a permutation of the columns exist such that the matrix is 

row convex in O ( m  + n + f )  steps. 

Furthermore, row convexity property can be checked in linear time as Theorem 3 sug- 

gests. Even though our network is path-consistent, the binary relations are not row-convex. 

This can be seen by analyzing the matrix representation of Rij.  Some rows in the middle 

of the matris  do not have the consecutive ones property unlike some rows a t  the top and 

a t  the bottom. Shifting the columns with non-consecutive ones so as to  put all the ones 

consecutively, will always result in at least one other row containing non-consecutive ones. 



2.3 Conclusion 

Lye showed that a sub-problem of the (IC'SP can be viewed as a node-packing problem. The 

advantage of modelling the CC'SP as a nodtx-packing is the use of clique constraints which 

act as integral facets in the node-packing polytope. Finding integral facets for a particular 

integer programming problem has always been an interesting research issue. LVe believe 

that the clique constraints allow us to model the FHSP as a MIP using 0-1 integer variables 

and provide a good reason as to why this formulation of the adjacency constraint is better 

in practice. 

LVe also showed that  the constraint structure in the sub-problems of the CCSP is loose. 

That  is, most practical consistency enforcement algorithms are not useful while solving the 

CCSP as a constraint network. Problem specific heuristic or iterative improvement may be 

more effective without the consistency enforcement. 



Chapter 3 

Solving the CCSP using MIP 

Models 

The Forest Harvest Scheduling Problem (FHSP) and forest planning problems in general are 

combinatorial optimization problems. Briefly, the problem is t o  develop a forest manage- 

ment plan for a large area of forest satisfying multiple constraints and balancing competing 

objectives. Traditionally, mathematical programming has been and still is the most widely 

used technique for solving such problems. For the general forest harvesting problem, there 

exist a number of LP  and MIP models (cf. literature review in Chapter 1). In this chapter 

we study a restricted version of the the FHSP, called the Clear-cut Scheduling Problem 

(CCSP) (defined in Chapter 1.1) as a test case. We attempt to  model and t o  solve the 

CCSP using a MIP model. We will not model the problem as a LP since the literature 

survey shows that  LP-based strategies are difficult to  interpret and may be impossible t o  

implement, largely due t o  their inability to  express spatial relationships. 

We will start with an  example of a MIP model for the CCSP from Johansen and Mis- 

und7s paper (Johansen & Misund 1995). Their model comprises only the m i n i m k  height 

constraint (el), and the harvest interval constraint (C2) as given in equation (1) and (2) 

(cf. Chapter 1.1). Their model is incomplete since it does not include any of the objective 

criteria. We will briefly describe this approach and outline its drawbacks. As a nest step 

we present our MIP model formulation which deals with both constraints and objective 

criteria. We test our model using real-life data  from the Norwegian ECOPLAN project 

(Misund et al. 1995). Our intention is to  test the hypothesis that  MIP models can only 



be used effectively for small instances of the ('C'SP. Any practical instance of the FHSP is 

likcly to be more cornples and larger in orders of magnitude. 

3.1 MIP Model I 

Johansen and Misund's report describes their at tempt to formulate the CCSP as a MIP 

model (Johansen & hlisund 199.5). They define n (real) variables. h l ,  . . .. h,, where h ,  

corresponds t o  the harvesting period for stand S,. They justify their use of real variables for 

harvesting periods by pointing out that  if. for esample, some h, is 10.3, then this may give 

an additional information about when in the period 10 the stand S, should be harvested. 

The report describes only the minimum height and the harvest interval constraints. 

The harvest interval constraint is included in the model simply by permitting the values 

of h, to  be in the allowable harvest interval [EARLY(S,)  + LH(S,) ,  LATE(S,) t LH(S,)], 

for all i. The interval may be relaxed if needed. Note that  this does not reflect the definition 

of the optimal harvesting time objective (cf. equation (3)  in Chapter 1). 

The  minimum height constraint is modelled by introducing a binary integer variable for 

each pair of neighboring stands (S;, S,). The value of the binary variable is either 0 or 1 

and is determined by the following equation: 

where m is the number of periods in the scheduling horizon. Now assuming that  hi # h j  

and MLT be the time required for the stands to  grow up t o  the minimum height for the 

harvest, the minimum height constraint can be represented by the following equations: 

The first equation is neglected if bij = 0, assuming that  no stand takes more than the 

length of the plan t o  grow up to  the height of X meters. If bij = 1, then it states that  

hi - M H ( S j )  - h j  must be greater than 0. This reflects the X-meter constraint when 

hi > h j .  The other equation works similarly. 

Johansen and hilisund's report (Johansen & Misund 199.5) stops here as far as the MIP 

model is concerned. It mentions that  the authors were unable to  model other constraints 

and objective functions. Later in (hlisund e t  al. 1995), the authors mention that  this model 

is not suitable for the FHSP. 



U7e tried to extend the above model by adcling the rest of the  objective criteria. X e  

found i t  to be a difficult process. Even the rninirnurn height constraint for~nulation 5eerns 

awkward. rurtherrnore. Lve think that representing harvesting periods by real variables may 

make the solution hard to implement at  the operational level. Therefore. we present another 

LIIP model which is capable of espre~sing the objective criteria in addition to the spatial 

relationship constraints. 

3.2 MIP Model I1 

We abandoned the real variables h,. . . . , h, and started with a binary (0.1) variable ztJ  for 

each stand S t ,  where i = 1 . .  .n and j = 1 . .  .m,  where n is the number of stands and m is 

the number of periods. 

It may seem counter-intuitive to  replace some compact-looking constraints with a large 

number of constraints with binary variables. But the reason it works well is that the CCSP, 

in this formulation, has node-packing as a subproblem (cf. Chapter 2). Therefore, we can 

expect to  benefit from the clique constraints that are likely t o  quicken the MIP solution 

process. Furthermore, as stated in Chapter 2, this formulation has proven t o  work well in 

practice. 

Our MIP model consists of n stands, {S1 . . . S,). Each harvest period p for a stand S; 
is represented by a binary variable x Z p .  We assume that each stand is harvested only once 

throughout the scheduling horizon. Now, we formulate the constraints and the objective 

functions for the CCSP as stated in the problem definition (cf. Chapter 1.1). 

Constraints In addition to  constraints C1 and C2, we have an additional constraint such 

that  every stand is harvested exactly once during the scheduling horizon. 

C1: Minimum height constraint For all t from 1 . . . m, 

z i t  + c xj, 5 1, V neighbours (S;, S j ) .  
t -~CIH<n<t+~l fH  

C2: Harvest interval constraint: Simply do not include the binary variables associated 

with the undesirable periods for all stands in the model. 

C3: At least one harvest per plan C ,  xi, = 1, Vi. 



O b j e c t i v e  Cr i t e r i a  A11 except the objective criterion 0 is forrni~latc~d as followi. 

01: O p t i m a l  H a r v e s t i n g  T i m e  The actual time bet~veen harve5ts sliould hr. as clobe to 

the optimal as possible. For all 1 in 1 . . . n. 

Cx,, * ( 1 )  - O P 7 ' ( 4 0 +  at > 0 
J 

where j goes from 1 . .  . m, a ,  2 0. Here n, is penalty for not harvesting stand 1 in its 

optimal harvest time. Let Popt = EL a,. Then, the optimal harvesting time objective 

is achieved by minimizing Popt in the objective function. 

02: E v e n  H a r v e s t  V o l u m e  The estimated harvested volume EHC',(S) for any period y 

should be as close to  average harvested volume in a schedule S, ANV(S).  In other 

words, the variance between the harvest volun~es should be minimized. 

Let v,, be estimated volume of forest obtained by cutting stand S, in period j. Then, 

V, = CrZl x,, v,,, Qj is total volume harvested in period j. Set constraints 

V m z n < &  and V m a x > & ,  V j = l  . . .  n. 

Then objective is t o  minimize V,,, - V,,,, which effectively minimizes the vari- 

ance between volumes harvested, making an overall schedule with even consumption 

throughout the planning horizon. 

0 3 :  O l d  Forest A specified minimum area of old forest (AOF), that is, stands with aver- 

age age above a certain threshold, should be maintained throughout the scheduling 

horizon. Let OLD(p ,  S) be the area of old forest in period p. 

Let Olt = 1 if stand i is not cut before it becomes old in period t ,  otherwise Ott = 0. 

That  is, 

x,, + 0, t  = 1 , Qi. 
l < ~ < t - - l  

Let Bt be the area of old forest at  period t ,  which is El Ott  * vLt, V i .  We want to keep 

Bt as close to .4OF (desired area of old forest) as possible. That  is, for all t in 1 . . . m, 

Bt - A O F  + 2 0, yt > 0. 

Then, the objective function will minimize C, yt. 

04:Visual  Impact This is not put into the MIP model. 



This type of rnociel can be estended to handle alternative treatments. For tar1 acitlitioIlal t 

treatments, t (nn1) - r ~ r r t  variables will be added to the model. The same order of collstrsirlts 
k  will also be added, of type . L . , , ~ + & = ~  .zcJk 5 1. whicll rneans that one treatment type illhitlits 

other treatments for a certain number of periods. The assumption that only one treatnle~lt 

is allowed per scheduling horizon can also be dropped. 

3.3 Adjacency Constraints Revisited 

As noted earlier in Chapter 1, a significant amount of current research in operational forest 

planning is devoted to  the fornlulation of adjacency constraints using integer variables in a 

MIP model. This constraint is the reason research shifted from LP to  MIP in forest harvest 

planning and scheduling. Various formulations for this constraint exist in the literature. 

The most straight forward and well-known method is known as the pairwise approach 

whereby every pair of adjacent stands, (S1,S2), share a constraint of type xl + x2 5 1, 

where x; is 1 if stand S; is to be harvested and 0 otherwise. This approach was commonly 

used until Meneghin et  al. proposed a new type I adjacency constraints (Meneghin et al. 

1988). They proposed that  only one constraint be shared between the mutually adjacent 

stands. Thus, if 2 stands are mutually adjacent, then they will share a pairwise adjacency 

constraint. But there is also a possibility of 3 or 4 stands being mutually adjacent. Then 

they will share a triplet or quatruplet constraints. These constraints altogether are called 

the type I constraints. The authors also present a method t o  identify a minimal set of these 

constraints. First, all quatruplet constraints are generated, then the triplets that are not 

contained in already identified quatruplet constraints are identified. Finally, all the pairwise 

constraints that  are not proper subsets of a quatruplet or a triplet constraints are identified. 

There are other methods proposed in the literature that identify minimal set of adjacency 

constraints. Examples include Ordinary Adjacency Matrix (OAM) constraint set (Yoshi- 

mot0 8. Brodie 1994), and compartmental constraints (Torres-Rojo QL Brodie 1990, &Iurray 

S: Church 1994) et cetera. 

Church and hfurray 9.5 review these formulations and give empirical evaluations on 6 

different cases (Murray 8. Church 1995a). The authors conclude that  the type I constraint 

formulation is the winner over all other formulations when solving these data  sets in terms of 

computation time even though the number of constraints is higher than the others. However, 

they do not give an esplanation for this. We believe that  the esplanation lies in the use 



of the rliquc- i r ~ e q ~ d z t z f . ~ .  The type I formulation a l low the proltle~ri to I)e vie\vetl as a set 

of node-packing subproblems. Recall the definition of a set-packing probleni: .lny problrnl 

that can be defined as a linear systtrri of inequalities .-1.c 5 b. such that A is a (0 ,  I )  matrix. 

b is an unit vector and x is binary. Any set packing problem can be transformed into a 

node-packing graph ( Nenihouser & LVosley 1988). Using the type I formulation. A becomes 

a (0. 1)-matrix, and b a unit vector (cf. 2 ) .  In other adjacency constraint formulations this 

is not the case. Therefore, these formulations may not generate integral facets. This may 

be why the type I constraint formulation came out as the winner in Church and Murray's 

empirical evaluation (Murray & Church 199.5a). 

Meneghin et al's type I adjacency constraints can also be explained simply by using the 

graph-theoretic term clique. All mutually adjacent stands form a clique when each stand is 

treated as a node and adjacent relations as edges in a graph. Furthermore, such a graph 

will be a planar graph since it is a representation of a geographical region. It is a known 

result that  a planar graph can not contain cliques of size 5 or more. Therefore, finding 

the clique inequalities for maximal cliques of size 4, 3,and 2 will be the minimal set of 

adjacency constraint formulation. Thus, what Meneghin et a1 found was precisely the clique 

inequalities. 

3.4 Experimental Results 

First we describe empirical results for random data,  with only the adjacency and harvest 

interval constraints (C1 and Cz), using a public domain N I P  solver Ip-solve version 1.5 

(lpsolve n.d.). Nest, we present the results obtained from solving instances based on 

the ECOPLAN prototype data (Misund et al. 1995), using a commercial MIP solver cplex 

version 4.0.4 (CPLEX n.d.) with all the constraints and the objective criteria as described 

in our MIP. 

3.4.1 Initial experiments using Ip-sol u e  solver 

Forest data  was randomly generated using data  description as described in (hlisund et al. 

1995). This data is parsed and another input file is constructed for the MIP solver 

lp-solve. Only the adjacency and the harvest interval constraints (C1 and Cz)  were used 

during the data  generation. The objective value was set so that  the optimal value is n for 

'This  d a t a  set can not be  compared with the  d a t a  sets used with cplex solver 



obj. v;tlne 

5 0 
Y / X  
100 

opt inial 
optimal 
optimal 
optimal 
optimal 
optimal 

memory fault 
optimal 

Table 3.1: Results obtained for random data  using the lpsolve 51IP solver 

instances with n stands. Our intention was to test how hard these problems were when 

considering only constraint satisfaction and if it was possible to  solve the model with some 

additional objectives. 

We generated problem instances for a variable number of stands, but the planning hori- 

zon was left constant a t  100 periods with each period equivalent to  1 year. The number of 

stands were varied from 5 to 100. The results using a Sun sparc.5 workstation is as shown 

in Table 3.1. The solution time varied from 5 minutes to  2 hours. The results show that  

for almost half the instances lp-solve exits abnormally with a memory fault. The rest are 

solved t o  optimality. For our randomly generated data, the neighboring stands for any given 

stand were low resulting in a loose adjacency constraint structure. This may explain why 

instances with 100 stands were solved to  optimality. Another reason is the domain size of 

100 periods. Although some of the periods were disallowed by the harvest interval constraint 

(Cz), every stand has still between 75 to  100 domain values to  pick from. In fact, when 

the number of periods were reduced t o  20, the solver was not very successful. Furthermore, 

memory faults caused by more than half the instances lead us t o  choose a more powerful 

MIP solver cplex.  

3.4.2 Results using cplex solver 

The Norwegian ECOPLAN project's prototype data was used to  test our I'vIIP model using 

cplex h4IP solver. This data  set is different than the one used with lp-solve solver in that  the 

former has realistic adjacency relations and the number of periods for each stand. The area 

of each stand was generated randomly to  occur between the largest and smallest area in the 



actual data  set since we were not able to get the data set ~vith the real area inforrr~ntion. 

All the instances were run on a Sun sparclO ~vorkstation. 

The EC0PL.-IN prototype data for 494 stands was divided into sri~aller instances of n 

stands where n = {'LTi,TiO. 100,'~00.300.400.404}. Each of these instances was tested with 5. 

10. 1.5 and 20 periods ( m )  as the scheduling horizon. Furthermore. each of these instances 

was used to generate 5 different sets with different objective criteria, 5'1.. . . , S5, as input for 

the cylex solver. Among these sets, 5'1 contains data  for constraint satisfaction only. That  

is, only the adjacency constraint (el), the harvest interval constraint (C2) .  and one harvest 

per scheduling horizon (C3) were present (besides the integrality constraints) without any 

of the objective criteria. The objective value was set to  be n for a data set with n stands. 

iZll other sets also contain these constraints but the objective criteria differ in each of 

the sets. S 2  contains objective O1 (optimal harvest time), S 3  contains objective O2 (even 

harvest volume), S4 contains objective O3 (old forest), and S5 contains all three objective 

criteria (01,  0 2 ,  and 03) .  

Table 3.2 shows the cplex output for the ECOPLAN prototype data  when the green-up 

age for adjacency constraint was set t o  3 periods, with each period being equal t o  5 years. 

The table shows that  it was difficult to  satisfy most of the instances. There were no 

integer feasible solution for all of the data  sets with 5 periods. Note that  if an integer 

feasible solution does not exist for the set 5'1, then no integer solution exists for any other 

sets. Furthermore, if no integer feasible solution exists for a data set with n stands and m 

periods, no integer feasible solution exists for any of the other data sets with m periods and 

stands greater than n. "nly the data  sets with pairs (25, lo) ,  (25, 20), and (50, 10) were 

solved t o  optimality, where each pair represents (n, m). 

The entries in the table marked with a "**" may seem awkward, for esample, why is 

there no integer solution for the instance with 25 stands and 15 periods when there exists 

an  optimal solution for the instance with 25 stands and 10 periods? The reason is that  

during the data  generation, if the allowable harvest interval for a stand goes beyond the 

scheduling horizon, it is relaxed so that  the stand may be allowed to be harvested during 

the last 5 periods. This was done so that every stand is harvested once. Thus, in the case 

of the instance with 10 periods, some stands got a larger harvest interval than in the case 

'Amounts to  cutting all stands once. 
3This was the specification given to ECOPLAN project by the Norwegian Forest Owner's Association 
4Since all the adjacency relations are contained in the larger problem. 



Set 
S 1 
S 1 
S2 
S:3 
S 4 
S 5 

**S1 
S 1 
S2 
S3 
S 4 
S 5 
S 1 
S2 
S3 
S 4 
S 5 

**S1 
S 1 

ni I read / C opt - 
N 
Y 
Y 
Y 
Y 
Y 
i\j 

Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
N 

int sol 
S --1 
2 .5 
103 

70035 
202177 
2770.51 
x -4 
2 5 
6 

31.5.564 
181096 
496684 

50 
2.53 

310699 
476260 
843734 

N A 
N A 

time iter H R nodes 
0 
5 
8 

105 
- w  

13 

:304 
0 

4 2 
9 

4 3 
348 
10.5 
7 1 

1207 
22761 
1214 
3878 
1087 

0 

remark 
no int sol 

infeasible 

no  int sol 
infeasible 

Table 3.2: Results obtained for Set 1 using cplex MIP solver 

n: number of stands, m: number of periods, read: problem read time, C: number of constraints, V: 
number of variables,opt: is solution optimal?, int sol: integer solution, time: cpu time (in secs), iter: 
number of Branch and Bound (BB) iterations, BB nodes: number of BB nodes tried 

with 15 periods. 

Careful analyses of the solver output for the unsatisfiable instances revealed tha t  the  

harvest interval constraint for some stands was too tight, that  is, the  stands could be 

harvested in only 1 or 2 periods. This caused the solver t o  conclude integer infeasibility 

relatively quickly. We were interested in testing the MIP solver for larger instances with a 

number of objective criteria. Therefore, we relaxed the harvest interval constraint so tha t  a 

stand can be harvested in any period during the scheduling horizon. This is not an unrealistic 

relaxation since the minimization of the objective O1 essentially has the equivalent effect 

on the  solution. Also, t o  increase the number of periods, we only generated da t a  with 20 

periods. 



Set 2 
time 

2 
17 
3 7 
5:3 
130 

2.538 
7200 
7200 
7200 
7200 
7200 

13 
64 
67 
8 7 
1'23 
24.7 
:30:3 
291 
426 
420 
INT - 

nodes 
Set -4  

time 
-16 

:3 .i 0 
380 
202 
7200 
7200 
2016 
7200 
7200 
7200 

Table 3.3: Results obtained for Set 2 and 4 using cplex MIP solver 

n: number of stands, C: number of constraints, V: number of variables, 01: optimal harvest time 
value (* opt), 03: old forest objective value (* opt), time: cpu time (secs), CC: number of 
clique cuts applied, nodes: number of Branch and Bound nodes tried, I N T  inturrupted 

Data  instances with n = {75,100,150,200,250,300,350,400,250,494) was generated for 

all 5 sets 5'1 to  S5. While solving some instances it was observed that  the solver was taking 

more than 2 hours just t o  find an initial solution. These instances were rerun with the 

solver's rounding heuristic turned on. The solver used a sophisticated rounding heuristic to  

find the first integer solution. In addition, the solver had also clique and cover cuts options 

to  improve performance of the branch and bound phase. 

In Table 3.3 smaller instances have been solved to optimality. The objective value for 

O1 denotes the total number of periods off the optimal harvesting period for all the stands. 

For example, if two stands were harvested 5 periods either before or after the optimal, and 

the rest were scheduled on the optimal harvesting time, then the value of O1 is 10. The 

value of the objective O3 (in thousands of square kilometers) is the total area of forest not 

above the old forest threshold for all the periods. The old forest threshold was set to 10% of 

the total area for all the periods in our experiments, which comes to  1440 square kilometers 

nodes 
87 
102 
112 
120 - w 

1 .3 

144 
189 
151 
9 7 
5 6 

(in thousands). The solver could not find optimal solutions for the set S 2  starting from 

n = 250. For the set 5'4, no integer solution was found within the time limit of 2 hours for 

n starting from 150. 



Set :3 
0 3 

11 -1.8 

36 1.4 
5.32.2 
317.6 
:366 

-1.5.5.2 
202.6 
no int 
no int 
no int 
INT 

Set 5 
0 1 

1-15 
22 1 
209 
3.55 
,511 

no int 
no int 
no int 
no int 
no int 

- 
CC' - 
144 
272 
280 
284 
377 
165 
21.5 
287 
3.59 
389 

nodes 
976.5 
-4907 
1326 
492 
.j2.5 
190 
1.50 
236 
197 
4 

Table 3.4: Results obtained for Set 3 and 3 using cplez MIP solver 

n: number of stands, C :  number of constraints, V: number of variables, 01: optimal harvest time 
value, 03: even consumption objective value, 03: old forest objective value (* E opt), CC: number 
of clique cuts applied, nodes: number of Branch and Bound nodes tried, INT E interrupted 

Table 3.4 shows results for the sets S3 and S5.  The value of the objective O2 (in 

thousands of square kilometers) is the difference between the biggest and the smallest harvest 

volume during the scheduling horizon. All the instances were stopped after 2 hours of 

execution, that  is, no optimal solution was found. No integer solution for the set S 3  was 

found for values of n starting from 300. For the set 5'5, this value was 200. 

In all the instances, the number of clique cuts generated was high. This means that  

turning this option on during solving was probably a good idea since these cuts give tighter 

bounds and help branch and bound algorithm to  find an integer optimal solution faster. 

After the elimination of the harvest interval constraint, the solver was able t o  find the 

optimal solution for all of the instances in S1, that  is, the adjacency constraint was satisfied. 

When the objective criteria were added, the solver required more time to  find the optimal 

or an integer solution. From the results, it seems that  the addition of the even harvest 

volume objective makes the N I P  much harder since both the sets S 3  and 5'5 that  contain 

the objective were not solved to  optimality even for smaller instances. It remains t o  be seen 

how good these solutions are since currently we have no means of comparing them. One 

measure could be the optimal solution of the full problem with n = 454. However, running 



the problem for .I:1 hours did not even product. an integer feasible solution. 

These results show that  the solver is capable of finding i n t e g ~ r  solutions to the E ( ' 0 P L - 1 3  

prototype data when the harvest interval constraint is relaxed and no objective criteria is 

in the model. Also, an optimal solution was found for smaller instances (usually 2.5 and 50) 

even after the addition of all of the objective criteria. However. the rest of the instances 

were either not solved t o  optimality or not even to  an integer feasibility. This suggests that  

for practical problems, with orders of magnitude larger than those of our test problem, this 

method alone is not realistic. 

3.5 Integrating L P  with Simulation 

As noted earlier in Chapter 1, the growth and treatment simulation are an important part 

of the forest harvest scheduling procedure and our goal is to  integrate the two processes. 

In this section we will describe Hoen's work on integrating the simulation with a LP solver 

(Hoen 1992) . The simulator used is the growth and treatment simulator called GAYA and 

the integrated product is called GAYA-LP. 

If N is the total number of schedules and li the number of stands, Hoen formulates the 

LP  problem of maximizing net present value (NPV) of the harvest schedule as follows: 

T max Z, = c x 

subject t o  

Alx  5 bl; A2x < b2; x > O 

where 

Z, The objective function. Net present value (NPV) is most commonly used. 

x N x 1 (column) vector. Decision variables representing the number of hectares t o  be 

treated by a management schedule (activity). 

cT 1 x N (row) vector containing NPV value of schedule. 

A1 hI x N matrix produced by the simulator. It contains production coefficients, net 

payment, and harvest volumes for each schedule. 

bl M x 1 (column) vector of resource constraints. 



I< x N matrix of area related coefficients. where element ( i~ ) is 1 i f  activity J belongs 

to stand 1 .  otherwise it is 0. 

b2 I< x 1 (column) vector consisting of the initial area of the stands. 

The problematic part about the simulation is that  it produces a large nunlber of treat- 

ment schedules for the stands in a forest. often in the order of thousands. This results in 

a LP formulation with a large number of columns as compared to the rows. We can see 

this in the above LP formulation as well. where the number of columns in the LP matrix is 

the total number of schedules for all of the stands and the number of rows are the resource 

and the area constraints. Column generation as a problem decomposition technique can be 

used to  increase computational efficiency of this model (for detail see (Chvatal 1983)). The 

solution of the LP problem can be determined incrementally by looking at  a subset of the 

column, n,. The problem with n, columns, LP,, is solved. The dual variables from the 

solution of LP, is used to  evaluate an  entering variable among iV - n, colunms for the basis 

of the primal LP, problem. The reduced cost for N - n, column is calculated and columns 

with positive costs are chosen as candidates for the entering variables. Then, non-basic 

variables from optimal solution of LP, are replaced with the candidate variables and the 

problem is resolved. This process continues until the optimal solution to the original LP 

has been found or certain other criteria are met. 

Hoen reported solving models with only a few hundred constraints using GAYA-LP. 

Thus, it has not proven to work a t  all with a large number of stands and schedules as would 

be the case in any practical problem. Furthermore, the disadvantage of using this model 

is tha t  no constraints between the stands are represented. Therefore, the plans generated 

by GAYA-LP may not be feasible spatially. That  is, taking x hectares with management 

activity a,  as suggested in the plan, may not be possible. Therefore, adjacency constraint 

has t o  be satisfied in the solution. But, the addition of this constraint in the model may 

not be a trivial task. Also, it is not obvious how t o  model the objective criteria like even 

consumption, old forest et cetera. 

GAYA-LP is an example of loose integration of the simulation with an optimization 

process. All possible schedules are compiled in advance before running the LP solver. If 

the LP solver can ask the simulator to  generate a number of additional schedules as it 

progresses, then we can achieve the true integration of a simulator and an optimizer in the 

harvest scheduling process. No LP or MIP scheduling system for forest harvesting to date 



( t o  our knowledge) has achieved this level of integration. 

3.6 Conclusion 

From our experimental results we can conclude that our MIP tnodel can be used for the 

CCSP and that  small instances are solved to optimality if only some objective criteria are 

used. For larger instances the harvest interval constraint was too tight and had thus to be 

relaxed. Then. satisfying the adjacency constraint was easy. 

It was when we started introducing some additional objectives, that the solving started 

to  become time consuming. In particular, the even flow objective seemed to be hard to  

optimize. The clique and cover cuts option in the solver was turned on while solving these 

instances. A high number of clique cuts was generated for all the instances suggesting tighter 

bounds for the branch and bound phase. However, the largest instance with all the objective 

criteria was not even solved for an integer feasible solution after 33 hours of execution in a 

Sun sparclO workstation. Furthermore, cplez is considered to be the state-of-the-art among 

the current MIP solvers. The MIP can be made more efficient if the problem decomposition 

technique called column generation can be utilized. However, modelling the constraints and 

the objectives t o  use this technique is not a trivial task. Thus, our MIP model alone is not 

realistic for solving large practical FHSP. 



Chapter 4 

Solving the FHSP using a CSP 

model 

The Forest Harvest Scheduling Problem (FHSP) is a comples combinatorial optimization 

problem with multiple constraints and objectives. The most popular method t o  solve these 

problems is based upon mathematical programming. However, as seen in Chapter 3, the 

MIP model for FHSP can be solved only for the small instances of the problem. Usually, 

the size of the model for large problems is too big for current MIP solvers. After testing 

the MIP model, we believe that unless problem specific heuristics are developed and used 

along with the MIP solver, it is very difficult to  find solutions to the FHSP that  is readily 

acceptable in a reasonable time. Since the real data is of an order of magnitude larger 

than the ones we have solved, this method alone is not sufficient. Hence, it is most likely 

that  the large FHSP will require some other technique. A suitable candidate is Iterative 

Improvement Technique (IIT). 

Iterative improvement methods can be described in general as consisting of 3 algorithms 

- A,  B and C (Papadimitriou et al. 1990, Johnson et  al. 1958). The algorithm A finds 

an  initial solution. The algorithm B checks for the optimality of the solution and the 

algorithm C finds a new feasible solution. The process is iterated on algorithm B and C 

until a terminal condition is met. The process can be interrupted any time and the most 

recent - the best so far - solution can be obtained. 

For the overall success of such algorithms in practice, it is believed that  algorithm A 

has to  give a "good" initial solution, not just any feasible solution (Papadimitriou et  al. 



1990). Since we are ainling at  solving a large forest harvesting problern. it is worthwhilt to 

spend some time in generating a good initial solution. The measure for t h i b  gootluess is the 

number of consistent variables. 

In this chapter. we outline a few approaches to generate a good initial solution for 

the FHSP. Nest, we choose a method based upon Constraint Satisfactior~ Problem (C'SP) 

model. This initial solution can be used by an iterative improvement technique for further 

optimization. This method incorporates forestry knowledge in the problem solution process 

by using the growth and treatment simulation. In the process, we develop a C++ class 

library called FHSPlib. 

4.1 Met hods Studied for Generating Initial Schedule 

Different approaches can be used to  generate an initial solution for the FHSP depending 

upon the model used t o  describe the FHSP. The most popular models are based on math- 

ematical programming where one formulates the problem as a LP or a MIP. Then, the 

respective solvers look for the optimal solution of the model. An alternative model is based 

on the CSP which allows one to  use the constraint programming techniques, such as con- 

structive or iterative search methods, to  look for the solution. We give a brief description 

of how these approaches may be used to  generate an initial solution for the FHSP. We as- 

sume that  the growth and treatment simulator (for example, G.4Y.4 (Hoen 1992)) is t o  be 

included in the solution process so that more realistic solutions can be obtained. 

4.1.1 Linear Programming 

In Hoen's GAYA-LP, a linear programming solver linked with the simulator GAYA, G,4YA 

generates all possible schedules for all of the stands and then the LP  solver selects one 

eschedule for each stand, depending upon an economic objective NPV (Net Present Value) 

of the forest. Hoen has integrated JLP (Lappi 1992), a specialized LP solver, with GAYA, 

and this reportedly works better than GAYA-LP '. 
There are three approaches based on GAY-4 and JLP. We will say that  GAYA outputs 

a tree for each stand. Each path in the tree is a schedule. The number of leaf nodes in the 

'Siitonen's MELA (Siitonen 1993) and Baskent and Jordan's GIs-based method (Baskent & Jordan 1991) 
are alternatives to  GAYA. 



trre is the number of posible schecinlei. Figure 1.2 in ( 'hapter 1 is a small example of the 

t we. 

1. Make singleton schedule for each stand, so that C;;\Y-A will onl? produce one path for 

each stand. This could be treated as a si~nple initial solution. The path chosen by the 

sirnulation for each stand depends upon the overall quality of the stand and various 

other forestry criteria. 

2. According to Hoen. GA4YA can be modified such that only a few schedules are gen- 

erated for each stand based upon the econonlic criteria. If this is the case, then we 

should be able to  generate any number of schedules per stand as required. Observe 

that  this approach is not independent - it requires an additional LP solver. 

3. G-4Y.4-JLP can be used to  select the optimal schedule for each stand based upon the 

economic criteria. 

The first approach above can be implemented as a function that  takes as input an  

individual stand data. The second approach seems like a good idea, provided that  we can 

control the number of schedules generated per stand. Otherwise, there can be size problems 

with GAYA. The number of paths generated as possible schedules for each stand is quite 

large. For 10 time periods and 50 different treatments, it could be as large as  1000 (per 

stand). Only a small subset of the treatment set is possible depending upon the current 

state of a stand. All of these treatments finally translate into less than 10 basic treatments 

such as clear-cut, commercial thinning, and fertilization. In one case, GAYA-JLP was used 

for 6000 hectares of forest, approximately 14,000 - 15,000 stands, and 7 ten-year periods. 

For this problem, there was an  average of about 25 schedules per stand generated by GAYA. 

Use of JLP (in the third approach) requires definition of an  objective function. The 

NPV seems to  be the most commonly used for this purpose. Additional data  - ,the number 

of trees per stand and the distance the trees have to  be transported after being harvested 

- is required to  calculate the NPV. The ECOPLAN prototype data  that  we used for our 

esperiments in Chapter 3 do not have this information. 

Summarizing, we need 

1. GAYA formatted input data  

2. Economic data  to calculate the NPV for use with C7,AYk'4 and with the LP  solver part 



Given this. a restricted ( r ~ l a s e d )  version the FHS P 1 1 1 9  be solved to ohtain the optimal 

solution which could be used as an initial solution for the full FI-ISP. 

4.1.2 Mixed Integer Programming 

The FHSP can be better nlodelled as a MIP. But the problematic part of this approach 

is the size of the model, since the number of variables and constraints become prohibitive 

even for a relatively small problem. Therefore. before using this model. a decon~position of 

the problem is required. This can be done by either partitioning the problem into smaller 

subproblems or using the MIP formulation that allows a column generation technique. To 

our knowledge there is not any system that  has integrated the simulation model into a MIP 

model. 

If the problem is geographically partitioned into subproble~ns, then the subproblems 

can be solved independently and the solutions combined. If it is the case that  FHSP has 

constraints that  are fairly loose from one geographical area to  another, it may be possible 

to  combine the subproblem solutions into a global one without much effort. However, the 

problems with this approach are that  it is not obvious how the simulation results can be used 

and that  current MIP solvers can only handle small problem instances. In short, making 

this approach work efficiently is not a trivial task. 

4.1.3 The CSP model and Constraint Programming 

Let X = {x l , .  . . , x,) be the stands in a given forest, D; = { P I , .  . . , Pk) be the set of paths 

obtained from a simulation for stand xi, and Rij  C D; x Dj .  Each path Pi = {al , .  . . , a,), 

where each a; is a node in the path consisting of a tuple < p;,t; >, where ti is a treatment 

and pi the treatment period. We can use the adjacency constraint to  construct C = { c i j } ,  

where c;j is a set of allowable pairs of values for xi and xj .  Then, by definition, the triple 

( X ,  D, C) is a CSP, where X is a set of variables, D is a set of domains and C is a set of 

constraints. If we draw a constraint graph for this CSP, each node in the graph represents 

a stand and each edge an adjacency constraint between two nodes (see Figure 4.1). This 

will give us a binary constraint network (cf. definition in Chapter 2). Let us assume that  

we want to  use the results of the simulation in this model. 

2for example, GXYA 
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Figure 4.1: Constraint graph of a forest in Figure 1.1 

1. start instantiating the variables in some static ordering X I , .  . ., x,. Then, X I  c P, E 

Dl - 
2. for i = 2 t o  n,  x; c d j  E D; such that adjacency constraints are satisfied greedily 

with X I  . . . xi-1. 

3. if not all consistent, use local repair heuristic, for example, mincon  f l ic ts  (Minton et al. 

1992), or tree search to  generate an initial feasible solution 

It is obviously not possible to  represent all of the possible paths from the simulation 

as domains. A smaller subset of the set of paths have to  be used for efficiency. We can 

then order the variables and start instantiating (step 1 from above). But t o  take care of 

the adjacency constraint, each schedule should have the exclusion period information, that  

is, the periods a t  which the stand is below the minimum height. This can be obtained from 

the input da ta  directly using the age and growth information. 

Instead of using a repair method in step 3, we could use a tree search. However, we 

believe that  the problem has exponential search space and that therefore the tree search 

may not be a good idea. 



Note that the ordering does not have to be i n  t e r m  of the s t ands  but can be in the 

periods. One call start instantiation froni the period 1 to the period nl. The algorithm moves 

from period i to period i + 1 when a local objective criterion. for example. the area or the 

volurtie of the harvest. is fulfilled. We can check during each period to see if the assignments 

satisfy the adjacency constraints with the assignments from the previous periods. 

Xnother approach could be to randomly select the treatnients and the periods from the 

simulation result. But the solution in most cases may not be feasible since the simulation 

result does not take into account any constraints between the stands including adjacency 

constraints. However, the solution can be made feasible by using an iterative repair heuristic 

or a constructive tree search method. 

Summarizing, to use a CSP model we will need 

1. a small number of paths generated for each stand by a simulator (item 2 from previous 

section) 

2. a suitable constructive search or an iterative repair method 

4.1.4 Conclusion 

It seems that in order to  use a MIP model to generate an initial solution, various other 

problems Like decomposition, suitable constraint formulation et cetera have to  be considered 

first. Linear programming model with the GAYA simulator seems to  be an easier choice. 

Even GAYA alone could be used to generate a simple initial solution if only one schedule 

is picked for every stand. A CSP model is easier t o  formulate and a number of solution 

strategies can be adopted from constraint programming. The approaches that use simulation 

results intuitively seem t o  be better since the growth and yield models are then incorporated 

in the solution process. We give a method based on a CSP model in the next section. 

4.2 A method based on a CSP model 

The FHSP problem is modelled as a CSP and a well known mincon flict heuristic is used 

to  iteratively repair a greedily assigned initial (trial) solution. We will describe our im- 

plementation and empirical evaluation of this method in the following sections. As noted 

earlier, we develop a Cf + class library, FIISPlib, in this process. The implementation uses 



an external ('++ class library called LED.\ '. 
In this >ection we will focus more on the input rcquiren~ent~ ant1 on t h ~  outputs from 

the FHSPlih library. typical application while using this library \vould also have a data  

generator which prepares the data for the problem instantiation routine in the library. The 

data  generator typically works on the simulator results to prepare a number of schedules 

for the stands. 

The input data file is assumed to  have a particular format. which is the output format 

of the data  generator (or data preprocessor). Appendix A has a detailed explanation of the 

format. 

Some of the data items (for example. the number of trees, the volume et  cetera) are not 

currently used in the initial solution generation process but they are kept there assuming 

that all the results from the stand simulator will be used in the future. 

4.2.1 Minconflicts Heuristic 

It is often the case that  while solving a CSP using the iterative techniques, an  initial trial 

solution is generated randomly or greedily. In most cases this solution is infeasible as it 

violates various constraints. One way t o  make this a feasible solution is iteratively repairing 

it by changing the value assigned to a variable. Which variable t o  choose for the change is 

a research issue and often depends upon the problem. One of the methods of choosing the 

variable t o  change is the minconflicts heuristic. This heuristic is very simple-minded, yet 

it has proven to  be effective on large scheduling problems. An algorithm using it may be 

described as follows: 

Algorithm 1 

1. create initial trial solution 

2. pick a variable, X ,  in conflict 

3. assign value xi E domain(X)  to ax such that  the conflicts created by it is minimal 

4. if no variables in conflict esit 

3Library of efficient data  structures and algorithms (http://www.mpi-sb.rnpg.de/LED.A/w~vw/) 



Figure 4.2: Function used to calculate height 

Step 1 of the algorithm can be implemented either greedily or randomly. IP-e have chosen 

a greedy way in our implementation. This step also creates two sets of variables. VarsDone 

and V a r s L e  ft - with the former containing the consistent and the latter containing the 

inconsistent variables. Step 2 picks a variable - we pick randomly - from the set VarsDone. 

In step 3, all the values for the variable picked are checked and the one that minimizes the 

number of conflicts with other variables is assigned t o  it. Then, the two sets are updated. 

Step 4 checks for the terminating condition. In our implementation the number of iterations 

is also included as the terminating condition. 

4.3 Experiment a1 Results 

We have a data generator that  takes the following input parameters and produces stand 

specific data  suitable for the library routines. The data  file used (first argument) was the 

ECOPLAN prototype data  (Misund et al. 199.5). The source code for the data  generator 

and the test application are found in Appendix B and Appendix C respectively. 

For the height calculation, a simple linear function as shown in Figure 4.2 is used.. The 

necessary points in the function are given as input parameters to  the data generator. A 

more detailed parameter infor~nation is shown below. 

The executable gen-data takes  10 arguments, 

char* f i l e  = argvC11 ; // d a t a  f i l e  

i n t  MIN-AGE = a t o i  (argv C21) ; // f o r  c l ea rcu t  



i n t  MAX-AGE = a t o i  (argvE3I) ;  // f o r  c l e a r c u t  

i n t  age-1 = a t o i  (a rgv  [4]) ; // f o r  h e i g h t  c a l c  

i n t  age-2. = a t o i  (a rgv  [S]) ; // . . .  

f l o a t  he igh t -1  = a t o f  (argvC61); // . . . 
f l o a t  he igh t -2  = a t o f  (argv [Ti) ; // . . . 
i n t  nSch = a t o i  (argvC81); // number of schedules  (domain s i z e )  

i n t  p e r i o d  = a t o i  (a rgv  [91 ) ; // number of p e r i o d s  

i n t  pLength = a t o i  (argv[lO]) ;  // p e r i o d  l e n g t h  

Example : 

gen-data s t a n d s . d b  50 80 20 110 1 8 . 0  22.0 1 10 5 

4.3.1 Data Sets 

Two basic da ta  sets were used, both generated using the ECOPLAN prototype data. How- 

ever, these sets are not comparable to  the sets used with cplex MIP solver in Chapter 3. The 

latter donot have treatments other than the clear-cut and are restricted t o  one treatment 

per stand. These restrictions were primarily placed due to the inefficiency of general integer 

programming algorithms. The two data sets generated for this experiment with mincon- 

flicts heuristic have multiple treatments and a stand may have various treatments during the 

scheduling horizon. The difference between the parameters used to  generate these two data 

sets was the values of parameters M I N - A G E  and M A X A G E ,  which determined the legal 

interval (in years) for the clear-cut treatment. For DataSetl ,  and Dataset2, the intervals 

were [35,90] and [30,100] respectively. From each set, further test sets were generated using 

the following argument to  the data generator. 

where n P e r  is set {10,15,20) and for nPer  = 10, n P e r  = 15, and n P e r  = 20, respective 

values for nSch were sets (5,101, {5,10,15), and {5,10,20). Thus, a total of nine test sets 

were generated from each data set. 

Datasetetl was tested with 10,100, and 500 iterations. At this point, it was observed 

that  some of the consistent assignments were the schedules that  had no treatment for all 

of the periods. This was because of the legal treatment interval which prohibited some 



lncons~stent Variables Vs. lterat~ons (5 schedules) 
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Figure 4.3: Variables left inconsistent and iterations (each stand has 5 schedules) 

stands from having treatments." Since this should not happen when using a simulator, the 

data  generator was modified such that  all the schedules generated had a t  least one valid 

treatment. This was done by randomly picking one period in which to allow the treatment. 

Datasetz was generated in such a way and used for further experiments. For clarity, we 

divided Dataset;! into 3 sets, Setl ,  Setz ,  and Sets, with nPer = 10, nPer = 15, and 

nPer = 20 with a respective nSch of sets ( 5 ,  lo) ,  {5,10,15), and {5,10,20). 

4.3.2 Results 

Figure 4.3 sho\+s the result of running our algorithm for instances in which each stand has 

5 schedules in its domain, from each of the three sets. Figure 4.4 is a similar plot but 

with instances where each stand has 10 schedules in its domain. In Figure 4.5, results from 

instances of Set2 and Set3 only are plotted, with each stand having 1.5 or 20 (only in Set3) 

schedules as domains. 

The figures show that  after some iterations the number of inconsistent variables starts 

4For example, there are some stands with current age greater than 100. 
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Figure 4.4: Variables left inconsistent and iterations (each stand has 10 schedules) 
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Figure 4.5: Variables left inconsistent and iterations (each stand has 13 or 20 schedules) 



to fluctuate within a small interval. The position of' thii interval tlc~pentls upon the nunlber 

of 5chedules initially available to each stands. 111 Figure 1.3 and Figure 4. 4. this interval 

is [30.tiO] and [5,10] respectively. In Figure 4.7. all the variables are consistent within 60 

iterations. In fact, this interval is the largest for instances with the least nr~rnber of schedt~les 

as domain. This is as expected - the bigger the size of the domain, greater the chances of 

finding a consistent solution with less numbers of iterations. 

Furthermore, all the instances in Figure -4.3 and Figure 4.4 were allowed to  run till 10,000 

iterations in hope of finding a complete consistent instantiation. Howe.rver, the number of 

the inconsistent variables remained within a constant interval throughout the run. Either. 

our algorithm was trapped in the local minima or there were no better solution to  be found. 

The results show that this method can be used to find the initial solutions. It also 

suggests that for the ECOPLXN prototype data. if 10 or more schedules are generated 

for each stand using a simulator, then the chances are that the method will converge t o  

a complete or almost complete consistent instantiation. This is not s very demanding 

requirement since a stand treatment simulator like GAYA (Hoen 1992) can be modified easily 

t o  output such schedules. However, it is still t o  be seen whether the schedules generated by 

such a simulator behave as the randomly generated ones in our experiment. 

The repair algorithm took 5-7 minutes of processing time in a sparc-10 SUN workstation 

for each of the instances. 

4.4 Further Improvements and St~ggestions 

There are many ways to  improve the performance of the FHSPLib library. The mincon flicts 

heuristic implementation requires a programmer to  make certain choices while implement- 

ing the trial solution generation process, the conflict set builder et cetera. The following 

approaches may improve the performance of the library. 

1. Right now the graph class from LEDA is minimally used. However, it can be utilized 

to  order the variable set employing some other heuristic. The rational for not using 

it now is that it creates an overhead that is not necessary in our test case. If the test 

case is complicated and large, then it may be beneficial to  cluster the nodes of the 

graph according to  their degree, neighbors, topology (for esample, cliques), et cetera 

to  order the variables before starting the repair algorithm. 



2. The initial trial solution can be constructed randomly instead of greedily i f  the number 

of the solutions is large. The greedy assigrmtents add overhead that niay not be 

necessary. 

3. It might be useful to introduce some optimization. such as the area harvested, the vol- 

ume harvested, the net present value, e t  cetera. in addition to  constraint satisfaction. 

4.5 Conclusion 

We implemented a library that provide. users t o  represent the FHSP like problems as a 

CSP. We mostly focussed on the initial schedule building mechanism for the FHSP. The 

experimental results showed that our test case can be easily solved if only the adjacency 

constraint is considered. Other constraints are usually formulated as objectives which can 

be iteratively optimized. It also showed that  the number of schedules available for each 

stand directly effects the running time and the quality of the initial solution. The quality of 

the initial solution also depends upon the input data  provided. Thus, if the stand simulator 

is robust and can provide good varying schedules for each stand, then the initial solution 

builder can also provide a good starting point for iteratively optimizing the solution. 

Overall, this method has shown to  be useful for our test data  which is a real-life prototype 

data  from Norway. However, more empirical evaluations with larger data  sets and simulator- 

generated schedules have to  be done t o  fully evaluate the usefulness of this approach. 



Chapter 5 

Conclusion 

Forest harvest scheduling is a multi-criteria optimization problem that  requires multi-disciplinary 

expertise. Most of the research to  date has been in mathematical programming based mod- 

els for solving the problem. W-e studied the MIP and the CSP as both modelling and 

the solution strategies for this problem. Our study of the adjacency constraint structure 

has shown that  some of the formulations of the constraint help the MIP solution process 

by giving tight bounds t o  the problem. Furthermore, the adjacency constraint seemed t o  

be "loose", that  is, consistency enforcement algorithms, like arc-consistency, may not be 

worthwhile in these cases. 

We gave a complete h4IP model for a restricted version of the problem called the CCSP. 

We tested the model with a real-life data  from the ECOPLAN project in Norway. The 

results showed that  the model is efficient for small instances of the CCSP and that  the 

optimal solution can be found very quickly. However, we were not able t o  solve the full 

problem t o  optimality even after running the solver for 34 hours. This test data  is very 

small as compared t o  the practical problems that  exist. Furthermore, the growth and 

treatment simulation results were hard to integrate into the hXIP model. Therefore we gave 

an alternative model based on CSP and showed how the simulation can be integrated into 

it. 

We implemented a method that  provides the users with a way to  represent the FHSP 

like problems in a CSP setting. In particular we focussed on the algorithms for building 

the initial solutions using the growth and treatment simulation results. Our test results 

showed that  the ECOPLAN prototype problem can be easily solved if only the adjacency 

constraints are considered. Other constraints are usually formulated as objectives which can 



be iteratively optirni~cd. Tabu  search and sin~ulatetl annealing are good canctidatcs for the 

iterative inlprovernent technique. ik also showed that the nurn ber of schedules available 

for each stand directly effects the running time and the cl~iality of the initial solution. The 

quality is also dependent upon the input data provided. The generated initial solution can 

be improved by fully integrating the stand simulator cornbined with minconflicts heuristics. 

The FHSP problem has a significant spatial component. consider for example, the adja- 

cency constraints. Recent advances in geographical information technology (GIT)  should be 

esploited to handle. analyze and visualize the data. This is particularly the case when eval- 

uating the visual impact of a schedule, and in general while handling ecological, recreational 

and esthetic constraints/criteria. FVe believe that the CSP model can be easily integrated 

with the GIT. 

LVe did not solve the FHSP in this thesis but rather provided a good foundation for 

both modelling and solving the problem using either the MIP or the CSP technique. Future 

research would be t o  formulate the constraints and the objectives in the MIP model so that  

the column generation technique can be utilized. On the CSP area, the initial solution 

builder should be extended to  solve the complete problem. Also, both of these approaches 

should be compared using the same data  and penalty functions for all of the objectives. 

We believe that  this will help advance the state-of-the-art in the forest harvest scheduling 

practices. 



Bibliography 

E.Z. Baskent Qi G.A. Jordan, 1991. Spatial wood supply simulation modelling. The Forestry 

chronicle, 67-6 (1991), 610-621. 

P. van Beek, 1994. On the Inherent Level of Local Consistency in Constraint Networks. 

AAAI-94 Conference, Seattle, (1994). 

P. van Beek & R. Dechter, 1995. On the Ninimality and Global Consistency of Row-Convex 

Constraint Networks. ACM Journal of Computing, (1995). 

J .  R. Bitner & E. Reingold, 1975. Backtrack programming techniques. Communications of 

ACM, 18-11 (1975), 651-656. 

K. S. Booth gLI G. S. Lueker, 1976. Testing for consecutive ones property, interval graphs and 

graph planarity using p-q-tree algorithms. Journal of Comp. System Science, 13 (19'76), 

355-379. 

V. Chvatal, 1983. Linear Programming. W. H. Freeman and Company. 

W. Conover, 1980. Practical nonparametric statistics, Y d  ed. Sew York, Wiley. 

CPLEX. Version 4.0.1, commercial MIP solver from CPLEX Optimization Inc. 

http://www.cplex.con~/index.html. 

L.O. Eriksson, 1994. Two methods for solving stand management problems based on a 

single tree model. Forest science, 40-4 (1994), 732-758. 

E. C. Freuder, Nov 1978. Synthesizing Constraint Expressions. Communications of AC.V, 

21 (1978), 958-966. 



E. ('. Freuder, 1982. .A \nfficient condition for backtrnch-free wtrch.  . /our rd  o,t' thc .1C'.\I. 

2!1 ( 1982). 2-I-32. 

0 .  Garcia. 1990. Linear Programming and related approachts in forest planning. .\-ezc 

Ztalancl .Journal of Forrstry Science. 'LO ( 1990). 307-331. 

C. Gebotys Si &I. Elmasry, September 1993. Global Optimization Approach for AArchitectural 

Sy~thesis. IEEE Trans. on Computer Aided Design of Integrated Circuits and Systerns, 

12-9 (1993), 1266-1278. 

F. Glover, 1989. Tabu Search - Part I. ORSA Journal on Computing, 1:3 (1989). 

H. F. Hoen, 1992. GAYLA-LP: -4 PC-Based long range forest management model. In El iRO 

,YII/TIikIS XYY.YI Joint Intl Conference, Helsinki, Finland. 

J .  Hof & L. Joyce, 1992. Spatial optimization for wildlife and timber in managed forest 

ecosystems. Forest Science, 38 (1992), 489-508. 

Ii. Hoffman & M. Padberg, Spring 1991. Improving LP Representations of 0-1 Linear 

Programs for Branch-and Cut. ORSA Journal on Computing, 3-2 (1991), 121-134. 

B. S. Johansen & G. Misund, SINTEF Internal Report on GISHP 1995. The Forest Har- 

vesting Problem. 

D. S. Johnson, C. H. Papadimitriou, & M. Yannakakis, 1988. How easy is local search. J .  

Computer and System Science, 37 (1988), 79-100. 

Ii. N. Johnson & S. Crim, 1986. FORPLAN version I: Structure and options guide. Technical 

report, USDA Forest Service Land Management Planning System Section, Washington, 

DC. 

Ii. N. Johnson St D. B. Jones, 1979. lLIUSYC user's guide and operation manual. Technical 

report, USDA Forest Service, Washington, DC. 

I\'. N. Johnson Sc D. W. Rose, 1986. FORPLAN version 2: an overview. Technical report, 

USDX Forest Service Land Management Planning System Section, Washington, DC. 

Ii. N. Johnson St H. L. Scheurrnan, 1977. Techniques for prescribing optimal timber harvest 

and investment under different objectives - Discussion and Synthesis. Forest Science 

Monogmph, 18 (1977). 



.J. Jones. B. 5Ieneghin. k 11. Iiirby. 1991. Forn~ulating acijacency constraints in linear 

optimization n~odels for scheduling projects in tactical planrling. Forest Scwncr, :3 ; - . j  

( 1991). 128:3-129;. 

51. Kirby. I\'. Hager. & P. b n g .  1986. Si~nulataneous planning of wildland managenle~lt 

and transportation alternatives. TIILIS' Stud. ,llunagernerzt Science. ( 1986). 

S Kirkpatrick. 1983. Optimization by Simulated Annealing. Science 2-30. (1983), 671-1380. 

S. Iiirkpatrick, 1984. Optimization by simulated annealing: Quantitative studies. Journal  

of Stat. Physics, 34 (1984), 873-9236. 

J .  Lappi, 1992. X linear programming package for management planning. Research Papers 

414, The Finnish Forest Research Institute, Suonenjoki. 

P.E. Linehan QL. T.J. Corcoran, 1994. An expert system for timber harvesting decision 

making on industrial forest lands. Forest products journal, 44-6 (1994), 65-70. 

C. Lockwood QL. T. Moore, 1993. Harvest scheduling with spatial constraints: a simulated 

annealing approach. Canadian journal of forest research, 23-3 (1993), 468-478. 

lp-solve. Version 1.5, a LP and MIP solver written by Michel Berkelaar. Available for free 

from ftp://ftp.es.ele.tue.nl (131.155.20.126) a t  /pub/lp-sol ue. 

A. K. Mackworth, 1977. Consistency in Networks of Relations. Artificial Intelligence, 8-1 

(1977), 99-118. 

B. Meneghin, M. Kirby, St J. Jones, 1988. An algorithm for writing adjacency constraints 

efficiently in linear programming models. In The 1988 Symposium in systems analysis in 

forest resources. USDA Forest Service General Tech. Report RM-161. 

Steve Minton. Mark D. Johnston, Andrew B. Philips, Si Philpip Laird, 1992. Minimizing 

conflicts: a heuristic repair method for constraint satisfaction and scheduling problems. 

Artificial Intelligence, 58 (1992), 161-205. 

G. illisund, B. S. Johansen, G.  Hasle, & J. EIaukland, May 1993. Integration of Geographical 

Information Technology and Constraint Reasoning - A Promising Approach to  Forest 

Management. In SCANGIS '95 - Proceedings of the 5th Research Conference on CIS, 

18th-14th June 1995, Tronclheint, i\;orway, Jan Terje Bjo, rke, redactie. 



II. LIontanari. 197 1. Nrt~vorks of Constraints: Funtlarnental Properties of ,\pplicxtion.; to 

Picture Processing.. Inform. S r l e n r ~ .  7 ( 197 I ) .  9.?-132. 

X.T. Murray k R.L. C'hurch. 1995a. Measuring the efficacy of adjacency constraint structure 

in forest model. C'anadiun .Journal of Forest Rts~arch,  2.5 (1995). 1416-1424. 

A.T. Murray & R. L. Church, 199.5b. Heuristic solution approaches to  operational forest 

planning problems. OR Spektrurn. 17 (1995), 193-203. 

A. T. Murray S; R. L. Church, 1994. Constructing and selecting adjacency constraints. 

IlVFOR, (199-4). In Press. 

D. I. Navon, 1971. Timber R-AhI- .A long-range planning methods for commercial timber 

lands under multiple-use management. Technical report, USDA Forest Service, Research 

Paper PNW-70. 

J .  Nelson & J. D. Brodie, 1990. Comparison of random search algorithm and mixed integer 

programming for solving area-based forest plans. Canadian Journal of Forest Research, 

20 (1990), 934-942. 

J.  Nelson, J. D. Brodie, & J. Sessions, 1991. Integrating short-term, area-based logging 

plans with long-term harvest schedules. Forest Science, 37-1 (1991), 101-122. 

G. L. Nemhouser & L. A. Wosley, 1988. Integer and Combinatorial Optimization. New 

York, John Wiley and Sons. 

C. H. Papadimitriou, A. A. Schaffer, & M. Yannakakis, 1990. On the complexity of local 

search. Proc. 22nd Annual Symp. on Theory of Computing, (1990), 438-445. 

T. Pukkala & J. Kangas, 1993. A Heuristic Optimization Method for Forest Planning and 

Decision Making. Scandanavian Journal of Forest Research, 8 (1993), 560-570. 

J.  P. Roise, 1986. A nonlinear programming approach to  stand optimization. Forest Science, 

32 (1986), 735-748. 

M. Siitonen. 1993. Experiences in the use of forest management planning models. Silca 

Fennica, 27-2 (1993), 167-178. 

S. Snyder & C. ReVelle, 1996. The Grid Packing Problem: Selecting a Harvesting Pattern 

ina n Area with Forbidden Regions. Forest Science, 42-1 (1996), 27-34. 



.J .11. Torres-Rojo k .J.D. Urotlie. 1090. ;\tijacency constraint> in harvest >checluling: an 

aggregation heuristic. C'arm(1zc~rz journal of'fi>rr.it rec~arrh.  20-7 ( l!_)!IO). STS-9SG. 

E. Tsang. 1993. Founrlatiorzs of f i n s tm in t  ,Sati.sfnction. Harcourt Brace and (.'o. 

P. C. Van Deusen, 1996. Habitat and harvest schedrding using Bayesian statistical concepts, 

Canadian Journal of Forest Research. 26 (1996). 1.375-1:38:3. 

A. ~ ~ i e n t r a u b ,  Ci. Jones, '1. Magendzo, 11. Meacham. S; M. Kirby. 1994. A Iieuristic System 

to  Solve Mised Integer Forest Planning Models. Operations Research, 42-6 (1994). 1010- 

1024. 

A. Yoshimoto & J. D. Brodie, 1994. Comparative analysis of algorithms to  generate adja- 

cency constraints. Canadian Journal of Forest Research, 24-6 (1994). 1277-1288. 

A. Yoshimoto, J. D. Brodie, & J. Sessions, 1994. A new heuristic to  solve spatially con- 

strained long-term harvest scheduling problems. Forest Science, 40-3 (1994), 365-396. 



Appendix A 

Data format for minconflicts 

/ / f i r s t  l i n e  

# of s t ands ,  number of periods,  period length 

/ / r e s t  of t h e  f i l e  

s tand  i d ,  age, volume, t r ee s# ,  t r e e  he ight ,  a r ea ,  neigh. -1, # of schedules(n) 

// schedule 1 

treatment  type,  f i r s t  period,  -1, age, volume, # t r e e s ,  t r e e  he ight ,  a r ea  

. . . 
t reatment  type ,  l a s t  period,  -1, age, volume, # t r e e s ,  t r e e  he ight ,  a r ea  

// schedule 2 

. . .  
// schedule n 

. . .  
s tand  i d ,  age, volume, t r ee s# ,  t r e e  he ight ,  a r ea ,  neigh. -1, # of schedules 

Example : 

The fol lowing i s  da t a  f o r  I s tand,  with 1 schedule with 10 periods 

of l eng th  5 years  each. 





Appendix B 

Data Generator 

f l o a t  height  ( i n t  y r ,  i n t  a l ,  i n t  a2, f l o a t  h i ,  f l o a t  h2 ) ;  

i n t  dbLoad ( i s t reamt ,  i n t t ,  const i n t ,  const i n t ,  const  f l o a t ,  const f l o a t ) ;  

// t h e  approximate funct ion  t o  ca l cu la t e  t he  height  is  a s  fol lows:  

// case a: y  = ( h l / a l )  * x 

// case b: y  = ((a2*hi - ai*h2 + (h2-hi)) / (a2-ai))  * x 

// case c: y  = h2 

// a l :  age1 , a2: age2 , h i :  height1 , h2: height2 

//------ ............................................................. 

i n t  dbLoad ( i s t reamt  i n ,  i n t t  age, const i n t  age-I,  const i n t  age-2, 



in >> id; 

cout << id << " "; 

in >> LastHarvesting; 

age = LastHarvesting * -1 ; 

tout << age << " "; 

in >> TimeForGrowthTo2Meter; 

in >> EarlyHarvesting; 

in >> OptimalHarvest ing ; 

in >> LateHarvesting; 

in >> maxVo1Yea.r; 

in >> maxVol; 

tout << 0 << 'I "; // # of trees 

cout << maxVol << " "; 

cout << height(age, age-I, age-2, height-I, height-2) << " "; 

in >> Area; 

tout << Area << " "; 

in >> rid; 

while (rid != -1) ( 

cout << rid << " "; 

in >> rid; 

3 
tout << "-1 "; 

return (I); 

int main(int argc, char* argvC1) 
//----------------------------------------------------------------------------- 



i n t  num, i ,  j ,  k ,  ok, age, origAge; 

char* f i l e  = argv [I] ; // da ta  f i l e  

i n t  MIN-AGE = a t o i  (argv [2] ) ; // f o r  c l ea rcu t  

i n t  MAX-AGE = a t o i  (argv C31) ; // f o r  c learcut  

i n t  age-1 = a t o i  (argvC41) ; // f o r  height  ca l c  

i n t  age-2 = a t o i  (argv [S]) ; // . . .  
, f l oa t  height-1 = atof  (argvC61) ; // . . . 
f l o a t  height-2 = atof  (argv [Ti ) ; // . . . 
i n t  nSch = a t o i  (argv [8]) ; // number of schedules (domain s i z e )  

i n t  period = a t o i  (argv[9] ) ; // number of periods 

i n t  pLength = a t o i  (argvClO1); // period length  

i f  (argc < 10) C 
r e t u r n  ( 0 ) ;  

3 
i f s t ream i n ( f i 1 e ) ;  

i n  >> num; 

i f  ( ! in.good()  ) ( 

r e t u r n  (-1);  

3 
cout << num << " " << period << " " << pLength << endl;  

f o r  ( i  = 1; i <= num; i + + )  ( 

i f  ( ! in.good()  ) C 
r e t u r n  (-1); 

3 
ok = dbLoad(in, age, age-1, age-2, height-1, height-2);  

i f  (ok !=  1)  ( 

r e t u r n  (-1) ; 

3 
cout << nSch << endl;  

// now t h e  "nSch" schedules 

origAge = age; i n t  something = 0;  i n t  A[50]; 

f o r  ( j  = 1 ;  j <= nSch; j++) C 

age = origAge; 

something = 0;  

f o r  (k = 1; k <= period;  k++) C 



i f  ( (age > (MIN-AGE + ( j -1)  * plength) )  && 

(age < (MAX-AGE + ( j -1)  * plength))  ) { 

ACkl = 1 ;  

something = 1 ;  

age = 0;  

3 
e l s e  ( 

ACkl = 0;  

3 
age = age + plength;  

3 

i f  (something ! =  I )  ( // i f  no l e g a l  treatment found 

A[(random() % 9)  + 11 = 1 ;  

3 

age = origAge; 

f o r  (k = I ;  k <= period;  k++) ( 

i f  ( AEkl == 1)  C 
cout << 1 < < "  'I << k << " -1 "; 

age = 0 ;  

3 
e l s e  ( 

cout << 0 << " " << k << " -1 "; 

3 
//cout << "0 0 0 0 0" << endl;  

tout << "0 0 "; 

cout << height(age,  age-I, age-2, height-I ,  height-2) << " "; 

cout << "0 0" << endl;  

age = age + plength;  

3 
3 

3 
r e t u r n  ( 1 ) ;  

3 



Appendix C 

Test Application 

boo1 read = true; 

mcschedule myschedule; 

string dir = "-/development/src/app/minconf"; 

read = myschedule .dbLoad (dir, maxstands) ; 

mySchedule.solve~); 


