SEMANTIC INFORMATION PREPROCESSING FOR NATURAL
LANGUAGE INTERFACES TO DATABASES

by

Milan Mosny

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School
of

Computing Science

(© Milan Mosny 1996
SIMON FRASER UNIVERSITY
November 1996

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington

Oftawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Ottawa (Ontario)

Your file Votre référence

Our file Notre rélérence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-17022-5

Canada

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the
title of which is shown below) to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further agree that permission
for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate
Studies. It is understood that copying or publication of this work for financial gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay
Semantic Information Preprocessing for Natural

Language Interfaces to Databases.

Author:

(signature)

Milan Mosny

(name}

November 19, 1996

(date)

APPROVAL

Name: Milan Mosny
Degree: Master of Science
Title of Thesis: Semantic Information Preprocessing for Natural Language In-

terfaces to Databases

Examining Committee: Dr. Ze-Nian Li
Chair

Dr. Fred Popowich

Senior Supervisor,

Dr. Wo-Shun Luk

Supervisor

Dr. Veronica Dahl

Examiner

Date Approved:

Abstract

A natural language interface to a database (NLID) needs both syntactic information about
the structure of language and semantic information about what words and phrases mean
with respect to the database. A semantic part of the NLID can implicitly or explicitly pro-
vide constraints on the input language. A parser can use these constraints to resolve ambigu-
ities and to decrease overall response time. Qur approach is to extract these constraints from
the semautic description of the database domain and incorporate them semi-automatically
or automatically into information directly accessible to the parser.

The advantage of this approach is a greater degree of system modularity, which usually
reduces complexity, reduces the number of possible errors in the system and makes it possible
to develop different parts of the system concurrently by different persons and thus reducing
development time. Also domain independent syntactic information can be reused from
domain to domain, then customized according to the semantic information from a specific
domain.

To implement the idea, Abductive Equivalential Translation (AET) was chosen to de-
scribe the database related semantics. AET provides a formalism which describes how a
“literal” logical form of an input sentence consisting of lexical predicates can be translated to
a logical form consisting of predicates meaningful to the database engine. The information
used in the translation process is a Linguistic Domain Theory (LDT) based on logic.

We shall constrain the expressive power of LDT to suit tractability and efficiency re-
quirements and introduce Restricted Linguistic Domain Theory (RLDT). The main step
for incorporation of semantic constraints into the syntax formalism is then extensive pre-
processing of the semantic information described by an RLDT into Normalized Linguistic
Domain Theory (NLDT). The system uses NLDT to produce selectional restrictions that fol-

low from the semantic description of a domain by RLDT. Selectional restrictions in general

state which words can be immediately combined with which other words.

Once NLDT is constructed, it can be used as a main source of information for semantic
processing of a sentence. Thanks to the soundness and completeness of the normalization
process, the designer of the interface has possibility to express the semantic knowledge in
more declarative terms.

KEYWORDS: Natural language processing, natural language interfaces, databases,

logic programming, equivalences

Acknowledgements

I would like to thank Fred Popowich, Zuzke Repaskej, Dan Fass, Gary Hall, and my family.

Contents

Abstract iii
Acknowledgements v
1 Introduction 1
1.1 Common Principles L e 1
1.2 Problems with Ambiguity o0 3
1.3 Systems Architectures oo 3
1.4 Whatis this Thesisabout 5
1.4.1 System’s Architecture o 7
1.4.2 Syntactic Knowledge and Syntactic Processor 7

1.4.3 Declarative Semantic Knowledge and Restricted Linguistic Domain
Theories L e e e e 9
1.4.4 Automated Construction of Selectional Restrictions 10

1.4.5 Search Graph, Automatic Construction of Search Graph and Semantic

Processing e e e 10

1.5 Structureof this Thesis 11

2 Abductive Equivalential Translation 12
2.1 Introduction e e e e e 12
2.2 AET vs. Other Theories 13
23 AET Formally i e 14
2.3.1 Conjunctive Context ittt 15

2.3.2 Translation Process, 16

2.4 Linguistic Domain Theories 22

vi

2.4.1 Technical Description 22

2.4.2 Predicates and the Stage of Translation 2
2.4.3 AXIOMS e e e e 28
2.5 SUMMATY . .« . v i o e e e e e e e e e e e e e e e e 28
Restricted Theories and Normalization 30
3.1 General Overview i e e 30
3.1.1 General Method and Motivation 30
3.1.2 Applying the Method - What does Normalization Look Like and What
isitGoodfor L. 31
3.2 Restricced LDT et e e e 3D
321 Input Language 35
3.2.2 Output Language o i i 36
3.2.3 Assumptions about the Restricted LDT 37
3.2.4 Definition of the Restricted LDT 46
3.3 Normalized LDTs e 50
3.4 Normalization Algorithmso 56
3.4.1 Overview of the Algorithms 56G
3.4.2 Condition Construction Algorithm 59
3.4.3 Conditions Combination Algorithm 62
3.5 Implementation of Normalization 66
3.5.1 Complex and Simple Theories 66
3.5.2 TImplementation of Normalization Algorithms 68
3.5.3 Implementation of the Conditions Construction Algorithm 70
3.5.4 Implementation of the Conditions Combination Algorithm 74
3.5.5 Simplification of the Results 78
3.6 SUIMINATY . . .« o ot et e e e e e e e e e e e e 79
Translation Using Normalized LDTs 81
4.1 Sound Translation Algorithm 81
4.2 Searchingfor CEs. e 90
4.2.1 Assumptions and Observations 90
4.2.2 Searching Algorithm00, 92
4.2.3 Tree Construction Algorithm 94

vii

4.3 SUMMAIY ¢ o v i it v bt e e e e e e e

5 Construction of Selectional Restrictions

5.1 Selectional Restrictions o0
5.2 Algorithm for Constructing Selectional Restrictions
5.2.1 Indices and Attributes
5.2.2 Computing Index - Attribute Compatibility
5.3 Implementation 0.
53.1 System Design
5.3.2 Sample Terminal Session
54 Related Work
5.4.1 ComparisonwithCLE
5.4.2 Constructing Selectional Restrictions from Corpora . .
5.5 Summary e e e e e

6 Conclusions and Future Work

6.1 Summary e e
6.2 Future Directions,
6.2.1 Real Domain
6.2.2 Normalization Process and Restriction of RLDTs . . .
6.2.3 Search Graph Modifications
6.2.4 Encoding the Selectional Restrictions using Unification

References

Appendiz. A

viii

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

101
101
103
103
106
110
110
112
117
117
118
119

120
120
121
121
121
122
122

123

126

List of Figures

1.1
1.2
1.3
1.4

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6

Architecture of a tightly coupled system 4
Architecture of loosely coupled system L0, 5
Architecture of system with hybrid architecture 6
System’s architecture. Lo 8
AFET translation process - predicates at various ctages of translation 27
Translation process using AET with LDT vs. RLDT 38
Derivation tree from example 3.4 L. Lo 46
An example of SLD - derivation 48
An example of derivation tree Lo 48
SLD - treeforexample 3.8 L oo Gl
Tree representing CEs (4.13 ... 4.15). 94
Tree representing CEs (4.16) and (4.17). 95
Tree representing CEs (4.16) and (4.17). Second version. 96
Search graph after RootNode expansion. 99
Search graph after expansion of nodes Nodel and Node3. 99
Finished search graph. 160

ix

Chapter 1

Introduction

Natural Language Interfaces to Databases (NLIDs) are systems that allow a user to access
information stored in the database using natural language (e.g. English). This kind of

access has several advantages over alternative methods as noted by [20].
e it provides an immediate vocabulary for talking about contentc of the database

e it provides a means of accessing information in the database independently of its

structure and encodings
e it shields the user from the formal access language of the underlying system
e it is available with minimum of training to both novice and occasional user

The NLIDs can be used to query and updaie a database. In this thesis, however, we
shall concentrate solely on the task of querying the database.

In this chapter, we shall introduce NLIDs, describe architectures that the NLIDs use,
and point out some problems that such systems have to deal with. Then we shall state
what the main goal of this thesis is, namely, to develop preprocessing algorithms. We shall
also briefly outline hew the preprocessing algorithms can address some of the problems

associated with NLIDs.

1.1 Common Principles

A number of different NLIDs with different underlying architectures were developed in the

past, but certain common features can be observed.

CHAPTER 1. INTRODUCTION

SV

Most of the NLID systems work with an assumption that natural language presented at
the input of the system is at least to some degree compositional, that is the meaning of the
whole can be represented as a function of ihe meaning of the parts.

Given an input sentence in natural language, the system creates some kind of structure
for the sentence that describes how the parts of the language are combined together. The
structure reflects the system’s view of natural language. Some systems work with the phrase
structure of the sentence, other systems use simple template matching, yet other systems
produce a logical representation of the sentence. To create the structure, no information
about the database schema - neither names of the tables and columns, nor any informa-
tion about the meaning of the data stored in the database - is needed. What is needed
is information about what kind of words and phrases can occur in human language that
the system happens to process, how they can be combined together and how to assign a
structure to the particular combination of the words and phrases. This information can
contain morphological constraints, syntactic constraints and vocabulary. We shall call this
information syntactic knowledge.

According to the structure of the sentence, a database query is constructed. During
this process, information about the given domain, information about the structure of the
database and domain independent semantic constraints are used. We shall call this informa-
tion semantic knowledge. The semantic knowledge in general describes, how the database
query can be constructed. It describes how the parts of the input sentence structure can
be mapped into the concepts known to the database and how the mapped parts can be

combined together to create the result. As an example consider a sentence
Who works in the department whose manager is Tony. (1.1)

The system can produce the following logical formula that can be considered as a structure
of the sentence reflecting words and phrases which modify or complement other words or

phrases

IX, E, D, M (person(X) A work(E, X)A in(E, D)

W 2%

Adeparimeni{ D} A possesive(D, M) A manager(M) A tony(M })) (1.2)

Such a representation can be later translated into the database query using domain inde-
pendent knowledge about mapping the quantifiers and logical conjunction into the database

query, domain dependent knowledge about disambiguating certain predicates according to

CHAPTER 1. INTRODUCTION 3

their context (e.g. possesive(D, M) in the context of manager and department into the rela-
tion manages) and database dependent knowledge about relating disambiguated predicates

to tables and columns of the database.

1.2 Problems with Ambiguity

Often more than one structure for a given sentence can be produced. As an example consider

a sentence from [12]

Lawyers give poor free legal advice. (1.3)

where the word “poor” can refer either to “poor people that receive free legal advice” or to
the quality of “free legal advice”. Unfortunately, there are some domains where far more

than two readings of the input sentence can be generated. Consider the phrase from [6]
trouble call activity total (1.4)

that can be interpreted as

(trouble(call activity))total OR
((trouble call)activity)total OR
(trouble call)(activity total) - - - (1.5)

or even a more “hairy” phrase from the same source

the may 1992 eastern divisions sub owned eqp fault count total stats

(1.6)
with many more possibilities. The processing of such phrases can lead to a combinatorial
explosion resulting in long processing time and/or numerous inappropriate interpretations.
1.3 Systems Architectures

Based on the interaction between syntactic and semantic knowledge, we describe three
types of NLIDs - tightly coupled systems, loosely coupled systems, and systems with hybrid

architectures.

CHAPTER 1. INTRODUCTION 4

Tightly Coupled Systems

In tightly coupled systems, it is difficult to separate syntactic and semantic knowledge. The

schema of such systems is depicted in fig. 1.1.

input sentence

syntactic and
semantic knowledge [(processor

{

database representation

Figure 1.1: Architecture of a tightly coupled system

One of the advantages of this architecture is that syntactic and semantic knowledge
are used together during the processing of the query. The architecture allows the use of
more constraints to disambiguate the input sentence during initial processing than other
architectures. The amount of constraints affects the number of produced representations,
therefore performance is better.

On the other hand the lesser degree of modularity increases the difficulty of maintaining
the system and it is difficult to reuse some parts of the interface while porting to another

domain. Examples of such systems are [6], [27] and [10].

Loosely Coupled Systems

In loosely coupled systems, the clear distinction between syntactic and semantic knowledge
can be observed. The schema of a loosely coupled system is depicted on fig. 1.2. According
to [9], LUNAR can be considered an example of a loosely coupled system.

The clear advantage of this kind of architecture is its modularity. It is possible to reuse
syntactic knowledge while porting the interface to another domain. It is also possible for dif-
ferent people to work on the syntactic information and semantic information independently.

A higher degree of modularity also decreases the difficulty of maintaining the system.

CHAPTER 1. INTRODUCTION 5

input sentence

i
syntactic ' '
knowledge syntactic processing
semantic _)

knowledge semantic processing

database query

Figure 1.2: Architecture of loosely coupled system

The disadvantage of this architecture is its performance. In some domains it is difficult to
use this kind of architectures, because of combinatorial explosion during syntactic processing

(semantic knowledge is not available at that time to constrain analysis).

Systems with Hybrid Architecture

The hybrid architecture combines the modularity of loosely coupled systems with the perfor-
mance of tightly coupled systems. The simplified architecture of one such system, CLARE
[22], is shown in fig. 1.3.

The only disadvantage is the need to supply special semantic constraints (e.g. selectional
restrictions) that are usually implicitly contained in the semantic kiiowledge. The extraction
process needs human supervision and can introduce some errors. The extraction process
can also be time consuming and special semantic constraints have to be updated anytime

the semantic knowledge of the system changes.

1.4 What is this Thesis about

In this thesis, we shall explore a variation of the hybrid architectures. Our main goal is to
create the basics of a system that can automatically derive reasonable semantic constraints

that can be used for disambiguation during the syntactic processing out of a truly declarative

CHAPTER 1. INTRODUCTION

input
syntactic knowledge .)
+some semantic syntactic processing
constraints
manual or semiautomatic
extraction of the
semantic constraints
y
semantic knowledge semantic processing
output

Figure 1.3: Architecture of system with hybrid architecture

CHAPTER 1. INTRODUCTION 7

description of the semantic knowledge.

We shall also show how the semantic knowledge expressed in declarative terms can be
“compiled” into a data-structure called a search graph that provides the basis for semantic
processing with reasonable efficiency and degree of declarativeness.

We believe that by solving the main goal we shall also address a trade-off between

performance and the degree of modularity and portability that can be observed in the

architectures described in previous section.

1.4.1 System’s Architecture

The architecture of our system is depicted in fig. 1.4, We shall call the part of the sys-
tem that contains syntactic knowledge (together with selectional restrictions) and syntactic

processor the syntactic part and the part that contains semantic knowledge in suitable form

and semantic processor the semantic part.
Essential to the system is the description of syntactic and semantic knowledge. Uni-
fication based grammars were chosen for describing syntactic knowledge, while a modified

version of the formalism used in Abductive Equivalential Translation (AET) [23] was chosen

to describe the database related semantics.

1.4.2 Syntactic Knowledge and Syntactic Processor

A unification based grammar is able to produce a “literal” logical representation of an
English sentence. In such “literal” logical representations, predicates of atomic formulas
approximately correspond to the content words of the input sentence. We shall call such
predicates that occur in the “literal” logical representations of sentences lezical predicates
and formulas whose atomic subformulas contain only lexical predicates lexical formulas. As

an example consider a question
Is there a girl that loves chocolates from Germany? (1.7)
The “literal” logical representation of the sentence can be a lexical formula

3G, E,C,Ge.(girl(G) A love(E, G, C) A chocolate(C)
Afrom(C,Ge) A country(Ge, germany)) (1.8)

with lexical predicates girl, love, chocolate, from, and country.

CHAPTER 1. INTRODUCTION

input
syntactic knowledge . :
and selectional Syntactic processing
restrictions

automated construction
of selectional
restrictions

declarative
semantic knowledge

automated construction
of search graph

search graph -
semantic knowledge . .
in suitable form semantic processing

for semantic processing

output

Figure 1.4: System’s architecture.

oo

CHAPTER 1. INTRODUCTION 9

1.4.3 Declarative Semantic Knowledge and Restricted Linguistic Domain

Theories

AET provides a formalism that describes how lexical formulas that correspond to the input
sentences can be translated into logical formulas that contain predicates understandable
by the database (database formulas). The main source of semantic information for AET
process is linguistic domain theory (LDT). LDT contains a set of axioms characterizing the
relationship between lexical atomic formulas and database atomic formulas. The axioms
describe in which context a particular atomic formula can be translated into another formula.
Lexical atomic formulas can be translated through a number of intermediate formulas into

the database formulas.

For example, LDT can contain axioms that can translate atomic formulas
e girl(G) into db_person(G,w) in any context

e chocolate(C) into db_product(C,chocolate) in any context

o country(Ge, Name) into to db_country(Ge, Name) in any context

e love(E,G,C)into dblikes(E,G,C)if the word love occurs in the context of db_person
and db_product

e preposition from(C,Ge)into dblocation(C,Ge)if the word from occurs in the context

of db_location and db_product

In this thesis we restrict the possible form of axioms used in original LDTs to suit the
requirements of the preprocessing algorithms. For the same reason, we shall also impose a
requirement of explicit finite dictionary. The dictionary relates atomic formulas that can be
presented at the input of the semantic processor and atomic formulas that can be produced
by the semantic processor. The LDT that uses constrained form of axioms and contains
finite dictionary is called restricted LDT (RLDT).

RLDT, similarly to LDT, expresses a relationship between logic formulas that represent
the natural language utterance and logic formulas that represent the database side of the
NLID. Because RLDT technically works on slightly different kinds of logic formulas than
original LDT, we shall call logic formulas that are expected at the input of a system that
uses RLDT input logic formulas and formulas that are produced by such system output logic

Jormulas.

CHAPTER 1. INTRODUCTION 10

The constraints imposed on the RLDT restrict expressive power of the theory and require
more explicit information to be provided (e.g. the dictionary). On the other hand, imple-
mentation of the system compensates for the lack of expressiveness in RLDT as opposed to

LDT by providing a set of simple and useful tools.

1.4.4 Automated Construction of Selectional Restrictions

The system is able to produce selectional restrictions that follow from the semantic descrip-
tion of a domain by RLDT. Selectional restrictions in general state which words can be
immediately combined with which other words. The advantages of selectional restrictions
is the possibility of very efficient implementation and their ability for seamless integration
with the parser.

The process of constructing the selectional restrictions involves extensive preprocessing of
the RLDTs. The preprocessing produces normalized LDTs (NLDTs). The NLDTs contain
all possible rules of translation for each input atomic formula. Each rule contains an input
atomic formula, a pattern of possible contexts in which the input atomic formula can be
translated and an output atomic formula representing the outcome of translation. The
normalization process is sound, (i.e. the rules are logical consequences of the original RLDT)
and complete (i.e. all the interesting rules of the given form are derived).

Using the patterns of contexts in the rules, the system can derive how the words can be
combined together in the given domain. The constraints are then automatically incorporated
into the unification based grammar.

Basic ideas for constructing of the selectional restrictions are also briefly introduced in

our work [17].

1.4.5 Search Graph, Automatic Construction of Search Graph and Se-

mantic Processing

Once an NLDT is constructed, it can be used as a main source of information for semantic
processing of a sentence. Because the NLDT contains all possible rules for translation of
input atomic formulas and the rules are represented in a straightforward fashion (patterns of
possible context of input atomic formula in a sentence) the translation process is simplified.
That is, each input atomic formula with its context in the input sentence is simply matched

against the rules of the NLDT. If the matching rule is found, the input formula is substituted

CHAPTER 1. INTRODUCTION 11

with its output counterpart from the rule.
Thanks to the soundness and completeness of the normalization process, the designer of
the interface has a possibility to express the semantic knowledge in more declarative terms.
Because rules of NLDTs correspond to natural language phrases, some special features
of NLDTs can be observed. These features allow us to construct heuristics and a data
structure for more efficient rule search. The data-structure is similar to the trie structures
[1] used for pattern matching. We shall call the data structure a search graph.

The search graph construction and semantic processing algorithm is discussed in chapter

1.5 Structure of this Thesis

AET is explained in more detail in the chapter 2 of the thesis. Section 2.1 provides an
introduction to the main concepts and ideas of the AET. Section 2.2 compares AET with
other approaches, namely Horn clause approaches, noninferential equivalential translation
and interpretation as abduction. Section 2.3 introduces the AET from the formal point of
view and section 2.4 describes LDTs in more detail.

Chapter 3 talks about restricted LDTs and the normalization process. The actual re-
strictions and modifications imposed on the LDTs (to suit the requirements of the prepro-
cessing algorithms) together with the formal definition of RLDTs are described in section
3.2. Section 3.3 discusses and defines the NLDTs. Section 3.4 introduces the normalization
algorithms and section 3.5 points to some issues of their implementation.

Chapter 4 describes the search graphs and the algorithm that uses them for translation
of input formulas into output formulas. Chapter 5 explains in detail construction of the
selectional restrictions that are based on NLDTs as well.

Chapter 6 summarizes the advantages and disadvantages of the proposed system and

suggests some future directions of research.

Chapter 2

Abductive Equivalential

Translation

2.1 Introduction

In this chapter, we shall provide a short overview of Abductive Equivalential Translation
(AET) and Linguistic Domain Theories (LDTs) [23], the theory upon which our work is
based. In his Ph.D. thesis, Rayner introduces AET and LDTs as a way of relating the
semantics of natural language to the semantics of a database.

He supposes the existence of a language engine that provides a mapping from a natural
language utterance into a lezical logical formula. The lexical logical formula is considered
to be “literal” in the sense that there is a close correspondence between component words
of a natural language expression and component symbols in its logical representation. We
shall call predicates that occur in lexical logical formulas lezical predicates.

On the database side, a similar correspondence is established. Database objects, func-
tions and relations expressible in a database query language correspond to quantifiers, pred-
icates, functions and constants in database logical formulas. We shall call predicates that
occur in the database logical formulas database predicates. An example of lexical formulas
and database formulas was given in subsection 1.4.1.

The task of finding the relationship between database queries and natural language
utterances is then simplified to finding the relationship between lexical logical formulas and

database logical formulas. The idea is that given a lexical logical formula, the system will

12

"HAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 13

find an equivalent database logical formula w.r.t. some background logical theory. Formally,

a database logical formula Fy is called the translation of a lexical logical formula Fj;,4 in

theory I iff
r= (Flin_q = de) (2.1)

The term abductive, as found in the name AET, is usually associated with an abductive
reasoning process, where the main goal is to find explanations or conditions with the lowest
cost under which the given fact can be satisfied in the theory [11]. During such reasoning
processes, the theorem prover that tries to prove the goal can use not only the axioms of
the given theory, but also unproven assumptions (with given costs) that are reasonable to
assume. This idea is implemented in AET, but from a slightly different perspective. The
difference is that only the lexical logical formula Fj;,g of the whole goal (Fling = Fgp) is
known at the beginning of the process. The system given theory gamma and lexical logical

formula Fj;,, tries to find simultaneously database logical formula Fy, and the cheapest set

of assumptions A, such that

F'UA = (Fling = Fap) (2.2)

2.2 AET vs. Other Theories

In this section we shall describe very briefly other approaches to NLID semantic interpre-
tation, namely the Horn clause approach [15], [19]; noninferential equivalential translation
(4], [25); and interpretation as abduction [11]. Then we compare these other approaches to

the AET. Our comparison is based on that in [23].

Horn clause approaches

the main idea of this approach is to view a database as a Prolog database consisting of
atomic formulas. The interpretation is achieved using theories consisting of Horn clauses.
The theories allow one to define the interpretation of words and phrases in terms of database
atomic formulas.

The reasoning engines built on top of Horn clause theories are well understood, allow
reasonable expressive power and still provide efficient implementations. The problem is that

the relationship imposed by Horn clause theories on input and output is implication rather

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 14

than equivalence. That means that the systems are not able to distinguish between “No”
and “Don’t know” answers. Although the Closed World Assumption can be invoked for
this distinction, according to [23] it is difficult to write Horn clause theories for nontrivial

domains.

Noninferential equivalential translation

Noninferential equivalential translation approaches do not use general inferential methods.
Systems are usually based on inheritance hierarchies or simple domain models and context
disambiguation is provided by some kind of type checking. These systems provide less
expressive power than systems based on logical inferential methods. On the other hand,

they provide equivalential translation.

Interpretation as abduction

Interpretation as abduction systems are Horn clause based systems with abductive reason-
ing. The advantage is that the system provides a simple way to handle defaults that is not
present in two previous approaches. However, similarly to the Horn clause approach, the

equivalence between input and output is not guaranteed.

We choose AET as a base for semantic processing in our system siuce it in a sense combines
all three previously mentioned approaches. It provides nonmonotonicity, a reasonably effi-
cient reasoning mechanism, the expressive power of logic based systems and still guarantees
logical equivalence between input and output, if the translation can be found. Failure to

find a translation is considered as a “Don’t know” answer.

2.3 AET Formally

In this section, we shall present the AET translation algorithm. In our presentation, we shall
show concepts and algorithms first by way of an example or by a very informal description
of what we think could have been a motivation for a precise solution. After the informal

introduction, we shall define the concepts or algorithms precisely.

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 15

We begin with an informal introduction of the conjunciive context (or full conjunctive
context). Although the formal definition of this concept is not needed to define AET pro-
cesses (and was not provided in Rayner’s original work), the concept of conjunctive context
is one of the most important ideas behind AET.

Then we describe the actual translation process (or algorithm) for finding a database

logic formula Fy, given a logic theory describing the semantics of a database and a lexical

logical formula Fi;p,.

2.3.1 Conjunctive Context

The conjunctive context provides a reasonable “environment” or “context” for particular
words or phrases in the input sentence. Speaking in logic terms, the conjunctive context
defines a logical environment for instances of atomic formulas in the logical representations
of the sentence. The translation process can then use this contextual information to disam-
biguate the meaning of ambiguous words (or atomic formulas that represent these words)
within a sentence. The conjunctive context consists of two parts. The first part, called the
global conjunctive contert, contains world knowledge represented by logical axioms or data
stored in the database. The second part is called the local conjunctive contert. Under the
assumption that logical formulas do not contain implications, the local conjunctive context

of a given subformula contains formulas that are connected to it by the conjunctive A.

Example 2.1 Consider, for example, the sentence
Is there a student who takes cmpt710 or cmpt7207? (2.3)

whose logical representation could be

X, E,Y,Y;.student(X)A
(take(E,X,Y) A unknown_word(Y, cmpt710)V (2.4)
take(E, X, Y1) A unknown_word(Yy, cmpt720))

The atomic formula student(X) denotes that X refers to a student, atomic
formula take(E,X,Y) denotes that event E describes an action of “taking”
referent ¥ by referent X. Atomic formula unknown_word(X,S) denotes that

referent X can be described by word S, but the actual semantics of the word §

is unknown.

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 16

The local conjunctive context for the atomic formula representing word “cmpt-
710" does rot contain only the fact that “it is taken™ but also says that “the
taking is done by a student”. Using the logical notation and our informal defi-
nition of local conjunctive context, the local conjunctive context of the atomic
formula unknown(Y, cmpt710) would be a formula student(X) A take(£, X, Y).

The global conjunctive context is common for all atomic subformulas of the
formula (2.4). It consists of data stored in the database and axioms describing
relationships between the university world (described by lexical predicates like
student or take) and the database world (represented by predicates that describe

tables). s

2.3.2 ‘Translation Process

The main goal of the translation process is to find a database logic formula Fy given a logic
theory describing the semantics of a database and a lexical logical formula F£j;p,g.

We shall show how these schemas work on a simplified version of sentence (2.3):
Is there a student that takes cmpt710? (2.5)

and its logic representation

Fiing = 3X, E,Y student(X)A (2.6)

0
take(E,X,Y) A unknown_word(Y, cmpt710)

Let us suppose that the global conjunctive context is represented by theory I'. The theory

T describes world knowledge which consists of the axiom

studeni(X) A take(E,X,Y) —

(2.7
(unknown_word(Y,S) = db_course(Y, 5)))

It says that if an object referenced by unknown word is taken by a student, then the object
is actually a course. We shall call axioms similar to (2.7) conditional equivalences. The part

student(X) A take(E,X,Y)

is called a condition, the part

unknown_word(Y, 5)

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 17

is called a left hand side (LHS) of the conditional equivalence and the part
db_course(Y, S)

is called a right hand side (RHS) of the conditional equivalence.

In this example, we shall use axiom (2.7) to show how the atomic formula
unknown_word(Y, 5)

can be translated (or disambiguated) in the lexical logical formula (2.6). In other words,
we shall find formula F s.t. in the formula F, atomic formula unknown_word(Y, cmpt710)
from the input sentence is translated into an atomic formula with a database predicate. F
also has to be equivalent to formula (2.6) w.r.t. the theory I'.

The translation process that uses the idea of conjunctive context relies on translation

schemas (2.8) and (2.9)

Context AQ — (P = P')
= Context — (PAQ =P AQ) (2.8)

Contezt — (6(P) = 6(P"))
= Contert — (3Z.P = 37.P") (2.9)

where 8 substitutes ¥ by unique constants w.r.t. P, P’ and Contezt.

We shall proceed as follows. We shall recurse down the formula (2.7) using the schemas
(2.8) and (2.9) until we reach the atomic formula with predicate unknown_word. During this
recursive process the local conjunctive context will be collected. Then we use the theory T’
and the collected local conjunctive context to translate or disambiguate the unknown word.

Translation schema (2.9) says that it is possible to conclude equivalence between lexical

logical formula (2.6) and formula F that we are looking for

(3E.X,Y.student(X) A take(F,X,Y)

(2.10)
Aunknown_word(Y,cmpt710)) = F
if we find formula F1(e,z,y) s.t. (2.11) holds
(student(z) A take(e,z,y) (2.11)

Aunknown_word(y,cmpt710)) = Fl(e,z,y)

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 18

and set F' = 3E, X, Y.(F1(E,X,Y)). In (2.11), existentially quantified variables E, XY
were substituted by constants e, z, y respectively and the existential quantifier was removed.

The translation schema (2.9) can be regarded then as a rule that allows us to recurse
down the input formula through existential quantification. Translation schema (2.8), on the
other hand, allows us to recurse through conjunction A while collecting the local conjunctive

context.
According to translation schema (2.8) it is possible to conclude equivalence (2.11) if we
find a formula F2 s.t. (2.12) holds

student(z) — (take(e,z,y) A unknown_-word(y,cmpt710) = F2) (2.12)

and set F'1(e,z,y) = student(z)AF2. Using translation schema (2.8) again, we can conclude

(2.12) if the (2.13) is true
student(z) A take(e,z,y)— > (unknown_word(y, cmpt710) = F3) (2.13)

and we set 2 = F3 A take(e,z,y). That mears, that is is possible to find the formula F,

if it is possible to find a translation F3 of
unknown_word(y, cmpt710)
using local conjunctive context
student(z) A take(e, z,y)
Now it is time to introduce another translation schema (2.14).

(Conds — (P] A P2 A P3...) = P,) A
Context — (P2 A Ps... A Conds)
= Context — (6(P,) = 8(P')) (2.14)

The formula Context of the translation schema represents the local conjunctive context
and formula P; is an atomic formula being translated. The first line of the translation schema
is an axiom of the form of conditional equivalence from the global conjunctive context.
The second line of the translation schema says that the conditions of the axiom from the
global conjunctive context has to be implied by the local conjunctive context (w.r.t. to the

global conjunctive context). The third line of the schema (2.14) says that under conditions

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATICN 19

described by the first and second line of the schema it is possible to substitute LHS of the
conditional equivalence by its RHS.
Let us put Context = student(z) A take(e,z,y). It is obvious that (2.15) holds

Contezt — (student(X) A take(E, X,Y))
{X—->2z2,Y >y E—e} (2.15)

Using conditional equivalence (2.7) as a first line of the schema (2.14), and using (2.15)

as the second line of the schema, we can conclude that (2.13) holds with
F3 = db_course(y,cmpt710)

The rewritten formula is shown as
(2.16)

student(z) A take(e,z,y) — (2.16)

(unknown_word(y, cmpt710) = db_course(y, cmpt710))
The assignment F'3 = db_course(y,cmpt710) yields

F =3F, X,Y.(student(X) A take(E, X,Y) A db_course(Y,cmpt710)

that represents the final translation.

In addition to schemas (2.8), (2.9), and (2.14), Rayner in [23] also provides schemas for
translating formulas that contain negations, disjunctions, implications and universal quan-

tifiers.

Contezt — (P = P')
= Contezt — (PVQ = P'vQ) (2.17)

Contezt — (P = P')
= Contezxt — (-P = ~P') (2.18)

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 20

Contezt — (P = P')
= Context - (P - @ =P — Q) (2.19)

Context AP — (Q = Q")
= Context — (P — Q=P — Q') (2.20)

Context — (8(P) = 8(P’))
= Context — (VZ.P = VZ.P') (2.21)

where 8 substitutes (&) by unique constants w.r.t. P, P’ and Context.

Note, that equivalent but syntactically different formulas can yield different conjunctive
contexts. (The idea of conjunctive context and translation that uses it is not “complete”.)
The simplest example is probably a pair of formulas —aV b and ¢ — b. In the first case, the
translation schemas provide the empty conjunctive context for atomic formula b whereas in
the second case, the resulting conjunctive context contains atomic formula a.

Schemas for translating existential quantifiers and higher order formulas follow.

HfPl = P,
= 6(3z.P) = 6(P') (2.22)

where 6 is one-to-one on Z (i.e. it does not map distinct variables into identical terms).

Context — (6(P) = §(P"))
= Context — (count(N,AX.P) = count(N, X.P")) (2.23)

where 8 replaces X with a unique constant. count(N,AX.P) holds if there are precisely N
values of A such that P(A) holds.

Contezt — (6(P) = 6(P'))
= Context — (sum(S, X.P)= sum(S§,AX.P")) (2.24)

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 21

where @ replaces X with a unique constant. sum(S,AX.P) holds if all the objects A of

which P(A) holds are summable quantities, and § is their sum.

Context — (8(P) = 6(P"))
= Contezt — (order(Selected, AX.AD.P(X, D),Ordering) =
order(Selected, AX.\D.P'(X, D),Ordering)) (2.25)

where 8 replaces X and D with unique constants. Formula
order(Selected, AX.\D.P(X,D),Ordering)

holds if Ordering is an ordering relation, Dmax is the maximal D under the relation
Ordering such that P(X, D) holds for some X, and Selected is such an X.

The translation proceeds one predicate at a time. Each translation step substitutes an
atomic formula with another formula until a formula consisting entirely of database predi-
cates is reached. The translation step can be done only according to one of the conditional
or existential equivalences of the theory.

The original definition of the algorithm (from [23]) follows

Recurse: Descend through F using the translation-schemas, until an atomic sub-formula
A is reached. During this process, a conjunctive context E has been accumulated in
which conditions will be proved, and some bound variables will have been replaced
by unique constants. Constants resulting from bound variables are specially marked
if i) they come from existentially bound variables that occur only in A, and ii) the
only connectives between A and the binding existential quantifier are conjunctions.

We will tefer to these as marked existential constants.

Translate-universal: Find a rule (H A R = B) « C such that H unifies with A with
m.g.u. §. If it is then possible to prove §(RAC), replace A with 8(B). The leaves of the
proof may include elements of the conjunctive context F, facts from the database, Horn
clauses from the linguistic domain theory I', or Horn clause readings of conditional

equivalences from I'.

Translate-existential: Find a rule 3Z.H = B such that H unifies with A with m.g.u. 8. If
all the elements of §(Z) are distinct marked existential constants (in the sense defined

immediately above in the Recurse step), then replace A with 8(B).

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 22

Simplify: if possible, apply simplifications to the resulting formula.

2.4 Linguistic Domain Theories

In this section, we shall talk a little bit more about the structure of linguistic domain
theories (LDTs). These are the theories that contain all the domain knowledge needed
by the AET translation algorithm to translate lexical logical formulas into their database
equivalents. The LDTs contain a logical part (an example is a theory I' from the previ-
ous section), assumption declarations that are used for abductive reasoning purposes and
functional declarations used for simplification of results.

The kind of information contained in LDTs can be described from different points of
view. We shall start with a technical description. Then we shall discuss the relationship of
different kinds of predicates to stages of translation, and relationship of different kinds of

axioms to their reusability potential.

2.4.1 Technical Description

In this description, P, P;, P,, R;, R; will stand for atomic formulas and C'ond will stand
for a conjunction of atomic formulas.

Logical Part

The logical part of an LDT can be divided into a positive theory and a negative theory.
Together, they form a logic theory I' that is used for reasoning about the domain.

A positive theory contains Horn clauses of the form
PA---ANP,—> P (2.26)
conditional equivalences of the form
Cond - (PLA---P,=3Xy - X (R1A---ANR))) (2.27)
and existential equivalences of the form
13Xy X (PA=P) (2.28)
A negative theory contains rules of the form

Py — =P (2.29)

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 23

Assumption Declarations

LDT also contains assumption declarations of the form
assumable(Goal, Cost, Justification, Type, Conds)

The semantics of the assumption declaration is that goal Goal can be assumed at cost C'ost
in the context, where Conds hold. Justification is a tag presented to the user when the
assumption is taken. T'ype is an atom specifying the type of the assumption. As an example

consider an assumption declaration

assumable(
car_is_company_car,
0,
all_cars_referred_to_are_company_cars,
specialization,

true)
and the conditional equivalence
caris_company-car — (car(X) = db_company_car(X)) (2.30)

The atomic formula car_is_company_car is an assumption that is needed to translate lexical
atomic formula car(X) into its database counterpart. The assumption can be assumed at
cost 0. Its type is “specialization”, meaning that the assumption allows a user to use a word
in its specialized sense (e.g the word “car” refers to company car). The specified condition
is true, i.e. this assumption can be used in any context. When the assumption was taken

the user is notified by the tag

all_cars_re ferred_to_are.company_cars

Functional Declarations

Besides the logic theory and assumption declarations, there are functional declarations that

are used for simplification of the intermediate and final results of translation. The form of

a functional declaration is

function(Template, FunctionalArgs -> RemainingArgs)

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 24

Such a declaration says that the relation represented by Template is a function from
FunctionalArgs to RemainingArgs. The use of the functional declaration can be illus-

trated by the following example. Consider the sentence
Was John's transaction done on Saturday? (2.31)
with an underlying database containing the predicate
db_transaction(Transactionld, Payee, Date)

Let us also suppose that in a certain stage of translation the algorithm achieves intermediate

representation
dTransationld, Date, Payee.
(db_transaction(Transactionld, john, Date)A (2.32)
db_transaction(Transactionld, Payee, saturday))
Formula

dbtransaction(Transactionld, john, Date)

represents the construction “john’s transaction” and the formula
db_transaction(Transactionld, Payee, saturday)
represents the construction “transaction on Saturday”. Using the functional declaration

function(db_transaction(TransIld, Payee, Date),

[TransId] -> [Payee, Date])
the formula (2.32) can be simplified to

dTransationld.dbiransaction(Transactionld, john, saturday)

2.4.2 Predicates and the Stage of Translation

The main idea of the AET translation process is to translate an input lexical logical formula
containing the lexical predicates directly related to the actual words of an input sentence
to the database formula containing the database predicates that can be easily evaluated
by the database. During the translation process, the formula can also contain intermediate

predicates, i.e. predicates that are neither database related nor lexical.

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION ' 25

In this section, we shall talk about different kinds of predicates and when such predicates
usually occur in the translation process. We start with predicates that occur at the end
of translation process and then we proceed towards predicates that are closer to lexical
predicates. Note, that the structuring of predicates is only approximate. It does not mean
that LDT cannot contain any other types of predicates or that translation has to proceed

according to the order described in this section.

Database Predicates

There are three kinds of predicates that can be considered as “final” or database predicates.
The first kind of predicates are table predicates that directly correspond to relational tables

and their arguments correspond to the attributes of the tables. An example of a table

predicate is
db_transaction(Transactionld, Payee, Date)

from the example in the previous section.

The second kind of database predicates are predicates related to arithmetic operations

that can be performed on the database objects such as addition, subtraction, greater, smaller

etc.
The third kind of predicates are dereferable predicates. These are the predicates that

the system can cause to hold in the future. An example of the executable predicate is
execute_in_future(Action)

which is true if system performs the Action in the future.

Conceptual Predicates

Very close to the table predicates are conceptual predicates. These predicates almost cor-
respond to the database tables. Their purpose is to “change” a database design to reflect

better the requirements of natural language input. As an example consider sentences (2.33)

and (2.34)

Who takes cmpt720 at SFU? (2.33)
Who takes cmpt720 at UBC? (2.34)

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 26

These sentences might be encountered when using a database that describes courses taken
only at SFU without any attributes about the place where the courses are taken. In such
cases, it is convenient to introduce a conceptual predicate that contains an attribute de-
scribing the place. The lexical logical formulas are first translated into formulas that use
coiiceptual predicates and then the formulas are (or, in the case of (2.34) and the SFU
database, are not) mapped into the database logical formulas. The conceptual predicate
can also cover other sentences which contain information that is implied in the database
e.g. (2.35) or (2.36)

Is John studying at SFU? (2.35)
W hat is the most popular course at SFU? (2.36)

As a second example consider a database that contains transaction IDs and check IDs.
The fact that a transaction ID is the same as a check ID does not mean that the 1Ds
represent the same things. Therefore the mapping from conceptual predicates into database
predicates also takes care of mapping terms in conceptual predicates (e.g. check_id#ID),
that represent real objects in the real world, into terms in database predicates, that represent

database objects - strings, numbers, etc. As an example consider an axiom
conceptual check(check_id#1D,date# Date) = db_check(ID, Date) (2.37)

Mapping from conceptual predicates into database predicates should also reflect the con-
dition imposed on records from the table. Suppose that we have a database that contains

records from the last two years. While answering questions similar to
Show me all the students that took empt720. (2.38)

the mapping has to make an assumption that the facts talked about are no older than two

years. Such an assumption should also be communicated to the end user.

Attribute Predicates

If we consider, for example, temporal prepositions, it is clear that they often take events
or noun phrases as their arguments, but they usually impose conditions on the time when

those events occur. The sentence

Who took more than ten courses during summer 957 (2.39)

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 27

is an example. An LDT introduces attribute predicates that associate objects with their
characteristic attributes. An LDT contains four attribute predicates - associated_time,
associated_start_time, associated_end_time and associated_size, that associate an object
with a time or size of particular granularity (e.g. years or semesters etc.). An example of

an axiom that translates a temporal preposition follows.

during(EF1,5£2) =
a7'1,T2,Granl,Gran2.
(associated_time(E1,T1,Granl)A (2.40)
associated time(E2, T2, Gran2)A
time-during([T1, Granl),[T2,Gran2)]))

Lexical Predicates

The last important category of predicates is lexical predicates. They correspond approxi-

mately to the content words in the input sentence.

The whole translation process then proceeds from lexical predicates to the mixture of at-
tribute and conceptual predicates. This mixture is translated to pure conceptual predicates
that are finally replaced by database predicates. The schema of the process is depicted in
fig. 2.1

Input logical formula - lexical predicates

formula consisting of mixture of conceptual
and attribute predicates

formula consisting of conceptual predicates

i

Output logical formula - database predicates

Figure 2.1: AET translation process - predicates at various stages of translation

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION 28

2.4.3 Axioms

Axioms of the LDT can be divided into three main groups - general axioms, domain specific
axioms, and database specific axioms.

General axioms take care of general words and phrases that usually occur in natural
language interfacing (e.g. show me, tell me ...), temporal expressions (e.g. during ...)
and expressions referring to the size of objects (e.g. larger, smaller ...). The axioms also
express knowledge about translating interval predicates on different levels of granularity into
expressions that involve predicates like “<” or “>”, and expressions that express translation
between different levels of granularity (e.g. from days into weeks). It is obvious that these
axioms can be used in many different domains without any changes.

Domain specific axioms describe translation of domain dependent words and phrases
into conceptual predicates. The axioms contain the core knowledge given a domain and
they have to be rewritten when the domain changes. On the other hand, they are clearly
separated from the structure of actual tables, so they can be applied to different database
schemas under the condition that those schemas represent the same domain.

Database specific axioms describe the translation between conceptual predicates and the
database predicates. These axioms are obviously the least general axioms and they have to

be maintained with any change of the database schema.

2.5 Summary

In this chapter we provided a brief introduction to Rayner’s Abductive Equivalential Trans-
lation upon which the rest of this thesis is based. The main concepts of AET are the AET
process and the LDTs.

The AET process is able to translate a lexical logic formula whose predicates correspond
to the words and phrases of an English sentence into a database logic formula understandable
by a database. During the translation process, some assumptions can be taken (but do not
have to be proven) to guarantee the equivalence between the lexical logic formula and the
database logic formula. This allows for nonmonotonicity of the translation process which is
considered a serious advantage.

The main source of information for the AET process is the LDT. The LDT is a logic
theory that describes how the lexical logic formulas are related to the database logic for-

mulas. Only certain kind of axioms are allowed in the LDTs. This restriction yields an

CHAPTER 2. ABDUCTIVE EQUIVALENTIAL TRANSLATION

implementation with reasonable response time.

29

Chapter 3

Restricted Theories and

Normalization

In this chapter we shall provide a general overview of the normalization of LDTs that can be
considered as the main part of semantic preprocessing. Section 3.1 puts the normalization
process into general context and also contains a small example of a normalized theory.

The normalization process, however, will not work with all LDTs, only a subset of them.,
If we want to normalize an LDT, we need to constrain its expressive power. We shall call
such constrained LDTs restricted LDTs. Section 3.2 describes what restricted LDTs look
like and also discusses the constraints and assumptions taken.

Section 3.3 defines the normalized LDT precisely. Section 3.4 contains detailed descrip-
tion of the formal algorithms and section 3.5 explains the main ideas behind the implemen-

tation of the system.

3.1 General Overview

3.1.1 General Method and Motivation

The semantic part of an NLID can be viewed as a binary relation. The relation is determined
by a process the semantic processor is built on {(e.g. AET) and semantic information the
process uses (e.g. LDT). The relation is defined on a set of possible input formulas of some
sort (e.g. lexical logic formulas) that represents a set of possible linguistic utterances pre-

sented at the input of the system and a set of output formulas (e.g. database logic formulas)

30

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 31

that represents a set of possible actions performed by the database access system. We can
define the relation using a description of the condition that holds between its arguments -

input and output formulas:

The relation between an input formula and an output formula holds if and
only if one of the interpretations of the input formula produced by the semantic

part of the NLID is the output formula.

That means that only input formulas that can be understood by the underlying database
access system after processing by the semantic part of the NLID can occur in the relation.
By simple projection of the relation on its first argument we can obtain a unary relation
that restricts its argument to certain values. The set of the values represents semantic
restrictions on the set of possible input formulas, thus providing semantic restrictions on
the input language.

By making the relation between input formulas and output formulas more explicit, the
semantic constraints become more explicit as well. Because selectional restrictions can
be viewed as a subset of semantic constraints on the input language, we believe that if
the semantic constraints on the input language are made more explicit then these more
explicit semantic constraints provide valuable information for derivation of the selectional
restrictions. We also believe that by expressing the relationship between input and output
formulas more explicitly, the translation process that translates input formula to output
formulas becomes simpler and more efficient. In this thesis we shall demonstrate these two

points on a system based on the AET translation algorithm.

3.1.2 Applying the Method - What does Normalization Look Like and
What is it Good for

As was seen in the chapter 2, any LDT can be seen as a description of the relation between
set of lexical logic formulas that mirror the actual natural language utterance and database
logic fermulas that represent the database side of the NLID.

Similarly a restricted LDT expresses the relationship between input logic formulas cor-
responding to the natural language utterances and output logic formulas that correspond
to the database side of the NLID.

The main part of the preprocessing is the normalization of a restricted LDT. The purpose

of the normalization is, as was suggested above, to make the relation between input logic

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 32

formulas and output logic formulas more explicit. The result of the normalization process
is a normalized LDT.

A normalized LDT contains a set of quadruples called the positive theory and a set of
axioms called the negative theory. Each quadruple of the positive theory describes a possible

translation of an input atomic formula into an output atomic formula. The quadruple
(Condition, Assumptions, InputAF, Output AF)

consists of an input atomic formula InputAF, output atomic formula QutputAF, conjunc-
tion of input atomic formulas Condition, and conjunction of assumptions Assumptions.

The negative theory is a set of axioms of a very restricted form that defines permissibility
of assumptions.

Interpretation of the quadruples of the positive theory and the axioms of the negative
theory is described as follows. For any input formula presented in the input of the system,
an instance of the input atomic formula InputAF can be translated into an instance of
the output atomic formula OutputAF, if its local conjunctive context implies the condition
Condition w.r.t. the empty theory and does not contradict the assumptions Assumptions
w.r.t. the negative theory. (The term empty theory refers to a logic theory that contains
only basic logic axioms and no “user defined” axioms. Proving implications of certain form
in such theories can be done very efficiently.)

Due to the justification of conditions in the empty theory and justification of assumptions
in the very constrained negative theory, the normalized LDT expresses the relation between
input formulas and output formulas much more straightforwardly than the original LDT.
The normalized theory simply eliminates the need for a reasoning process within an LDT.
This elimination guarantees more declarative LDT because the designer of the system does
not have to think “how” such reasoning can be done at runtime and how much time it will
take. The normalized theory reflects only the results of a reasoning process.

The following example shows a very simple LDT and some quadruples that belong to
the LDT in its normalized form. Although there is no need to do a lot of reasoning in
the simple LDT to conclude the desired results, the example shows how such reasoning is
eliminated in the normalized LDT.

Example 3.1 Suppose, that the LDT consists of the positive theory:

student(X) = db_student(X) (3.1)

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

(word “student” refers to the student relation in the database)
professor(X) = db_professor(X) (3.2)
(word “professor” refers to the professor relation in the database)

assumption_person_is_a_professor — (3.3)
(person(X) = db_professor(X)) .
(word “person” can refer to the professor relation in the database if it is safe to
assume it)
assumption_person_is_a_student —

(3.4)
(person(X) = db_student(X))
(word “person” can refer to the student relation in the database if it is safe to

assume it)

course(X) = db_course(X) (3.5)

(word “course” refers to the course relation in the database)

db_student(X) A db_course(Y) —
(take(E,X,Y) = (3.6)
db_student_takes_course(E,X,Y))
db_student_takes_course(E,X,Y) — (3.7)
take(E,X,Y) '
(word “take” refers to the relation describing student taking a course if it occurs

in the right context)

db_professor(X) A db_course(Y) —
(teach(E,X,Y) = (3.8)
db_professor_teaches_course(E,X,Y))
db_professor_teaches_course(E,X,Y) — (3.9)
teach(E,X,Y) '
(word “teach” refers to the relation describing a professor teaching a course if it

occurs in the right context) and the negative theory

assumption_person_is_a_student —
plion.p (3.10)

—assumplion_person_is_a_professor

33

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

Here
student(X), professor(X), course(Y),

take(E,X,Y),teach(E,X,Y)

are input atomic formulas corresponding to words “student”, “professor”, “course”,

“take” and “teach”;

db_student(X), db_professor(X), dbcourse(Y),
db_student_takes_course(E, X,Y),
db_professor_teaches_course(E,X,Y)

are output predicates.
The following quadruples, and others, will belong to the normalized LDT.
The quadruples are of the form

(Condition, Assumptions, Input AF, Qutput AF)

(true,true, professor(X), dbprofessor(X))
(word “professor” can always refer to db_professor)

(professor(X) A course(Y),true,
teach(E, X,Y),dbprofessor_teaches_course(E, X,Y))

(word “teach” refers to the db_professor_teaches_course, if it occurs in the con-

text of words “professor” and “course”)

(person(X) A course(Y'), assumption_person_is.a_professor,

teach(FE, X,Y),dbprofessor_teaches_course(E,X,Y))
(also words “person” and “course” can make the word “teach” refer to the
db_professor_teaches_course

if the word “person” is not translated as db_student somewhere else in the sen-
tence)

Let us compare the translation of the word “teach” in the original LDT and
in the normalized LDT. In the original LDT, in order to translate the word

“teach” in the context of words “professor” and “course”, a reasoning process

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 35

S

has to be started. The reasoning process proves that the context consisting of

words “professor” and “course” implies the condition
db_professor(X) A db_course(Y')

Only then can the conditional equivalence for translation of the word “teach”
be applied. On the other hand, in the normalized LDT, all that is needed is a
simple lookup for a right quadruple. At this point we are not trying to argue
efficiency of the processes. What we would like to demonstrate by this example
is how straightforwardly a normalized LDT can express the relationship between
natural language utterances on one hand and the database on the other. How-
ever, in order for this normalization process to work, it requires some restrictions

on the theory.

3.2 Restricted LDT

In this section we shall provide and discuss basic assumptions and constraints we impose
on the LDT. These assumptions guarantee that the LDT can be normalized in a sense
suggested in the section 3.1. We shall call an LDT that satisfies all the criteria a restricted
LDT.

Before discussing assumptions of the restricted LDT itself, we shall describe the input
language and the output language of the “translator”, whose knowledge is encoded in the

restricted LDT.

3.2.1 Input Language

Assumption 3.1 (Input Language Syntax) We suppose that the syntactic part of an
NLID will produce an input logical formula, that represents a meaning of the natural language
utterance. The input logical formula is a formula of extended First Order Logic (FOL). This
means that formula can contain atomic formulas, conjunctions A, V, —, = and quantifiers
3 and V. In addition to the usual rules of formula construction of FOL, there are three
higher order operators: count, sum and order. Their syntax and interpretation was defined

in subsection 2.3.2.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

$ao
&2

Some parsers (e.g. [2]) produce output consisting of the atomic {formulas and constants
that approximately correspond to the content words of the natural language or to the
relationships between them. For example, the noun “book” can be expressed as an atomic
formula book(X). The atomic formula book(X) can be read as “X denctes a book”. The
verb “give” can be represented by the formula give(E, X,Y, Z) that can be read as “event
E describes giving thing Y to person Z by the person X”. This correspondence is fully
determined by the parser, grammar and the lexicon.

For parsers that produce different representations, we need only assume that the resulting
formula is a formula of the extended FOL and the semantic description “knows” what kind
of input it can expect. There are no other requirements on the form of the output of the
parser. One word can be represented as a complex logical formula or two or more words
can be represented by one atomic formula. For example the verb “give” can be represented

as a formula
giver(E, X) A givee(E,Y) A given(E, Z)

with the same interpretation as in the previous example or the phrase “John gives Mary a

book” could be represented as an atomic formula
john_gives.mary.a_book(E)

that is true, if ¥ denotes an event of John giving a book to Mary.

We do not expect that the meaning of the natural language utterance is resolved to
the finest detail. It is supposed that the output of the parser can still contain certain
ambiguities that can be represented by unresolved predicates. The semantic part of the
interface is able to resolve such ambiguities (cf. chapter 6), which can include for example
genitive or possessive relations or proper nouns representing unknown entities.

In the rest of the thesis we shall call formulas of the input language of the restricted
LDT input formulas. Similarly we shall call atomic formulas of the input language input

atomic formulas and we shall refer to predicates of the input language as input predicates.

3.2.2 Output Language

Assumption 3.2 (Output Language Syntax) We suppose that the output language has
the same syntaz as the input language. All formulas of the ouiput language are formulas

of extended First Order Logic. This means that formulas can contain atomic formulas,

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 37

conjunctions A, V, —, = and quantifiers 1 and V. In addition to the usual rules of formula
construction of FOL, there are three higher order operators: count, sum and order. Their

syntaz and interpretation was defined in subsection 2.3.2.

Assumption 3.3 (Output Language Semantics) The output logical formulas contain-
ing output predicates of the restricted LDT are not “true” database logical formulas that
contain database predicates understandable by the database as they were described in the
chapter 2. Instead, we suppose that the output of a process based on the restricted LDT
is fed into another process based on the very simple post-processing LDT (PPLDT). The
process based on PPLDT then produces the database logical formulas.

Figure 3.1 compares the architecture of the original AET with the architecture of the system
based on restricted LDTs with the terminology used for different parts of the system and

different stages of translation.
We suppose that the PPLDT contains universal equivalences of the form

(V)(P = A)
and existential equivalences of the form
V)(3X1...X, P = A)

where P is an output atomic formula and A is an arbitrary formula that contains the
database predicates. The PPLDT also contains functional declarations that serve for sim-
plification of the results. (cf. chapter 2)

The fact that the equivalences do not contain any conditions that have to be proven
guarantees that the translation from output logical formula into the formula that contains
only database predicates can be performed very efficiently. The only thing the AET algo-
rithm (cf. section 2.3.2) has to do is a simple substitution of output atomic formulas into

database formulas according to the axioms of the PPLDT.

3.2.3 Assumptions about the Restricted LDT

In this section we shall present the assumptions made about the restricted LDT. We shall
also discuss the assumptions from the point of view of translation power. We shall compare
systems based on the restricted LDTs together with the PPLDT to the system based on
the original LDT for AET as well.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

lexical logical
formula

Restricted LDT based system

Original AET system

translation
algorithm

original LDT

input logical formula
with input predicates

translation
algorithm

database logical
formula

output logical formula

restricted LDT

database logical formula

translation

with output predicates

algorithm

PPLDT

Figure 3.1: Translation process using AET with LDT vs. RLDT

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 39

Assumption 3.4 (RLDT Predicates) A restricted LDT declares a set of input predi-

cates, a set of output predicates and a set of assumption predicates. The sets of the predicates

are mutually disjoint.

(Note, that intermediate predicates that are neither assumptions nor output predicates nor
input predicates are allowed.) We do not see any limitations that this assumption posits on

the expressive power of the restricted LDT.

Assumption 3.5 (Finite Dictionary) Any input formula that can be translated into the
output formula can be also obtained by (one by one) substitution of the input atomic formulas
with the output atomic formulas. Moreover, there is a finite dictionary that contains pairs
of input and output atomic formulas provided by the designer of the system. The dictionary

covers all possible cases of translation.

Put informally, we simply assume that each atomic formula in the input formula has only a
finite number of meanings w.r.t. to the database. We believe that the assumption is in most
cases plausible. For example, there are probably no more than 20 meanings of the atomic
formula representing a word “student” in the university database. There are however some
cases where the assumption can not be fulfilled without an additional level of translation.
This additional level of translation can be performed by an “intelligent” database engine
that can provide some derived relations. An example of such a case is a database containing
the relation parent. The word “ancestor” in this case can be translated in theoretically an
infinite number of ways. An intelligent database engine can provide the additional relation
ancestor derived from the relation parent. Examples of such an “intelligent” database
engines are deductive databases [8] or Prolog.

Assumption 3.4 together with the assumption 3.5 about the output language is a su-
perset of constraints implicitly made in the [23]. Original AET assumes that any lexical
formula that can be translated into a database formula can be also obtained by (one-by-
one) substitution of the lexical atomic formulas (in some cases together with the existential
quantifiers associated with them) with the formulas (not necessary atomic) that contain
only database predicates. One atoiaic formula can be translated in the infinite number of
ways. Our assumption differs, because we require that there exists a finite dictionary which

together with the output LDT covers all possible cases.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 40

Assumption 3.8 (Formulas) A restricted LDT contains two logic theories: one positive

and one negative. The positive logic theory can contain only formulas of the following form:
Conditional Equivalences:
(V)Pl'Pn_’(RlRmEQIQI) (311)

where Py---P,, @Q1---Q; and Ry---R,, are atomic formulas, Q---Q: and

Ry ---R,, cannot be assumptions

Horn Clauses:
(V)Pi---P, = Q (3.12)
where Py --- P, and () are atomic formulas, () cannot be an assumption
The negative logic theory contains azioms of the form
Negative Horn Clauses:
V)PP — 0Q (3.13)

where Py --- P, are atomic formulas whose predicates were not declared as as-
sumptions and Q) is an assumption atomic formula

Fzclusive Declarations:
)Xz Xn # Vi++-Yo) = (P > Q) (3.14)

where # means not equal and P and Q are atomic formulas. Moreover, we
restrict any other occurrences of predicates of atomic formulas P and @) to the

condition part of conditional equivalences or Horn clauses of the positive theory.

The examples of conditional equivalences and Horn clauses were demonstrated in the
chapter 2. Note, that a formula of the form (3.11) is equivalent to two clauses (3.15) and
(3.16)

(VP PaAQr--Qi— Ry R (3.15)
(V)Py---PuA Ry« B — Q1+~ Q (3.16)

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 41

and these are equivalent to Horn clauses

V)P, - -P,AQy---Q; — Ry
(V)Pl...Pn/\‘Ql...QI_)Rz_
(V)Pl---Pn/\él...Ql_)Rm
V)P---P,ANRy---R,, = O
(V)Pl'--Pn/\}.?,l--.Rm_,Qi

(V)Py---Pa ARy B — Qi
Therefore, it is also possible to simply assume that the positive logic theory consists only

of the Horn clauses of type (3.12)
The reason why exclusive declarations of the form (3.14) are allowed is demonstrated by

the following example.

Example 3.2 Suppose, that the concept db can be referred to by linguistic
constructs a A b or ¢ A d. Unfortunately, AET does not allow equivalence with

exclusive or on the LHS as in
(aAb)zor(cAd)=db
The axioms (3.17) and (3.18)

anb=db (3.17)
chNd=db (3.18)

do not provide expected results. One of the examples of the logical consequences

of the axioms (3.17) and (3.18) that is probably not expected is a formula
anb—d (3.19)

Formula (3.19) would mean that anywhere in the theory where the concept

d is required to be proven, a A b can be used. Imagine that ¢ = “id”, b =

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

“of professor”, ¢ = “teacher’s”, d = “number” and db = db_faculty_id. This
would mean that anytime during the translation process where “number” is
needed to be proven, “id of professor” can be used. So for example suppose that
there is an axiom in the theory that translates the word “telephone” into the
concept db_telephone_number if word “telephone” occurs in the context of word
“number” (e.g. in the phrase “telephone number”). The axiom would also allow
one to translate the word “telephone” into db_telephone_number if the context
was “id of professor” (e.g. “telephone id of professor”). This is certainly not the
intended result.

We adopted a solution where axioms (3.17) and (3.18) are changed into (3.20)
and (3.21) with additional axiom (3.22) in the negative theory

Assume_that_db_is_re fered_to_by(a-and.b) —

(3.20)
(a A b = db) ‘
Assume_that_db_is_re fered_to_by(c.and_d) — s
(3.21)

(eAd=db)
Assume_that_db_is_ref fered_to_by(a_and b) — (3.22)

~Assume_that_db_is_ref fered_to_by(c.and_d)

Axiom (3.20) can be used if it is safe to assume the assumption
Assume_that_db_is_ref fered_to by(a_and.b)

Similarly axiom (3.21) can be used if it is safe to assume
Assume_that_db_is_ref fered_to_by(c_and_d)

It is clear that both axioms cannot be used at the same time, because their
assumptions are exclusive, thus preventing derivation of conclusion (3.19).

To allow for axioms of type (3.22) to be expressed without a lot of effort, es-
pecially if there is quite a number of possibilities for arguments of the assumption

predicates, exclusive declarations are allowed in restricted LDT, e.g.

X #Y — (Assume_that_db_is_ref fered to by(X) —
- Assume_that.db_is_ref fered to by(Y))

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 43

The reason for allowing negative Horn clauses is very simple. Often an additional word
changes a meaning of the phrase. Consider the phrase “student” with input logical represen-

tation student(X) and the phrase “student organization” with input logical representation
student(X) A ¢(X,Y) A organization(Y)

(here ¢(X,Y) denotes the relation between two words which are part of the compound
nominal). In the first case the word “student” can refer to a student recorded in the
database, whereas in the second case, it can be just a part of the expression referrirg to
some organization and does not introduce an identity of any student known to the database.

To distinguish between such cases, the restricted LDT can contain a negative Horn clause
¢(X,Y) — —~assumption_word_is_not_part_of_compound_nominal(X)

in its negative theory. Then the assumption

assumption_word_is_not_part_of_compound_nominal(X)

can be used in axioms for translation of the word “student”.

In comparison with the original LDTs for AET, restricted LDTs lack existential equiv-
alences and functional simplifications (c.f. section 2.4) that can be considered as a special
kind of axiom as well. On the other hand, we allow the use of existential equivalences and
functional simplifications in the PPLDTs.

Under assumption 3.5 that states that every input atomic formula can be translated into
a finite number of the output atomic formulas and under assumption that the translation
can be done in finite number of ways, the lack of existential equivalences does not decrease
the translation power of the system based on a restricted LD T together with a PPLDT w.r.t.
the expressive power of the original LDT for AET. The reason is very simple. Suppose, that
JX.(P(X,Y)) can be translated into the formulas A;(Z)---A,(Z) under the conditions
Cy ---C, respectively. In this case X, Y and Z can represent the vectors of variables. We

can create n output predicates, e.g. P;--- P, and n rules in the restricted LDT of the form:
Ci—= (P(X,Y)=P(X,Zj)fori=1---n
and n rules in the output LDT of the form

IXP(X,Z)= A(Z)fori=1---n

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION A+

It is easy to see that using this construction we can achieve the same results as original LDl
for AET.

The situation with functional declarations is a little bit different. We did not find a
construction that will (even under the assumptions 3.4 and 3.5) create an equivalent theory.
However, as Rayner’s thesis suggests, the functional declarations are important for the last
stage of translation where conceptual predicates are translated into database predicates.
In our case, the jast stage of translation is handled by a PPLDT, where the functional

declarations are allowed.
Assumption 3.7 (Nonrecursivity) The LDT is nonrecursive.

The form of axioms declared by assumption 3.6 suggests that the preprocessing can be done
using SLD-resolution. However, we restrict the theory even more to guarantee finiteness of
refutation trees.

Informally, a theory is nonrecursive, if for any set of facts, any atomic formula, aud any
Prolog-like derivation of the atomic formula in the LDT enhanced by the set of facts, there
is a Prolog like derivation of the same atomic formula in the LDT enhanced by the same

facts, without a recursive call !

Example 3.3 Theory

ancestor(X,Y) — parent(X,Y)
ancestor(X,Y) « parent(Z,Y) A ancestor(X, Z)

is a recursive theory, because if the theory is enhanced by the facts
parent(john, joe)
parent(joe, fred)

*Informally, a Prolog program is a set of rules of the form

a+—ayANaz---Nay.
or
b —

Both of them are called clauses. The latter are also called facts. a;,az,---a, can be called conditions for
derivation of a. Prolog can derive b any time, because there are no conditions associated with its derivation.
In order to derive a, Prolog has to derive a1 first, then derive a2 and s0 on and at the end Prolog has to
detive an. Denivation of a can also be viewed as a call {o procedure a with statements a; -- - a, that represcat
calls 1o procedures a; - - - an respectively. A derivation has a recursive call, if during the derivation Prolog
has to “call” some procedure a that again “calls” the same procedure a.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 45

then it is not possible to infer ancestor(john, fred) without a recursive call. On

the other hand a theory

VX.(student(X) = db_student(X))

VX, E,Y,S.(dbcourse(Y,S) A db_student(X) —
(take(E, X,Y) = db_take_a_course(E, X,Y)))

VX, S.(assumption_course(S) —
(unknown_word(X, S) = dbcourse(X,.5)))

VE,X,Y.(dbtake_a_course(E,X,Y) — take(E,X,Y))
is nonrecursive. Even though recursive calls can be made within the theory e.g.

student(X) « db_student(X)
— student(X) « db_student(X) « student(X)---

such recursive calls do not provide any new information. (e.g. from the fact
student(john), using the above path it is possible to derive only that student(john)
and db_student(john). Recursive calls derive information student(john) and
db_student(john) again and again, but such information can be derived without

them). .

The nonrecursivity requirement places quite strong condition upon the restricted LDT.
On the other hand, there is no need for recursivity in the above sense in the majority of the
practical applications. Even in the case when recursivity is needed, it can be simulated up
to a certain level by nonrecursive calls. Another possibility is to use more “intelligent” (in
a sense described above) database engines that will take care of the recursive computation,
when needed. The nonrecursivity constraint has also an advantage of a simple implementa-
tion within a reasoning procedure.

AET does not place any requirement on the nonrecursivity of the LDT. On the other
hand, it uses certain heuristics to avoid infinitely recursive branches. The heuristics adds
penaities to the derivation of the goals that are subsumed by ancestors. Because a certain

cost limit is assumed, this method can quite effectively avoid infinite loops [23].

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 46

3.2.4 Definition of the Restricted LDT

In this section we shall provide a formal definition of the Restricted L.DT. We shall use the
terminology of [14]. For the reader’s convenience, relevant terms are defined in appendix
A. First we define the terms derivation tree and recursive call. Before we present a formal

definition of the derivation tree, we show a simple example that demonstrates the concept.

Example 3.4 Consider theory

a—bAc
b—dAe
c— fAg
dhNeAfAg

and the goal « a and its SLD-refutation via R. The derivation tree for « a is

shown in the figure 3.2

'
NN

Figure 3.2: Derivation tree from example 3.4

Definition 3.1 (Derivation tree) Let
G07G]7G27”';C’11027"';f17f27"'

be an SLD-derivation via R of G with goals Gg, G4, - -, clauses C1,C?3, - -+ and substitutions
f1, f2,7 -+ Then the derivation tree of the SLD-derivation via R of G is the graph (V,E)
defined as follows.

Let us assign a distinct number to each atomic formula appearing in formulas Go,Cy,Cy, - -
Then we assign a number to each atomic formula in G1,G4,- -+ according to the following

procedure.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 47

Suppose that
Gi = AiAz--- Ay

and the numbers assigned to the atomic formulas A1Az---A, are 122+ Tyn, Am is a se-
lected predicate (the predicate being resolved) and

Ciy1= A« By By

(i.e. A, will be substituted by By - - - By) and the numbers assigned to the atomic formulas

By---Bi are yy---y;. Then
Giy1 = (A1---Am-1B1+ B Amy1 - An) fina
And the numbers assigned to the atomic formulas in the goal

— Al P 'A'rn-—lBl . 'BkAm+1 e ‘A'n.f1+1

are

1 Tm—1Y1" "YkTm+1 " Tn

The set of vertices of the derivation tree V is the set of the heads of the program clauses
Cifi,--- . The set of edges E of the derivation tree contains a pair (P;, P;) of atomic
formulas P; and Pj, if P; is a head of the clause C;, P; is a head of the clause C;, and the
selected atomic formula in the goal G;_, has the same number as one of the antecedents in

formula C;.

Definition 3.2 (Recursive call) An SLD-derivation via R has a recursive call if there is
a path in the derwation tree of the SLD-derivation via R that contains two atomic formulas

with the same predicate.

The next example shows an SLD-derivation via R that has a recursive call.

Example 3.5 Consider the theory

student(X) — db_student(X)
db_student(X) — student(X)
student(john)

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

the definite goal G
— student(john)

and the SLD-derivation in figure 3.3. The number in {}-brackets next to atomic
formulas in the derivation is the number assigned by the definition of derivation

tree.

(G O) student(john) ({1}
(C 1) db_student(X) {2} >

student(X) {3}
/ /

(G ;) db_student(john) {2}

(C) student(X) {4} ->
db_student(X) {5}

.

\
(G 2) student(john) {4}
(C 3) student(john) {6}

VL

G 3) emptyclause

Figure 3.3: An example of SLD - derivation

The derivation tree for the SLD-derivation is depicted in figure 3.4. It is
obvious that the derivation tree has a path that contains two atomic formulas
with the same predicate (student) therefore the SLD-derivation has a recursive

call.

<- student(john) {3}

|

<- db_student(john) {5}

i

<- student(john) {6}

Figure 3.4: An example of derivation tree

48

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION : 49

With recursive call being defined, the following definition formalizes the concept of

nonrecursive theory that was informally presented in assumption 3.7.

Definition 3.3 (Nonrecursive theory) A finite set of definite program clauses T is a
nonrecursive theory, if for each definite goal G, set of facts S and Sﬁ‘D—d_erivation of TUSU
{G} via R, there is an SLD-derivation of T U S U{G} via R that does not have a recursive

call.

Now we are at the point where restricted LDT can be defined. A restricted LDT is a
structure consisting of the positive and negative logic theories, sets of input, assumption
and output predicates and the dictionary of the input and output formulas that satisfies

assumptions (3.4) - (3.7).
Definition 3.4 (Restricted LDT) The structure

T = (Input, Output, Assumption, Pairs, PositiveT heory, N egativeT heory)
is called a restricted LDT, iff

o Input, Output and Assumption are mutually disjoint sets of predicates

e Pairs is a set of pairs of ground atomic formulas of the form (I,0), where the predicate
of the atomic formula I is a member of the set Input and the predicate of the atomic

formula O is a member of the set Output
e PositiveT heory is a set of formulas of the form
(\\P,---P, — Q

where Py - -- P, and () are atomic formulas, the predicate of atomic formula Q cannot

be a member of the set Assumption
¢ The set PositiveT heory is nonrecursive.

e NegativeTheory is a set of formulas of the form

(V)Pr-- Py — =Q

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 50

where Py --- P, are atomic formulas whose predicates are not members of the set
Assumption and the predicate of atomic formula Q) is a member of the set Assumption;
or of the form

(X1 Xp# V1Y) = (P — Q)

where # means not equal and P and () are atomic formulas whose predicates are
members of the set Assumption. Other occurrences of predicates of atomic formulas

P and @ are restricted only to the condition part of Horn clauses of PositiveT heory

We shall call members of the set Input input predicates of the theory T, members of the
set Output output predicates of the theory T' and members of the set Assumption assumption
predicates of the theory T. If the context assumes only one restricted LDT, then we omit the
clause “of the theory T”. Similarly atomic formulas that contain input predicates, output
predicates or assumption predicates (of the theory T') are called inpul atomic formulas,
output atomic formulas or assumption atomic formulas (of the theory T). We shall also
refer to any logical consequence of PositiveTheory as a logical consequence of LDT T.

Note, that the set of pairs was defined as a set of pairs of ground atomic formulas, yet we
require the set to cover all possible cases of translation. Thanks to the generalization rule
of first order logic that allows us to conclude VX.A(X) from the formula A(x) if constant
z does not occur in the theory, this is not an issue. If the system derives any results that
contain constants not occurring in Positivel heory or Negativel heory, such results can be

generalized. As an example consider pair (a(z,y),b(z,y)) and
PositiveTheory = {a(z,Y) = ¢(2,Y),c(2,Y) = b(z,Y)}

We can derive equivalence a(z, y) = b(z, y) that can be easily generalized into YY.(a(2z,Y) =
b(z,Y)).

The requirement of ground pairs was adopted to make technical details of the normal-
ization algorithms simpler.

Throughout the informal parts of thesis, we shall use the generalization rule often im-

plicitly, when speaking about the results of the normalization process.

3.3 Normalized LDTs

Having defined restricted LDTs, it is time to say what to do with them. In this section,

we present the term normalized LDT and also provide a motivation for the definition. As

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 51

was shown in the example at the end of the section 3.1, a normalized LDT is just a set
of rules that will provide almost direct translation from input predicates at one end to the

predicates closer to the database on the other.

The result of the normalization of the restricted LDT is in our case a set of quadruples

(as was described in section 3.1) of the form
(P Pay Ay A, 1,0) (3.23)

where P --- P, and I are input atomic formulas, O is an output atomic formula predicate,
Ay - - Ay, are assumption atomic formulas and the pair (I, O) was specified in the dictionary.
Formula P, - - - P, corresponds to the positive pattern of the input language, the negation of
the formula A; --- A, corresponds to the negative pattern of the input language, formula /
corresponds to the input word, and formula O corresponds to the output word. The idea is

that a quadruple (3.23) can be used in a similar way as the conditional equivalence of the

form
Ay« Ap APy P, — (I =0) (3.24)

would be used in the AET process. That is, an input atomic formula I can be translated into
an output atomic formula O, if the conjunctive context associated with the atomic formula
I can prove input formula P, ---P, and does not contradict the assumptions A ---A,,.
The natural condition for quadruple (3.23) occurring in the result of the inflation process is,
that (3.24) is a logical consequence of the restricted LDT. Therefore we impose condition

3.1 upon the quadruples that belong to the normalized LDT.
Condition 3.1 If quadruple
(Py---Pp,Ay---Ap, 1,0)
belongs to the normalized LDT, then
A - Apn AP -- P, — (I =0)
15 a logical consequence of the restricted LDT.

For the simplicity of explanation, now suppose, that there are no abductive assumptions in

the theory. Let us consider the following example.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

Example 3.6 Suppose that an LDT contains the following specifications:
Input predicates: {1,172}
Output predicates: {o}
Assumption predicates: {}
Logic: WNia=o0
Dictionary: (i1,0)
(12,0)

Then it is reasonable to demand that the normalized LDT would contain quadru-

ples

(22,true,;,0)

(71, true, iz,0)
If the only logic condition presented upon the resulting quadruples was condition
3.1, then the translation power of the normalized LDT itself would be very weak.
There is simply no way to infer that formula iy A i3 of the input language is
equivalent to the formula o using only information provided by the results of the
normalized LDT. This is because formula #; A i3 = o is not a logical consequence
of the theory that contains nonlogical axioms

i2 — (21 = 0)

il — (22 = 0)
However, if we add the axiom
we can obtain expected results. Similarly, axiom

o — i2 (3.26)

will have the same effect. "

This example motivated us to formulate condition 3.1

Condition 3.2 I[f quadruple
(Py---Pp,true, 1,0)

belongs to the normalized LDT, then
(0 —~1)

is a logical consequence of the restricted LDT.

o
o

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 53

Note, that this condition is possibly stronger than required. The condition 3.2 postulates
that both axioms (3.25) and (3.26) have to be present, but either one of the axioms (3.25)

or (3.26) is “able” to prove the desired results.

Condition 3.3 generalizes condition 3.2 in the case of the abductive assumptions present

in the system.
Condition 3.3 If quadruple
(Py---Py,Ay-- A, 1,0)
belongs to the normalized LDT, then
Ay Ap — (0= 1)

s a logical consequence of the restricted LDT.

We consider conditions (3.1) and (3.3) as necessary conditions needed to provide the
normalized LDT with approximately the same translation power as the original one. The
following definition summarizes the above discussion by defining Conditional Equivalence

w.r.t. a restricted LDT named T, which we shall abbreviate CE(T).

Definition 3.5 Conditional Equivalence w.r.t. RLDT T (CE(T))
Let T be a restricted LDT

T = (Input, Output, Assumption, Pairs, PositiveLogic, NegativeLogic)

Then the quadruple
(Pre+PoyAre--Ap,1,0)

is a CE(T) if the following is true:
o pair (I,0) belongs to the set Pairs
o predicates of atomic formulas Py - - - P, are members of set Input
e predicates of atomic formulas Ay ---A,, are members of set Assumption

e formulas
MA1---Apn APy ---P, — (I =0)
(V)A1- A — (0O — 1)

are logical consequences of the PosiliveLogic.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 34

There is, however, one more issue we would like to address w.r.t. results of the normal-

ization proceas. Consider theory

a(X) — person(X)

(If it is safe to assume that if X represents a person’s name, then we can consider

X to really represent a person)
apple(X) = db_apple(X)
(Word apple always refers to the apple stored in a database)
In this case the following formulas are (undesirable) logical consequences of the LDT":

a(X) A db_apple(X) — person(X)
apple(X) A person(X) — db_apple(X)

therefore formula
a(X) A apple(X) — (person(X) = db_apple(X))
is also a logical consequence, so the quadruple
(apple(X), a(X), person(X),dbapple(X))

should be present in the result of the normalization of the LDT. In this case, the problem
occurs when the condition of the resulting conditional equivalence (e.g. apple(X)A a(X))
together with the LDT can prove truth of both of the input and output words (e.g. formulas
person(X) and db_apple(X)). That is, the condition (apple(X)A a(X)) does not imply the
equivalence in the sense we might expect - input and output words have the same meaning
- but rather, that input and output are true. We consider such equivalence to be useless for
the translation process, and define the term nontrivial conditional equivalence, abbreviated
NCF, that takes this problem into consideration.

Definition 3.6 Nontrivial Conditional Equivalence w.r.t. RLDT T (NCE(T))
Let T be a restricted LDT

T = (Input, Output, Assumption, Pairs, Positive Logic, Negative Logic)

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 55

Then the quadruple
(P« Ppy Ay Am, 1,0)

is a NCE(T) if the following is true:
¢ (PP, Ay Am,I,0) is a CE(T)

o formulas
P PoAy-- Ay — T

Py PyAy-- Ay — O

are not logical consequences of the PositiveLogic

Now we are at the point where we can define terms normalized LDT and generalized nor-
malized LDT w.1.t. restricted LDT T. The term generalized normalized LDT formalizes the
idea of using pairs of ground atomic formulas to produce more general rules where some of

the constants from the pairs are substituted by unique variables. (cf. end of section 3.2)

Definition 3.7 Normalized LDT w.r.t. to RLDT T (NLDT(T))
Let T be a restricted LDT. Then NLDT(T) is a set of CE(T)s such that for every

NCE(T) = (PP, AA,I,0)

there is a

CE(T)=(PP',AA,1,0)
from NLDT(T) and a substitution g such that

PPAAA - PP'gn AA'g

Definition 3.8 Generalized Normalized LDT w.r.t. to RLDT T (GNLDT(T))
Let T be a restricted LDT

T = (Input, Output, Assumption, Pairs, PositiveTheory, N egativeT heory)

T' be an NLDT(T). Let T" be a set of all quadruples occurring in T', where all occurrences
of constants in Pairs that occur neither in PositiveTheory nor in NegativeT heory are
substituted by variables. The substitution maps the occurrence of the same constants to the
same variables and occurrences of different constants to different variables. Then T" is a
generalized normalized LDT w.r.t. RLDT T.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 56

In the rest of the thesis, if the context assumes only one RLDT T, we omit the clause
“w.r.t. RLDT T” from above defined terms and write simply conditional equivalence (CE),
nontrivial conditional equivalence (NCE), normalized linguistic domain theory (NLDT) and
¢ 2neralized normalized LDT, (GNLDT).

3.4 Normalization Algorithms

3.4.1 Overview of the Algorithms

There are two algorithms that take care of the normalization process: the conditions con-
struction algorithm and the conditions combination algorithm. The condition construction
algorithm, given a certain type of logic theory T, goal @) and a set of predicates Pr, finds
all possible conditions that consist of atomic formulas with predicates from Pr s.t. the
conditions imply the goal . The conditions combination algorithm uses the conditions
construction algorithm to construct normalized LDTs. In this subsection, we shall describe
the motivation for their behavior and a simple example.

All quadruples from a normalized LDT have associated formulas of the form

L I,NA, -+ -Am — (I = 0) (3.27)
Ay Ap — (0 = I) (3.28)

where I, I - - - I, are input atomic formulas, A; - A,, are assumption atomic formulas and
O is an output atomic formula. The formulas (3.27) and (3.28) are logical consequences of
the PositiveLogic. It is easy to see that a theory containing formulas (3.27) and (3.28) is
equivalent to the same theory where the formulas are substituted by the formulas (3.29)
and (3.30).

L---I,NA - A AT - O (3.29)
A A NO = T (3.30)

This means that for each CE there are two Horn clauses. The first one has an output atomic
formula as its head and has a body consisting of input and assumpﬁon atomic formulas,
and the second one has an input atomic formula as its head and has a body consisting of
assumption atomic formulas and an output atomic formula. This simple fact is used to

produce results that satisfy the definition of CE from the previous section.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 57

Given a pair (I, O), the conditions construction algorithm is run twice to find two sets

SO and S1I. Set SO contains axioms of the form (3.31):
Ry---Rp, — O (3.31)

where Ry ---R,, are input or assumption atomic formulas, and set S7 similarly contains

axioms of the form (3.32),
Q- Qi —1 (3.32)

where @) - - - Q; are assumption atomic formulas or output atomic formulas with the same
predicate as O. Note, that the formulas (3.31) and (3.32) are similar to the formulas (3.29)
and (3.30). Naturally, we require all axioms in the sets to be logical consequences of the
PositiveLogic. The sets are finite and they also cover all possible cases that can be derived
in the LDT. The latter requirement does not mean that the sets contain all possible cases.
All we need is that if there is a formula of the form (3.31), that is a logical consequence of
the theory, then there is an axiom in the set SO whose condition is equal or weaker. The
same is true about the axioms of the form (3.32) and the set S1.

The condition combination algorithm then combines sets ST and SO to obtain the CEs
of a normalized LDT.

The combination process is again based on the equivalence of formulas (3.27), (3.28) and

(3.29), (3.30).

Example 3.7 As an example consider the restricted LDT
(Input, Output, Assumption, Pairs, Positive Logic, N egative Logic)

where

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

Imput = {iy,1s,13}
Output = {o01,09,03}
Assumption = {a}
Pairs = {(i1,01),(i2,02),(i3,03)}
PositiveLogic = 1 =0

a — (i = 07)

01 — My

02 — M2

m1 A mg — (i3 = 03)

a A my — (i3 = 03)

03 — 13
NegativeLogic = {}

Using the example, the sets produced by the conditions construction algo-

rithm for the pair (¢1,0;) are
S0, = {iy— o1}
S = {o1 — 11}
for the pair (i2,02) are
S50, = {aAi;— 03}
S, = {aAo;— iz}
and for the pair (i3, 03) are
S0z = {aAiy AigAiz — o3,
a Aty Az — o3}
SI; = {o3— i3}

Notice how these sets contain only the input, output and assumption pred-
icates, and none of the intermediate predicates my, or my. Then for each pair
(I,0) from the set of pairs, corresponding sets ST and 50 are combined using
the conditions combination algorithm to produce CEs

(true,true, I, 0l)
(true, a,iz,02)
(i1 A i2,a,13,03)

(il s @ i33 03)

[1

o

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 59

3.4.2 Condition Construction Algorithm

The conditions construction algorithm that constructs sets ST and SO is very similar to the
Prolog meta-interpreter [18], [26]. The input to the algorithm is a nonrecursive theory T, a

finite set of predicates Pr and a ground atomic formula ¢). Given a pair
(Input AtomicFormula, Qutput AtomicFormula)

from the dictionary of a restricted LDT, the algorithm is called with

T = PositiveTheory
Pr = Assumption U Input
Q = OutputAtomicFormula

to construct the set SO, and with

T = PositiveTheory
Pr = Assumption U {Predicate of Qutput AtomicFormula}
Q = InputAtomicFormula

to construct the set S7. The algorithm tries to prove the formula @ using the theory T'.
Whenever the algorithm needs to prove an atomic formula with the predicate from the set
of predicates Pr, the algorithm either puts the formula aside and considers it to be proven
or tries to prove it using the theory T. If the proof of the formula ¢ is done, the Horn
clause, whose condition consists of all atomic formulas that were put aside and whose head
is equal to @, is placed into the output set S. The algorithm then backtracks until there
are no other possibilities for proving the atomic formula . The algorithm also makes sure
that there are no recursive calls within the PositiveT heory of the restricted LDT during
the derivation of the conditions.

A Prolog version of the algorithm will be presented in section 3.5.
Algorithm 3.1 Conditions Construction Algorithm

Input: nonrecursive theory T, finile set of predicates Pr, ground atomic formula Q

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 60

Output: Set S of formulas F of the form:

F=P P —Q

where P, - - - P, are atomic formulas and predicates of Py - - - P, belong to Pr, s.t.

T = F (soundness condition)

TE PPy~ Q

then there is a formula F from S and a substitution f s.t.

(V)P --- Pl — (Py---P,f)(completeness condition)
Algorithm:

1. Create set T" of atomic formulas R the following way. For each predicate P
from the set of predicates Pr construct an atomic formula K, whose predicale

(and arity) correspond to P and whose arguments are unique variables.

Construct program T' = T U T"

2. Construct a partial SLD-tree via R for — @ in T' which is equivalent o the whole
SLD-tree via R for — @ in T', but all branches leading to SLD-derivations with

recursive calls are cut at the point where the recursive call occurs.

3. For each success branch in the part of the SLD-tree which corresponds to the

derivation

= @Q,G1-- G Cr - Crs 1o

insert the rule

Pl---Pm —Q

into the result set S, where the sequence Py --- P,, corresponds to those elements

of {Cifi-+-fu---Cuf1--- fn} whose C; does not occur inT.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 61

A proof of correctness for the algorithm can be found in appendix A.

The following example shows a run of the algorithm step by step.

Example 3.8
T

Pr
Q

Suppose that

{a(X) — o(X),
i2(X) — o(X),
o(X) — i(X),
m — o(X)}
{i1, 12},

o(a)

Step 1. The theory T" is assigned the following atomic formulas:

T' =T u{i1(Y),i2(2Z)}

(We suppose th=t 47 and i, are predicates of arity 1.)

Step 2. All possible branches of the SLD-tree are depicted in figure 3.5

oX) > 11(X)

cut
leads to recursive call
(branch 1)

(branch 2)

o(a)

ipX) > o(X) m -> o(X)
f1= (X/a) £} = (X/a)
Y
i (a) m
2 unsuccessful branch
i 2(Z) (branch 4)
f = (Z/a)
2
\
success
(branch 3)

Figure 3.5: SLD - tree for example 3.8

Step 3. In this step the algorithm inspects branches 2 and 3. Branch 2 cor-
responds to the derivation where C; = #1(X) — o(X) and C; = #(X).
The algorithm picks some of the members of the set {C; f1 f2,C2f1 f2}- Ci

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 62

occurs in the original theory T, so only member C,f; fo = i;(a) of the set
is considered and formula i;(e¢) — o(a) is inserted into the resulting set S.

Similarly after inspection of branch 3, i2(a) — o(a) is inserted into set §.

3.4.3 Conditions Combination Algorithm

After the sets SO and ST are constructed using the conditions construction algorithm for

each pair (I,0) with input and output assignments

T = PositiveTheory

Pr = Assumption U Input
Q@ =0
S = §0

and
T = PositiveTheory

Pr = Assumption U {Predicate of O}
Q = IF
S = SI

results ST and SO can be combined in the following way. Suppose that the formulas of
the forms (3.33) and (3.34) are members of the sets SO and SI respectively or that such
formulas can be constructed out of two members of the sevs SO and ST by applying a
substitution. (Note, that although set SO can contain Horn rlauses with the head equal to
O, the body of such Horn clauses can contain formulas that are subsumed by the atomic
formula I).

R ---R. AN[—O (3.33)
Q.- QA0 > T (3.34)

Suppose, that R} - - - R} are input atomic formulas and R’

i+1 7
formulas. The formulas (3.33) and (3.34) are logical consequences of the PositiveTheory
of the LDT. Then the formulas {3.35) and (3.36) are also logical consequences of the same
LDT.

-+ R}, are assumption atomic

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 63

R,---Rm'AQ,---Q} = (I=0) (3.35)
Q) ---Ql - (0= 1) (3.36)

If Q7 ---@Qj happen to be assumption atomic formulas, the quadruple
(Ry---Ri,Riyr- R, AQ1---Q1,1,0)
is a CE and becomes a part of the normalized LDT.
Algorithm 3.2 Conditions Combination Algorithm

Input: A resiricted LDT

(Positive Logic, N egative Logic, Input, Output, Assumption, Pairs)

Output: Set S of CEs s.t. if there is a NCE
(PP',AA',1,0)
then there is a CE
(PP,AA,I1,0)
from the set S and a substitution f s.t.

PP' A AA' — PPf A AAS

Algorithm:

1. For each I, s.t. there is a pair (I,0) that belongs to Pairs run the conditions
construction algorithm, where
T = PositiveTheory
Pr = Assumption U {Predicate of Output AtomicFormula}
Q@ = InputAtomicFormula
S = 81
Construct the set SI that is the union of the results of the conditions construction

algorithm.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 64

2. For each O s.t. there is a pair (I,0) that belongs to Pairs, run the conditions

construction algorithm, where

T = PositiveLogic

Pr = Assumption U Input
@ = OutputAtomicFormula
S = SO

Construct the set SO that is the union of the results of the conditions construction

algorithm.

3. For each pair (I, O) from Pairs do
for each formula F of the form Ry---R,, — O from S0 do
for each formula F1 of the form Q1 ---Q; — I from SI, where
predicates of Qy - - - Q are assumption predicates or are equal
to predicate of atomic formula O do
4. for all nonempty subsets SR of the set of formulas {R; - --
R,.}, s.t. there is a m.g.u. v of members of SR and I do
for all subsets SQ) of the set of formulas {Q,---Q:} that
contain all atomic formulas with predicate of O, s.t. there
1s @ m.g.u. ¢ of the members of SQ and O do
if the variables from formulas R, --- R,, are not different
from variables Q1 - - - Q; then apply the renaming substi-
tulion.

Construct sets

RR'={Ry---Rn}- SR
QQ ={Q1---Q1} - SQ

Construct set
CC = RR'rqu QQ'rq

Construct a CE (PP,AA,1,0), where PP are all

atomic formulas with input predicates from CC and

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

AA are all atomic formulas with assumption predicates

from CC.

A proof of correctness for the algorithm can be found in appendix A.

The following example shows the operation of the algorithm on a very simple LDT.

Example 3.9 Suppose that
PositiveLogic = {iyf(X)Ni(X,Z)Niy(Y)Ni(Y,Z) — o(Z)
a(ZYNo(Z) — (W, Z)}
NegativeLogic = {}
Input = {i,4,i2}
Output = {o}
Assumption = {a}
Pairs = {(i(z,z),0(z))}
Steps 1 and 2 Sets SO contains axiom (3.37)
i1(X)Ai(X,2) A ia(Y) A i(Y, 2) — o(2) (3.37)
and set S contains axiom (3.38)
a(z) Ao(z) — i(z,z) (3.38)
Steps 3 and 4 Set SR and substitution r iterates through values
SR = {i(X,2)} for r = {X/z}
SR = {i(Y,2)} for » = {Y/z}
SR = {i(X,2),i(Y,2)} for r = {X/z,Y/z}
from axiom (3.37) whereas set SQ and substitution ¢ can have only one
value:
S5Q = {o(z)} for ¢ = {}
So the normalized LDT will contain these CEs
(Fi(z) A (YY) A (Y, 2),a(2), iz, 2),0(2))
(LX) N i(X, Z2) A ix(2),a(2),i(z,2),0(2))
(11() A ix(2), a(2), i(2, 2), 0(2))

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 66

3.5 Implementation of Normalization

3.5.1 Complex and Simple Theories

The design of the whole system allows the designer to structure the knowledge of the se-
mantic part of the interface into simple theories that can be combined into complex ones.
This design allows one to posit axioms, that are visible within the simple theory, but cannot
be reached from other simple theories or from the complex theories. This is similar to the
modularization and information hiding in computer programs which has clear advantages
from the software engineering point of view. The idea of dividing knowledge into smaller
theories was used also in [13].
Another advantage of the design is demonstrated by the following example.

Example 3.10 Suppose, that we would like to talk about persons, students

and student numbers. Then we can simply posit an axiom:
number(X,Y) = id(X,Y) (3.39)

that allows us to infer that the expression “John’s student number” refers to the
same thing as the expression “John’s student id”. Similarly “person’s number”
is the same as “person’s id”. But this is not true in general. E.g. “John’s
phone number” is not the same as “John’s phone id”. The architecture makes it
possible to express axioms similar to (3.39) without need to describe complicated

conditions under which the axiom can be used.]

We propose an implementation in which the restricted LDTs contain not only the parts

described in the formal definition as
(Input, OQutput, Assumption, Pairs, PositiveT heory, N egativeT heory)

but also a list of names of theories whose knowledge is inherited, so the theories can be ar-
ranged as an inheritance hierarchy. Each theory can inherit some information from arbitrary
number of other theories and the information (or part of information) from each theory can
be inherited by an arbitrary number of other theories. The only condition imposed on the
inheritance hierarchy is acyclicity.

The following example shows two simple RLDTs T; and 73, and a complex RLDT 7T'.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

Example 3.11

Input

Qutput
Assumption
Pairs
PositiveLogic

NegativeLogic

Input

Output
Assumption
Pairs
PositiveLogic

NegativeLogic

Inherits
Input

QOutput
Assumption
Pairs
PositiveLogic

NegativeLogic

{a1}
{61}

{}
{(a1,b1)}
{a; = b}

{}

{as}

{b2}

{}
{(az,b2)}
{az = by}
{}

{1, T2}

{a1,a3}

{b}

{}

{((a1,b), (az,b)}
{by = b,bp = b}
{}

67

The algorithms that take care of the complex theories are the same as the algorithms

described in section 3.4. The only difference is that during the normalization of the complex

theory, the partial results from normalization of inherited theories are used. So in example

3.11 theory T inherits partial results from theories 7; and T. The partial results we have

in mind here are the sets SO and ST constructed by the steps 1 and 2 of the conditions con-
struction algorithm. Recall that the set SO constructed during the step 1 of the conditions

combination algorithm contains all possible formulas of the form

Ry---Rp — O

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 68

where O is an output atomic formula mentioned in the set Pairs and Ry - - - R,, are assump-

tion or input atomic formulas. Similarly set SI contains formulas of the form

Qe Qi1

where () ---Q); are either assumption atomic formulas or atomic formulas with the same

predicate as output atomic formula O for all pairs (I,0) in the Pairs.

Example 3.12 As an example consider theories Ty, 73 and T from example
3.11. During normalization of theories 7} and T%, the conditions combination

algorithm produced intermediate results

S = {bp— a1}
SO; foed {al——>b1}

SI, = {by— a3}
50’2 = {a2—+b2}

During the normalization of the theory T, axioms in sets SI;, SO}, SI; and
S0 can be used together with the axioms of PositiveTheory of RLDT T. =

The NegativeT heory together with possible assumption declarations and functional
declarations of the RLDT are inherited without any preprocessing.

Although the conditions construction algorithm and the conditions combination algo-
rithm obviously preserve the soundness conditions while working with the inheritance hier-

archies of theories, the completeness condition cannot be generalized easily.

3.5.2 Implementation of Normalization Algorithms

The implementation contains three logical parts that correspond to the simple preprocessing

of conditional equivalences and the two algorithms described in the section 3.4.

Preprocessing of Conditional Equivalences

The formal definitions of the restricted LDTs and normalization algorithms assume, for

the purposes of simpler explanation, positive theories containing strictly Horn clauses. The

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 69

implementation, on the other hand, allows the definition of axioms of the PositiveTheory in

the form
PPy — (Ry--Rpn=0Q1--Q)) (3.40)

The preprocessing utilizes an equivalence mentioned in section 3.2 between conditional

equivalences like (3.40) and the following Horn clauses

Po---PoARy - Ry — (1

P---PoANRy - Ry — Q)

PP ANQy Q1 — By

Pi-o-PuAQ1-Qi — R

Example 3.13

The set of axioms

a—(b=c)
d=e
f—g

is preprocessed into the set

aANb—c
aAc—b
d—e

e—d

f—g

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 70

3.5.3 Implementation of the Conditions Construction Algorithm

Given a set of Horn clauses 7, set of input predicates Pr and a ground atomic formula @,
the conditions construction algorithm finds patterns of every possible condition made from
atomic formulas with predicates from the set Pr, such that the ground atomic {formula holds
in the theory T. We proved that this can be done by searching all successful branches of
an SLD-derivation tree with no recursive calls as described in section 3.4. To explain the
implementation, we first present the algorithm that searches the SLD-derivation tree given
a theory T and ground atomic formula . The next step will be an algorithm that cuts
recursive branches. Then we extend the algorithm to search the SLD-derivation tree given
the theory that contains all axioms from T and all variants of input predicates from Pr. At
the end of this section we show a schema of the final implementation of the algorithm that
also collects the conditions.

Because the main part of the algorithms used during the normalization process is based
on unification, we have chosen Prolog to be a programming language of implementation.
We assume that reader is familiar with the basic concepts of this programming language.
(A good introduction can be found in [26]).

For demonstration purposes, we assume that for each Horn clause from the theory T of
the form

Body — Head

there is an asserted clause:
implicationInTheory(Head, Body).
if body is nonempty and asserted clause:
atomicInTheory(Head).

If the body is empty.
We also assume that for each element J of the set Pr of input predicates, there is asserted

clause
inputPredicate(J).

The search for successful branches of derivation tree is based on the Prolog meta-

interpreter as presented in ([26], [18]).

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 71

prove(L and R) :-
prove(L),
prove(R).

prove(F) :-
atomicFormula(F),

proveAtomicFormula(F).

proveAtomicFormula(F) :-
implicationInTheory(F, Body),
prove(Body) .

proveAtomicFormula(F) :-

atomicInTheory(F).

Predicate prove(0) succeeds, whenever a successful branch in the SLD-derivation tree
of 0 is found. Now we add an argument Nodes that keeps track of visited predicates and
prevents the current branch from being expanded if a recursive call occurs. The collec-
tion Nodes was implemented as a list although many other implementations are possible.

Predicate predicate(F, P) succeeds iff P is a predicate of atomic formula F.
prove(F) :- prove(F, [J)
prove(L and R, Nodes) :-

prove(L, Nodes),
prove(R, Nodes).

prove(F, Nodes) :-

atomicFormula(F),

proveAtomicFormula(F, Nodes).

proveAtomicFormula(F, Nodes) :-

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 72

% check nonrecursivity
predicate(F, P),
non_member (P, Nodes),

% call the prover

proveAtomicFormula_1(F, Nodes, P).

proveAtomicFormula_1(F, Nodes, P) :-
implicationInTheory(F, Body),
prove(Body, [Pl|Nodes]).

proveAtomicFormula_1(F, _Nodes, _P) :-

atomicInTheory(F).

Then the program was altered to search the SLD-derivation tree of 0 using theory T
enhanced by all possible variants of predicates in I. This was achieved by adding another
clause to proveAtomicFormulal(F, Nodes, P) that allows the proof of an atomic formula

whose predicate is a member of I for “free”.

prove(F) :- prove(F, [1)

prove(L and R, Nodes) :-
prove(L, Nodes),
prove(R, Nodes).

prove(F, Nodes) :-
atomicFormula(F),

proveAtomicFormula(F, Nodes).

proveAtomicFormula(F, Nodes) :-
% check nonrecursivity
predicate(F, P),
non_member (P, Nodes),

% call the prover

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 73

proveAtomicFormula_1(F, Nodes, P).

proveAtomicFormula_1i(F, Nodes, P) :-
implicationInTheory(F, Body),
prove(Body, [PlNodes]).

proveAtomicFormula_1(F, _Nodes, _P) :-

atomicInTheory(F).

proveAtomicFormula_1(F, _Nodes, P) :-

inputPredicate(P).

The last change to the program involves collecting all leaf atomic formulas used in the

derivation that were produced by the added clause. The predicates
prove(F,LeavesIn, LeavesQut, Nodes)

and

proveAtomicFormula(F, LeavesIn, LeavesOut, Nodes)

search the SLD-derivation tree and whenever a successful branch is found, all such leaf

atomic formulas are added to the list LeavesIn to produce a list LeavesQOut.

% The prover is called with "Nodes" instantiated to "[]" and
% LeavesIn instantiated to "[J".
prove(F, Leaves) :-

prove(F, {J, Leaves, {J).

prove(L and R, LeavesIn, LeavesOut, Nodes) :-
prove(L, LeavesIn, LeavesNext, Nodes),

prove(R, LeavesNext, LeavesOut, Nodes).

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 74

prove(F, LeavesIn, LeavesOut, Nodes) :-
atomicFormula(F),

proveAtowicFormula(F, LeavesIn, LeavesCut, Nodes).

proveAtomicFormula(F, LeavesIn, LeavesOut, Nodes) :-
% nonrecursivity check
predicate(F, P),
non_member (P, Nodes),
% call the prover

proveAtomicFormula_1(F, LeavesIn, LeavesOut, Nodes, P).

proveAtomicFormula i(F, L, L, _, _) :-
atomicInTheory(F).

proveAtomicFormula_1(F, LeavesIn, LeavesOut, Nodes, P) :~
implicationInTheory(F, A),

prove(A, LeaveslIn, LeavesOut, [P | Nodes]).

proveAtomicFormula_1(F, LeavesIn, [F |LeavesInl, _, P) :-

inputPredicate(P).

3.5.4 Implementation of the Conditions Combination Algorithm

Before we describe the conditions combination algorithm, we define forward and backward
readings of conditional equivalences.

Given a conditional equivalence of the form

PioPo— (R R = Q1 Qi) (3.41)

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 75

we shall call the formulas
Pi---PoARi- Rp— Q)

P -PyARy Ry —Q

forward readings of the conditional equivalence (3.41) and formulas

P PoA@Qr- Qi — By

Pl"'PnAQl'°'Ql—>Rm

backward readings of the equivalence. This distinction together with a simple convention of
writing atomic formulas with predicates that are “more lexical” on the LHS of conditional
equivalences allows us save some time and energy while constructing normalized theories.

The idea is that forward readings of the conditional equivalences are much more likely to
be used while proving output atomic formulas whereas backward reading of equivalences are
much more likely to be used while proving input atomic formulas. We would like to exploit
this possibility to cut the size of theory in half during the steps 1 and 2 of the conditions
combination algorithm.

While deriving all possible conditions for an output atomic formula O during step 1 of
the conditions combination algorithm, only forward readings of equivalences together with
the result sets SO] - - - SO!, of the same step 1 of the conditions combination algorithm from
the processing of inherited theories Tj--- T}, are used.

Similarly during derivation of the conditions for an input atomic formula during the step
2 of the condition combination algorithm only backward readings of the equivalences and the
results S7; ---STI of the theories T; ---T, are used. The following example demonstrates

the point.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

Example 3.14

T :
Input
Output
Assumption
Pairs
PositiveLogic

NegativeLogic

T :
Input
Qutput
Assumption
Pairs
PositiveLogic

NegativeLogic

Inherits

Input

QOutput
Assumption
Pairs
PositiveLogic

NegativeLogic

{a1}
{61}

{3
{(a1,b1)}
{a; =W}
{3

{az2}
{b2}

{}
{(a2,82)}
{az = b2}
{3

{TI’T?}

% we suppose, that theory T
% inherits partial results from
% theories Ty and 15

{a1, a2}

{6}

{}
{(a1,0), (a2, b)}
{b1 = b,b, = b}

{}

76

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 77

During normalization of theories 77 and T3, the conditions combination al-

gorithm produced intermediate results

SIII = {bl — (l]}
501 = {al - bl}

SIé = {b2 — (12}
SO; = {(12 g bg}

To normalize theory T, the algorithm has to compute set SO of patterns of
conditions for atomic formula b and sets SI; and SI, of patterns of conditions
for atomic formulas a; and a,.

For computing the set SO, the conditions combination algorithm calls con-

ditions construction algorithm with the following assignment in step 1:

T o= {
a; — by, % from SO3
az — b, % from SO}
by — b,bp — b % as forward readings

% of the equivalences from theory T

I = {(11,(12}
S = SO

Similarly, the set S is constructed by a call to the conditions construction

algorithm using the assignment:

T =
b1 — a4 % from set SI;
by — ay % from set ST}
b — b1,b — by % as backward readings of

% the equivalences from the theory T'

I = {b}

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 7

o

A similar approach was taken in [23], where only forward readings of the conditional equiva-
lences were used during the justification of the conditions of conditional equivalences during
the translation process.

The implementation contains a switch that allows the designer to choose one of the two
possibilities. If the switch is on, the above mentioned distinction between the forward and
backward readings of equivalences is made: forward readings are used during the construc-
tion of the set SO, backward readings are used during the construction of the set S7. If the

switch is off, both readings are used all the time.

3.5.5 Simplification of the Results

All results from the conditions construction algorithm and conditions combination algorithm
are checked in two aspects - for permissibility of assumptions and for redundancy of rules.

Permissibility of assumptions

Whenever the conditions construction algorithm generates a Horn clause of the form
Ay A nNL--- 1, - O

or

Ay A AOy O — I

where A; - - - A, are assumption atomic formulas, I, 1 - - - I,, are input atomic formulas and
0,0, - - -0, are output atomic formulas, each assumption atomic formula A; is checked for

its permissibility w.r.t. NegativeT heory and the set of atomic formulas
S={A1-An, Iy---Ip}

or

S ={Ay- An, I}

respectively.
We consider assumption 4; to be nonpermissible if there is a formula in NegativeT heory

from which it directly follows that —A; holds in

NegativeTheoryU S

CHAPTER 3. RESTRICTED THEOQORIES AND NORMALIZATION 79

Speaking more precisely, A; is nonpermissible w.r.t. to NegativeTheory and the set of

atomic formulas S if there is an atomic formula F' from the set S, substitution g and

formula of the form
(VN X1--- Xk #Y1---Y) — (4] — -~ F")

or

(X1 X # Vi - -1i) = (F = =)
from NegativeTheory s.t.
Alg=A,Fg=Fand X;---Xig#Y1---Yag
or if there is a subset {F} --- Fj} of S, substitution g and formula of the form
(V)F] - -F] — -A;
from NegativeT heory s.t.
F{---Flg=F,---F and Alg = 4;
Similar checks are performed on the results
Ay A, NL - I, - (IT=0)

of conditions combination algorithm.

Redundancy

It is obvious that if there are two rules with the same conclusion and the condition of the
first rule is stronger than the condition of the second rule, then the first rule is redundant
and can be removed from the resulting set. The redundancy simplification is performed on
the results of both the condition construction and combination algorithms.

We consider condition P; -- - P, stronger than condition ¢ - - - @, if there is a substitu-
tion fs.t. {Q;---Qm}f is asubset of {P;---F,}.

3.6 Summary

In this chapter we introduced a restricted version of LDTs as logic theories that describe

the relationship between input atomic formulas representing words of the natural language

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 80

input in their context, and the output atomic formulas representing correspondence to the
database. We have also shown that the restricted LDTs can be normalized, i.e. given a
restricted LDT, we are able to produce set of rules with input atomic formulas on the “left
hand side” and the output atomic formula on the “right hand side”. The set of rules (which
we call a normalized LDT) depends only on the meaning of the theory. For example, it does
not depend on what kind of intermediate predicates the restricted LDT uses or whether the
restricted LDT is written in a way that the reasoning process can run within the restricted
LDT efficiently or (more importantly) inefficiently.

It is obvious that if we supply an efficient translation algorithm that can use the nor-
malized theory, such an algorithm will, together with the normalization algorithms, form
a sound basis for really declarative and efficient semantic processor of a natural language

interface to the database.

Chapter 4

Translation Using Normalized

LDTs

Now that we have seen how to create a normalized LDT from a restricted LDT, we can
turn to the issue of how the norinalized LDT can be used to translate linguistic logic
representations of English sentences into database logic representations.

We first introduce a sound algorithm for the translation using the normalized LDTs.
Then we consider the efficiency of the algorithm, particularly of a part that takes care of
selection of the right rule from the set of all possibilities. Finally we shall introduce the
actual data structures and algorithms used in an implementation.

The algorithms introduced in this chapter were implemented in Prolog.

4.1 Sound Translation Algorithm

Our translation algorithm is very similar to that presented in [23]. Rayner’s algorithm can
actually be used for the translation using the normalized theory. The reason why we do not
accept his algorithm without changes is very simple. The normalized theory contains all
patterns of the rules that directly map input atomic formulas into output atomic formulas,
explicitly. It is obvious that reasoning within the theory is not able to produce any more
rules of the given form. We believe that it is possible to write an algorithm that makes
much less use of the runtime reasoning than Rayner’s algorithm does.

We shall first introduce the modified translation algorithm for translation of conjunctions

81

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 82

of atomic formulas. Then we prove its correctness. At the end of the section we introduce
the translation algorithm for a richer logical language that uses connectives “v”, “—" and

“A” and higher order logical formulas.
Algorithm 4.1 Algorithm for translation of conjunctions of atomic formulas

Input: conjunction (set) of ground atomic formules

IT={IL---I,} (input atomic formulas)

normalized LDT T (a set of CE(T)s) (input theory)

conjunciion of ground atomic formulas CC (conjunctive context)
Output: set of output atomic formulas OO and set of assumptlions AA, s.1.

T = CC A AA — (II = 00)

Algorithm: set 00 := {}
AL = {}
i=0
while i < n do
/* Invariant */
i=i+1
(1) if there is CE(T) (A, C, I’, 0’) in normalized LDT T,
and substitution f s.t.
(IT - {Ii}) and CC -> C £
and
Ii = 1" £
then
set 00 := 00 union {0’ f}
set AA := AA union A £
else
fail
endif
end while

/* Invariant */

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 83

Proof. We prove by induction, that in the places marked by the comment /* Invariant

*/ the following invariant holds
TECCANAA - (II=00A{ip1---1,)) (4.1)
TEAANOO - ©I---1; (4.2)

Case ¢ = (0 This case is trivial

Case i = m + 1 Suppose that the invariant holds for ¢ = m. We show, that the invariant

holds for: = m + 1
We shall write AA,, and 00,, to denote AA and OO respectively in the place marked

by invariant, when 7z = m.
We shall show (4.1) first

According to Induction Hypothesis (IH):
TECCAAA, - (IIT=00, A1y ---1n) (4.3)
and
TEAALNOO, — - Iy (4.4)

Consider the formula OO, A I;y41---1,. Suppose that the algorithm reached the
invariant point for i = m + 1. By the definition of NCE(T)

TEAANC — (I'=0"

therefore

TEAfACSf—-I'f=0'f)
From I'f = I,,41 we have
TEAfACS — (Imy1 = O0'f) (4.5)
According to IH
TE AALNO00,, - I ---1,

So
T IZ ,4Am A OOm AIm+2 - In — (II— {Im+1})

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS

jo.s]
-c—

According to the algorithm
CC A (II - {I7n+l}) —* Cf

So
T=CCANAAL,NOO Al pyg---1, = Cf

and obviously
TECCANAALANOO ANy I, ANAf - CfANAS (4.6)
From (4.5) and (4.6) and the translation rules of AET (2.14), it follows that
TECCAAALZANAfANOOm AlLyyo--- Iy — (Lyngr = D'f) (4.7)
from the translation rule of AET (2.8), it follows that

Tl CCAAAn AAf —
(OOm A Im+1 In = OOm A O’f /'\Im+2]n)

Because 00, AO'f = O 1

TECCANAALNASf —

(1.8
(OOmAIm+1"'In EOOm+1 /\-[m+2"'111))

From (4.8) and from IH (4.3) and according to the algorithin that sets AA,, 4 to
AA, NASf
T I': CC A AAm+1 — (II = OOm+1 A Im+2 . 'In)

0
Proof of (4.2) is very similar to that of (4.1).
Proof. By the definition of NCE(T)
TEAFNO'f=TIf
and therefore
TEAfANOf — Lhh (4.9)

From (4.4) and (4.9) it follows that

TEAALAATAOOLANO' f — 1+ Ing

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 85

According to the algorithm AA,4+1 = AAn A Af and OOpy1 = 00, A O'f, and we have

T l"—’ AAm+1 A 00m+1 d Il . 'Im+1
a

Now we are at the point where we can introduce a translation algorithm that takes as an
input arbitrary logical formulas. Also in this case, the algorithm is very similar to the one
in ([23]). The algorithm recurses down the formula while collecting the conjunctive context.
When it reaches the basic case (in Rayner’s case atomic formula, in our case a conjunction
of atomic formulas), it tries to translate it using LDT and the collected conjunctive context.

We describe the main ideas behind the modification first, then we present the algorithm
and at the end we demonstrate the idea on a simple example.

The modification touches a few aspects of the algorithm. As was mentioned above, in
our algorithm, we consider conjunction of atomic formulas as a basic case, i.e. the algorithm
recurses down collecting conjunctive context until it finds a conjunction of atomic formulas.
Then the algorithm for translation of conjunctions of atomic formulas is used to translate
it. ‘

To accommodate the change described above conveniently, there is a simple preprocess-
ing of the input formula involved. The preprocessing algorithm also does the following.
Whenever it finds a set of formulas connected together by the conjunctive “A”, it sorts
the set so that the atomic formulas from the set are grouped together, nonatomic formulas
are grouped together and both groups are again connected by the conjunctive “A”. For

example, formula
(an((bVe)A(dA—e))

will be transformed into

(and)A((bVc)A —e)

where atomic formulas a and d are put together, nonatomic formulas (b V ¢) and {—e) are
put together and both groups are connected with “A”. 7

The modified algorithm also “collects” conjunctive context differently. The algorithm
collects only atomic formulas that can be reached by conjunction and disregards anything

else. Consider the conjunctive context of atomic formula a in the formula

(bveyAdAhe—a

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 86

Rayner’s original algorithm produces (b V ¢) A d A e as the conjunctive context whereas our
algorithm produces only d A e. Similarly, the conjunctive context of atomic formula @ in the
formula a A (bV ¢) would be (bV ¢) in Rayner’s case and true in our case.

Formally, our algorithm uses a different set of translation schemas. The modified transla-
tion schemas for translation of conjunction “A” and “—" are shown bellow, the rest remains
the same (cf. chapter 2). Function f from a set of formulas into a set of sets of atomic
formulas is the core of the suggested modification. This function simply takes a logical
formula and produces a set of atomic formulas that can be reached {rom the top level of

input logical formula by the conjunctive “A”.

f(F) = if F=PAQ then f(P)U f(Q)
else if F'is atomic formula then {F7}

else {} % empty set

Context N f(P) — (Q = Q")
= Context — (PAQ=PAQ") (41.10)

Context A f(P) — (Q = Q")
= (Context - (P —- Q=P — Q) (4.11)

It is easy to see that F' — f(F') for each logical formula F. Correctness of the modifica-
tion of the translation schemas trivially follows.

The fourth aspect is that the algorithm does not translate only one basic element in one
run, but translates the whole formula at once. Preprocessing and a reduced collection of
conjunctive context allow the recursive processing of an input formula in a special order.
This order guarantees that the conjunctive context of a subformula translated at a partic-
ular moment consists only of the input atomic formulas and does not contain any already

translated atomic formulas.

Example 4.1 As an example consider the already preprocessed formula

((ia v ib) Adc) — ((id A ie) A —if) (4.12)

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 87

and a normalized LDT that translates i-s to o-s

(1a = oa)
(ib = ob)
(ic = oc)
(id = od)
(ie = oe)
(if =of)

In our example, by binary conjunction we mean an operation “A” on two
arguments, by n-ary conjunction we mean an operation “A” on any number of
arguments more than zero. E.g. formula (@ A b) A (b A ¢) is a result of binary
conjunction of two formulas (aAb) and (bAc) and n-ary conjunction of 4 formulas

a,b,c,and d.
The algorithm begins with the whole formula
((ia V ib) Aic) — ((id A te) A =if)

The left hand side of the implication can serve as a conjunctive context for
the right hand side, but the right hand side has no similar effect to the left
hand side. Therefore the algorithm will translate the right hand side first

and collect ic as a conjunctive context.

The algorithm tries to translate the conjunction
((sdAie) A -if

Note, that whenever the algorithm finds a binary conjunction, any of
its arguments cannot be an n-ary conjunction of atomic formulas mixed
with non atomic formulas together. This is due to the preprocessing
that puts atomic formulas connected by conjunctive “A” together and
nonatomic formulas together. Therefore whenever the algorithm finds
a binary conjunction that is not already a basic case, its arguments are
either basic case - conjunction of atomic formulas, or do not provide any
conjunctive context for the other argument whatsoever. The algoritlim
tries to translate formula —if first using a conjunctive context of (ic)

(from above) and id A ie (from this level)

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 88

The algorithm recurses down from —if to i f and translates it to
of. —if is translated to —of

Then the algorithm translates id A ie using the conjunctive con-
text zc. The algorithm for translation of conjunctions of atomic

formulas produces a formula od A oe.

The formula
(idNie) A—if

is translated into
(0d A oe) A —of

Then the algorithm translates the LHS of the implication.
(ia Vv ib) A ic

The conjunctive context in this case is just true. Translation proceeds
similarly as in the previous case. Disjunction za V b is translated first
using conjunctive context ic into oa V ob. Then ic is translated into oc

using the empty conjunctive context.The whole LHS is translated into
(oa Vv ob) A oc
The whole formula is thus translated into

((oa Vv 0b) A oc) — ((od A 0€) A —of)

Algorithm 4.2 Translation Using NLDTs

Input: input logical formula F, .

normalized LDT w.r.t. RLDT T - NLDT(T)

Output: logical formula F,,;p,; and set of assumptions A s.t.

T l:- AA — (-F}'n.p‘u,t = Foutp‘u.t)

Algorithm:

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS

Set the set A to the empty set.

Traverse formula Fip,ye using the schemas until a
conjunction of atomic formulas is reached. Whenever
there is a choice regarding which constituent of the

formula should be traversed first, use the following

rules:

if the formula has form A A B then

if
A is a conjunction of atomic formulas
or an atomic formula and B is not
then
visit B first, then visit A
else
visit A first, then visit B
end if
else if
the formula has the form A — B
or AV B
then
visit B first, then A
end if

When a conjunction of atomic formulas I1 is reached,
use the algorithm for translation of conjunction of
atomic formulas with conjunctive context CC that was

accumulated during the recursive descent.

Then substitute the result OO of the algorithm for
subformula 11, set the set A to AU AA and

continue with traversing the input formula

84

i

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 90

4.2 Searching for CEs

The critical part of the algorithms described in the previous section is to find a set of CEs
(or rules of a normalized theory) that can be applied within a given conjunctive context. An
obvious solution is to check each rule individually, but this can take a substantial amount

of time. Fortunately, there are certain features of normalized theories that can be exploited

to improve the efficiency of the searching process.
All such features are consequences of the fact that an NLDT can be viewed as a logical

theory based on natural language phrases, i.e. given a CE

(Context, Assumptions, InputAF, OutputAF)

the formula
Context A InputAF

represents a logical representation of a natural language phrase meaningful to the underlying

database.

The rest of the section is structured as follows. We first present an assumption about

the structure of the formulas of the form
Context A InputAF

namely the approximate correspondence of predicates of input atomic formulas and words of
the natural language phrases. Then we present some observations about the sets of logical
formulas representing natural language phrases under the taken assumption. At the end of
the section we demonstrate the data-structure upon which a searching algorithm is based

and heuristics used to construct such data-structures.

4.2.1 Assumptions and Observations

e assume a close correspondence between predicates of input atomic formulas and words
of the natural language utterances. For example, we assume that the noun “book” will be
represented by an input atomic formula with predicate book_entity in all logical representa-
tions of English phrases that contain the noun “book”. By close correspondence we mean

that exceptions are permitted, but they are very rare.

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 91

This assumption allows us to relate certain observations about words that occur in a typ-
ical input English sentence to input atomic formulas that occur in the logical represcuntation
of the sentence.

Under the above assumption, it is plausible to assume that the structure of input atomic
formulas is not deep, i.e. not many functional symbols are used. As an example compare

formula
student(X) A take(E, X,Y) A course(Y)

with formula

a(b(c(d(e(f(g(e, h),1),J), K), L), M),0) A F(S(S(SCSCSCSUAXNMN))

Observations

1. Observation about partitioning of the set of CEs

Each English phrase meaningful to the database (as represented by an NLDT) contains
only a small number of words in comparison to the size of the lexicon, so each word
selects a small number of the phrases (in which the word occurs) in comparison to the
number of phrases represented by the NLDT. Moreover the phrase selected by one
particular word is semantically related to that particular word. So, words that are

semantically far away from each other are inclined to select disjoint sets of phrases.

If we use our assumption about the correspondence between words and input atomic
formulas, we can observe that given an NLDT (set of logical representations of phrases),
we can find a set of input predicates that can identify almost disjoint subsets of for-
mulas. We also observed that this partitioning can be done on the disjoint subsets

recursively.

As an example, consider the set of logical representations of phrases about phone

number and student number (slightly simplified)

phone(X) A number(X)
phone(X)
student(X) A number(X)
student(X) A id(X)

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 92

Input atomic formulas phone(X) and student(X) divide the set into two disjoint

subsets:
{phone(X) A number(X), phone(X)}

{student(X) A number(X), student(X) Aid(X)}

Subset
{student(X) A number(X), student(X) A id(X)}

can be further partitioned into subsets:
{student(X) A number(X)}
{student(X) Nid(X)}
using input predicates number and id.

Although in general, partitioning does not have to be perfect, we believe that this

feature of NLDTs forms a reasonable basis for searching heuristics.

2. Observation about variable sharing

The second observation deals with sharing of variables by atomic subformulas of logical

representations of phrases within the NLDT. The term “connected” formalizes this

concept.

Definition 4.1 (A is connected to B w.r.t. F') Atomic subformula A of formula
F is connected to atomic subformula B of formula F if A and B contain at least one
common variable or constant, or there is an atomic subformula C of formula F s.t.

A 1s connected to C w.r.t. F and C is connected to B w.r.t. F

We assume that in almost all logical representations F
F = Contezt N InputAF

of an English phrase from NLDT, all atomic subformulas of F' are connected to each

other.

4.2.2 Searching Algorithm

In this subsection we present the main heuristics and the algorithm that uses them to find

a subset of the NLDT that matches a set of atomic formulas, i.e. given a set

LL = {Ly..L,}

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 93

of atomic formulas and set of CEs
(Assumption,Condition, Input AF, Qutput AF)
we find a CE and a substitution f , such that
LL — (Condition A InputAF)f

This algorithm makes the search for the “right” CEs performed by the algorithm for trans-
lation of conjunctions of atomic formulas more efficient than a simple search through all the
CEs of the NLDT.

The main idea is similar to the idea behind trie structures [1]. We simply build a
search tree with a fixed root whose arcs are atomic formulas. Each path in the search tree
represents a conjunction of atomic formulas. If a path from the root of the search tree to a
node represents a formuia

Condition A InputAF

for some CE, the node will contain information about the CE. Searching the tree begins at
the root. The searching algorithm tries to match one of the arcs coming from the root with
one of the atomic formulas from the input set LL. If such an arc to another node is {ound,
the algorithm binds appropriate variables and continues to explore the tree from the new
node using depth first search. If such an arc is not found, the algorithm backtracks. The

following example demonstrates the idea.

Example 4.2 Suppose, that we have an NLDT that consists of the following

CEs:
% student takes a course (4.13)
(Contezt = student(X) A course(Y'),
Assumption = {},

InputAF = take(E,X,Y),
OutputAF = dbtake(E,X,Y))

% professor teaches a course (4.14)
(Context = professor(X) A course(Y),
Assumption = {},

InputAF = teach(E,X,Y),
CutputAF = dbteach_course(E,X,Y))

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 94

% professor teaches a student” (4.15)
(Context = professor(X) A student(Y),
Assumption = {},

InputAF = teach(FE,X,Y),
OutputAF = db_teach_student(E,X,Y))

and the tree on figure 4.1. Node3 contains CE (4.13), Node6 contains CE (4.14)
and Node7 contains CE (4.15) '

RootNode Nodel Node2 Node3
= 4 @
take(E, X, Y) student(X) take(E, X, Y)
Node4 Node5 Node6
teach(E, X, Y) professor(X) course(Y)
Node7
student(Y)

Figure 4.1: Tree representing CEs (4.13 ... 4.15).

For input set
LL = {student(z),take(e, z,y), course(y)}
the searching algorithm will explore nodes
{RootN ode, Nodel, N ode2, N ode3}

During this process, variables F, X, Y will be bound to e, z, y respectively.
Node3 contains information that CE (4.13) can be applied. n

4.2.3 Tree Construction Algorithm

The graph structure from the example has two nice properties that deal with determinism
for certain kinds of input and the binding of variables during the searching process.
It is easy to see that the graph from our example can be searched without exploring

useless branches if the input set LL consists of formulas present in exactly one CE from

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 95

the NLDT (i.e. if the input corresponds to exactly one representation of an English phrase
from the NLDT), or its variants. In general, this property holds for any NLDT that fully
matches the observation about partitioning of the set of CEs (observation 1), and whose
logical representations of English phrases do not contain two atomic formulas with the same
predicate. In such cases, it is possible to construct a graph with the searching algorithm
that searches the NLDT without exploring useless branches for the input sets corresponding
to the CEs from the NLDT.

Thanks to the observation about variable sharing (observation 2), it is possible to con-
struct the search tree in a way that only the edges directly flowing from the root node will
have all their variables unbound during the search process. The following example shows

how this reduces the nondeterminism during the search process.

Example 4.3 Suppose that NLDT contains the following CEs:

% student takes a course (4.16)
(Context = student(X) A course(Y),
Assumption = {},

InputAF = take(E,X,Y),
OutputAF = dbtake(E,X,Y))
% professor teaches a student” (4.17)
(Context = professor(X) A student(Y),
Assumption = {},
InputAF = teach(FE,X,Y),
OutputAF = db_teach_student(F,X,Y))

RootNode Nodel Node2 Node3

L 4 ®
take(E2, X2, Y2) student(X2) course(Y2) ,
l Noded Node5 Node6

@ @
teach(El, X1, Y1) professor(X1) course(Y1)

Figure 4.2: Tree representing CEs (4.16) and (4.17).

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 96

RootNode Nodel Node2 Node3
. 2 @
course(Y2) student(X2) take(E2, X2, Y2)
Noded Node5 Node6
professor(X1) course(Y1) teach(E1l, X1, Y1)

Figure 4.3: Tree representing CEs (4.16) and (4.17). Second version.

Then consider the search tree in figure 4.2 where Node3 contains CE (4.16)
and Node6 contains CE (4.17), and the search tree in figure 4.3 where Node3
contains CE (4.16) and Node6 contains CE (4.17). Also consider an input sen-

tence that contains two phrases

professor(p1) A teach(er, p1, 1) A student(sy)
and

student(s2) A take(eq, s2,c2) A course(cs)

To search the tree in figure 4.2, the algorithm starts by matching an atomic
formula take(e,, s2, c2) with the arc from RootNode to Nodel of the tree. This
binds variables F,,X, and Y, to e;, s; and c; respectively. The arc student(Xs3)
that goes from Nod::1 becomes student(s;) and this can match only atomic
formula student(s;) from the input sentence. On the other hand, when the al-
gorithm starts to search the tree in figure 4.3, e.g. by matching course(cz) from
input sentence, only the binding for variable Y5 to ¢, is introduced. The nonde-
terminism occars when the algorithm tries to match arc student(X) against the

input sentence, because two bindings (X — s; and X — s3) are possible. =

The search tree construction algorithm is a greedy algorithm based on the heuristics de-
scribed above. The input for the algorithm is a set of CEs. The algorithm constructs the
tree from the root node with the whole set of CEs assigned to it.

The main part of the algorithm takes a partially constructed search tree and a leaf node
of the tree with a set of CEs assigned to it. If some CEs from the set correspond to the
leaf node, they are assigned to it in the output graph. The rest of the CEs are divided into

smaller subsets using a sequence of “dividing” atomic formulas. For each “dividing” atomic

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 97

formula there is a subset of the rest of the CEs that correspond to it, i.e. it contains a
variant of the “dividing” atomic formula.

The “dividing” atomic formulas are picked from the atomic formulas of CEs in a greedy
fashion. Preference is given to atomic formulas that are connected to one of the arcs in the
path from Root to the leaf node. If some part of the sequence of “dividing” atomic formulas
was already picked, the next “dividing” atomic formula is the one that selects a set of C'Es
with minimal intersection with the CEs selected by the previous “dividing” atomic forniulas
of the part of the sequence. Being “connected” has higher priority then having smaller
intersection.

Then the algorithm expands the leaf node by creating a set of arcs from the leaf node to
new leaf nodes. The arcs are marked by “dividing atomic formulas”. Each new leaf node is
assigned a subset of CEs that corresponds to the path from the Root to the new leafl node.
The paths for the new nodes are the same except for the dividing atomic formulas assigned
to the new arcs. If a CE corresponds to more than one new node, only one new node is
selected. Then the variables in the “dividing” atomic formulas and corresponding variables
in the CEs are bound by unique constants.

The algorithm continues recursively until all CEs are assigned to some nodes in the
output graph.

The following example shows how the search graph is constructed given an NLD'T.

Example 4.4 Consider the following CEs:

% student takes a course (4.18)
(Contezt = student(X;) A course(Y)),
Assumption = {},
InputAF = take(Er, X1,Y1),
OutputAF = dbtake(Ey,X1,Y1))

% professor teaches a course (4.19)
(Context = professor(Xa) A course(Ys),
Assumption = {},
InputAF = teach(Eq,X,,Ys),

OutputAF = db_teach_course(Ey,X2,Y,))

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS

% professor teaches a student (4.20)
(Context = professor(X3) A student(Y3),
Assumption = {},

InputAF = teach(Fs, X3,Ys),
OutputAF = db_teach_student(Es, X3,Y3))

The algorithm starts with the root node and all three CEs are assigned fo
it. Then the algorithm randomly picks the first “dividing” atomic formula e.g.
take(Ey, X1,Y1) and creates the subset of CE(LTD)s that contain a variant of

the atomic formula

take(El,Xl, }/1)

{(Context = student(X;) A course(Yy),
Assumption = {},
InputAF = take(Ey,X1,Y1),
OutputAF = dbiake(E;,X1,11))}

Then the algorithm picks the second “dividing” atomic formula. Atomic formu-

las
professor(X;),projfessor(Xs),

teach(Eq, X2,Y?2),teach(Es, X3,Y3)

are preferred, because they select CEs that are not selected by the previous
“dividing” atomic formula take(Fy, X1,Y1). Let us suppose that professor(Xs)
was picked. The professor(X;) selects CEs (4.19) and (4.20). The algorithm
binds appropriate variables and expands the graph as depicted in figure 4.4.
In the search graph, Nodel contains CE (4.18) with substitutions E; — ey,
X1 — z1and Y7 — 3. Voded contains CEs (4.19) and (4.20) with substitutions
X7 = z9 and X3 — z,.

The algorithm is called recursively with leaf nodes Nodel and Noded. Let
us expand Nodel first. There is only one CE assigned to it and all its atomic
formulas are connected to the arc take(ey,z1,y1). The expansion is therefore
straightforward and the algorithm expands the node Nodel in two steps.

To expand node Noded, the algorithm prefers to choose “dividing” atomic
formulas from teach(E2, x4, Y>) and teach(E;, z2,Y3), because those are the only

atomic formulas that are connected to the previous arcs. Let us suppose that the

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 99

RootNode Nodel

take(el, x1, y1)
Noded

professor(x2)

Figure 4.4: Search graph after RootNode expansion.

algorithm has chosen teach(E3,x2,Y3). The algorithm binds E3 and Ey to ey,
and Y3 and Y, to y;. The graph at this stage is depicted on figure 4.5. Node3
contains CE (4.18) where F; — e1, X1 — 27 and Y| — y;. Noded contains
CEs (4.19) and (4.20) where X — 23, X3 — 22, Y2 — 32, Ey — €3, X3 — 23,

Y3 — 4, and E3 — e,.

RootNode Nodel Node2 Node3

@ @
take(el, x1, y1) student(x1) coursc(yl)
Node4 Node5
professor(x2) teach(e2, x, y2)

Figure 4.5: Search graph after expansion of nodes Nodel and Node3.

Then the algorithm expands Node5, which is trivial. At the end, the al-
gorithm substitutes the unique constants used during the graph construction
process with unique variables and we obtain the graph depicted in figure 4.6.
Node3 contains CE (4.18) Node6 contains CE (4.19) and Node7 contains CI
(4.20).

All the algorithms presented in this chapter were implemented in Prolog.

4.3 Summary

In this chapter we have shown an algorithm that can use information provided by a restricted

LDT for translation of input logic formulas representing English sentences into output logic

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS

RootNode Nodel Node2 Node3
- s 4 @
take(E2, X2, Y2) student(X?2) course(Y?2)
Noded Node5 Node6
professor(X1) teach(E1l, X1, Y1) course(Y1)
Node6
student(Y1)

Figure 4.6: Finished search graph.

100

formulas corresponding to database queries. First, the normalization process is used to

normalize the restricted LDT into a normalized LDT. The normalization is done off-line.

Then, on-line, the normalized LDT is used by the translation algorithm to actually translate

logic representations of sentences input by a user into logic representations understandable

by the underlying database. Since the normalization process is done off-line, behaviour (and

performance) of the translation algorithm depends only on the information content of the

restricted domain theories, thus allowing the designer of the interface to describe the domain

more declaratively without worrying about the system’s on-line performance.

Chapter 5

Construction of Selectional

Restrictions

In this chapter we present an algorithm that constructs selectional restrictions for unifica-
tion based grammars out of NLDTs. In the first section of this chapter we introduce the
general concepts of selectional restrictions and show on an example how they can be used
for disambiguation during parsing. The second section deals with the actual process of con-
structing selectional restriction automatically using the knowledge of the domain recorded

in terms of NLDTs.

5.1 Selectional Restrictions

By providing the syntactic parser of NLID with domain knowledge, the parser can use this
information to reduce the ambiguity during the parsing process thus increasing efficiency
of the NLID and reducing the time needed for producing an answer for the user. As an

example consider the sentence similar to one given in [2]
A house was built by a river.

Without knowing that rivers cannot build houses, the sentence allows two readings with the

following logical representations:

A river built a house.

4 (5.1
JE, R, H.river(R) A house(H) A build(E, R, IT'))

101

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 102

Somebody built a house close to a river. (5.2)
3E, S, H, R.build(E, S, H) A house(H) A by(H, R) A river(R)
By supplying the syntactic parser with the set of constraints that say which words can fill
which argument positions of which other words, the first reading can be ruled out. We shall
call such sets of constraints selectional restrictions.

The advantage of selectional restrictions is that they allow more efficient implementa-
tions. As described in [2], selectional restrictions can be implemented using a sort hierarchy
and sortal constraints. Different sorts are represented using different Prolog terms and
unification is used to check sort compatibility. FEach logical language constructor (lexi-
cal predicates that correspond to the words of English language, quantifier constructions,
lambda construction etc.) is assigned a sortal declaration. The sortal declaration consists
of a sequence of input sorts that are expected at the constructor’s argument positions, and
an output sort that is assigned to the expression created using the constructor. The predi-

cate build(E, S, H) from our house was built by a river example can be assigned the sortal

declaration

(

event,
object (physical_object(animate(human, _))),
object(physical_object(inanimate))

]
=>
truth_value

)

and the predicate river(R) can be assigned the sort

(
object(physical_object(inanimate))

=>

truth_value

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 103

Such sortal declarations then impose sortal constraints on the expressions or variables that
fill argument positions. If one variable or expression in a particular reading is assigned a
set of incompatible sorts (sorts that do not unify), the reading is ruled out. This is the case

for reading (5.1) of our example sentence. Variable R is assigned sort
object(physical_object(animate(human,_)))

by the predicate build(E, R, H) and sort
object(physical_object(inanimate))

by predicate river(R). Because these sorts obviously do not unify, the reading (5.1) is ruled
out.

The encoding of sortal constraints is discussed in detail in [16].

Strict failure of the parse when the selectional restrictions are not satisfied is not the
only way to apply the selectional restrictions. The second option is to view selectional re-
strictions as preferential information. In this case, the parse that does not satisfy selectional
restrictions is not rejected, but the parses with fewer failures are preferred to parses with
more failures.

Selectional restrictions are often domain dependent. For example, the verb book will
allow different sets of objects in the domain of flight reservations (book a flight, book a
ticket etc.) and in the domain of house building (book a carpenter, book Johnny Smith

etc.)

5.2 Algorithm for Constructing Selectional Restrictions

In this section, we first introduce some assumptions and observations about the input of the
algorithm (i.e. output of the parser and NLDTs). In the next subsection we shall use these

assumptions while presenting the actual algorithm.

5.2.1 Indices and Attributes

As in the case of the translation algorithm, we assume close correspondence between pred-
icates of input atomic formulas and words of the natural language utterances. As was
mentioned before (c.f. section 4.2), this assumption allows us to relate certain ohservations

about words that occur in a typical English sentence to input atomic formulas that occur

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 104

in logical representation of the sentence. Similarly to the translation algorithm from section
4.2 we assume that the structure of input atomic formulas that correspond to the words of
the English language is not deep, i.e. there are not many functional symbols in the logic
representations of the sentences. Such representations were used by a number of systems
(2], [15]) and even became examples of logical representations in an NLP textbook ([7]).
Under the above assumptions we can observe that it is possible to construct logical
representations where most of the arguments of input atomic formulas representing nouns
and most of the event arguments of input atomic formulas representing verbs introduce their
“own” variables. That is, there are no two above mentioned arguments of nouns or verbs
that will be bound to the same variable. We can also observe that for most of the English
sentences it is possible to construct a logical representation where each variable is bound by

at least one of the arguments of nouns or event arguments of verbs.

Example 5.1 As an example consider the sentence

The guy, that took a red book on a table beside a wall,

ran away.

and its logical representation
3G, ET,B,T,W,ER
guy(G) A took(ET, G, B) A book(B)
Non(B,T) A table(T) A beside(T, W) A wall(W)
run(ER,G) A away(ER)

The variables G, ET, B,T,W, ER correspond to the noun guy, event parameter
of the verb took, noun book, noun table, noun wall and event parameter of the
verb run respectively. .

Our next assumption about the logical representation of English sentences is based on

the observations above. We assume that there is a subset .S of all the pairs of the form
(InputPredicate, Argument Position)

that make sense in the given domain, s.t. for each logical representation of an English

sentence the following is true. For each variable of the logical representation, there exists

no more than one pair

(InputPredicate, ArgumentPosition)

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 105

from the set S s.t. input atomic formula with InputPredicate binds the variable at the
ArgumentPosition. We shall call members of the set S index argument positions or in
short indices. We shall call all other pairs of the form

(InputPredicate, Argument Position)

that make sense in the given domain attribute argument positions or in short attributes. A
similar assumption was taken (although implicitly) in [3].
We shall also assume that for all variables in the logical representations of English

sentences, there is at least one pair
(InputPredicate, Argument Position)

s.t. input atomic formula with Input Predicate binds the variable at the Argument Position.

There are two potential problems with our assumption. One can object that there are
domains for which there is no set S and correct logical representations for all sentences or
phrases. In another words, there are domains and logical representations of sentences or

phrases with
e variables that are not bound by an index
e variables bound by more than one index

A solution to the first problem is very simple. We can introduce a special input predicate
universal_indez(X) and add pair (universal_indez,1) to the set S. For each possible logical
representation of a sentence with a variable X, that is unbound by an index it is possible to
construct a new logical representation that adds term universal_indez(X) to the scope of
the quantifier that binds X. This solution also has an advantage for the semantic part of the
system, because it provides an easy way to test for the nonpresence of the original indices
for given variable. The semantic part of the system can translate universal indez(X) into
true.

There is a similar solution to the second problem. We can introduce a predicate
same_vars(X,Y)

that a logical representation can use when it needs to make the variables bound by two

indices the same.

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 106

5.2.2 Computing Index - Attribute Compatibility

Under the assumption that each variable in the input sentence is bound by at most one
index, we can construct selectional restrictions using knowledge of the domain encoded by
the NLDT.

Unlike [2], we shall not construct selectional restrictions that constrain any pair of argu-
ment positions. Qur goal is to constrain interaction between attributes and indices. Because
each variable in the logical representation of the sentence is bound by exactly one index, by
constraining the index - attribute compatibility we can achieve reasonable performance.

Knowledge encoded by the NLDT allows us to access the conditions under which input
predicates can be translated into output predicates. The conditions are available in a very
convenient form - expressed in terms of sets of input atomic formulas. We demonstrate how

this fact can be used to construct selectional restrictions in the following example.

Example 5.2 Consider an NLDT that contains the following CEs for trans-

lation of the preposition “of” in the university domain.

name of student
(neme(X) A student(Y), true,of(X,Y), dbgraduate_student(X))

student of professor
(student(X) A professor(Y),true,of(X,Y),
db_graduate_student(X))

This means that to translate input atomic formula of(X,Y), the indices that
bind variables X and Y in the logical representation of a sentence can be either
(name,1) and (student,1) or (student,1) and (professor,1) and nothing else.
(If it is e.g. (course,1) that binds the variable X, then according to our as-
sumption about the output of the parser, the sentence cannot contain any other
index that binds the variable X. Therefore, neither of the CEs can be applied

and the translation of the sentence fails). L

In general, given an NLDT and a set of indices, it is possible to produce a set of con-
straints only for some of the attributes (and their predicates) of the NLDT. The problem

occurs when an input atomic formula can be translated into output atomic formula using a

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 107

CE in which a variable bourd by the attribute is not bound by any of the indices. In this
case, no constraints for the attribute are produced, and a warning for the designer of the
RLDT (from which the NLDT is automatically constructed) is issued. Qur practical expe-
rience with the system has shown that this situation occurs very rarely. The reason is very
simple: a tight RLDT imposes constraints on attribute argument positions of adjectives,
adverbs, prepositions or verbs in the form of noun or verb input predicates that introduce
an index.

Our assumption that each variable in the logical representation of a sentence is bound
by at least one index guarantees that constructed selectional restrictions will impose some
constraints on the input sentence. If a variable is not bound by an index, nothing can be
said about which attributes can or cannot bind it.

We tried two approaches for construction of the selectional restrictions. These are the

template approach and the unification approach.

Template Approach

The template approach constructs templates of atomic formulas that contain at least one

attribute. The following templates would be constructed for our example above:

selRes(of, (name, 1), (student, 1)).
selRes(of, (student, 1), (professor, 1)).

During parsing, the logical representation that is being constructed is simply checked against
such templates, whenever the appropriate parts of the logical representation are instantiated.

A Prolog implementation of this approach is straightforward.

Unification Approach

The unification approach is slightly weaker, because it constraints only interactions between
a single attribute and a single index without taking wider context into account. Consider-
ing the above example, “name of professor” would be a valid phrase under this approach,
whereas the template approach would not allow it. On the other hand, incorporation of the

constraints constructed is easier for unification based grammars.

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 108

The algorithm first constructs a set of compatible attribute - index pairs. For the

example above, the set of pairs is

(rame,1) — (of,1)
(student,1) — (of,1)
(student,1) — (of,2)

(professor,1) — (of,2)

Given a set of index - attribute pairs, the next goal is to create terms for each of
the indices and attributes s.t. the unification of terms will allow the same interactions of
attributes and indices as the set of input pairs. Because only the information about the
interaction between indices and attributes is present, we assume that any attribute can
interact with any other attribute.

The main idea is to create a set of terms of arity n whose arguments can be bound to
values “+” or “~” or can be left unbound. We shall refer to the arguments 1---n of these
terms as binary features f) --- f,,. Indices will either bind the features to the value “+” or
leave it unbound. Attributes will similarly bind the features to the value “-”

unbound. This will guarantee that all attributes can be combined together.

or leave it

Consider the following example:

Example 5.3

Indices — 1,12
Attributes -— ai,asz,as
Pairs - { ia-a

il — a3

i1 —ag, iz — ag
}
It is possible to create a set of terms with binary features f; and f; that will
correspond to the indices #; and i, respectively. Each index will bind its corre-
sponding feature to “+”. Each attribute will not bind the features that corre-

spond to the indices that can be combined with that attribute, so the following

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS

assignments can be obtained

i = f(+,-)
i2 ~ f(~+)
ay — f(--)
az — f(-,-)
az — f(-,-)

109

It is easy to see that the procedure can be generalized for any input. Implementation of such

an algorithm is again trivial. However, there are some ways how the number of features

can be reduced. The simplest is to use only one feature for a set of indices that exhibit the

same behavior w.r.t. attributes, i.e. they can interact with the same subsets of attributes.

The second simplification can be viewed as a generalization of the first one. Consider the

following example:

Example 5.4

Indices -
Attributes

Pairs —

1
12
i3

14

a,
az
as

ay

{

ilai27i3, i4
a,dz, a3, aq

a; —ig,ay — iz,a1 — 13
ag — iz

az — 13

ag — 11,04 — 13,04 — 13,84 — 14

-~ f+-5-)
- flo+y--)
- flo-ts-)
~ floeat)

- f(—,-’-"")
- f("a—a—a-)
— f(==50-)
- f(-’-’-’-)

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 110

Note the behavior of features f;, fo and f;3 for attributes ay---a4. We can
observe that f; is unbound if and only if f, is unbound and f3 is unbound. If
we change the assignment as follows (we remove feature f; and for all indices,

where fi = + we assign f; and f3 = +)

i1 — -f(+’ +a—)
z.2 - f(+a - -)
i3 - f(—a +a -)
i4 - f(-a -3 +)
a; — f(-, - _)
az — f(—, T —)
asz — f(_'a -9 —)
a4 — f(-,) -)
this assignment preserves the original pairs. .

Again, the algorithm can very easily be generalized.
The feature representation producing algorithm was implemented in Prolog. The imple-
mentation produces selectional restrictions for an HPSG grammar [21] based parser build

on top of the ALE system [5].

5.3 Implementation

There are two implementations of the system. HPSG based implementation uses the ALE
system as the parser and the unification approach for encoding the selectional restrictions.
DCG based implementation uses Prolog’s built-in implementation of the DCG parser and
the template approach for encoding the selectional restrictions. In this section, we shall

present the results of implementation of our DCG version of the system.

5.3.1 System Design

The system was implemented in Prolog. The system accepts natural language queries in the
form of list of words and returns responses in the form of tables written on the computer

screen.

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 111

Syntactic part of the system is based on a small DCG grammar. The grammar is capable
of parsing simple sentences and noun phrases that involve relative clauses and compound
nominal constructions.

The grammar requires minimal information about the syntactic attributes of words that
occur in the lexicon. The grammar relies heavily on the selectional restrictions supplied by
the semantic part of the system. For example, the only syntactic information that is needed
to define a verb is its category - the system does not need subcategorization information,

The system cavers a very small uriversity domain that includes concepts of faculty,
students, departments, chairmen of the departments, courses and grades and some of their
relationships. The semantic part of the system is able to produce queries for the following

Prolog database:

dep(cs, ’computer science’, idJohnSmith).

dep(math, ’math’, idJimmyJones).

faculty(idJohnSmith, john, smith, cs, full).
faculty(idCharlieBrown, charlie, brown, cs, assistant).

faculty(idJimmyJones, jimmy, jones, math, associate).

student(idMilanMosny, milan, mosny, cs, 1).
student (idZuzkaRepka, zuzka, repka, cs, 2).

student (idPaulGreen, paul, greeen, math, 2).

course(idCmpt710, cmpt710, idJohnSmith).
course(idCmpt720, cmpt720, idCharlieBrown).
course(idMath710, math710, idJimmyJones).

enrl (id1, idMilanMosny, idCmpt710, a).
enrl(id2, idMilanMosny, idMath710, a).
enrl(id3, idZuzkaRepka, idCmpt710, a).

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 112

enrl(id4, idPaulGreen, idCmpt710, b).
enrl(id5, idPaulGreen, idCmpt720, b).

The RLDT that describes the domain defines a small inheritaace hierarchy of the con-
cepts (e.g. a person is an entity, a student is a person, take is an event, name is an entity,
first name is a name) and a number of binary relations between them. The binary relations
are combined into caseframes that describe the translation of verbs. The database specific
part of the RLDT connects concepts and binary relations to the database columns and

tables. There is also a domain independent part of the RLDT that says, for example, how

the verb “be” is translated.

5.3.2 Sample Terminal Session

The interaction with the system is very simple. There is a top level predicate go that
uses university domain theories to parse a sentence or a noun phrase and produce results.
When the predicate go is called first time, the theories are normalized, a search graph is
constructed and the selectional restrictions are created. Warnings are presented to the user

at this time. Then the system processes the query as usual.

| ?- go.
|: [faculty].
[faculty]

selres: underspecified relation (arg 1): det

selre:: underspecified relation (arg 2): det

*kokkkkkk Parse Done *kskkksokkkiokkkksk
ekkokkkk Evaluating skskkiokkiookkokkkk

iFaculty - xVar2

iFaculty - idCharlieBrown

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 3

iFaculty - idJimmyJones

iFaculty - idJohnSmith

yes

Here the query “faculty” is input in the form of the list of atoms. Then, while construct-
ing the selectional restrictions, the system warns the user about underspecified relation def
(determiners were ignored in the DCG implementation). After the parse is done, the system
produces results - a list of identifiers that identifies faculty records.

The following example shows a translation of the ambiguous word “people”. The word

“people” can refer either to faculty or to students.

[people]
sokkkkokkkok Parse Done #kokkkskkokskkkskkokk

kkkkokkkokk Evaluating sskokkskkkkokkkkkkk

iFaculty - xVar2

iFaculty -~ idCharlieBrown

iFaculty - idJimmyJones

iFaculty - idJohnSmith

*xkkkkkook Evaluating sokkskkokkkkskkk

iStudent - xVar?2

iStudent - idMilanMosny
iStudent - idPaulGreen

iStudent - idZuzkaRepka

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 114

The next example shows a simple yes/no question. The ambiguous proper noun “milan”

representing a first name is in this case translated as referent to a student whose first name

is milan.

[did,milan,take,any,courses]
sokkkkkkkk Parse Done Fkkkkskkkidokkkkkk

sxspkkkek Evaluating #skdkkdrkkkdrnk

iEnrl - xVaril iStudent - xVar2 iCourse - xVarb
iEnrl - id1 iStudent - idMilanMosny iCourse - idCmpt710
iEnrl - id2 iStudent - idMilanMosny iCourse - idMath710

The next interaction shows a simple sentence involving the verb “be” at the input. In
this examples and some others, we deleted some columns from the answers of the system,

because of space limitations. The system produces a column for each verb and noun of an

input.

[who,is,the,chairman,of,’computer science’]
kkkxkdhkkk Parse Done *kkkkkskkkkkkkikk

*xkrkkkak Evaluating skkskkksrkskkrsk

iFaculty - xVarl

iFaculty - idJohnSmith

The following query is an example of the sentence with a relative clause. Here the first

name “John” is translated as a referent to the faculty.

{who,works,in,the,dep,that,john,is,the,chairman,of]
skkkkxkkk Parge Done *kEkkkkkdokdkkkkk

seaxdiokek Evaluating ssskkkkkktkks

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 115

iFaculty - xVari0 iFaculty - xVar2
iFaculty - idJohnSmith iFaculty - idCharlieBrown
iFaculty - idJohnSmith iFaculty - idJohnSmith

The following sentence demonstrates the consequences of using the selectional restric-
tions during parsing. The RLDT “knows” how to translate the preposition “in” in a context
of taking and a department as in “take (something) in department” but does not provide
for translation of the same preposition “in” in the context of course and department as in
“course in department”. Therefore the parser produces only the parse where prepositional

phrase is attached to the main verb.

[did,milan,take,any,courses,in,math,department]
sokokkkkkdkok Parse Done #kkokkskskskskskkkkkok
*kkkkkkkk Evaluating sokkkkkkkkkdkkkkok

iEnrl - xVari iStudent - xVar2 iCourse -~ xVars

iEnrl - id2 iStudent - idMilanMosny iCourse - idMath710

The rest of this section contains few more examples that demonstrate the interaction

with the system.

[who,majors,in,math]
*kkkkkkkk Parse Done *kskkkskksdkokkkkkk
*kkkkkkkk Evaluating skkkskkkkkkdok ook

iStudent - xVarl iStudent - xVar2 iDep - xVar5

iStudent - idPaulGreen iStudent - idPaulGreen iDep - math

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS

[did,anybody,get,an,a,in,cmpt710]
Kokkkkokkkk Pargse Domne k% kokskskkkokskdkokkokk

*rkkkkkk Evaluating sokkkskkonkkordokkk

iEnrl - xVaril iStudent - xVar2 iGrade - xVarb
iEnrl - idt iStudent ~ idMilanMosny iGrade ~ a
iEnrl - id3 iStudent - idZuzkaRepka iGrade - a

[the,grade,that,paul ,made,in,cmpt710]
¥xkkkkkkkk Parse DONe *kkkkkikikikikkkkkk
skdkokkokkk Evaluating sksoksdkkkkkkkkk

iGrade -~ xVar2 iEnrl - xVar3 iStudent - xVar4

iGrade ~ b iEnrl - id4 iStudent - idPaulGreen
dokokokkkkkk Pargse Done % kkkokokkktdokksikokkk
*akookkkk Evaluating kkkkkkionkkkokkokk

iGrade - xVar2 iEnrl - xVar3 iStudent - xVar4

iGrade - b iEnrl - id4 iStudent - idPaulGreen

(who,took,a,course,that,the,chairman,of ,math,taught]
xkkkokkkkk Parse Done kkkkkkkkdokkkkkk
*xikkkkkk Evaluating sokkdkkkksorkokdkokik

iEnrl - xVari iDep - xVari0 iStudent - xVar2

iEnrl - id2 iDep - math iStudent - idMilanMosny

116

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 117

[who,is,the,instructor,for,cmpt720]
*okdokkkokkk Parse Done sokksokdokiokkkkskokk

spckokokkkkk Evaluating soksckkkkokkokdorkokk

iFaculty - xVarl iFaculty - xVar2

iFaculty - idCharlieBrown iFaculty - idCharlieBrown

5.4 Related Work

5.4.1 Comparison with CLE

There are three main differences to the approach adopted in [2]. The first difference is a
consequence of the two different logical languages used for representing natural language
utterances. CLE [2] has a richer language, where lexical predicates can take formulas as
their arguments. Therefore it makes sense to impose sortal constraints not only for variables
of logical representations but for predicates and other logical language constructors as well.
On the other hand, the logical language supposed in our system is a simple extension of first
order logic, where input atomic formulas cannot serve as arguments for other input atomic
formulas. Therefore, we impose sortal constraints only on arguments of input predicates
(i-e. variables).

Our approach also differs in the way the selectional restrictions are derived. The main
idea behind CLEs sortal restrictions derivations can be shown on example taken from {2].

A meaning postulate of the form
VX, YS(X,Y) « R(X,Y)

where 5 is a lexical predicate and R is a relation in the lexicon, can be used to place sortal
restrictions (specified for the arguments of S) on all domain objects for which R is known

to hold.

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 118

On the other hand, our approach places selectional restrictions also on predicates whose
arguments do not directly correspond to the variables of application domain. Although CLE
allows automatic derivation of selectional restrictions using knowledge about the domain
encoded using logic, the sort hierarchy has to be supplied by the designer of the system. Also
the representative part of the application domain relations has to have its sortal constraints
known.

The third difference touches the type of constraints imposed. Qur approach supposes
two disjoint sets of argument positions and constrains only the interactions between ele-

ments from different sets. CLEs sortal restrictions constrain interactions between any two

argument positions.

5.4.2 Constructing Selectional Restrictions from Corpora

There are methods to extract selectional restrictions automatically or semiautomatically
given a set of sentences from the domain. We shall describe two of them that in our opinion
are representative of the research done in this area, and compare them to our approach.
Andry et al. [3] uses an untagged corpus and a semiautomatic method. Their idea is
to assign initial sorts to some argument positions of some predicates. Then the corpus is

parsed and due to the unification of variables of different predicates, new sortal restrictions

can be derived.

As an example consider the sentence

Does any student take cmpt720?

and its logical representation
3X.,Y, E.student(X) A cmpt720(Y) A take(E, X,Y)

and its initial sorts assignment

student(X) — X is of the sort “student”
empt720(X) — X is of the sort “course”
take(E,X,Y) — FE is of the sort “event”

From the logical representation of the sentence, one can derive that one of the uses of

predicate take can yield the following sorts

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 119

take(E,X,Y) — E is of the sort “event”
X is of the sort “student”

Y is of the sort “course”

This method is considered semiautomatic since the parser, given a sentence, can produce
a parse that does not correspond to the correct semantic constraints. Therefore incorrect
sortal restrictions can also be produced. The user of the tool has to perform manual editing
of the derived sorts. After the editing is done, the corpus can be parsed again and newly
derived sortal restriction edited etc.

The second method [24] uses a phrasally analyzed corpora and a wide coverage noun
taxonomy. The method utilizes statistical measures to determine the appropriate classes of
nouns that are used for selectional restrictions.

The main difference between our approach and the above methods is the information
source used. Our approach uses the description of semantic part of an NLID which must
always be present. On the other hand the above mentioned methods nced reasonably sized
corpora. Such sets of sentences may not always be available.

Also the degree of automatization is higher for our approach. While [3] is a semiauto-
matic method itself, [24] needs phrasally analyzed corpora. If such corpora are not present,
the task of creating one can be very labour intensive.

On the other hand, sortal restrictions produced by [3] are similar to those used in CLE,
therefore similarly to the CLE method, interaction between any argument positions can be

restricted.

5.5 Summary

In this chapter we introduced algorithms that are able to construct selectional restrictions
using normalized LDT as their input. Since the normalization process has been proven to
be sound and complete, the selectional restrictions constructed by the algorithms truthfully
reflect the semantic constraints imposed by declarative description of the domain in the
form of restricted LDT. We have also compared our algorithms with other approaches to

the construction of selectional restrictions.

Chapter 6

Conclusions and Future Work

6.1 Summary

The main goal of this thesis has been to develop preprocessing algorithms, namely, an
algorithm for construction of semantic restrictions that can be used during the syntactic
processing and the algorithm that can use declarative description of the semantic part of an
NLID for reasonably efficient semantic processing.

In achieving this goal, we have introduced restricted LDTs for describing the relationship
between natural language and the database. We have developed a sound and complete
normalization process that is able to produce a normealized form of the restricted LDTs
- normalized LDTs. The normalized LDTs are then used as input of an algorithm for
automatic construction of selectional restrictions. An algorithm and heuristics that creates
actual data-structures useful for semantic processing have been introduced. The algorithm
is again based on normalized LDTs. A simple prototype of a natural language interface has
been implemented to illustrate the algorithms described in this thesis.

Advantages of this approach include:

¢ the syntactic part of the NLID can be reused in different domains and automatically

adapted to perform as a domain tailored parser,

o greater degree of modularity of the system. A more modular design results in decreased
complexity, a decrease in the number of possible errors in the system, possibility to
develop different parts of the system concurrently by different persons therefore also

decreasing development time

120

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 121

e due to the soundness and completeness of the normalization process, the designer of
the interface has a possibility to express the semantic knowledge in more declarative

terms

We believe that the approach we have taken is one step in solving the problem of trade-off

between performance, modularity and portability of the NLID systems.

6.2 Future Directions

6.2.1 Real Domain

The system was tested on a “toy” university domain where concepts like faculty, students,
courses, departments etc. were introduced. Although the systems performance was good,
the need to test the system on a real domain is cbvious.

The system has a capability of extracting precise semantic constraints that can be
used for disambiguation during parsing automatically from the semantic description of the
database domain. It is also capable to handle nonmonotonicity easily which makes it suitable

for e.g. interfaces to statistical databases similar to the one described in [6].

6.2.2 Normalization Process and Restriction of RLDTs

The way to normalize an LDT that was suggested in this thesis is certainly not the only
possibility. There are at least two directions in which the normalization process can be
improved so that the constraints imposed on the form of axioms in RLDTs become less
restrictive. The first one deals with the nonrecursivity of the LDTs, second one is concerned
with existential equivalences that are used in LDTs but are not allowed in RLDTs.

The nonrecursivity constraint was imposed on RLDTs in order to be able to specify
completeness conditions precisely. We have two possibilities for how to explore the relaxation
of this constraint. The nonrecursivity condition can be substituted by any other constraint
that will guarantee the same results (e.g. we shall allow the theories that are “complete”
within a constant number of recursive calls). The second possibility is to explore suitable
heuristics for dealing with infinite branches that do not guarantee completeness but still
offer attractive features w.r.t. practical applications of the system.

A modification to the normalization algorithm that allows one to use the same LDTs

as the original process might explored. The idea is based on a closer imitation of the

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 122

AET process. Instead of having pairs of input and output atomic formulas that direct the
translation, we can simply explore all the conditions (using the algorithm presented in this
thesis) needed to translate each lexical atomic formula into a database (possibly nonatomic)

formula required by the AET algorithm.

6.2.3 Search Graph Modifications

One of the disadvantages of the search graph data structure and NLDT in general is its
size. The problem is caused by repetition of the same subformulas within the condition part
of CEs in NLDT. In the future, we would like to decrease the size of the generated search
tree. One possible way to attack this problem is to assume two levels of translation. Each
level of translation will have its own search graph associated with it. The first level will
translate the most frequent subformulas into single tokens. The second level will then use
these tokens wherever the frequently occurring subformulas are required. Also translation
models having more than two levels are probably possible. We believe that substituting

frequently occurring subformulas by single tokens can reduce the space significantly.

6.2.4 Encoding the Selectional Restrictions using Unification

The main problem with the current version of encoding the selectional restrictions for uni-
fication based grammars is the size of the terms. Although the number of features is con-
siderably reduced in comparison with the number of indices and attributes, the number of
features can still be large.

In the future, we would like to give the user of the system a possibility to constrain
the number of features used. The system would then merge similar classes of indices or

attributes in order to keep the number of features within the limit.

Bibliography

1]

[2]

[3]

[4]

[5]

[7]

[8]

Alfred V. Aho and Jeffrey D. Ullman. Principles of compiler design. Addison - Wesley
Pub., Reading, Mass., 1977.

Hyan Alshawi. The Core Language Engine. The MIT Press, Cambridge, Massachusetts,
1992.

Francois Andry, Mark Gawron, John Dowding, and Robert Moore. A tool for collecting
domain dependent sortal constraints from corpora. CMP-LG E-Print Archive version
of the paper published in Proceedings of COLING ’94, January 1995.

W.J.H.J. Bronneberg, H.C. Bunt, S.P.J. Landsbergen, R.J.H. Scha, W.J. Schoenmak-
ers, and E.P.C. van Utteren. The question answering system PHLIQA1. In L. Bolc,
editor, Natural Language Question Answering Systems, Natural Communication with

Computers, 1980.

Bob Carpenter and Gerald Penn. ALE The Attribute Logic Engine User’s Guide.
Carnegie Mellon University, Pittsburgh, PA, August 1994. Version 2.0.

Nick Cercone, Paul McFetridge, Fred Popowich, Dan Fass, Chris Groeneboer, and Gary
Hall. The SystemX natural languags interface: Design, implementation and evaluation.
Technical Report CSS-IS TR 93-03, Simon Fraser University, Burnaby, B.C., November
1993.

Michael A. Covington. Natural language processing for Prolog programmers. Prentice
Hall, Englewood Cliffs, N.J., 1994.

Subrata Kumar Das. Deductive databases and logic programming. Addison - Wesley,
Reading, Mass., 1992.

123

BIBLIOGRAPHY 124

[9] Carole D. Hafner and Kurt Godden. Portability of syntax and semantics in Datalog.
ACM Transactions on Office Information Systems, 3(2):141-164, April 1985.

[10] Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalowicz, and Jonathan Slocum. Devel-
oping a natural language interface to complex data. ACM Transactions on Database

Systems, 3(2):105-147, June 1978.

[11] J.R. Hobbs, M.E. Stickel, D.E. Appelt, and P. Martin. Interpretation as abduction.
Artificial Intelligence, 63:69-142, 1993.

[12] Richard Lederer. Anguished English : [an anthology of accidental assaults upon our
language]. Dell Pub., New York, N.Y., 1989.

[13] Douglas B. Lenat. CYC: A large-scale investment in knowledge infrastructure. Com-

munications of the ACM, 38(11):33-38, November 1995.

[14] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Germany, second
edition, 1987.

[15) M.C. McCord. Natural language processing in prolog. In A. Walker, editor, Knowledge
Systems and Prolog, 1987.

[16] C. S. Mellish. Implementing systemic classification by unification. Computational
Linguistics, 14(1):40 — 51, 1988.

[17] Milan Mosny. Semantic information preprocessing for natural language interfaces to
databases. In Proceedings of the 33rd Annual Meeting of the Association for Compu-
tational Linguistics, pages 314-316 (student session), June 1995.

[18) Richard A. O’Keefe. The craft of Prolog. MIT Press, Cambridge, Mass., 1990.

[19] F.C.N. Pereira and S.M. Shieber. Prolog and Natural-Language Understanding. CLSI
Lecture Notes. 1985.

[20]) C.R. Perrault and B.J. Grosz. Natural language interfaces. In Ezploring Artificial
Intelligence, Survey Talks from the National Conferences on Artificial Intelligence, 1988.

[21] Carl Pollard and Ivan A. Sag. Head-driven phrase structure grammar. University of

Chicago Press, Chicago, 1994.

BIBLIOGRAPHY 125

[22] S. G. Pulman, H. Alshawi, D.Carter, R. Crouch, M. Rayner, and A. Smith. CLARE:

[23]

[24]

[25]

[26]

[27]

a combined language and reasoning engine. Technical Report CRC-042, SRI Interna-
tional, Cambridge, Mass., 1993.

Manny Rayner. Abductive Equivalential Translation and its application to Natural
Language Database Interfacing. Ph.D. thesis, Royal Institute of Technology, Stockholm,
September 1993.

Francesc Ribas. On learning more appropriate selectional restrictions. In Proceedings
of the Tth Conference of the Europian Chapter of the Association of Computational
Linguisics, pages 112-118, March 1995.

D. G. Stallard. A terminological simplification transformation for natural language
question-answering systems. In Proceedings of the 24th Annual Meeting of the Associ-

ation for Computational Linguistics, pages 241-246, June 1986.
L. Sterling and S. Shapiro. The Art of Prolog. Addison-Wesley, Reading, MA, 1985.

David L. Waltz. An english language question answering system for a large relational
database. Communications of the ACM, 21(7):526-539, July 1978.

Appendix A

Definition A.1 (Definite program clause) A definite program clause is a clause of the

form

A — By,--+, By

which contains precisely one atom (viz.A) in its consequent. A is called the head and

By, .-+, By, is called the body of the program clause.

Definition A.2 (Definite program) A definite program is a finite set of definite program

clauses.
Definition A.3 (Definite goal) A definite goal is a clause of the form
— By,---, By, ‘
that is, a clause which has an empty consequent. Each B; is called a subgoal of the goal.

Definition A.4 (Substitution) A substitution f is a finite set of the form {vy /t1,---, v, /tn},
where each v; is a variable, each t; is a term distinct from v; and the variables v,,- - -, v, are
distinct. Fach element v;/t; is called a binding for v;. f is called a ground substitution if

the t;s are all ground terms. f is called a freezing substitution if ¢;s are unique constants.

Definition A.5 (Variant) Let E and F be expressions. We say E and F are variants if
there exist substilutions f and g such that E = Ff and F = Eg. We also say E is a variant
of F or F is ¢ varant of E.

Definition A.6 (Most general unifier (m.g.u.)) Let S be a finite set of simple expres-
stons. A substitution f is called a unifier for S if Sf is a singleton. A unifier f for S
is called a most general unifier (m.g.u.) for § if, for each unifier g of S, there ezists a

substitution h such that g = fh.

126

APPENDIX A. 127

Definition A.7 (SLD-derivation) Let P be a definite program and G a definite goal. An
SLD-derivation of P U {G} consists of a (finite or infinite) sequence Gy = G,Gy, - of
goals, a sequence Cy,Ca, - - - of variants of program clauses of P and a sequence fy, fa,-+- of

m.g.u.s such that each Giy1 is derived from G; and Ciyq using fiy,.

Definition A.8 (SLD-refutation) An SLD-refutation of PU{G} is a finite SLD-derivation
of P U{G} which has the empty clause O as the last goal in the derivation. If G, = 0, we
say the refutation has length n.

Definition A.9 (Computation rule) A computation rule is a function from a set of def-
inite goals to a set of atoms such that the value of the function for a goal is an atom, called

the selected atom, in that goal.

Definition A.10 (SLD-refutation via R) Let P be a definite program, (& a definite goal
and R a computation rule. An SLD-refutation of P U {G} via R is an SLD-refutation of

P U {G} in which the computation rule R is used to select atoms.

Definition A.11 (Unrestricted SLD-refutation via R) Anunrestricted SLD-refutation
via R is an SLD-refutation via R, except that we drop the requirement that the substitutions

fi be m.g.u.s. They are required to be unifiers.

We suppose that a definite program does not contain two clauses that are variants of
each other.

We shall write origin(C;) to denote program clause C s.t. C; is a variant of C. Under
our above mentioned assumption about definite programs, it is obvious, that origin(C;) is
a function.

Similarly origin(CC), where CC = {C;---C,} denotes {origin(C4y)---
origin(Cy)}.

Theorem A.1 The conditions construction algorithm always terminates.

Proof. Step 1 terminates, because set T is finite and the set Pr is finite. Therefore, the
set T" is finite.

It is obvious that given a finite set of definite program clauses, there are only a finite
number of SI.D-derivations without recursive calls. Therefore the part of the SLD-tree where

SLD-derivations with recursive calls are disregarded is finite. Thus Step 2 terminates.

APPENDIX A. 128

This SLD-tree has also only finite number of branches. So Step 3 terminates as well. O

Soundness of the conditions construction algorithm trivially follows from the next the-

orem.

Theorem A.2 Let G be a definite goal — Ay ---A;, T be a definite program and G;
Gy Gn; Cy---Cp; f1--- fn be a SLD-refutation of G in T. Let PP = {Py---P,} be an
arbiirary subset of facts of CC = {Cy---Cy} s.t. origin(CC)—origin(PP) = origin(CC —
PP). (In other words, either all or none of the C;s that come from the same origin are

members of PP). Then
T — {origin(Py)---origin(Py)} E
Pifise-fa N APpfre- fo — Ay cdotsAify--- fr

Proof. @ We shall prove this theorem by induction on the length of the SLD-refutation.
If we have a length 1 SLD-refutation of G in T, obviously G is of the form « A4; and

C; is a fact and f; is a m.g.u. of A; and C;. Then there are two cases.

Case 1: (m =0) C; is not a member of {P;---P,} (m is the number of Ps. Ps are

selected C;s).

In this case it is obvious that
T-{}EC

because origin(C;) is a member of T' and C) = origin(C,)f for some renaming sub-
stitution. Therefore also

T-{}EGhA

Because f; is a m.g.u. of C; and A,
T-{}rAf

Case 2: (m = 1) In this case P, = C;. Clearly C1 f1 = A; f1, because f; is a m.g.u. of C
and A,, therefore also P, f; = A; fi. Thus for any theory T

T"EPfi— ALh

SO

T —A{origin(P1)} E P11 — Arhi

APPENDIX A. 129

Suppose that the theorem holds for all SLD-refutations of length n — 1. There are two

cases.

)

Case 1: (C; is not a member of {P,---Pn,}), i.e. origin(C}) is not a member of origin(£ -

SO

T — {origin(Py)---origin(Pp)}) E C;
Suppose that G is of the form <« AFj. By the inductive hypothesis

T — {origin(P,)---origin(P,)} &
Pifo-orfahe--APpfo--fo— AF fo- - fy

By definition of SLD-derivation, G is of the form
Ay - Ay
where Aj ---A; are atomic formulas, AF] is of the form
Ay- - Am 1By ByAmir - ALh
and Cy is of the form A — By -- B,, where f1 is a m.g.u. of A and A,,. Obviously
T — {origin(Py)---origin(Pn)} E (V)A — By --- B,
and therefore

T — {origin(Py)---origin(Pn)} | (V)Afy -+ fa = By-+Byfy -+ fu

Also

T — {origin(P,)---origin(Py)} E (A1)
(VAmfi---fuo— Br---Byfi -+ fn ’
because f; is a m.g.u. of A and A4,,.
From the inductive hypothesis and from A.1, it follows that
T — {origin(Py) - - -origin(Py)} E
MPifa-fo- - Pufa---fo— Ar---Ath--fu

' Pm)

APPENDIX A. 130

P, - -+ P, are variants with unique variables, therefore they do not contain variables

present in formulas Ay ---A; and Cj. So

P, =P f forVi st.1<i<m.

Thus
T — {origin(Py)---origin(Pp)} =

Pufireifor P fo = Ar--Ath - fre

Case 2: (C; is a member of {P,---P,})
WLOG Cj is of the form P;, G is of the form «— A; ---A; and G is of the form

G=— AFy = A "'Am—lAm+l - Arh

where f; is a m.g.u. of P, and A, so C is a fact.

By the inductive hypothesis

T — {origin(P,) - - -origin(Pn)}
Pafa---fooPmforoofo— AF1f2e o

There are two cases. Either there is an 7 s.t. 2 < 7 < n and origin(C;) = origin(Ch)

or there is not.

In the first case according to the assumptions of the theorem, C; is a member of
{P;:---Pp} so
{origin(P2) - - -origin(Py)} = {origin(Py) - - -origin(Pn)}
Thus
T — {origin(P) - - -origin(Pn)}
PafarofuPoforfom AR fa o fu
In the second case origin(C;) = origin(P;) was not used in the SLD-derivation of

— AFy, i.e. there exists the same SLD-derivation of «— AF) in T — {origin(C;)} and

according to the inductive hypothesis also

T — {origin(Py) - - -origin(Ppy)} =
Pofo-oifo Pufor--fo— AR fo - fa

APPENDIX A. 131

Thus in any case

T — {origin(Py) - - -origin(Py)} &
P2f2"‘fn"'P'mf2"'fn —)Al"'/1n1~1/lrrl+l"'¢41f1f2"'fn

Obviously Py fy -+« fon — A fi -+ fa, because f; is a m.g.u. of the P; and A,,. So

T — {origin(Py)---origin(Pn)} E
Pifi- faPafo- fo--Pufare fo— Ar-Atfiefa

By an argument similar to that used for case 1

T —~ {origin(Py) - - -origin(Py,)} &=
Pific - foPafic - fnPufio fo— AL Atfie fn

Theorem A.3 (Completeness of the conditions construction algorithm) Let T
be a nonrecursive theory. Let @ is a ground atomic formula. Let Py --- P, be variants of

predicates Py - - - P, from I and f a substitution s.t.
TEMPS --Puf—Qf
then there are substitutions g and h and subsequence j of the sequence 1---m s.l. formula
Pig---Pig— Qg
belongs to the result of the conditions construction algorithm and
gh=f

for variables of the varianis Py -- - P,y,.

Proof. We shall write A* to denote substitution h narrowed to the variables of variants
Py---P,.

Let e be a freezing substitution, which substitutes all occurrences of the free variables

in the formula Py f--- P, f — @Qf by unique constants. Then

Tk P fe---Pnfe— Qfe

APPENDIX A. 132

From the deduction theorem we have
TU{Pife---Pnfe} EQfe

So @ is a logical consequence of T'U {P, fe--- P, fe}. By strong completeness of SLD-
resolution [14] and by nonrecursivity of the theory T', there exists an SLD-refutation via R

of TU{P,fe:: Py, fe}U{~ @} without recursive calls with substitutions a; - --a,, clauses

Cy---C, and goals — @Q,G;---Gy.

Let us put
a, = a; if origin(C;) belongs to T
fea; if origin(C;) belongs to { P fe:-- Pn fe}
C! = C; if C; belongs to T

1

Pj,,whereC; = P} fe otherwise

(here j; is the [-th element of sequence of numbers with range 1---m. It is used to project
P, ... P, into the set Pj ---P; of variants of predicates, that were actually used in the
Cr---Cy)

It is easy to see that «— @Q,G1 -+ -Gyp; C| ---C}; aj - - -al, is an unrestricted SLD-refutation
via Rof — Q in TU {P;--- Py} without a recursive call.

From the proof of the m.g.u. lemma in [14], there is an SLD-refutation via R of « @
without recursive calls with substitutions b, - - - b,, which follows the steps of the unrestricted
refutation §” by using the same clauses and choosing the same literals to be resolved, but

/

substitutions by - - -b, are m.g.u.s. Moreover, there exists a substitution A’ s.t. aj---a], =

by - - -byh’. This refutation is a part of constructed SLD-tree, therefore
le (bl . ‘bn)* . ‘ij(bl .. .bn)* — Qfe(bl .. .bn)* — Q

belongs to the result set S of conditions construction algorithm .
It follows that
for Vi from 1 <i<n, fea; =a;fe

There are no variables from P; mentioned in the «— @,G; ---G, because fe binds them to
constants for all P;s. So a; works only on the variables of — @, G, -- -G, and substitutions

can be easily switched.

APPENDIX A. 133

Also
fefe = fe

because e is a freezing substitution. Thus a}---a;, = a; ---an.fe, Therefore, there is a
substitution k' s.t.

ay---apfe =by---byh'

If we consider only terms with variables occurring in the variants P, - -+ P, we obtain
fe={(b1---b,)"R

Then considering the fact that e is a freezing substitution, i.e. there is a “thawing”
mapping that maps unique constants back to the original variables, and the fact that sub-
stitutions f,b,---b, do not contain freezing constants, we can conclude that there is a

substitution h s.t.
f = gh , where g = (by---b,)"
for all variables from the variants P - - - P,.
By setting (b---b,)" for ¢ we have proven the existence of substitutions g, h and

subsequence j of 1---m s.t. f = gh and Pj,g---P;, g — Qg belongs to the result of the
algorithm. a

Theorem A.4 Conditions combination algorithm terminales for any input.

Proof. Termination of step I and step 2 of the conditions combination algorithm follows
from the termination of the conditions construction algorithm.
Step 3 terminates, because results S7 and SO are finite and the set Pairs is finite, and

step 4 obviously always terminates.]

Soundness of the conditions combination algorithm trivially follows from the following

theorem.

Theorem A.5 For each pair (I,0) and for each condition CC constructed for the pair

by the condition combination algorithm

TECC—(I=0)

APPENDIX A. ' 134

Proof. All results of the algorithm are constructed in step 4. The proof follows the

substeps of step 4. Due to the soundness of the conditions construction algorithm, we have
TENM R - Ryn— O
Because O is a ground atomic formula,

Tk () Ri- Rt — O

for any substitution 7.
Since all members of the set SR are unified with I using m.g.u. 7 and I and O are

ground formulas, it follows that

Tk (V)RRrAI— O
$0
T = (Y)RR'r - (I — 0)
Similarly
TEMQQa—(0-1)

Also note, that QQ’ are assumption predicates. Substitution r substitutes some of the
variables of RR' with constant terms. Substitution g substitutes some of the variables of

QQ’ with constant terms. Note that variables of RR' are different from variables of QQ'.

Therefore
T k= (V) RR'rq— (I — 0)

TE(Y)QQrg—(0—1)

So
TE(Y) (RR'AQQ)rg— (I=0)

Theorem A.6 (Completeness of the conditions combination algorithm)

Proof.

APPENDIX A. 135

Lemma A.1 Let Py --- P, Q1 ---Q, be atomic formulas and X, --- X be all the vari-
ables that occur in Py ---P,, Q1+ Qm

(V) Py Py = Q1+ Qm (A.2)
is a theorem iff {Q1---Qm} is a subset of {P1--- Py}

Proof.

If direction is trivial.

Proof of only if direction by contradiction.

WLOG suppose that @ is not a member of {P;---P,}. Then consider a Herbrand
interpretation where the domain contains “X{ ---“X} and all the constants, that occur in
A.2 plus all possible function applications. Let “QY in this interpretation be false, and
everything else be true. Then P ---P, will be true under each assignment of variables,
because (Q; does not occur in Py ---P,, but @;---@,, will be false under assignment
X1 = “X{ - X = “X}. From the completeness of FOL follows that (A.2) is not a theorem.

O

Consider quadruple (PP’, AA’, I, O). For the notational convenience we shall write C'C’
to denote PP’ A AA'.

We shall show that if (PP',AA’,I,0) is an NCE, then our algorithm will construct
a condition RR’ that is weaker than CC’, and the algorithm will at the same time con-
struct condition QQ’, that is also weaker than C'C’. Then we shall show that the union of
constructed conditions CC' is weaker than CC’.

Suppose that (PP', AA’,I,0)is an NCE. Then from the definition of NCE
TENCC'AT—=O0

From the completeness of the conditions construction algorithm, there is a condition

Ry ---R,, in the set SO in the algorithm, s.t.
TENMN)R,-- R, — O (A.3)
and there is a substitution f s.t.

(V) CC' AT — Byf -+ R f (A.4)

APPENDIX A. 136

It is obvious that at least one of the formulas in Ryf--- R, f is I. If it is not the case

then from the lemma it follows that
(V)CC'— Ryf---Rn f (A.5)
From A.3 and A.5, we obtain
Tl () Rif - Rf = O (A.6)

and from A.5 and A.6
T = (V) cCc' -0

which is a contradiction with the fact that (PP’,AA’,I,0)is an NCE.
So there exists a nonempty subset SR of the formulas Rj--- R,, that contains all the

formulas R;, s.t. R;f = I. So according to the lemma A.l and from A.4
(V) CC" - ({R1---Rn} ~ SR)f

Let us consider the most general unifier 7 of the set SR and I. Then there is a substi-

tution h s.t. f = rh and
(VY CC" - ({Ryr---Rp7} — SRR

Note, that all possible sets SR are considered in the step 4 of the algorithm. There-
fore there is a set RR’ and substitution r considered in the algorithm, s.t. there exists

substitution A s.t.
(V) CC' — RR'rh (A.7)
Similarly, from the definition of NCE we have
TEMAAANO ST

From the completeness of the conditions construction algorithm, there is a condition

Q1 ---Q; in the set SO in the algorithm, s.t.
TEMQ@---Qi—1
and there is a substitution g s.t.

(V) AA'AO = Qg---Qug (A.8)

APPENDIX A. 137

From A.8, from the lemma A.1 and from the fact, that 44’ contains only assumption
predicates, it follows that there is a subset (possibly empty) SQ of {Q; - - - @;} that contains
all @;s s.t. the predicate of Q); is the same as the predicate of O and ¢ is a anifier of §Q
and O.

Therefore there exists a m.g.u. ¢ of SQ and O and a substitution A’ s.t. g = ¢h’. From
lemma A.1 and from A.8, it clearly follows, that

AA" = QQ'qh (A.9)
So from A.7 and A.9 we have
(V) CC — RR'Th A QQ'qh’

WLOG we can assume that the three sets of variables that occur in CC’, QQ' and RR'
are mutually disjunctive. Also substitutions r and ¢ bind variables with constant terms,

because formulas I and O are ground. Thus we can write
(V) CC — (QQ' U RR")rqhh'

So there is a CE in the results of the conditions combination algorithm that fulfills the

completeness requirement. 0

