
SEMAXTIC INFORh4-ATION PREPROCESSING FOR. NATURAL
LAXGUAGE INTERFACES TO DATABASES

Milan Mosny

A THESIS SUBhIITTED IN P A R T I A L F U L F I L L M E N T

O F T H E REQUIREMENTS F O R T H E D E G R E E O F

MASTER OF SCIENCE

in the School

of

Computing Science

@ Milan Mosny 1996

SIMON FRASER UNIVERSITY

November 1996

A11 rights reserved. This work may not be

reprcduced in whole cr i n part, by photocopy

or other means, without the permission of the author.

National Library 1)+1 of Canada
Biblioth&que nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

3% Weilingtm Street 395, rue Wellington
CMawa, Ontario Ottawa (~ntario)
Y !A C i 4 KIA ON4

Ycur irie Votre reference

Our Me Notre r&rence

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

h'auteur a accorde une licence
irrevocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, peter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes int6ressees.

The author retains ownership of L'auteur conserve la proprietb du
the copyright in his/her thesis. droit d'auteur qui protege sa
Neither the thesis nor substantial these. Ni la these ni des extraits
extracts from it may be printed or substantiels de celle-ci ne
otherwise reproduced without doivent &re imprimes ou
his/her permission. autrement reproduits sans son

autorisation.

ISBN 0-612-17022-5

SMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended cssay (the

title of which is shown below) to users of the Simon Fraser University Library, and to makc partid or

single copies only for such users or in response to a request from the library of any other university, or

other educational institution, on its own behalf or for one of its users. I further agree that permission

for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Gradttate

Studies. It is understood that copying or publication of this work for financial gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay

Semantic Information Pre~rocessina for Natural

Language Interfaces to Databases.

Author:

(signature)

Milan Mosny

November 19,1996

APPROVAL

Name:

Degree:

Title of Thesis:

Milan Mosny

Master of Science

Semantic Information Preprocessing for Natural Language In-

terfaces to Databases

Examining Committee: Dr. Ze-Nian Li

Chair

Dr. Fred Popowich

Senior Supervisor,

Dr. Wo-Shun Luk

Supervisor

Dr. Veronica Dahl

Examiner

Date Approved:

Abstract

A natural language interface to a database (NLID) needs both syntactic information a h u t

the structure of language and semantic information about what words and phrases 1nca11

with respect to the database. A serrta~tic part of the NLID can implicitly or explicitly pro-

vide constraints on the input language. A parser can use these constrair~ts to resolve am big^^-

ities and to decrease overall response time. Our approach is to extract these constraints from

the semantic description of the database domain and incorporate them semi-automatically

or automatically into information directly accessible to the parser.

The advantage of this approach is a greater degree of system modularity, wiiicl~ nsu;~lly

reduces complexity, reduces the number of possible errors in the sys ten1 and rl~akes it, possi blc

t o develop different parts of the system concurrently by different persons and thus rcclucirlg

development time. Also domain independent syntactic information can be rcuscd from

domain to domain, then customized according to the semantic information from i~ specific

domain.

To implement the idea, Abductive Equivalential Translation (AET) was chose11 to dc-

scribe the database related semantics. AET provides a for~nalism which describes how a
,, . -hteraI3' logical form of an input sentence consisting of lexical predicates can be t r ;~ ~lslatcd to

a logical form consisting of predicates meaningful to the database engine. The inforrn:tt,iol~

nsed in the translation process is a Linguistic Domain Theory (LDT) based or1 logic.

?Ve shall constrain the expressive power of LDT to suit tractability and efficicvtcy re-

q ~ r e m e n t c m d introduce Restricted Linguistic Domain Theory (RLDT). The 111;ljn step

for incorporation of semantic constraints into the syntax formalism is then extensive pre-

processing of the semantic information described by an RLDT into Normalized Lilrgilistic

Domain Theory (NLDT). The system uses KLDT to produce selectjonal restrictiorts that fol-

low from the semantic description of a domain by RLDT. Selcctional res trictiorts jn general

state which words can be immediately combined with which other words.

Once NLDT is constructed, it can be used as a main source of information for semantic

processing of a sentence. Thanks to the soundness and completeness of the normalization

process, the designer of the interface has possibility to express the semantic knowledge in

more declarative terms.

KEYWORDS: Natural language processing, natural language interfaces, databases,

logic programming, eqi~i~aiei~ces

Acknowledgements

I would like to thank Fred Popowich, Zuzke Repaskej, Dan Fass. Gary Ilall, and my fanlily.

Contents

Abstract

Acknowledgements v

1 Introduction 1

. 1.1 Common Principles 1

. 1.2 Problems with Ambiguity 3

. 1.3 Systems Architectures 3

. 1.4 What is this Thesis about 5

. 1.4.1 System's Architecture 7

1.4.2 Syntactic Knowledge and Syntactic Processor 7

1.4.3 Declarative Semantic Knowledge and Restricted Linguistic Domain

. Theories 9

1.4.4 Automated Construction of Selectional Restrictions 10

1.4.5 Search Graph, Automatic Construction of Search Graph and Semantic

. Processing 10

. 1.5 Structureof this Thesis 11

2 Abduct ive Equivalentiaf Translation 12

. 2.1 Introduction 12

. 2.2 BET vs . Other Theories 13

. 2.3 AETFormatIy 14

. 2.3.1 Conjunctive Context 15

. 2.3.2 Translation Process 16

. 2.4 Linguistic Domain Theories 22

'2.2 2.4.1 Tech1;ical Description . ..
. 2.4.2 Predicates and the Stage of Translalion 2-1

. 2.4.3 Axioms 28

. 2.5 Summary L'S

3 Restricted Theories and Normalization 30

. 3.1 General Overview 30

. 3.1.1 General and Motivation 30

3.1.2 Applying the Method . What does Normalization Look Like and What

. is it Good for 31

. 3.2 Restricted LDT 35

. 3.2.1 Input Language 35

. 3.2.2 Output Language 31i

. 3.2.3 Assumptions about the Restricted LDT 37

. 3.2.4 Definition of the Restricted LDT 4 6

. 3.3 Normalized LDTs 50

. 3.4 Norinalization Algorithms 56

. 3.4.1 Overview of the Algorithms 51;

. 3.4.2 Condition Construction Algorithm 50

. 3.4.3 Conditions Combination Algorithrr 1 62

. 3.5 Implementation of Normalization Mi

. 3.5.1 Complex and Simple Theories Mi

. 3.5.2 Implementation of Normalization Algorithms 1iH

. 3.5.3 Implementation of the Conditions Construction Algorithm 70

. 3.5.4 Implementation of the Conditions Combination Algorithm 74

. 3.5.5 Simplification of the Results 75

. 3.6 Summary 79

4 Translation Using Normalized LDTs 81

. 4.1 Sound Z'ranshtion -4lgorithm 81

. 4.2 Searching for CEs SO

. 4.2.1 Assumptions and Observations 90

. 4.2.2 Searching Algorithm 92

. 4.2.3 Tree Construction Algorithm 94

vii

. 4.3 Summary 99

5 Construction of Selectional Restrictions 3.01

. 5.1 Selectional Res~rictions 101

. 5.2 Algorithm for Constructing Selectional Restrictions 103

. 5.2.1 Indices and Attributes 103

. 5.2.2 Computing Index Attribute Compatibility 106

. 5.3 Implementation 110

. 5.3.1 System Design 110

. 5.3.2 Sample Terminal Session 112

. 5.4 Related Work 117

. 5.4.1 Comparison with CLE 117

. 5.4.2 Constructing Selectional Restrictions from Corpora 118

. 5.5 Summary 119

6 Conclusions and Fnture Work 120

6.1 Summary . 120

6.2 Future Directions . 121

6.2.1 RealDomain . 121

6.2.2 Normalization Process and Restriction of RLDTs 121

6.2.3 Search Graph Modifications . 122

6.2.4 Encoding the Selectional Restrictions using Unification 122

References 123

viii

List of Figures

1.1 Architecture of a tightly coupled system . -1

1.2 Architecture of 'loosely coupled system . 5

1.3 Architecture of system with hybrid architecture li

. 1.4 System's architecture Y

2.1 AET translation process . predicates at various r tagcs of translatiou 27

3.1 Translation process using AET with LDT vs . RLDT :I8

3.2 Derivation tree from esample 3.4 . 46

3.3 An example of SLD . derivation . 48

3-4 An example of derivztion tree . 48

3.5 SLD . tree for esample 3.8 . 6 l

4.1 Tree representing CEs (4.13 ... 4.15). $14

4.2 Tree representing CEs (4.16) a.nd (4.17). 95

4.3 Tree representing CEs (4.16) and (4.17). Second version 96

4.4 Search graph after RootNode expansion . O f)

4.5 Search graph after expansion of nodes Node1 aud Node3 09

4.6 Finished search graph . I 00

Chapter 1

Introduction

Natural Language Interfaces to Databases (NLIDs) are systems that allow a user to access

informatjon stored in the database using natural language (e.g. English). This kind of

access has several advantages over alternative methods as noted by [20].

it provides an immediate vocabulary for talking about contents of the database

0 it provides a means of accessing information in the database independently of its

structure and encodings

it shields the user from the formal access language of the underlying system

it is available with minimum of training to both novice and occasional user

The NLIDs can be used to query and update a database. In this thesis, however, we

sfrall concentrate solely on the task of querying the database.

In this chapter, we shall introduce NLIDs, describe architectures that the NLIDs use,

and point- out some problems that such systems have to deal with. Then we shall state

what the main god of this thesis is, namely, t o develop preprocessing algorithms. We shall

also briefly outline hcw the preprocessing algorithms can address some of the problems

associated with HLIDs.

1.1 Common Principles

A number of different ELIDS with different underlying architectures were dzveloped in the

past, but certain common features can be observed.

Host of the NLID systems work ~ i t h an assumption that mtural langtlage prescntcd at

the input of the system is at least to some degree conzpositional, that is the nzcnnil~g of' tltc

whole can be represented as a function of che meaning of the parts.

Given an input sentence in natural language, the system crcatts some kind of struct urc

for the sentence that describes how the parts of the language arc combincd t ogctl~cr. l 'hc

structure reflects the system's view of natural language. Some systen~s work with t lie plrr;tsc>

structure of the sentence, other systems use simple template matching, yet ot,licr systcwls

produce a logical representation of the sentence. To create the structure, no inbrn~ation

about the database schema - neither names of the tables and columns, nor any infor~tl;t-

tion about the meaning of the data stored in the database - is needed. What is nccdctl

Is inf~rmation about what kind of words and phrases can occur in human language that

the system happens to process, how they can be combined together and how to assign a

structure to the particular combination of the words and phrases. This information can

contain morphological constraints, syntactic constraints and vocabulary. W s l d l cidl this

information syntactic knowledge.

According to the structure of the sentence, a database query is coristructed. Ihri~tg

this process, information about the given domain, information about the str11ctut.c of tlw

database and domain independent semantic constraints are used. We shall call this informa-

tion semantic knowledge. The semantic knowledge in general describes, how thc (1at;tt)asc

query can be constructed. It describes how the parts of the input sentence structurt! can

be mapped into the concepts known to the database and how the mappcd parts ran he

combined together t o create the result. As an example consider a scnti:nce

W h o works in dhe department whose mcznctger is Tony. 0 . 1)

The system can produce the following !ogicd formula that can he consid ereti as a struc t 11 re

of the sentence reflecting words and phrases which modify or complemcr~t other words or

phrases

Such a representation can be later translated into the database query usirig dorriairi h t l e -

peadent howledge about mappiag the quantifiers and logical cor~jurt ction in to the datahaw

queryf domain dependent-, knowledge about disambiguating certain prdicates acwrdiitg to

their context (e.g. possesive(D, h l) in the context of manager a.nd department into the rela-

t i ~ n manages) and database dependent knowledge about relating disambiguated predicates

to tables and columns of the database.

1.2 Problems with Ambiguity

Often more than one structure for a given sentence can be produced. As an example consider

s sentence from [12]

Lawyers give poor free legal advice. (1.3)
"k

where the word " p a d taxi refer either to "poor people that receive free legal advice" or to

the quality of "free legal advice". Unfortunately, there are some domains where far more

than two readings of the input sentence can be generated. Consider the phrase from [6]

trouble ca-11 activity total (1.4)

that can be interpreted as

(trouble(cal1 actiuity))total O R

((trouble cal1)activity)total O R

(trouble ca1l)(nctivity total) - - -

or even a more "hairy" phrase from the same source

the may 1992 eastern divisions sub owned eqp fault count total stats

with many more possjbilities. The processing of such phrases can lead to a combinatorial

explosion resulting in long processing time and/or numerous inappropriate interpretations.

Based on the interaction between syntactic and semantic knowledge, we describe three

types of NLIDs - tightly coupled systems, loosely coupled systems, and systems with hybrid

architectures.

CHAPTER 1. IATTROD LTCTION

Tightly Coupled Systems

In tightly coupled systems, it is difficult to separate synba.ctic and semant,ic kt~awlcclgc. 'She

schema of such systems is depict.ed in fig. 1.1.

input sentence L-7-J

database representation

Figure 1.1: Architecture of a tightly coupled system

One of the advantages of this architecture is that syntactic and semantic knowiec~gc

are used together during the processing of the query. The architecture allows the use of

more constraints to disambiguate the input sentence during initial processing t11a.n other

architectures. The amount of constraints a.ffects the number of procltrced representations,

therefore performance is better.

On the other hand the lesser degree of modularity increases the dificulty of maintaining

the system and it is difficult to reuse some parts of the interface while portjng to anotlrel*

domain. Examples of such systems are [GI, E27] and [lo].

Loosely Coupled Systems

In loosely coupled systems, the clear distinction between syntactic and semantic knowledge

can be observed. The schema of a loosely coupled system is depicted on fig. 1.2. According

to 191, LUNAR can be considered an example of a loosely coupled system.

The clear advantage of this kind of architecture is its modidarity. It is possible to rcwc

syntactic knowledge while porting the interface to another domain. It is also possible fur dif-

ferent people t o work on the syntactic information and semantic information independently,

A higher degree of modularity also decreases the difficulty of maintaining the system.

CHAPTER 1. INTRODUCTION

syntactic
knowledge

I
semantic

knowledge
I

database query r - l
Figure 1.2: Architecture of loosely coupled system

The disadvantage of this architecture is its performance. In some domains it is difficult to

use this kind of architectures, because of combinatorial explosion during syntactic processing

(semantic knowledge is not available at that time to constrain analysis).

Systems with Hybrid Architecture

The hybrid architecture combines the modularity of loosely coupled systems with the perfor-

mance of tightly coupled systems. The simplified architecture of one such system, CLARE

1221, is shown in fig. 1.3.

The only disadvantage is the need to supply special semantic constraints (e.g. selectional

restrictions) that are usually implicitly contained in the semantic knowlecige. The extraction

process needs human supervision and can introduce some errors. T h o extraction process

can also be time consuming and special semantic constraints have to be updated anytime

the semantic knowledge of the system changes.

1.4 What is this Thesis about

In this thesis, we shall explore a variation of the hybrid architectures. Our main goal is to

create the basics of a system that can automatically derive reasonable semantic constraints

that can be used for disambiguation during the syntactic processing out of a truly declarative

input T'
syntactic knowledge
+some semantic

constraints

extraction of the

output tl
Figure 1.3: Architecture of system with hybrid architecture

CJIAPTER 1. INTRODUCTION

description of the semantic knowledge.

We shall also show how the semantic knowledge expressed in declarative terms can be

"compiled" into a data-structure called a search graph that provides the basis for semantic

processing with reasonable efficiency and degree of declarativeness.

We believe that by solving the main goal we shall also address a trade-off between

performance and the degree of modularity and portability that can be observed in the

architectures described in previous section.

1.4.1 System's Architecture

The architecture of our system is depicted in fig. 1.4. We shall call the part of the sys-

tem that contains syntactic knowledge (together with selectional restrictions) and syntactic

processor the syntactic part and the part that contains semantic knowledge in suitable form

and semantic processor the semantic part.

Essential to the system is the description of syntactic and semantic knowledge. Uni-

fication based grammars were chosen for describing syntactic knowledge, while a modified

version of the formalism used in Abductive Equivalential Translation (AET) [23] was chosen

to describe the database related semantics.

1.4.2 Syntactic Knowledge and Syntactic Processor

A unification based grammar is able to produce a "literal" logical representation of an

English sentence. In such "literal" logical representations, predicates of atomic formulas

approximately correspond to the content words of the input sentence. We shall call such

predicates that occur in the "literal" logical representations of sentences lexical predicates

and formulas whose atomic subformulas contain only lexical predicates lexical formulas. As

an example consider a question

Is there a girl that loves chocolates from Germany? (1-7)

The "literal" logical representation of the sentence can be a lexical formula

3G, E , C, Ge.(girl(G) A love(E, G, C) A chocolate(C)

A f ~ o m (C , Ge) A country(Ge, germany))

with fesicd predicates girl, love, chocolate, from, and country.

syntactic knowledge
and selectional
restrictions

automated construc tion m
of selectional
restrictions

I declarative I I semantic knowledge I

of search graph

search graph - I
semantic know led^

in suitable form semantic 1

for semantic processing

output 47
Figure 1.4: System's architecture.

1.4.3 Declarative Semantic Knowledge and Restricted Linguistic Domain
Theories

AET provides a formalism that describes how lexical formulas that correspond to the input

sentences can he translated into logical formulas that contain predicates understandable

by the database (database formzllas). The main source of semantic information for AET

process is linguistic domain theory (LDT). LDT contains a set of axioms characterizing the

r~lationship between lexical atomic formulas and database atomic formulas. The axioms

describe in which context a particular atomic formula can be translated into another formula.

Lexical atomic formulas can be translated through a number of intermediate formulas into

the database formulas.

For example, LDT can contain axioms that can translate atomic formulas

girl(G) into db-person(G, w) in any context

chocolate(C) into db-product(C, chocolate) in any context

country(Ge, Name) into to db-eountry(Ge, Name) in any context

love(E, G, C) into dbJibes(E, G, C) if the word love occurs in the context of dbperson

and dbqroduct

preposition f rom(C, G e) into dblocation(C, Ge) if the word from occurs in the context

of db-locution a.nd db-prodt~ct

In this thesis we restrict the possible form of axioms used in original LDTs to suit the

requirements of the preprocessing algorithms. For the same reason, we shall also impose a

requirement of explicit finite dictionary. The dictionary relates atomic formulas that can be

presented a t the input of the semantic processor and atomic formulas that can be produced

by the semantic processor. The LDT that uses constrained form of axioms and contains

finite dictionary is called restricted LDT (RLDT).

RLDT, similarly to LDT, expresses a relationship between logic formulas that represent

the natural language utterance and logic formulas that represent the database side o: the

KLID. Because RLDT technically works on slightly different kinds of logic formulas than

original LDT, we shall call logic formulas that are expected a t the input of a system that

rises RLDT input logic formulas and formulas that are produced by such system output logic

formulas.

CHAPTER 1. INTROD UCTlOX 1 0

The constraints imposed on the RLDT restrict expressive power of t . 1 ~ theory ant1 require

more explicit information to be provided (e.g. the dictionary). On the other hand, imple-

mentation of the system compensates for the la.ck of espressive~~ess in R.LDT as opposed to

LDT by providing a set of simple and useful tools.

1.4.4 Automated Construction of Selectional Restrictions

The system is able to produce selectional restrictions that follow from the semantic dcscrip-

tion of a domain by RLDT. Selectional restrictions in general state which words can bc

immediately combined with which other words. The advantages of selectional restri~t~ions

is the possibility of very efficient implementation and their ability for seamless integration

with the parser.

The process of constructing the selectional restrictions involves extensive preprocessing of

the RLDTs. The preprocessing produces nomalised LDTs (NLDTs). The NLDTs contain

all possible rules of translation for each input atomic formula. Each rule contains an input

atomic formula, a pattern of possible contexts in which the input atomic formula can be

translated and an output atomic formula representing the outcome of translation. The

normalization process is sound, (i.e. the rules are logical consequences of the original RLDT)

and complete (i.e. all the interesting rules of the given form are derived).

Using the patterns of contexts in the rules, the system can derive how the words can he

combined together in the given domain. The constraints are then automatically incorporated

into the unification based grammar.

Basic ideas for constructing of the selectional restrictions are also briefly introduced in

our work [17].

1.4.5 Search Graph, Automatic Construction of Search Graph and Se-
mantic Processing

Once an NLDT is constructed, it can be used as a main source of information for semantic

processing of a sentence. Because the NLDT contains all possible rules for translation of

input atomic formulas and the rules are represented in a straightforward fashion (patterns of

possible context of input atomic formula in a sentence) the translation process is simplified.

That is, each input atomic formula with its context in the input sentence is simply matched

against the rules of the NLDT. If the matching rule is found, the input formula is siibstituted

CHAPTER 1. INTRODUCTION

with its output counterpart from the rule.

Thanks to the soundness and completeness of the normalization process, the designer of

the interface has a possibility to express the semantic knowledge in more declarative terms.

Because rules of NLDTs correspond to natural language phrases, some special features

of NLDTs can be observed. These features allow us to construct heuristics and a data

structure for more efficient rule search. The data-structure is similar to the trie structures

fl] used for pattern matching. We shall call the data structure a search graph.

The search graph construction and semantic processing algorithm is discussed in chapter

4.

1.5 Structure of this Thesis

AET is explained in more detail in the chapter 2 of the thesis. Section 2.1 provides an

introduction to the main concepts and ideas of the AET. Section 2.2 compares AET with

other approaches, namely Horn clause approaches, noninferential equivalential translation

and interpretation as abduction. Section 2.3 introduces the AET from the formal point of

view and section 2.4 describes LDTs in more detail.

Chapter 3 talks about restricted LDTs and the normalization process. The actual re-

strictions and modifications imposed on the LDTs (to suit the requirements of the prepro-

cessing algorithms) together with the formal definition of RLDTs are described in section

3.2. Section 3.3 discusses and defines the NLDTs. Section 3.4 introduces the normdization

algorithms and section 3.5 points to some issues of their implementation.

Chapter 4 describes the search graphs and the algorithm that uses them for translation

of input formulas into output formulas. Chapter 5 explains in detail construction of the

seiectional restrictions that are based on NLDTs as well.

Chapter 6 summarizes the advantages and disadvantages of the proposed system and

suggests some future directions of research.

Chapter 2

Abductive Equivalential

Translation

2.1 Introduction

In this chapter, we shall provide a short overview of Abductive EquivalentiaX Translati011

(AET) and Linguistic Domain Theories (LDTs) [23], the theory upon which our work is

based. In his Ph.D. thesis, Rayner introduces AET and LDTs as a way of rclrttiog the

semantics of natural language to the semantics of a database.

He supposes the existence of a language engine that provides a mapping from a nakilral

language utterance into a lezical logical formula. The lexical logical formula is co~lsidcscct

to be "literal" in the sense that there is a close correspondence between component words

of a natural language expression and component symbols in its logical representation. Wc

shall call predicates that occur in lexical logical formulas lexicul predicates.

On the database side, a similar correspondence is established. Database objects, func-

tions and relations expressible in a database query language correspond to quantifi~ss, prcd-

icates, functions and constants in database logical formulas. We shall call predicates that

occur in the database logical formulas database predicates. An example of lexical forrnula,s

and database formulas was given in subsection 1.4.1.

The task of finding the relationship between database queries and na tu~al langtiagr!

utterances is then simplified to finding the relationship between lexical logical formulas and

database logical formulas. The idea is that given a lexical logical formula, the system will

CIIAPTER 2. ABDUCTIVE EQ VIVA LENTTA L TRANSLATION

find an equivalent database logical formula w.r.t. some background logical theory. Formally,

a database logieal formula Fdb is called the translation of a lexical logical formula Fling in

theory I' iff

Tlie term abductive, as found in the name AET, is usually associated with an abductive

reasoning process, where the main goal is to find explanations or conditions with the lowest

cost under which the given fact can be satisfied in the theory [ll]. During such reasoning

processes, the theorem prover that tries to prove the goal can use not only the axioms of

the given theory, but also unproven assumptions (with given costs) that are reasonable to

assume. This idea is implemented in AET, but from a slightly different perspective. The

difference is that only the lexical logical formula Fling of the whole goal (Fling E Fdb) is

known at the beginning of the process. The system given theory gamma and lexical logical

formula Fling tries to find simultaneously database logical formula Fdb and the cheapest set

of assumptions A, such that

2.2 AET vs. Other Theories

In this section we shall describe very briefly other approaches to NLID semantic interpre-

tation, namely the Horn clause approach 1151, [19]; noninferential equivalential translation

[4], [25]; and interpretation as abduction [ll]. Then we compare these other approaches to

the AET. Our comparison is based on that in [23].

Horn clause approaches

The snadn idea of this approach is to view a database as a Prolog database consisting of

atomic formulas. The interpretation is achieved using theories consisting of Horn clauses.

The theories allow one to define the interpretation of words and phrases in terms of database

atomic formulas.

The reasoning engines built on top of Horn clause theories are well understood, allow

reasonable expressive power and still provide efficient implementations. The problem is that

the relationship imposed by Horn clause theories on input and output is implication rather

than equivalence. That means that the systems are not able to distinguish between "No"

and "Don't know" answers. Although the Closed World Assumption can be invoked for

this distinction, according to [23] it is difficult to write Horn clause theories for nontriviid

domains.

Noninferential equivalential translation

Noninferential equivalentid translation approaches do not use general inferential methods.

Systems are usually based on inheritance hierarchies or simple dornain models and colttest

disambiguation is provided by some kind of type checking. These systeim provide less

expressive power than systems based on logical inferential methods. On the otllcr I~and,

they provide equivalential translation.

Interpreta t ion as abduct ion

Interpretation as abduction systems are Horn clause based systems with abductive reason-

ing. The advantage is that the system provides a simple way to handle defaults that is not

present in two previous approaches. However, similaaly to the Horn clause approach, thc

equivalence between input and output is not guaranteed.

We choose AET as a base for semantic processing in our system slnce it in a sense c-ombines

all three previously mentioned approaches. It provides nonmonotonicity, a reasonably effi-

cient reasoning mechanism, the expressive power of logic based systems and still guarantees

logicd equivalence between input and output, if the translation can be failnd. E'ailure to

find a translation is considered as a "Don't know" answer.

AET Formally

In this section, we s h d present the AET translation algorithm. Ir! our presentation, wc slr all

show concepts and algorithms first by way of an example or by a very informal deficriptiort

of what we think could have been a motivation for a precise solution. After the informal

introduction, we shall define the concepts or algorithms precisely.

CHAPTER 2. ABD UCTIVE EQ UIVALENTIAL TRAATSLATION 15

We begin with an informal introduction of the conjunctive context (or full conjunctive

context). Although the formal definition of this concept is not needed to define AET pro-

cesses (and was not provided in Rayner's original work), the concept of conjunctive context

is one of the most important ideas behind AET.

Then we describe the actual translation process (or algorithm) for finding a database

logic formula Fdb given a logic theory describing the semantics of a database and a lexical

logical formula Fri,, .

2.3.1 Conjunctive Context

The conjunctive context provides a reasonable "environment" or "context" for particular

words or phrases in the iriput sentence. Speaking in logic terms, the conjunctive context

defines a logical environment for instances of atomic formulas in the logical representations

of the sentence. The translation process can then use this contextual information to disam-

biguate the meaning of ambiguous words (or atomic formulas that represent these words)

within a sentence. The conjunctive context consists of two parts. The first part, called the

global conjunctive context, contains world knowledge represented by logical axioms or data

stored in the database. The second part is called the local conjzmctiue context. Under the

assumption that logical formulas do not contain implications, the local conjunctive context

of a given subformula contains formulas that are connected to it by the conjunctive A.

Example 2.1 Consider, for example, the sentence

i s there a student who takes cmpt710 or cmpt720?

whose logical representation could be

35, E , Y, Il',.student(X)~

(takef E , X, Y) A unknown-word(Y, cmpt710)~ (2-4)
tctke(E, ,Y, 15) A unknown-word(15, cmpt720))

The atomic formula stu-dent(X) denotes that X refers to a student, atomic

formula fake(E,X,Y) denotes that event E describes an action of "taking"

referent Y by referent S. Atomic formula unknown-word(X, S) denotes that

referent X can be described by word S, but the actual semantics of the word S

is unknown.

The local conjunctive contest for the atomic formula represe~lting word "rmpt-

710" does zot contain only the fact that "it is taken" but also says that "tho

taking is done by a student". Using the logical notation and our infornial drfi-

nition of local conjunctive contest, the local conjunctive contest of the atonric

formula u n k n o u . n (~ empt710) would be a forrnula st u d e n i (S) A t u k c (E , S, f '1.
The global conjunctive contest is common for all atomic subfori-\~~~las of the

formula (2.4). I t consists of data stored in the database and axioms doscribing

relationships between the universit.y world (described by lexical predicates like

student or take) and the database world (represented by predicates that describe

tables) . rn

2.3.2 Translation Process

The main goal of the translation process is to find a database logic formuia Fdt, given n logic

theory describing the semantics of a dat~abase and a lexical logical formula I$;,,,.

We shall show how these schema work on a simplified version of sentellce (2.3):

Is there a student that takes cm,pt710? (2 . 5)

and its logic representation

Let us suppose that the global conjunctive context is represented by theory T'. ?'lie t11eory

r describes world knowledge which consists of the axiom

It says that if an object referenced by unknown word is taken by a studettt, theri the ol~ject

Is actually a course. We shall call axioms similar to (2.7) conditional eyuivalmcex. The part

is called a condition, the part

unknown-word(Y, S)

Cll.4 PTER 2. A BD U C f W E EQ Lif VALEXTIA L TRANSLATION

is called a left Izclnd .side (LN.9) of the conditional equivalence and the part

is called a hght hand side (RHS) of the conditional equivalence.

In this example, we shall use axiom (2.7) to show how the atomic formula

unknown-word(Y, S)

can he translated (or disambiguated) in the lexical logical formula (2.6). In other words,

we shaIf find formula F set. in the formu!a F, atomic formula unknown-word(Y, cmpt7lO)

from the irlput sentence is translated into an atomic formula with a database predicate. F

also has to be equivalent to formula (2.6) w.r.t. the theory I?.
The translation process tEzt uses the idea of corrjunctive context relies on translation

schemas (2.8) and (2.9)

Context A Q -+ (P r P')

=> Context + (P /\ Q = P' A Q)

Context --. (B(P) t9(P1))

Contezt + (3Z.P - 3Z.P')

where i? substitutes Z by unique constants w.r,t, P , PI and Context.

We shall proceed as fo1Iows. We shall recurse down the formula (2.7) using the schemas

(2.8) and (2.9) until we reach the atomic formula with predicate unknown-word. During this

recursive process the local conjunctive context will be collected. Then we use the theory I?

and the collected local conjunctive context to translate or disambiguate the unknown word.

Translation schema (2.9) says that i t is possible to conclude equivalence between lexical

Iogical furmala (2.6) and formala. F tha* we are looking for

and set F = 3E, X, Y . (F l (E , X, Y)) . In (2.11), esistentially quantified variables E , S ,Ir

were substituted by constants e , x , y respectively and the existential quantifier was rcmovcd.

The translation schema (2.9) can be regarded then as a rule t.hat allows 11s to rccursc

down the input formula through existential quantification. Translation schema (2.S) , on thc

other hand, allows us to recurse through conjunction A while collecting the local conjunctive

context.

According to translation schema (2 .8) it is possible to conclude equivalence (2.1 1 ! i f wc

find a formula F2 s.t. f 2.12) holds

and set F l (e , z, y) = s f u d r n . t (x) ~ F 2 . Using translation schema (2.8) again, we can conclude

(2.12) if the (2.13) is true

and we set F2 = F3 A take(e, x, y). That meaps, that is is possible to find the formula F,

if it is possible to find a translation F3 of

using local conjunctive contest

Now it is time to introduce another translation schema (2.14) .

(Conds - (PI A P2 A P3. ..) -- PI) A

Context + @(P2 A P3... A Conds)

Context 7 (@ (P I) r @(PI))

The formula Context of the translation schema. represents the local conjunctivc cm text

and formula PI is an atomic formula being translated. The first line of the translation schema

is an axiom of the form of conditional equivalence from the global conjunctivc! context.

The second line of the translation schema says that the conditions of the axiom from the

global conjunctive context has to be implied by the local conjunctive context (w.r. t. to the

global conjunctive context). The third line of the schema (2.14) says that under conditions

CPfAPTER 2. ABDUCTIVE EQUIVALENTIAL TRAATSLATIBN

described by the first and second line of the schema it is possible to substitute LHS of the

condi tional equivalence by its RMS.

Let us put Context = student(%) A take(e, x, y). It is obvious that (2.15) holds

Context --+ (student(X) A take(E, X, Y))

(X + x , Y + y , E - + e) (2.15)

Using conditional equivalence (2.7) as a first line of the schema (2.14), and using (2.15)

as the second line of the schema, we can conclude that (2.13) holds with

The rewritten formula is shown as

(2.16)

The assignment F3 = db-course(y, cmpt710) yields

that represents the final translation.

In addition to schemas (2.8), (2.9), and (2.14), Rayner in [23] also provides schemas for

translating formulas that contain negations, disjunctions, implications and universal quan-

tifiers.

Context -+ (P r PI)

Contest + (P V Q r PI V Q)

Context + (P El)

3 Context + (7P = l P 1)

C m P T E R 2. ABDUCTIVE EQ UIWLENTML TR,4ArSLATIOIV

Contest -+ (P r P')

* Context -+ (P --+ Q 5 p1 -+ Q)

Context A P -+ (Q Q')

=+ Context -+ (P -+ Q p + Q')

Context -+ (8(P) E e(P1))

Context -+ (V2.P = V$.Pf)

where 8 substitutes (Z) by unique constants w.r.t. P, P' and Contest.

Note, that equivalent but syntactically different formulas can yield different conjitlkctivc

contexts. (The idea of conjunctive context and translation that uses it is not "co~nplctc~".)

The simplest example is probably a pair of formulas -.a V 6 and a -+ b. In the first case, tllc

translation schemas provide the empty conjunctive context for atomic formlila 6 whcrctzs in

the second case, the resulting conjunctive context contains atomic formula a.

Schemas for translating existential quantifiers and higher order formulas follow.

where 8 is one-to-one on 2 (i.e. it does not map distinct variables into identical tcrrns).

Context + (B(P) E B(Pt))

+ Context -+ (count(N, AX.P) = count(N, AX.Pt)) (2.23)

where 8 replaces X with a unique constant. count(N, AX-P) holds if there are precisely N

values of A such that P(A) holds.

Context + (B(P) r 8(P1))

=> Context -+ (sum(S, XX.P) r sum(S, XX.P1))

CHAPTER 2. A BDUCTIVE EQ UIVALENTIAL TRANSLATION 2 1

where 6' replaces X with a unique constant. sum(S, XX.P) holds if all the objects A of

which P (A) holds are summable quantities, and S is their sum.

Context (6'(P) r 6'(P'))

=+ Context -t (order(Selected, XX.XD.P(X, D), Ordering) r

order(Selected, XX.XD.Pf(X, D), Ordering)) (2.25)

where 0 replaces X and D with unique constants. Formula

order(Selected, XX.X D.P(X, D), Ordering)

holds if Ordering is an ordering relation, Dmax is the maximal D under the relation

Ordering such that P(X, D) holds for some X , and Selected is such an X .

The translation proceeds one predicate at a time. Each translation step substitutes an

atomic formula with another formula until a formula consisting entirely of database predi-

cates is reached. The translation step can be done only according to one of the conditional

or existential equivalences of the theory.

The original definition of the algorithm (from [23]) follows

Recurse: Descend through F using the translation-schemas, until an atomic sub-formula

A is reached. During this process, a conjunctive context E has been accumulated in

which conditions will be proved, and some bound variables will have been replaced

by unique constants. Constants resulting from bound variables are specially marked

if i) they come from existentidy bound variables that occur only in A, and ii) the

only connectives between A and the binding existential quantifier are conjunctions.

We will refer to these as mcsrked ezistential constants.

Translate-universal: Find a rule (B A R = B) t C such that H unifies with A with

m.g.u. 0. If it is then possible t o prove 8(R AC), replace A with 8(B). The leaves of the

proof may include elements of the conjunctive context E, facts from the database, Horn

clauses from the linguistic domain theory I?, or Horn clause readings of conditional

equivalences from I'.

Translate-existential: Find a rule 3i.H E B such that H unifies with A with m.g.u. 6'. If

all the elements of B(2) are distinct marked existential constants (in the sense defined

immediately above in the Recurse step), then replace A with O(B).

Simplify: if possible, apply simplifications to the resulting formula.

2.4 Linguistic Domain Theories

In this section, we shall talk a little bit more about the structure of linguistic dorrmin

theories (LDTs). These are the theories that contain all the donlain knowledge twedcd

by the AET translation algorithm to translate lexical logical formulas into their database

equivalents. The LDTs contain a logical part (an example is a theory I' from the prcvi-

ous section), assumption declarations that are used for abductive reasoning purposes and

functional declarations used for simplification of results.

The kind of information contained in LDTs can be described from different points OF

view. We shall start with a technical description. Then we shall discuss the relationship of

different kinds of predicates to stages of translation, and relationship of different kinds of

axioms to their reusability potential.

2.4.1 Technical Description

In this description, P , PI, Pn, R1, Rl will stand for atomic formulas and Cond will stand

for a conjunction of atomic formulas.

Logical Part

The logical part of an LDT can be divided into a positive theory and a negative theory.

Together, they form a logic theory I? that is used for reasoning abmt the domain.

A positive theory contains Horn dames of the form

PI A . . . A P n -+ P

conditional equivalences of the form

Cond -, (PI A . - . Pn r 3x1 . X, .(Rl A

and existential equivalences of the form

3x1 . . x, .(PI 2 P)

A negative theory contains rules of the form

PI 4 1 P

CHAPTER 2. ABDUCTIVE EQUNALENTIAL TRANSLATION

Assumption Declarations

LDT also contains assumption declarations of the form

assumable(Goa1, Cost, Justification, Type, Conds)

The semantics of the assumption declaration is that goal Goal can be assumed at cost Cost

in the context, where Conds hold. Justification is a tag presented to the user when the

assumption is taken. Type is an atom specifying the type of the assumption. As an example

consider an assumption declaration

assumable (

specialization,

true)

and the conditional equivalence

car-is-company-car + (car(X) db-company-car(X)) (2.30)

The atomic formula car-is-company-car is an assumption that is needed to translate lexical

atomic formula car(X) into its database counterpart. The assumption can be assumed at

cost 0. Its type is "specialization", meaning that the assumption allows a user to use a word

in its specialized sense (e.g the word "car" refers to company car). The specified condition

is true, i.e. this assumption can be used in any context. When the assumption was taken

the user is notified by the tag

all-cars-re f erred-to-are-company-cars

Functional Declarations

Besides the logic theory and assumption declarations, there are functional declarations that

are used for simplification of the intermediate and final results of translation. The form of

a functional declaration is

CHAPTER 2. ABD UCTWE EQ UIK4 LEXTIAL TRANSLATION

Such a declaration says that the relation represented by Template is a ftmctian from

FunctionabArgs to RemainingArgs. The use of the functional declam.tion can bc illus-

trated by the following example. Consider the sentence

Was John's transaction done on Saturday?

with an underlying database containing the predicate

db4ransaction(TransactionId, Payee, Date)

Let us also suppose that in a certain stage of translation the algorithm achieves intermediate

represent ation

3TransationId, Date, Payee.

(db-transaction(TransactionId, john, date)^

db-transaction(TransaclionId, Payee, saturday))

Formula

db_transaction(TransactionId, john, Date)

represents the construction "john's transaction" and the formula

db-transaction(TransactionId, Payee, saturday)

represents the construction "transaction on Saturday". Using the functional declaration

function(db,transaction(TransId, Payee, Date),

[TransId] -> [Payee, Date])

the formula (2.32) can be simplified to

3TransationId.db_transaction(Transactio17 john, saturday)

2.4.2 Predicates and the Stage sf Trmsiafcion

The main idea of the AET translation process is to translate an input lexical logical formula

containing the lexical predicates directly related to the actual words of an input sentence

to the database formula containing the database predicates that can be easily evaluated

by the database. During the translation process, the formula can also contain intermediate

predicates, i.e. predicates that are neither database related nor lexical.

CHAPTER 2. ABDUCTIVE EQ UIVALENTIAL TRANSLATION 2 5

In this section, we shall talk about dizerent kinds of predicates and when such predicates

usually occur in the translation process. We start with predicates that occur at the end

of translation process and then we proceed towards predicates that are closer to lexical

predicates. Note, that the structuring of predicates is only approximate. It does not mean

that LDT cannot contain any other types of predicates or that translation has to proceed

according to the order described in this section.

Database Predicates

There are three kinds of predicates that can be considered as "final" or database predicates.

The first kind of predicates are table predicates that directly correspond to relational tables

and their arguments correspond to the attributes of the tables. An example of a table

predicate is

dbfransaction(TransactionId, Payee, Date)

from the example in the previous section.

The second kind of database predicates are predicates related to arithmetic operations

that can be performed on the database objects such as addition, subtraction, greater, smaller

etc.

The third kind of predicates are dereferable predicates. These are the predicates that

the system can cause to hold in the future. An example of the executable predicate is

esecute-in- f uture(Action)

which is true if system performs the Action in the future.

Conceptual Predicates

Very close to the table predicates are conceptual predicates. These predicates almost cor-

respond to the database tables. Their purpose is to "change" a database design to reflect

better the requirements of natural language input. As an example consider sentences (2.33)

a.rtd (2.34)

Who takes cmpt720 at SE'U?

Who takes cmpt720 at UBC?

CHAPTER 2. ABDUCTIVE EQ UIVALEN'i'l4L TRANSLATION

These sentences might be encountered when using a database thak describes catirscs taken

only at SFU without any attributes about the phce where the courses are taken. In such

cases, it is convenient to introduce a, conceptual predicate that contains an attribulc tlc-

scribing the place. The lexical logical formulas are first translated into farmulas tha t use

co;,ceptual predicates and then the formulas are (or, in the case of (2.34) and the SF'CJ

database, are not) mapped into the database logical formulas. The conceytual predica.to

can also cover other sentences which contain information that is implied in the datahse

e.g. (2.35) or (2.36)

I s John studying at SFU?

W h a t i s the most popular course at SFU?

As a second example consider a database that contains transa,ction IDS and cl~eck 11)s.

The fact that a transaction ID is the same as a check ID does not mean that the 11)s

represent the same things. Therefore the mapping from conceptual predicates into database

predicates also takes care of mapping terms in conceptual predicates (e.g. checkid# 1 D),
that represent real objects in the real world, into terms in database predicates, that rcprcsent

database objects - strings, numbers, etc. As a,n example consider an axiom

conceptual-check(check-id#ID, dute#Date) r db-check(iD, Date) (2.37)

Mapping from conceptual predicates into database predicates should also rciiect the con-

dition imposed on records from the table. Suppose that we have a database that contains

records from the last two years. While answering questions similar to

Show me all the students that took cmpt720. (2.38)

the mapping has to make an assumption that the facts talked about are no older than two

years. Such an assumption should also be communicated to the end user.

Attribute Predicates

If we consider, for example, temporal prepositions, it is clear that they often take events

or noun phrases as their arguments, but they usually impose conditions on the time when

those events occur. The sentence

Who took more than ten courses during summer 95? (2.39)

CHAPTER 2. ABDUCTIVE EQ UIVALENTIAL TRANSLATION 2 7

is an example. An LDT introduces attribute predicates that associate objects with their

characteristic attributes. An LDT contains four attribute predicates - associated-time,

ussociuted-start-time, associated-end-time and associated-size, that associate an object

with a time or size of particular granularity (e.g. years or semesters etc.). An example of

an axiom that translates a temporal preposition follows.

dur ing(El ,E2) E

3T1, T 2 , Granl , Gran2.

(associated-time(E 1, T 1, G r a n l) ~

associated-time(E2, T 2 , Gran2)A

time-during([Tl, Granl] , [T2, Gran21))

Lexical Predicates

The last important category of predicates is lexical predicates. They correspond approxi-

mately to the content words in the input sentence.

The whole translation process then proceeds from lexical predicates to the mixture of at-

tribute and conceptual predicates. This mixture is translated to pure conceptual predicates

that are finally replaced by database predicates. The schema of the process is depicted in

fig. 2.1

Input logical formula - lexical predicates

formula consisting of mixture of conceptual
and attribute predicates

I
\I

formula consisting of conceptual predicates

Output logical formula - database predicates

Figure 2.1: AET translation process - predicates at various stages of translation

CHAPTER 2. ABDUCTIVE EQ Ul1rALEILrTIA4L TRAArSL_4'flTON

2.4.3 Axioms

Axioms of the LDT can be divided into three main groups - general tlasioms, do~uaili specific

axioms, and database specific axioms.

General axioms take care of general words and phrases that usually occur in natural

language interfacing (e.g. show me, tell me ...), temporal espressions (c.g. d u r i ~ q ...)

and expressions referring to the size of objects (e.g. larger, smaller ...). The axioms also

espress knowledge about translating interval predicates on different levels of granularity into

expressions that involve predicates like "<" or ">", and espressions that espress translalio~~

between different levels of granularity (e.g. from days into weeks). Tt is obvious that these

axioms can be used in many different domains without any changes.

Domain specific axioms describe translation of domain dependent words and p hr;tscs

into conceptual predicates. The axioms contain the core knowledge given a domain and

they have to be rewritten when the domain changes. On the other hand, they are clcady

separated from the structure of actual tables, so they can be applied to different (1atxb;m

schemas under the condition that those schemas represent the same domain.

Database specific axioms describe the translation between conceptual preclicatcs and thc!

database predicates. These axioms are obviously the least general axioms and they have to

be maintained with any change of the database schema.

2.5 Summary

In this chapter we provided a brief introduction to Rayner's Abductive Equivalerttial Trans-

lation upon which the rest of this thesis is based. The main concepts of AET arc the AEf1'

process and the LDTs.

The AET process is able to translate a lexical logic formula whose predicates corresj>ond

to the words and phrases of an English sentence into a database logic formula understandable

by a database. During the translation process, some assumptions can be taken (hut do J K J ~

have to be proven) to guarantee the equivalence between the lexical logic formula and tlrc

database logic formula. This allows for nonmonotonicity of the translation process which is

considered a serious advantage.

The main source of information for the AET process is the LDT. The I,DT is a, logic

theory that describes how the lexical logic formulas are related to the dataham logic for-

mulas. Only certain kind of axioms are allowed in the LDTs. This restriction yields an

CHAPTER 2. ABD UCTIVE EQ UIVALENTIAL TRANSLATION

implementation with reasonable response time.

Chapter 3

Restricted Theories and

Normalization

In this chapter we shall provide a general overview of the normalization of LDTs that ciLI1 ttc.

considered as the main part of semantic preprocessing. Section 3.1 puts tlw ~~ortn:tl im tior!

process into general context and also contains a small example of a normalized tl~i?ory.

The normalization process, however, will not work with all T,DTs, only a sul)sot of t l ~ c w .

If we want to normalize an LDT, we need to constrain its expressive power. Wc! sllall call

such constrained LDTs mstricted LDTs. Section 3.2 describes what restricted 1,l)'i's look

like and also discusses the constraints and assumptions taken.

Section 3.3 defines the normalized LDT precisely. Section 3.4 contains detailed dcsrrip-

tion of the formal algorithms and section 3.5 explains the main ideas bchirtd the i r n plcr~~cm-

tation of the system.

3.1 General Overview

3.1.1 General Method and Motivation

The semmtic part of air XLID can be ~ k i ~ e C : as a binary relation. The re:aiirzn is deterririnwl

by a process the semantic processor is built on (e.g. AET) and semantic jnfwmation t h e

process uses (e.g. LDT). The relation is defined on a set of possible input forintllas <of m i n e

sort (e.g, lexical logic formulas) that, represents a set of possible lingtiis tic 11 t trmntxs prfi-

seated at the input of the system and a set of outpu t formulas (e.g. d a t a h w logic fornr t i h r i)

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

that represents a set of possible actions performed by the database access system. We can

define the relation using a description of the condition that holds between its arguments -

input and output formulas:

The relation between an input formula and an output formula holds if and

only if one of the interpretations of the input formula produced by the semantic

part of the NLID is the output formula.

That means that only input formulas that can be understood by the underlying database

access system after processing by the semantic part of the NLID can occur in the relation.

By simple projection of the relation on its first argument we can obtain a unary relation

that restricts its argument to certain values. The set of the values represents semantic

restrictions on the set, ef p ~ ~ s l b l e inpnt formulas, thus providing semantic restrictions on

the input language.

By making the relation between input formulas and output formulas more explicit, the

semantic constraints become more explicit as well. Because selectional restrictions can

be viewed as a subset of semantic constraints on the input language, we believe that if

the semantic constraints on the input language are made more explicit then these more

explicit semantic constraints provide valuable information for derivation of the selectional

restrictions. We also believe that by expressing the relationship between input and output

formulas more explicitly, the translation process that translates input formula t o output

formulas becomes simpler and more efficient. In this thesis we shall demonstrate these two

points on a system based GI? the AET tramlation algorithm.

3.1.2 Applying the Method - What does Normalization Look Like and
What is it Good for

-4s was seen in the chapter 2. any LDT can be seen as a description of the relation between

set oflexicd logic form* that mirror the actual natural language utterance and database

lwgr fcrrnulas that represent the database side of the SLID.

Sim'dariy a restzicied LDT expresses t'ne relationship between input iogic formulas cor-

responding to the natural language utterances and output logic formulas that correspond

to the database side of the SLID.

The main part of the prepr-ing is the normdization of a restricted LDT. The purpose

of the ~om&zation is, as was suggested above, to make the relation between input logic

formulas and output logic formulas more explicit. The result of the normaJization process

is a normalized LDT.

,4 normalized LDT contains a set of quadruples called the positive theory and a set of

axioms called the negatiw theory. Each quadruple of the positive theory describes a. possiblc

translation of an input atomic formula. into an output atomic formula. The quadruple

consists of an input atomic formula IaputAF, output atomic formula OvtpzitAF, cotijnne-

tion of input atomic formulas Condition, and conjuitction of assumptions Assun~ptior~s.

The negative theory is a set of axioms of a very restricted form that defines perlni~sibilit~y

of assumptions.

Interpretation of the quadruples of the positive theory and the axioms of the negative

theory is described as follows. For any input formula presented in the input of the system,

an instance of the input atomic formula InputAF can be translated into an instance of

the output atomic formula O u f p t A F , if its local conjunctive context implies the condition

Condition w.r.t. the empty theory and does not contradict the assumptions Assumptions

w.r.t. the negative theory. (The term empty theory refers to a logic theory that contni~ls

o d y basic logic axioms and no "user defined" axioms. Proving implications of certain farm

in such theories can be done very efficiently.)

Due to the justification of conditions in the empty theory and justification of assanlptions

in the very constrained negative theory, the normalized LDT expresses the relation between

input formulas and output formulas much more straightforwardly than the original LIY1'.

The normalized theory simply eliminates the need for a reasoning process within an LDT.

This elimination guarantees more declarative LDT because the designer of the system doe8

not have to think such reasoning can be done at runtime and how much time it will

take. The normalized theory reflects only the results of a reasoning process.

The following example shows a very simple LDT and some quadruples that belortg to

the LDT in its normalized form. Although there is no need to do a lot of reasoning in

the simple LDT to conclude the desired results, the example shows how such reasoning i~

e-liminated in the n o r m a t i d LDT.

Example 3.1 Suppose, that the LDT consists of the posjtive theory:

CHAPTER 3. RESTRICTED T'HEORIES AND NORMALIZATION

(word "student" refers to the student relation in the database)

p o f essor(X) EE db-pro f essor(X) (3.2)

(word "professor" refers to the professor relation in the database)

assurnption~person~is~a~pro f essor +

(person(X) - db-pro f essor(X))

(word "personn can refer to the professor relation in the database if it is safe to

assume it)

(word "person" can refer to the student relation in the database if it is safe to

assume it)

(word "course" refers to the course relation in the database)

db-student(X) A db-course(Y) -,

(take(E, X, Y) = (3.6)

dbstudent-takes-course(E, X, Y))

(word "take" refers to the relation describing student taking a course if it occurs

in the right context)

db-pro f essor(X) A db-course(Y) -,

(teach(E, X, Y) E (3.8)

db-pro f essor-teaches-course(E, X, Y))

(word '%eachn refers to the relation describing a professor teaching a course if it

occurs in the right conte.xt) and the negative theory

CHAPTEB 3. RESTRICTED THEORIES AND NORhfALPZ,.iTfON

Here
student(X), pro f essor(X), course(Y),

take(E, X, Y), teach(E, X, 1')

are input atomic formulas corresponding to words "student", "professor", "course",

"take" and "teach";

dbstudent(X), db-pro f essor(X), db_course(Y),

dbstudent-takes-course(E, X, Y),

dbqro f essor~teaches~cou~se(E, X, Y)

are output predicates.

The following quadruples, and others, will belong to the normalized LDT.
The quadruples are of the form

(Condition, Assumptions, InputAF, OutputAF)

(true, true, prof essor(X), dbpro f essor(X))

(word "professor" can always refer to db-pro jessor j

(prof essor(X) A course(Y), true,

teach(E, X, Y), dbpro f essor~teaches~course(E, X, Y))

(word "teach" refers to the db-prof essor-teaches-course, if it occurs in the con-

text of words "professorn and "courseJ')

(person(X) A course(Y), assumption-person-is-a-pro f essor,

teach(E, X, Y), dbqro f essor~teaches~course(E, X, Y))

(also words "personn and "course" can make the word "teach" refer to the

db-pro f essor~teaches~course

if the word "person" is not translated as dbstudent somewhere else in the scn-

tence)

Let us compare the translation of the word "teach" in the original LDT and

in the normalized LDT. In the original LDT, in order to translate the word

"teach" in the context of words "professorn and "coursen, a reasoning process

C I f A P T E R 3. RESTRICTED THEORIES AND NORMALIZATION

has to be started. The reasoning process proves that the context consisting of

words L ' p r ~ f e s ~ ~ r n and "course" implies the condition

Only then can the conditional equivalence for translation of the word 9each"

be applied. On the other hand, in the normalized LDT, all that is needed is a

simple lookup for a right quadruple. At this point we are not trying to argue

efficiency of the processes. What we would like to demonstrate by this example

is how straightforwardly a normalized LDT can express the relationship between

natural language utterances on one hand and the database on the other. How-

ever, in order for this normalization process to work, it requires some restrictions

on the theory.

3.2 Restricted LDT

In this section we shall provide and discuss basic assumptions and constraints we impose

on the LDT. These assumptions guarantee that the LDT can be normalized in a sense

suggested in the section 3.1. We shall call an LDT that satisfies all the criteria a restricted

LDT.

Before discussing assumptions of the restricted LDT itself, we shall describe the input

1angua.ge and the output language of the "translator", whose knowledge is encoded in the

restricted LDT.

3.2.1 Input Language

Assumption 3.1 (Input Language Syntax) We suppose that the syntactic part of an

will p d u c e an input logical f o m ~ ~ h , that represents a meaning of the nataral language

utterance. The input logical formula is a fornula of extended First Order Logic (FOL). This

means that formula can contain atomic fomulas, conjunctions A, V, +, 1 and quantifiers

3 and V. In addition to the usual wles of formula construction of FOL, there are three

higher order operators: C O Z L ~ ~ , sum and order. Their syntaz and interpretation was defined

in s~rbsection 2.3.2.

CK4P TER 3. RESTRICTED THEORIES 4ATD NORMA LfZATf ON 3 C;

Some parsers (e.g. 121) produce output consisting of the atornic formulas and constatzt,~

that approximately correspond to the content words of the natural language or to the

relationships between them. For example, the noun "book" can be expressed as an at,omic

formula book(X). The atomic formula book(X) can be read as "X denotes a book". ThC

verb "give" can be represented by the formula give(E, S, Y, 2) that can be read as "cvclit

E describes giving thing Y to person Z by the person X " . This correspondence is fully

determined by the parser, grammar and the lexicon.

For parsers that produce different representations, we need only assume that the resulting

formula is a formula of the extended FOL and the semantic description "knows" what kind

of input it can expect. There are no other requirements on the form of the output of tlrc

parser. One word can be represented as a complex logical formula or two or more words

can be represented by one atomic formula. For example the verb "give" can be rcprescntcci

as a formula

giver(E, X) A givee(E, Y) A given(E, Z)

with the same interpretation as in the previous example or the phrase "John gives Msry a

book" could be represented as an atomic formula

that is true, if E denotes an event of John giving a book to Mary.

We do not expect that the meaning of the natural language utterance is resolved lo

the finest detail. It is supposed that the output of the parser can still contain ccrtsin

ambiguities that can be represented by unresolved predicates. The semantic part of the

interface is able to resolve such ambiguities (cf. chapter 6) , which can include for example

genitive or possessive relations or proper nouns representing unknown entities.

In the rest of the thesis we shall call formulas of the input language of the restricted

LDT input fomzulas. Similarly we shall call atomic formulas of the input language input

atomic fomvlas and we shall refer to predicates of the input language a i n p t predimtes.

3.2.2 Output Language

Assumption 3.2 (Output Language Syntax) We suppose that the output ianyuaye h u ~

the same syntaz as the input language. All formulas of the output languaye are formulu~

of extended First Order Logic. This means that fomzulas can contain atomic formulas,

CHAPTEa 3. RESTRfCTED THEORIES AND NORMALIZATION 37

conjunctions A, V, -+, 1 and quantifiers 3 and V. In addition to the usual rules of formula

construction of FOL, there are three higher order operators: count, sum and order. Their

syntax and interpretation was defined in subsection 2.3.2.

Assumption 3.3 (Output Language Semantics) The output logical formulas contain-

ing output predicates of the restricted LDT are not '?ruen database logical fomulas that

contain database predicates understandable by the database as they were described in the

chapter 2. Instead, we sappose that the output of a process based on the restricted LDT

is fed into another process based on the very simple post-processing LDT (PPLDT). The

process based on PPLDT then produces the database logical formulas.

Figure 3.1 compares the architecture of the original AET with the architecture of the system

based on restricted LDTs with the terminology used for different parts of the system and

different stages of translation.

We suppose that the PPLDT contains universal equivalences of the form

and existential equivalences of the form

where P is an output atomic formula and A is an arbitrary formula that contains the

database predicates. The PPLDT also contains functional declarations that serve for sim-

plification of the results. (c.f. chapter 2)

The fact that the equivdences do not contain any conditions that have to be proven

guarantees that the translation from output logical formula into the formula that contains

only database predicates can be performed very efficiently. The only thing the AET algo-

rithm (cf. section 2.3.2) has to do is a simple substitution of output atomic formulas into

database formulas according to the axioms of the PPLDT.

3.2.3 Assumptions about the Restricted LDT

In this section we sh& present the assumptions made about the restricted LDT. We shall

also discuss the assumptions from the point of view of translation power. We shall compare

systems based on the restricted LDTs together with the PPLDT to the system based on

the originat LDT for AET as well.

Original AET system

Restricted LDT based system

lexical logical
formuIa

database logical
formula

*

I restricted LDT I

input logical formula
with input predicates

database logical formula 1

output logical formula
with output predicates

pzq
Figure 3.1: Translation process using AET with LDT vs. RLDT

I
4

I

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 39

Assumption 3.4 (RLDT Predicates) A restricted LDT declares a set of input predi-

cates, a set of output predicates and a set of assumption predicates. The sets of the predicates

are mutually disjoint.

(Note, that intermediate predicates that are neither assumptions nor output predicates nor

input predicates are allowed.) VtTe do not see any Bmit ations that this assumption posits on

the expressive power of the restricted LDT.

Assumption 3.5 (Finite Dictionary) Any input formula that can be translated into the

output formula can be also obtained by {one by one) substitution of the input atomic formulas

with the output atomic formulas. Moreover, there is a finite dictionary that contains pairs

of input and output atomic formulas provided by the designer of the system. The dictionary

covers all possible cases of translation.

Put informally, we simply assume that each atomic formula in the input formula has only a

finite number of meanings w.r.t. to the database. We believe that the assumption is in most

cases plausible. For example, there are probably no more than 20 meanings of the atomic

formula representing a word "studentn in the university database. There are however some

cases where the assumption can not be fulfilled without an additional level of translation.

This additional level of translation can be performed by an "intelligent" database engine

that can provide some derived relations. An example of such a case is a database containing

the relation parent. The word "ancestor" in this case can be translated in theoretically an

infinite number of ways. An intelligent database engine can provide the additional relation

ancestor derived from the relation parent. Examples of such an "intelligent" database

engines are deductive databases [8] or Prolog.

Assumption 3.4 together with the assumption 3.5 about the output language is a su-

perset of constraints implicitly made in the [23]. Original AET assumes that any lexical

formula that can be translated into a database formula can be also obtained by (one-by-

me) substitution of the lexica! atomic f o m d a s ((in some czses together with the e~s ten t ia l

quantifiers associated with them) with the formulas (not necessary atomic) that contain

only database predicates. One atolaic formula can be translated in the infinite number of

ways. Our assumption differs, because we require that there exists a finite dictionary which

together with the output LDT covers all possible cases.

CHAPTER 3. RESTRETED THEORIES A hTD NORMA LIZATION

Assumption 3.6 (Formulas) A restricted LDT contains two logic theories: one positiuc

and one negative. The positive logic theory can contain onlg fomulas of the following form:

Conditional Equivalences:

where PI - - Pn, Q1 - . .Qr and R1 . - - R, are atomic fornaulas, Q1 - . . Qr and

R1. . - R, cannot be assumptions

Horn Clauses:

where PI . . Pn and Q are atomic formulas, Q c ~ n n o t be on assumption

The negative logic theory contains axioms of the form

hTegative Horn Clauses:

where PI . - Pn are atomic formulas whose predicates were not declared as us-

szamptions and Q is an assumption atomic formula

Exclusiue Declarations:

where # means not equal and P and Q are atomic formulas. Moreover, we

restrict any other occurrences of predicates of atomic formulas P and Q to the

condition part of conditional equivalences or Horn clauses of the positive theorg.

The examples of conditional equivalences and Horn clauses were demonstrated in the

chapter 2. Mote, that a formula of the form (3.11) is equivalent to two clauses (3.15) and

(3.16)

C'ZMPTER 3. RESTRICTED THEORIES AND NORMALIZATION

and these are equivalent to Horn clauses

(V)Pl Pn A Q ~ . - Q ~ + R1

Therefore, it is also possible to simply assume that the positive logic theory consists only

of the Horn clauses of type (3.12)

The reason why exclusive declarations of the form (3.14) are dowed is demonstrated by

the following example.

Example 3.2 Suppose, that the concept db can be referred to by linguistic

constructs a A b or c A d. Unfortunately, AET does not allow equivalence with

exclusive or on the LHS as in

The asioms (3.17) and (3.18)

do not provide expected results. One of the examples of the logical consequences

of the axioms (3.17) and (3.18) that is probably not expected is a formula

Formula (3.19) would mean that anywhere in the theory where the concept

d is required to be proven, a A b can be used. Imagine that a = "id", b =

CHAPTER 3. RESTRICTED THEORIES AND ArORhfi4LPZATION

"of professor", c = "teacher's", d = "number" and db = db-f acuf ty- id . This

would mean that anytime during the translation process where "number" is

needed to be proven, "id of professor" can be used. So for example suppose that

there is an axiom in the theory that translates the word "telepliolie" into the

concept db-telephone-number if word "telephone" occurs in the contest of word

"number" (e.g. in the phrase "telephone number"). The axiom would also allow

one to translate the word "telephone" into (16-telephone-~tzinzber if the context

was "id of professor" (e.g. "telephone id of professor"). This is certainly not the

intended result.

We adopted a solution where axioms (3.17) and (3.18) are changed into (3.20)

and (3.21) with additional axiom (3.22) in the negative theory

Assume-that-dbis-re f ereLto-by(a-and-6) -+
(3.20)

(a A b r db)

Assume-that-db-is-re f ered-to-by(cand-d) -+
(3.21)

(c r\ d r db)

Axiom (3.20) tan be used if it is safe to assume the assumption

Similarly axiom (3.21) can be used if it is safe to assume

It is clear that both axioms cannot be used at the same time, because their

assumptions are exclusive, thus preventing derivation of conclusion (3.19).

To allow for axioms of type (3.22) to be expressed without a lot of effort, es-

pecially if there is quite a riumber of possibilities for arguments of ttlc asmmption

predicates, exclusive declarations are allowed in restricted LDT, e.g.

CHAPTEE 3. RESTRICTED THEORIES AND NORhMLIZATfON 43

The reason for allowing negative Horn clauses is very simple. Often an additional word

changes a meaning of the phrase. Consider the phrase "student" with input logical represen-

tation student(X) and the phrase "student organization" with input logical representation

(here c(X,Y) denotes the relation between two words which are part of the compound

nomind). In the first case the word "student" can refer to a student recorded in the

database, whereas in the second case, it can be just a part of the expression referrirg to

some organization and does not introduce an identity of any student known to the database.

To distinguish between such cases, the restricted LDT can contain a negative Horn clause

in its negative theory. Then the assumption

can be used in axioms for translation of the word "student".

In comparison with the original LDTs for AET, restricted LDTs lack existential equiv-

dences arid functional simplifications (c.t section 2.4) that can be considered as a special

kind of axiom as well. On the other hand, we allow the use of existential equivalences and

functional simplifications in the PPLDTs.

Under assumption 3.5 that states that every input atomic formula can be translated into

a finite number of the output atomic formulas and under assumption that the translation

can be done in finite number of ways, the lack of existential equivalences does not decrease

the translation power of the system based on a iestricted LDT together with a PPLDT w.r.t.

the expressive power of the original LDT for AET. The reason is very simple. Suppose, that

3X.(P(X,Y)) can be translated into the formulas A1(Z) - -A,(Z) under the conditions

CI - - -C, respectively. In this case x, Y and Z can represent the vectors of variables. We

can create n output predicates, e-g. PI - P, and n rules in the restrichd LDT of the form:

and n rules in the output LDT of the form

3XPi(X, 2) r di(Z) for i = 1 - .n

It is easy t o see that using this construction we can achieve the same results as original 1,ll'f

for -4ET.

The situation with functional declarations is a little bit different. 14% did ltot find n

construction that will (even under the assumptions 3.4 and 3.5) create an equivdeilt thcury.

However, as Raper's thesis suggests, the functional declarations are import ant for t lw last

stage of translation where conceptual predicates are translated into database prei1ic.atc.s.

In our case, the iast stage of translation is handled by a PPLDT, wlrcre the functional

declarations are allowed.

Assumption 3.7 (Nonrecursivity) The LDT is nonrecursive.

The form of axioms declared by assumption 3.6 suggests that the preprocessing call he dotw

nsing SLD-resolution. Howewr, we restrict the theory even more to guaran tcc fi ni tencss o f

refutation trees.

Informally, a theory is nonrecursive, if for any set of facts, any atomic formula. ant1 any

Prolog-like derivation of the atomic formula in the LDT enhanced by the set of facts, there

is a Prolog like derivation of the same atomic formula in the LDT enhartced by thc s;trr~r?

facts, without a recursiw call

Example 3.3 Theory

is a recursive theory? because if the theory is enhanced by the facts

parent(john, joe)

p ~ e n t (j o e , f red)

PInforrndy, a Prolog program is a set of rules of the form

Both of them are called clawes. The latter are aiso d e d facts. a1 , a*, - . -a, can be cdld conditianw for
denration of a. Proiog can derive b m y time, kause there are no conditions associated with its dcsrivation.
In order to derire a, Prolog has to derive rrl first, then derive a2 and so on aod at the end Prolog kan to
diexiye a,. Derivation oi a can atso tre +wed as a call to procedure a with statements - . . a, that rc:prcskc:nt
calk to p d n r e s a1 - - - a, re%pectidyY A derivation Has a recursive call, if during the derivatian Yrrhp,
karr to %aW some procednre a that again iL& the same procedure a.

CHAPTER 3. RESTRICTED THEORIES AXD NORiWALIZATION

then it is not possible to infer uncestor(john, fred) without a recursive call. On

the other hand a theory

VX, E , Y, S.(db_course(Y, S) A dbstudent(X) +

(take(E, X, Y) r dblake-a-course(E, X, Y)))

VX, S.(assumption-course(S) 4

(unknown.-word(X, 5') r db-course(X, S)))

YE, X , Y.jdbiabe-a-co-wse(Ei, X, Y) t take(E, X, Y))

is nonrecursive. Even though recursive calls can be made within the theory e.g.

such recursive calls do not provide any new information. (e.g. from the fact

stzldent(john), using the above path it is possible to derive only that student(john)

znC dhtsident(jthn j. Remtsive calls derive information student(john) and

db-sludent(john) again and again, but such information can be derived without

them). a

The nonrecursivity requirement places quite strong condition upon the restricted LDT.

On the other hand, there is no need for recursivity in the above sense in the majority of the

practical applications. Even in the case when recursivity is needed, it can be simulated up

to a certain level by nonrecursive calls. Another possibility is to use more "intelligent7' (in

n sense described abok-e) database engines that will take care of the recursive computation,

when needed. The nonrecursivity co~straint has also an advantage of a simple implementa-

tim wlt,$i~ 2 ;rezs~r>~?g precdn~e.

AET does not place any requirement on the nonrecursivity of the LDT. On the other

hand, it uses certain heuristics to avoid infinitely recursive branches. T i e heuristics adds

penalties to the derivation of the gods that are subsumed by ancestors. Because a certain

cost, limit is assumed, this method can quite effectively avoid infinite loops [23].

CHAPTER 3. RESTRTCTED THEORIES AND NORItff4LIZATION

3.2.4 Definition of the Restricted LDT

In this section we shall provide a formal definition of the Restricted LDT. We shdl use the

terminology of [14]. For the reader's convenience, relevant terms are defined in a.ppcndis

A. First we define the terms derivation tree and recursive call. Before we present a formal

definition of the derivation tree, we show a simple example tha.t demonstrates the concept,

Example 3.4 Consider theory

and the goal t a and its SLD-refutation via R. The derivation tree for +- a is

shown in the figure 3.2

Figure 3.2: Derivation tree from example 3.4

Definition 3.1 (Derivation tree) Let

be an SLD-derivation via R of G with gods Go, GI,. *, clauses C1, G, and 8ubditutior18

fi? f2, - -. Then the derivation tree of the SLD-derivation via R of G is the graph (V , E)
defined as follows.

Let us assign a distinct namber to each atomic formula appearing in forrnzllas Go, C'I, CZ, '.
Then we assign a number to each atomic formula in GI,Gz, . . . according to the jollowing

prueeduw .

CfIAPTEEL 3 . RESTRICTED TI-PEO RIES AND NORMALIZATION

Suppose that

Gi =+- A1A2 - - - A n

and the numbers ussigned to the atomic formulas A1A2 . An are xlx2 . - . x,, Am is a se-

lected predicate (the predicate being resolved) and

(i.e. Am will be substituted by Bl . Bk) and the numbers assigned to the atomic formulas

B1 ...Bk are yl - - - y k . Then

And the numbers assigned to the atomic formulas in the goal

The set of vertices of the derivation tree V is the set of the heads of the program clauses

C1 fl , . - . . The set of edges E of the derivation tree contains a pair (P j , P;) of atomic

formulas Pi and Pj, i f Pi is a head of the clause C;, Pj is a head of the clause C j , and the

selected atomic formula in the goal Gi-1 has the same number as one of the antecedents in

fornzula C j .

Definition 3.2 (Recursive call) An SLD-derivation via R has a recursive call i f there is

ci path in the derivation tree of the SLD-derivation via R that contains two atomic formulas

utith the same predicate.

The next example shows an SLD-derivation via R that has a recursive call.

Example 3.5 Consider the theory

CHAPTER 3. RESTRICTED THEORIES AND NORlli.4LIZATION

the definite goal G

+ student(john)

and the SLD-derivation in figure 3.3. The number in ()-brackets nest to a,t,omic

formdas in the derivation is the number assigned by the definition of dcriv. a t' 1011

tree.

(G 3) emptyclause

Figure 3.3: An example of SLD - derivation

The derivation tree for the SLD-derivation is depicted in figtire 3.4. It is

obvious that the derivation tree has a path that contains two atomic formulas

with the same predicate (student) therefore the SLD-derivation has a recursive

call.

Figure 3.4: An example of derivation tree

CHAPTER 3. RESTRICTED TZEORIES AND NORMALIZATION

With recursive call being defined, the following definition formalizes the concept of

nonrecursive theory that was informally presented in assumption 3.7.

Definition 3.3 (Nonrecursive theory) A finite set of definite program clauses T is a

nonrecursive theory, i f for each definite goal G, set of facts S and S~D-derivation of T U S U

{ U) via R, there is an SLD-derivation of T U S U {G) via R that does not have a recursive

call.

Now we are at the point where restricted LDT can be defined. A restricted LDT is a

structure consisting of the positive and negative logic theories, sets of input, assumption

and output predicates and the dictionary of the input and output formulas that satisfies

assumptions (3.4) - (3.7).

Definition 3.4 (Restricted LDT) The structure

T = (Input, Output, Assumption, Pairs, PositiveTheory, NegativeTheory)

is called a restricted LDT, ifi

Input, Output and Assumption are mutually disjoint sets of predicates

Pairs is a set of pairs of ground atomic formulas of the form (I , 0) , where the predicate

of the atomic formula I is a member of the set Input and the predicate of the atomic

formula 0 is a member of the set Output

0 PositiveTheory is a set of formulas of the form

where PI . . P, and Q are atomic formulas, the predicate of atomic formula Q cannot

be a member of the set Assumption

a The set PositiveTheory is nonrecursive.

0 NegativeTheory is a set of f o m d a s of the form

CHAPTER. 3. RESTRICTED THEORIES AND NORMA LIZ.4TION

where PI . P, are atomic formulas whose pwdicates are not mernbera of the set

Assumption and the predicate of atonzic formula Q a's a menzber. of the set ilsszi~rrptiolz;

or of the form

(Q)(Xl . . Xn # frl . -1%) -+ (P -+ 7Q)

where # means not equal and P and Q are atomic formtrlas whose prcdiccntcs a t u s

members of the set Assumption. Other occurrences of predicates of atomic Jormubtas

P and Q are restricted only to the condition part of Horn clauses of PositiueTheory

We shall call members of the set Input input predicntes of the theory T , rnenibcrs of thr

set Output output predicates of the theory T and members of the set Asst~rnption nssnmption

predicates of the theory T . If the contest assumes only one restricted LDT, then we omit the

clause "of the theory T". Similarly atomic formulas that contain input predi~a~tes, output

predicates or assumption predicates (of the theory T) are called input atomic formulas,

output atomic fornzulas or assumption atomic formulas (of the theory T) . We slrilll aJso

refer to any logical consequence of PositiveTheory as a logical consequence of T,DT T.

Note, that the set of pairs was defined as a set of pairs of ground atomic formulas, yet wc?

require the set to cover all possible cases of translation. Thanks to the generalization rulc

of first order logic that allows us to conclude QX.A(X) from the formula A(x) if constmt

x does not occur in the theory, this is not an issue. If the system derives any results that

contain constants not occurring in PositiveTheory or NegativeTheory, such results can he

generalized. As an example consider pair (a(%, y) , b (z , y)) and

PositiveTheory = {a(x, 1') - c (z , Y) , c (z , Y) EE b(x, Y))

We can derive equivalence a(x, y) r b(x, y) that can be easily generalized into VY.(u(x, Y) r

b(x, Y)).
The requirement of ground pairs was adopted to make technical details of the normal-

ization algorithms simpler.

Throughout the informal parts of thesis, we shall use the generalization rule often irn-

plicitly, when speaking about the results of the normalization process.

3.3 Normalized LDTs

Having defined restricted LDTs, it is time to say what to do with them. 111 this section,

we present the term normalized LDT and also provide a motivation for the definition. As

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

was shown in the example at the end of the section 3.1, a normalized LDT is just a set

of rules that will provide almost direct translation from input predicates at one end to the

predicates closer to the database on the other.

The result of the normalization of the restricted LDT is in our case a set of quadruples

(as was described in section 3.1) of the form

where Pl - . - Pn and I are input atomic formulas, 0 is an output atomic formula predicate,

Al . . . A, are assumption atomic formulas and the pair (I , 0) was specified in the dictionary.

Formula PI . - . Pn corresponds to the positive pattern of the input language, the negation of

the formula Al - A, corresponds to the negative pattern of the input language, formula I

corresponds to the input word, and formula 0 corresponds to the output word. The idea is

that a quadruple (3.23) can be used in a similar way as the conditional equivalence of the

form

would be used in the AET process. That is, an input atomic formula I can be translated into

an output atomic formula 0, if the conjunctive context associated with the atomic formula

I can prove input formula PI . - -P, and does not contradict the assumptions A1 . . A m .

The natural condition for quadruple (3.23) occurring in the result of the inflation process is,

that (3.24) is a logical consequence of the restricted LDT. Therefore we impose condition

3.1 upon the quadruples that belong to the normalized LDT.

Condition 3.1 If quadruple

belongs to the normalized LDT, then

is a logical consequence of the restricted LDT.

For the simplicity of explanation, now suppose, that there are no abductive assumptions in

the theory. Let us consider the following example.

CHAPTER 3. RESTRICTED THEORIES -4ND NORklALfZATfON

Example 3.6 Suppose thax an LDT contains the following specifca,tions:

Input predicates: { h , i2}

Output predicates: (0)

Assumption predicates: {}

Logic: i l A i2 E o

Dictionary: (i l 7 0)

(i2,o)
Then it is reasonable to demand that the normalized LDT would contain quadru-

ples
(i 2 , true, i l , o)

(i l , true, i2 , 0)

If the only logic condition presented upon the resulting quadruples was condition

3.1, then the translation power of the normalized LDT itself would be very weak.

There is simply no way to infer that formula i l A i2 of the input language is

equivalent to the formula o using only information provided by the results of the

normalized LDT. This is because formula i l A i2 r o is not a logical consequence

of the theory that contains nonlogical axioms

i2 + (i l z 0)

i (i 0)

However, if we add the axiom

we can obtain expected results. Similarly, axiom

will have the same effect.

This example motivated us t o formulate condition 3.1

Condition 3.2 ff quadruple

(PI . .Pn, true, I , 0)

belongs to the normalized LDT, then

(0 + 1)

is a logical consequence of the restricted LDT.

CffAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

Note, that this condition is possibly stronger than required. The condition 3.2 postulates

that both axioms (3.25) and (3.26) have to be present, but either one of the axioms (3.25)

or (3.26) is uable" t o prove the desired results.

Condition 3.3 generalizes condition 3.2 in the case of the abductive assumptions present

in the system.

Condition 3.3 If quadruple

belongs to the normalized LDT, then

is a logical consequence of the restricted LDT.

We consider conditions (3.1) and (3.3) as necessary conditions needed to provide the

normalized LDT with approximately the same translation power as the original one. The

following definition summarizes the above discussion by defining Conditional Equivalence

w.r.t. a restricted LDT named T , which we shall abbreviate CE(T).

Definition 3.5 Conditional Equivalence w.r.t . RLDT T (CE(T))

Let T be u restricted LDT

T = (Input, Output, Assumption, Pairs, YositiveLogic, Negativelogic)

Then the quadruple

(PI - -P , ,A1-Am,I ,O)

is a CE(T) if the following is true:

pair (I , 0) belongs to the set Pairs

predicates o j atomic jormulas PI . . P, are members of set Input

predicates of atomic formulas A1 . . .A , are members of set Assumption

formulas

@')Al . . Am A PI - . - P, 4 (I r 0)

(V)Al - . .Am -* (0 -t I)

are logical consequences of the PosiiiveLogic.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

There is, however, one more issue we would like to address w.r.t.. results of the normid-

ization process. Consider theory

(If it is safe to assume that if S represents a person's name, then we caa c.ortsider

X to really represent a person)

(Word apple always refers to the apple stored in a database)

In this case the following formulas are (undesirable) logical consequences of the L13'1':

therefore formula

is also a logical consequence, so the quadruple

should be present in the result of the normalization of the LDT. In this case, the prohlorn

occurs when the condition of the resulting conditional equivalence (e.g. applc(X) A u(X))

together with the LDT can prove truth of both of the input and output words (e.g. formulas

person(X) and db-apple(X)). That is, the condition (apple(X) A a(X)) does not imply the

equivalence in the sense we might expect - input and output words have the same rneanit~g

- but rather, that input and output are true. We consider such equivalence to be useless for

the translation process, and define the term nontrivial conclitionul equivalence, abhreviatcd

NCE, that takes this problem into consideration,

Definition 3.6 Nontrivial Conditional Equivalence w .r.t . RLDT T (NCE(T))

Let T be a restricted LDT

T = (Input, Output, Assumption, Pairs, PositiveLogic, NeyativeLogic)

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

is a NCE(T) if the following is true:

formulas

are not logical consequences of the PositiveLogic

Now we are at the point where we can define terms normalized LDT and generalized nor-

malized LDT w.r.t. restricted LDT T. The term generalized normalized LDT formalizes the

idea of using pairs of ground atomic formulas to produce more general rules where some of

the constants from the pairs are substituted by unique variables. (cf, end of section 3.2)

Definition 3.7 Normalized LDT w.r.t. to RLDT T (NLDT(T))

Let T be a restricted LDT. Then NLDT(T) is a set of CE(T)s such that for every

N C E (T) = (PP, AA, I , 0)

there is a

C E (T) = (PP', AA', I , 0)

from NLDT(T) and a substitution g such that

P P A AA -+ PP'g A AA$

Definition 3.8 Generalized Normalized LDT w.r.t. to RLDT T (GNLDT(T))

Let T be a restricted LDT

T = (Irkput, Output, Assumption, Pairs, PositiveTheory, NegativeTheory)

T' be an NLDT(T). Let 7''' be a set of all quadruples occurring in TI, where all occurrences

of constants in Pairs that occur neither in PositiveTheory nor in NegativeTheory are

sabstituted by variabkes. The substitution maps the occurrence of the same constants to the

same variables and occurrences of diflerent constants to diflerent variables. Then T" is a

genemlized normalized LDT w.r.t. RLDT T.

CHAPTER 3. RESTRICTED THEORIES AND NOR?/IALIZATION

In the rest of the thesis, if the context assumes only one R.LDT T, we omit the c1a.use

"w.r.t. RLDT T" from above defined terms and write simply conditional equivdence (CE),

nontrivial conditional equivalence (NCE), normalized linguistic domain theory (NLDT) and

g 2neralized normalized LDT, (GNLDT).

3.4 Normalization Algorit lims

3.4.1 Overview of the Algorithms

There are two algorithms that take care of the normalization process: the conditions con-

struction algorithm and the conditions combination algorithm. The condition conatruction

algorithm, given a certain type of logic theory T, goal Q and a set of predicates P r , finds

all possible conditions that consist of atomic formulas with predicates from Yr s.t. the

conditions imply the goal Q. The conditions combination algorithm uses the conditions

construction algorithm to construct normalized LDTs. In this subsection, we shall describe

the motivation for their behavior and a simple example.

All quadruples from a normalized LDT have associated formulas of the form

where I, Il . . . I . are input atomic formulas, A1 . . Am are assumption atomic formulafi arid

0 is an output atomic formula. The formulas (3.27) and (3.28) are logical consequences of

the PositiveLogic. It is easy to see that a theory containing formulas (3.27) and (3.28) i~s

equivalent to the same theory where the formulas are substituted by the formulas (3.20)

and (3.30).

This means that for each CE there are two Horn clauses. The first one has an output atomic

formula as its head and has a body consisting of input and assumption atomic for rnul~ ,

and the second one has an input atomic formula as its head and has a body con~ieting of

assumption atomic formulas and an output atomic formula. This simple fact is used to

produce results that satisfy the dehition of CE from the previous section.

CEfA P T E R 3. RESTRICTED THEORIES AhTD NORMALIZATION

Given a pair (I, Oj, the conditions construction algorithm is run twice to find two sets

SO and SI. Set SO contains axioms of the form (3.31):

where R1 . - R, are input or assumption atomic formulas, and set SI similarly contains

axioms of the form (3.32),

where Q1 . - . Ql are assumption atomic formulas or output atomic formulas with the same

predicate as 0. Note, that the formulas (3.31) and (3.32) are simi1a.r to the formulas (3.29)

and (3.30). Naturally, we require all axioms in the sets to be logical consequences of the

PositiveLogic. The sets are finite and they also cover all possible cases that can be derived

in the LDT. The latter requirement does not mean that the sets contain all possible cases.

AU we need is that if there is a formula of the form (3.31), that is a logical consequence of

the theory, then there is an axiom in the set SO whose condition is equal or weaker. The

same is true about the axioms of the form (3.32) and the set SI.

The condition combination algorithm then combines sets SI and SO to obtain the CEs

of a normalized LDT.

The combination process is again based on the equivalence of formulas (3.271, (3.28) and

(3.291, (3.30).

Example 3.7 As an example consider the restricted LDT

(Input, Ouiput? Assumption, P a i ~ s , PositiveLogic, NegativeLogic)

where

CHAPTER 3. RESTRICTED THEORIES ARD NORM.4 LIZ4 TION

Input = { i1 , i2 , i3)

O U ~ P U ~ = {ol , 0 2 , 03)

Assumption = { a)

Pairs = { (i l , 01 j, (i2,02), (i3,03))
21 ?z 0 1 PositiveLogic = ..

a -+ (i z r 02)

0 1 -+ ml

0 2 -+ m2

ml A m2 -+ (i3 - 03)

a A ml -+ (i3 03)

03 4 i3

NegativeLogic = {I
Using the example, the sets produced by the conditions construction algo-

rithm for the pair (il: ol) are

SOI = {i l -+ 01)

SI l = {ol - i l)

for the pair (i2, 02j are

SO2 = { a A i2 -' 02)

S12 = {a A o2 + i2}

and for the pair (i3, 03) are

SOa = { a / \ il A iz A is -i 03,

a A il A i3 -+ 03}

S13 = {a - i3)

Notice how these sets contain only the input, output and asmniytiorl pred-

icates, and none of the intermediate predicates ml, or m.2. Tlml for each pair

(I , 0) from the set of pairs, corresponding sets SI arid SO are combineci using

the conditions combjnation algorithm to produce C Es

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

3.4.2 Condition Construction Algorithm

The conditions construction algorithm that constructs sets S I and SO is very similar to the

Prolog meta-interpreter 1181, [26]. The input to the algorithm is a nonrecursive theory T, a

finite set of predicates Pr and a ground atomic formula Q. Given a pair

(In,putAtomicFormuta, OutputAtomicFormula)

from the dictionary of a restricted LDT, the algorithm is called with

16 = PositiveTheory

Pr = Assumption U Input

Q = OutputAtomicFormula

to construct the set SO, and with

T = PositiveTheory

Pr = Assumption U (Predicate of OutputAtomicFormula)

Q == InputAtomicFormula

to construct the set ST. The algorithm tries to prove the formula Q using the theory T.

Whenever the algorithm needs to prove an atomic formula with the predicate from the set

of predicates Pr, the algorithm either puts the formula aside and considers it to be proven

or tries to prove it using the theory T . If the proof of the formula Q is done, the Horn

cfause, whose condition consists of dl atomic formulas that were put aside and whose head

is equal to Q, is placed into the output set S, The algorithm then backtracks until there

are no other possibilities for proving the atomic formula Q. The algorithm also makes sure

that there are no recursive calls within the PositiveTheory of the restricted LDT during

the derivation of the conditions.

A Prolog version of the dgo~itlrm will be presented in section 3.5.

Algorithm 3.1 Conditions Construction Algorithm

Input: nonrecwsiee theory T , finite set of predicates PT, ground atomic fornula Q

CHAPTER 3. RESTRICTED THEORIES AND ATORRff4LIZATION

Output: Set S of formulas F of the form.

F = Pl...P,--+Q

where PI - - - P, are atomic formulas and predicates of PI . - . P, belong to Pr , s. t.

T + F (soundness condition)

T j= P ; - - . P ~ -+ Q

then there is a formula F from S and a substitution f s.l.

(VIP; . - - PA -+ (PI - . P, f) (completeness condition)

Algosit hm:

1. Create set TI1 of atomic formulas R the following way. For each predicate I'

from the set of predicates Pr construct an atomic formula R, whose prcrlicc~tc

(and arity) correspond to P and whose arguments are unique variables.

Construct program T' = T U TN

2. Construct Q partial SLD-tree via R for -+ Q in TI which is equivulent lo Ihe wlzoli:

SLD-tree via R for i Q in TI , but all branches leading to SLD-derivt~tio7c.r. roidh

recursive calls are cut ut the point where the recursive call occurs.

3. For each success branch in the part of the SLD-tree which corre~ponrls lo the

derivation

7 Q,G1. . .Gn;CI . . .Cn; f i - . * fn

insert the rule

into the resvlt set S , where the sequence PI -. - P, corresponds to those elernenta

of {clfi---fn.-- Cn fi - - f,) whose Ci does not occur in T .

CHAPTER 3. RESTRICTED THEORIES AND NORAlALIZATION

A proof of correctness for the algorithm can be found in appendix A.

The following example shows a run of the algorithm step by step.

Example 3.8 Suppose that

Step 1. The theory T i is assigned the following atomic formulas:

(We suppose th-<t i1 and i2 are predicates of arity 1.)

Step 2. All possible branches of the SLD-tree are depicted in figure 3.5

i2(a) unsuccessful m branch

(branch 4)

cut success success
leads to recursive call (branch 2) (branch 3)

(hmch 1)

Figare 3.5: SLD - tree for example 3.8

Step 3. In this step the algorithm inspects branches 2 and 3. Branch 2 cor-

responds to the derivation where Cl = i l (X) 4 o (X) and C2 = il(X).

The algorithm picks some of the members of the set {Clf1,f2, C2flf2). Cl

CHAPTER 3. RESTRTCTED THEORIES AATD NORn(fALIZAT1ON G2

occurs in the original theory T, so only member C2 fl fi = il (n) of the set

is considered and formula il(n) t o(a) is inserted into the resulting set S.
Similarly after inspection of branch 3, i2(n) --+ o(a) is inserted into set S.

3.4.3 Conditions Combination Algorithm

After the sets SO and S I are constructed using the conditions construction algorit4hm for

ea.ch pair (I , 0) with input and output assignments

and

PositiveTheorg

Assumption U Input

0

SO

PositiveTheory

Assumption U {Predicate of 0)

IF

S I

results S I and SO can be combined in the following way. Suppose that tile formulaii of

the forms (3.33) and (3.34) are members of the sets SO and S I respectively or that such

formulas can be constructed out of two members of the s eu SO and SI by applying n

substitution. (Note, that although set SO can contain Horn .lauses with the head equal to

0, the body of such Horn clauses can contain formulas that are subsumed by the atomic

formula I).

Suppose, that Ri - - - R: are input atomic formulas and - - . R& are assumption atomic

formnlas. The formulas (3.33) and (3.34) are logical consequences of the PositiveTheory

of the LDT. Then the formulas (3.35) and (3.36) are also logical consequences of the ciame

LDT.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

If Qi . . .Qi happen to be assumption atomic formulas, the quadruple

(R: . - -R: ,R:+, - - -R; r \Q' , - - .Q{ , l ,O)

is a CE and becomes a part of the normalized LDT.

Algorithm 3.2 Conditions Combination Algorithm

Input: A restricted LDT

(PositiveLogic, NegativeLogic, Input, Output, Assumption, Pairs)

Output: Set S of CEs s.t. i f there is a NCE

(PP', AAt, I , 0)

from the set S and a substitution f s.t.

Algorithm:

1. For each I , set. there is a pair (I , O) that belongs to Pairs Tun the conditions

construction algorithm, where

T = PosidieteTheory

Pr = Asswnption U (Predicate of OutputAtornicFo~rnula)

Q = I t i p t Atm9cFurmula

s = '$1

Construct the set SI that is the uraion of the results of the conditions construction

algorithm.

CHAPTER 3. RESTRICTED THEORIES AND NORM4LIZATION 64

2. For each 0 s.t. there is a pair (I , O) that belongs to Pairs, run the coraditions

construction algorithm, where

T = Positivelogic

Pr = Assunzptim2 U Input

Q = O~utputAtomicFornzzLfa

S = SO

Construct the set SO that is the union of the 1-esuEts of the conditions constractiorl

algorithm.

3. For each pair (I, 0) from Pairs do

for each fornula F of the form RI1 . .R , -+ 0 from SO do

for each formula F1 of the form Q1 . . .Qr -+ I from S I , where

predicates of Q1 - - - Ql are assumption predicates or are equal

to predicate of atomic formula 0 do

4. for all nonempty subsets S R of the set of fornzulus { R1 . + -
R,), s.t. there is a 4n.g.u. r of members of S R and I do

for all subsets SQ of the set of formulas {Q1 - Ql) that
contain all atomic formulas wilh predicate of 0, s. t . there

is a m.g.u. q of the members of SQ and 0 d o

i f the variables from formulas R1 . . . R, are not diflerent

from variables Q1 . . - Ql then apply the renaming substi-

tution.

Construct sets

RR' = {R1 - - -R,) - SR

QQ' = {Qx - - - QI) - SQ

Construct a CE (PP, AA, I , O), where YP are all

atomic formulas with input predicates from CC and

CIIAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

A A are all atomic fomulas with assumption predicates

from CC.

A proof of correctness for the algorithm can be found in appendix A.

The following example shows the operation of the algorithm on a very simple LDT.

Example 3.9 Suppose that

PositiveLogic = { i l (X) A i (X , Z) A i2(Y) A i (Y , 2) -, o (Z)
a (Z) A o(Z) -, i(W, 2))

NegativeLogic = {}

Input = {i , i l , i2}

Output = (0)

Assumption = {a)

Pairs = { (i (z , a) , o(z)f }

Steps 1 and 2 Sets SO contains axiom (3.37)

il (X) A i (X , z) A i2(Y) A i (Y, z) -, o(z)

and set SI contains axiom (3.38)

Steps 3 and 4 Set SR and substitution r iterates through values

S R = { i (X , z)) for r = { X / z)

S R = {i(Y, z) } for r = { Y / x }

S R = { i (X , z) , i (Y , z)) for T = { X / z , Y / z }

from axiom (3.37) whereas set SQ and substitution q can have only one

d u e :

SQ = {o(z)) for q = {}

So the normalized LDT will contain these CEs

CHAPTER 3. RESTRTCTED THEORIES -4ND IVORM.4LIZATIOXr

3.5 Implement at ion of Normalization

3.5.1 Complex and Simple Theories

The design of the whole system allows the designer to structure the knowledge of tltc sc-

OllCS. mantic part of the interface into simple theories that can be combined into comple.:

This design allows one to posit axioms, that are visible within the simple theory, but ca~inot

be reached from other simple theories or from the complex theories, This is similar to Ilw

modularization and information hiding in computer programs which has clear advantages

from the software engineering point of view. The idea of dividing knowledge into smdlcr

theories was used also in [13].

Another advantage of the design is demonstrated by the following example.

Example 3.10 Suppose, that we would like to talk about persons, students

and student numbers. Then we can simply posit an axiom:

that allows us to infer that the expression "John's student number" refers to the

same thing as the expression "John's student id7'. Similarly "person's number"

is the same as "person's id". But this is not true in general. E.g. "John's

phone number" is not the same as "John's phone id". The architecture makes it

possible to express axioms similar to (3.39) without need to describe complicated

conditions under which the axiom can be used. m

We propose an implementation in which the restricted LDTs contain not only the parts

described in the formal definition as

(Inpat, Output, Assumption, P a i ~ s , PositiveTheory, NegaliveTheorg)

but also a list of names of theories whose knowledge is inherited, so the theories can be ar-

ranged as an inheritance hierarchy. Each theory can inherit some information from arbitrary

nnmber of other theories and the information (or part of information) from each theory cart

be inherited by an arbitrary number of other theories. The only condition impowd on the

inheritance hierarchy is acyclicity.

The following example shows two simple RLDTs TI and G, and a complex RLDT 7'.

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

Example 3.11

TI : Input = { a d

0 utput = {bl}

Assumption = {}

Pairs = ((a h b1)I

PositiveLogic = (al r bl)

NegativeLogic = {}

T2 : Input = (a21

0 utput = {bz}

Assumption = {}

Pairs = {(a2,b2)}

PositiveLogic = {a2 s b2}

NegativeLogic = {)

T : Inherits = {T1,T21

Input = { a ~ , a21

O-rttpt = (b)

Assumption = {}

P U ~ T S = ((("'17 b) 7 (~ 2 7 b))

PositiveLogic = {bl r b, bz = b)

NegativeLogic = {)

The algorithms that take care of the complex theories are the same as the algorithms

described in section 3.4. The only difference is that during the normalization of the complex

theory, the partial results from normalization of inherited theories are used. So in example

3-11 theory T inherits partid res1dts from theories TI and T2. The partial results we have

in mind here are the sets SO and $1 constructed by the steps 1 and 2 of the conditions con-

struction algorithm. Recall that the set SO constructed during the step 1 of the conditions

combination algorithm contains all possible formulas of the form

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 68

where 0 is an output atomic formula mentioned in the set Pairs and R1 . . - R,, ase a.ssump-

tion or input atomic formulas. Similarly set S I contains forn~ulas of the form

where Q1 . . Ql are either assumption atomic for~nulas or a.tomic formulas with the same

predicate as output atomic formula 0 for all pairs (I , 0) in the Pairs.

Example 3.12 As an example consider theories T I , T2 and T from example

3.1 1. During normalization of theories TI and T 2 , the conditions combinat;ion

algorithm produced intermediate results

During the normalization of the theory T , axioms in sets S I ; , 5'0'1, SI ; and

SO; can be used together with the axioms of PositiveTheory of RLDT %. cl

The NegativeTheory together with possible assumption declarations and functio~lal

declarations of the RLDT are inherited without any preprocessing.

Although the conditions construction algorithm and the conditions combinat ion alp-

rithm obviously preserve the soundness conditions while working with the inheritance hicr-

archies of theories, the completeness condition cannot be generalized easily.

3.5.2 Implementation of Normalization Algorithms

The implementation contains three logical parts that correspond to the simple preprocessirrg

of conditional equivalences and the two algorithms described in the section 3.4.

Preprocessing of Conditional Equivalences

The formal definitions of the restricted LDTs and normalization algorithms asurnc, for

the purposes of simpler explanation, positive theories containing strictly Horn clauses. The

CHAPTER 3. RESTRICTED THEORIES AND NORA4ALIZATION 6 9

implementation, on the other hand, allows the definition of axioms of the PositiveTheory in

the form

The preprocessing utilizes an equivalence mentioned in section 3.2 between conditional

equivalences like (3.40) and the following Horn clauses

Example 3.13

The set of axioms

is preprocessed into the set

CHAPTER 3. RESTBICTED THEORIES AND NORMALIZ4TION

3.5.3 Implementation of the Conditions Construction Algorithm

Given a set of Horn clauses T, set of input predicates Pr and a ground atomic formula Q ,

the conditions construction algorithm finds patterns of every possible condition ~lzade from

atomic formulas with predicates from the set P r , such that the ground atomic formula lmlils

in the theory T. We proved that this can be done by searching all successfiil branches of

an SLD-derivation tree with no recursive calls as described in section 3.4. To explain the

implementation, we first present the algorithm that searches the SLD-derivat.ion trcc givcn

a theory T and ground atomic formula Q. The next step will be an algorithm that cuts

recursive branches. Then we extend the algorithm to search the SLD-derivation tree given

the theory that contains all axioms from T and all variants of input predicates from P r . At,

the end of this section we show a schema of the final implementation of the algorithm that

also collects the conditions.

Because the main part of the algorithms used during the normalization process is based

on unification, we have chosen Prolog to be a programming language of implementation.

We assume that reader is familiar with the basic concepts of this programming language.

(A good introduction can be found in [26]).

For demonstration purposes, we assume that for each Horn clause from the theory T of

the form

Body -. Head

there is an asserted clause:

implicat ionInTheory (~ead , Body) .

if body is nonempty and asserted clause:

If the body is empty.

?Ve also assume that for each element J of the set Pr of input predicates, there is asserted

dause

The search for successful branches of derivation tree is based on the Prolog rneta-

interpreter as presented in ([26], [I$]).

CHA PTER B. RESTRICTED THEORIES A h 9 NORMALIZATION

prove(L and R) : -
prove (L) ,
prove(R) .

prove~tomic~ormula~F) :-

implicationfnTheory(F, Body) ,

prove (Body) .

Predicate prove(0) succeeds, whenever a successful branch in the SLD-derivation tree

of 0 is found. Now we add an argument Nodes that keeps track of visited predicates and

prevents the current branch from being expanded if a recursive call occurs. The collec-

tion Nodes was implemented as a list although many other implementations are possible.

Predicate predicateCF, P) succeeds iff P is a predicate of atomic formula F.

prove(L and R, Nodes) : -
prove (L , Nodes) ,
prove (R, Nodes) .

prove@, Nodes) :-

atomicFomula(F).

prove~tomicFomula(F, Nodes).

proveAtomieFormula(F, Nodes) :-

CHAPTER 3. RESTRICTED THE O N E S A hrD NORM.-i LIZATION

% check nonrecursivity

predicate(F, PI,

non-member(P, Nodes),

% call the prover

proveAtomicFormula-l(F, Nodes, P).

proveAtomicFormula-l(F, Modes, P) :-

implicationInTheory(F, Body) ,
prove (Body, [P I Nodes]) .

Then the program was altered to search the SLD-derivation trcc of 0 using t.11cory T

enhanced by all possible variants of predicates in I. This was acllieved by adding i i n ~ t , l ~ c . r

clause to proveAtomicFormulal(F, Modes, P) that allows the proof of an atomic forrnnlir,

whose predicate is a member of I for "free".

prove(L and R, Modes) :-

prove(L, Nodes),

prove(R, Nodes) .

prove(F, Nodes) :-

atomicForrnula(F) ,
prove~tomicForxnula(F, ~odes) .

provehtomicFomuiai1, lodes) :-

% check nonrecursivity

predicatecf, P),

non-rnernber(P, Nodes),

2 call the prover

CHAPTER 3 . RESTRICTED THEORIES AiND NORMALIZATIOAT

proveAtomicFormula-1(F, Nodes, P) .

prove~tomicForm~tla-1 (F, Nodes, P) : -
implicat ionInTheory (F , Body) ,
prove (Body, [P 1 Nodes]) .

The last change to the program involves collecting all leaf atomic formulas used in the

derivation that were produced by t*he added clause. The predicates

prove(F,LeavesIn, LeavesOut, Nodes)

and

provehtomicFormula(F, LeavesIn, LeavesOut, Nodes)

search the SLD-derivation tree and whenever a successful branch is found, all such leaf

atomic formulas are added to the list LeavesIn to produce a list LeavesOut.

X The prover is called with "Nodes" instantiated to "U" and
% LeavesIn instantiated to "D",
prove(F, Leaves) :-

prove@, G, Leaves, Oj.

prove(L and R, LeavesIn, LeavesOut, Nodes) :-

prove(L, LeavesIn, Leaveslext, lodes),

prove@, Leaveslext, LeawesOut, Nodes).

CK4 PTER 3. RESTIUCTED THEOHES -4ND NORMALIZATION

prove(F, LeavesIn, LeavesOut, Nodes) :-

atomicFo~ula(F),

proveAtomScFormula(F, LeavesIn, LeavesOut, Nodes)

proveAtomicForrnuLa(F, LeavesIn, LeavesOut, Nodes) :-

% nonrecuzsivity check

predicate f F, P) ,
non,membex(P, Nodes),

% call the prover

proveAto~icFomula,1(F, LeavesIn, LeavesOut, Nodes, P).

~ro~eAtonicFomul,4~?-(F, Lea~.esIn, LsavesOut, Nodes, B) :-

implicationInTheory(F, A) ,
prove(A, LeavesIn, LeavesOut, [P 1 Nodes]).

proveAtomicFormula,1(F, LeavesIn, [F ILeavesInl, -, P) :-

inputPredicate(P).

3.5.4 fmpleme~kation of the Conditions Combination Algorithm

Before we describe the conditions combination algorithm, we define forward and backward

readings of condi tioml equioalences .
Givea a coirditio~J q ~ t d e n c e of the form

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

we shall call the formulas
PI - . .P, A R 1 - - . R m --+ Q1

. . .
Pl...Pn A R ~ . - . R , --+ Ql

forward readings of the conditional equivalence (3.41) and formulas

backward readings of the equivalence. This distinction together with a simple convention of

writing atomic formulas with predicates that are "more lexical" on the LHS of conditional

equivalences allows us save some time and energy while constructing normalized theories.

The idea is that forward readings of the conditional equivalences are much more likely to

be used while proving output atomic formulas whereas backward reading of equivalences are

much more likely to be used while proving input atomic formulas. We would like to exploit

this possibility to cut the size of theory in half during the steps 1 and 2 of the conditions

combination algorithm.

While deriving alI possible conditions for an output atomic formula 0 during step 1 of

the conditions combinaiion algorithm, only forward readings of equivalences together with

the result sets SO: - -SO; of the same step 1 of the conditions combination algorithm from

the processing of inherited theories TI . - - T, are used.

Similarly during derivation of the conditions for an input atomic formula during the step

2 of the condition combination algorithm only backward readings of the equivalences and the

results SIT: - . - SI; of the theories TI - - .T, are used. The following example demonstrates

the point.

CHAPTER 3. R E S T R f C T E D THEORIES A N D NORAf.;ILTZATlON

Example 3.14

TI :

Input = { a l)

Ou,tput = { b l)

Assumption = {}

Pairs = ((d l , b l))

PositiveLogic = {al b l)

NegativeLogic = {}

Input = { a 2)

Output = {b2}

Assumption = {}

Pairs = { (a2 , b z))

PositiveLogic = {a2 r b2)

NegativeLogic = {}

Inherits = {T1 ,T2)

% we suppose, that theory T

% inherits partial results from

% theories TI and 7;

Input = {a l ,a2}

Output = { b)

Assumption = {}

Psi.. = { (a h b), (a2, b) }

PositiveLogic = {bl - b, b2 r b)

NegativeLogic = {}

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION

During normalization of theories TI and T2, the conditions combination al-

gorithm produced intermediate results

To normalize theory T , the algorithm has to compute set SO of patterns of

conditions for atomic formula b and sets SIl and S12 of patterns of conditions

fur atomic formulas a1 and aa.

For computing the set SO, the conditions combination algorithm calls con-

ditions construction algorithm with the following assignment in step 1:

T = {

a1 -+ b17 % from SO:

a2 --, b2, % from so;
bl - b, b2 -+ b % as forward readings

% of the equivalences from theory T

1
I = {a1 , a21

S = SO

Similarly, the set SI is constructed b y a call to the conditions construction

algorithm using the assignment:

T = (

bl -, a1 % from set SI;

b2 + a2 % from set SI;

b -, bl, b -, b2 % as backward readings of

% the equivalences from the theory T

1
I = (b)

S = SI

CHAPTER 3. RESTUCTED THEORIES AND NORA444LfZATION - 1
I b

A similar approach was taken in 1231, where only forward readings of the conditional equiva-

lences were used during the justification of the conditions of conditionaj equiv;tlcnct.s during

the translation process.

The implementation contains a switch that dows the designer to choose one of the two

possibilities. If the switch is on, the above mentioned distinction between the forward and

backward readings of equivalences is made: forward readings are used during the constrirc-

tion of the set SO, backward readings are used during the construction of the set $1. If the

switch is off, both readings are used all the time.

3.5.5 Simplification of the Results

All resnlts from the conditions construction algorithm and conditions combination algorithm

are checked in two aspects - for permissibility of assumptions and for redundancy of rules.

Permissibility of assumptions

Whenever the conditions construction algorithm generates a Horn clause of the form

where A1 . . A, are assumption atomic formulas, I, Il - . -1, are input atomic formulas and

0, O1 - - - 0, are output atomic formulas, each assumption atomic formula A; is checked for

its permissibility w.r.t. N egativeTheo~y and the set of atomic formulas

respectively.

We consider assumption A; t o be nonpermissible if there is a formula in Neyative'i'heorg

from which it directly follows that -Ai holds in

CHAPTER 3. RESTRICTED THEORIES AND NORMALIZATION 79

Speaking more precisely, Ai is nmpermissible w.r.t. to Negativflheory and the set of

atomic formulas S if there is an atomic formula F from the set S, substitution g and

formufa of the form

('d)(Xx---xk f Yl - " f i) 4 (A: 4 1F')

or

('J)(xl.**Xk # & --*&) 3 (F' 4 -LA:)

from NegcttiveTheorg s.t ..

A:$ = A;,$''$ = F and XI-..Xkg # Yl...Ykg

or if there is a subset, {Fl . - Ft) of S, substitution g and formula of the form

(V)EI. . F; -, 1A;

from NegativeTheory s-t.

Similar checks are performed on the results

of conditions combination algorithm.

Redundancy

It is ubvious that if there are two rules with the same conclusion and the condition of the

first rule is stronger than the condition of the second rule, then the first rule is redundant

and can be removed from the resulting set. The redundancy simpfification is performed on

the results of both the condition cunstmction and combination algorithms.

MTe consider condition PI - - P, stronger than condition Q1 . . *Q, if there is a substitu-

tion j s-t. {Q1 ...Q,)f is asubset of (Pl.-.P,).

3.6 Summary

In this chapter we introduced a restricted version of LDTs as logic theories that describe

the relationship between input, atomic f o m d a s representing words of the natufd kmguage

CHAPTER 3. RESTRICTED THEORTES AND NORAL4LIZATIOM

input in their context, and the output atomic formulas representing correspondenct to the

database. We have also shown that the restricted LDTs can be normalized, i.e. given n,

restricted LDT, we are able to produce set of rules with input atomic formulas on the "left

hand side" and the output atomic formula on the "right hand side". The set of rules (which

we call a normalized LDT) depends only on the meaning of the theory. For example, it clncs

not depend on what kind of intermediate predicates the restricted LDT uses or whether the

restricted LDT is written in a way that the reasoning process can run within the restrlctcct

LDT efficiently or (more importantly) inefficiently.

It is obvious that if we supply an efficient translation algorithm that can use the nor-

malized theory, such an algorithm will, together with the normalization algorithms, form

a sound basis for really declarative and efficient semantic processor of a lraturad langrragt!

interface to the database.

Chapter 4

Translation Using Normalized

LDTs

Now that we have seen how to create a normalized LDT from a restricted LDT, we can

turn to the issue of how the normalized LDT can be used to translate linguistic logic

representations of English sentences into database logic representations.

We first introduce a sound algorithm for the translation using the normalized LDTs.

Then we consider the efficiency of the algorithm, particularly of a part that takes care of

selection of the right rule from the set of all possibilities. Finally we shall introduce the

actual data structures and algorithms used in an implementation.

The algorithms introduced in this ch~p te r were implemented in Prolog.

4.1 Sound Translation Algorithm

Our translation algorithm is very similar t o that presented in [23]. Rayner's algorithm can

actually be used for the translation using the normalized theory. The reason why we do not

accept his algorithm without changes is very simple. The normalized theory contains all

patterns of the rules that directly map input atomic formulas into output atomic formulas,

explicitly. It is obvious that reasoning within the theory is not able to produce any more

rules of the given form. We believe that it is possible to write an algorithm that makes

much less use of the rnntime reasoning than Rayner's algorithm does.

We shall first introduce the modified translation algorithm for translation of conjunctions

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS 82

of atomic formulas. Then we prove its correctness. At the end of the section we introduce

the translation algorithm for a richer logical language that uses connectives "v", "-.", and

"A" and higher order logical formulas.

Algorithm 4.1 Algorithm for trunslation of conjunctions of atomic fornaubas

Input: conjunction (set) of ground atomic formulcs

I 1 = {I l - - I,) (input atotnic formulas)

normalized LDT T (a set of CE(T)s) (input theory)

conjunciion of ground atomic formulas CC (conjunctive contezt)

Output: set of output atomic fomulas 00 and set of assumptions AA, sat.

T ~ C C A A A - - - + (I I O O)

Algorithm: set 00 : = {)

AA := (1
i = O

while i < n do
/* Invariant */
i = i + l

(1) if there is CE(T) (A, C, Is, 0 ') in normalized LDT T,

and substitution f s.t.

(I1 - (Ii)) and CC -> C f
and

Ii = I' f

then

set 00 := 00 union €0' f)

set AA := AA union A f

else

fail

endif

end while

/* Invariant */

CfIA PTER 4. TRANSLATlON USING MORhifA LIZED LDTS 8 3

Proof. We prove by induction, that in the laces marked by the comment /* Invariant

*/ the following invariant holds

Case i = 0 This case is trivial

Case i = m + 1 Suppose that the invariant holds for i = m. ?Ve show, that the invariant

holds for i = m + 1

We shall write AA, and 00, to denote AA and 00 respectively in the place marked

by invariant, when a' = m..

We shall show (4.1) first

According to Induction Hypothesis (IH):

T /= CCA AA, -+ (11 r 00, A I,+, ..-I,) (4.3)

and

Consider the formula 00, A - - .In. Suppose that the algorithm reached the

invariant point for i = rn + I. By the definition of NCE(T)

T I= A A C -. (I' _= 0')

therefore

T /= Af A Cf -+ (I'f r O f f)

From I f f = we have

According to IIi

T AA, A 00, + I l . - -Im

CHAPTER. 4. TRANSLATION USIhlG NORMA I,IZED LD TS

According to the algorithm

and obviously

From (4.5) and (4.6) and the translation rules of AET (2.14), i t follows that

From the translation rule of AET (2.8), it follows tha.t

T) = C C A A A , A A ~ -+

(00, A I,+, . - -1, r 00, A O f f A I,,,,, . e l , ,)

Because 00, A O f f = Om+*

From (4.8) and from IH (4.3) and according to the algoritlm that sets /tJ2,,,+. to

AA, A A f

T CC A AAm+, 1 (11 5 OOm+* A ' ' fTL)

Proof of (4.2) is very similar to that of (4.1).

Proof. By the definition of ?tTCE(T)

and therefore

T A j A O'f -Irn+I

From (4.4) and (4.9) i t follows that

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS

According to the algorithm AA,+l = AA, A A f and 00,+1 = 00, A O'f, and we have

Now we are at the point where we can introduce a translation algorithm that takes as an

input arbitrary logical formulas. Also in this case, the algorithm is very similar to the one

in (1231). The algorithm recurses down the formula while collecting the conjunctive context.

'k2rhen it reaches the basic case (in Rayner's case atomic formula, in our case a conjunction

of atomic formulas), it tries to translate it using LDT and the collected conjunctive context.

?Ye describe the mair, ideas behind the modification first, then we present the algorithm

and at the end we demonstrate the idea on a simple example.

The modification touches a few aspects of the algorithm. As was mentioned above, in

our algorithm, we consider conjunction of atomic formulas as a basic case, i.e. the algorithm

rccurses down collecting conjunctive context until it finds a conjunction of atomic formulas.

Then the algorithm for translation of conjunctions of atomic formulas is used to translate

it.

To accommodate the change described above conveniently, there is a simple preprocess-

ing of t.he input formula involved. The preprocessing algorithm also does the following.

Whenever it finds a set of formulas connected together by the conjunctive "A", it sorts

the set so that the atomic formulas from the set are grouped together, nonatomic formulas

are grouped together and both groups are again connected by the conjunctive "A". For

example, formula

(a A (Cb V c) A Id A -)))

will be transformed into

(a d) A ((b V c) A l e)

where atomic formulas a and d are put together, nonatomic formulas (b V c) and (7e) are

put together and both groups are connected with "A".

The modified aigorithm also "coilects" conjunctive context differently. The algorithm

collects only atomic formulas that can be reached by conjunction and disregards anything

else. Consider the conjunctive context of atomic formula a in the formula

CE4PTER 4. TRANSL-ATTON USIXG NORM-4 LIZED LDTS

Raper 's original algorithm produces (b V c) A d A e as the conjunctive contest wllcrciis ou s

algorithm produces only d A e . Similarly, the conjunctive contest of atomic formula a i11 t Itc

formula a A (b V c) would be (b V c) in Raper's case and true in our case.

Formally, our algorithm uses a different set of translation schemas. The modificd tcn~thla-

tion schemas for translation of conjunction "A" and "4" are shown bellow, the rest rcmnius

the same (cf. chapter 2). Function f from a set of formulas into a set of sets of atomic.

formulas is the core of the suggested modification. This function simply takes ir logi~iil

formula and produces a set of atomic formulas that can be reached from the top lcvcl ol'

input logical formula by the co~ljunctive 'L~".

f (F) = if F = P A Q then f(P)Uf(Q)
else if E' is atomic formula then { F)

else {) % empty set

Contezt A f (P) + (Q r Q')

3 Context i (P A Q r P A Q')

Contest A f (P) --+ (Q = Q')

3 Context i (P -i Q r P --+ Q')

It is easy to see that F i f (F) for each logical formula F. Corrcct ness of the rnodifica-

tion of the translation schemas trivially follows.

The fourth aspect is that the algorithm does not translate only one basic ~ lcmc~r t irr o w

1-un, but translates the whole formula a t once. Preprocessing and a reducetl collection of

conjunctive context allow the recursive processing of an input forrnula in a special ordrr.

This order guarantees that the conjunctive context of a subformula translated at a partic-

ular moment consists only of the input atomic formulas and does not corrtajrr ally alrcatly

translated atomic formulas.

Example 4.1 As an example consider tlie already preprocessed formula

((ie v ib) A ic) - ((id A ie) A yi f f f4.12)

a.nd a. normalized LDT that tra.nsla.tes i - s to o-s

(in r on)

jib r ob)

(ic r oc)

(id r od)

(ie = oe)
(if 5 of)

In our example, by binary conjunction we mean an operation "A" on two

arguments, by n-ary conjunction we mean an operation "A" on any number of

arguments more than zero. E.g. formula (u A b) /\ (b A c) is a result of binary

conjunction of two formulas (a A b) and (b AC) and n-ary conjunction of 4 forr~~ulas

a, b, c, and d.

The algorithm begins with the whole formula

((%a v ib) A ic) -t ((id ie) A -.if)

The left hand side of the implication ca.n serve as a conjunctive cotltcx t for.

the right hand side, but the right hand side has no sirnilax effect to tl-rc left

hand side. Therefore the algorithm will translate the right hand side first

and collect ic as a conjunctive context.

The algorithm tries to translate the conjunction

((id A ie) A 7 i f

Note, that whenever the algorithm finds a binary conjunction, any of

its arguments cannot be an n-ary conjunction of atomic iorrrtulas mixed

with non atomic formulas together. This is due to the preprocessing

that puts atomic formulas connected by conjunctive "A" together arr (1

nonatoniic formulas together. Therefore wlrenever the algnri t h rn fi rr tf s

a binary conjunction that is not already a basic case, its arguments are

either basic case - conjunction of atomic formulas, or do not provide any

conjunctive context for the other argument whatsoever. Tire algorithm

tries to translate formula -if first using a conjunctive context of (ic)

(from above) and id A ie (from this level)

CHAPTER 4. TRANSLATION USING NORMALIZED LDTS

The algorithm recurses down from l i f to i f and translates it to

o f . 7 2 f is translated to i o f

Then the algorithm translates id A ie using the conjunctive con-

text ic. The algorithm for translation of conjunctions of atomic

formulas produces a formula od A oe.

The formula

(id ie) A if

is translated into

(od A oe) A 10 f

Then the algorithm translates the LHS of the implication.

(ia V ib) A ic

The conjunctive context in this case is just true. Translation proceeds

similarly as in the previous case. Disjunction ia V ib is translated first

using conjunctive context ic into oa V ob. Then ic is translated into oc

using the empty conjunctive context.The whole LHS is translated into

(oa V ob) A oc

The whole formula is thus translated into

((0, v ob) A oc) -+ ((od A oe) A l o f)

Algorithm 4.2 Translation Using NLDTs

Input: input logical formula F;,put

normalized LDT w.r.t. RLDT T - NLDT(T)

Output: logical formula Foutput and set of assumptions A s.t.

T I= AA -+ (Finput 3 Foutpt)

Algorithm:

Set the set A to the enzpty set.

Traverse formula Finput wing the schemas until a

conjunction of atomic j o r m u h is reached. F.T'henever

there is a choice regarding which constituent of the

formula should be traversed first, use the follou~ing

rules:

if the formula has form A A B then

if
A is a conjunction of atomic formulas

or an atomic formula and B is not

then

visit B first, then visit A

else

visit k first, then visit B

end if
else if

the formula has the form A -+ B

o r A V B

then

visit B first, then A

end if

When a conjunction of atomic formulas I1 is reached,

use the algorithm for translation of conjunction of

atomic formulas with conjunctive contezt CC that was

accumulated during the recursive descent.

Then substitute the result 00 of the algorithm for

subformula 11, set the set A to A U AA and

continue with traversing the input fomula

T,lffAPTETt 4. TRA NS'LATION USING' NORMALIZED LDTS

4.2 Searching for CEs

Thc critical part of the algorithms described in the previous section is to find a set of CEs

for rules of a normalized theory) that can be applied within a given conjunctive context. An

obvious solution is to check each rule individually, but this can take a substantial amount

of time. Fortunately, there are certain features of normalized theories that can be exploited

to improve the efficiency of the searching process.

All such features are consequences of the fact that an NLDT can be viewed as a logical

theory based on natural language phrases, i.e. given a CE

(Context, Assumptions, InputAF, OutputAF)

the formula

Context A InputAF

represents a logical representation of a natural language phrase meaningful to the underlying

database.

The rest of the section is structured as follows. We first present an assumption about

the structure of the formulas of the form

Context A InputAF

namely the approximate correspondence of predicates of input atomic formulas and words of

the natural language phrases. Then we present some observations about the sets of logical

formulas representing natural language phrases under the taken assumption. At the end of

the section we demonstrate the data-structure upon which a searching algorithm is based

and heuristics used to construct such data-structures.

4.2.1 Assumptions and Observations

?Ve assume a close correspondence between predicates of input atomic formulas and words

of the natural language utterances. For example, we assume that the noun "book9' will be

represented by an input atomic formula with predicate bookentity in all logical representa-

tions of English phrases that contain the noun "book". By close correspondence we mean

that exceptions are permitted, but they are very rare.

CHAPTER 4. TRANSLATION U%VG ilTORAIALZZED LD TS 9 1

This assumption allows us to relate certain observations about words that occur in a typ-

ical input English sentence to input atomic formulas that occur in the logical representat ion

of the sentence.

Under the above assumption, it is plausible to assume that the structure of input atonlic

formulas is not deep, i.e. not many functional symbols are used. As an example compare

formula

student(X) A fake(E, X, 1.) A course(1')

with formula

Observations

1. Observation about partitioning of the set of CEs

Each English phrase meaningful to the database (as represented by an NLDT) contad~ts

only a small number of words in comparison to the size of the lexicon, so each word

selects a small number of the phrases (in which the word occurs) in comparison to the

number of phrases represented by the NLDT. Moreover the phrase selected by one

particular word is semantically related to that particular word. So, words tltat are

semantically far away from each other are inclined to select disjoint sets of ph raws.

If we use our assumption about the c~rrespondence between words a n (1 inp 11 t atomic

formulas, we can observe that given an NLDT (set of logical represe~ltations of phrases),

we can find a set of input predicates that can identify almost disjoint subsets of for-

mulas. We also observed that this partitioning can be done on the disjoint subeets

recursively.

As an example, consider the set of logical representations of phrases about pfiorre

number and student number (slightly simplified)

CHAPTER 4 . TRAWLATION USING NORM4LIZED LDTS

Input atomic formulas phone(X) and student(X) divide the set into two disjoint

subsets:
{phone(X) A number(X), phone(X)}

Subset

{student(X) A number(X), student(X) A i d (X))

can be further partitioned into subsets:

{student(X) number(X)}

{student(X) A i d (X) }

using input predicates number a d id.

Although in general, partitioning does not have to be perfect, we believe that this

feature of NLOTs forms a reasonable basis for searching heuristics.

2. Observation about variable sharing

The second observation deals with sharing of variables by atomic subformulas of logical

representations of phrases within the NLDT. The term "connected" formalizes this

concept .

Definition 4.1 (A is connected to B w.r.t. F) Atomic subformula A offormula

F is connected to atomic subformuh B of formula F $ A and B contain at least one

common variable or constant, or there is an atomic subformula C offormula F s.t.

A is connected to C w.r.t. F and C is connected to B w.r.t. F

We assume that in almost all logical representations F

F = Context A InputAF

of an English phrase from NLDT, a3l atomic subformulas of F are connected to each

other.

4.2.2 Searching Algorithm

In this subsection we present the main heuristics and the algorithm that uses them to find

a subset of the NLDT that matches a set of atomic formulas, i.e. given a set

C H A P T E R 4. TRANSLATION USING N O R h f A LIZED LDTS

of atomic formulas and set of CEs

(Assumption, Condition, InputAF, 0utput.W)

we find a CE and a substitution f , such that

LL -+ (Condition A InpwtA F) f

This algorithm makes the search for the "right" CEs performed by the a lgo r i t h~~ for trans-

lation of conjunctions of atomic formulas more efficient than a simple search thro~igh a11 t.lrc

CEs of the NLDT.

The main idea is similar to the idea behind trie structures [I] . We simply build i18

search tree with a fixed root whose arcs are atomic formulas. Each path in the search lrec

represents a conjunction of atomic formulas. If a path from the root of the search tree to a

node represents a formuia

Condition A InputAF

for some CE, the node will contain information about the CE. Searching the tree hcgins a1

the root. The searching algorithm tries to match one of the arcs coming from tlw root wit, 11

one of the atomic formulas from the input set LL. If such an arc to another nod? is round,

the algorithm binds appropriate variables and continues to explore the tree from tile ncw

node using depth first search. If such an arc is not found, the algorithm backtracks. 'L'hc!

following example demonstrates the idea.

Example 4.2 Suppose, that we have an NLDT that consists of the following

CEs:

76 student takes a course (4.13)

(Context = student(X) A course(Y),

Assumption = {I,
InputAF = take(E, X , Y) ,

OutputAF = Hb_take(E, X , Y))

% professor teaches a course (4.14)

(Context = professor(X) /\ course(Y),

Assumption = {},

I a p t A F = teach(E, X , Y) ,

OutputAF = dbdeach-course(E, X , Y))

CIfA PTER 4. TRA ATSLATION II,SfArG NORMALIZED LDTS

%I professor teaches a student" (4.15)

(Context = prof essor(X) A student(Y),

Assumption = { I 7
InputAF = tewch(E, X , Y) ,

OutputAF = db-teach-student(E, X, Y))

and the tree on figure 4.1. Node3 contains C E (4.13), Node6 contains CE (4.14)

and Node7 contains C E (4.15)

RootNode Node1 Node2 Node3 -
w 0

take(E, X, Y) student(X) take@, X, Y)

Figure 4.1: Tree representing CEs (4.13 ... 4.15).

For input set

LL = (stzldent(z), take(e, x , y) , course(y))

the searching algorithm will explore nodes

{RootNode, Nodel , N ode2, Node31

During this process, variables E, X, Y will be bound to e , z, y respectively.

Node3 contains information that CE (4.13) can be applied. m

4.2.3 Tree Construction Algorithm

The graph structure from the example has two nice properties that deal with determinism

for certain kinds of input and the binding of variables during the searching process.

It is easy to see that the graph from our example can be searched without exploring

useless branches if the input set LL consists of formulas present in exactly one CE from

CHAPTER 4 . TRANSLATION USING ATORMALIZED LDTS $1 5

the NLDT (i.e. if the input corresponds to exactly one representation of an English pl~rasc

from the NLDT), or its variants. In general, this property holds for any NLIIT that ftilly

matches the observation about partitioning of the set of CEs (observation l), and whose

logical representations of English phrases do not contain two atomic forrzzulas with t,hc sanw

predicate. In such cases, it is possible to construct a graph with the searching algorit,tlirl

that searches the NLDT without exploring useless branches for the input sets corresponding

to the CEs from the NLDT.

Thanks to the observation about variable sharing (observation 21, it is possible to con-

struct the search tree in a way that only the edges directly flowing from the root nndc will

have all their variables unbound during the search process. The following esarrl y lc shows

how this reduces the nondeterminism during the search process.

Example 4.3 Suppose that NLDT contains the following CEs:

% student takes a course (4 . l 6)

(Context = student(X) A course(Y),

Assumption = {I,
InputAF = take(E, X, Y),

OutputAF = db-take(E, X, Y))

% professor teaches a student" (4.17)

(Context = prof essor(X) A student(17),

Assumption = {I,
InputAF = teach(E, X, Y),

OutputAF = db-teach-student(E, X, Y))

RootNode Nodel Node2 Node3
I - *

take(E2, X2, Y2) studen t(X2) course(Y2)
I

Figure 4.2: Tree representing CEs (4.16) and (4.17).

CHAPTER 4 . TRANSLATION USING NORMALIZED LDTS

RootNode Node1 Node2 Node3

* course(Y2)
-

w
.L a

studen t(X2) take(E2, X2, Y2)

Node4 Node5 Node6
1L a -

professor(X 1) course(Y 1) teach(E1, XI, Y1)

Figure 4.3: Tree representing CEs (4.16) and (4.17). Second version

Then consider the search tree in figure 4.2 where Node3 contains CE (4.16)

and Node6 contains CE (4.17), and the search tree in figure 4.3 where Node3

contains CE (4.16) and Node6 contains CE (4.17). Also consider an input sen-

tence thai contains two phrases

prof essor(pl) A teach(el, pl, s l) A student(s1)

and

student(s2) A tabe(e2, s 2 , c2) A C O U T S ~ (C ~)

To search the tree in figure 4.2, the algorithm starts by matching an atomic

formula tabe(e2, ~ 2 : c2) with the arc from RootNode to Nodel of the tree. This

binds variables E2J2 and Y2 to e2, s 2 and cz respectively. The arc student(X2)

that goes from Nodt:l becomes student(s2) and this can match only atomic

formula stadent(s2) from the input sentence. On the other hand, when the al-

gorithm starts to search the tree in figure 4.3, e.g. by matching course(c2) from

input sentence, only the binding for variable Y2 to c2 is introduced. The nonde-

terminism occars when the dgorithm tries to match arc student(X) against the

input sentence, because two bindings (X -t sl and X -, s2) are possible. H

The search tree construction algorithm is a greedy algorithm based on the heuristics de-

scribed above. The input for the algorithm is a set of CEs. The algorithm constructs the

tree from the root node with the whole set of CEs assigned to it.

The main part of the algorithm takes a partially constructed search tree and a leaf node

of the tree with a set of CEs assigned to it. If some CEs from the set correspond to the

leaf node, they are assigned to it in the output graph. The rest of the CEs are divided into

sxnaller subsets using a sequence of "dividing" atomic formulas. For each "dividing" atomic

formula there is a subset of the rest of the CEs that correspond to it, i.e. it contains ;I

variant of the "dividing" atomic formula.

The "dividing" atomic formulas are picked from tlne atomic formulas of CFs in a grceciy

fashion. Preference is given to atomic formulas that are comer ted to one of the arcs iu I I ~ c

path from Root to the leaf node. If some part of the sequence of "dividing" atomic forn~ulits

was already picked, the nest "dividing" atomic formula is the one that selects a set of C!Ks

with minimal intersection with the CEs selected by tlne previous "clividing" atomic forntulas

of the part of the sequence. Being "connected" has higher priority then having s~ i r i~ l l~ r

intersection.

Then the algorithm expands the leaf node by creating a set of arcs from the leaf nodtl to

new leaf nodes. The arcs are marked by "dividing atomic formulas". Each new leaf notic is

assigned a subset of CEs that corresponds to the path from the Root to the new leaf riucle.

The paths for the new nodes are the same escept for the dividing atomic formulas assig~netl

to the new arcs. If a CE corresponds to more than one new node, only one new no& is

selected. Then the variables in the "dividing" atomic formulas and corresponding varixblcs

in the CEs are bound by unique constants.

The algorithm continues recursively until all CEs are assigned to some nodes in the

output graph.

The following example shows how the search graph is constructed given an NLD'T.

Example 4.4 Consider the following CEs:

% student takes a course

(Context = student(X1) A course(Y1 1,
Assumption = {},

InputAF = take(E1, XI, Yl),

OutputAF = db_take(El, X1, Yl))

% professor teaches a course

(Contest = prof essor(X2) A cuzcrse(&),

Assumption = {I,
InputAF = teuch(E2, X2, Yz),

OutputAF = db-teach-course(E2, X2, Y2))

% pprofessor teaches a student (4.20)

(Context = prof essor(X3) A student(Y3),

Assumption = {},

Inpu tAF = teach(E3, X3, I%),

Output AF = db-f each-student(E3, X3, Y3))

The algorithm starts with the root node and all three CEs are assigned to

it. Then the algorithm randomly picks the first "dividing" atomic formula e.g.

take(E1, XI , Yr) and creates the subset of CE(LTD)s that contain a variant of

the atomic formula

tuke(E1, XI , Yl):

{(Context = student(X1) A course(Yl),

Assumption = {I,
Input-4F = taEe(El, XI , Y1),

OutputAF = db_tabe(E1, XI , Yl)))

Then the algorithm picks the second "dividing" atomic formula. Atomic formu-

las
prof essor(X2), pro f essor(-&),

iench(E2, X2, Y2), teach(E3, X3, Yi)

are preferred, because they select CEs that are not selected by the previous

"dividing" atomic formula take(E1, XI, Yl). Let us suppo~z that prof essor(X2)

was picked. The professor(X2) selects CEs (4.19) and (4.20). The algorithm

binds appropriate variables and expands the graph as depicted in figure 4.4.

In the search graph, Nodel contains CE (4.18) with substitutions El -, el,

S1 4 zl and Y1 -+ yl . 1Vode4 contains CES (4.19) and (4.20) with substitutions

-K2 - 5 2 and Xg -+ 2 2 .

The algorithm is called recursively with leaf nodes Node1 and Node4. Let

us expand Node1 first. There is only one CE assigned to it and all its atomic

formulas are connected to the arc take(el, XI, yl). The expansion is therefore

straightforward and the dgorithm expands the node Node1 in two steps.

To expand node Node4, the algorithm prefers t o choose "dividing" atomic

formulas from tench(Ez, x2,I5) and teach(Ea, 2 2 , Y3), because those are the only

at.omic formulas that are connected t o the previous arcs. Let us suppose that the

RootNode

7&g1

Figure 4.4: Search graph after R.ootNode expansion.

algorithm has chosen teach(E3, x 2 , Y3). The a.lgori thm binds E3 and E2 to c . ~ ,

and Y3 and Y2 to y2. The graph at this stage is depicted on figure 4.5. Node3

contains CE (4.18) where El i e l , X1 + xl and & + y l . Node5 contains

CEs (4.19) and (4.20) where X 2 --t 22, -Y3 --+ 22, li + y2, E2 4 c2, X3 22,

Y3 -). y2 and E3 -i e2.

RootNode Node 1 Node2 Node3
a - a

take(e1, xl, y 1) student(x 1) course(y 1)

Figure 4.5: Search graph after expansion of nodes Node1 and Node3.

Then the algorithm expands Node5, which is trivial. At the end, the af-

gorithm substitutes the unique constants used during the graph constructia~~

process with unique variables and we obtain the graph depicted in figure 4.6.

rVode3 contains CE (4.18) ATodeG contains CE (4 .19) and Node7 contains (3':

(4.20).

8

All the algorithms presented in this chapter were implemented in Prolog.

4.3 Summary

In this chapter we have shown an algorithm that can use information provided by a restricted

LDT for translation of input logic formulas representing English sentencefj into output fogic

Clf A PTER 4 . TRAMLATION USING hTORh.IALIZED LD TS

Figure 4.6: Finished search graph.

forn~ulas corresponding to database queries. First, the normalization process is used to

rlormalize the restricted LDT into a normalized LDT. The normalization is done off-line.

Then, on-line, the normalized LDT is used by the translation algorithm to actually translate

logic representations of sentences input by a user into logic representations understandable

by the underlying database. Since the normalization process is done off-line, behaviour (and

performance) of the translation algorithm depends only on the information content of the

restricted domain theories, thus allowing the designer of the interface to describe the domain

more declaratively without worrying about the system's on-line performance.

Chapter 5

Construction of Selectional

Restrictions

In this chapter we present an algorithm that constructs selectional restrictiorls for unilica-

tion based grammws out of NLDTs. In the first section of this chapter we introduce t l ~ i

general concepts of selectional restrictions and show on an example how they car1 be i iscd

for disambiguation during parsing. The second section deals with the actual process of ron-

structing selectional restriction automatically using the knowledge of the donlain recordctl

in terms of NLDTs.

5.1 Selectional Restrictions

By providing the syntactic parser of NLID with domain knowledge, the parser can ilsc t h i ~

information to reduce the ambiguity during the parsing process thus increasing cfficicxcy

of the NLID and reducing the time needed for producing an answer for the user. As all

example consider the sentence similar to one given in [2]

A house was built by a river.

IVithout knowing that rivers cannot build houses, the sentence allows two rcadings with the

following logical representations:

A river built u house.
(5.1)

3E, R , H.river(R) A house(H) A build(E, R, 11)

CHAPTER 5 . CO,h'STRUCTIOAT OF SELECTIONAL RESTRICTIONS

Somebody built a house close to a river.

3E, S, H, R.buitd(E, S, H) A house(H) A by(H, R) A river(R)
(5 .2)

By supplying the syntactic parser with the set of constraints that say which words can fill

whjch argument positions of which other words, the first reading can be ruled out. We shall

call such sets of constraints selectional restrictions.

The advantage of selectional restrictions is that they allow more efficient implementa-

tions. As described in [2], selectional restrictions can be implemented using a sort hierarchy

and sortal constraints. Different sorts are represented using different Prolog terms and

unification is used to check sort compatibility. Each logical language constructor (lexi-

cal predicates that correspond to the words of English language, quantifier constructions,

lambda construction etc.) is assigned a sortal declaration. The sortal declaration consists

of a sequence of input sorts that are expected at the constructor's argument positions, and

an output sort that is assigned to the expression created using the constructor. The predi-

cate buikd(E, S? H) from our house was built by a river example can be assigned the sortal

declaration

(

E
event,

object (physical-ob j ec t (animate(human, ,))) ,
object (physical-ob j ec t (inanimate))

truth-value

1

and the predicate r i ve r (R) can be assigned the sort

(

[:

object (physical-ob j e c t (inanimate))

3
=>

truth-value

1

CHAPTER 5. COILTSTRUCTION OF SELECTIONAL RESTRICTIONS 103

Such sortal declarations then impose sortal constra-ints on the expressions or variables titar,

fiH argument positions. If one variable or expression in a particular rea>ding: is i~ssig~zed it

set of incompatible sorts (sorts thak do not unify), the reading is ruled out. This is the case

for reading (5.1) of our example sentence. Variable R is a.ssigned sort

by the predicate build(E, R, H) a.nd sort

object (physical-ob j ec t (inanimate))

by predicate river(R). Because these sorts obviously do not unify, the reading (5.1) is rrilctl

out.

The encoding of sortal constraints is discussed in detail in [16].

Strict failure of the parse when the selectional restrictions are not satisfied is not the

only way to apply the selectional restrictions. The second option is to view selectiond re-

strictions as preferential information. In this case, the parse that does not satisfy sclcctiorml

restrictions is not rejected, but the parses with fewer failures are preferred to pa.rscs wi th

more failures.

Selectional restrictions are often domain dependent. I;br example, the verb book will

allow different sets of objects in the domain of flight reservations (book a flight, book a

ticket etc.) and in the domain of house building (book a carpenter, book Johnny Smitli

etc.)

5.2 Algorithm for Constructing Selectional Restrictions

In this section, we first introduce some assumptions and observations about the input of the

algorithm (i.e. output of the parser and NLDTs). In the next subsection we shall use thwe

assumptions while presenting the actual algorithm.

5.2.1 Indices and Attributes

As in the case of the translation algorithm, we assume close correspondence between pred-

icates of input atomic formulas and words of the natural language utterances. As was

mentioned before (c.f. section 4.2), this assumption allows us to relate certain ohscrvations

about words that occur in a typical English sentence to input atomic formulas that occur

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 104

in logical representation of the sentence. Similarly to the translation algorithm from section

4.2 we assume that the structure of input atomic formulas that correspond to the words of

the English language is not deep, i.e. there are not many functional symbols in the logic

representations of the sentences. Such representations were used by a nu~nber of systems

([2] , 11.51) and even became examples of logical representations in an NLP textbook ([7]).

Under the above assumptions we can observe that it is possible to construct logical

representations where most of the arguments of input atomic formulas representing nouns

and most of the event arguments of input atomic formulas representing verbs introduce their

"own" variables. That is, there are no two above mentioned arguments of nouns or verbs

that will be bound to the same variable. We can also observe that for most of the English

sentences it is possible t o construct a logical representation where each variable is bound by

at least one of the arguments of nouns or event arguments of verbs.

Example 5.1 As an example consider the sentence

The guy, that took a red book on a table beside a wall,

ran away.

and its logical representation

3G, ET, B , T , W, ER

guy(G) A took(ET, G , B) A book(B)

~ o n (B , T) A table(T) A beside(T, TV) A wall(TV)

run(ER, G) A away(ER)

The variables G , ET, B , T , W, E R correspond to the noun guy, event parameter

of the verb took, noun book, noun table, noun wall and event parameter of the

verb run respectively.

Our next assumption about the logical representation of English sentences is based on

the observations above. We assume that there is a subset S of all the pairs of the form

(InputPredicate, ArgumentPosition)

that make sense in the given domain, s.t. for each logical representation of an English

sentence the following is true. For each variable of the logical representation, there exists

no more than one pair

(InputPredicate, ArgumentPosition)

CHAPTER 5. CONSTRUCTION O F SELECTIONAL RESTRICTIONS 1 05

from the set S s.t. input atomic formula with InputPredicate binds the variable at the

ArgumentPosition. We shall call members of the set S index argrmeizt yositions or it1

short indices. We shall call all other pairs of the form

(Inputpredicate, ArgumentPosition)

that make sense in the given domain attribute argument positions or in short attributes. A

similar assumption was taken (although implicitly) in [3].

We shall also assume that for all variables in the logical representations sf English

sentences, there is at least one pair

(Inputpredicate, ArgumentPosition)

s.t. input atomic formula with Inputpredicate binds the variable at the Argu?ncnt Posi t im.

There are two potential problems with our assumption. One can object that there arc

domains for which there is no set S and correct logicaJ representations for all sentences or

phrases. In another words, there are domains and logical representations of sentences or

phrases with

variables that are not bound by an index

variables bound by more than one index

A solution to the first problem is very simple. We can introduce a special input predicate

universal-index(X) and add pair (universal-index, 1) to the set S. For each possible logical

representation of a sentence with a variable X, that is unbound by an index it is possible to

construct a new logical representation that adds term universal-index(X) to the scope of

the quantifier that binds X. This solution also has an advantage for the semantic part of tilt:

system, because it provides an easy way to test for the nonpresence of the original indices

for given variable. The semantic part of the system can translate universal-index(X) into

true.

There is a similar solution to the second problem. We can introduce a predicate

that a logical representation can use when it needs to make the variables bound by two

indices the same.

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS

5.2.2 Computing Index - Attribute Compatibility

Under the assumption that each variable in the input sentence is bound by at most one

index, we can construct selectional restrictions using knowledge of the domain encoded by

the NLDT.

Unlike [2], we shall not construct selectional restrictions that constrain any pair of argu-

ment positions. Our goal is to constrain interaction between attributes and indices. Because

each variable in the logical representation of the sentence is bound by exactly one index, by

constraining the index - attribute compatibility we can achieve reasonable performance.

Knowledge encoded by the NLDT allows us to access the conditions under which input

predicates can be translated into output predicates. The conditions are available in a very

convenient form - expressed in terms of sets of input atomic formulas. We demonstrate how

this fact can be used to construct selectisnal restrictions in the following example.

Example 5.2 Consider an NLUT that contains the following CEs for trans-

lation of the preposition "of" in the university domain.

name of student

(name(X) student(Y), t ~ u e , of (X, Y), dbgaduate-student(X))

student of professor

(student(X) A prof essor(Y), true, of (X, Y),

db-graduate-student(X))

This means that to translate input atomic formula of (X,Y), the indices that

bind variables X and Y in the logical representation of a sentence can be either

(name, 1) and (student, 1) or (student, 1) and (professor, 1) and nothing else.

(If it is e.g. (course, 1) that binds the variable X , then according to our as-

sumption about the output of the parser, the sentence cannot contain any other

index that binds the variable X. Therefore, neither of the CEs can be applied

and the translation of the sentence fails). m

In general, given an NLDT and a set of indices, it is possible to produce a set of con-

straints only for some of the attributes (and their predicates) of the NLDT. The problem

occurs when an input atomic formula can be translated into output atomic formula using a

CE in which a variable baud by the attribute is not bound by any of the Indices. In this

case, no constraints for the attribute are produced, and a warning for the designer of t . 1 ~

RLDT (from which the NLDT is automatically constructed) is issued. Our pra.ctied expe-

rience with the system has shown that this situation occurs very rarely. The reason is wry

simple: a tight RLDT imposes constraints on attribute argument positions of adjectives,

adverbs, prepositions or verbs in the form of noun or verb input predicates that iatrodnw

an index.

Our assumption that each variable in the logical representation of a sentence is bound

by at least one index guarantees that constructed selectional restrictions will impose some

constraints on the input sentence. If a variable is not bound by aa index, nothing can be

said about which attributes can or cannot bind it.

We tried two approaches for construction of the selectional restrictions. These are the

template approach and the unification approach.

Template Approach

The template approach constructs templates of atomic formulas that contain at least one

attribute. The following templates would be constructed for our example above:

selRes(of, (name, 11, (student, 1)).

selRes (of, (student, 1) , (professor, 1)) .

During parsing, the logical representation that is being constructed is simply checked against

such templates, whenever the appropriate parts of the logical representation are instant iatcd .
A Prolog implementation of this approach is straightforward.

Unification Approach

The unification approach is slightly weaker, because it constraints only interactions be twecri

a single attribute and a single index without taking wider context into account. Consider-

ing the above example, "name of professor" would be a valid phrase under this approach,

whereas the template approach would not allow it. On the other hand, incorporation of the

constraints constructed is easier for unification based grammars.

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 108

The algorithm first constructs a set of compatible attribute - index pairs. For the

example above, the set of pairs is

(name, 1) - (of, 1)

(student, 1) - (of, 1)

(student, 1) - (of, 2)

(prof ~ S S O T , 1) - (0 f , 2)

Given a set of index - attribute pairs, the next goal is to create terms for each of

the indices and attribut.es s.t. the unification of terms will allow the same interactions of

attributes and indices as the set of input pairs. Because only the information about the

interaction between indices and attributes is present, we assume that any attribute can

interact with any other attribute.

The main idea is to create a set of terms of arity n whose arguments can be bound to

values "+" or "-" or can be left unbound. We shall refer to the arguments 1 - . . n of these

terms as binary features fl - - - f,. Indices will either bind the features to the value "+" or

leave it unbound. Attributes will similarly bind the features to the value "-" or leave it

unbound. This will guarantee that all attributes can be combined together.

Consider the following example:

Example 5.3

Indices - il , i 2

Attributes - al, a2, a3

Pa i r s - i2 - al
il - a2

if - a3, i2 - a3

l
It is possible to create a set of terms with binary features fl and fi that will

correspond to the indices il and ia respectively. Each index will bind its corre-

sponding feature to "+". Each attribute will not bind the features that corre-

spond to the indices that can be combined with that attribute, so the following

CHAPTER 5. COILTSTRUCTIOPi' OF SELECTIONAL RESTRJCTIONS

assignments can be obtained

It is easy to see that the procedure can be generalized for any input. Imple~nentatiorl of such

an algorithm is again trivial. However, there are some ways bow the number of fcatnrcs

can be reduced. The simplest is to use only one feature for a set of indices that exhibit t izt.

same behavior w.r.t. attributes, i.e. they can interact with the same subsets of a,ttributes.

The second simplification can be viewed as a generalization of the first one. Consider the

following example:

Example 5.4

Indices -

Pairs - { a l - i I , a ~ - i 2 , a ~ - z 3

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS

Note the behavior of features fl, f2 and f3 for attributes a1 . . .a4. We can

observe that fl is unbound if and only if f2 is unbound and f3 is unbound. If

we change the assignment as follows (we remove feature fl and for all indices,

where fi = + we assign fi and f3 = +)

this assignment preserves the original pairs.

Again, the algorithm can very easily be generalized,

The feature representation producing algorithm was implemented in Prolog. The imple-

mentation produces selectional restrictions for an HPSG grammar [21] based parser build

on top of the ALE system [5] .

5.3 Implementation

There are two implementations of the system. HPSG based implementation uses the ALE

system as the parser and the unification approach for encoding the selectional restrictions.

DCG based implementation uses Prolog's built-in implementation of the DCG parser and

the template approach for encoding the selectional restrictions. In this section, we shall

present the results of implementation of our DCG version of the system.

5.3.1 System Design

The system was implemented in Prolog. The system accepts natural language queries in the

form of list of words and returns responses in the form of tables written on the computer

screen.

CHAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS 111

Syntactic part of the system is based on a small DCG grammar. The grammar is capable

of parsing simple sentences and noun phrases that involve relative clauses and compound

nominal constructions.

The grammar requires minimal information about the syntactic attributes of words that

occur in the lexicon. The grammar relies heavily on the selectional restrictions supplied by

the semantic part of the system. For example, the only syntactic information that is needed

t o define a verb is its category - the system does not need subcatcgorization information,

The system covers a very small u~riversity domain that includes concepts; sf faculty,

students, departments, chairmen of the departments, courses and grades and some of their

relationships. The semantic part of the system is able to produce queries for the followittg

Prolog database:

dep(cs, 'computer science', idJohnsmith).

dep(math, 'mathJ, idJimmyJones).

faculty(idJohnSmith, john, smith, cs, full).

faculty(idCharlieBrown, charlie, brown, cs, assistant).

facul-ty(idJimmyJones, jimmy, joaes, math, associate).

student (idMilanMosny , milan, mosny , cs , 1) .
student(idZuzkaRepka, zuzka, repka, cs, 2).

student(idPaulGreen, paul, greeen, math, 2).

enrl(id1, idMilanMosny, idCmpt710, a).

enrl (id2, idMilanMosny , idMath710, a) .
enrl (id3, idZuzkaRepka, idCmpt7 10, a) .

CHAPTER 5. CONSTRUCTION OF SELECTIUNAL RESTRICTIONS

The RLDT that describes the domain defines a small inheritance hierarchy of the con-

cepts (e.g. a person is an entity, a student is a person, take is an event, name is an entity,

first name is a name) and a number of binary relations between them. The binary relations

are combined into caseframes that describe the translation of verbs. The database specific

part of the RLDT connects concepts and binary relations to the database columns and

tables. There is also a domain independent part of the RLDT that says, for example, how

the verb "be" is translated.

5.3.2 Sample Terminal Session

The interaction with the system is very simple. There is a top level predicate go that

uses university domain theories t o parse a sentence or a noun phrase and produce results.

When the predicate go is called first t.ime, the theories are normalized, a search graph is

constructed and the selectional restrictions a.re created. Warnings are presented to the user

at this time. Then the system processes the query as usual.

I ?- go.

I : [faculty].

Cf acul t yl

selres: underspecified relation (arg I): det

selre::: underspecified relation (arg 2): det

Here the query "faculty" is input in the form of the list of atoms. Then, while constl-uc t-

ing the selectional restrictions, the system warns the user about underspecified relation r1r.l

(determiners were ignored in the DCG implementation). After the parse is dorit, the systctrl

produces results - a list of identifiers that identifies faculty records.

The following example shows a translation of the ambiguous word "people", 'She wc)rtl

"people" can refer either to faculty or to students.

CHAPTER 5. COItrSTftUCTI03 OF SELECTlONAL RESTRICTIONS 1 14

The next example shows a simple yes/no question. The ambiguous proper noun "milan"

representing a first name is in this case translated as referent t o a student whose first name

is milan.

The next interaction shows a simple sentence involving the verb "be" a t the input. In

this examples and some others, we deleted some columns from the answers of the system,

because of space limitations. The system produces a column for each verb and noun of an

Input.

The following query is an example of the sentence with a relative clause. Here the first

name "John" is translated as a referent t o the faculty.

CHAPTER 5. CONSTRUCTION OF SELECTIONA4L RESTRICTIONS

The following sentence demonstrates the consequences of using the sclectiouid rcstric-

tions during parsing. The RLDT "knows" how to translate the preposition "in" in a contQst

of taking and a department as in "take (something) in department" but does not pl.nvidc

for translation of the same preposition "in" in the contest of course and clcpartnle~it as in

"course in department'. Therefore the parser produces only the parse where prepositional

phrase is attached to the main verb.

The rest of this section contains few more examples that demonstrate the interaction

with the system.

Student - idPaulGreen iStudent - idPaulGreen iDep - math

CIIAPTER 5. CONSTRUCTION OF SELECTIONAL RESTRICTIONS

iGrade - a
iGrade - a

i k l - id2 iDep - math iStudent - idMilanMosny

CHAPTER 5. CONSTRUCTIOX O F SELECTiONAL RESTRICT,rONS

5.4 Related Work

5.4.1 Comparison with CLE

There are three main differences to the approach adopted in [2] . The first difference is a

consequence of the two different logical langua,ges used for representing natural la~tguagc

utterances. CLE [2] has a richer language, where lexical predicates can take formulas as

their arguments. Therefore it makes sense to impose sortal constraints not only for varia1)lcs

of logical representations but for predicates and other logical language constructors as well.

On the other hand, the logical language supposed in our system is a simple extension of first

order logic, where input atomic formulas cannot serve as arguments for other input atomic

formulas. Therefore, we impose sortal constraints only on arguments of input prcdicates

(i.e. variables).

Our approach also differs in the way the selectional restrictions are dcrived. The main

idea behind CLEs sortal restrictions derivations can be shown on example taken from [2].

A meaning postulate of the form

where S is a lexical predicate and R is a relation in the lexicon, can be used to placc sortal

restrictions (specified for the arguments of S) on all domain objects for which R is known

to hold.

CliA PTER 5. CONSTRUCTION OF SELECTZONAL RESTRICTIOAS

On the other hand, our approach places selectional restrictions also on predicates whose

arguments do not directly correspond to the variables of application domain. Although CLE

allows automatic derivation of selectional restrictions using knowledge about the domain

encoded using logic, the sort hierarchy has to be supplied by the designer of the system. Also

the representative part of the application domain relations has to have its sortal constraints

known.

The third difference touches the type of constraints imposed. Our approach supposes

two disjoint sets of argument positions and constrains only the interactions between ele-

ments from different sets. CLEs sortal restrictions constrain interactions between any two

argument positions.

5.4.2 Constructing Selectional Restrictions from Corpora

There are methods to extract selectional restrictions automatically or semiautomatically

given a set of sentences from the domain. We shall describe two of them that in our opinion

are representative of the research done in this area, and compare them to our approach.

Andry et al. [3] uses an untagged corpus and a semiautomatic method. Their idea is

to assign initid sorts to some argument positions of some predicates. Then the corpus is

parsed and due to the unification of variables of different predicates, new sortal restrictions

can be derived.

As an example consider the sentence

Does any student take cmpt720?

and its logical representation

and its initial sorts assignment

student(X) + X is of the sort "student"

cntpi720(X) + X is of the sort bbcourse"

take(E, X, Y) + E is of the sort "event"

From the logical representation of the sentence, one can derive that one of the uses of

predicate take can yield the following sorts

CHAPTER 5. C017VSTRUCTION OF SELECTION.4L RESTHCIYONS

take(E, X , Y) + E is of the sort "event;"

X is of the sort "student"

Y is of the sort "cou;.se"

This method is considered semiautomatic since the parser, given a sentence, can produce

a parse that does not correspond to the correct semantic constraints. Therefore incorrect;

sortal restrictions can also be produced. The user of the tool has to perform manual editiitg

of the derived sorts. After the editing is done, the corpus can be parsed again and newly

derived sort a1 restriction edited etc.

The second method [24] uses a phrasally analyzed corpora and a wide coverage noun

taxonomy. The method utilizes statistical measures to determine the appr~pria~to classes of

nouns that are used for selectional restrictions.

The main difference between our approach and the above methods is the information

source used. Our approach uses the description of semantic part of an NLID which must

always be present. On the other hand the above mentioned methods nced reasonably sizcd

corpora. Such sets of sentences may not always be available.

Also the degree of automatization is higher for our approach. While [3] is a scinianto-

matic method itself, [24] needs phrasally analyzed corpora. If such corpora are not present,

the task of creating one can be very labour intensive.

On the other hand, sortal restrictions produced by [3] are similar to those used in CLE,

therefore similarly to the CLE method, interaction between any argument positions can he

restricted.

5.5 Summary

In this chapter we introduced algorithms that are able to construct selectional rerstrictians

using normalized LDT as their input. Since the normalization process has been proven to

be sound and complete, the selectional restrictions constructed by the algorithms truthfully

reflect the semantic constraints imposed by declarative description of the domain in the

form of restricted LDT. We have also compared our algorithms with other approaches to

the construction of selectional restrictions.

Chapter 6

Conclusions and Future Work

6.1 Summary

The main goal of this thesis has been to develop preprocessing algorithms, namely, an

algorithm for construction of semantic restrictions that can be used during the syntactic

processing and the algorithm that can use declarative description of the semantic part of an

NLID for reasonably efficient semantic processing.

In achieving this goal, we have introduced restricted LDTs for describing the relationship

between natural language and the database. We have developed a sound and complete,

normalization process that is able to produce a normalized form of the restricted LDTs

- normalized LDTs. The normalized LDTs are then used as input of an algorithm for

automatic construction of selectional restrictions. An algorithm and heuristics that creates

actual data-structures useful for semantic processing have been introduced. The algorithm

is again based on normalized LDTs. A simple prototype of a natural language interface has

been implemented to illustrate the algorithms described in this thesis.

Advantages of this approach include:

0 the syntactic part of the NLID can be reused in different domains and automatically

adapted to perform as a domain tailored parser,

0 greater degree of modularity of the system. A more modular design results in decreased

complexity, a decrease in the number of possible errors in the system, possibility to

develop different parts of the system concurrently by different persons therefore also

decreasing development time

CHAPTER 6. CONCLUSIONS AND FUTURE IVORPi' 121

e due to the soundness and completeness of the normahation process, the designer of

the interface has a possibility to express the sema,ntic knowledge in more declarative

terms

me believe that the approach we have taken is one step in solving the problem of trade-off'

between performance, modularity and portability of the NLID systems.

6.2 Future Directions

6.2.1 Real Domain

The system was tested on a "toy" university domain where concepts like faculty, students,

courses, departments etc. were introduced. Although the systems performance was good,

the need to test the system on a real domain is obvious.

The system has a capability of extracting precise semantic constraints that can hc

used for disambiguation during parsing automatically from the semantic description of thc

database domain. It is also capable to handle nonmonotonicity easily which makes it suitable

for e.g. interfaces to statistical data,bases similar to the one described in [6].

6.2.2 Normalization Process and Restriction of RLDTs

The way to normalize an LDT that was suggested in this thesis is certainly not the only

possibility. There are at least two directions in which the normalization process can be

im.proved so that the constraints imposed on the form of axioms in RLDTs become less

restrictive. The first one deals with the nonrecursivity of the LDTs, second one is concerned

with existential equivalences that are used in LDTs but are not allowed in RLDTs.

The nonrecursivity constraint was imposed on RLDTs in order to he able to specify

completeness conditions precisely. We have two possibilities for how to explore the relaxatjon

of this constraint. The nonrecursivity condition can be substituted by any other conr;traint

that will guarantee the same results (eg. we shall allow the theories that are L4completc?"

within a constant number of recursive calls). The second possibility is to explore suitable

heuristics for dealing with infinite branches that do not guarantee completeness but still

offer attractive features w.r.t. practical applications of the system.

A modification to the normalization algorithm that allows one to use the same LDTs

as the original process might explored. The idea is based on a closer imitation of thc

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

AET process. Instead of having pairs of input and output atomic formulas that direct the

translation, we can simply explore all the conditions (using the algorithm presented in this

thesis) needed to translate each lexical atomic formula into a database (possibly nonatomic)

formula required by the AET algorithm.

6.2.3 Search Graph Modifications

One of the disadvantages of the search graph data structure and NLDT in general is its

size. The problem is caused by repetition of the same subformulas within the condition part

of CEs in NLDT. In the future, we would like to decrease the size of the generated search

tree. One possible way to attack this problem is to assume two levels of tramlation. Each

level of translation will have its own search graph associated with it. The first level will

translate the most frequent subformulas into single tokens. The second level will then use

these tokens wherever the frequently occurring subformulas are required. Also translation

models having more than two levels are probably possible. We believe that substituting

frequently occurring subformulas by single tokens can reduce the space significantly.

6.2.4 Encoding the Selectional Restrictions using Unification

The main problem with the current version of encoding the selectional restrictions for uni-

fication based grammars is the size of the terms. Although the number of features is con-

siderably reduced in comparison with the number of indices and attributes, the number of

features can still be large.

In the future, we would like t o give the user of the system a possibility to constrain

the number of features used. The system would then merge similar classes of indices or

attributes in order to keep the number of features within the limit.

Bibliography

[I] Alfred V. Aho and Jeffrey D. Ullman. Principles of compiler design. Addison - Wesley

Pub., Reading, Mass., 1977.

[2] Hyan Alshawi. The Core Language Engine. The MIT Press, Cambridge, Massachusetts,

1992.

[3] Francois Andry, Mark Gawron, John Dowding, and R.obert Moore. A tool for collecting

domain dependent sortal constraints from corpora. CMP-LG E-Print Archive version

of the paper published in Proceedings of COLING '94, January 1995.

[4] W.J.H.J. Bronneberg, H.C. Bunt, S.P.J. Landsbergen, R.J.H. Scha, W.J. Schoenmak-

ers, and E.P.C. van Utteren. The question answering system PIlLIQAl. In L. Bolc,

editor, Natural Language Question Answering Systems, Natural Communication with

Computers, 1980.

[5] Bob Carpenter and Gerald Penn. ALE The Attribute Logic Engine User's Guide.

Carnegie Mellon University, Pittsburgh, PA, August 1994. Version 2.0.

[6] Nick Cercone, Paul McFetridge, Fred Popowich, Dan Fass, Chris Groencboer, and Gary

Hall. The SystemX natural language interface: Design, implementation and evaluation.

Technical Report CSS-IS TR 93-03, Simon Fraser University, Burnaby, B.C., Navcrn bcr

1993.

[7] Michael A. Covington. Natural language processing for Prolog progrummer#. Prentice

Hall, Englewood Cliffs, N.J., 1994.

[8] Subrata Kumar Das. Deductive databases and logic programming. Addison - Wesley,

Reading, Mass., 1992.

BIBLIOGRAPHY

f9] Carole D. Hafner and Kurt Godden. Portability of syntax and semantics in Datalog.

A C'M Transactions on Ofice Information Systems, 3(2):141-164, April 1985.

[lo] Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalowicz, and Jonathan Slocum. Devel-

oping a natural language interface to complex data. ACM Trunsactions on Datnbase

Systems, 3(2):105-147, June 1978.

[11] J.R. Hobbs, M.E. Stickel, D.E. Appelt, and P. Martin. Interpretation as abduction.

Artificial Intelligence, 63:69-142, 1993.

[I23 Richard Lederer. Angzlished English : [an anthology of accidental assaults upon our

language]. Dell Pub., New York, N.Y., 1989.

[13] Douglas R . Lenat. CYC: A large-scale investment in knowledge infrastructure. Com-

municutions of the ACM, 38(11):33-38, November 1995.

[14] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Germany, second

edition, 1987.

[I51 M.C. McCord. Natural language processing in prolog. In A. Walker, editor, Knowledge

Systems and Prolog, 1987.

1161 C. S. Mellish. Implementing systemic classification by unification. Computational

Linguistics, 14(1):40 - 51, 1988.

[17] Milan Mosny. Semantic information preprocessing for natural language interfaces to

databases. In Proceedings of the 33rd Annual Meeting of the Association for Compu-

tational Linguistics, pages 314-316 (student session), June 1995.

[18] Richard A. O'Keefe. The craft of Prolog. MIT Press, Cambridge, Mass., 1990.

[19] F.C.N. Pereira and S.M. Shieber. Prolog and Natural-Language Understanding. CLSI

Lecture Notes. 1985.

[20] C.R. Perrault and B.J. Grosz. Natural language interfaces. In Exploring Artificial

Intelligence, Survey Talks from the National Conferences on Artificial Intelligence, 1988.

[21] Carl Pollard and Ivan A. Sag. Head-driven phrase structure grammar. University of

Chicago Press, Chicago, 1994.

BIBLIOGRAPHY 125

[22] S. G . Pulman, H. Alshawi, D.Carter, R. Crouch, M. Rayncr, and A. Smith. C'LAtZE:

a combined language and reasoning engine. Technical Report CRC-0.12, SRI lutcrua-

tional, Cambridge, Mass., 1993.

[23] Manny Rayner. Abductive Equivalential Translation and its application to N o t z ~ ~ ~ z l !

Language Database Interfacing. Ph.D. thesis, RoyaJ Institute of Technology, St~ockholn~,

September 1993.

[24] Francesc Ribas. On learning more appropriate selectional restrictions. In Proceedilzys

of the 7th Conference of the Ezsropian Chapter of the Association of f i m p u t a t i o m l

Linguisics, pages 112-118, March 1995.

[25] D. G. Stallard. A terminological simplification transformation for natural la,nguitgo

question-answering systems. In Proceedings of the 24th Annuat hfeeting of the Assnci-

ation for Computational Linguistics, pages 241-246, June 1986.

[26] L. Sterling and S. Shapiro. The Art of Prolog. Addison-Wesley, Reading, M A , 1985.

[27] David L. VITdtz. An english language question answering system for a laxge relational

database. Communications of the ACM, 21(7):526-539, July 1978.

Appendix A

Definition A . l (Definite program clause) A definite program clause is a clause of the

form

A + B1,. . . ,B,

which contains precisely one atom (viz.A) in its consequent. A is called the head and

B1, . - , B, is called thc body of the program clause.

Definition A.2 (Definite program) A definite program is a finite set of definite program

clauses.

Definition A.3 (Definite goal) A definite goal is a clause of the form

titat is, a clause which has an empty consequent. Each B; is called a subgoal of the goal.

Definition A.4 (Substitution) A substitution f is a finite set of the form { q / t l , . . - , v,/t,),

where each u; is a variable, each ti is a term distinct from vi and the variables q , . - . , v, are

distinct. Each element vi/ti is called a binding for vi. f is called a ground substitution i f

the t i s are all ground terms. f is called a freezing substitution i f t i s are unique constants.

Definition A.5 (Variant) Let E and F be expressions. We say E and F are variants if

there exist szsbstiiutions f and g such that E = F f and F = Eg. We also say E is a variant

of F or F is ;s varzanl of E .

Definition A.6 (Most general unifier (m.g.u.)) Let S be a finite set of simple expres-

sions. ,4 substitution f is called a unifier for S i f S f is a singleton. A unifier f for S

is called a most generd unifier (m.g.u.) for S if, for each unifier g of S, there exists a

substitution h such that g = fh.

Definition A.7 (SLD-derivation) Let P be a definite p rqmm and G a tlofirts'te gottl. i l u

SLD-derivation of P U {G) consists of a (finite or infinite) scquerzce GO = G, GI, . . C<

goals, a sequence C1, Cz, - - - of variants of progmnz clauses of P and a sequence fi , b2, . . . of

m.g.u.s such that each Gi+1 is derived from G; and Ci+l using fa+l .

Definition A.8 (SLD-refutation) An SLD-refuta.tion of Pu{G) is a finite SLD-deritxttiolr

of P U {G) which has the empty clause as the last g o d in the derivation. If G,, = 0, we

say the refutation has length n.

Definition A.9 (Computat ion rule) A computation rule is a function from a set of tiel-

inite goals to a set of atoms such that the value of the function for a goal is an atom, called

the selected atom, in that god.

Definition A.10 (SLD-refutation via R) Let P be a definite progmm, G a definite god

and R a computation rule. A n SLD-refutation of P U {G) via R is an SLD-refutatiorz of

P U {G) in which the computation rule R is used to select atoms.

Definition A . l l (Unrestricted SLD-refutation via R) An unrestricted SLD-refutation

via R is an SLD-refutation via R, except that we drop the requirement thut the substitviions

fi be m.g.u.s. They are required to be unifiers.

We suppose that a definite program does not contain two clauses that arc variarlts of

each other.

We shall write origin(C;) to denote program clause C s.t. Ci is a variant of C'. Undcr

our above mentioned assumption about definite programs, it is obvious, that o ~ i g i n (C ~) i ~ i

a function.

Similarly origin(CC), where CC = {C1 - - - C,) denotes {origin(C1) . -
origin(C,)).

Theorem A.1 The conditions constmction algorithm always termir~utes.

Proof. Step 1 terminates, because set T is finite and thc set PT is finite. TEterefore, the

set T' is finite.

I t is obvious that given a finite set of definite program clauses, there arc only a finitt

number of S1.D-derivations without recursive calls. Therefore the part of the SLD-tree where

SLD-derivations with recursive c a l k are disregarded is finite. Thus Step 2 terminates.

This SLD-t~ee has also only finite number of branches. So Step 3 terminates as well. O

Soundness of the conditions construction algorithm trivially follows from the next the-

OTem.

Theorem A.2 Let G be a definite goal c- Al .. .AI, T be a definite progmrn and G;

Gl ..+G,; CIS- -Cn; f l - - - f , be aSLD-refutation ofG in T . Let PP = {Pl...Pm) be an

arbitrary subset of facts of CC = (Cl - - - Cn) s.t. oriyin(CC) - origin(PP) = origin(CC -

PP), (In other words, either all or none of the Cis that come from the same origin are

members of PP). Then

Proof. We shall prove this theorem by induction on the length of the SLD-refutation.

If we have a length 1 SLD-refutation of G in T, obviously G is of the form t A1 and

C1 is a fact and fl is a m.g.u. of A1 and C1. Then there are two cases.

Case 1: (m = 0) C1 is not a member of {PI - . P,) (m is the number of Ps. Ps are

selected Cis).

In this case it is obvious th&

-0 I= Cl

because ora'gin(Cl) is a member of T and Cl = origin(Cl) f for some renaming sub-

stitution. Therefore &

T - 0 I= Clf l

Because fl is a m.g.u. of Cl and A1

Case 2: (m = 1) In this case PI = GI. Clearly Cl fl = Al f l , because fl is a m.g.u.. of C1

and 4, therefore also PI fr = Al fl . Thns for any theory T"

T" I= Mi -, Alfl

APPENDIX A.

Suppose that the theorem holds for all SLD-refutations of length n - 1. There a.re two

cases.

Case 1: (Cl is not a member of (PI . P,}), i.e. origin(C1) is not a member of ~ r i g i ? , (i ' ~ . . . I : , ,)

so

T - {origin(Pl) - - -origin(P,))) + C1

Suppose that G1 is of the form t AFl. By the inductive hypothesis

By definition of SLD-derivation, G is of the form

where -41 - . A1 are atomic formulas, AFl is of the form

and Cl is of the form A +-- B1. - B,, where fi is a m,g.u. of A and A,. Obviously

and therefore

Also

because fl is a m.g.u. of A and A,.

From the inductive hypothesis and from A.1, it follows that

APPENDIX A. 130

PI - . . P, are variants with unique variables, therefore they do not contain variables

present in formulas A1 . - Al and C1. So

Pi = Pi f1 for Vi s.t. 1 5 i 5 m.

Thus
T - {origin(Pl) - - .origin(P,)) k

Plfi--. f n . - . P m f l - . . fn -+ A 1 - - . A l f l . - - f,.

Case 2: (C1 is a member of {PI - - - P,))

WLOG C1 is of the form PI, G is of the form A1 - - AI and GI is of the form

where fl is a m.g.u. of PI and A,, so C1 is a fact.

By the inductive hypothesis

There are two cases. Either there is an i s.t. 2 < i < n and ordgin(Ci) = origin(C1)

or there is not.

In the first case according to the assumptions of the theorem, C; is a member of

{P2 ' ' ' Pm} SO

In the second case origin(Cl) = orz'gin(P1) was not used in the SLD-derivation of

+ A&, i.e. there exists the same SLD-derivation of t AFl in T - (origin(C1)) and

according to the inductive hypothesis also

APPENDIX A.

Thus in any case

Obviously P1 fi . . s f n + A, f l . - f,, because f l is a m.g.u. of the PI il.11~1 A,,,. So

By an argument similar to that used for case 1

Theorem A.3 (Completeness of the conditions construction algorithm) Lel IT'

be a nonrecursive theory. Let Q is a ground atomic formula. Let PI . . . P,,, be vnricmts of

predicates PI - . - P, from I and f a substitution s.t.

then there are substitutions g and h and subsequence j of the sequence 1 . . . n 2 s.t, forrrzuh

belongs to the result of the conditions construction algorithm and

for variables of the variants PI . . . P,.

Proof. We shall write h" to denote substitution h narrowed to the variables of va.riants

P1--Pm.

Let e be a freezing substitution, which substitutes all occurrences of the free variables

in the formula PI f . P, f -, Q f by unique constants. Then

APPENDIX A.

From the deduction theorem we have

So Q is a logical consequence of 2' U {PI f e . . Pm fe). By strong completeness of SLD-

resolution 1141 and by nonrecursivity of the theory T, there exists an SLD-refutation via R

of T U {PI f e . - . Pm f e) U {c Q) without recursive calls with substitutions a1 . - . a,, clauses

Ct -..C, and goals t Q,G1---G,,.

Let us put

if origin(C;) belongs to T

if origin(Ci) belongs to {PI f e . - Pm f e)

Ci = C; if C, belongs to T

Pj, , whereC; = Pj, f e otherwise

(here jr is the 1-th element of sequence of numbers with range 1 . - . m. It is used to project

PI P, into the set Pj, - - . Pj, of variants of predicates, that were actually used in the

Cl . * .Cn)

It is easy to see that t Q, GI . . - e n ; Ci . . . CA; a\ .a; is an unrestricted SLD-refutation

v i a R o f t Q i n T U { P l . - . P m) without a recursive call.

From the proof of the m.g.u. lemma in [14], there is an SLD-refutation via R of t Q

without recursive calls with substitutions bl . . b,, which follows the steps of the unrestricted

refutation Sf' by using the same clauses and choosing the same literals to be resolved, but

substitutions bl -6, are m.g.u.s. Moreover, there exists a substitution h' s.t. a: . .a; =

bl . - - b,h'. This refutation is a part of constructed SLD-tree, therefore

belongs to the result set S of conditions construction algorithm .
It follows that

f o r V i f r o m l < i < n , fea ;=a i fe

There are no variables from Pi mentioned in the t Q, G1 . -Gn because fe binds them to

constants for a3 Pis. So a; works only on the variables of t Q , G1 - . . G, and substitutions

can be easily switched.

Also

f e f e = fe

because e is a freezing substitution. Thus a; . a:, = nl - - .a,. f e , Therefore, t lmc is a,

substitution h' s.t.

a1 . - . a n f e = bl.-.b,h'

If we consider only terms with variables occurring in the variants Pl - . P, we obtain

Then considering the fact that e is a freezing substitution, i.e. there is a "tha.wingl'

mapping that maps unique constants back to the original variables, and the fa,ct that sub-

stitutions f , bl . . - b n do not contain freezing constants, we can conclude that therct is s

substitution h s.t.

f = gh , where g = (bl - bn)*

for all variables from the variants PI . P,.

By setting (bl ..-b,)* for g we have proven the existence of substitutions g , h and

subsequence j of 1 - . - m s.t. f = gh and Pj, g . . Pj, g -+ Qg belongs to the result of the

algorithm.

Theorem A.4 Conditions combination algorithm terminates for any input.

Proof. Termination of step 1 and step 2 of the conditions comhiriation algorithm follows

from the termination of the conditions construction algorithm.

Step 3 terminates, because results S I and SO are finite and the set Pairs is finite, and

step 4 obviously always terminates. 0

Soundness of the conditions combination algorithm trivially follows from the followi~~g

theorem.

Theorem A.5 For each pair (I , 0) and for each condition CC constructed for the pair

by the condition combination algorithm

APPENDIX A. 134

Proof. All results of the algorithm are constructed in step 4. The proof follows the

substeps of step 4. Due to the soundness of the conditions construction algorithm, we have

Because 0 is a ground atomic formula,

for any substitution r.

Since all members of the set S R are unified with I using m.g.u. r and I and 0 are

ground formulas, it follows that

Also note, that QQ' are asswnption predicates. Substitution r substitutes some of the

variables of RR' with constant terms. Substitution q substitutes some of the variables of

QQ' with constant terms. Note that variables of RR' are different from variables of QQ'.

Therefore

T I = (V) R R f r q -, (I -+ 0)

So

T (V) (RB' A QQf)rq -+ (I E 0)

Theorem A.6 (Completeness of the conditions combination algorithm)

Proof.

Lemma A.l Let Pl . . - P,, Q1 . . - Q , be atonaic formulas and Aml . - .Xk be all the uwi-

abkes that occur in PI . - - P,, Q1 . . . Q ,

is a theorem i$ {Q1 . Q,) is a subset of {PI . . P,L)

Proof.

If direction is trivial.

Proof of only if direction by contradiction.

WLOG suppose that Q1 is not a member of {PI . . . P,). Then consider a IIcrbrand

interpretation where the domain contains "Xf . -"X[and d l the ~onsta~nts, that occur in

A.2 plus all possible funct io~ applications. Let "Qy in this interpretation be false, and

everything else be true. Then PI - . . P, will be true under each assignment of ~a~riablcs,

because Q1 does not occur in PI - - . P,, but Q1 . . . Q , will be false under assignment

X 1 = "X i ' . . -Xk = "X:. From the completeness of FOL follows that (A.2) is not a thcorcnt.

a

Consider quadruple (PP', AA', I, 0). For the notational convenience we shall writo CC'

to denote PP' A AA'.

We shall show that if (PP',AAt, I ,O) is an NCE, then our algorithm will construct

a condition RR' that is weaker than CC', and the algorithm will at the samc tinm con-

struct condition QQ', that is also weaker than CC'. Then we shall show that the union of

constructed conditions CC is weaker than CC'.

Suppose that (PP', AA', I, 0) is an NCE. Then from the definition of NCE

T (= (V) CC' A I -, 0

From the completeness of the conditions construction algorithm, there is a condi ti011

R1 - . R, in the set SO in the algorithm, s.t.

and there is a substitution f s.t.

then from the lemma it follows that

(V) CC' -+ Rl f - . . R, f

From A.3 and A.5, we obtain

T + (Q) R 1 f - R , f -+O

and from A.5 and A.6

T (Q) CC' -t 0

which is a contradiction with the fact that (PP', AA', I , O) is an NCE.

So there exists a nonempty subset S R of the formulas R1 . - . R , that

formulas R;, s.t. R; f = I . So according to the lemma A.l and from A.4

(V) CC' -+ ({ R 1 . . Rm) - SR) f

APPENDIX A. 136

It is obvious that at least one of the formulas in Rl f - - . R, f is I . If it is not the case

(A.5)

~ntains all the

Let us consider the most general unifier T of the set S R and I. Then there is s substi-

tution h s.t. f = rh and

(V) CC' -+ ({ R ~ T - - - R,T} - S R T) ~

Note, that all possible sets S R are considered in the step 4 of the algorithm. There-

fore there is a set RR' and substitution T considered in the algorithm, s.t. there exists

substitution h s.t.

(V) CC' -+ RR'rh (A.7)

Similarly, from the definition of NCE we have

T + (Q)AA'l\ 0 -+ I

From the completeness of the conditions construction algorithm, there is a condition

Q1 . .Ql in the set SO in the algorithm, s.t.

and there is a substitution g s.t.

APPENDIX A. 137

From A.8, from the lemma A.l and from the fact, that AA' contains only a.ssumpt3ion

predicates, it follows that there is a subset (possibly empty) SQ of {Ql . .a l) t1la.t contains

all Q;s s.t. the predicate of Q; is the same as the predicate of 0 and g is a unifier of SQ

and 0.

Therefore there exists a m.g.u. q of SQ and 0 and a substitution h' s.t. g = qh'. Elom

lemma A . l and from A.8, it clearly follows, that

So from A.7 and A.9 we have

(V) CC -+ RR'rh A QQ'qhf

WLOG we can assume that the three sets of variables that occur in CC', QQ' and Rll'

are mutually disjunctive. Also substitutions r and q bind variables with constant t cms ,

because formulas I and 0 are ground. Thus we can write

(V) CC -+ (QQ' u RRf)rqhh'

So there is a CE in the results of the conditions combination algorithm that fulfills l.he

completeness requirement. U

